
Co-clustering of time-dependent data

via the Shape Invariant Model

Abstract

Multivariate time-dependent data, where multiple features are observed over

time for a set of individuals, are increasingly widespread in many application do-

mains. To model these data we need to account for relations among both time

instants and variables and, at the same time, for subject heterogeneity. We propose

a new co-clustering methodology for grouping individuals and variables simulta-

neously, designed to handle both functional and longitudinal data. Our approach

borrows some concepts from the curve registration framework by embedding the

Shape Invariant Model in the Latent Block Model, estimated via a suitable mod-

ification of the SEM-Gibbs algorithm. The resulting procedure allows for several

user-defined specifications of the notion of cluster that can be chosen on substantive

grounds and provides parsimonious summaries of complex time-dependent data by

partitioning data matrices into homogeneous blocks. Along with the explicit mod-

elling of time evolution, these aspects allow for an easy interpretation of the clusters,

from which also low-dimensional settings may benefit.

Keywords: co-clustering, curve registration, latent block model, stochastic EM

1 Introduction

Time-dependent data, arising when measurements are taken on a set of units at different

time occasions, are pervasive in a plethora of different fields. Examples include, but are
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not limited to, time evolution of asset prices and volatility in finance, growth of coun-

tries as measured by economic indices, heart or brain activities as monitored by medical

instruments, disease evolution evaluated by suitable bio-markers in epidemiology. In this

heterogeneous landscape, we may distinguish, from a modelling perspective, between func-

tional and longitudinal settings. In the former case a large number of regularly sampled

observations is usually available, allowing to treat each element of the sample as a func-

tion. In longitudinal studies, conversely, only a few observations over time are typically

available with sparse and irregular measurements. Readers may refer to Rice [2004] for a

thorough comparison and discussion about differences and similarities between functional

and longitudinal data analysis.

Early developments in these areas mainly aim to describe individual-specific curves

by properly accounting for the correlation between measurements for each subject [see

e.g. Diggle et al., 2002, Ramsay and Silverman, 2005, and references therein] with the

subjects themselves often considered to be independent. This is not always the case,

hence more recently, there has been increasing interest in clustering methodologies aimed

at describing heterogeneity among time-dependent observed trajectories; see Erosheva

et al. [2014] for a recent review of related methods used in criminology and developmental

psychology. From a functional standpoint, different approaches have been studied and

readers may refer to the works by Bouveyron and Jacques [2011], Bouveyron et al. [2015]

and Bouveyron et al. [2020] or to Jacques and Preda [2014] for a review. On the other

hand, from a longitudinal point of view, De la Cruz-Mesía et al. [2008], McNicholas

and Murphy [2010] proposed model-based clustering approaches. Lastly a review from a

more general time-series perspective may be found in Liao [2005] and Frühwirth-Schnatter

[2011].

The methods cited so far usually deal with situations where a single feature is mea-

sured over time for a number of subjects, where the data are represented by a n × T

matrix, with n being the number of subjects and T being the number of observed time

occasions. In fact, it is increasingly common to encounter multivariate time-dependent

data, with several variables measured over time for different individuals. These data may
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Figure 1: Example of multivariate time-dependent data: d = 4 variables are measured for n = 8
individuals over T = 15 time instants, giving rise to the displayed curves.

be represented according to three-way n × d × T matrices, with d being the number of

time-dependent features; a graphical illustration of such structure is displayed in Figure

1. The introduction of an additional layer entails new challenges that have to be faced

by clustering tools. As noted by Anderlucci and Viroli [2015], models have to account

for three different aspects, being the correlation across different time observations, the

relationships between the variables and the heterogeneity among the units, each one of

them arising from a different layer of the three-way data structure.

To extract useful information and to unveil patterns from such complex structured and

high-dimensional data, standard clustering strategies would require specification and es-

timation of highly parameterized models. In this situation, parsimony is often induced by

neglecting the correlation structure among variables. An alternative approach, specifically

proposed in a parametric setting, is represented by the contributions of Viroli [2011a,b]

which exploit mixtures of Gaussian matrix-variate distributions, in order to handle three-

way data.

In the present work, we take a different direction, by pursuing a co-clustering strategy

to address the mentioned issues. The term co-clustering refers to those methods finding

row and column clusters of a data matrix simultaneously. These techniques are partic-
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ularly useful in high-dimensional settings where standard clustering methods may fall

short in uncovering meaningful and interpretable row groups because of the high number

of variables. By searching for homogeneous blocks in large matrices, co-clustering tools

produce parsimonious summaries that could provide useful lower dimensional representa-

tions of the data. These techniques are particularly appropriate when relations among the

observed variables are of interest. Note that, even in the co-clustering context, the usual

dualism between distance-based and density-based strategies can be found. We pursue the

latter approach, which embeds co-clustering in a probabilistic framework, builds a com-

mon setting to handle different types of data, and reflects the idea of a density resulting

from a mixture model. Specifically, we propose a parametric model for time-dependent

data and a new estimation strategy to handle the distinctive characteristics of the model.

Parametric co-clustering of time-dependent data has been pursued by Ben Slimen et al.

[2018] and Bouveyron et al. [2018] in a functional setting, by mapping the original curves

to the space spanned by the coefficients of a basis expansion. By modelling explicitly the

observed data, instead of basis expansion coefficients, we provide a natural description

of the time evolution and facilitate cluster interpretation. The proposed model builds

on the idea that individual curves within a cluster arise as transformations of a com-

mon shape function, which is in turn modeled to handle both functional and longitudinal

data, regardless of their dimensionality. Lastly, the framework we develop allows for a

flexible specification of different notions of clusters, possibly depending on subject matter

considerations.

The rest of the paper is organized as follows. In Section 2, we provide the background

needed for the specification of the proposed model which is described in Section 3, along

with the estimation procedure. In Section 4, the model performances are illustrated both

on simulated and real examples. In Section 5, we conclude the paper by summarizing our

contributions and pointing to some future research directions.
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2 Modelling time-dependent data

In the heterogeneous time-dependent data landscape outlined in the previous section, it

is sensible to pursue a variety of modelling approaches. The route we follow borrows its

rationale from the curve registration framework [Ramsay and Li, 1998], according to which

observed curves often exhibit common patterns but with some variations. Methods for

curve registration, also known as curve alignment or time warping, are based on the idea

of aligning prominent features in a set of curves via either an amplitude variation, a phase

variation or a combination of the two. The first one concerns vertical variations while the

latter regards horizontal, hence time related, ones. As an example, it is possible to think

about modelling the evolution of a specific disease. Here the observable heterogeneity of

the raw curves can often be disentangled in two distinct sources: on the one hand, it could

depend on differences in the intensities of the disease among subjects whereas, on the other

hand, there could be different ages of onset, i.e. the age at which an individual experiences

the first symptoms. After properly taking into account these causes of variation, the

curves result to be more homogeneously behaving, with a so called warping function,

which synchronizes the observed curves and allows for visualization and estimation of a

common mean shape curve.

Similarly, in this work we account for time-dependency via a self-modelling regression

approach [Lawton et al., 1972] and, more specifically, via an extension of the so called

Shape Invariant Model [SIM, Lindstrom, 1995], based on the idea that an individual curve

arises as a simple transformation of a common shape function.

Let X = {xi(ti)}1≤i≤n be the set of curves, observed on n individuals, with xi(t) being

the level of the i-th curve at time t and t ∈ ti = (ti,1, . . . , Ti,ni
), hence with the time

points and their number allowed to be subject-specific. Stemming from the SIM, xi(t) is

modelled as

xi(t) = αi,1 + eαi,2m(t− αi,3) + εi(t) (1)

where
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• m(·) denotes a general common shape function whose specification is arbitrary.

In the following we consider B-spline basis functions [De Boor, 1978], i.e. letting

m(t) = m(t; β) = B(t)β, where B(t) and β are respectively a vector of B-spline

basis evaluated at time t and a vector of basis coefficients whose dimensions allow

for different degrees of flexibility;

• αi = (αi,1, αi,2, αi,3) ∼ N3(µα,Σα) for i = 1, . . . , n is a vector of subject-specific

normally distributed random effects. These random effects are responsible for the

individual specific transformations of the mean shape curve m(·) assumed to gener-

ate the observed ones. In particular αi,1 and αi,3 govern respectively amplitude and

phase variations while αi,2 describes possible scale transformations. Random effects

also account for the correlation among observations on the same subject measured

at different time points;

• εi(t) ∼ N (0, σ2
ε ) is a Gaussian distributed error term.

Due to its flexibility, Telesca and Inoue [2008] and Telesca et al. [2012] have already

considered the SIM as a stepping stone to model both functional and longitudinal time-

dependent data. Indeed, on the one hand, the smoothing involved in the specification

of m(·; β) allows to handle function-like data. On the other hand, random effects, which

borrow information across curves, make this approach fruitful even with short, irregu-

lar and sparsely sampled time series; readers may refer to Erosheva et al. [2014] for an

illustration in the context of behavioral trajectories. Therefore, we find model (1) par-

ticularly suitable for our aims, potentially being able to handle time-dependent data in a

comprehensive way.

3 Time-dependent Latent Block Model

3.1 Latent Block Model

In the parametric, or model-based, co-clustering framework, the Latent Block Model

[LBM, Govaert and Nadif, 2013] is the most popular approach. Data are represented in a
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matrix form X = {xij}1≤i≤n,1≤j≤d, where by now we should intend xij as a generic random

variable. To aid the definition of the model, and in accordance with the parametric ap-

proach to clustering [Fraley and Raftery, 2002, Bouveyron et al., 2019], two latent random

vectors z = {zi}1≤i≤n, and w = {wj}1≤j≤d, with zi = (zi1, . . . , ziK), wj = (wj1, . . . , wjL),

are introduced, indicating respectively the row and column memberships, with K and

L the number of row and column clusters. A standard binary notation is used for the

latent variables, i.e. zik = 1 if the i-th observation belongs to the k-th row cluster and

0 otherwise and, likewise, wjl = 1 if the j-th variable belongs to the l-th column cluster

and 0 otherwise. The model formulation relies on a local independence assumption, with

the n × d random variables {xij}1≤i≤n,1≤j≤d being therefore assumed to be independent

conditionally on z and w, in turn supposed to be independent. The LBM can be thus

written as

p(X ; Θ) =
∑
z∈Z

∑
w∈W

p(z; Θ)p(w; Θ)p(X|z,w; Θ) , (2)

where

• Z and W are the sets of all the possible partitions of rows and columns respectively

in K and L groups;

• the latent vectors z,w follow a multinomial distribution, with p(z; Θ) = ∏
ik π

zik
k ,

p(w; Θ) = ∏
jl ρ

wjl

l and πk, ρl > 0 are the row and column mixture proportions,∑
k πk = ∑

l ρl = 1;

• as a consequence of the local independence assumption, p(X|z,w; Θ) = ∏
ijkl p(xij; θkl)zikwjl

where θkl is the vector of parameters specific to block (k, l);

• Θ = (πk, ρl, θkl)1≤k≤K,1≤l≤L is the full parameter vector of the model.

The LBM is particularly flexible in modelling different data types, as handled by

a proper specification of the marginal density p(xij; θkl) for binary [Govaert and Nadif,

2003], count [Govaert and Nadif, 2010], continuous [Lomet, 2012], categorical [Keribin
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et al., 2015], ordinal [Jacques and Biernacki, 2018, Corneli et al., 2020], and even mixed-

type data [Selosse et al., 2020].

3.2 Model specification

Once the LBM structure has been properly defined, extending its rationale to handle

time-dependent data in a co-clustering framework boils down to a suitable specification

of p(xij; θkl). Note that this reveals one of the main advantages of such a highly-structured

model, consisting in the chance to search for patterns in multivariate and complex data

by specifying only the model for the variable xij. As introduced in Section 1, multidi-

mensional time-dependent data may be represented according to a three-way structure

where the third mode accounts for the time evolution. The observed data hence assume

an array configuration X = {xij(ti)}1≤i≤n,1≤j≤d with ti = (ti,1, . . . , Ti,ni
) as outlined in

Section 2; from a practical standpoint, subject dependent time instants, sparsely sampled

curves and different observational lengths can be handled by a suitable use of missing

entries. Consistently with (1), we consider as a generative model for the curve in the

(i, j)-th entry, belonging to the generic block (k, l), the following

xij(t)|zik=1,wjl=1 = αklij,1 + eαkl
ij,2m(t− αklij,3; βkl) + εij(t) (3)

with t ∈ ti a generic time instant. A relevant difference with respect to the original SIM

consists, coherently with the co-clustering setting, in the parameters being block-specific

since the generative model is specified conditionally to the block membership of the cell.

As a consequence:

• m(t; βkl) = B(t)βkl where the quantities are defined as in Section 2, with the only

difference that βkl is a vector of block-specific basis coefficients, hence allowing

different mean shape curves across different blocks;

• αklij = (αklij,1, αklij,2, αklij,3) ∼ N3(µαkl,Σα
kl) is a vector of cell-specific random effects

distributed according to a block-specific Gaussian distribution;

• εij(t) ∼ N (0, σ2
ε,kl) is the error term distributed as a block-specific Gaussian;
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Figure 2: In the left panels, curves in dotted line arise as random fluctuations of the superimposed
red curve, but they are all time, amplitude or scale transformations of the same mean-shape
function on the right panel.

• θkl = (µαkl,Σα
kl, σ

2
ε,kl, βkl).

Note that here we embed the ideas borrowed from the curve registration framework

in a clustering setting. Therefore, while curve alignment aims to synchronize the curves

to estimate a common mean shape, in our setting the SIM works as a suitable tool to

model the heterogeneity inside a block and to introduce a flexible notion of cluster. The

rationale behind considering the SIM in a co-clustering framework consists in looking

for blocks characterized by a different mean shape function m(·; βkl). Curves within the

same block arise as random shifts and scale transformations of m(·; βkl), driven by the

block-specifically distributed random effects. Let consider the small panels on the left

side of Figure 2, displaying a number of curves which arise as transformations induced by

non-zero values of αij,1, αij,2, or αij,3. Beyond the sample variability, the curves differ for

a (phase) random shift on the x−axes, an amplitude shift on the y− axes, and a scale

factor. According to model (3), all those curves belong to the same cluster, since they

share the same mean shape function (Figure 2, right panel).

Further flexibility can be naturally introduced within the model by “switching off”

one or more random effects depending on subject-matter considerations and on the user’s

cluster definition. For example, if there are reasons to support that similar, yet shifted in

time, evolutions are expression of different clusters, it makes sense to switch off αij,3. As

a consequence, the model specification in (3) would no longer include the corresponding
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Figure 3: Pairs of plots in each column represent the two-cluster configurations arising from
switching off, from left to right αij,1, αij,2, αij,3. In the names of the models, as used in the rest
of the paper, T indicates a switched on random effect while F a switched off one.

random effect αij,3

xij(t)|zik=1,wjl=1 = αklij,1 + eαkl
ij,2m(t; βkl) + εij(t) .

In the following, we refer to this model as TTF, to highlight that the third random effect

is switched off. In the example illustrated in Figure 2 this situation ideally leads to a two-

cluster structure (Figure 3, right panels). Similarly, if comparable time evolution curves

associated to different intensities are seen as expression of distinct groups, the random

intercept αij,1 can be switched off, and we refer to this class of models as FTT. Lastly,

removing αij,2 results in TFT models which would determine different blocks varying for

a scale factor (Figure 3, middle panels). From a practical standpoint, switching off a

random effect amounts to constrain it to follow a degenerate distribution centered at zero

in the estimation scheme outlined in the next section.
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3.3 Model estimation

To estimate the LBM several approaches have been proposed, as for example Bayesian

[Wyse and Friel, 2012], greedy search [Wyse et al., 2017] and likelihood-based ones [Govaert

and Nadif, 2008]. In this work we focus on the latter class of methods. In principle,

the estimation strategy would aim to maximize the log-likelihood `(Θ) = log p(X ; Θ)

with p(X ; θ) defined as in (2); nonetheless, the missing structure of the data makes this

maximization impractical. For this reason the complete data log-likelihood is usually

considered as the objective function to optimize, defined as

`c(Θ, z,w) =
∑
ik

zik log πk +
∑
jl

wjl log ρl +
∑
ijkl

zikwjl log p(xij; θkl), (4)

where the first two terms account for the proportions of row and column clusters while

the third one depends on the probability density function of each block.

As a general solution, to maximize (4) and obtain an estimate of Θ̂ when dealing

with situations where latent variables are involved, one would in principle resort to the

Expectation-Maximization algorithm [EM, Dempster et al., 1977]. The basic idea un-

derlying the EM algorithm consists in finding a lower bound of the log-likelihood and

optimizing it via an iterative scheme in order to create a converging series of Θ̂(h). In

the co-clustering framework, this lower bound can be easily exhibited by rewriting the

log-likelihood as follows

`(Θ) = L(q; Θ) + ζ

where L(q; Θ) = ∑
z,w q(z,w) log(p(X , z,w|θ)/q(z,w)), q(z,w) is a generic probability

mass function on the support of (z,w) while ζ is a positive constant not depending on Θ.

The E step of the algorithm maximizes the lower bound L over q for a given value

of Θ. Straightforward calculations show that L is maximized for q∗(z,w) = p(z,w|X , θ).

Unfortunately, in a co-clustering scenario, the joint posterior distribution p(z,w|X ,Θ)

is not tractable, as it involves terms that cannot be factorized as it conversely happens

in a standard mixture model framework. As a consequence, several modifications have

been explored, searching for viable solutions when performing the E step [see Govaert
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and Nadif, 2013, for a more detailed tractation]; examples are the Classification EM

(CEM) and the Variational EM (VEM). Here we propose to make use of a Gibbs sampler

within the E step to approximate the posterior distribution p(z,w|X ,Θ). This results in a

stochastic version of the EM algorithm, which will be called SEM-Gibbs in the following.

Given an initial column partition w(0) and an initial value for the parameters Θ(0), at the

h-th iteration the algorithm proceeds as follows:

• SE step: q∗(z,w) ' p(z,w|X ,Θ(h−1)) is approximated with a Gibbs sampler. The

Gibbs sampler consists in sampling alternatively z and w from their conditional

distributions a certain number of times before to retain new values for z(h) and

w(h),

• M step: L(q∗(z(h),w(h)),Θ(h−1)) is then maximized over Θ, where

L(q∗(z(h),w(h)),Θ(h−1)) '
∑
z,w

p(z,w|X ,Θ(h−1)) log(p(X , z,w|Θ)/p(z,w|X ,Θ(h−1)))

' E[`c(Θ, z(h),w(h))|Θ(h−1)] + ξ,

ξ not depending on Θ. This step therefore reduces to the maximization of the

conditional expectation of the complete data log-likelihood (4) given z(h) and w(h).

In the proposed framework, due to the presence of the random effects, some additional

challenges have to be faced. In fact, the maximization of the conditional expectation of

(4) associated to model (3) requires a cumbersome multidimensional integration in order

to compute the marginal density defined as

p(xij; θkl) =
∫
p(xij|αklij ; θkl)p(αklij ; θkl) dαklij . (5)

Note that, with a slight abuse of notation, we suppress the dependency on the time t, i.e.

xij has to be intended as xij(ti). In the SE step, on the other hand, the evaluation of (5) is

needed for all the possible configurations of {zi}i=1,...,n and {wj}j=1,...,d. These quantities

are straightforwardly obtained when the SEM-Gibbs is used to estimate models without

any random effect involved, while their computation is more troublesome in our scenario.
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We propose a modification of the SEM-Gibbs algorithm, called Marginalized SEM-

Gibbs (M-SEM), where an additional Marginalization step is introduced to account for

the random effects. Given an initial value for the parameters Θ(0) and an initial column

partition w(0), the h-th iteration of the M-SEM algorithm alternates the following steps:

• Marginalization step: The single cell contributions in (5) to the complete data

log-likelihood are computed by means of a Monte Carlo integration scheme as

p(xij; θ(h−1)
kl ) ' 1

M

M∑
m=1

p(xij;αkl,(m)
ij , θ

(h−1)
kl ) (6)

for i = 1, . . . , n, j = 1, . . . , d, k = 1, . . . , K and l = 1, . . . , L and being M the

number of Monte Carlo samples. The values of the vectors αkl,(1)
ij , . . . , α

kl,(M)
ij are

drawn from a Gaussian distributionN3(µα,(h−1)
kl ,Σα,(h−1)

kl ) with this choice amounting

to a random version of the Gaussian quadrature rule [Pinheiro and Bates, 2006].

Whenever one or more random effects are not included in the model (i.e. they are

switched off), the corresponding draws come from degenerate random variables, and

hence set to zero in the estimation process.

• SE step: p(z,w|X ,Θ(h−1)) is approximated by repeating, for a number of iterations,

the following Gibbs sampling steps

1. generate the row partition z
(h)
i = (z(h)

i1 , . . . , z
(h)
iK ), i = 1, . . . , n according to a

multinomial distribution z(h)
i ∼M(1, z̃i1, . . . , z̃iK), with

z̃ik = p(zik = 1|X ,w(h−1); Θ(h−1))

= π
(h−1)
k pk(xi|w(h−1); Θ(h−1))∑

k′ π
(h−1)
k′ pk′(xi|w(h−1); Θ(h−1))

,

for k = 1, . . . , K, with xi = {xij}1≤j≤d the i-th row of X and pk(xi|w(h−1); Θ(h−1)) =∏
jl p(xij; θ

(h−1)
kl )w

(h−1)
jl .

2. generate the column partition w
(h)
j = (w(h)

j1 , . . . , w
(h)
jL ), j = 1, . . . , d according
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to a multinomial distribution w(h)
j ∼M(1, w̃j1, . . . , w̃jL), with

w̃jl = p(wjl = 1|X , z(h); Θ(h−1))

= ρ
(h−1)
l pl(xj|z(h); Θ(h−1))∑

l′ ρ
(h−1)
l′ pl′(xj|z(h); Θ(h−1))

,

for l = 1, . . . , L, with xj = {xij}1≤i≤n the j-th column of X and pl(xj|z(h); Θ(h−1)) =∏
ik p(xij; θ

(h−1)
kl )z

(h)
ik .

• M step: Estimate Θ(h) by maximizing E[`c(Θ, z(h),w(h))|Θ(h−1)].

Update mixture proportions as π(h)
k = 1

n

∑
i z

(h)
ik and ρ(h)

l = 1
d

∑
j w

(h)
jl . The estimate

of θkl = (µαkl,Σα
kl, σ

2
ε,kl, βkl) is obtained by exploiting the non-linear mixed effect

model specification in (3) and considering the approximate maximum likelihood

formulation proposed in Lindstrom and Bates [1990]; the variance and the mean

components are estimated by approximating and maximizing the marginal density

of the latter near the mode of the posterior distribution of the random effects.

Conditional or shrinkage estimates are then used for the estimation of the random

effects.

The M-SEM algorithm is run for a certain number of iterations until a convergence

criterion is met. The convergence for the proposed procedure is assessed by monitoring

the evolution of the complete data log-likelihood: more specifically the algorithm reaches

convergence when the sum of the changes in `c(Θ, z,w) in the last three iterations are

smaller than a given threshold δ > 0. Since a burn-in period is considered, the final

estimate for Θ, denoted as Θ̂, is given by the mean of the sample distribution. A sample

of (z,w) is then generated according to the SE step as illustrated above with Θ = Θ̂. The

final block-partition (ẑ, ŵ) is then obtained as the mode of their sample distribution.

The approach considered in this work represents an extension to the likelihood max-

imization strategies, usually adopted in the LBM framework. Note that other choices

could be alternatively explored, such as fully Bayesian estimation schemes possibly allow-

ing for statistical inference on the parameter estimates [van Dijk et al., 2009] and for the

automatic selection of the number of blocks [Wyse and Friel, 2012].
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3.4 Model selection

The choice of the number of groups is considered here as a model selection problem.

Operationally we estimate several models, corresponding to different combinations of K

and L and, in our case, to different configurations of the random effects, and we select

the best one according to an information criterion. Note that the model selection step

is more troublesome in this setting with respect to a standard clustering one, since we

need to select not only the number of row clusters K but also the number of column

ones L. Standard choices, such as the AIC and the BIC, are not directly available in the

co-clustering framework where, as noted by Keribin et al. [2015], the computation of the

likelihood of the LBM is challenging, even when the parameters are properly estimated. A

viable alternative is to consider an approximated version of the ICL [Biernacki et al., 2000]

that, relying on the complete data log-likelihood, does not suffer from the same issues:

ICL = `c(Θ̂, ẑ, ŵ)− K − 1
2 log n− L− 1

2 log d− KLν

2 log nd , (7)

where ν denotes number of specific parameters for each block while `c(Θ̂, ẑ, ŵ) is defined

as in (4) with Θ, z and w being replaced by their estimates. The model associated with

the highest value of the ICL is then selected.

Even if the use of this criterion is a well-established practice in co-clustering applica-

tions, Keribin et al. [2015] noted that its consistency has not been proved yet to estimate

the number of blocks of a LBM. Additionally, Nagin [2009] and Corneli and Erosheva

[2020] point out a bias of the ICL towards overestimation of the number of clusters in

the longitudinal context. The validity of the ICL could be additionally undermined by

the presence of random effects. As noted by Delattre et al. [2014], standard information

criteria have unclear definitions in a mixed effect model framework, since the definition

of the actual sample size is not trivial. Given that, common asymptotic approximations

are not valid anymore. Even if a proper exploration of the problem from a co-clustering

perspective is still missing, we believe that the mentioned issues might have an impact

also on the derivation of the criterion in (7). The development of valid model selection
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tools for LBM when random effects are involved is out of scope of this work, therefore,

operationally, we consider the ICL. Nonetheless, the analyses in Section 4 have to be

interpreted with full awareness of the limitations described above.

Additionally note that, to practically evaluate (7), the complete data log-likelihood

is required. As outlined in the previous section, marginalization procedures are needed

to compute the marginal densities involved in (4). As a consequence, the first term

(7) is approximated, thus possibly depending on the considered marginalization scheme.

Nonetheless, different approximation strategies have been proposed and their accuracy

have been thoroughly tested [see e.g. Pinheiro and Bates, 1995], showing that the choice

of a specific procedure is not strongly influential.

Lastly, since the ICL would serve to the selection of both the number of row and column

clusters and the random effect configuration, note that the involved computational time

might be rather demanding, also depending on the sample size, the data dimension and

the number of observed time occasions. In such situations, resorting to some greedy search

strategy, where not all models under evaluations have to be estimated, could be helpful.

See, for instance, Keribin et al. [2017] and Corneli et al. [2020].

3.5 Remarks

The model introduced so far inherits the advantages of both its building ingredients,

namely the LBM and the SIM. Thanks to the local independence assumption of the

LBM, it allows handling multivariate, possibly high-dimensional complex data structures

in a relatively parsimonious way. On the other hand, the characteristics of the model in-

troduce some relevant advantages, in terms of interpretability of the time evolutions of the

variables, even in low dimensional settings. The random effects capture differences among

the subjects, while curve summaries can be expressed as a function of the mean shape

curve. Additionally, resorting to a smoother when modelling the mean shape function,

allows for a flexible handling of functional data whereas the presence of random effects

make the model effective also in a longitudinal setting. In fact, the borrowing strength

mechanism induced by the random effects allows to deal with sparsely and irregularly
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sampled longitudinal data [James and Sugar, 2003]. Finally, we pursue clustering directly

on the observed curves, without resorting to intermediate transformation steps, as it is

done for example in Bouveyron et al. [2018] where clustering is performed on an inter-

mediate space, spanned by the basis expansion coefficients used to transform the original

data, thus possibly endangering the interpretation in terms of the evolution in time. The

model, despite its attractive features, introduces some difficulties that require caution, as

in the following discussed.

• Initialization The M-SEM algorithm encloses different numerical steps which require

the suitable specification of starting values. First, the convergence of EM-type

algorithms towards a global maximum is not guaranteed; as a consequence they are

known to be sensitive to the initialization with a proper one being crucial to avoid

local solutions. Assuming K and L to be known, the M-SEM algorithm requires

starting values for z and w in order to implement the first M step. A standard

strategy resorts to multiple random initializations: the row and column partitions

are sampled independently from multinomial distributions with uniform weights and

the one eventually leading to the highest value of the complete data log-likelihood is

retained. An alternative approach, possibly accelerating the convergence, is given

by a k-means initialization, where two k-means algorithms are independently run

for the rows and the columns of X and the M-SEM algorithm is initialized with

the obtained partitions. It has been pointed out [see e.g. Govaert and Nadif, 2013]

that the SEM-Gibbs, being a stochastic algorithm, can attenuate in practice the

impact of the initialization on the resulting estimates. Finally, note that a further

initialization is required, to estimate the nonlinear mean shape function within the

M step.

• Convergence and other numerical problems. Although the benefits of including ran-

dom effects in the considered framework are undeniable, parameters estimation is

known not to be straightforward in mixed effect models, especially in the nonlinear

setting [Harring and Liu, 2016]. As noted above the nonlinear dependence of the

conditional mean of the response on the random effects requires multidimensional
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integration to derive the marginal distribution of the data. While several methods

have been proposed to compute the integral, convergence issues are often encoun-

tered. In such situations, some strategies can be employed to help with convergence

of the estimation algorithm. Examples are to try different sets of starting values, to

scale the data prior to the modelling step, or to simplify the structure of the model

(e.g. by reducing the number of knots of the B-splines). Addressing these issues

often results in considerable computational times even when convergence is eventu-

ally achieved. Depending on the specific data at hand, it is also possible to consider

alternative mean shape formulations, such as polynomial functions, which result in

easier estimation procedures. Lastly note that, if available, prior knowledge about

the time evolution of the observed phenomenon may be incorporated in the models

to introduce some constraints possibly simplifying the estimation process [see e.g.

Telesca et al., 2012].

• Identifiability. The model proposed might inherits some of the identifiability issues

of its building blocks, i.e. the Latent Block Model and the Shape Invariant Model.

The first one shares the same issues of a standard mixture model. As noted by

Keribin et al. [2015], LBM is not identifiable due its invariance to blocks relabelling;

this might be a problem when Bayesian estimation procedures are adopted but it is

less of an issue when, as in this paper, maximum likelihood estimation is considered.

A further source of possible identifiability problems arises in the SIM, as discussed

by Lindstrom [1995] and, for a more general but related class of models, by Kneip

and Gasser [1988]. In this work, to limit the potential issues, we optimize αi,2 on

the log-scale by replacing it with eαi,2 in (1), thus forcing the scale parameters to

be positive. This might alleviate the identifiability problems possibly induced by

the specific characteristics of the shape function m(·), such as its closeness under

multiplication by -1, which implies that m(·) = −m(·) [see Lindstrom, 1995, for

further details].

• Curse of flexibility. Including random effects for both phase and amplitude shifts

and scale transformations might allow for a virtually excellent fitting of various
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arbitrarily shaped curve. This flexibility, albeit desirable, sometimes achieve exces-

sive extents, possibly leading to estimation troubles. This is especially true in a

clustering framework, where data are expected to exhibit a remarkable heterogene-

ity. From a practical point of view, our experience suggests that the estimation of

the parameters αij,2 turns out to be the most troublesome, sometimes leading to

convergence issues and instability in the resulting estimates.

4 Numerical experiments

4.1 Synthetic data

This section examines the main features of the proposed approach on some synthetic

data. The aim of the simulation study is twofold. The first goal of the analyses consists

in exploring the capability of the proposed method to properly partition the data into

blocks, also in comparison with some competitors such as the one proposed by Bouveyron

et al. [2018] (funLBM in the following) and a double k-means approach, where row and

column partitions are obtained separately and subsequently merged to produce blocks.

With this regard, we evaluate the results by means of the Co-clustering Adjusted Rand

Index [CARI, Robert et al., 2020]. This criterion generalizes the Adjusted Rand Index

[Hubert and Arabie, 1985] to the co-clustering framework, and takes the value 1 when

the blocks partitions perfectly agree up to a permutation. In order to have a fair compar-

ison with the double k-means approach, for which selecting the number of blocks is not

straightforward, and to separate the uncertainty due to model selection from the one due

to cluster detection, we compared models by considering the number of blocks as known

and equal to (Ktrue, Ltrue). Consistently, we estimate our model only for the true random

effects configuration, being the one considered to generate the data.

As for the second aim of the simulations, we evaluate the performances of the ICL

in the developed framework to select both the number of blocks (K,L) and the random

effects configuration.

All the analyses have been conducted in the R environment [R Core Team, 2019] with
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Figure 4: Subsample of simulated curves (black dashed lines) with over-imposed block specific
mean shape curves (colored continue lines) employed in the numerical study

the aid of nlme package [Pinheiro et al., 2019] to estimate the parameters in the M-step,

and the splines package to handle the B-spline involved in the common shape function.

The code implementing the proposed procedure is available upon request.

The main examined simulation setup is defined as follows. We generated B = 100

Monte Carlo samples of curves according to the general specification (3), with block-

specific mean shape function mkl(·) and both the parameters involved in the error term

and the ones describing the random effects distribution being constant across the blocks.

In fact, in the light of the considerations made in Section 3.5, the random scale parameter

is switched off in the data generative mechanism, i.e. αij,2 is constrained to be degenerate

in zero. We fixed the number of row and column clusters to Ktrue = 4 and Ltrue = 3. The

mean shape functions mkl(·) are chosen among four different curves, namely m11 = m13 =

m33 = m1, m12 = m32 = m31 = m41 = m2, m21 = m32 = m42 = m3 and m22 = m43 = m4,

as illustrated in Figure 4 with different color lines, and specified as follows:

m1(t) ∝ 6t2 − 7t+ 1 m2(t) ∝ φ(t; 0.2, 0.008)

m3(t) ∝ 0.75− 0.81{t∈(0.4,0.6)} m4(t) ∝ 1
(1 + exp(−10t+ 5))
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Table 1: Mean (and std error) of the CARI computed over the simulated samples in the three
scenarios. Partitions are obtained using the proposed approach (tdLBM), funLBM and a double
k-means approach.

n = 100, d = 20 n = 100, d = 50 n = 500, d = 20
CARItdLBM 0.972 (0.044) 0.988 (0.051) 0.981 (0.020)
CARIfunLBM 0.950 (0.099) 0.847 (0.183) 0.865 (0.177)
CARIkmeans 0.761 (0.158) 0.842 (0.182) 0.809 (0.169)

We set the other involved parameters to σε,kl = 0.3, µαkl = (0, 0, 0) and Σα
kl = diag(1, 0, 0.1)

∀k = 1, . . . , Ktrue, l = 1, . . . , Ltrue. Three different scenarios are considered with generated

curves consisting of T = 15 equi-spaced observations ranging in [0, 1]. As a first baseline

scenario, we set the number of rows to n = 100 and the number of columns to d = 20.

The other scenarios are considered in order to obtain insights and indications on the

performances of the proposed method when dealing with larger matrices. Coherently in

the second scenario n = 500 and d = 20 while in the third one n = 100 and d = 50 thus

increasing respectively the number of samples and features.

Results are reported in Table 1. The proposed method claims excellent performances

in all the considered settings, with results notably featured by a very limited variability

and sensitivity to changes in n or d. No clear-cut indications arise from the comparison

with funLBM in the baseline scenario, but the latter method shows a larger sensitivity to

an increase of data size and dimension, where its performances get worse. The use of an

approach which is not specifically conceived for co-clustering, like the the double k-means,

leads to a stronger degradation of the quality of the partitions. However, not consider-

ing jointly the variables and the observations, k-means behaves better with increasing

dimensions.

As for the performances of the ICL, Table 2 shows the fractions of samples where the

criterion has led to the selection of each of the considered configurations of (K,L), with

K,L = 2, . . . , 5, for models estimated with the proposed method and with funLBM. In all

the considered settings, the actual number of co-clusters is the most frequently selected

by the ICL criterion, yet a non-negligible tendency to favor overparameterized models,

especially for larger sample size, is witnessed, consistently with the comments in Corneli

et al. [2020]. Conversely, when considering funLBM, the ICL selects the pair (Ktrue, Ltrue)
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in the very large majority of the Monte Carlo simulations.

In addition, the simulations described above have been run on a slightly different

setup, where

m3,2(t) = m3(t) ∝ 0.75− 0.81{t∈(0.7,0.9)} m4,3(t) = m1(t) ∝ 6t2 − 7t+ 1.5.

While the column partition remains unchanged with respect to the previous setting, in

the row partition curves in cluster 3 and 4 differ with respect to either a time shift or

a vertical shift only, hence the configuration gets consistent with KTRUE = 3 and a TFT

layout. The reduced heterogeneity among curves in the new setting simplify the co-cluster

detection for both the models, so that results in terms of CARI (not reported for brevity)

are almost perfect when they are forced to partition data in the actual number of blocks.

However, when the ICL is used to select (K,L), the different notion of group targeted by

funLBM and the proposed model is strongly influencing: on one hand, for our proposal, an

overall good behaviour is confirmed when the ICL is used to detect the number of blocks;

on the other hand, the same does not apply to funLBM, whose likelihood does not support

Table 2: Rate of selection of (K,L) configurations for the different simulation setups when
(Ktrue = 4, Ltrue = 3).
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Table 3: Rate of selection of (K,L) configurations for the different simulation setups when
(Ktrue = 3, Ltrue = 3).
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the designed cluster notion, and the ICL systematically does not select the actual cluster

configuration (Table 3).

With respect to the exploration of the performances of the ICL when used to select

the random effect configuration (Table 4), we may draw similar considerations to the

selection of the number of co-clusters. Here, the ICL selects the true configuration for the

majority of the samples in two scenarios while, in the third one, the true model is selected

approximately one out of two samples. Nonetheless, also in this case, a tendency to

overestimation is visible, with the TTT configuration frequently selected in all the scenarios.

In general, the penalization term in (7) seems to be too weak and overall not completely

able to account for the presence of random effects. These results, along with the remarks

at the end of Section 3.3, provide a suggestion about a possibly fruitful research direction

to provide some suitable adjustments.

In fact, it is worth noting that when the selection of the number of clusters is the

aim, the observed behavior is preferable with respect to underestimation since it does not

undermine the homogeneity within a block; this has been confirmed by further analyses

suggesting that the additional groups are usually small and arising because of the presence
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Table 4: Rate of selection for each random effects configuration in the considered scenarios. Bold
cells represents the true data generative model (TFT), blank ones represent percentages equal to
zero.

FFF TFF FTF FFT TTF TFT FTT TTT
n = 100, d = 20 1% 58% 41%

% of selection n = 100, d = 50 2% 1% 62% 35%
n = 500, d = 20 1% 5% 47% 47%

of outliers. As for the random effect configuration, we believe that since the choice impacts

the notion of cluster one aims to identify, it should be driven by subject-matter knowledge

rather than by automatic criteria. Additionally, the reported analyses are exploratory in

nature, aiming to provide general insights on the characteristics of the proposed approach.

To limit computational time required to run the large number of models involved in Tables

2-4, we did not use multiple initializations and we have pre-selected the number of knots

for the block-specific mean functions. In practice, we recommend using multiple starting

values and carrying out sensitivity analyses on the number of knots to ensure that the

conclusions are not affected.

4.2 Applications to real world problems

4.2.1 French Pollen Data

The data we consider in this section are provided by the Réseau National de Surveillance

Aérobiologique (RNSA), the French institute which analyzes the biological particles con-

tent of the air and studies their impact on the human health. RNSA collects data on

concentration of pollens and moulds in the air, along with some clinical data, in more

than 70 municipalities in France.

The analyzed dataset contains daily observations of the concentration of 21 pollens for

71 cities in France in 2016. Concentration is measured as the number of pollens detected

over a cubic meter of air and carried on by means of some pollen traps located in central

urban positions over the roof of buildings, in order to be representative of the trend air

quality.

The aim of the analysis is to identify homogeneous trends in the pollen concentration
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over the year and across different geographic areas. For this reason, we focus on finding

groups of pollens differentiating one from the others for either the period of maximum

exhibition or the time span they are present. Consistently with this choice, we estimate

only models with the y-axis shift parameter αij,1 (i.e. αij,2 and αij,3 are switched off),

for varying number of row and column clusters, and we select the best one via ICL. We

consider monthly data by averaging the observed daily concentrations over each month.

The resulting dataset may be represented as a matrix with n = 71 rows (cities), p = 21

columns (pollens) where each entry is a sequence of T = 12 time-indexed measurements.

Moreover, to practically apply our proposed procedure, we carried out a preprocessing

step as we standardized and log-transformed the data, in order to improve the stability

of the estimation procedure.

Results are graphically displayed in Figure 5. The ICL selects a model with K = 3

row clusters and L = 5 column ones. A first visual inspection of the time evolutions

reveals that the procedure is able to discriminate the pollens according to their seasonality.

Pollens in the first two column groups are mainly present during the summer, with a

difference in the intensity of the concentration. In the remaining three groups pollens are

more active during winter and spring months but with a different time persistence and

evolution. Column clusters are roughly grouping together trees pollens, distinguishing

them from weeds and grass (right panel of Table 5). Results align with the usually

considered typical seasons, with groups of pollens from trees mostly present in winter

and spring while the ones from grass spreading in the air mainly during the summer

months. With respect to the row partition, displayed in the left panel of Table 5, three

clusters have been detected, with one roughly corresponding to the Mediterranean region

(in blue). The situation, for what it concerns the other two clusters, appears to be more

heterogeneous. One of these groups (in red) tends to gather cities in the northern region

and on the Atlantic coast, mostly featured by oceanic climate, while the other (in green)

mainly covers the central part of the country, including Paris and its surrounding area,

where climate gradually move to continental characteristics. Digging deeper substantially

in the cluster configuration obtained is beyond the scope of this work and may benefit
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Figure 5: French Pollen Data results. Curves belonging to each single block with superimposed
the corresponding block specific mean curve (in light blue).

from insights from experts of botanical and geographical disciplines since other factors,

as for example the type of environment, with areas being more rural than others, can be

strongly influencing.

4.2.2 COVID-19 evolution across countries

At the time of writing this paper, an outbreak of infection with severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) has severely harmed the whole world. Countries

all over the world have undertaken measures to reduce the spread of the virus: quaran-

tine and social distancing practices have been implemented, collective events have been

canceled or postponed, business and educational activities have been either interrupted

or moved online.

While the outbreak has led to a global social and economic disruption, its spreading

and evolution, also in relation to the aforementioned non pharmaceutical interventions,

have not been the same all over the world [see Flaxman et al., 2020, Brauner et al., 2021,

for an account of this in the first months of the pandemic]. With this regard, the goal of

the analysis is to evaluate differences and similarities among the countries and for different

aspects of the pandemic.
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Table 5: French map with superimposed the points indicating the cities colored according to their
row cluster memberships (left) and Pollens organized by the column cluster memberships (right).

Row groups (Cities) Column groups (Pollens)
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1 Gramineae, Urticaceae
2 Chestnut, Plantain
3 Cypress
4 Ragweed, Mugwort, Birch, Beech,

Morus, Olive, Platanus, Oak, Sorrel
Linden

5 Alder, Hornbeam, Hazel, Ash,
Poplar, Willow

Since the overall situation is still evolving, and given that testing strategies have

significantly changed across waves, we refer to the first wave of infection, considering the

data from the 1st of March to the 4th of July 2020, in order to guarantee the consistency

of the disease metrics used in the co-clustering. Moreover we restrict the analysis to the

European countries. Data have been collected by the Oxford COVID-19 Government

Response Tracker [OxCGRT, Hale et al., 2020] and originally refer to daily observations

of the number of confirmed cases and deaths for COVID-19 in each country. We also select

two indicators tracking the individual country intervention in response to the pandemic:

the Stringency index and the Government response index. Both indicators are recorded

on a 0-100 ordinal scale that represents the level of strictness of the policy and accounts

for containment and closure policies. The latter indicator also reflects Health system

policies such as information campaigns, testing strategies and contact tracing.

Data have been pre-processed as follows: daily values have been converted into weekly

averages in order to reduce the impact of short term fluctuations and the number of

time observations. Rates per 1000 inhabitants have been evaluated from the number of

confirmed cases and deaths, and the logarithms applied to reduce the data skewness. All

the variables have been standardized.

The resulting dataset is a matrix with n = 38 rows (countries), d= 4 columns (variables

describing the pandemic evolution and containment), observed over a period of T = 18
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Figure 6: COVID-19 outgrowth results of the best model, with K = 2, L = 3 and the three
random effects on. Curves belonging to each single block with superimposed the associated block
specific mean curve (in light blue).

weeks. Unlike the French Pollen data, here there is no strong reason to favour one random

effect configuration over the others. Conversely, different configurations of random effects

would entail different ideas of similarity of virus evolution. Thus, while the presence

of random effects would allow to cluster together similar trends associated to different

intensities, speed of evolution and time of onset, switching the random effects off could

result in enhancing such differences via the separation of the trends.

Models have been run for K = 1, . . . , 6 row clusters and L = 1, 2, 3 column clusters,

and all the 8 possible configurations of random effects. The behaviour of the resulting ICL

values supports the remark in Section 4.1, as the criterion favours highly parameterized

models. This holds particularly true with regard to the random effects configuration where

the larger the number of random effects switched on, the higher the corresponding ICL.

Thus, models with all the random effects switched on stand out among the others, with

a preference for K = 2 and L = 3 whose results are displayed in Figure 6. The obtained

partition is easily interpretable: in the column partition, reported on the right panel of

Table 6, the containment indexes are grouped together into the same cluster whereas the

log-rate of positiveness and death are singleton clusters. Consistently with the random

effect configuration, row clusters exhibit a different evolution in terms of cases, deaths

and undertaken containment measures: one cluster (in orange in the left panel in Table
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Table 6: Europe map with countries colored according to their row cluster memberships (left)
and variables organized by the column cluster membership (right) for the best ICL model.

Row groups (Countries) Column groups (COVID-19 spread-
ing and containment)

1 log % of cases per 1000 inhab-
itants

2 log % of deaths per 1000 in-
habitants

3 Stringency index, Government
response index

6) gathers countries where the virus has spread earlier and caused more losses; here,

more severe control measures have been adopted, whose effect is likely seen in a general

decreasing of cases and deaths after achieving a peak. The second row cluster (in blue

in the map) collects countries for which the death toll of the pandemic seems to be more

contained. The virus outbreak generally shows a delayed onset and a slower growth, which

does not show a steep decline after reaching the peak, although the containment policies

remain high for a long period. Notably, the row partition is also geographical, with the

countries with higher mortality all belonging to the Western Europe.

To properly show the benefits of considering different random effects configurations in

terms of notion and interpretation of the clusters, we also illustrate the partition produced

by another model estimated having the three random effects switched off (Figure 7). Here

we consider K = L = 3: the column partition remains unchanged with respect to the best

model, and the row partition still separates countries by the severity of the impact, yet

with the third additional cluster having intermediate characteristics. According to this

model, two row clusters feature countries with a similar right-skewed bell-shaped trend

of cases and similar policies of containment, yet with a notable difference in the virus

lethality. Indeed, the effect of switching α2 off is clearly noted in the log-rate of death
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Figure 7: COVID-19 outgrowth results of the model with K = 3, L = 3 and the three random
effects off.

fitting, with two mean curves having similar shapes but different scales. The additional

intermediate cluster, less impacted in terms of death rate, is populated by countries from

the central-east Europe. The apparent smaller impact of the first wave of the pandemic

on the eastern European countries could be explained by several factors ranging from

demographic characteristic and more timely closure policies to a different international

mobility pattern. Additionally, other factors such as the general economic and health

conditions might have prevented accurate testing and tracking policies, so that the actual

spreading of the pandemic might have been underestimated.

5 Conclusions

Modelling multivariate time-dependent data requires accounting for heterogeneity among

subjects, capturing similarities and differences among variables, as well as correlations

between repeated measures. In this work we tackled these challenges by proposing a new

parametric co-clustering methodology, recasting the widely known Latent Block Model

[Govaert and Nadif, 2013] in a time-dependent fashion. The co-clustering model, by
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simultaneously searching for row and column clusters, partitions three-way matrices in

blocks of homogeneous curves. Such approach takes into account the mentioned features

of the data while building parsimonious and meaningful summaries. As a data generative

mechanism for a single curve, we have considered the Shape Invariant Model that has

turned out to be particularly flexible when embedded in a co-clustering context. The

model allows to describe arbitrary time-evolution patterns while adequately capturing

dependencies among repeated measures over time. The proposed method compares fa-

vorably with the few existing competitors, producing co-partitions with similar quality

as measured by objective criteria, while enjoying some relevant advantages in terms of

interpretability and applicability to both functional and longitudinal data. The option of

“switching off” some of the random effects, although in principle simplifying the model

structure, increases its flexibility, as it allows to encompass different notions of cluster

possibly depending on the specific applications and on subject-matter considerations.

While further analyses are required to increase our understanding about the general

performance of the proposed model, its application to both simulated and real data has

provided overall good results and highlighted some aspects which are worth further inves-

tigation. One interesting direction for future research is studying possible alternatives to

the ICL to be used in model selection when the model specification in the LBM frame-

work involves random effects. In addition, alternative choices, for example, for specifying

the block mean curves, could be considered and compared with the choices adopted here.

Finally, a further direction for future work would be exploring a fully Bayesian approach.

This may allow to incorporate prior knowledge, when available, within the model and it

can lessen the impact of the model selection step, by embedding it automatically within

the estimation procedure.
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