

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. SCI. COMPUT. © 2021 Society for Industrial and Applied Mathematics
Vol. 43, No. 5, pp. C335--C357

CHRONOS: A GENERAL PURPOSE CLASSICAL AMG SOLVER
FOR HIGH PERFORMANCE COMPUTING\ast

GIOVANNI ISOTTON\dagger , MATTEO FRIGO\dagger , NICOL\`O SPIEZIA\dagger , AND CARLO JANNA\ddagger

Abstract. The numerical simulation of physical systems has become in recent years a funda-
mental tool to perform analyses and predictions in several application fields, spanning from industry
to the academy. As far as large-scale simulations are concerned, one of the most computationally
expensive tasks is the solution of linear systems of equations arising from the discretization of the
partial differential equations governing physical processes. This work presents Chronos, a collection
of linear algebra functions specifically designed for the solution of large, sparse linear systems on
massively parallel computers. Its emphasis is on modern, effective, and scalable Algebraic Multigrid
(AMG) preconditioners for high performance computing (HPC). This work describes the numerical
algorithms and the main structures of this software suite, especially from an implementation stand-
point. Several numerical results arising from practical mechanics and fluid dynamics applications
with hundreds of millions of unknowns are addressed and compared with other state-of-the-art linear
solvers, proving Chronos's efficiency and robustness.

Key words. parallel computing, HPC, preconditioning, algebraic multigrid

AMS subject classifications. 65F08, 65F10, 65F50, 68W10

DOI. 10.1137/21M1398586

1. Introduction. The solution of linear systems of equations is a central prob-
lem in a huge number of applications in both engineering and science. These problems
are particularly important in the simulation of physical processes through the solution
of partial differential equations (PDEs) or systems of PDEs. In large-scale simula-
tions, the solution of linear systems can be the most expensive task, accounting for
up to 99\% of the total simulation cost.

In this work, we are interested in developing fast solution algorithms, suitable for
high performance computing (HPC) for the linear system

(1) Ax = b,

where A \in \BbbR n\times n is the system matrix, b and x \in \BbbR n are the right-hand side and
solution vector, respectively, and n is the number of equations. Although extension
to general matrices is also possible, the present work restricts its focus to symmetric
and positive definite (SPD) matrices, which are very common in most mechanics and
fluid dynamics applications.

In current industrial applications, n can easily grow up to few hundred million
of unknowns. On the other side, systems with billions of unknowns have also been
solved in research experiments. The main difference between industrial problems and
these huge research experiments is that the former are characterized by complex ge-
ometries, irregular discretizations, and heterogeneities in the matrix coefficients, while
the latter are generally obtained by successive refinements of regular or quite regular
grids. Despite their smaller size, problems arising from real-world applications are
very challenging, and even having large computational resources may not be enough.

\ast Submitted to the journal's Software and High-Performance Computing section February 12,
2021; accepted for publication (in revised form) July 21, 2021; published electronically October 6,
2021.

https://doi.org/10.1137/21M1398586
\dagger M3E s.r.l., via Giambellino 7, 35129 Padova, Italy (g.isotton@m3eweb.it, m.frigo@m3eweb.it,

n.spiezia@m3eweb.it).
\ddagger Corresponding author. M3E s.r.l., via Giambellino 7, 35129 Padova, Italy (c.janna@m3eweb.it).

C335

D
ow

nl
oa

de
d

10
/0

7/
21

 to
 1

47
.1

62
.1

10
.9

9
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

https://doi.org/10.1137/21M1398586
mailto:g.isotton@m3eweb.it
mailto:m.frigo@m3eweb.it
mailto:n.spiezia@m3eweb.it
mailto:c.janna@m3eweb.it

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C336 ISOTTON, FRIGO, SPIEZIA, AND JANNA

There are several methods to solve (1), both direct [2, 29, 34] and iterative [3,
15, 37], giving excellent performance on parallel computers. The former are generally
preferred in industrial applications as they are typically more robust and require no
experience from the user. The main downside is that, especially in 3D problems,
the matrix factors require a huge amount of memory, which becomes the limiting
factor for large-scale simulations. This work is focused on iterative methods, more
specifically on Algebraic Multigrid (AMG) preconditioning of iterative methods, be-
cause these present far fewer memory restrictions and are suitable for highly efficient
parallel implementations. Moreover, in several practical cases, AMG preconditioning
guarantees convergence in a number of iterations that do not depend or only slightly
depend on the mesh size [12, 40, 43], a property of paramount importance for the
extreme-size simulations that are foreseen in the near future. The main drawback of
AMG preconditioning is that it is still far from being a black-box method, requiring
an experienced user and sometimes a fine tuning of the set-up parameters. For most
AMG solvers, a wrong set-up can easily lead to slow convergence or overly expensive
preconditioners and, in the worst case, even to a failure in the solution [30].

The Chronos package (https://www.m3eweb.it/chronos/) is a library of itera-
tive methods and AMG preconditioners designed for high performance platforms to
solve severely ill-conditioned problems arising in real-world applications. To be effec-
tive on a wide range of different problems, Chronos allows for the choice of several
options, from the adaptive generation of the operator near-kernel to the smoother
selection, from coarsening to prolongation, all of this in the framework of the classical
AMG method. In particular, it will be shown that BAMG interpolation, an inter-
polation whose coefficients are computed through least squares minimization, makes
this AMG extremely effective also on mechanical problems without the need to use
an aggregation based coarsening. From the implementation standpoint, Chronos has
been developed for HPC, adopting a distributed sparse matrix storage scheme where
smaller blocks, stored in compressed sparse row (CSR) format, are nested into a
global CSR structure. This storage format, together with the adoption of nonblock-
ing send/receive messages, allows for a high overlap between communications and
computations, thus hiding data-transfer latency even for a relatively small number of
local operations. Finally, Chronos has a strongly object-oriented design in order to be
readily linked to other software, to be used as an innermost kernel in more complex
approaches, such as block preconditioners for multiphysics [1, 17, 19, 35, 42], and to
be easily modified to support emerging hardware.

The algorithms and methods presented in this work are not radically new but are
rather known algorithms revisited and highly tuned for challenging industrial prob-
lems from various fields. Particular care has been spent in the general design of the
library in order to make it easily maintainable and amenable to improvements without
sacrificing performance. The benchmarks provided in the numerical experiments are
not derived from regular discretization of artificial problems; instead they have been
collected, from sources including other research/industrial groups, with the specific
purpose of verifying Chronos against the widest possible selection of test cases.

The remainder of the paper is organized as follows. In section 2, the classical
AMG method will be briefly outlined with a large emphasis on the specific numeri-
cal algorithms implemented to increase effectiveness. In section 3, the design of the
library is accurately described especially from the implementation standpoint. The
performance of Chronos is finally assessed in section 4 on a set of problems represen-
tative of a wide set of real-world problems with a comparison to other state-of-the-art
packages. The paper closes with some concluding remarks and ideas for future work.

D
ow

nl
oa

de
d

10
/0

7/
21

 to
 1

47
.1

62
.1

10
.9

9
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

https://www.m3eweb.it/chronos/

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CHRONOS: A GENERAL PURPOSE AMG SOLVER FOR HPC C337

2. Classical algebraic multigrid framework. One of the strengths of this
library is that it offers several options for each AMG component to allow the user to
choose the best combination for any specific problem.

Any AMG method is generally built on three main components, whose interplay
gives the effectiveness of the overall method:

\bullet smoothing, where an inner preconditioner is applied to damp the high-frequency
error components;

\bullet coarsening, in which coarse level variables are chosen for the construction of
the next level;

\bullet interpolation, defining the transfer operator between coarse and fine variables.
In Chronos, a fourth component, borrowed from the context of bootstrap [8] and

adaptive AMG [10, 11], is added to the above three and consists in a method to unveil
hidden components of the near-kernel of the linear operator whenever they are not a
priori available.

As mentioned before, in the present work we are focused on the classical AMG
setting, and below we will briefly recall the basic concepts behind this method,
referring the interested reader to more detailed and rigorous descriptions in the
works [38, 40, 43]. For the sake of clarity, we restrict this introduction to a two-
levels-only scheme, as the multilevel version can be readily obtained by recursion.

The first component that has to be set up in AMG is the smoother, a stationary
iterative method responsible for eliminating the error components associated with
large eigenvalues of A, also referred to as the high-frequency errors. The smoother
is generally defined from a rough approximation of A - 1 \simeq M - 1, and its operator is
represented by the following equation:

(2) S = I - \omega M - 1A,

where I is the identity matrix and \omega is a relaxation factor to ensure

(3) \omega \rho (M - 1A) < 2;

see, for instance, [18] for a short explanation. Generally, the smoother is given by a
simple pointwise relaxation method such as (block) Jacobi or Gauss--Seidel, with the
second one often preferred even though its use on parallel computers is not straight-
forward. Unlike other AMG packages such as BoomerAMG [24] or GAMG [6], where
traditional smoothers like Gauss--Seidel or Chebyshev are selected by default, Chronos
implements the adaptive Factorized Sparse Approximate Inverse (aFSAI) with the
matrix M - 1 taking the explicit form

(4) M - 1 = GTG

with G lower triangular. This choice is dictated by its almost perfect strong scalability
and by its proven robustness in real engineering problems [4, 26, 27]. Moreover,
the cost of aFSAI application is usually much lower than that of Gauss--Seidel and
Chebyshev since, generally, the number of nonzeros of M - 1 is only 20--40\% of the
number of nonzeros of A.

The second component of AMG is the so-called coarse-grid correction (CGC),
which is the A-orthogonal projection operation that should take care of the low-
frequency components of the error. To build CGC in classical AMG, the unknowns of
a given level are partitioned into fine and coarse (F/C), with coarse variables becoming
the unknowns of the next level. The choice of coarse variables is crucial in AMG, as

D
ow

nl
oa

de
d

10
/0

7/
21

 to
 1

47
.1

62
.1

10
.9

9
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C338 ISOTTON, FRIGO, SPIEZIA, AND JANNA

it determines both the rate at which the problem size is reduced and the convergence
of the method. Here, we rely on the concept of strength of connection (SoC); i.e., we
associate to each edge of the adjacency graph of A a measure of its relative importance.
Then, using SoC, we rank the graph connections and filter out those deemed less
important. A maximum independent set (MIS) is finally constructed on the filtered
SoC graph to determine coarse variables using the well-known and efficient PMIS
algorithm [14].

To facilitate explanation, the system matrix is reordered according to F/C parti-
tioning of unknowns with first fine variables and second coarse ones:

(5) A =

\biggl[
Aff Afc

AT
fc Acc

\biggr]
with Aff and Acc square nf \times nf and nc\times nc matrices, respectively. In classical AMG,
the interpolation operator P is written as

(6) P =

\biggl[
W
I

\biggr]
,

where W is an nf \times nc matrix containing the weights for coarse-to-fine variable inter-
polation. As the system matrix is SPD, the restriction operator R is defined through
a Galerkin approach as the transpose of P , and the coarse level matrix Ac is simply
given by the triple matrix product

(7) Ac = PTAP.

In practice, fast convergence, and rapid coarsening, i.e., high F/C ratios, are always
desired, and the construction of effective interpolations is of paramount importance
to conciliate these conflicting requirements.

Having defined all of the above components, the set-up phase of the two-level
multigrid method is completed and the iteration matrix is given by

(8) (S)
\nu 2

\bigl(
I - PAc

 - 1PTA
\bigr)
(S)

\nu 1

with \nu 1 and \nu 2 representing the number of smoothing steps performed before and
after the CGC, respectively.

Algorithms 1 and 2 briefly report the general AMG set-up phase and applica-
tion in a V-cycle, respectively, in a multilevel framework, where it is conventionally
assumed that A0 = A, y0 = y, and z0 = z. Details on all the computational ker-
nels sketched in 1 and their parallel implementation will be discussed in the next
sections/subsections.

2.1. Unveiling the operator near-kernel. The kernel (or null space) associ-
ated with the homogeneous discretized operator arising from the most common PDEs
or systems of PDEs is generally a priori known. For instance, it is well known that the
constant vector is the kernel for the Laplace operator and rigid body modes consti-
tute the kernel for linear elasticity problems. The information needed to build these
spaces, usually referred to as test spaces in the adaptive AMG terminology, is readily
available to the user from nodal coordinates or other data retrievable from the dis-
cretization. However, the homogeneous operator kernel is only an approximation of
the true near-kernel associated with the fully assembled matrix and does not take into
account all the peculiarities of the problem such as boundary conditions or the strong

D
ow

nl
oa

de
d

10
/0

7/
21

 to
 1

47
.1

62
.1

10
.9

9
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CHRONOS: A GENERAL PURPOSE AMG SOLVER FOR HPC C339

Algorithm 1 AMG Set-up

1: procedure AMG SetUp(Ak)
2: Define \Omega k as the set of the nk vertices of the adjacency graph of Ak;
3: if nk is small enough to allow for a direct factorization then
4: Compute Ak = LkL

T
k ;

5: else
6: Compute Mk such that M - 1

k \simeq A - 1
k ;

7: Define the smoother as Sk =
\bigl(
Ik - \omega kM

 - 1
k Ak

\bigr)
;

8: Partition \Omega k into the disjoint sets \scrC k and \scrF k via coarsening;
9: Compute the prolongation matrix Pk from \scrC k to \Omega k;

10: Compute the new coarse level matrix Ak+1 = PT
k AkPk;

11: Call AMG SetUp(Ak+1);
12: end if
13: end procedure

Algorithm 2 AMG application in a V-cycle

1: procedure AMG Apply(Ak, yk, zk)
2: if k is the last level then
3: Solve Akzk = yk using Lk, the exact Cholesky factor of Ak;
4: else
5: Compute sk by applying \nu 1 smoothing steps to Aksk = yk with s0 = 0;
6: Compute the residual rk = yk - Aksk;
7: Restrict the residual to the coarse grid rk+1 = PT

k rk;
8: Call AMG Apply(Ak+1, rk+1,dk+1);
9: Prolongate the correction to the fine grid dk = Pkdk+1;

10: Update sk \leftarrow sk + dk;
11: Compute zk by applying \nu 2 smoothing steps to Akzk = yk with z0 = sk;
12: end if
13: end procedure

heterogeneities in the material properties that often arise in real-world problems. In
many circumstances, a better test space can be obtained by simply modifying the ini-
tial near-kernel suggested by the PDE. In the adaptive AMG literature [8, 10, 11, 31],
the test space is found by simply running a few smoothing steps over a random test
space or the initial near-kernel whenever available. However, since the near-kernel of
A is related to the smallest eigenpairs of the generalized eigenproblem [9]

(9) A\bfitvarphi = \lambda \bfitvarphi ,

a better way to extract an effective test space could be by relying on an iterative
eigensolver [22]. In the present implementation, we opt for the simultaneous Rayleigh
quotient minimization (SRQCG) [18], whose cost per iteration is only slightly higher
than a smoothing step. By contrast, SRQCG can provide a much better approxima-
tion of the smallest eigenpairs especially if a good preconditioner is provided. Since
an approximation of A - 1 is already available through the smoother, we simply reuse
the previously computed M - 1 inside the SRQCG iteration.

From a theoretical standpoint, instead of solving (9), the test space should be
computed by solving the generalized eigenproblem

(10) A\bfitvarphi = \lambda M\bfitvarphi .

D
ow

nl
oa

de
d

10
/0

7/
21

 to
 1

47
.1

62
.1

10
.9

9
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C340 ISOTTON, FRIGO, SPIEZIA, AND JANNA

However, the SRQCG solution to (10) needs the multiplication of M by a vector
which, due to our choice of M (4), would result in a forward and backward triangular
solve whose parallelization may represent an algorithmic bottleneck.

Unfortunately, extracting the eigenpairs of (9) with high accuracy is generally
more expensive than solving the original system (1). For this reason, to limit the
set-up cost, we only approximately solve (9) with a predetermined and small number
of SRQCG iterations. This simple strategy usually gives satisfactory results whenever
an initial test space is not available or boundary conditions and heterogeneity exert a
strong influence, such as in geomechanical problems. Another appealing idea, though
not explored in this work, is bootstrapping [8, 10, 11], which consists in computing
a relatively cheap AMG preconditioner from a tentative test space, and then using
AMG itself to better uncover the near null space and rebuild a more effective AMG.

Operatively, once the test space is found, we compute an orthonormal basis of it
and collect the basis vectors into a (skinny) matrix V that may be subsequently used
for the calculation of SoC and the prolongation.

2.2. Strength of connection. The construction of the coarse problem in
Chronos is based on the definition of an SoC matrix that is used to filter out weak
connections from the adjacency graph of A. There are three different SoC definitions
available in the library:

1. classical SoC,

(11) sij =
 - aij

max(minj \not =i aij ,minj \not =i aji)
,

2. SoC based on strong couplings,

(12) sij =
| aij | \surd
aiiajj

,

3. affinity-based SoC,

(13) sij =
(
\sum

k vikvjk)
2

(
\sum

k v
2
ik)(

\sum
k v

2
jk)

,

where sij denotes the SoC between nodes i and j and aij and vij denote the en-
tries in row i and column j of the matrices A and V , respectively. SoC (11) is
particularly effective for Poisson-like problems where the system matrix is close to an
M-matrix. SoC (12) is generally used in smoothed aggregation AMG [41] and usu-
ally gives good results in structural problems. Finally, SoC (13) has been introduced
in [32] and, though requiring a rather expensive computation, is able to accurately
capture anisotropies, as is shown in [33].

After SoC is computed for every pair of nodes, weak connections are eliminated
to determine MISs whose nodes become the unknown in the next level. The more
aggressively the connections are eliminated, the more nodes are left in the next level.
There are two ways of controlling SoC filtering in Chronos:

1. by a threshold, the traditional way of filtering, where we simply drop connec-
tions below a given \theta ;

2. prescribing an average number of connections per node.
On one side, guaranteeing an average number of connections per node is trickier,
since it requires a preliminary sorting of all the SoCs, but it ensures a more regular
coarsening through levels with an almost constant coarsening ratio. Moreover, in

D
ow

nl
oa

de
d

10
/0

7/
21

 to
 1

47
.1

62
.1

10
.9

9
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CHRONOS: A GENERAL PURPOSE AMG SOLVER FOR HPC C341

affinity-based SoC, the strength values usually lie in a narrow interval close to unity
so that a proper choice of the drop threshold is almost impossible.

Finally, MIS construction is performed by using the PMIS strategy which is per-
fectly parallel and generally gives rise to lower complexities than the Ruge--St\"uben
coarsening [13]. More aggressive coarsening methods require special care in the inter-
polation construction, as we will see in the next section.

2.3. Interpolation. We recall that the prolongation operator P should satisfy

(14) \scrV \subseteq range(P),

where \scrV is the near-kernel of A, or, more precisely, for a coarse space of given size nc

the optimal two-level prolongation as stated in [9, 43] should be such that

(15) span(vi) = range(P),

where vi are the eigenvectors associated with the smallest nc eigenvalues of the gener-
alized eigenproblem (10). To this aim, depending on the problem, we use two different
strategies.

If a test space is available or it is relatively cheap to obtain a reasonable approxi-
mation of the near-kernel, then the so-called BAMG interpolation is used. The name
BAMG is used because this interpolation based on least squares was proposed for
the first time in the context of bootstrap AMG [8]. In this approach, the weights
of prolongation wij , i.e., the entries of the W block in (6), are found through least
square minimizations:

(16) wij = argmin
j\in Ci

\| vi -
\sum
j\in Ci

wijvj\| 2, i = 1, . . . , n,

with vk the kth row of V and Ci the interpolatory set for i. In our experience it is
imperative for an effective interpolation that the norm \| vi -

\sum
j\in Ci

wijvj\| must be
reduced to zero, and, in the general case, this can be accomplished only if the cardinal-
ity of Ci, | Ci| , is equal to or larger than nt, the number of test vectors. To guarantee
an exact interpolation, it is often necessary to use neighbors at a distance larger than
one, especially when dealing with systems of PDEs, with a consequent increase of the
overall operator complexity. Moreover, it may happen that, even if | Ci| \geq nt, some
of the vectors vk are almost parallel, and high conditioning of \Phi , the dense matrix
collecting vk components, may produce large jumps in the weights. In turn, large
jumps in P introduce high frequencies in the next level operator that the smoother
hardly handles. To overcome these difficulties, we compute our BAMG interpolation
with an adaptive procedure similar to those described in [18, 33]. More specifically,
let us define the matrix \Phi whose entries \varphi ij correspond to the jth component of the
ith test vector vi for any j in the interpolatory set. For each fine node i \in \scrF to be
interpolated, we start by including in the interpolatory set all its coarse neighbors at
a distance no larger than lmin, and we select a proper basis for \Phi by using a maxvol
algorithm [23, 28]. If either the relative residual,

(17) ri =
\| \varphi i - \Phi wi\|
\| \varphi i\|

,

or the norm of the weights, \| wi\| , is larger than the user-defined thresholds \epsilon and \mu ,
respectively, then we extend by one the interpolation distance. We keep on increasing

D
ow

nl
oa

de
d

10
/0

7/
21

 to
 1

47
.1

62
.1

10
.9

9
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C342 ISOTTON, FRIGO, SPIEZIA, AND JANNA

Algorithm 3 BAMG prolongation adaptive set-up

1: procedure BAMG Prolongation(S, V , lmin, lmax, \epsilon , \mu)
2: for all i \in \scrC do;
3: Set l = lmin;
4: Set ri = \varphi i;
5: while l \leq lmax and (ri > \epsilon or wi > \mu) do
6: Include in Ci all the coarse nodes at a distance at most l;
7: Collect all the \varphi k such that k \in Ci;
8: Select from \varphi k a maxvol basis \Phi i;
9: Find the vector of weights wi by minimizing \| \Phi iwi - \varphi i\| ;

10: l = l + 1;
11: end while
12: end for
13: end procedure

the interpolation distance up to lmax to limit the computational cost. This procedure,
briefly sketched in Algorithm 3, though slightly expensive, allows us to compute an
accurate and smooth prolongation without impacting operator complexity too much.
In fact, including in Ci all the coarse nodes within a priori selected interpolation
distance usually leads to higher operator complexities because several fine nodes may
be interpolated with excessively large support. Moreover, limiting the number of
nonzeros in the rows of P has the additional advantage that it is possible to perform
prolongation smoothing without an exponential growth of the operator complexity.
Prolongation smoothing is a very common practice in solving elasticity problems with
aggregation-based AMG, and numerical results will show that it can be beneficial also
in the context of classical AMG.

On the other hand, when there is no explicit knowledge of the test space or when
the matrix at hand arises from the discretization of a Poisson-like problem, Chronos
can also rely on more classical interpolation schemes. Below we briefly recall the
expressions of some well-known interpolation formulas. First, using the concept of
SoC, we define the following sets:

\bullet Ni = \{ j | aij \not = 0\} , the set of direct neighbors of i;
\bullet Si = \{ j \in Ni | j strongly influences i\} , the set of strongly connected neigh-
bors of i;

\bullet FS
i = F \cap Si, the set of strongly connected fine neighbors of i;

\bullet CS
i = C \cap Si, the set of strongly connected coarse neighbors of i;

\bullet NW
i = Ni \setminus (FS

i \cup CS
i), the set of weakly connected neighbors of i.

A generally accurate distance-one interpolation formula, introduced in [36], is the
so-called classical interpolation. Unlike other distance-one formulas, here, the inter-
polation takes care of the contribution from strongly influencing points FS

i , and the
expression for the interpolation weight is given by

(18) wij = -
1

aii +
\sum

k\in Nw
i \cup FS\ast

i
aik

\left(\sum
k\in F s

i \setminus FS\ast
i

aik\=akj\sum
m\in Cs

i
\=akm

\right) , j \in CS
i ,

D
ow

nl
oa

de
d

10
/0

7/
21

 to
 1

47
.1

62
.1

10
.9

9
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CHRONOS: A GENERAL PURPOSE AMG SOLVER FOR HPC C343

where

(19) \=aij =

\Biggl\{
0 if sign(aij) = sign(aii),

aij otherwise.

It is worth noting that the original formula proposed in [36] is here corrected accord-
ingly with the modification introduced in [24] where the set of strongly connected
neighbors FS\ast

i , that are F-points but do not have a common C-point, are subtracted
to the fine strong neighbors FS

i . This modification of the interpolation formula is
needed to prevent the term

\sum
m\in Cs

i
\=akm from vanishing. Indeed, using the PMIS-

coarsening method no longer guarantees that two strongly connected F-points are
interpolated by a common C-point. However, even if for a large class of problems the
classical interpolation is very effective, it can lose efficiency for challenging problems
such as rotated anisotropies or problems with large discontinuities. Hence, some more
advanced interpolation formulas are required to overcome these difficulties. A widely
used interpolation strategy, mainly for very challenging Poisson-like problems, is the
Extended+i interpolation. This interpolation formula extends the interpolatory set
including C-points that are at distance two away from the F-point considered. Fur-
thermore, also coarse nodes connected to the fine neighbors of the fine point interpola-
tion are considered. Hence, denoting with \^Ci = Ci\cup

\bigcup
j\in FS

i
Cj the set of distance-two

coarse nodes, the interpolation Extended+i formula takes the following form:

(20) wij = -
1

\~aii

\left(aij +
\sum
k\in F s

i

aik\=akj\sum
l\in \^Ci\cup \{ i\}

\=akl

\right) , j \in \^Ci,

with

(21) \~aii = aii +
\sum

n\in Nw
i \setminus \^Ci

ain +
\sum
k\in F s

i

aik
\=aki\sum

l\in \^Ci\cup i \=akl
.

This Extended+i interpolation remedies many problems occurring with distance-one
interpolation and provides better weights than other distance-two interpolation for-
mulas at the cost of larger operator complexities. A possible way to reduce the
complexities either without affecting or only mildly affecting the convergence rate
is to consider a different interpolatory set, i.e., an interpolatory set larger than the
distance-one set CS

i but smaller than the distance-two \^Ci. The idea is to consider an
interpolatory set that only extends CS

i for strong F-F connections without a common
C-point, since in the other cases the point i is already surrounded by interpolatory
points belonging to CS

i . Here, we propose enriching the set CS
i including the minimum

number of distance-two coarse nodes guaranteeing that each F-F strong connection is
covered by at least a C-point. Let us consider the example in Figure 1.

Notice that using the classical interpolation, the interpolatory set would be CS
i =

\{ o\} and there would be two fine neighbors of i, j, and k that do not share a C-point
with i. On the other hand, using the Extended+i interpolation, we would have that
\^Ci = \{ m,n, l, o\} and each F-node, strongly connected with i, would share at least
one C-node of the interpolatory set \^Ci. However, to guarantee this last condition, it
would be sufficient to only include the node n to the set CS

i , so that the extended

interpolatory set would become \^Ch
i = \{ o, n\} . In other words, we extend the set

CS
i by including the MIS of distance-two C-nodes such that we accomplish the above

D
ow

nl
oa

de
d

10
/0

7/
21

 to
 1

47
.1

62
.1

10
.9

9
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C344 ISOTTON, FRIGO, SPIEZIA, AND JANNA

i j

k

m

n

l
o

Fig. 1. Example of the interpolatory points. The gray point is the point to be interpolated,
black points are C-points, and white points are F-points.

Algorithm 4 Computation of extended interpolation set \^Ch
i

1: Set the initial interpolatory set \^Ch
i = CS

i

2: Compute the initial set F
\prime
, such that:

3: F
\prime
= \{ j \in FS

i | j is not strongly connected with at least one node in CS
i \}

4: Compute the initial set of C
\prime \prime
, i.e., the set of the distance-two coarse nodes strongly

connected with a F
\prime
-point

5: Compute the vertex degree of each element in C
\prime \prime
by taking into account only the

connections with F
\prime

6: while F
\prime \not = \emptyset do

7: Choose the node with maximum degree in C
\prime \prime
and add it to \^Ch

i

8: Update the set F
\prime

9: Update the set C
\prime \prime

10: end while

condition. We call this interpolation Hybrid and we report the procedure to construct
the interpolatory set \^Ch

i in Algorithm 4.

2.4. Filtering. One problem that may affect AMG methods, especially in par-
allel implementation, is the excessive stencil growth occurring in lower levels. This
drawback is more pronounced if long-range interpolation or prolongation smoothing
is used. Some authors have explored interesting solutions to reduce AMG complexity
without detrimental effects on convergence [7, 15]. Simply eliminating small entries
from the operators, as is done, for instance, with incomplete LU (ILU) factorizations
or some approximate inverse preconditioners, may completely harm the effectiveness
of CGC. This happens because removal of small entries from Pk or Ak+1 = PT

k AkPk

may induce an inaccurate representation of the near-kernel of A.
As a remedy, the authors in [15] propose compensating for the action of eliminated

entries through a sort of stencil collapsing to guarantee that the filtered operator, say
\~Ak+1, exerts the same action of A on the near-kernel

(22) \~Ak+1W = Ak+1W

with W a matrix representation of the near-kernel. While it is relatively simple
to enforce condition (22) for one-dimensional near-kernels, it is not immediate to
accommodate the action on several vectors at the same time. With multiple vectors,

D
ow

nl
oa

de
d

10
/0

7/
21

 to
 1

47
.1

62
.1

10
.9

9
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CHRONOS: A GENERAL PURPOSE AMG SOLVER FOR HPC C345

first the smallest entries of Ak+1 are dropped to determine the pattern of \~Ak+1; then
a correction to \~Ak+1, \Delta k+1, is computed by using least squares on

(23) \| (Ak+1 - \~Ak+1)W - \Delta k+1W\| 2.

In more detail, \~Ak+1 is computed row-wisely such that the absolute norm of each row
is a given percentage \rho of the norm of the original one, and then the compensation is
computed for the same row. We use the same procedure on the prolongation operator
Pk with the only exception being that, instead of W , we use its injection in the coarse
space. Operatively, the test space V is used when available, while in cases where V
is not computed, such as in Poisson problems, we simply replace V with a constant
vector.

Finally, we observe that \~Ak+1 is no more guaranteed to be SPD, and, especially
when an aggressive dropping is enforced, the use of a nonsymmetric Krylov solver,
such as GMRES or BiCGstab, is often needed instead of CG. Obviously, such care is
not needed when only the prolongation is filtered, as \~PT

k A \~Pk is always SPD for any
choice of \rho .

3. Library description. The Chronos package is a collection of classes and
functions that implement linear algebra algorithms for distributed memory parallel
computers. The library is written in C++, with message passing interface (MPI)
and OpenMP directives used for communication among processes and multithread
execution, respectively. The hybrid MPI-OpenMP implementation is more flexible in
the use of modern computing resources, and it is generally more efficient than pure
MPI due to its better exploitation of fine-grained parallelism.

Chronos has been developed using the potential of object-oriented programming
(OOP). The abstraction introduced through the OOP allows the use of the same
distributed matrix object to represent a linear system, a smoother, an AMG hierarchy,
or a preconditioner itself. Another advantage of this approach is the possibility to
use simpler classes to derive more advanced elements, such as block preconditioners.
Moreover, whatever the preconditioner, the same iterative methods can be used for
the linear system or eigenproblem solution. In addition, the modular structure allows
us to easily integrate the CPU kernels with graphics processing units (GPUs) and
field programmable gate array (FPGA), kernels leaving the overall structure of the
library unchanged. A hybrid CPU-GPU version is already under development, and
preliminary tests are encouraging [25].

A brief description of the main classes is reported in the next subsections.

3.1. Main classes. The level of abstraction and the hierarchy of the main classes
are sketched in Figure 2. All these classes are shown so that the user may access the
full range of Chronos functionalities.

The Distributed Dense Matrices (DDMats) and Distributed Sparse Matrices (DS-
Mats) are managed by the DDMat and the DSMat classes, respectively. Both
DDMat and DSMat storage schemes require the matrix to be subdivided into np hor-
izontal stripes of consecutive rows, where np is the number of active MPI processes.
In the DDMat, each stripe is stored row-wisely among the process to guarantee bet-
ter access in memory during multiplication operations. This makes the DDMat very
efficient for linear systems with multiple right-hand sides and eigenproblems, and dis-
tributed vectors are stored as a one-column DDMat. In the DSMat each stripe is
subdivided into an array of CSR matrices. The CSR format is the Chronos standard
format for shared sparse matrices, and their management is demanded to CSRMAT

D
ow

nl
oa

de
d

10
/0

7/
21

 to
 1

47
.1

62
.1

10
.9

9
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C346 ISOTTON, FRIGO, SPIEZIA, AND JANNA

class. The DSMat storage scheme adopted in Chronos is very effective in both the
preconditioner set-up and the Sparse Matrix-Vector product (SpMV) because it al-
lows a large superposition between communication and computation, as described in
the next subsection.

The Preconditioner class manages the approximation of the inverse of a DSMat.
It requires in input a DSMat as DSMat-type object and an optional test space as a
DDMat-type object. The classes derived from Preconditioner are Jac, aFSAI, and
aAMG for Jacobi, aFSAI, and AMG, respectively. A useful feature is that each of
these classes can be used as a smoother in the AMG.

Both the DSMat and Preconditioner classes are derived from the MatrixProd
class, which manages the SpMV at the highest level of abstraction. The SpMV is
the most expensive operation in any preconditioned iterative solver, and its manage-
ment has defined the design of the whole library. With reference to Figure 2, the
MatrixProd class leads the Chronos structure together with the iterative solvers.
Furthermore, more general MatrixProd elements can be readily built using the
MatrixProdList class, which manages an implicit MatrixProd object defined as
a product of a sequence of MatrixProd objects ordered into a list.

At the top of the hierarchy, there are also the iterative solvers for linear systems
and eigenproblems, LinSolver and EigSolver, respectively. Currently, the classes
derived from LinSolver are PCG and BiCGstab, for the preconditioned conjugate
gradient (PCG) and the preconditioned biconjugate gradient stabilized (BiCGstab),
respectively.

Finally, the Power Method and the Simultaneous Rayleigh Quotient Minimization
(SRQCG) are implemented in the two classes PowMeth and SRQCG derived from
EigSolver.

Fig. 2. Chronos main classes and hierarchies.

3.2. Distributed Sparse Matrix storage scheme. The DSMat storage scheme
implemented in Chronos consists of a partitioning of the matrix into np horizontal
stripes of consecutive rows. Each stripe is then divided into blocks by applying the
same subdivision to the columns, as schematically shown in Figure 3, and each block
is stored as a CSR matrix.

The CSR matrices have a local numbering, i.e., rows and columns of block IJ
are numbered from 0 to nI - 1 and from 0 to nJ - 1, where nI and nJ are the number
of rows assigned to processes I and J , respectively. This expedient allows the use of
4-byte integers, saving memory and increasing efficiency.

Each process stores the diagonal block and the list of ``Left"" (with a lower in-
dex) and ``Right"" (with a higher index) blocks corresponding to the connections with

D
ow

nl
oa

de
d

10
/0

7/
21

 to
 1

47
.1

62
.1

10
.9

9
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CHRONOS: A GENERAL PURPOSE AMG SOLVER FOR HPC C347

neighboring processes. With reference to Figure 3, process 3 stores the 5 blocks high-
lighted in red: 0, 1, and 2 as left neighbors, and the diagonal block with only internal
connections and 6 as right neighbor.

This blocked scheme, although a bit cumbersome to implement, allows us to stress
nonblocking send/receive communications with a large superposition between data-
transfer and computation. It has proven to be very effective in all basic operations
involving a DSMat, including SpMV product, matrix-by-matrix product, and matrix
transposition.

Fig. 3. Schematic representation of the DSMat storage scheme implemented in Chronos using
8 MPI processes. The red blocks are assigned to process 3. (Color available online.)

4. Numerical results. The numerical experiments have been performed using
large sparse matrices arising from challenging real-world problems. As described
in the previous sections, Chronos can exploit the effectiveness of an advanced and
tunable smoother like aFSAI, vary the coarsening ratio, or switch between different
interpolation methods, always finding an efficient set-up for any problem.

Chronos is benchmarked on a set of problems that can be grouped into two classes
denoted as fluid dynamic (F) and mechanical (M). The first consists of a series of
problems arising from the discretization of the Laplace operator and related to fluid
dynamic problems, such as underground fluid flow (reservoir), compressible or incom-
pressible airflow around complex geometries (CFD), or porous flow (porous flow). The
second category includes problems related to mechanical applications such as subsi-
dence analysis, hydrocarbon recovery, gas storage (geomechanics), mesoscale simula-
tion of composite materials (mesoscale), mechanical deformation of human tissues or
organs subjected to medical interventions (biomedicine), and design and analysis of
mechanical elements, e.g., cutters, gears, air-coolers (mechanical).

In our experiments, we consider challenging test cases, not only for the high num-
ber of degrees of freedom (DOFs), but also because of their intrinsic ill-conditioning.
Indeed, in real applications, we usually have to deal with large jumps of the physical
proprieties, complicated geometries leading to highly distorted elements, heterogene-
ity, and anisotropy. The matrices considered in the experiments are listed in Table 1
with details about the size, the number of nonzeros, and the application field they arise
from. The reader can refer to the supplementary material file M139858 Suppl Mat.pdf
[local/web 2.40MB] for a detailed description of each test case.

We subdivide the discussion of the results into two parts, the former collecting test
cases from fluid dynamics and the latter from mechanics. We also provide strong and
weak scalability analysis of the proposed implementation using large-scale computa-

D
ow

nl
oa

de
d

10
/0

7/
21

 to
 1

47
.1

62
.1

10
.9

9
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

https://epubs.siam.org/doi/suppl/10.1137/21M1398586/suppl_file/M139858_Suppl_Mat.pdf

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C348 ISOTTON, FRIGO, SPIEZIA, AND JANNA

Table 1
Benchmark matrices used in the numerical experiments. For each matrix, the class, the size,

n, the number of nonzeros, nnz, the average number of nonzeros per row, and the application field
are provided.

Matrix Class n nnz avg. nnz/row Application field

finger4m F 4,718,592 23,591,424 5.00 porous flow
guenda11m M 11,452,398 512,484,300 44.75 geomechanics
agg14m M 14,106,408 633,142,730 44.88 mesoscale
M20 M 20,056,050 1,634,926,088 81.52 mechanical
tripod24m M 24,186,993 1,111,751,217 45.96 mechanical
rtanis44m F 44,798,517 747,633,815 16.69 porous flow
geo61m M 61,813,395 4,966,380,225 80.34 geomechanics
poi65m F 65,939,264 460,595,552 6.99 CFD
Pflow73m F 73,623,733 2,201,828,891 29.91 reservoir
c4zz134m M 134,395,551 10,806,265,323 80.41 biomedicine

tional resources. The results are presented in terms of total number of computational
cores used, ncr, the grid and operator complexities, Cgd and Cop, respectively, the
number of iterations, nit, and the set-up, iteration, and total times, Tp, Ts, and
Tt = Tp + Ts, respectively.

The right-hand side vector used for all test cases is a random vector. The linear
systems are solved by PCG with a zero initial solution, and convergence is considered
achieved when the l2-norm of the iterative residual becomes smaller than 10 - 8 \cdot \| b\| .
Chronos performance has been evaluated on Marconi100, a supercomputer hosted in
the Italian consortium for supercomputing (CINECA). Marconi100, classified within
the first ten positions of the TOP500 ranking [39] at the time of writing, is composed
of 980 nodes based on the IBM Power9 architecture, each equipped with two 16-core
IBM POWER9 AC922 at 3.1 GHz processors. For each test, the number of cores, ncr,
is selected to have a per core load of about 100--150,000 unknowns, and, consequently,
different numbers of nodes are allocated for different problem dimensions. For all the
tests, each node reserved for the run is always fully exploited by using 8 MPI tasks
and 4 OpenMP threads for each task.

As a reference point to evaluate the performance of Chronos, we compare it with
the state-of-the-art solvers BoomerAMG, a classical AMG, and GAMG, a smoothed
aggregation-based AMG, as preconditioners in fluid dynamics and mechanical prob-
lems, respectively. BoomerAMG and GAMG have been chosen as baseline solvers
because they are very well-known open-source packages whose performance has been
demonstrated in several papers [6, 12, 16, 24].

4.1. Fluid dynamics test cases. The general-purpose AMG implemented in
Chronos is highly tunable, offering several set-up options to effectively solve this set
of problems, as will be shown below.

First, we start by comparing Chronos and BoomerAMG performance using a
set-up that is as similar as possible. This comparison is intended to verify our HPC
implementation and to demonstrate the efficiency of the DSMat storage scheme for
SpMV product, considering the three test cases finger4m, poi65m, and Pflow73m.
The comparison takes place with the same preconditioner configuration, i.e., Jacobi
smoothing, classical SoC with \theta = 0.25, PMIS coarsening, and Extended+i prolon-
gation. The only exception takes place for Pflow73m, where we used \theta = 0.0, which
significantly increases performance. Table 2 provides for each test case the results
obtained with these standard set-ups denoted as Chr-jac and Boomer-jac. The grid

D
ow

nl
oa

de
d

10
/0

7/
21

 to
 1

47
.1

62
.1

10
.9

9
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CHRONOS: A GENERAL PURPOSE AMG SOLVER FOR HPC C349

Table 2
Solution of three fluid dynamic test cases among those reported in Table 1 using Jacobi smooth-

ing and Extended+i prolongation. For each run, the following information is provided: The number
of cores ncr, the grid Cgd and operator Cop complexities, the number of PCG iterations nit, the
set-up time Tp, the iteration time Ts, and the total time Tt.

Matrix ncr Solv. type Cgd Cop nit Tp [s] Ts [s] Tt [s]

finger4m 32 Chr-jac 1.453 2.558 16 1.13 0.55 1.68
32 Boomer-jac 1.454 2.574 16 0.81 0.70 1.51

poi65m 384 Chr-jac 1.327 4.036 16 3.81 1.65 4.46
384 Boomer-jac 1.361 4.450 13 5.70 2.03 7.73

Pflow73m 480 Chr-jac 1.125 1.614 3308 14.1 611.9 626.0
480 Boomer-jac 1.123 1.593 3576 26.1 771.7 797.8

Table 3
Solution of three fluid dynamic test cases among those reported in Table 1 using default

smoothers and Extended+i prolongation. For each run, the following information is provided: The
number of cores ncr, the grid Cgd and operator Cop complexities, the number of PCG iterations nit,
the set-up time Tp, the iteration time Ts, and the total time Tt.

Matrix ncr Solv. type Cgd Cop nit Tp [s] Ts [s] Tt [s]

finger4m 32 Chr 1.453 2.558 7 3.71 0.33 4.04
32 Boomer 1.454 2.574 12 0.79 0.94 1.73

poi65m 384 Chr 1.346 4.496 6 27.5 1.84 29.34
384 Boomer 1.361 4.450 14 5.88 3.18 9.06

Pflow73m 480 Chr 1.125 1.614 240 46.5 64.2 110.7
480 Boomer 1.123 1.593 2777 26.5 1042.3 1068.8

and operator complexities with the two softwares are basically the same, and also the
iteration count turns out to be quite similar, showing that the two implementations
are consistent. Only a slight difference occurs for Pflow73m, but it is compatible with
very small differences in the code implementation.

Figure 4 provides the time for the preconditioner set-up (left) and for PCG (right)
for each solving strategy. Each time reported in the figure is normalized with respect
to the corresponding Boomer-jac time, which is our baseline. We observe that, while
using Jacobi smoothing, Chronos is faster than BoomerAMG in the set-up for poi65m
and Pflow73m, while BoomerAMG is better in finger4m. Differently, as to the iter-
ation time, Chronos slightly outperforms BoomerAMG in all the tests. In all cases,
the Chronos implementation turns out to be very efficient, and the total solution time
is comparable to and sometimes even better than that of the BoomerAMG.

In Table 3, the labels Chr and Boomer identify the results obtained with Chronos
and BoomerAMG when the default smoothers are selected, i.e., aFSAI and hybrid
Gauss--Seidel, respectively. The use of a more elaborate/sophisticated smoother with
respect to either Jacobi or hybrid Gauss--Seidel gives a significant advantage in terms
of iteration count and solving time at the price of a more expensive set-up, as shown
also in Figure 4. The use of aFSAI always allows for achieving a faster convergence.
Furthermore, the more ill-conditioned the problem is, the better aFSAI compares
with other smoothers. In Pflow73m, which is the hardest problem in fluid dynamics,
Chronos with aFSAI smoothing is 6 times faster than BoomerAMG. The set-up time
is larger, but the speed-up obtained in the iteration stage may justify this effort,
especially in transient simulations where the user may have to repeatedly solve the

D
ow

nl
oa

de
d

10
/0

7/
21

 to
 1

47
.1

62
.1

10
.9

9
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C350 ISOTTON, FRIGO, SPIEZIA, AND JANNA

fin
ge

r4
m

po
i6
5m

ku
te

i7
3m

0

1

2

3

4

5
S
et

u
p

T
im

e

Chr-jac

Boomer-jac

Chr

Boomer

fin
ge

r4
m

po
i6
5m

ku
te

i7
3m

0

0.5

1.0

1.5

2.0

2.5

It
er

at
io

n
T

im
e

Chr-jac

Boomer-jac

Chr

Boomer

Fig. 4. Comparison between Chronos and BoomerAMG by using the Extended+i prolongation
and Jacobi or default smoothing. Left: Set-up time. Right: Solution time.

Table 4
Comparison between different interpolation formulas in the solution of the fluid dynamic test

problems from Table 1. For each run, the following information is provided: Number of cores ncr,
prolongation type, grid Cgd and operator Cop complexities, number of iterations nit, set-up time Tp,
iteration time Ts, and total time Tt.

Matrix ncr Prol. type Cgd Cop nit Tp [s] Ts [s] Tt [s]

32 Chr-clas 1.467 1.871 31 3.57 1.32 4.89
finger4m 32 Chr-hybc 1.465 2.051 14 3.62 0.66 4.28

32 Chr-exti 1.453 2.558 7 3.71 0.33 4.04

384 Chr-clas 1.612 1.943 46 23.3 6.47 29.8
rtanis44m 384 Chr-hybc 1.585 2.030 36 26.6 6.09 32.8

384 Chr-exti 1.572 2.580 16 34.0 2.90 36.9

384 Chr-clas 1.381 2.339 21 17.9 4.69 22.59
poi65m 384 Chr-hybc 1.361 2.888 13 19.0 2.57 21.57

384 Chr-exti 1.346 4.496 6 27.5 1.84 29.34

480 Chr-clas 1.236 1.391 414 39.4 60.2 99.6
Pflow73m 480 Chr-hybc 1.234 1.448 416 40.4 67.1 107.5

480 Chr-exti 1.234 2.346 410 57.7 120.9 178.6

same linear system and can take advantage of preconditioner recycling.
In fluid dynamics, the prolongations of choice for classical AMG are typically the

classical or Extended+i interpolations. The latter is usually more effective, although
more expensive, for challenging problems due to its ability to accurately interpolate
to fine nodes having strong fine neighbors that do not share the same strong coarse
node, possibly produced by high coarsening ratios. In Table 4, we compare these two
well-known prolongations to the hybrid one that has been discussed in section 2.3.
For finger4m and poi65m, we can observe that the Extended+i interpolation is the
more accurate one, with higher operator complexity. As expected, this leads to a
lower number of iterations, but a higher computational cost per iteration. On the
contrary, the classical interpolation formula is the cheapest to compute, with very low
operator complexity. However, taking into account only distance-one coarse nodes,
the prolongation operator is not able to accurately reproduce the smooth error, caus-
ing an increase of the iteration count, up to twice the iteration count obtained with

D
ow

nl
oa

de
d

10
/0

7/
21

 to
 1

47
.1

62
.1

10
.9

9
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CHRONOS: A GENERAL PURPOSE AMG SOLVER FOR HPC C351

Extended+i. For these two tests, the best configuration lies in the middle, i.e., the hy-
brid interpolation formula, which keeps the operator complexity small by only taking
distance-two coarse nodes that are actually useful in the interpolation process into
account. In this way, we are able to obtain a more accurate interpolation formula
with a computational cost comparable to the classical one.

The behavior is quite different for the other two test cases.
In rtanis44m, a strong heterogeneity and anisotropy of permeability tensor dra-

matically increase the conditioning of the problem. Hence, the most accurate inter-
polation method, i.e., Extended+i, is needed to efficiently solve this problem. The
iteration count is one third with respect to classical interpolation, and the solution
time is approximately one half. Unlike before, the increased accuracy of the hybrid
interpolation over classical is not enough to give a sufficient benefit in terms of solving
time. It is worth noting that the increased set-up cost for Extended+i is in this case
largely compensated for in the iteration stage. This gain is even more pronounced in
cases where preconditioner recycling is possible such as in some transient or nonlinear
simulations.

The last test case considered in this section is Pflow73m, a very challenging and
severely ill-conditioned problem from underground flow. Even if this is a diffusion
problem, the great jumps in permeability and the distorted mesh lead to a matrix
whose near-kernel is not well represented by the constant vector. For this reason, the
iterations to converge are much larger than in the other tests, and not even the most
accurate interpolations such as Extended+i or hybrid give any benefit over classical
interpolation, which, being the cheapest one, proves the most effective strategy for
this test case.

4.2. Mechanical test cases. As seen above, Chronos allows for setting up a
very flexible AMG preconditioner, adaptable to problem types the user has to solve,
with different choices available for interpolation operators and smoothing methods.
In addition to different available choices for interpolation and smoothing, Chronos
allows the possibility to directly smooth the prolongation and/or filter it. Moreover,
for mechanical test problems, we have seen that it is very helpful in keeping the grid
complexity low, especially in cases of prolongation smoothing. This is easily achieved
with default settings by dropping only a very small number of connections in the
SoC graph. As in the previous section, we first define a baseline with state-of-the-
art methods such as BoomerAMG (Boomer), with hybrid Gauss--Seidel smoothing,
the unknown-based Boomer with separate treatment of unknowns relative to differ-
ent directions (unk-based-Boomer) and the GAMG, a smoothed aggregation-based
method.

We first refer to the test case tripod24m, whose results are provided in Table 5.
With the standard Boomer, the solution is reached with a high number of iterations
(more than 900), and the iteration time is responsible for most in terms of the time to
solution. A significant improvement is obtained using the unknown-based version [5],
where iterations are reduced by one third, and set-up and iteration times drop by
50\%. The aggregation based AMG seems to be the most effective one for mechanical
problems as, with GAMG, iterations are further reduced, and both Tp and Ts times
decrease significantly. In this problem, Chronos with BAMG prolongation and aFSAI
smoother (BAMG-aFSAI) is more effective than GAMG with a speed-up of two on
the total time. The set-up time is longer, but the number of PCG iterations is lower,
and the cost per iteration is one third that of GAMG. It is also possible to smooth the
prolongation operator with a Jacobi step. We denote this method as SBAMG-aFSAI.

D
ow

nl
oa

de
d

10
/0

7/
21

 to
 1

47
.1

62
.1

10
.9

9
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C352 ISOTTON, FRIGO, SPIEZIA, AND JANNA

Table 5
Solution of the tripod24m test case from Table 1 with different approaches. For each run,

the following information is provided: The number of cores ncr, the preconditioner type, the grid
complexity Cgd, the operator complexity Cop, the number of iterations nit, the set-up time Tp, the
iteration time Ts, and the total time Tt.

Matrix ncr Prec. type Cgd Cop nit Tp [s] Ts [s] Tt [s]

Boomer 1.244 3.207 931 64.1 611.9 676.1
unk-based-Boomer 1.328 3.669 335 43.8 262.4 203.5

tripod24m 160 GAMG 1.543 - 294 12.1 80.5 92.6
BAMG-aFSAI 1.041 1.116 222 21.8 23.0 44.8

SBAMG-aFSAI 1.041 1.322 118 36.7 16.1 52.9
FBAMG-aFSAI 1.041 1.212 120 33.5 13.5 47.0

As could be expected, the operator complexity and the set-up time both increase,
but, on the other hand, the number of iterations and solution time are smaller. The
increase of operator complexity and set-up time can be limited by means of filtering
(FBAMG-aFSAI) without compromising effectiveness. FBAMG-aFSAI requires the
same number of iterations to converge but at a lower cost per iteration. These two
last strategies are particularly effective in a FEM simulation where the preconditioner
can be reused several times in different time-steps so that the set-up cost becomes
negligible.

Chronos proved robust and efficient in addressing all the mechanical test cases.
A comparison of the number of iterations and times obtained with GAMG and the
three BAMG strategies outlined above is shown in Table 6. To highlight the speed-up,
Figure 5 shows set-up and iteration time normalized to the GAMG times. Unfortu-
nately, the comparison for the two largest cases, geo61m and c4zz13m, is not reported
because these matrices have not been made available on file due to their large size,
and the tests have been run by linking Chronos to the FEM program ATLAS [21].
For the three benchmarks, guenda11m, tripod24m, and M20, the number of PCG it-
erations required by GAMG and BAMG is comparable, but the overall solution time
is significantly lower for BAMG with a speed-up of Chronos over GAMG up to 4 in
these tests. The only exception is the matrix agg14m, where GAMG is able to produce
a very effective preconditioner at the lowest set-up cost.

Finally, with the aid of Figure 6, we would like to point out how the total solution
time depends only mildly on the problem nature but more significantly on its size.
Figure 6 shows for each problem the total solution time divided by the number of
nonzeros per allocated core, and this resulting time is further normalized with the
average among all the experiments. In other words, the figure should show the solution
time for each problem as if exactly the same resources were allocated for each nonzero.
For a preconditioner that is totally independent of the problem nature, the same
solution time for every problem is expected. It can be observed that, through a
proper set-up, Chronos is able to produce total solution times very close to the average
normalized solution time, thus showing only a mild dependence on the application at
hand.

4.3. Strong and weak scalability. In this last subsection, we evaluate the
strong and weak scalability of the AMG preconditioners implemented in Chronos.
All three times, i.e., set-up Tp, iteration Ts, and total Tt times, are analyzed to assess
scalability. The strong scalability test is shown in the top of Figure 7, on the left for
poi65m with Extended+i prolongation and on the right for the c4zz134m test matrix

D
ow

nl
oa

de
d

10
/0

7/
21

 to
 1

47
.1

62
.1

10
.9

9
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CHRONOS: A GENERAL PURPOSE AMG SOLVER FOR HPC C353

Table 6
Comparison between different interpolation formulas in the solution of the mechanical test

problems from Table 1. For each run, the following information is provided: Number of cores ncr,
prolongation type, grid Cgd and operator Cop complexities, number of iterations nit, set-up time Tp,
iteration time Ts, and total time Tt.

Matrix ncr Prol. type Cgd Cop nit Tp [s] Ts [s] Tt [s]

64 GAMG 1.580 - 978 18.3 306.2 324.5
guenda11m 64 BAMG 1.041 1.118 937 27.8 105.0 133.0

64 SBAMG 1.041 1.354 638 50.3 96.3 147.0
64 FBAMG 1.041 1.240 638 43.5 79.8 123.0

128 GAMG 1.644 - 26 12.5 5.8 18.2
agg14m 128 BAMG 1.085 1.287 135 30.6 22.2 52.8

128 SBAMG 1.085 2.264 31 114.4 8.1 122.6
128 FBAMG 1.085 1.670 34 53.6 7.3 60.9

128 GAMG 1.162 - 245 211.0 391.4 602.4
M20 128 BAMG 1.054 1.184 775 71.2 275.0 347.0

128 SBAMG 1.054 1.677 151 158.0 71.2 229.2
128 FBAMG 1.054 1.292 158 93.9 55.1 149.1

160 GAMG 1.543 - 294 12.1 80.5 92.6
tripod24m 160 BAMG 1.041 1.116 222 21.8 23.0 44.8

160 SBAMG 1.041 1.322 118 36.7 16.1 52.9
160 FBAMG 1.041 1.212 120 33.5 13.5 47.0

gu
en
da
11
m

ag
g1
4m M

20

tr
ip
od
24
m

0

1

2

3

4

5

6

7

8

9

10

S
et
-u
p
T
im

e

GAMG

BAMG

SBAMG

FBAMG

gu
en
da
11
m

ag
g1
4m M

20

tr
ip
od
24
m

0

1

2

3

4

5

It
er
a
ti
on

T
im

e

GAMG

BAMG

SBAMG

FBAMG

Fig. 5. Comparison between GAMG and the BAMG strategies on the mechanical test cases.
Left: Normalized Tp to the GAMG solution. Right: Normalized Ts to the GAMG solution.

with BAMG prolongation. The number of cores varies from the minimum necessary
to store matrix and preconditioner up to 8 times. In both tests, the times decrease
as the computing resources increase, with a trend close to the ideal one.

Finally, the weak scaling is investigated with a standard 7-point finite difference
discretization of the Poisson problem. Figure 7, bottom, shows both the total time
spent in the set-up and solve phases, on the left, and the corresponding parallel
efficiencies, on the right. Weak scaling efficiency up to N nodes is defined as E =
TN/(NT1), with T1 the time required on a single node and TN the time on N nodes.
In this test, we always assign 218,750 unknowns per core.

The result shows that efficiency is very good and stays almost constant in the
first two doubles of the cores, whereas a smaller efficiency occurs in the last one.

D
ow

nl
oa

de
d

10
/0

7/
21

 to
 1

47
.1

62
.1

10
.9

9
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C354 ISOTTON, FRIGO, SPIEZIA, AND JANNA

fin
ge

r4
m

gu
en

da
11

m

ag
g1

4m M
20

tr
ip

od
24

m

rt
an

is4
4m

ge
o6

1m

po
i6
5m

pfl
ow

73
m

c4
zz

13
4m

0

0.5

1.0

1.5

2.0

T
im

es

Tp

Ts

Fig. 6. Set-up and iteration times, for all benchmark problems, normalized over the resources
allocated per nonzero.

64 128 256 512

100

101

102

103

of Cores

T
im

e
[s
]

Tp id Tp

Ts id Ts

Tt id Tt

800 1600 3200 6400

101

102

103

of Cores

T
im

e
[s
]

Tp id Tp

Ts id Ts

Tt id Tt

128 256 512 1024
0

10

20

30

40

50

60

70

of Cores

T
im

e
[s

]

Tp Ts

Tt

128 256 512 1024
0.0

0.5

1.0

1.5

2.0

of Cores

E
ffi

ci
en

cy

Ep Es

Et

Fig. 7. Strong scalability test for poi65m matrix and Extended+i prolongation (top-left) and
c4zz134m matrix and BAMG prolongation (top-right). Weak scalability test on a standard 7-point
finite difference discretization of the Poisson problem. Set-up, iteration, and total times versus ncr

on bottom left; corresponding efficiencies versus ncr on bottom right.

This performance dropdown can be ascribed to two distinct factors. First, while
Marconi100 cores can be fully reserved for the test runs, the overall network is always
shared with other users, and, consequently, the larger the resource allocation, the
larger the disturbance from other running processes. Second, a performance dropdown
is almost unavoidable in AMG methods, as the grid hierarchy always ends up with

D
ow

nl
oa

de
d

10
/0

7/
21

 to
 1

47
.1

62
.1

10
.9

9
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CHRONOS: A GENERAL PURPOSE AMG SOLVER FOR HPC C355

small grids. The larger the number of resources allocated, the less efficient will be the
software in dealing lower levels. Currently, to ease the implementation, Chronos uses
all the allocated cores on each grid except the last one, where an allgather operation
is called from a single core to solve the coarsest problem. In a future implementation,
we plan to progressively reduce the number of resources with levels, thus reducing the
network traffic and increasing efficiency.

5. Conclusions. In this work, the Chronos library for the solution of large and
sparse linear algebra problems on high performance platforms has been presented with
a deep analysis of its numerical and computational performance. Chronos, which will
be freely accessible to research institutions [20], provides iterative solution methods
for linear systems and eigenproblems along with advanced parallel preconditioners.

Although the library comprises classical and novel methods already known in the
literature, all of its algorithms have been attentively revisited, tuned, and optimized on
the basis of a large experimentation on real-world and industrial benchmarks arising
from a wide variety of application fields. Moreover, every numerical kernel has been
designed with special attention to its parallel performance and future extensibility to
new numerical approaches and hardware.

The wide set of numerical experiments provided in the work clearly shows the
ability of Chronos to give excellent performance for diverse applications with solution
times no worse or even better than those offered by other widely used HPC linear
solvers such as BoomerAMG and GAMG. Furthermore, this library offers great flexi-
bility in the choice of the preconditioning strategy with the result that, once a proper
set-up is found, total solution time depends solely or almost solely on the problem
size and the number of computational resources allocated.

Our future work will be focused on porting Chronos on more energy-efficient
and promising hardware such as GPU accelerators or FPGA, as well as using the
innermost kernels of the library to develop advanced block preconditioners for multi-
physics applications.

We also plan to build a stronger theoretical basis for the adaptive construction of
the test space, unavoidable in problems lacking an initial guess for the operator near-
kernel, and for the operator and prolongation filtering, which can greatly improve
performance in tough problems where denser operators may be needed.

Acknowledgments. The authors gratefully thank Prof. S. Koric, G. Mazzucco,
and E. L. Carniel, who provided the matrices M20, agg14m, and c4zz134m used in
the experiments, and Dr. V. A. Paludetto Magri for his suggestions and support in
using BoomerAMG.

REFERENCES

[1] F. P. Ali Beik and M. Benzi, Iterative methods for double saddle point systems, SIAM J.
Matrix Anal. Appl., 39 (2018), pp. 902--921, https://doi.org/10.1137/17M1121226.

[2] P. R. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary, Performance and scalability
of the block low-rank multifrontal factorization on multicore architectures, ACM Trans.
Math. Software, 45 (2019), 2.

[3] S. Badia, A. F. Mart\'{\i}n, and J. Principe, Multilevel balancing domain decomposition at
extreme scales, SIAM J. Sci. Comput., 38 (2016), pp. C22--C52, https://doi.org/10.1137/
15M1013511.

[4] R. Baggio, A. Franceschini, N. Spiezia, and C. Janna, Rigid body modes deflation of
the preconditioned conjugate gradient in the solution of discretized structural problems,
Computers \& Structures, 185 (2017), pp. 15--26, https://doi.org/10.1016/j.compstruc.2017.
03.003.

D
ow

nl
oa

de
d

10
/0

7/
21

 to
 1

47
.1

62
.1

10
.9

9
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

https://doi.org/10.1137/17M1121226
https://doi.org/10.1137/15M1013511
https://doi.org/10.1137/15M1013511
https://doi.org/10.1016/j.compstruc.2017.03.003
https://doi.org/10.1016/j.compstruc.2017.03.003

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C356 ISOTTON, FRIGO, SPIEZIA, AND JANNA

[5] A. H. Baker, T. V. Kolev, and U. M. Yang, Improving algebraic multigrid interpolation
operators for linear elasticity problems, Numer. Linear Algebra Appl., 17 (2009), pp. 495--
517.

[6] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin,
A. Dener, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley,
D. A. May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith,
S. Zampini, H. Zhang, and H. Zhang, PETSc web page, https://www.mcs.anl.gov/petsc,
2019.

[7] A. Bienz, R. D. Falgout, W. Gropp, L. N. Olson, and J. B. Schroder, Reducing parallel
communication in algebraic multigrid through sparsification, SIAM J. Sci. Comput., 38
(2016), pp. S332--S357, https://doi.org/10.1137/15M1026341.

[8] A. Brandt, J. Brannick, K. Kahl, and I. Livshits, Bootstrap AMG, SIAM J. Sci. Comput.,
33 (2011), pp. 612--632, https://doi.org/10.1137/090752973.

[9] J. Brannick, F. Cao, K. Kahl, R. Falgout, and X. Hu, Optimal interpolation and compati-
ble relaxation in classical algebraic multigrid, SIAM J. Sci. Comput., 40 (2018), pp. A1473--
A1493, https://doi.org/10.1137/17M1123456.

[10] M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge,
Adaptive smoothed aggregation (\alpha SA) multigrid, SIAM Rev., 47 (2005), pp. 317--346, https:
//doi.org/10.1137/050626272.

[11] M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge,
Adaptive algebraic multigrid, SIAM J. Sci. Comput., 27 (2006), pp. 1261--1286, https:
//doi.org/10.1137/040614402.

[12] M. Brezina, C. Tong, and R. Becker, Parallel algebraic multigrids for structural mechanics,
SIAM J. Sci. Comput., 27 (2006), pp. 1534--1554, https://doi.org/10.1137/040608271.

[13] H. De Sterck, R. D. Falgout, J. W. Nolting, and U. M. Yang, Distance-two interpolation
for parallel algebraic multigrid, Numer. Linear Algebra Appl., 15 (2008), pp. 115--139.

[14] H. De Sterck, U. M. Yang, and J. J. Heys, Reducing complexity in parallel algebraic
multigrid preconditioners, SIAM J. Matrix Anal. Appl., 27 (2006), pp. 1019--1039, https:
//doi.org/10.1137/040615729.

[15] R. D. Falgout and J. B. Schroder, Non-Galerkin coarse grids for algebraic multigrid, SIAM
J. Sci. Comput., 36 (2014), pp. C309--C334, https://doi.org/10.1137/130931539.

[16] R. D. Falgout and U. M. Yang, hypre: A library of high performance precondition-
ers, in Proceedings of the International Conference on Computational Science-Part III,
ICCS '02, Springer-Verlag, Berlin, Heidelberg, 2002, pp. 632--641, https://doi.org/10.1007/
3-540-47789-6 66.

[17] M. Ferronato, A. Franceschini, C. Janna, N. Castelletto, and H. A. Tchelepi, A
general preconditioning framework for coupled multiphysics problems with application to
contact- and poro-mechanics, J. Comput. Phys., 398 (2019), 108887.

[18] A. Franceschini, V. A. Paludetto Magri, G. Mazzucco, N. Spiezia, and C. Janna, A ro-
bust adaptive algebraic multigrid linear solver for structural mechanics, Comput. Methods
Appl. Mech. Engrg., 352 (2019), pp. 389--416.

[19] M. Frigo, N. Castelletto, and M. Ferronato, A relaxed physical factorization precondi-
tioner for mixed finite element coupled poromechanics , SIAM J. Sci. Comput., 41 (2019),
pp. B694--B720, https://doi.org/10.1137/18M120645X.

[20] M. Frigo, G. Isotton, and C. Janna, Chronos web page, https://www.m3eweb.it/chronos,
2021.

[21] M. Frigo, G. Isotton, C. Janna, N. Spiezia, and O. Tosatto, ATLAS web page, https:
//www.m3eweb.it/atlas, 2021.

[22] A. Frommer, K. Kahl, F. Knechtli, M. Rottmann, A. Strebel, and I. Zwaan, A multigrid
accelerated eigensolver for the Hermitian Wilson--Dirac operator in lattice QCD, Comput.
Phys. Commun., 258 (2021), 107615.

[23] S. A. Goreinov, I. V. Oseledets, D. V. Savostyanov, E. E. Tyrtyshnikov, and N. L.
Zamarashkin, How to find a good submatrix, in Matrix Methods: Theory, Algorithms and
Applications, World Scientific, Hackensack, NJ, 2010, pp. 247--256.

[24] V. E. Henson and U. M. Yang, BoomerAMG: A parallel algebraic multigrid solver and
preconditioner, Appl. Numer. Math., 41 (2002), pp. 155--177, https://doi.org/10.1016/
S0168-9274(01)00115-5.

[25] G. Isotton, C. Janna, and M. Bernaschi, A GPU-accelerated adaptive FSAI preconditioner
for massively parallel simulations, Internat. J. High Performance Comput. Appl., (2021),
https://doi.org/10.1177/10943420211017188.

[26] C. Janna, M. Ferronato, and G. Gambolati, The use of supernodes in factored sparse
approximate inverse preconditioning, SIAM J. Sci. Comput., 37 (2015), pp. C72--C94,

D
ow

nl
oa

de
d

10
/0

7/
21

 to
 1

47
.1

62
.1

10
.9

9
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

https://www.mcs.anl.gov/petsc
https://doi.org/10.1137/15M1026341
https://doi.org/10.1137/090752973
https://doi.org/10.1137/17M1123456
https://doi.org/10.1137/050626272
https://doi.org/10.1137/050626272
https://doi.org/10.1137/040614402
https://doi.org/10.1137/040614402
https://doi.org/10.1137/040608271
https://doi.org/10.1137/040615729
https://doi.org/10.1137/040615729
https://doi.org/10.1137/130931539
https://doi.org/10.1007/3-540-47789-6_66
https://doi.org/10.1007/3-540-47789-6_66
https://doi.org/10.1137/18M120645X
https://www.m3eweb.it/chronos
https://www.m3eweb.it/atlas
https://www.m3eweb.it/atlas
https://doi.org/10.1016/S0168-9274(01)00115-5
https://doi.org/10.1016/S0168-9274(01)00115-5
https://doi.org/10.1177/10943420211017188

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CHRONOS: A GENERAL PURPOSE AMG SOLVER FOR HPC C357

https://doi.org/10.1137/140956026.
[27] C. Janna, M. Ferronato, F. Sartoretto, and G. Gambolati, FSAIPACK: A software

package for high-performance factored sparse approximate inverse preconditioning, ACM
Trans. Math. Software, 41 (2015), 10, https://doi.org/10.1145/2629475.

[28] D. E. Knuth, Semioptimal bases for linear dependencies, Linear Multilinear Algebra, 17 (1985),
pp. 1--4.

[29] S. Koric and A. Gupta, Sparse matrix factorization in the implicit finite element method on
petascale architecture, Comput. Methods Appl. Mech. Engrg., 302 (2016), pp. 281--292.

[30] S. Koric, Q. Lu, and E. Guleryuz, Evaluation of massively parallel linear sparse solvers
on unstructured finite element meshes, Computers \& Structures, 141 (2014), pp. 19--25,
https://doi.org/10.1016/j.compstruc.2014.05.009.

[31] B. Lee, Algebraic multigrid for systems of elliptic boundary-value problems, Numer. Linear
Algebra Appl., 17 (2020), pp. 495--21.

[32] O. E. Livne and A. Brandt, Lean algebraic multigrid (LAMG): Fast graph Laplacian lin-
ear solver, SIAM J. Sci. Comput., 34 (2012), pp. B499--B522, https://doi.org/10.1137/
110843563.

[33] V. A. Paludetto Magri, A. Franceschini, and C. Janna, A novel algebraic multigrid ap-
proach based on adaptive smoothing and prolongation for ill-conditioned systems, SIAM J.
Sci. Comput., 41 (2019), pp. A190--A219, https://doi.org/10.1137/17M1161178.

[34] F.-H. Rouet, C. Ashcraft, J. Dawson, R. Grimes, E. Guleryuz, S. Koric, R. F. Lucas,
J. S. Ong, T. A. Simons, and T.-T. Zhu, Scalability challenges of an industrial implicit
Finite Element code, in Proceedings of the 2020 IEEE International Parallel and Distrib-
uted Processing Symposium (IPDPS), IEEE, Washington, DC, 2020, pp. 505--514.

[35] T. Roy, T. J\"onsth\"ovel, C. Lemon, and A. J. Wathen, A constrained pressure-temperature
residual (CPTR) method for non-isothermal multiphase flow in porous media, SIAM J.
Sci. Comput., 42 (2020), pp. B1014--B1040, https://doi.org/10.1137/19M1292023.

[36] J. W. Ruge and K. St\"uben, Algebraic multigrid, in Multigrid Methods, Frontiers Appl. Math.
3, SIAM, Philadelphia, 1987, pp. 73--130, https://doi.org/10.1137/1.9781611971057.ch4.

[37] Y. Saad and H. A. Van der Vorst, Iterative solution of linear systems in the 20th century,
J. Comput. Appl. Math., 123 (2000), pp. 1--33.

[38] K. St\"uben, A review of algebraic multigrid, J. Comput. Appl. Math., 128 (2001), pp. 281--309,
https://doi.org/10.1016/S0377-0427(00)00516-1.

[39] E. Strohmaier, J. Dongarra, H. Simon, and M. Meuer, Top500: The list of the 500 most
powerful computer systems, 2020, https://www.top500.org.

[40] U. Trottenberg, C. Oosterlee, and A. Sch\"uller, Multigrid, Academic Press, San Diego,
CA, 2001.

[41] P. Van\v ek, J. Mandel, and M. Brezina, Algebraic multigrid by smoothed aggregation for
second and fourth order elliptic problems, Computing, 56 (1996), pp. 179--196, https://doi.
org/10.1007/BF02238511.

[42] M. Wathen and C. Greif, A scalable approximate inverse block preconditioner for an in-
compressible magnetohydrodynamics model problem, SIAM J. Sci. Comput., 42 (2020),
pp. B57--B79, https://doi.org/10.1137/19M1255409.

[43] J. Xu and L. Zikatanov, Algebraic multigrid methods, Acta Numer., 26 (2017), pp. 591--721,
https://doi.org/10.1017/S0962492917000083.

D
ow

nl
oa

de
d

10
/0

7/
21

 to
 1

47
.1

62
.1

10
.9

9
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

https://doi.org/10.1137/140956026
https://doi.org/10.1145/2629475
https://doi.org/10.1016/j.compstruc.2014.05.009
https://doi.org/10.1137/110843563
https://doi.org/10.1137/110843563
https://doi.org/10.1137/17M1161178
https://doi.org/10.1137/19M1292023
https://doi.org/10.1137/1.9781611971057.ch4
https://doi.org/10.1016/S0377-0427(00)00516-1
https://www.top500.org
https://doi.org/10.1007/BF02238511
https://doi.org/10.1007/BF02238511
https://doi.org/10.1137/19M1255409
https://doi.org/10.1017/S0962492917000083

	Introduction
	Classical algebraic multigrid framework
	Unveiling the operator near-kernel
	Strength of connection
	Interpolation
	Filtering

	Library description
	Main classes
	Distributed Sparse Matrix storage scheme

	Numerical results
	Fluid dynamics test cases
	Mechanical test cases
	Strong and weak scalability

	Conclusions
	References

