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Abstract— Movement Primitives (MPs) have been widely
adopted for representing and learning robotic movements using
reinforcement learning policy search. Probabilistic Movement
Primitives (ProMPs) are a kind of MP based on a stochastic
representation over sets of trajectories, able to capture the
variability allowed while executing a movement. This approach
has proved effective in learning a wide range of robotic
movements, but it comes with the necessity of dealing with
a high-dimensional space of parameters. This may be a critical
problem when learning tasks with two robotic manipulators,
and this work proposes an approach to reduce the dimension
of the parameter space based on the exploitation of symmetry.
A symmetrization method for ProMPs is presented and used to
represent two movements, employing a single ProMP for the
first arm and a symmetry surface that maps that ProMP to the
second arm. This symmetric representation is then adopted in
reinforcement learning of bimanual tasks (from user-provided
demonstrations), using Relative Entropy Policy Search (REPS)
algorithm. The symmetry-based approach developed has been
tested in an experiment of cloth manipulation, showing a speed
increment in learning the task.

I. INTRODUCTION

The state-of-the-art method in Reinforcement Learning
(RL) for robotic movements is Policy Search (PS) [1], in
which a set of parameters defining the motion policy is learned
from robot executions, in order to optimize a reward/cost
function. The starting policy can be obtained from some
demonstrations in which the user kinesthetically guides the
robot to perform the task (Fig. 1), under a Learning from
Demonstration (LfD) approach [2]. The policy can generate
sample trajectories, exploring the space of parameters. Those
trajectories are executed and evaluated in order to update
the policy through PS. The procedure is repeated until
convergence. Movement Primitives (MPs) [3] are a well-
established approach for representing basic movements in
robotics. They provide a compact representation of the robot’s
policy that is able to deal with the inherently continuous
robot movements. Probabilistic Movement Primitives [4]
(ProMPs) are further capable of capturing and reproducing
the variance along time of a set of demonstrations. When
dealing with bimanual tasks the high complexity of the
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Fig. 1: Kinesthetic demonstration of the symmetric bimanual
operation to fold a towel.

movement brings the necessity to simplify its representation.
For example, in [5] a user-demonstrated bimanual task is
reproduced characterizing it through a set of constraints,
while in [6] joint synergies are extracted through group
factor analysis. Instead, to the best of our knowledge, no
direct exploitation of symmetry in motion primitives of
bimanual movements has been addressed up to now. By
analyzing human behaviour, one can notice the high amount
of symmetry between our arms in the daily tasks we perform,
such as lifting weights, folding a shirt, etc. In the context
of RL, the notion of symmetric Markov Decision Process
(MDP) was given in [7], and used in [8], [9], [10] to solve the
value function approximation problem relying on symmetry
in the state-action space, but in the PS approach followed
here we make no use of value functions. In this scenario, it
is important to reduce the dimension of the policy parameter
space in order to get good solutions with a limited number
of real-robot executions [11]. Hence, we face the problem of
learning bimanual robotic tasks that are parameterized in high-
dimensional spaces by imposing and learning symmetries that
will simplify the problem. The approach proposed is to look
for such symmetries between the movements executed by
the two arms when performing a task, in order to represent
the bimanual motion in a reduced manner, with the objective
of increasing the speed of the learning process. Initially, we



tackled planar symmetries. However, we noticed that some
motions might have other kinds of symmetries, such as a
cylindrical or spherical symmetry (for example they could
appear when using long tools, such a broom, with two hands).
Therefore, we also included these in our work.

The rest of the paper is organized as follows: Section
II defines the basic elements of ProMPs used throughout
this work, Section III presents the symmetrization methods
for Gaussian probability distributions and ProMPs together
with some way of estimating the parameters of symmetry
surfaces, Section IV is devoted to the description of the RL
procedure developed for symmetric bimanual tasks, Section V
presents the results obtained in simulation and in a real-robot
experiment, and Section VI draws the conclusions.

II. PROBABILISTIC MOVEMENT PRIMITIVES (PROMPS)
ProMPs use a weight vector w to compactly represent a

single generic trajectory τ “ txtut“1...Nt (xt P RD is the
state vector at time t, Nt is the total number of samples) as a
linear basis function model xt “ ΦT

t w`ν. ΦT
t :“ rIDbφts,

where φt defines a time-dependent basis vector, composed
by the values at time t of M Gaussian functions with centers
uniformly distributed over time, ID indicates the identity
matrix of the same dimension of the state and b the Kronecker
product. w is a weight vector of dimension M, and ν a zero-
mean Gaussian noise with variance Σν . w is assumed to be
a random variable with Gaussian multivariate distribution
ppwq “ N pw|µw,Σwq. The resulting trajectory can be
expressed as a probability distribution whose expression
depends on parameters θ “ tµw,Σw,Σνu. This distribution
can be fitted, given a set of Kd demonstrated trajectories τ k “
txtut“1...Nt

, k “ 1 . . .Kd , by obtaining the weights wk for
each demonstration using the Moore-Penrose pseudoinverse.
Parameters θ are fitted by means of a maximum likelihood
estimation, i.e. computing the sample mean and the sample
covariance of w. The distribution ppxt;θq at time t is given
by

ppxt;θq “ N pxt|ΦT
t µw,Φ

T
t ΣwΦt ` Σνq (1)

Then the probability of observing a trajectory can be expressed
as the product of all time-step probabilities.

We have made the choice of representing robot movements
as the trajectories drawn by the end-effector. Only its position
is considered, regardless of its orientation, by executing
trajectories keeping the end-effector aligned with the robot-
arm. Thus, the problem is reduced to a three-dimensional
positioning of the end-effector point. Being pxt, yt, ztq the
end-effector coordinates at time t, ProMPs have been used
to model trajectories of the state vector xt :“ rxt, yt, zts

T .
Fitting noise ν has been neglected. Demonstrations in task
space are derived from joint values via forward kinematics
[12], and ProMP’s rollouts are executed by solving inverse
kinematics for the robotic manipulators, like in [13], [14],
[15] and passing joints commands to the robot arm.

III. SYMMETRIZATION METHODS

Given a two-arms motion encoded as a ProMP, the move-
ment of the second arm can be expressed as a symmetrization

of the ProMP of the first one. In this way, the bimanual task
policy is represented by only a single MP and a surface,
reducing considerably the number of parameters. The most
common type of symmetry is defined by a plane, but also
cases of curved surfaces are taken into account.

A. Gaussian Distribution Symmetrization

Being ProMPs a representation that describes a trajectory
as a time-dependent multivariate Gaussian probability density
function, first of all, it is necessary to find a method to
symmetrize a Gaussian with mean µ and covariance Σ
with respect to a given surface. In order to symmetrize
the Gaussian, we will symmetrize the ellipsoid given by
the covariance matrix. This will be the base on which the
generalized ProMP symmetrization method will be built
upon. Firstly, we will introduce a methodology for planar
symmetries. However, we generalize to other kinds of shapes,
such as cilindrical or spherical symmetries. From now on we
will use superindex s to indicate symmetric elements.

1) Planar Symmetries
A Gaussian distribution is characterized by two elements, its
expected value and its covariance matrix. Being the mean
value µ “ rxµ, yµ, zµs

T , finding its symmetric µs with
respect to a plane ax` by` cz` d “ 0 is a trivial geometric
problem. The covariance matrix Σ is completely defined
by its eigenvalues λi and eigenvectors vi (i “ 1, 2, 3). The
symmetrization of Σ with respect to a plane can be seen as
a roto-translation of its eigenvectors, keeping the eigenvalues
unchanged. Such symmetrized eigenvectors, vsi (see Fig. 2)
can be then used to reconstruct the symmetric covariance
matrix Σs “ V s D pV sqT where V s “ rvs1|v

s
2|v

s
3s and

D “ diagpλ1, λ2, λ3q.

Fig. 2: Planar symmetrization method applied to a two-
dimensional Gaussian distribution represented as an ellipse.
Note how the symmetric eigenvectors can be easily obtained
from the symmetrization of points µ, P~v1 and P~v2 .

2) Curved Symmetries
Representing a covariance matrix as an ellipsoid of uncer-
tainty, it is clear that its symmetrization w.r.t. a curved
surface will end in a non-elliptical shape. Due to the
necessity of obtaining always a normal distribution after
the symmetrization (also in the case of curved symmetries),



Fig. 3: Reshaping of an eigenvector in a two-dimensional representation. Factor k is obtained from the Thales proportion
µA : pr´ dq “ µsB : pr` dq. Vector v0i (obtained from the initial planar symmetrization, for i “ 1, 2, 3) is decomposed into
the projection pi “

v0
i ¨t
t¨t ¨ t onto the curvature direction t, and the difference v0i ´ pi. Then, the component pi is multiplied

by the scaling factor k to obtain the reshaped symmetric eigenvector vsi , as vsi “ k ¨ pi ` pv
0
i ´ piq.

this effect has been modeled with a deformation of the
eigenvectors and eigenvalues of the symmetric covariance
matrix, which depend on the degree of curvature of the
surface:
‚ The first step is to perform a planar symmetrization,

in the same way as described before, considering the
tangent plane going through the projection of µ “

rxµ, yµ, zµs
T on the surface. Let’s call the resulting

covariance matrix Σs0, that will be adapted taking into
account the degree of curvature of the symmetry surface
used. Eigenvectors v0i and eigenvalues λ0i (i “ 1, 2, 3)
are obtained from Σs0, and it is necessary to modify
them to reshape the covariance matrix.

‚ The eigenvectors are projected onto the directions
tangent to the symmetry surface, and only the tangent
components are modified by a scaling factor k that
depends on the radius r and the distance from the surface
d, being k “ r`d

r´d .
‚ The considered components are multiplied by k, if µ is

inside the surface, or divided by k, if outside. The factor
depends on the value of d with respect to r, its expression
is based on the proportionality between segments defined
in Thales theorem (see Fig. 3).

‚ Eigenvalues are also updated multiplying them by the
ratio between the norm of the associated reshaped
eigenvector and the original one, λsi “ λ0i ¨

|vs
i |

|vi|
. The

symmetric covariance matrix is obtained from Σs “
V s D pV sq´1, V s being the matrix whose columns are
the new eigenvectors vsi normalized, and D is a matrix
with the new eigenvalues λsi in the diagonal and zeros
in all the other entries.

This procedure does not guarantee the symmetry of the
matrix obtained, because reshaped eigenvectors are no longer
orthonormal. Hence to ensure symmetry, Σs is corrected by
substituting it with pΣs ` pΣsqT q{2, averaging each pair of
symmetric non-diagonal entries. The effects of the reshaping
effect can be visualized in Fig. 4.

B. ProMP Symmetrization

End-effector trajectory τ “ txtut“1...Nt
in cartesian

position coordinates can be expressed with a ProMP as

Fig. 4: Curved symmetrization method applied to a two-
dimensional Gaussian distribution. The radial symmetrization
of ellipse-points produces a result that is not an ellipse any-
more (purple points), hence curved symmetry of a Gaussian
is approximated with the presented reshaping effect on the
eigenvectors and eigenvalues.

xt “ ΦT
t w (recalling notation used in Section II and

remembering that fitting noise has been neglected). Thus,
the three-dimensional Gaussian probability distribution for
each time t is given by

ppxt;θq “ N pxt|µt,Σtq :“ N pxt|ΦT
t µw,Φ

T
t ΣwΦtq (2)

A sequence of symmetric distributions N pxst |µst ,Σst q can be
computed from N pxt|µt,Σtq (for t “ 1 . . . Nt) using the
methods described previously (depending on the symmetry
surface considered). The objective is to use this new sequence
of Gaussians to build ProMPs pws „ N pµsw,Σswqq, the
symmetrization of the given ProMP. Considering the expected
value of the symmetric trajectory µst “ Erxst , y

s
t , z

s
t s
T @t,

we define the vector of positions for each direction as
x̄s :“ Erxs1 ¨ ¨ ¨x

s
Nt
, ys1 ¨ ¨ ¨ y

s
Nt
, zs1 ¨ ¨ ¨ z

s
Nt
sT , and the block



basis function matrix Ψ :“ rφ1 . . . φNt
s. µsw can be computed

with expression (4).

x̄s “ ΨTµsw with ΨT :“ I3 bΨT (3)

µsw “ pΨ
T q`xs (4)

Concerning the computation of Σsw, Nt different equations
Σst “ ΦT

t ΣswΦt must be taken into account, one for each
instant t “ 1 . . . Nt. The equations for all time steps can
be composed in a unique block matrix equation, which it is
solved using the Moore-Penrose pseudoinverse:
»

—

—

–

...
Σst pΦtq

`

...

fi

ffi

ffi

fl

“

»

—

—

–

...
ΦT
t
...

fi

ffi

ffi

fl

Σsw, Σsw “

»

—

—

–

...
ΦT
t
...

fi

ffi

ffi

fl

`»

—

—

–

...
Σst pΦtq

`

...

fi

ffi

ffi

fl

(5)
It is necessary to modify the matrix Σsw at the end, to
guarantee its symmetry, otherwise it cannot be a valid
covariance matrix. This is done by substituting it with pΣsw`
pΣswq

T q{2, averaging each pair of symmetric non-diagonal
entries. The ProMP symmetrization method developed can be
applied to all the kinds of symmetries considered, planar and
curved. It depends only on the time-dependent probabilistic
representation of the symmetric trajectory, regardless of the
nature of the symmetry surface. In this section we tackled
the problem of finding the ProMP symmetric to another.
In the next part, we propose a way of estimating from the
demonstrations the most suitable symmetry for the task.

C. Symmetry Estimation

It is necessary to estimate a possible symmetry surface
from the demonstrated movements, whether it is a plane or a
curved surface. With data obtained from real demonstrations,
the symmetry cannot be absolutely perfect, but the distribution
of midpoints in the space can be analyzed in order to get the
surface that best fits the data. We assume a normal distribution
for the parameters and their estimation is given with a mean
and a covariance matrix, which can be used for successful
policy exploration and learning.

1) Planar Symmetries
The method proposed to estimate the parameters of a
symmetry plane is based on the distribution of the midpoints
mt between the mean trajectories demonstrated with the two
robots µ1

t “ rx
1
t , y

1
t , z

1
t s
T , µ2

t “ rx
2
t , y

2
t , z

2
t s
T at each instant

t “ 1 . . . Nt.

mt “
µ1
t ` µ

2
t

2
t “ 1 . . . Nt (6)

Principal Component Analysis (PCA) has been used to
analyze the set of midpoints and find a viable symmetry
plane. In a perfectly symmetric bimanual movement, all
the midpoints must belong to the same plane, and PCA
would result in a third component describing no variance
of data. Thus, dealing with real demonstrations, a possible
symmetry plane can be defined as the plane orthogonal to

the vector defining the third principal component (direction
with the least variation) v3, passing through the center of the

midpoints µm :“ 1
Nt

Nt
ř

t
mt. Thus, if v3 “ rxv3

, yv3
, zv3

sT ,

the estimated parameters of the symmetry plane equation
â x ` b̂ y ` ĉ z ` d̂ “ 0 are â “ xv3

, b̂ “ yv3
, ĉ “ zv3

,
and d̂ “ ´âxµm ´ b̂yµm ´ ĉzµm . It is also possible to
calculate the covariance matrix associated to the estimates of
the parameters. This can be done by applying PCA to each
pair of demonstrated trajectories independently, obtaining a
set of parameters tâk, b̂k, ĉk, d̂ku for k “ 1 . . .Kd (where
Kd is the total number of demonstrations). Covariance matrix
of plane’s parameters can then be computed with maximum
likelihood estimation.

2) Curved Symmetries
Estimation of curved surfaces is possible too, and the case
of a spheric symmetry is presented. The spheric symmetry is
defined by 4 parameters rxC , yC , zC , Rs, center and radius
of the sphere. To perform their estimation, the lines lt,k
connecting two end-effectors at each time t, for every
demonstration, are taken into account. The center of the sphere
is chosen as the point with minimum quadratic distance from
all the lines lt,k:

Ĉ “ px̂C , ŷC , ẑCq “ argmin
P :“px,y,zq

ÿ

@t,k

d2pP, lt,kq (7)

Then, the radius can be obtained as the distance between
Ĉ and the center of the demonstrations’ midpoints µm:
R̂ “ dpĈ, µmq. Like in the case of the plane, it is possible to
calculate also the covariance matrix associated to the estimates
of parameters. This can be done by finding the center and
radius of the sphere for each pair of demonstrated trajectories
independently, obtaining a set of parameters {x̂Ck, ŷCk,
ẑC

k, R̂k} for k “ 1 . . .Kd. Covariance matrix of sphere’s
parameters is obtained with maximum likelihood estimation.

3) Optimization of Parameters
The surface estimated might not be the optimal one, hence
this initial estimation needs to be refined using optimization
methods. To do so, the Kullback–Leibler divergence (KL
divergence) is used as a measure of how the probability
distributions of the weights of the ProMP2 (ProMP obtained
from demonstrations of the second arm) diverges from the
one obtained with the symmetrization of ProMP1 (ProMP
obtained from demonstrations of the first arm). KL divergence
is defined as a non-symmetric indicator of the difference
between two probability distributions p, q over a random
variable x, defined as KLpp||qq “

ş

ppxqlog ppxqqpxqdx generally.
In our case, where multivariate Gaussian distributions are
considered, KL divergence between ProMP2 and the sym-
metrized ProMP1 can be computed as follows.

KLpProMP2||ProMPs1q “
1

2
ptrrpΣswq

´1Σ2
ws`

`pµsw´µ
2
wq

T pΣswq
´1pµsw´µ

2
wq´3¨M`ln

detpΣswq

detpΣ2
wq
q (8)



The surface parameters can then be optimized to minimize
the resulting KL divergence between the weight vector
distribution of ProMPs1 and ProMP2. We used the fmincon
function in MATLAB to optimize the parameters, using
PCA or least-squares solutions to initialize them. Note that
using symmetry surfaces, a mirror effect is generated, i.e. an
opposed orientation in the symmetric trajectories (to have an
intuitive idea think to what happens to letters reflected in a
mirror) . Such mirror effect can be removed by considering
more than one plane of symmetry, as considered in the
Appendix.

IV. LEARNING OF SYMMETRIC BIMANUAL TASKS

The symmetrization methods developed are used to rep-
resent bimanual robotic tasks with a reduced number of
parameters defining the policy. The aim is to see if using this
symmetry-based approach in the learning process can lead to
a faster convergence in the policy search.

A. Relative Entropy Policy Search (REPS)

REPS [16] is the algorithm that has been adopted to
perform the policy search for symmetric bimanual tasks.
It aims to find the policy π˚ that maximizes the expected
reward for a given task. A ProMP policy πpwq can then
be represented by a normal distribution with mean µw and
covariance Σw generating samples wk „ N pµw,Σwq. Given
the previous policy πoldpwq, REPS obtains the new policy
πpwq by adding a KL divergence bound ε between the newly
obtained policy and the previous one to the optimization of
the expected reward. The bound on the KL divergence limits
the variation on the new policy and prevents the algorithm
from being too greedy.

π˚ “ argmax
π

ż

πpwqRpwqdw (9)

s.t. ε ě KLpπpwq||πoldpwqq and 1 “

ż

πpwqdpwq

where Rpwq is the reward for the samples weights (it is
always negative, and closer to 0 the better is the result of
the rollout examined). The constrained optimization problem
(9) can be solved efficiently by the method of Lagrangian
multipliers.

B. Symmetric Learning Approach

The standard way of proceeding, which here is called
Double Learning (DL), would be to model the movements
of the two robotic arms independently with two ProMPs
subject to two separated learning processes. Employing the
symmetrization techniques presented in this work it is possible
to develop a new learning approach, capable of exploiting
the symmetric nature of a task, that will be called Symmetric
Learning (SL). Before starting the learning process, some
demonstrations of the task are recorded to build the initial
ProMP1, w1 „ N pµ1

w,Σ
1
wq, modeling movements of the

first robot’s end-effector, and ProMP2, w2 „ N pµ2
w,Σ

2
wq,

modeling movements of the second robot’s end-effector. From
these demonstrations, the symmetry surface ρ0 is estimated.

Fig. 5: Symmetric Learning conceptual scheme.

Fig. 6: Robust Symmetric Learning conceptual scheme.

Symmetric Learning (SL): only ProMP1 is updated
during the learning process. At each iteration the first
arm executes the movement sampled from ProMP1, while
the second arm executes the symmetric trajectory. Once
completed the policy search, movements of the first arm
are described by the updated ProMP1 and movements of the
second by its symmetrization ProMPS1 .

SL reduces the number of parameters by a half, but its
success depends critically on the accuracy of the symmetry
surface estimation ρ0, and if it is not correct, SL cannot
have good results. We propose a variation of SL, called
Robust Symmetric Learning (RSL), that solves the problem
by learning, not only ProMP1, but also the symmetry surface’s
parameters, represented as a Gaussian probability distribution,
ρ „ N pρ0,Σρq. The probability distribution updated by REPS

is
„

w1

ρ



„ N
ˆ„

µw1

ρ0



,

„

Σw1 ˚

˚ Σρ

˙

, where weights and

the surface’s parameters are combined in the same vector
(non-diagonal blocks are initialized with zeros).

Robust Symmetric Learning (RSL): at each learning
iteration k, a different surface ρk is sampled from the
probability distribution, and used to obtain the symmetric



of the first-arm’s trajectory executed by the second one. At
the end of the learning process, the surface’s probability
distribution will converge to the optimal set of parameters
to use in the symmetrization of ProMP1 to obtain the policy
for the second arm ProMPs1.

For both SL and RSL, if the symmetry of the task
is known a priori, the kind of surface adopted in the
learning algorithm can be directly imposed. Otherwise, if
this information is not available, it can be derived from
demonstrated trajectories: symmetric ProMPs are computed
for each kind of possible surfaces in order to choose the one
with minimum KL(ProMP2||ProMPs1) as the most suitable
symmetry for the task.

V. EXPERIMENTAL RESULTS

The proposed strategies, Double Learning (DL) and Sym-
metric Learning (SL), with its variant Robust Symmetric
Learning (RSL), have been tested in simulation and in a
real-case scenario, in order to verify their capacity to handle
the learning of bimanual symmetric movements. For each
test, initial ProMPs and a symmetry plane estimate have been
computed from some kinesthetic demonstrations of the task.
The MATLAB code used and all the results obtained, to-
gether with a video of the experiment with real-robots,
are available at http://www.iri.upc.edu/groups/

perception/#symmetricLearning.

A. Simulation

In the simulation, the midpoint between the two robot
end-effectors at each time step mt “ pxmt , y

m
t , z

m
t q :“

´

x1
t`x

2
t

2 ,
y1t`y

2
t

2 ,
z1t`z

2
t

2

¯

for t “ 1 . . . Nt is made to follow a

certain path txreft , yreft , zreft ut“1...Nt
belonging to a surface.

The learning process in this case consists of 500 policy update
steps evaluating 10 rollouts each. Three different scenarios
have been considered: reference path belonging to a plane,
a sphere or a cylinder. This surface defines a symmetry in
the movements, and it can be known and equal to the one
estimated from demonstrations ρ0; or unknown and derived
from a perturbation of ρ0’s parameters. ProMPs have M “ 10
basis functions for each direction (i.e., 3 ¨M “ 30 weights in
total) and amplitude parameter h “ 0.02. The reward function
considered (10) penalizes the sum of squared errors from the
desired path on the surface.

R “ 100
Nt
ÿ

t“1

´

xreft ´ xmt

¯2

`

´

yreft ´ ymt

¯2

`

´

zreft ´ zmt

¯2

(10)
An example of the results of the simulation can be seen

in Figs. 7 and 8, where the final trajectories and rewards are
shown for DL and SL applied to the case of a known planar
symmetry. Moreover, Table II shows a summary of results
after applying Double Learning (DL), Symmetric Learning
(SL), and Robust Symmetric Learning (RSL) to problems
with planar, spherical or cylindrical symmetries, both knowing
the symmetry a priori or not. Having a look at the results,
we see that SL shows a faster convergence in the policy
search, mostly in the early phases of the learning process

Fig. 7: Trajectories for ProMP1 and ProMPs1, obtained by SL
after learning to follow a path whose end-effectors’ midpoints
belong to a known plane.

Fig. 8: Rewards, drawn as mean value and 95% C.I., in the
case of a reference path belonging to the a known plane
(values in logarithmic scale).

(roughly the first 100-150 updates), exactly the kind of results
sought, but it is only applicable when the symmetry surface
is perfectly known. RSL instead shows a slower convergence
than SL, because of the need to learn the plane’s parameters
too. RSL is still faster than DL at the beginning, while later,
around 150 updates, it cannot manage to increase rewards as
much as DL does. This is still a good result, because it shows
that using symmetry in the learning, even in the presence of
uncertainties, permits reaching faster a good solution. The fact
that later, with more updates, RSL looses effectiveness w.r.t.
DL is due the fact that using two separate ProMPs allows
to optimize better the rewards, having more parameters at
disposal.

B. Real-robot experiment: Folding a towel

The symmetry-based RL approach has been tested in a
real-case application. The aim is to make two robotic arms
learn how to fold a towel on a table (see Fig. 1). In order
to evaluate the quality of the execution, the experimental
setup includes a rooftop-placed Kinect camera covering the

http://www.iri.upc.edu/groups/perception/#symmetricLearning
http://www.iri.upc.edu/groups/perception/#symmetricLearning


TABLE I: Reward function values obtained while learning to follow a desired path of the end-effectors’ midpoint.

START 10 updates 50 updates 100 updates 200 updates 500 updates

Plane
known DL -104.8 ˘ 0.0 -63.9 ˘ 10.2 -31.0 ˘ 6.7 -10.98 ˘ 3.57 -1.511 ˘ 0.505 -0.7054 ˘ 0.0001

SL -102.0 ˘ 0.0 -53.7 ˘ 12.1 -16.6 ˘ 6.8 -3.30 ˘ 2.00 -0.735 ˘ 0.033 -0.6964 ˘ 0.0001

unknown DL -165.3 ˘ 32.5 -110.3 ˘ 26.9 -63.6 ˘ 20.2 -31.23 ˘ 13.05 -8.001 ˘ 5.319 -1.2525 ˘ 0.7899
RSL -169.3 ˘ 34.4 -82.2 ˘ 11.2 -31.2 ˘ 4.3 -8.69 ˘ 1.43 -2.181 ˘ 0.564 -1.0438 ˘ 0.1751

Sphere
known DL -41.4 ˘ 0.0 -26.5 ˘ 4.6 -7.8 ˘ 1.9 -1.51 ˘ 0.43 -0.259 ˘ 0.037 -0.1890 ˘ 0.0001

SL -39.6 ˘ 0.0 -25.5 ˘ 4.8 -2.8 ˘ 1.3 -0.26 ˘ 0.10 -0.094 ˘ 0.009 -0.0737 ˘ 0.0068

unknown DL -61.6 ˘ 10.4 -37.4 ˘ 8.6 -12.9 ˘ 4.0 -2.67 ˘ 1.02 -0.374 ˘ 0.120 -0.2001 ˘ 0.0096
RSL -64.9 ˘ 15.3 -43.0 ˘ 15.1 -7.4 ˘ 3.8 -1.07 ˘ 0.37 -0.186 ˘ 0.027 -0.1154 ˘ 0.0180

Cylinder
known DL -31.5 ˘ 0.0 -18.7 ˘ 3.1 -4.0 ˘ 0.9 -0.66 ˘ 0.14 -0.232 ˘ 0.008 -0.2018 ˘ 0.0001

SL -37.1 ˘ 0.0 -25.8 ˘ 5.6 -3.3 ˘ 1.0 -0.38 ˘ 0.11 -0.090 ˘ 0.009 -0.0630 ˘ 0.0071

unknown DL -76.7 ˘ 22.5 -55.4 ˘ 15.1 -23.2 ˘ 8.8 -7.26 ˘ 3.69 -0.902 ˘ 0.428 -0.2432 ˘ 0.0247
RSL -87.9 ˘ 27.9 -56.6 ˘ 12.5 -12.1 ˘ 3.3 -2.07 ˘ 0.54 -0.336 ˘ 0.149 -0.1868 ˘ 0.0694

TABLE II: Reward function values obtained while learning to fold a towel.

START 1 update 2 updates 3 updates 4 updates 5 updates
DL -4.82 ˘ 2.73 -3.23 ˘ 2.08 -1.75 ˘ 0.24 -1.48 ˘ 0.07 -1.46 ˘ 0.04 -1.48 ˘ 0.03
RSL -6.80 ˘ 3.04 -2.62 ˘ 1.15 -1.52 ˘ 0.18 -1.38 ˘ 0.09 -1.33 ˘ 0.08 -1.21 ˘ 0.05

Fig. 9: Rewards, drawn as mean value and 95% C.I., obtained
during the experiment of folding a towel.

workspace, providing RGB and depth information. ProMPs
with M “ 15 basis functions for each direction have been
chosen (i.e., 3 ¨M “ 45 weights in total), with an amplitude
parameter of h “ 0.0167. In this experiment, the learning
process consists of 5 policy updates of 12 rollouts each, with
a reuse of the previous 12 sampled weights and rewards
in the PS update. Inverse kinematics is used to transform
end-effector positions into joint trajectories, which then a
computed-torque controller [17] would compliantly track. As
reward, a function that penalizes large joint accelerations is
adopted, together with an indicator of how well the towel
has been folded. This indicator takes into account how well
the resulting shape approximates a rectangle, and how many
wrinkles the towel shows. Therefore, the reward function
used is:

R “ Racc ` Rshape ` Rwrinkle (11)

where Racc is a term penalizing large acceleration commands
at joint level to avoid sudden movements. The folding
correctness of shape is evaluated by color-segmenting the
towel image on the table and fitting a bounding rectangle to
the obtained result. Rshape has a large penalizing value if the

result after motion does not have a rectangular shape on the
table, and it is expressed as:

Rshape “ ´
# rectangle pixels

#towel pixels

”

pA´Arq
2
` pB ´Brq

2
ı

(12)
where A, B are the measured side lengths of the bounding
rectangle, and Ar , Br are their reference values. Rwrinkle
penalizes the outcome if the towel presents too many wrinkles
after the folding (the mean gradient of the depth is used as
the wrinkleness indicator). It is computed using the code
available from [18].

RSL and DL approaches succeed both in folding well
the towel at the end of the learning process. Exploration
of parameter space was problematic in the first iterations
due to the physical constraints of task. In fact, movement
variability cannot be too big, because if the two arms go too
far one from each other, end-effectors cannot hold the towel
anymore. These situations lead to some bad rollouts from
the initial policies, in particular in DL, when the two arms
move independently. After some updates this issue is not a
problem anymore, thanks to the convergence to more effective
folding movements. Evolution of reward values throughout
the learning process are shown in Fig. 9 and Table II. RSL
at the beginning shows worse results than DL, which is able
to model better movements of the second robot arm thanks
to its higher number of parameters. This initial disadvantage
is recovered in just one learning update, confirming a faster
convergence speed for the RSL method, together with a
more significant reduction in reward’s variance than the one
obtained with DL. Furthermore, DL converges to a slightly
worse reward for the final policy.

VI. CONCLUSIONS

In this paper, we successfully developed a symmetric ap-
proach for the learning of bimanual robotic tasks using ProMP-
based policies. The use of symmetries has proven effective
in reducing the dimension of the parameter space, although,
the standard approach (that uses two distinct policies for
each robot) could fit more finely robotic trajectories, because



of its higher number of parameters. The great advantage
of the symmetry-based approach is the fastest convergence
during the learning process. Thanks to the reduced number
of parameters used and the policy exploration limited to
symmetric trajectories, the proposed method manages to
reach good results with few updates. It could be a promising
framework to reach fast and effective learning for symmetric
bimanual tasks. Further experiments are needed to test its
performance in other scenarios, like assisted dressing, objects
lifting and usage of tools. Other significant results of this
work are the symmetrization methods derived for multivariate
Gaussian distributions, that can find applications also outside
of the context of movement representation.

APPENDIX

Composition of Symmetry Planes

Different symmetry planes can be combined to couple
robotic trajectories that are impossible to define with only a
single symmetry. The problem of representing a rotation
of a trajectory around a given point as the combination
of different symmetrizations is faced. Consider an initial
trajectory τ 0 “ tτ 0

t ut“1...Nt
, and a desired trajectory τ goal “

tτ goalt ut“1...Nt
, result of a rotation of τ 0 (the origin has been

taken as the center of rotation without loss of generality).
The objective is to find the combination of symmetries that
transform τ 0 into τ goal.
A method to obtain τ goal from τ 0 as a result of two sym-
metrizations has been developed, and it proved successful in
several trials, with different trajectories and rotation matrices.
The first symmetrization is used to obtain a trajectory τ 1

centered with τ goal (same centroid), the second one to align
it correctly to the desired τ goal.
‚ compute centroid of τ 0: µτ0 “ 1

Nt

řNt

t“1 τ
0
t

‚ compute centroid of τ goal: µgoalτ “ 1
Nt

řNt

t“1 τ
goal
t

‚ I symmetry plane orthogonal to p1 “ µgoalτ ´ µτ

and passing through the point µgoal
τ `µ0

τ

2 Ñ resulting
trajectory: τ 1

‚ compute the trajectory m described by the midpoints
of τ 1 and τ goal: mt “

τgoal
t `τ0

t

2 for t “ 1 . . . Nt
‚ II symmetry plane orthogonal to p2 the third principal

component vector obtained from PCA applied to the
set tmtut“1...Nt (the third component has null variance,
because all the midpoints belong to the same plane
orthogonal to it) Ñ resulting trajectory: τ 2 “ τ goal

The origin (that is the center of rotation considered) will
belong to both planes. The symmetrization of a point P
with respect to a plane orthogonal to unit vector p that
contains the origin can be defined as a linear transformation:
P s “ H ¨ P with H :“

“

I ´ 2ppT
‰

. H is known as
Householder transformation. Thus, @R rotation matrix, D
p1 and p2 defining two Householder transformations H1 “
“

I ´ 2pT1 p1
‰

and H2 “
“

I ´ 2pT2 p2
‰

s.t. H2 ¨ H1 “ R.
Moreover, Householder transformation H has detpHq “ ´1,
meaning there is a change of orientation: a mirror effect.
Therefore, those trajectories whose transforms are pure
rotations R, having detpRq “ 1, will need a pair number

of symmetries to be represented. A Symmetric learning
approach can then be extended naturally to the combination
of symmetry planes, in order to apply it also in the cases in
which the bimanual task is not symmetric, for instance an
anti-symmetric bimanual movement, that can be described
by two orthogonal symmetry planes (an example could be
the opening of a valve using two hands).
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