
https://doi.org/10.1177/1932296817710478

Journal of Diabetes Science and Technology
2018, Vol. 12(1) 105 –113
© 2017 Diabetes Technology Society
Reprints and permissions: 
sagepub.com/journalsPermissions.nav
DOI: 10.1177/1932296817710478
journals.sagepub.com/home/dst

Original Article

The concept of glycemic variability (GV) is broadly used in 
diabetes context to characterise the fluctuations of blood glu-
cose (BG) profiles, which are often involved in the patho-
genesis of diabetes-related complications.1-8 Tens of different 
metrics were proposed in the literature to quantify the GV, 
including indices derived from the distribution of glucose 
readings or the amplitude and duration of the glycemic 
excursions, indices based on risk and quality of glycemic 
control, just to name a few (see Ohara et al,8 Rodbard,9 Le 
Floch and Kessler,10 Kovatchev and Cobelli11).

The GV concept has become even more intriguing since the 
advent of continuous glucose monitoring (CGM) sensors. 
These sensors measure glucose concentration every 1-5 min-
utes for several consecutive days, allowing the characterization 
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Abstract
Background: Tens of glycemic variability (GV) indices are available in the literature to characterize the dynamic properties 
of glucose concentration profiles from continuous glucose monitoring (CGM) sensors. However, how to exploit the plethora 
of GV indices for classifying subjects is still controversial. For instance, the basic problem of using GV indices to automatically 
determine if the subject is healthy rather than affected by impaired glucose tolerance (IGT) or type 2 diabetes (T2D), is still 
unaddressed. Here, we analyzed the feasibility of using CGM-based GV indices to distinguish healthy from IGT&T2D and IGT 
from T2D subjects by means of a machine-learning approach.

Methods: The data set consists of 102 subjects belonging to three different classes: 34 healthy, 39 IGT, and 29 T2D subjects. 
Each subject was monitored for a few days by a CGM sensor that produced a glucose profile from which we extracted 25 GV 
indices. We used a two-step binary logistic regression model to classify subjects. The first step distinguishes healthy subjects 
from IGT&T2D, the second step classifies subjects into either IGT or T2D.

Results: Healthy subjects are distinguished from subjects with diabetes (IGT&T2D) with 91.4% accuracy. Subjects are 
further subdivided into IGT or T2D classes with 79.5% accuracy. Globally, the classification into the three classes shows 
86.6% accuracy.

Conclusions: Even with a basic classification strategy, CGM-based GV indices show good accuracy in classifying healthy and 
subjects with diabetes. The classification into IGT or T2D seems, not surprisingly, more critical, but results encourage further 
investigation of the present research.
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of the dynamic properties of BG profiles by capturing compo-
nents otherwise invisible with the traditional self-monitoring of 
blood glucose (SMBG) management.11 GV indices computable 
from CGM traces12-16 have been used in several studies to 
assess the impact of GV on the risk of developing some diabe-
tes complications,17-19 to quantify the quality of the glycemic 
control,20 and to stratify CGM traces in relation to the need of 
therapeutic actions.21

Recently, several studies employed CGM technology not 
only in the population with diabetes,22,23 but also in subjects 
affected by states of prediabetes and in obese individuals,24,25 
where a progressively increasing GV as moving from normal 
subjects to subjects with prediabetes has been observed.26 
Such progressive changes in glucose dynamics in different 
categories of subjects suggest that GV metrics extracted 
from CGM signals could be used to detect impaired glyce-
mia in certain groups of subjects27 much earlier than the stan-
dard techniques used for the diagnosis and classification of 
diabetes, based on oral glucose tolerance test (OGTT) and 
HbA1c values.23

The problem of how to best exploit the plethora of GV 
indices to distinguish among different categories of sub-
jects is still debated since there are unresolved issues like, 
for example, GV indices that carry on redundant informa-
tion.28,29 In this context, even a basic question like using 
GV indices to automatically recognize if a subject is 
healthy rather than affected by a state of prediabetes, such 
as impaired glucose tolerance (IGT), or by type 2 diabetes 
(T2D), is still unaddressed in the literature to the best of 
our knowledge.

In the present work, we use a machine learning approach 
to distinguish healthy from IGT&T2D and IGT from T2D 
subjects using a set of 25 well established CGM-based 
indices.

Methods

Database

The data set consists of 102 subjects belonging to three dif-
ferent classes, preliminary determined for each individual 
by a standard OGTT: 34 healthy subjects, 39 IGT subjects, 
and 29 T2D subjects (IGT and T2D subjects participated in 
the Botnia Study in Finland, approved by the Ethics com-
mittee of the Helsinki University Hospital with informed 
consent from all study participants). Each subject was mon-
itored by either the Guardian Real Time or the iPro CGM 
systems (Medtronic MiniMed, Inc, Northridge, CA) under 
normal life conditions for an average period of 5 days. 
Figure 1 shows an exemplificative CGM trace for each of 
the three categories (healthy subject in the first panel, IGT 
subject in the second panel, and T2D subject in the third 
panel).

Indices Used for Classification

The 102 CGM traces were first processed to extract the set 
of well-established 25 indices already considered in two 
recent studies by Fabris et al.28,29 Each GV index has been 
mean-centered and scaled before entering the classifica-
tion procedure. The pool of indices comprises metrics 

Figure 1. Representative CGM traces from representative healthy (first panel), IGT (second panel), and T2D (third panel) subjects.
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based on statistical properties, that is, standard deviation 
(SD), coefficient of variation (CV), range, interquartile 
range (IQR), and J-index,30 indices based on interday vari-
ability of statistical properties, that is, mean of daily SD 
(SDw) and SD of daily means (SDdm),14 indices based on 
the permanence in the euglycemic target range, that is, 
percentages of values below the target range (<70 mg/dL), 
above the target range (>180 mg/dL) and within the target 
range ([70, 180] mg/dL), indices related to significant gly-
cemic excursions, that is, mean amplitude of glycemic 
excursions (MAGE) index,31,32 and measures derived from 
nonlinear transformations of glucose values, that is, low 
and high blood glucose indices (LBGI, HBGI),33,34 blood 
glucose risk index (BGRI),35 average daily risk range 
(ADRR),36 hypoglycemic index, hyperglycemic index and 
index of glycemic control (IGC),15 glycemic risk assess-
ment diabetes equation (GRADE) score with its three dif-
ferent glycemic states (%GRADEhypo, %GRADEeu, 
%GRADEhyper),37 and, finally, the M

100
 index.38 In addi-

tion, the pool of indices comprises mean and median glu-
cose. While, from a certain point of view, these two 
indices are not exactly related with the concept of “vari-
ability,” they are normally included in the tools used for 
glucose time-series analysis.28,29 Therefore, for the sake of 
reasoning, in the reminder of the present work all the 
above-mentioned indices will be referred to as GV indi-
ces. The correlation among the indices in the considered 
sample of subjects is briefly commented at the end of the 
appendix.

Classification Strategy Overview

The proposed classification system is based on a logistic 
regression model.39 In particular, to assign each subject to 
a class, a two-step binary logistic regression model is 
implemented. The first step aims to distinguish healthy 
from subjects with diabetes (obtained merging IGT and 
T2D classes). At the second step, all subjects assigned to 
the IGT&T2D group at the previous step are classified into 
IGT or T2D.

The two classifiers are trained on a subset of the 25 
GV indices (specific for each of the two classification 
steps) that best distinguish between classes, that is, the 
subset of features that guarantee higher classification 
performance, as determined by a feature-selection algo-
rithm. In particular, the subset of indices that best corre-
late with classification performance automatically 
selected by the feature selection procedure is composed 
of 8 over 25 indices for the first classification step, and 5 
over 25 indices for the second classification step (see the 
appendix for details).

In our experiments, the classifier is trained using a 
stratified 5-fold cross-validation approach in which the 
data set is subdivided into five equally sized folds where 

the proportion of heathy, IGT and T2D subjects in each 
fold reflects the distribution in the entire data set. 
Iteratively, one of the five folds composes the test set, 
used to evaluate classification performance, while the 
remaining four folds are used to train the classifier. In 
this way, we guarantee independence between training 
and test of the classifier and fairness of the results. 
Training and test phases are briefly described in the fol-
lowing sections.

Training Phase

During the training phase, the set of 25 GV indices and the 
class label of each subject are used to build the classifier. The 
logistic regression model we used in the experiments can be 
expressed by the following formula:
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where x  is the vector containing the 25 GV indices extracted 
from the CGM trace for each subject, P y C kk=( ) =|x , ,1 2  
is the posterior probability of the k th−  class given the set of 
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parameters vector w  is estimated by maximizing the log-
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where Nt  is the number of subjects composing the training 
group and w  is the estimated parameters vector. Practically, 

the vector w  defines the sigmoid function that best subdi-
vides the probabilistic space of the two classes. Letting n  be 
the number of indices considered for the classification 
( n < 25  after the feature-selection step, see the appendix), 
the n − dimensional vector of indices x  represents, together 
with its class label, the position of each subject in the proba-
bilistic space, which is subdivided into two areas correspond-
ing to the two classes by the n − dimensional sigmoid 
function defined by w . A simplified example of sigmoid 
function with n = 2  is shown in Figure 2.

Test Phase

The test phase is used to evaluate classification performance 
on an unseen subset of subjects, that is, the test group. In 
particular, the set of GV indices x  is used to compute, for 
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each subject, the two posterior probabilities of Equation 1, 
where the parameters vector w  is given by w , estimated 
during the training phase. The class label k = { }1 2,  is then 
determined by choosing the class with higher a posteriori 
probability:

 k argmaxP y C
k

k
� �= =( | , )x w  (3)

Practically, in relation to the graphical representation of 
Figure 2, solving Equation 3 corresponds to: look at the 
vector of coordinates x  in the probabilistic space; assign 
the subject to class 1 if the correspondent value of the sig-
moid function is above 0.5, to class 2 if is under.

Assessment Criteria

Classification performance is quantified by comparing the 
class predicted by the classifier, k , with the true class k  for 
each subject. We use a confusion matrix to summarize the 
performance of the classifier, as shown in Figure 3. A confu-
sion matrix reports the four possible outputs of the compari-
son between the true and the predicted class, that is, true 
negative (TN), false negative (FN), true positive (TP), and 
false positive (FP). The elements of the matrix allow the 
definition of the following performance metrics:

•• Accuracy:

 Accuracy
TP TN

TP TN FP FN
=

+
+ + +

 (4)

that represents the fraction of subjects correctly classified 
among the total number of subjects examined.

•• Precision:

 Precision
TP

TP FP
=

+
 (5)

that is, the fraction of TP among the total number of posi-
tives. It gives intuitively the ability of the classifier not to 
label as positive a sample that is negative.

•• Recall:

 Recall
TP

TP FN
=

+
 (6)

that is, the fraction of TP among the sum of TP and FN (the 
total number of elements of that class), which intuitively 
measures the ability of the classifier to detect all the positive 
samples.

•• F1 score:

 F
precision recall

precision recall
1 2= ⋅

⋅
+

 (7)

that represents the harmonic mean of precision and recall. Its 
value is between 0 and 1, where 0 and 1 indicate, respec-
tively, poor and good classification performance.

Results
Attained 5-fold cross-validation results are shown in terms 
of accuracy in Table 1, where we reported mean and SD 
among the five cross-validation folds. In particular, the 
first classification step distinguishing healthy from sub-
jects with diabetes (comprising both IGT and T2D classes) 
has mean accuracy of 91.4% with 9.8% SD, whereas the 
second classification step, which further distinguishes 

Figure 3. Scheme of confusion matrix for the evaluation of 
classification performance.

Figure 2. Simplified representation of sigmoid function with n = 
2 dimensions. The sigmoid surface divides the probabilistic space 
into two areas, corresponding to the two classes.
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between IGT and T2D, has mean accuracy of 79.5% with 
15.9% SD. The global classification into the three classes 
shows mean accuracy among the five folds of 86.6% with 
11.7% SD.

A deeper analysis of classification performance is done 
by quantifying the number of subjects correctly and 
wrongly classified at each step. At the first classification 
step, 4 healthy subjects are wrongly classified as subjects 
with diabetes (IGT&T2D) and 7 subjects with diabetes are 
wrongly classified as healthy, while all other 91 subjects 
are correctly classified. At the second classification step, 
that is applied in cascade to the first one, 5 IGT subjects 
are wrongly classified as T2D, 7 T2D subjects are wrongly 
labeled as IGT, while all the other 49 subjects are cor-
rectly classified.

In Table 2, we reported precision, recall, and F1 score 
for each of the three classes: healthy (second column), IGT 
(third column), and T2D (fourth column). Precision and 
recall are computed in percentage, showing values above 
80% for all the three classes, whereas the F1 score, which 
can vary between 0 and 1, is greater than 0.8 for all the 
three classes.

In both Table 1 and Table 2, we also reported the classifi-
cation performance obtained when no feature selection is 
performed, that is, when the classifiers are trained on the 
complete set of 25 GV indices. This analysis is performed 
and documented to emphasize the relevance of the feature 
selection process. Indeed, all performance metrics result 
lower when compared to that obtained after the feature 
selection process.

Discussion

A first aspect to be noted from Table 1 is that the subdivi-
sion of the subjects between healthy and subjects with dia-
betes (comprising both IGT and T2D classes) is much 
more accurate than the subsequent subdivision of 
IGT&T2D into IGT or T2D. Results of the first classifica-
tion step ensure that we are able to correctly distinguish 
between normal and pathologic condition in nine cases 
over ten. This result appears even more interesting if one 
notes that the subjects of the healthy group present a mean 
BMI of 30.01 kg/m2 at limit with obese status. On the 
other hand, the further classification between IGT and 
T2D subjects appears less effective, with mean accuracy 
of 79.5%. Analyzing the structure of the classification 
problem, which is a two-step procedure, we note that the 
second classification step suffers from error propagation. 
Indeed, subjects that are wrongly classified by the first 
classification step, that is, healthy subjects that are labeled 
as subjects with diabetes will obviously result in errors 
also in the second classification step. However, all the 
other metrics shown in Table 2 (precision, recall, and F1 
score) are substantially stable among the three classes 
with values always above 80%.

The second interesting aspect is the outcome of the 
feature selection, which, for the first classification step, 
is composed of the following 8 indices: mean, CV, range, 
percentage of values below target, percentage of values 
within target, HBGI, ADRR, and BGRI; and for the sec-
ond classification step is composed of the following 5 
indices: median, SD, CV, MAGE, LBGI. In fact, on one 

Table 1. Classification Accuracy (First and Second Classification Steps and Global Result).

Classification
First step

Healthy/IGT&T2D
Second step

IGT/T2D
Global

Healthy/IGT/T2D

Accuracy* %
(Without feature selection)

91.4 ± 9.8
(81.6 ± 15.5)

79.5 ± 15.9
(60.1 ± 21.3)

86.6 ± 11.7
(73.1 ± 17.6)

Results when no feature selection is performed are also reported (in parentheses) for comparison.
*Average over the five cross-validation folds.

Table 2. Precision, Recall, and F1 Score (Healthy, IGT, and T2D Classes).

Class Healthy IGT T2D

Precision* %
(Without feature selection)

87.8 ± 12.5
(74.2 ± 25.8)

87.3 ± 12.9
(71.7 ± 18.2)

81.7 ± 12.3
(66.8 ± 21)

Recall* %
(Without feature selection)

85.7 ± 20.2
(72.3 ± 24.8)

86.4 ± 10.1
(69.1 ± 28.8)

82 ± 18.5
(68.7 ± 18.8)

F1 score*
(Without feature selection)

0.86 ± 0.16
(0.72 ± 0.23)

0.87 ± 0.11
(0.69 ± 0.24)

0.82 ± 0.15
(0.66 ± 0.18)

Results when no feature selection is performed are also reported (in parentheses) for comparison.
*Average over the five cross-validation folds.
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hand, the analysis of these two subsets of indices con-
firms the high redundancy carried by the original set of 
25 GV indices, as already observed in Fabris et al,28,29 
whereas, on the other hand, evidences the specificity of 
each index in describing particular characteristics of the 
glucose dynamics. Indeed, the two subsets have no over-
lap, with the exception of CV, a standard statistical fea-
ture that is powerful to assess glucose variability40 and 
appears useful for both classification steps when  
combined with more specific GV metrics. This aspect 
suggests that more class-specific indices could be 
included in the set of features that serves as input to the 
machine-learning algorithm, with the aim of improving 
class-to-class subdivision.

Conclusions

Tens of GV indices were proposed in the literature, even 
more since the advent of CGM sensors, and used for several 
purposes, such as to quantify the quality of glycemic con-
trol or to assess the risk of developing diabetes-related 
complications, but their usability and reliability for classifi-
cation problems is still scarcely investigated.

In the present work, given a data set of 102 subjects, we 
analyzed the performance of an automatic classifier that 
distinguishes between healthy, IGT, and T2D subjects using 
GV metrics extracted from CGM traces. Results confirm 
that CGM-based GV indicators can effectively distinguish 
CGM traces of healthy and subjects with diabetes 
(IGT&T2D), with an overall mean classification accuracy 
of 91.4%. The subdivision of subjects into IGT or T2D 
appears, not surprisingly, more critical, but results (79.5% 
accuracy) encourage further investigation of the present 
research. Furthermore, the global subdivision into the three 
classes shows 86.6% accuracy.

Future developments will consider the application of the 
classification algorithm to different and possibly larger data 
sets that could permit the construction of more robust clas-
sifiers, as well as the implementation of different, more 
sophisticated machine-learning techniques. Possibly, inputs 
of the classification algorithms could also be extended by 
adding other different GV indices and, if available, some 
basic clinical parameters (eg, age, height, weight) that 
could further improve the GV indices-based classification 
performance.

Appendix

When dealing with classification problems, it is important to 
check whether all available information is actually needed 
to efficiently solve the problem. In general, it is good 

practice to reduce the set of features that describe the object 
by removing the “noisy” features that are not crucial (or 
even that influence negatively) for distinguishing between 
the considered classes.

Here, we analyze if the whole set of features, that is, the 
complete set of 25 GV indices, is actually needed to distin-
guish between classes, or if it is instead possible to reduce it 
by selecting a specific subset of indices. This problem can 
be solved through many feature selection methods. In this 
article, we used a forward sequential feature selection (SFS) 
approach.41 The forward SFS method finds the best subset 
S*  of features, for example, the best subset of GV indices in 
our specific case, following an iterative procedure:

1.  Initialize the set of features S  to the empty set 

S = ∅ ;
2. Until all features have been added to S :
2.1. For every feature fi  not in S :
2.1.1. Build a classifier using S fi∪{ }  as input
2.1.2. Compute the performance measure (F1 score)
2.2.  Find f fi

* =  such that adding it to S  maxi-
mizes the performance measure

2.3.  Update S  to S S f= ∪ *  and store the value of 
the performance measure

3.  S*  will be composed of the first Z  elements of 

S  such that the value of the relative performance 
measure (stored at step 2.3) is maximized.

This procedure is run at each of the five cross-validation 
iterations by subdividing the training set into actual train-
ing part and validation part (following an 80% to 20% 
partition rule). The training part is used to build the differ-
ent classifiers (point 2.1.1 in the algorithm above) and the 
validation part is used to compute the performance mea-
sure (here given by the F1 score on the validation group). 
The features selected by the SFS nested in the cross-vali-
dation scheme are quite stable among the folds, that is, 
many features recur in the five subsets while few others 
appear to depend on the training set. The global output of 
the SFS reported in the Discussion section is instead 
obtained on the entire data set.

For sake of completeness, we report in Table A1 the cor-
relation matrix of the 25 GV indices estimated from the con-
sidered data set. It clearly shows that indices are somehow 
mutually related. Interestingly, compared to the same matrix 
reported by Fabris et al29 for a homogeneous population of 
T2D subjects, here lower correlation coefficients are found, 
because of the greater heterogeneity of the subjects (healthy, 
IGT, and T2D).
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