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Fig A5.11. Case ωσi = 0.20. Left side: m̂k(t) (yellow trajectories), true m0(t), m(t) =
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Fig A5.12. Case ωσi = 0.25. Left side: m̂k(t) (yellow trajectories), true m0(t), m(t) =
1
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of the true zi(t) functions, the estimated mean trajectories ẑik(t), zi(t) =
1

1000

∑1000
k=1 ẑik(t), the median trajectory, and the quantile trajectories (0.05

and 0.95). For ωσi values up to 0.15, all the estimated trajectories are very
close to the true one even for long-term forecasting (t ≤ 75). For ωσi = 0.20,
uncertainty is moderate for medium-term forecasting (t ≤ 60), while fluc-
tuations around the true trajectories make forecasts less reliable for ωσi ex-
ceeding 0.20. It is notable, however, that the average trajectories, m(t) and
zi(t), are essentially coincident with the respective true functions, m0(t) and
z0i(t).

A5.2. Alternative market potential structures. The simulations shed light
on one further key point. The described results were obtained with a “cor-
rectly specified” m(t) function, function (2.4). To determine whether the
proposed model could also adequately describe data generated with a more
complex dynamic than (2.4)—and what implications such a misspecification
in the market potential dynamics would have for evolutionary parameters p1,
q1, p2, q2, and δ—we examined alternative m(t) functions for data genera-
tion. The structure (2.4) represents a communication network’s size growing
according to a simple Bass model. Pertaining sensible assumptions about
knowledge spread may lead to heterogeneous behavior of involved agents.
In the literature, this effect has been modeled through more complex dif-
fusion of innovation models either with a continuous approach (see, e.g.,
Bemmaor, 1994; Bemmaor and Lee, 2002) or with a discrete approach (see,
e.g., Karmeshu and Goswami, 2001). The former leads to the alternative
specification

(A5.8) m(t) = K
[1− e−(pc+qc)t]β

[1 + qc
pc

e−(pc+qc)t]α
, K, pc, qc, α, β > 0, t > 0,

while the latter gives rise to a two-wave model,

(A5.9) m(t) = K1
1− e−(p1c+q1c)t

1 + q1c
p1c

e−(p1c+q1c)t
+K2

1− e−(p2c+q2c)(t−tc)

1 + q2c
p2c

e−(p2c+q2c)(t−tc)
It≥tc,

where Ki, pic, qic, tc > 0, t > 0.
Specifically, we present the results obtained for

• a Bemmaor model (A5.8) with α = 0.25 and β = 0.5 (BE(0.25,0.5)),
• a Bemmaor model (A5.8) with α = 1 and β = 0.5 (BE(1,0.5)),
• a two–wave model (A5.9) with changepoint in tcc = 20 (TW(20)).

Notice that function (2.4) can be represented as BE(0.5,0.5), as it is obvi-
ously a special case of (A5.8).



16 R. GUSEO AND C. MORTARINO

20 40 60 80 100 120 140
t

2000

4000

6000

8000

10000

mHtL

TWH20L

BEH1,0.5L

BEH0.25,0.5L

BEH0.5,0.5L

Fig A5.13. Alternative m(t) dynamics used in simulations: a Bemmaor model (A5.8) with
α = 0.25 and β = 0.5 (BE(0.25,0.5)), a Bemmaor model (A5.8) with α = 1 and β = 0.5
(BE(1,0.5)) a two-wave model (A5.9) with changepoint in tcc = 20 (TW(20)). The m(t)
function used throughout the paper, (2.4), is also plotted and denoted by BE(0.5,0.5).

Table A5.6

MISE for the market potential function, m(t), with alternative specifications.

T = 50 T = 60 T = 70 T = 88 T = 114

BE(0.5,0.5) ωσi = 0.05 7.9842*105 8.4136*105 9.5680*105 1.8808*106 6.7524*106

ωσi = 0.10 1.0264*106 1.1166*106 1.3408*106 2.8253*106 9.2680*106

ωσi = 0.15 1.6529*106 1.8306*106 2.2428*106 4.7968*106 1.5172*107

BE(0.25,0.5) ωσi = 0.05 1.0649*106 1.1039*106 1.2103*106 2.1663*106 8.4540*106

ωσi = 0.10 2.0646*106 2.1692*106 2.3584*106 3.4547*106 9.2892*106

ωσi = 0.15 3.9747*106 4.1821*106 4.5231*106 6.1057*106 1.3061*107

BE(1,0.5) ωσi = 0.05 1.4031*106 1.4457*106 1.6207*106 4.1432*106 1.7707*107

ωσi = 0.10 2.7012*106 2.8158*106 3.4295*106 1.0847*107 6.0820*107

ωσi = 0.15 3.2451*106 3.4712*106 4.5917*106 1.7575*107 1.1643*108

TW(20) ωσi = 0.05 5.2213*107 5.4527*107 5.5356*107 1.3536*108 1.2534*109

ωσi = 0.10 5.2346*107 5.4871*107 5.5799*107 1.3644*108 1.2625*109

ωσi = 0.15 5.3285*107 5.5762*107 5.6861*107 1.4162*108 1.2932*109

Figure A5.13 shows the plot of these alternative dynamic structures in
comparison with the original function used in previously described simula-
tions. For comparative purposes, we show here the results obtained with the
three alternatives for the less extreme values of ωσi (namely 0.05, 0.10, and
0.15).

Table A5.6 shows the MISE values. When a BE(0.25,0.5) structure is
used to simulate the data, the MISE values are remarkably close to the
BE(0.5,0.5) case, and for higher T values, the MISE is even smaller. The
BE(1,0.5) model makes a somewhat greater impact on the MISE. Figures
A5.14–A5.19 show the true and estimated trajectories for the dynamic mar-
ket potential and the fitted response, when m(t) is simulated through a
Bemmaor process. The fluctuations are higher, especially when BE(1.0.5) is



17

0 20 40 60 80 100 120
t0

2000

4000

6000

8000

10 000

12 000

market potential

moHtL

mHtL

Median@mHtLD

0.05�0.95@mHtLD

0 20 40 60 80 100 120

t0

2000

4000

6000

8000

instantaneous sales

zioHtL

ziHtL

Median@ziHtLD

0.05�0.95@ziHtLD

Fig A5.14. Case BE(0.25,0.5), ωσi = 0.05. Left side: m̂k(t) (yellow trajectories),
true m0(t), m(t) = 1
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Fig A5.15. Case BE(0.25,0.5), ωσi = 0.10. Left side: m̂k(t) (yellow trajectories),
true m0(t), m(t) = 1
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used and t ≥ 80. For higher t values, the average trajectories are not fully
coincident with the true ones. This is unsurprising, as the estimation pro-
cedure makes use of data from t = 1 to t = 50; a good approximation of a
Bemmaor structure through a Bass model in the range [1, 50] may not be
equally good in a different range.

Finally, the two-wave model (TW(20)) produces MISE values that are
ten times greater than the BE(0.5,0.5) model. Figures A5.20–A5.22 show
the true and estimated trajectories for dynamic market potential and the
fitted response when m(t) is simulated through a two-wave process. In this
case, m(t) cannot be adequately described even for smaller t values, but the
fluctuations around z0i(t) are extremely small for t ≤ 60.

Table A5.7 shows the MSE for the estimates of (p1, q1, p2, q2, δ) with the


