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A FACTORED SPARSE APPROXIMATE INVERSE
PRECONDITIONED CONJUGATE GRADIENT SOLVER

ON GRAPHICS PROCESSING UNITS∗

MASSIMO BERNASCHI† , MAURO BISSON† , CARLO FANTOZZI‡ , AND CARLO JANNA§

Abstract. Graphics Processing Units (GPUs) exhibit significantly higher peak performance
than conventional CPUs. However, in general only highly parallel algorithms can exploit their po-
tential. In this scenario, the iterative solution to sparse linear systems of equations could be carried
out quite efficiently on a GPU as it requires only matrix-by-vector products, dot products, and vector
updates. However, to be really effective, any iterative solver needs to be properly preconditioned
and this represents a major bottleneck for a successful GPU implementation. Due to its inherent
parallelism, the factored sparse approximate inverse (FSAI) preconditioner represents an optimal
candidate for the conjugate gradient–like solution of sparse linear systems. However, its GPU im-
plementation requires a nontrivial recasting of multiple computational steps. We present our GPU
version of the FSAI preconditioner along with a set of results that show how a noticeable speedup
with respect to a highly tuned CPU counterpart is obtained.
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1. Introduction. The solution of large and sparse linear systems of equations
is a central issue in many scientific and engineering applications. For instance, sev-
eral simulation codes, both in academy and industry, use finite difference or finite
element schemes to solve PDE problems, with the solution of the resulting linear
system of equations representing one of the most expensive tasks in terms of both
memory and CPU time. The size of the systems that need to be solved is rapidly
growing as scientists and engineers require increasingly accurate results, with the use
of parallel computers becoming quite mandatory in several application domains. For
the above reasons, the development of parallel linear solvers is a very active research
field with several contributions coming from both numerical analysis and computer
science. While most of the research focused so far on algorithms suitable for tra-
ditional CPUs, it is by now apparent that the higher peak performance of graphics
processing units (GPUs) should be better exploited. As a matter of fact, several
works [10, 29, 35] showed that conjugate gradient–like (CG) algorithms based on the
sparse matrix-by-vector (SpMV) product can obtain noticeable speedup on a GPU
with respect to a CPU. Since the SpMV kernel is usually bandwidth limited, its per-
formance strongly depends on the storage format, which in turn is strictly related
to the number and distribution of nonzero elements of the matrix. There is no gen-
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eral rule; usually for matrices exhibiting a regular nonzero structure, the ELLPACK
format gives good performance, while for more irregular ones compressed sparse row
(CSR) or hybrid formats are more suited [3]. Some effort has been recently made in
developing more general formats [24, 25]. However, the effectiveness of any iterative
solver strongly depends on the availability of a suitable preconditioner, that is, an
approximation of A−1 which has to be relatively cheap to compute and apply to a
vector. The development of effective preconditioners on GPUs is not at all straight-
forward. A wide review of the possible alternatives for GPUs can be found in [27].
Incomplete LU factorization (ILU) is a popular class of algebraic preconditioners usu-
ally providing good performance in a wide variety of problems. However, both their
computation and application to a vector are sequential in nature and difficult to port
on GPUs. Some degree of parallelism can be exploited by level-scheduling, though
at the expense of the effectiveness. Very recently a completely asynchronous ILU
preconditioner was proposed in [34]. The authors gain parallelism in the set-up phase
by iteratively solving a nonlinear problem associated to the factorization and by intro-
ducing approximate solves. The method seems very promising, though its feasibility in
real-world problems has not been deeply explored yet. More suitable techniques may
be represented by polynomial [36] and approximate inverse preconditioners [4, 5, 13],
as their application to a vector requires only SpMV products. Unfortunately, polyno-
mial preconditioners usually require a large number of iterations to converge in tough
problems, making approximate inverse preconditioners the most attractive choice on
this innovative hardware. Several experiments with approximate inverses have been
presented [7, 12, 14, 33]. They show how, even though CG exhibits a pretty good
performance in the iteration stage, a major bottleneck in the execution of such meth-
ods on GPU resides in the set-up phase. As a consequence, it is quite common to
let the CPU compute the preconditioner before starting the execution of the CG on
the GPU.

To overcome these difficulties we resort to the factored sparse approximate inverse
(FSAI) preconditioner, originally proposed in [22, 21] and improved over the years
with several contributions [16, 17, 20, 23, 26]. FSAI has been used on GPUs in
a previous work [39]. However, all the set-up operations remained on the CPU and
only the iteration stage was ported on the GPU. FSAI gives an explicit approximation
of A−1 in factored form and its main advantage is the very high degree of parallelism
exposed by its computation structure. As a matter of fact, every FSAI row can be
computed independently from the others with no data dependency at all. The main
difficulty is defining a data mapping and a memory access pattern that maximizes the
exploitation of the available bandwidth reducing, at the same time, thread conflicts
that may slow down the computation. Hereafter, we show how all main computational
and basic dense linear algebra kernels have been significantly modified with respect
to the original CPU version. Coding the iteration stage of CG is significantly easier,
because we rely on the cuSPARSE library provided by NVIDIA [32]. In its original
form, FSAI was presented as a preconditioner for symmetric and positive definite
(SPD) linear systems and later generalized to nonsymmetric problems in [40]. As the
main computational kernels of both variants are very similar, in this work we limit
our attention to the SPD case.

The rest of the paper is organized as follows. In the next section we describe
the features of GPU architectures, with particular reference to NVIDIA GPUs, and
highlight the main challenges in exploiting them. In section 3 we give a brief overview
of the FSAI preconditioner and the numerical techniques aimed at increasing its
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performance. Section 4 provides a detailed description of the algorithms developed
to port the FSAI set-up entirely on NVIDIA GPUs. Numerical results on the perfor-
mance of the proposed GPU implementation on some large-size benchmarks are given
in section 5. Finally, we close the paper with some concluding remarks and ideas for
future activities.

2. Architecture of GPUs. A GPU is a specialized processor originally de-
signed to accelerate graphics rendering. In the first half of the last decade, evidence
began accumulating [8, 28, 37] that GPUs can be used as effective accelerators in many
general-purpose computing applications. The reason why a GPU provides higher peak
performance than a CPU is that it trades flexibility for speed. The micro-architecture
of a GPU is massively parallel, with thousands of simple cores designed for simulta-
neous, independent, identical computations on multiple data inputs. Yet, each core
can perform only a restricted number of operations, and there are limitations on the
operands and flow control as well. If all the limitations can be met, and if the struc-
ture of the computation exposes massive fine-grained parallelism to match the parallel
architecture of the GPU, the computation itself can be performed with a level of ef-
ficiency unknown to general-purpose CPUs. The main drawback of this approach is
that the software implementation must be carefully tailored to the micro-architecture,
which not only varies from vendor to vendor but also improves incrementally over time
for any given vendor. Moreover, any micro-architecture is partly hidden by the ven-
dor’s programming framework, which, in turn, evolves over time. In what follows, we
will provide some additional details on the micro-architecture of GPUs—and on their
limitations thereof—which are required to understand the key issues we faced with the
FSAI preconditioner and CG solver. We will concentrate on the micro-architecture
of NVIDIA Kepler GPUs as exposed through the CUDA software framework [31],
version 6, since this is the solution used in our study.

From a software perspective, a CUDA program is partitioned into grids ; in turn,
each grid is split into blocks, and each block contains a certain number of threads. A
function executed on the GPU is called a kernel. A kernel is typically executed in
parallel by multiple threads, or even multiple blocks, in an SPMD (single program,
multiple data) fashion. Blocks and threads can be both organized into regular, multi-
dimensional arrays, so that kernels can be easily invoked across commonplace domains
such as vectors or matrices.

CUDA’s software hierarchy naturally maps to the underlying hardware hierarchy:
in particular, threads are executed on hardware cores. Since thousands of cores are
available, thousands of threads must be running at any time to keep the hardware
units busy. This is the main reason why a CUDA (actually, any GPU) program must
be highly parallel. In general, exposing parallelism is not a trivial task, and there may
be theoretical limits to the amount of parallelism that can be extracted from a given
computation [2]. Also critical to performance is a balanced workload: all threads – or,
at least, the threads belonging to a block—must perform the same amount of work, so
that no core remains partly idle. To the same aim, synchronization among threads—
for instance, via mutually exclusive (atomic) instructions—must be kept to a mini-
mum. Satisfying requirements on thread and blocks is made additionally convoluted
by some hardware limitations. First of all, there is a limit to the number of threads
per block. Furthermore, threads are executed in groups of 32 called warps : perfor-
mance is significantly improved if threads in the same warp execute the same code
with no branch divergence, and they access memory according to certain patterns.
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As far as memory is concerned, any GPU accelerator benefits from a dedicated,
high-speed memory hierarchy that is separated from the hierarchy of the host CPU.
In NVIDIA GPUs, prominent levels of the hierarchy are the global memory, accessible
by all threads and by the host CPU as well, and the shared memory, shared among
threads within the same block. Shared memory can be used for communication and
synchronization among threads, but it can also be used as a fast scratchpad. A portion
of the global memory, called local memory, houses “spilled registers” when threads
of a block require more registers than can be accommodated in hardware. Starting
with CUDA 6.0, all memory copy operations can be delegated to the CUDA runtime,
which automatically migrates data between the host and the GPU accelerator. In
practice, the cost of memory operations is so high, and the overall structure of the
memory hierarchy so complex, that a nonnegligible degree of manual intervention is
required to attain maximum performance. From a performance standpoint, memory
is a bottleneck—particularly so on GPUs, where a higher fraction of transistors is
devoted to computing than on CPUs: as a consequence, the key issue on a GPU
is to feed enough data to its numerous computing units, and keep them active. A
thorough discussion on memory issues is beyond the scope of this article; it suffices
to say that memory access time is highly dependent on the memory access pattern
because of the underlying hardware structure. Memory is organized into banks at all
levels: bank contention can disrupt performance, to the point where a shared memory
access can be slower than a global memory access [30]. On the contrary, performance
peaks if coalescence is possible, that is, if parallel threads may access consecutive
memory locations. Data structures must be arranged, and data padded, according
to a structure-of-arrays pattern instead of an array-of-structures one as in a standard
CPU. Another opportunity for optimization lies in the fact that memory transfers
can be asynchronous and overlapped with computation. For instance, the NVIDIA
Kepler micro-architecture introduced a new warp-level operation called the shuffle:
this feature allows the threads of a warp to exchange data without passing through
shared (or global) memory, and at a lower latency.

As can be seen, the micro-architecture of GPUs makes software optimization a
delicate task, with several details to take into account. Below, we will illustrate how
the considerations exposed in the present section have been incorporated into our
CUDA code for the CG solver, and chiefly in the FSAI preconditioner. To this aim,
in the next section we first recall what an FSAI preconditioner is.

3. The FSAI preconditioner. Introduced in [22], the original FSAI precondi-
tioner M−1 for a symmetric positive definite matrix A can be written as

(3.1) M−1 = GTG � A−1,

where G is computed by minimizing the Frobenius norm

(3.2) ‖I −GL‖F
over the set WS of matrices having a prescribed lower triangular nonzero pattern S.
The matrix L appearing in (3.2) is the exact lower triangular factor of A. The key of
the feasibility of FSAI in a parallel setting is that L is not required to get G. In fact,
differentiating (3.2) with respect to the G entries gij and setting to zero gives

(3.3) [GA]ij =

{
0, i �= j, (i, j) ∈ S,
lii, i = j,
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where [·]ij is the entry in row i and column j of the matrix between square brackets,
and lii is the ith diagonal element of L. Since L is unknown, lii in (3.3) is replaced

by 1 and the matrix G̃ is computed instead by solving

(3.4) [G̃A]ij = δij ,

where δij is the Kronecker delta. From a practical viewpoint, to compute the ith row

of G̃, say g̃i, we define the set Pi of all the column indices belonging to the ith row
of S, that is,

(3.5) Pi = {j : (i, j) ∈ S},

then we solve the linear system

(3.6) A[Pi,Pi]w = emi ,

where A[Pi,Pi] is the dense matrix obtained by collecting the entries of A having
row/column index in Pi and emi is the mith basis vector of Rmi , with mi = |Pi|.
After solving (3.6), the entries of w are scattered into the nonzero positions of g̃i. In

the end, the final G is obtained by scaling G̃ as

(3.7) G = DG̃ with D = [diag(G̃)]−1/2

in such a way that the diagonal entries of the preconditioned matrix GAGT have value
1. This condition guarantees that G is the unique minimizer of the Kaporin number
over all the matrices B ∈ WS [21]. Defined as the ratio between the arithmetic
and geometric mean of the eigenvalues of an SPD matrix, the Kaporin number gives
a measure for the preconditioned conjugate gradient (PCG) convergence rate. The
FSAI preconditioner is very robust as it can be computed for any choice of the nonzero
pattern S. Moreover, it is always SPD by construction.

However, the FSAI effectiveness strongly depends on the choice of S, which is
not an easy task. There are ways to estimate S statically, i.e., S is determined
before G̃ is computed, or adaptively, i.e., while G̃ is computed: see, e.g., [20] for a
thorough review. Usually, nonzero patterns improved adaptively during the FSAI
set-up are more effective, but the required procedure is by far more complex. Since
an experienced user can obtain good results even with static patterns, we restrict our
attention to static FSAI only and leave the GPU implementation of adaptive FSAI
to a future paper. The problem of choosing good a priori patterns for the inverse of a
matrix has been already investigated by several authors [15, 9]. The best way to guess
a nonzero pattern for an approximation of A−1 is probably choosing the pattern of
the Ãk, i.e., the kth power of the sparsified matrix Ã, which is obtained by dropping
the off-diagonal entries aij of A satisfying

(3.8) |aij | ≤ τ
√
aiiajj

for some user-specified parameter τ ∈ [0, 1]. However, in our case we are interested
in estimating the pattern of L−1, with L itself unknown. In this work we adopt the
strategy suggested in [16] and successfully implemented also in [20], where k steps of
the simple recursion,

(3.9) Bp+1 ← Low(Bp Ã) p = 0, 1, . . . , k − 1,
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are used to predict the pattern of G, starting from B0 = I. In (3.9), the matrix-by-
matrix products are carried out only symbolically and Low(·) is the function returning
the lower triangular part of a matrix. Unfortunately, even with a good nonzero pattern
several relatively small entries of G remain that burden the preconditioner application
without improving the convergence rate. For such a reason, it is advisable to postfilter
G to eliminate such dead load [23]. However, a lightweight preconditioner Ĝ cannot
be obtained by simply neglecting small entries of G, otherwise the favorable condition

(3.10) diag(ĜAĜT ) = I

would no longer be satisfied. The most effective way to post-filter G is the following.
Let us consider gi, the ith row of G, and decompose it as

(3.11) gi = zi + εi

in such a way that all the gi entries smaller than δ‖gi‖2 are stored in εi for some
user-specified δ ∈ [0, 1]. Due to (3.7), we can write

(3.12) 1 = [GAGT ]ii = (zi + εi)
TA(zi + εi) = zT

i Azi + 2εTi Agi − εTi Aεi.

The observation that εTi Agi = 0 by construction because of (3.4) allows us to evaluate
the scaling factor for zi as

(3.13) d̂ii =
1√

1 + εTi Aεi
,

which is directly included in the G factor during set-up. Notice that the compu-
tation of εTi Aεi can be easily carried out by defining the set Ei collecting all the
column indices of εi, and then gathering the entries of A[Ei, Ei] and performing a
dense matrix-by-vector product followed by a dense scalar product. It is worth saying
that (3.13) adds little overhead in the set-up phase only, which is largely offset during
iteration as in some cases the above procedure offers the chance of neglecting most
of the preconditioner nonzeroes. The overall procedure to compute a static FSAI
preconditioner for an SPD matrix A is summarized in Algorithm 3.1. It can be easily
recognized that this algorithm shows a potential high degree of parallelization in the
sparse matrix by sparse matrix product in line 4 and in the two loops in lines 7–12
and 13–22. However, a finer-grained parallelism needs to be exposed to fully exploit
the computing power of GPUs. While dropping elements of A and G according to the
tolerances τ and δ is a relatively easy task to be performed on GPU, there are other
kernels such as

• the symbolic sparse matrix by sparse matrix product used in the static pattern
construction,
• the gathering of small dense linear systems A[Pi,Pi] and A[Ei, Ei],
• the solution of small dense linear systems,

that need to be completely redesigned. Once all of these kernels are optimized for the
GPU hardware, linking them together is relatively easy since it requires only a few
procedures to convert from a given storage format to another.

4. GPU implementation of FSAI. In this section we describe the design of
the specialized kernels developed to carry out the most computationally intensive
phases of the FSAI set-up. The GPU device used for this development is an NVIDIA
Tesla K80 board containing 2 Kepler GK210 GPUs, each equipped with 2496 cores
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Algorithm 3.1. Static FSAI computation.

Input: Set-up parameters: τ ≥ 0, k ≥ 1, δ ≥ 0
Input: An×n

Output: Gn×n

Static pattern computation
1. Generate Ã by dropping the entries aij ≤ τ

√
aiiajj

2. B0 ← I
3. for (p = 0; p < k-1; p++) do
4. Bp+1 ← Low(BpÃ)
5. end for
6. Store into S the nonzero pattern of Bk

Compute the nonzero entries of G
7. for (i = 0; i < n; i++) do
8. Gather A[Pi,Pi] from A
9. Solve A[Pi,Pi]w = emi

10. w ← w/
√
wmi

11. Scatter w into gi

12. end for

Filter the nonzero entries of G
13. for (i = 0; i < n; i++) do
14. for (j = 0; j < i; j++) do
15. if gi,j > δ‖gi‖2 then
16. zi,j ← gi,j

17. else
18. εi,j ← gi,j

19. end if
20. gi ← zi√

1+εT
i Aεi

21. end for
22. end for

and 12 GB of GDDR5 memory. The performance obtained with the GPU kernels
is compared to that of a state-of-the-art CPU implementation of the same kernels
on an Intel Xeon E5645 processor with 6 cores running at 2.40 GHz and 72 GB of
DDR3 memory. These latter CPU kernels have been borrowed from FSAIPACK,
which provides a wide set of functions for the FSAI computation on shared memory
machines [20].

4.1. Kernel for static pattern generation. This kernel computes the nonzero
pattern for G by performing k steps of recursion (3.9). The basic procedure is reported
in Algorithm 4.1, where Low(·) returns the lower triangular part of the matrix specified
as argument and 1NZ(·) returns the matrix in input with nonzeroes replaced by 1’s.

Since in each iteration the reference matrix A is multiplied by the matrix com-
puted in the previous step, we developed a CUDA kernel for the core matrix-matrix
product

Lout ← Low(Lin · A)
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Algorithm 4.1. Computation of matrix pattern.

Input: Set-up parameter: k ≥ 1
Input: An×n

Output: 1NZ(L
k)

1. L1 ← Low(A)
2. for (i = 2; i < k+1; i++) do
3. Li ← Low(Li−1 ·A)
4. end for

that is launched k−1 times. In this way, each launch acts as a global synchronization
mechanism between subsequent products.

The kernel uses different data structures to store different matrices. Since the
matrix A is accessed rowwise (see below) in read-only mode, it is stored in CSR
format so that only the nonzeroes are stored in memory and each row is stored in
consecutive memory locations. Moreover, since the pattern computation requires the
locations of the non-zeroes rather than their values, the CSR is represented with only
the row offset and the column index arrays (nonzero values are not stored).

The matrices Lin/Lout are implemented according to a double buffering scheme
so that the output matrix in each step becomes the input for the next step. In order
to accommodate for the variable number of nonzeros resulting from each product and
to support a number of recursions as large as possible, the two matrices are stored
in ELLPACK format with a pad size, denoted as maxcol, determined by the amount
of available memory (less than or equal to n). Analogously to the CSR matrix, also
for the ELLPACK matrices we do not store nonzero values. Details on these sparse
matrix storage formats can be found in [3].

If during a product one row of the output matrix requires more elements than
the maximum allowed, an error condition is signaled. The mechanism is simple (but
effective) and relies on a global memory flag that is set by any thread that would write
beyond the pad limit. After the kernel execution, the flag is copied to host memory
to check for errors and, if any, the computation is interrupted.

The kernel performs the Low(Lin ·A) operation following a warp-centric approach.
It is launched with the maximum number of warps that can be simultaneously active
on all the multiprocessors and each warp computes a block of n/Nwarp rows of the
output matrix Lout. Since we are only interested in the location of nonzeros of the
product matrix (no floating point operation is performed) each row is computed as
the union of a collection of sets. The warp in charge of the rth row appends to Lout

r,∗
the column indices less than or equal to r found in the CSR matrix A at the rows
indexed by the entries in Lin

r,∗. More precisely, considering the rows of the matrices
as sets of column indices corresponding to nonzeroes, row r of the output matrix is
computed as

Lout
r,∗ =

⋃
s∈Lin

r,∗

{
c ∈ As,∗ | c ≤ r

}
.

We avoid repetitions in the output rows by using a map with n elements for each warp
in order to keep track of elements already appended. These maps form an additional
matrix used by the kernel, the map matrix.

Algorithm 4.2 shows a pseudocode for the kernel. It requires the CSR and ELL-
PACK representation of A and Lin, respectively, as input and returns Lout in ELL-
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PACK format as output. It is launched with Nwarp warps and each warp processes
n/Nwarp rows of the input ELLPACK matrix Lin (loop at line 1) producing the cor-
responding output rows in Lout. Rows are processed in groups of 32 indices (loop
at line 4) and, for each group, the warp in charge computes in parallel the set union
of the indices in the corresponding rows of the CSR. Groups are read one element
per thread (lines 5–7) and are processed sequentially (line 8). At each iteration, one
thread broadcasts its element to the warp (line 12, lines 9–11 handle final groups with
fewer than 32 elements) for the parallel processing of the corresponding row in the
CSR matrix. Also for the CSR, rows are processed in chunks of 32 elements in search
of new column-indices to be appended to the current output row (loop at line 13).

To that purpose, each thread computes a warp-wide mask of the threads that
read an index that must be appended, i.e., a column index less than or equal to the
index of the current row r whose entry in the map matrix is not set (lines 14–17).
Each masked thread then sets the map matrix entry corresponding to its column
index (line 19) and appends it to the output row at an offset equal to the number of
masked threads with lower lane ID (that is the thread ID within the warp according
to the CUDA jargon, line 21). In that way threads perform an efficient warp-local
compact operation of the CSR rows without using atomic instructions. In case the
row would grow over the maximum allowed size, the global error flag is set so that,
after the execution, host code can invalidate the output of the kernel (line 23). After
the append, each thread updates the current size of the output row by the number of
appended elements (line 26) and the next chunk of the CSR row is processed. When
the processing of the current Lin row is completed, the map matrix row associated to
the warp is reset for the next iteration (lines 30–32) and the final row size is stored
in the length array of the output matrix (line 33). In order to perform the map reset
efficiently, only those elements that have actually been set are reset to zero.

4.2. Performance of the static pattern generation on GPU. All data
structures but the map matrix are implemented by using 4-byte integers. The map
matrix is implemented as a byte-map instead of a bit-map in order to avoid the
use of atomic instructions to modify its elements. Since this matrix has a limited
number of rows, the trade-off between the increase of memory requirements and the
increase in access efficiency is definitely favorable. Each of the 13 SMX of our Ke-
pler K80 GPU supports up to 2048 active threads for a total of 64 × 13 = 832
concurrently active warps. For this test we chose the sparse matrix Cube3D (see
Table 4) that has 190, 581 rows and 7, 531, 389 nonzeroes (with a minimum and max-
imum number of nonzeroes per row equal to 12 and 96); thus the device memory
footprint of the code is the following: the CSR matrix (Arow, Acol) requires about
30 MB, whereas the map matrix (M) requires 150 MB (190, 581 single-byte entries
for each one of the 832 warps). Although CUDA offers a dynamic memory manage-
ment within kernels, the corresponding overhead can seriously affect performance. To
avoid the problem, we reserve directly all available memory to the ELLPACK matri-
ces (Lin, Lout) in order to support the maximum number of recursion for the static
pattern. With the memory available on the K80, it is possible to use a pad size of
6944, for a total of 9.8 GB. That memory is obviously released when it is no longer
required.

The kernel is compiled with CUDA 6.5 and, without specific directives, requires 38
registers per thread. In order to maximize occupancy, the launch bounds configuration
has been tweaked specifying at most 128 thread per block and at least 16 blocks per
multiprocessor. The introduced register pressure allows US to drop the registers per
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Algorithm 4.2. CUDA warp-centric Lout ← Low(Lin · A).
Input: CSR matrix: Arow[n], Acol[nnzA]
Input: ELLPACK matrix: Lin[n][maxcol], lenin[n]
Work: Map matrix: M [Nwarp][n]
Output: ELLPACK matrix: Lout[n][maxcol], lenout[n]
Output: Error flag: GError

1. for (r = wid; r < n; r += Nwarp) do
2. rind = 0
3. ilen = lenin[r]
4. for (i = 0; i < ilen; i += 32) do
5. if (i+lid) < ilen then
6. myrow = Lin[r][i + lid]
7. end if
8. for (j = 0; j < 32; j++) do
9. if (i+j) ≥ ilen then

10. break
11. end if
12. cur row = shfl(myrow, j)
13. for (k = Arow[cur row]; k < Arow[cur row+1]; k += 32) do
14. c = ((k+lid) < Arow[cur row+1]) ? Acol[k+lid] : (wid+1)
15. t = (c ≤ r)&&(!M [wid][c])
16. z = ballot(t);
17. l = popc(z & ((1<<lid)-1))
18. if t == True then
19. M [wid][c] = 1
20. if (rind+l) < maxcol then
21. Lout[r][rind+l] = c
22. else
23. GError = 1
24. end if
25. end if
26. rind += popc(z)
27. end for
28. end for
29. end for
30. for (i = lid; i < rind; i += 32) do
31. M [wid][Lout[r][i]] = 0
32. end for
33. if lid == 0 then
34. lenout[r] = rind
35. end if
36. end for
37. GError = 0

thread count to 32 but resulted in the allocation of 8 bytes into local memory. The net
effect, however, is an increase in performance of 8.4% with respect to the untweaked
version.
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Table 1

Execution times, on GPU and CPU, respectively, and number of nonzeroes of the output ma-
trix obtained running the kernel for the sparse matrix Cube3D with 190, 581 rows and 7, 531, 389
nonzeroes varying the number of steps k with no preliminary sparsification, i.e., setting τ = 0.

k Output nnz GPU time (ms) CPU time (ms)
2 19,880,688 17.7 355.2
3 60,114,684 98.0 1,450.9
4 134,573,295 351.6 7,920.1
5 250,615,200 701.0 11,818.4
6 413,949,594 1,448.7 33,771.2
7 628,388,562 2,711.5 79,311.8

Table 2

Comparison of the running time required for systems gather on a K80 GPU and an Intel Xeon
E5645 at 2.40 GHz (6 cores) for a set of test cases. The table also provides the sparsification
tolerance τ , the number of steps k used to generate the pattern, and its number of nonzeroes nnzG.

Test case τ k nnzG GPU time (ms) CPU time (ms)

Apache2 1.0×10−2 9 32,635,435 42 2,291
Cube3D 2.5×10−2 6 4,474,548 33 482
G3 circuit 2.0×10−2 7 32,229,868 42 1,935
Thermal2 2.0×10−2 6 47,930,985 74 3,603
PFlow 742 5.0×10−2 5 67,518,143 511 11,721

Table 1 compares the time required on the GPU and on the CPU to compute the
pattern of the aforementioned sparse matrix varying the number of steps k with no
preliminary dropping, i.e., setting τ = 0. An average speedup of about a factor 20 is
obtained for all k, with a peak of almost a factor 30 for the largest one.

4.3. Kernel for systems gather. The purpose of this kernel is to gather the
dense local systems A[Pi,Pi] from the global matrix needed by line 8 of Algorithm 3.1.
Basically this requires we use elements of the input matrix according to the pattern,
determined from the input matrix by k steps of the previous kernel. Since the number
of elements per row varies significantly, the simple idea of using one thread per row
would lead to a dramatic workload unbalance. To achieve a better workload balance
we resort to a nontrivial mapping between CUDA threads and data, following an
approach that we originally devised for a different problem (parallel breadth first
search) [6] where we used the same data structure (CSR) to store the adjacency list
of a graph. The central idea is to use one thread for each element of the system
to be gathered. The mapping requires prefix-sum operations and a binary search
function. Figure 1 shows (in a simplified form) the data structures involved and the
required operations. The number of elements that can be processed in parallel is
limited only by the amount of memory available on the GPU. The advantage of using
a large number of CUDA threads for this operation is apparent by looking at the
results shown in Table 2, which reports the timings for different test cases on GPU
and CPU, respectively, along with the sparsification tolerance τ , the number of steps
k used in the pattern generation, and the number of nonzeroes nnzG of the G factor.
The same thread-data mapping may be applied to other situations where there is a
potential workload unbalance. Further details can be found in [6].

4.4. Kernel for batched Cholesky decomposition. The preconditioner needs
to carry out the Cholesky decomposition of a small (size N ≤ 256) dense matrix for
each row of the input matrix. In general GPUs are more suitable to manage a sin-



C64 M. BERNASCHI, M. BISSON, C. FANTOZZI AND C. JANNA

23 514 233

110 1673 21138

t0

t1

t2

t3

t4

t5

t8

t9

t10

t14

t15

t16

t17

t18

t19

t20

t21

t22

t11

t12

t13t7

t6

r4r0 r6r2r1 r7r5r3

r4r0 r6r2r1 r7r5r3

row index

n° elements

CUDA grid

CSR

cumulative
n° elements

Figure 1. Threads to data mapping assigning one thread per element. From top to bottom,
the first array contains the row index of the CSR representation of the input matrix pattern. The
second array contains the number of elements in each row. It is computed as the difference of two
consecutive elements of the first array. The third array results from an exclusive scan of the second
array. Each thread finds its row index by means of a binary search in the third (cumulative) array
of the greatest entry less than its global ID. Finally, threads mapped to the same row process the list
of elements in that row.

gle large matrix (provided the matrix fits in the GPU global memory) rather than
many small matrices. However, since a large amount of time is spent in this part of
the preconditioning, we experimented with several alternatives to determine the most
efficient solution and, in the end, we employed our own kernel instead of using the
available CUBlas primitives for batched systems. In our solution, each input matrix is
managed by a single block of threads. Moreover, the large number (65,536) of 32-bit
registers available in Kepler SMXes allows the threads to perform the factorization
using exclusively registers and a very small amount of shared memory. In this way,
we limit the access to the (slow) global memory to the bare minimum, i.e., to read
input and to write output data, and thus performance is limited mainly by instruction
latencies and dependencies.

Since the matrices are symmetric, only their upper triangular parts are stored in
global memory. The Cholesky kernel is launched with a one-dimensional (1D) grid
of 2D blocks, one for each system in input. Initially, each thread block reads its
upper triangular matrix into arrays local to its threads. Threads are mapped onto
the matrices according to a tiling scheme such that each row (column) of the matrix
is read by a single row (column) of threads in the block. In this way, a matrix of size
N = 256 is read by a block of 16× 16 threads into 256 arrays of size 16 · 17/2 = 136.
Figure 2 shows an example of such mapping.

After the matrix is loaded in the registers, threads perform the factorization via
the outer-product method [1]. From a data dependency point of view, this method
iterates through the rows of the dense matrix and, for each row j, performs three
updates, in sequence:
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Figure 2. Matrix tiled reads from a 2D block of 16× 16 threads.

element update: the diagonal element of row j is updated based on its own value;
row update: the rest of row j is updated based on the value of the diagonal

element;
submatrix update: the rows i, i > j are updated based on the values of row j.

The kernel works according to the following scheme. The N rows are processed in
groups of N/bsize, with bsize the block size (i.e., 16), and, for each row in the group,
the element, row, and submatrix updates are performed. The element update is
performed only by the thread whose block identifiers are (j%bsize, j%bsize), where we
use % as a symbol for the modulo operation. The row update is performed by all the
threads with row index equal to j%bsize and the submatrix is updated by the whole
block. Because of data dependencies, threads synchronize after each update (via the
__syncthreads() intrinsic). Updates involve exclusively the values of local arrays so
that no global memory location is ever accessed during the factorization. Moreover,
elements shared among threads during the row and submatrix updates are copied
to shared memory after their new values are computed. This amounts to a total of
N ·sizeof(real) bytes (enough to contain one row of the matrix).

In order to obtain the best performance, it is crucial that the local arrays are
allocated in the register file rather than in local memory (which, as a matter of fact,
is part of the slow global memory). This simply follows from the fact that registers
are the fastest memory available on the GPU, whereas global memory is the slowest.
The nvcc compiler allocates arrays declared inside kernels in the registers only if it
can compute, at compile time, the location of each access. For this reason, the kernel
is written addressing local arrays exclusively with constant values. This is done by
using the template meta-programming features of C++ to generate a kernel for every
required matrix size. In our application, the kernel is specialized for any size between
32 and 256 that is a multiple of the 2D block size (actual matrices with different sizes
are suitably padded and processed with the kernel for the next available size).
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Table 3

Execution times, flop-count, and GFlop/s measured running the Cholesky batched kernel on
13, 000 matrices on a Kepler K80 GPU, in both single and double floating-point precision, and
on an Intel Xeon E5645 (6 cores) in double precision. GPU flop-counts are measured using the
flop count sp and flop count dp metrics provided by the nvprof CUDA profiler.

GPU single precision GPU double precision CPU
Matrix size Block size GFlop count Time (ms) GFlop/s GFlop count Time (ms) GFlop/s Time (ms)

16 8x8 0.03 0.84 39.81 0.04 1.11 31.82 13.02
32 8x8 0.21 1.85 112.08 0.21 2.57 82.10 52.04
64 8x8 1.40 4.99 280.61 1.41 6.55 214.83 217.45
96 8x8 4.43 10.28 431.25 4.44 18.83 235.89 617.80
128 8x8 10.15 18.77 540.75 10.16 62.95 161.49 1036.87
160 16x16 20.64 45.16 457.06 20.66 80.90 255.34 1885.65
192 16x16 34.86 70.31 495.81 34.88 146.33 238.37 2815.09
224 16x16 54.43 109.36 497.71 54.45 187.54 290.37 3505.80
256 16x16 80.21 136.61 587.13 80.23 446.06 179.87 4469.03

4.5. Performance of batched Cholesky decomposition. We ran extensive
testings of the kernel on our Nvidia K80 GPU with all the matrix sizes to find the
block size that results in higher performance with each case (16, 32, 64, 96, 128,
160, 192, 224 and 256). Table 3 summarizes the performance results obtained solving
13, 000 matrices (1000 systems per SMX in the K80 GPU) in both single and double
precision. For the sake of comparison, times to solve the same systems in double
precision on the Intel Xeon E5645 CPU are also provided. For what concerns single
precision, to have the maximum number of active blocks (i.e., systems) per SMX we
compiled the code limiting the number of registers per thread to the smallest number
that prevents all kernel instances from spilling registers to local memory (168 in our
case). With double precision, on the other hand, applying register pressure didn’t
improve the performance as all the kernel instances use almost entirely the registers
available per thread. The overall speedup from GPU to CPU in the double precision
computation is around 20, although it varies significantly with the dense matrix size.
The performance drop for the 128 and 256 cases with double precision is due to the
register spilling caused by the large amount of registers required by the corresponding
kernels.

5. Numerical results. In this section we analyze the overall performance of the
present GPU implementation of FSAI preconditioned CG and compare it with the
FSAIPACK CPU implementation [20]. The reference CPU implementation makes use
of openMP directives for shared memory parallel computations and thus is able to
fully exploit all the cores of a given processor. The hardware used in these tests is the
same used in the previous section, that is, an NVIDIA Tesla K80 board and an Intel
Xeon E5645 processor with 6 cores. For our tests we chose 5 SPD matrices coming
from various application field which have been already used in experiments presented
in other papers [17, 18, 19, 27, 38] and thus can be considered good benchmarks for
our FSAI implementation. All of these matrices are available from the University of
Florida sparse matrix collection [11] and their main characteristics are reported in
Table 4.

As pointed out, selecting good parameters for a static FSAI preconditioner is not
a trivial task as a good trade-off between preconditioner weight and effectiveness has
to be found. The cost for applying the FSAI preconditioner is directly proportional
to its density:

(5.1) μ =
nnz(G)

nnz(A)
,
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Table 4

Main characteristics of the matrices used in the experiments with a brief description of the
problem they arise from: size (n), number of nonzeroes (nnz), average number of nonzeroes per row
(AVG nnzr), maximum number of nonzeroes per row (MAX nnzr), and standard deviation of the
number of nonzeroes per row (StD nnzr).

Matrix name n nnz AVG nnzr MAX nnzr StD nnzr Description
Apache2 715,176 4,817,870 6.74 8 0.45 Structural
Cube3D 190,581 7,531,389 39.52 96 16.19 Structural
G3 circuit 1,585,478 7,660,826 4.83 6 0.64 Circuit sim.
Thermal2 1,228,045 8,580,313 6.99 11 0.81 Thermal
PFlow 742 742,793 37,138,461 50.00 137 19.97 Porous flow

Table 5

Set-up parameters, τ , k and δ, for nearly optimal FSAI performance on both GPU and CPU
with corresponding densities of the FSAI factors before and after filtration, ̂G and G, respectively.

Matrix name τ k δ μ( ̂G) μ(G)

Apache2 1.0×10−2 9 5.0×10−2 6.774 0.998
Cube3D 2.5×10−2 6 1.0×10−2 0.594 0.284
G3 circuit 2.0×10−2 7 7.0×10−2 4.207 1.465
Thermal2 2.0×10−2 6 7.0×10−2 5.586 1.737
PFlow 742 5.0×10−2 5 3.5×10−3 1.818 1.168

Table 6

Comparison of the number of iterations required by CG convergence by using Jacobi precondi-
tioning and FSAI computed with the set-up parameters of Table 5.

Test case FSAI Jacobi
Apache2 853 2834
Cube3D 993 2005
G3 circuit 390 2054
Thermal2 1221 4056
PFlow 742 1529 +10000

Table 7

Comparison of the FSAI performance on GPU and CPU. The time for the preconditioner set-
up, Tp, the time for the PCG iterations, Ts, and the total time, Tt = Tp + Ts, are provided for both
the hardware platforms.

GPU CPU
Test case Tp (s) Ts (s) Tt (s) Tp (s) Ts (s) Tt (s)
Apache2 1.49 2.46 3.95 15.66 15.33 30.99
Cube3D 0.33 2.01 2.33 2.41 9.45 11.86
G3 circuit 1.65 2.49 4.14 15.64 16.75 32.39
Thermal2 1.72 7.05 8.77 22.54 51.19 73.73
PFlow 742 5.07 21.59 26.66 49.15 151.35 200.50

where nnz(·) stands for the number of nonzeroes of the argument matrix. For each
test matrix we selected, through a few trials, a preconditioner set-up able to give
nearly optimal performance on both the GPU and the CPU architecture. Table 5
provides for each matrix the prefiltration tolerance τ , the number of steps k used in
determining the pattern, and the postfiltration tolerance δ, together with the densities
of the FSAI factors before and after postfiltration, Ĝ and G, respectively. Note that
the computed preconditioner is usually heavier than the original matrix, but after
postfiltration a cheaper factor can be used in the iterations.

We computed a right-hand side corresponding to the unitary solution, i.e., b = Ae
with e the unitary vector, and solved the related linear system through PCG until
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Figure 3. Comparison between the time performance of the FSAI conjugate gradient imple-
mentation on GPU and CPU.

the relative residual decreases below a tolerance of 1.0 × 10−8. To give an idea of
the importance of a strong preconditioner as FSAI, Table 6 compares the number
of iterations required for convergence by a simple Jacobi preconditioning and FSAI
computed with set-up parameters of Table 5. It shows that to reduce the residual by 8
orders of magnitude, Jacobi requires always more than twice the iterations than FSAI
and in the most difficult case, PFlow 742, it is not even able to solve the system at all.
Table 7 compares the outcome of the GPU and CPU implementations, reporting the
time for the preconditioner computation Tp (including all data read operations and
data structures generation and conversion), the time for the PCG iterations Ts and
the total time Tt = Tp + Ts. The number of PCG iterations performed by the GPU
implementation is the same reported in the corresponding column of Table 6. Due
to the different round-off error produced by the two hardware platforms, the CPU
implementation performs a slightly different number of iterations.

A graphical representation of the time performance obtained on GPU and CPU
is provided in Figure 3, where different colors have been used to distinguish between
the set-up and the iteration phases. An outright understanding of the advantage
offered by the GPU hardware can be evinced from Figure 4, where the GPU over
CPU speedups, i.e., the ratio between the time required on CPU and on GPU, are
provided for Tp, Ts and Tt. The largest speedup is obtained during the preconditioner
set-up stage with a peak of about 13.14 for the Thermal2 test case and an average of
about 10.03 over all the tests. The speedup obtained on the PCG iteration is slightly
lower than the previous one, with a peak of 7.26 for Thermal2 again and an average
of about 6.39. This is not surprising, as it is well-known that CG is a sequence of
SpMV, dot products, and vector updates which are bandwidth limited operations,
and thus the greatest advantage provided by the GPU implementation takes place
in the set-up stage, which is more computational intensive. Nevertheless, the Kepler
K80 GPU allows for an overall average speedup of 7.34 over a high-end Intel Xeon
6-cores processor.

Finally, Figure 5 shows how the time required for the FSAI computation is dis-
tributed among the different kernels. The main cost is represented by the batched
Cholesky solution of the dense linear systems, followed by the pattern generation and
the post-filtration procedure. The cost for gathering the dense linear systems has



FSAI PRECONDITIONED CG SOLVER ON GPUs C69

Apache2 Cube3D G3_circuit Thermal2 PFlow_742 Average
0.00

5.00

10.00

15.00

Prec. Set-up
PCG Iter.
Tot. Time

Figure 4. Ratio between the time performance obtained on CPU and on GPU in the precondi-
tioner set-up phase Tp, in the CG iteration stage Ts and in the whole solution of the linear system
Tt = Tp + Ts.

Apache2 Cube3D G3_circuit Thermal2 PFlow_742
0.00

1.00

2.00

3.00

4.00

5.00

6.00

T
im

e 
[s

]

Filtering
Cholesky
Gathering
Pattern
Overhead 

Figure 5. Distribution of overall FSAI set-up time among the various kernels.

only a little impact on the overall solution; however, the effectiveness of the kernel
developed may deserve interest in adaptive procedures where the repeated gathering
of small systems is required. The overhead time is quite high as it includes a lot of
unavoidable expensive operations such as the transfer of the matrix A from the host
to the device, some changes in the matrix storage format to have an optimal layout in
every kernel, and the final transposition of the FSAI factor since in the CG algorithm
both G and GT are used.

6. Conclusions. We presented a novel FSAI preconditioned conjugate gradient
solver running completely on GPU devices. While CG iterations are performed relying
on standard sparse linear algebra libraries, cuSPARSE in our case, the set-up phase
has required an ad hoc design of new numerical kernels able to take full advantage
of the GPU architecture. The comparison of the present implementation with an
equivalent CPU variant on up-to-date hardware has shown the following:
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• The numerical performance in the set-up stage is significantly higher with a
reduction of the wall clock time up to a factor 13. This speedup is mainly
due to the more computationally intensive kernels for the pattern generation
and the Cholesky decomposition developed herein. Larger speedups could
have been obtained if the overall procedure had not damped by the overhead,
caused by some unavoidable costly data movements.
• The CG iteration stage is not overwhelmed by a tricky preconditioner applica-
tion as FSAI implies only another SpMV product. Unfortunately, this phase
of the solution process is limited by the bandwidth, and hence the maximum
speedup achieved is about a factor 7.
• The maximum speedup achieved for the complete solution of our test ma-
trices, which are borrowed from real-world applications, is larger than 8,
justifying the effort in recasting the CPU kernels.

This positive experience also raises some ideas for future research:

• It is a matter of fact that GPUs are mainly designed for single precision op-
erations, whereas double precision computations are possible at the cost of
considerable performance reduction, as shown, for instance, in the batched
Cholesky decomposition kernel. If an accurate solution of a large size system
is desired, single precision cannot be used in the CG process; however, sac-
rificing some accuracy in the preconditioner is reasonable and can give good
results.
• Better results may be obtained in the iteration stage by developing new SpMV
operations targeted on matrices arising from selected applications. In some
situations, a specific matrix layout can make possible a better exploitation of
the available bandwidth.
• It could be interesting to port on the GPU hardware adaptive pattern FSAI
preconditioners as well. These latter are usually more effective at the price of
a higher set-up cost, and hence the advantage will be more pronounced, es-
pecially taking into account the excellent performance exhibited by our three
new kernels, which have to be called several times in adaptive algorithms.
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