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Abstract The estimation of the frequency of intense rainfall events is a crucial step for quantifying
their impact on human societies and on the environment. This process is hindered by large gaps in ground
observational networks at the global scale, such that extensive areas remain ungauged. The increasing
availability of satellite-based rainfall estimates, while providing data with unprecedented resolution and
global coverage, also introduces new challenges: the scale disparity between gridded and rain-gauge
precipitation products on the one hand, and the short length of the available satellite records on the other.
Here we propose a statistical framework for the estimation of rainfall extremes that is specifically designed
to simultaneously address these two key issues, providing a new way of estimating extreme rainfall
magnitudes from space. A downscaling procedure is here introduced to recover the spatial correlation and
the probability density function of daily rainfall at the point (gauge) scale from coarse-scale satellite
estimates. The results are then combined with a recent statistical model of extremes (the Metastatistical
Extreme Value distribution), which optimizes the use of the information obtained from relatively short
satellite observational time series. The methodology is tested using data from the Tropical Rainfall
Measuring Mission Multisatellite Precipitation Analysis over the Little Washita River, Oklahoma. We find
that our approach satisfactorily reproduces downscaled daily rainfall probability density functions and can
significantly improve the Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis-based
estimation of quantiles with return times larger than the length of the available data set (19 years here),
which are especially important for several water-related applications.

1. Introduction

Even though systematic rainfall observations date back more than two centuries (Camuffo et al., 2013; Marani
& Zanetti, 2015; Ntegeka & Willems, 2008), and rain-gauge networks are quite developed internationally
(Menne et al., 2012), the global density of rainfall observations still exhibits large gaps over continents (Kidd
et al., 2016), with oceans remaining largely ungauged. In recent decades, advances in rainfall remote sensing
technologies have contributed to attenuate this chronic lack of spatial information and have made available
vast rainfall data sets, with unprecedented resolution in space and time. Rainfall satellite estimates from differ-
ent sensors (chiefly radar, microwave imagery, and infrared sensors) are now routinely combined to produce
global grids of quantitative precipitation estimates (QPEs). Satellite-derived QPEs, and in particular, observa-
tions from the Tropical Rainfall Measuring Mission (TRMM; Huffman et al., 2007) and the Global Precipitation
Measurement mission (Huffman et al., 2014), greatly improve our knowledge of global precipitation dynam-
ics, with implications for a wide variety of water-related disciplines, from water resources engineering, to risk
evaluation and management, to ecology and eco-hydrology.

However, the quantification of the accuracy associated with satellite QPEs encounters a basic difficulty in
their comparison with reference observations at the ground. In most cases, sufficiently accurate rainfall obser-
vations that are long enough for validating QPE extreme values are only available at the rain-gauge scale,
thus preventing a direct comparison. How the statistical properties of a rainfall field change as it is averaged
spatially has been investigated both from the point of view of random processes (Bell, 1987; Cowpertwait
et al., 2002; Cox & Isham, 1988; Marani, 2005; Vanmarcke, 1983) and using the formalism of random cascades
(Gupta & Waymire, 1993; Nogueira & Barros, 2015; Over & Gupta, 1996; Schertzer & Lovejoy, 1987). However,
the central problem for QPE validation remains developing relations between the properties of rainfall aver-
aged over coarse spatial scales (as in the case of remote sensing QPEs, with common resolutions varying
between 101 and 102 km2), to those measured at a point in space.
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Given the important implications associated with an accurate quantification of rainfall from space, cali-
brating, testing, and quantifying uncertainty in satellite QPEs using rain-gauge data are important open
problems (Hossain & Huffman, 2008; Libertino et al., 2016; Müller & Thompson, 2013; Pan et al., 2010; Villarini &
Krajewski, 2007), and in particular the comparison of ground-based radar and satellite sensor statistics has
been object of extensive research. Kirstetter et al. (2012) introduced a framework to evaluate the performance
of space-borne precipitation sensors based on ground radar mosaics. They proposed a weighted average of
ground radar observations, which accounts for the power gain function of the space-borne sensor, assumed
to be Gaussian. Gebremichael and Krajewski (2004) investigated to what extent radar-derived rainfall prod-
ucts can capture small-scale rainfall variability. They employed a point to area conversion of the correlation
function and found that radar-estimated correlations tend to be lower than those observed by rain gauges at
spatial distances shorter than 5 km.

Müller and Thompson (2013) proposed a bias correction procedure for TMPA 3b42 QPEs based on a stochastic
representation of the rainfall field. Rainfall statistics observed at measuring stations are interpolated and used
to estimate properties of the rainfall field at the TMPA pixel scale and correct TMPA QPEs accordingly. While
the method can be used for extrapolations to ungauged pixels, its calibration requires observations from a
sufficiently large number of measurement stations within the same TMPA pixel to fit the stochastic model to
the rainfall field. A downscaling technique that only makes use of TMPA-measured rainfall statistics (mean,
variance, and number of wet days) was proposed by Del Jesus et al. (2015) based on a simple stochastic model
of point rainfall (Cox & Isham, 1988). While the proposed technique does not require knowledge of ground
information for its calibration, the assumptions made on the point rainfall process (chiefly, the exponential
distribution of rainfall duration and intensity) hinder its application to the study of rainfall extremes.

The estimation of extreme rainfall return levels is particularly affected by the uncertainty and measurement
errors that characterize space-borne rainfall retrievals and is further hindered by the short observational
coverage provided by satellite sensors (currently less than 20 years for TRMM and Global Precipitation Mea-
surement retrievals). Under these premises, the quantification of the frequency of occurrence of rainfall
extremes is inherently difficult, as large quantiles are, by definition, poorly sampled in short observational
time series. What is more, traditional extreme value analyses, based on the use of just annual maxima (AM), or
of relatively few values over a high threshold (Coles et al., 2001), discard most of the information contained in
already short QPE time series and are thus extremely sensitive to the observational uncertainty of a small num-
ber of observations. As a result, standard extreme value analyses applied to QPE data are inevitably affected
by large and difficult to quantify uncertainties, that severely limit its use for quantitative predictions (Zhou
et al., 2015).

The examination of the literature points to significant gaps in (1) relating the statistics of rainfall observed at
coarse spatial scales with those observed at a point and (2) the use of remote sensing observations to derive
extreme rainfall properties. The main objective of the present manuscript is to bridge these gaps by intro-
ducing a novel statistical downscaling methodology with specific focus on extreme rainfall statistics. To this
end, we build a framework that (1) relates daily rainfall statistics from area-integrated remote sensing QPEs
to those from point measurements at the ground and (2) infers extreme rainfall statistics via the Metastatis-
tical Extreme Value distribution (MEVD; Marani & Ignaccolo, 2015; Marra et al., 2018; Zorzetto et al., 2016).
This approach simultaneously addresses the issues related to the short sample sizes and to the coarse spatial
resolution of satellite QPEs. MEVD links the probability distribution of extreme events to the entire underly-
ing distribution of “ordinary” daily events, here defined as all the daily rainfall accumulations greater than a
fixed and low threshold. The MEVD approach has been shown to significantly reduce estimation uncertainty,
with respect to traditional extreme value analysis methods, particularly for values of the average recurrence
interval (Return Time, Tr) larger than the length of the time series used for calibration (Zorzetto et al., 2016).
Furthermore, MEVD estimates are defined using the entire set of observations, rather than just a portion of
the distributional tail, and thus produce estimates that are less sensitive to the observational uncertainty and
to the presence of outliers in QPE data sets. Marra et al. (2018) recently tested the MEVD framework using syn-
thetic rainfall time series perturbed with errors typical of satellite observations. They found that MEVD is more
robust to these sources of error than traditional extreme value models, thus supporting this first application
of the method to satellite QPEs.

This MEVD-based downscaling methodology is here presented and tested using TRMM TMPA Research Ver-
sion 7 3b42 QPEs over the Little Washita watershed, Oklahoma, where the dense Micronet rain gauge network
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allows an accurate description of the spatial distribution of rainfall (Elliott et al., 1993; Villarini & Krajewski,
2007; Villarini et al., 2009).

2. Materials and Methods

The instantaneous rainfall rate at the ground can be regarded as a three-dimensional random field i(x, y, t),
described by a suitable set of coordinates (here t indicates time, and x and y are the rectangular coordinates
of a point on Earth’s surface). Both rain gauges and remote sensing observations provide an integral rep-
resentation of i(x, y, t) on a finite space-time domain centered at a point (xc, yc, tc), which can in general be
expressed as

hL(xc, yc, tc) =
1

LxLy ∫
xc+

Lx
2

xc−
Lx
2

∫
yc+

Ly
2

yc−
Ly
2

∫
tc+

T
2

tc−
T
2

i(x, y, t)dxdydt (1)

where the rainfall intensity i(x, y, t) is averaged over a rectangular spatial domain, with sides Lx and Ly , and
is integrated over a time interval T . For example, in the case of traditional rain gauges, the rainfall volume is
recorded as an integral over finite time intervals (e.g., hourly or daily), while the measurement can be regarded
as being performed at point in space, given the small integration area (order of 10−2 m2). Conversely, the
reflectivity fields retrieved by a radar may be regarded as average values over a spatial domain corresponding
to the size of a radar beam (order of square kilometers). For example, retrievals by the precipitation radar on
board the TRMM mission are best interpreted as weighted averages within each radar beam, with weights that
depend on the characteristics of the sensor (Kirstetter et al., 2012). The time scale of a radar retrieval is very
short, as it is the result of the quasi-instantaneous detection of hydrometeors within layers of the atmospheric
column. Here we focus our attention on TMPA multisensor products, which can be regarded as pixel-average
QPEs, and perform our analyses on precipitation retrievals aggregated at the fixed daily time scale (Td = 24 hr)

h(x, y) = ∫
tc+

Td
2

tc−
Td
2

i(x, y, t)dt (2)

so as to investigate the effects of spatial averaging alone on the statistical properties of satellite-sensed rainfall
fields. To this end, in the next subsections (i) we introduce a framework for linking the daily rainfall distribu-
tion at a point and its counterpart averaged over an area of a given size, (ii) we present a methodology for
inferring the correlation structure of the rainfall field from satellite QPEs, and (iii) we combine this information
to estimate the MEVD at a point in space from satellite area-averaged observations.

2.1. Scale-Wise Variation of the Distribution of Daily Rainfall
The occurrence of daily rainfall at a point can be described by a stochastic process alternating between dry
and wet states. The probability distribution of this compound process is characterized by a finite atom of
probability in zero and its moments, in particular, its mean 𝜇c0

and variance 𝜎2
c0

, differ from the corresponding
statistics of the wet process only (nonzero rainfall, with mean and variance 𝜇r0

and 𝜎2
r0

respectively). Here the
first subscript refers either to the compound process (c) or to the wet (rainfall being detected) component only
(r), while the second subscript distinguishes the process at a point (0) from the process averaged at the spatial
scale of satellite retrievals (L). L is a characteristic linear scale of the satellite pixel measurement, defined as
the square root of the pixel area (L =

√
LxLy). While we are interested in the distribution of “wet” events when

studying extremes, it is necessary to also consider the compound process as rainfall observations averaged
at large scales also include zero-rainfall areas.

For the compound process, the reduction of variance connected with the spatial averaging of the rainfall field
can be expressed by a variance function of the form

𝛾0(L) =
𝜎2

cL
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= 4
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where 𝜎2
cL

is the variance of the (compound) rainfall field averaged in a space domain of area A = Lx ⋅ Ly

corresponding to the QPE pixel size, 𝜎2
c0

is its variance at a point and 𝜌(x, y) is the spatial correlation function
of the process, here assumed to be quadrant symmetric (Vanmarcke, 1983). While 𝛾0 in general depends on
the shape of the area over which the average is carried out, here we apply the method to TMPA time series,
and therefore, we assume that 𝛾0 only depends on the linear characteristic scale of the TMPA pixel, L.
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The intermittent nature of rainfall fields implies that not only the variance of the process (and its higher-order
moments) but also the yearly number of wet days NL of the averaged process will in general differ from the
yearly number of wet days N0 observed at a point, as it is possible to have a pixel-averaged value of rainfall
greater than zero when only part of the pixel is actually wet (Villarini et al., 2008). Here we characterize this
effect by introducing an intermittency function 𝛽0, defined as the ratio between the probability of the pixel of
size L being wet, prL

, and the probability of any given point inside it being wet pr0
, that is, 𝛽0(L) = prL

∕pr0
.

We require that the average of the rainfall process must remain constant when averaging in space, so that
𝜇cL

= 𝜇c0
, as a consequence of the conservation of mass. However, the average of the wet process will not in

general be conserved across scales, such that

𝜇r0
= 𝜇rL

𝛽0 (4)

Analogously, the variance of the intermittent rainfall process can be linked to the variance of the wet events
by means of the following relation, that holds at any spatial scale (see Appendix A for its derivation)

𝜎2
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whence using the definition of the variance function 𝛾0 from equation (3) we obtain
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and thus, using equations (4) and (6), one can obtain the statistics of the point process in terms of
area-averaged quantities
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(7)

Several parametric distributions have been proposed to model the nonzero daily rainfall accumulations,
ranging from exponential-type distributions to stable distributions (e.g., see Gnedenko & Kolmogorov, 1954;
Menabde & Sivapalan, 2000). Here we employ a Weibull distribution to describe the wet component of the
daily rainfall process across spatial scales. We note that (i) the Weibull distribution has been found to appro-
priately describe daily rainfall across many different climates globally, while sharing a formal analogy with
the multiplicative nature of convective processes (Frisch & Sornette, 1997; Wilson & Toumi, 2005), and (ii) the
Weibull distribution describes both light- and heavy-tailed random variates with characteristic scale through
a parsimonious two-parameter model (Laherrere & Sornette, 1998). However, we note that the approach we
propose here is quite general and can be tailored to processes characterized by different two-parameter
distributions with only minor modifications.

The Weibull distribution is here parameterized with a scale parameter C and a shape parameter w, so that the
cumulative probability distribution of the random variable HL, representing daily rainfall accumulations at the

spatial scale L, reads P(HL < hL) = 1 − exp
[
−
(

hL∕CL

)wL
]

. The first two central moments of this distribution
(i.e., its mean and variance) are respectively
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where Γ denotes the Gamma function. Equation (4) applied to the case of a Weibull variate yields a relation
linking the shape and scale parameters of the process at two different scales

(
C0

w0

)2
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A similar argument can be applied for the variance of the compound process, defined in equation (7), using
the expression for the Weibull moments (equations (8) and (9)) and equation (10)

𝛾0𝛽0

2w0Γ
(

2
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)
Γ2

(
1

w0

) =
2wLΓ

(
2

wL

)
Γ2

(
1

wL

) +
(
𝛾0 − 1

)
prL

(11)

Equation (11) is nonlinear and can be solved numerically to determine the value of the shape parameter, w0, at
a point in space. Finally, equation (10) yields the value of the scale parameter C0 at a point. This procedure can
be used to infer the parameters of the probability distribution of nonzero rainfall values (the “wet process”)
at a point from the parameters describing the distribution of area-averaged values, provided the values of 𝛾0

and 𝛽0 are known.

Here we define a wet day (i.e., a day in which an “ordinary” rainfall event occurs) as a 24-hr period character-
ized by rainfall amounts greater or equal to q = 1 mm. This threshold value is assumed constant across spatial
scales and different data sources. Defining wet days using a fixed and low threshold is necessary when apply-
ing the method to data from both rain gauges and satellite sensors, which are inherently characterized by
different detection thresholds. The 1-mm threshold value is coherent with the guidelines by the World Mete-
orological Organization (Klein Tank et al., 2009). The analysis proceeds by applying the Weibull distribution of
ordinary daily rainfall accumulations to the excess above the threshold, y = h − q. We note that the distribu-
tion of y corresponds to the distribution of the rainfall accumulations h conditional to being above threshold:
P (Y ≤ y) = P (H ≤ y + q|H > q). Accordingly, the number of wet events and their statistics are computed for
the population above this detection threshold.

We also note that the above argument can be extended to link the pdf of daily rainfall between two spatial
scales L1 and L2, with, for example, L1 > L2. In this case, the ratios of the variance and wet fraction of the process
averaged at these two spatial scales can be respectively expressed as 𝛾(L1, L2) = 𝛾0(L1)∕𝛾0(L2) and 𝛽(L1, L2) =
𝛽0(L1)∕𝛽0(L2). Next, we explore how the value of the two ratios, 𝛾0 and 𝛽0, can be estimated from satellite
retrievals.

2.2. A Model for the Correlation Structure of Daily Rainfall
The equations relating the Weibull distributional parameters at a point in space to those valid for
areal-averaged rainfall (equations (10) and (11)) require knowledge of the variance function 𝛾0 (equation (3)),
which, in turn, depends on the correlation structure 𝜌(x, y) of the rainfall field. Relating the correlation struc-
ture of the continuous stochastic field (whose realizations are the rain gauge point observations) to that of
the same field averaged over finite areas (whose realizations are the satellite QPEs) requires additional atten-
tion to the issue of spatial scale. In fact, spatial averaging does not only affect the probability distribution of
rainfall daily totals, but it also modifies the correlation between their values at two points in space when their
distance is commensurate with the characteristic length scale L of the averaging area.

The covariance between the local averages hL and h′
L of the precipitation field performed over two different

pixel areas with the same characteristic size L can be expressed as (Vanmarcke, 1983)

Cov
[

hL, h′
L

]
=

𝜎2
c0

4
(

LxLy

)2

3∑
k=0

3∑
l=0

(−1)k (−1)l △ (Lx,k, Ly,l) (12)

where 𝜎2
c0

is the variance of the process at a point, and the quantities △(Lx,k, Ly,l) are the analogues of the
variance function in equation (3) valid for the integral of the random field over a finite area of sizes Lx,k and Ly,l

△ (Lx,k, Ly,l) = 4∫
Lx,k

0 ∫
Ly,l

0

(
Lx,k − s1

) (
Ly,l − s2

)
𝜌(s1, s2)ds1ds2 (13)

The set of distances Lx,k and Ly,l (with k, l = 0, 1, 2, 3) encodes all the necessary information on the relative
position of the two pixels over which the averages of the rainfall field are computed. If Δx and Δy are the
distances, along the x and y direction respectively, between the centers of two pixels, Lx,k is defined as

• Lx,0 = Δx − Lx (distance between the end of the first pixel and the beginning of the second, along
coordinate x)

• Lx,1 = Δx (distance between the beginning of the first pixel and the beginning of the second, along the
coordinate dimension x)
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• Lx,2 = Δx + Lx (distance between the beginning of the first pixel and the end of the second, along the
coordinate dimension x)

• Lx,3 = Δx (distance between the end of the first pixel and the end of the second, along the coordinate
dimension x)

Analogous definitions hold for Ly,l along the y direction.

The expression of the covariance (equation (12)) can be used to obtain the correlation, 𝜌hL ,h
′
L
, between the two

pixel-averaged time series as a function of their relative position:

𝜌hL ,h
′
L
=

Cov[hL, h′
L]

𝜎hL
𝜎h′L

=

3∑
k=0

3∑
l=0

(−1)k (−1)l △ (Lx,k, Ly,l)

4 △ (Lx , Ly)
(14)

where the covariance of local averages has been divided by the variances 𝜎hL
and 𝜎h′L

of the process averaged
over the two pixels respectively.

If a parametric analytical expression is available for the correlation 𝜌(x, y) of the precipitation field at a point,
then equation 14 can be used to determine its parameters by matching the right hand side with the inter-
pixel correlation observed from a satellite-sensed rainfall field. Note that, under the hypothesis of an isotropic
rainfall field, the two-point correlation 𝜌(x, y) only depends on the distance between two points in space, so
that it can be expressed as a function 𝜌(d) with d =

√
x2 + y2.

Here we use a correlation structure characterized by an exponential kernel (EK) and a power-law tail
(Marani, 2003).

𝜌(d) =
⎧⎪⎨⎪⎩

e−
𝛼d
𝜖 d < 𝜖(
𝜖

ed

)𝛼

s ≥ 𝜖
(15)

This expression is continuous with continuous derivative in d = 𝜖, and can describe both light- and
heavy-tailed families of correlation decay. In the following, we apply this model to test the ability of
equation (14) of reproducing the variation in the rainfall spatial correlation between the satellite pixel and the
point scale.

The spatial correlation of the process averaged at the pixel scale is obtained by directly computing the value
of the Pearson correlation coefficient between pairs of TMPA pixels located at different distances. While the
Pearson correlation is known to be a possibly biased estimator when applied to a skewed and intermittent
process such as rainfall (Habib et al., 2001), alternative estimates would require ad hoc hypotheses on the rain-
fall distribution and on the conditional probability of zero rainfall (Villarini et al., 2008). We therefore choose
to use the classic Pearson correlation estimator, which entails the minimal number of additional assumptions.

If ns TMPA grid cells are used in the estimation of the spatial correlation, m = ns(ns − 1)∕2 estimates of the
correlation (𝜌j , for j = 1, 2,…m) are obtained, each corresponding to a distance dj between the centers of
the pair of pixels considered. The TMPA-observed spatial correlation is then assumed to match the correlation
function of the area-averaged process, given by equation (14), which depends on the unknown parameters 𝜖
and 𝛼 defining the point correlation function. A sum of square errors (SSE) is computed as

SSE (𝜖, 𝛼) =
m∑

j=1

[
𝜌hL ,h

′
L

(
dj; 𝜖, 𝛼

)
− 𝜌j

]2
(16)

The quantity SSE(𝜖, 𝛼) in equation (16) is then minimized using the L-BFGS-B algorithm (Byrd et al., 1995) to
obtain a best estimate of the parameters (𝜖, 𝛼). Once the correlation function at a point is known, it can be
used in equation (3) to compute the variance reduction function, 𝛾0(L), necessary to obtain the distribution
of rainfall accumulations at a point.

When computing the variance and covariance of local averages (equations (3) and (14)) we assume a square
pixel so that Lx ≃ Ly ≃ L. Therefore, 𝛾0 = 𝛾0(L) is simply a function of the linear characteristic scale L of
the pixel.
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Figure 1. Extrapolation of the wet fraction at different integration scales. The black circles represent scales in space and
time at which Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis (TMPA) 3b42 precipitation
estimates are aggregated. The density plot shows interpolated pr values within the range of scales covered by the TMPA
product. Blue squares represent the points used to compute the local advection velocity (slope of the blue line), and the
red square shows the target scale at which extrapolation of pr is performed (rain gauge measurement). The red triangle
shows the time-space scale of the TMPA pixel-average time series, used to compute the 𝛽0 ratio.

2.3. Downscaling of the Yearly Number of Rainfall Events
The last piece of information necessary to reconstruct the pdf of daily rainfall at a point is the ratio 𝛽0, which
accounts for the variation in the yearly number of rainfall events when the rainfall field is averaged over the
pixel area. Here we propose an application of Taylor’s Frozen Turbulence Hypothesis (Taylor, 1938) to use TMPA
information at finer temporal resolution (down to 3 hr) to infer the subpixel scale intermittency of the rainfall
process at the daily scale. The Taylor hypothesis has been previously applied to study the space-time scaling
of rainfall fields (e.g., Deidda, 2000) and was employed by Haerter et al. (2015) to compare precipitation prod-
ucts at different spatial scales. Here we apply a similar argument to estimate the spatial wet fraction of the
compound rainfall field from its variability in time as inferred from TMPA 3b42 data only.

When applied to rainfall measurements, the Taylor hypothesis states that statistical properties of the rainfall
field sampled at a spatial aggregation scale X and instantaneously in time are equivalent to the same prop-
erties sampled at a temporal scale T = X∕U and at a point in space, where U has the meaning of an average
“advection” speed. Therefore, according to this hypothesis, properties of the field (such as the wet fraction pr

of the compound rainfall process), when advected past a rain gauge, do not change significantly over time.
This assumption holds, for example, for turbulent flows characterized by small turbulent intensity (i.e., the
root-mean-squared longitudinal velocity fluctuation must be small compared to the mean advection speed)
(Stull, 1988).

If the Taylor hypothesis holds exactly, then the contour lines where pr(X, T) is constant are straight lines in
(X, T) space. More generally, the advection velocity may vary with the aggregation scale of the process, con-
sistent with the rainfall process being described by a multifractal field (Eggert et al., 2015). Following this
assumption, we define an advection velocity U as the ratio between differences of integration scales in space
and time respectively that would produce the same observed difference in the quantity pr .

Here we estimate the wet fraction pr using the TMPA 3b42 precipitation time series integrated at different
temporal (T = 3, 6, 9, 12, 24, 36, and 48 hr) and spatial scales (X = L, 2L, 3L, corresponding to local averages
over one TMPA pixel, 2 × 2 and 3 × 3 pixels respectively), as shown in Figure 1. The measured values of pr are
then interpolated in time (here using np = 1,000 values of the temporal scale T in the range from 3 to 48 hr),
and the local slope of the pr contour levels is used to estimate the local advection velocity U.

We select a target aggregation scale (XG, TG) (e.g., the aggregation scale in space and time of rain gauge mea-
surements) and identify the unique values X̂0 and Û such that the line X = X̂0 + Û ⋅ T passes through the
target scale and has a slope equal to the local advection speed. The local advection speed is evaluated as
the slope between two points with spatial aggregation scales X = L and X = 2L (corresponding to the local
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averages over 1 pixel and 2 × 2 pixels, respectively) and temporal scales determined by two conditions: (i)
the two points share the same value of the observed wet fraction p ∗r and (ii) when extrapolating to the rain
gauge scale, the resulting line passes through the target scale (XG, TG) (blue line in Figure 1). These two condi-
tions together uniquely determine the two quantities X̂0 and Û and thus can be used to compute the unknown
property p∗

r at the rain gauge scale simply extrapolating TMPA observations. The intermittency function can
then be evaluated as 𝛽0 = pr(L, Td)∕p∗

r , that is, as the ratio between the wet fraction at the 1-pixel, daily-scale
pr(L, Td), and the wet fraction p∗

r extrapolated at the rain gauge scale (XG, TG). This procedure assumes that
the contour lines of the wet fraction in the (X, T) plane can be approximated to straight lines for spatial scales
smaller than 2L.

2.4. Extreme Value Model
We have seen how our hypotheses on the spatial structure of the rainfall fields yield a model for the marginal
distribution of daily rainfall at a point. This information can now be used to estimate rainfall extremes. We base
our analysis on the MEVD (Marani & Ignaccolo, 2015; Zorzetto et al., 2016), which expresses the cumulative
distribution function of block-maxima, 𝜁 (h), of independent variates (“ordinary values”) distributed according
to an underlying parent distribution with cumulative probability function P(H ≤ h) = F(h; 𝜃), as

𝜁 (h) =
∞∑

N=0
∫Ω

𝜃

g(N, 𝜃)F(h; 𝜃)Nd𝜃 (17)

where 𝜃 is the set of parameters describing the parent distribution F(h, 𝜃), Ω
𝜃

is their population, N is the
number of events/block, and g(N, 𝜃) is the joint probability density function of N and 𝜃. In order to avoid
ad-hoc assumptions about the expression for g(N, 𝜃) (Zorzetto et al., 2016), we use a sample mean in place of
the ensemble mean when evaluating (17) from a sample time series of s years. We further adopt, as customary
in extreme precipitation analysis, 1-year blocks, and, for F(h; 𝜃), a Weibull distribution, such that the 𝜃 = (C,w)
and the MEVD cumulative distribution function of yearly maxima becomes

𝜁 (h) = 1
s

s∑
j=1

[
1 − e

(
− h

Cj

)wj ]Nj

(18)

where Weibull parameters and number of wet days
(

Cj,wj,Nj

)
are allowed to vary across years. Zorzetto

et al. (2016) extensively study the properties of MEVD and find, over a large data set of long daily rain-gauge
time series, that it significantly reduces extreme-value estimation uncertainty with respect to traditional
approaches hinged on the Generalized Extreme Value distribution when only relatively small samples (with
respect to the return time of interest) are available for calibration. In the present context, the parameters of
the Weibull distributions in equation (17) are estimated for each year on record (j = 1, 2,… , s) from the TMPA
data set and then downscaled to the point scale following the procedure described in the previous sections.
The Weibull distribution is fitted by means of the probability weighted moments approach (Greenwood et al.,
1979), following Zorzetto et al. (2016).

While the size of the estimation window over which Weibull parameters are estimated (not to be confused
with the blocks over which maxima are determined, which typically remain yearly in applications) can in gen-
eral be varied, we limit here our analysis to yearly estimates. We note that in the case of very dry climates (i.e.,
low number of events/year) this choice may not be optimal, and longer windows could improve parameter
estimation. On the other hand, using estimation windows that are longer than necessary is not advantageous
as it reduces the variability of extremes associated with interannual variabilities (and, possibly, with systematic
long-term changes). We suggest that such metastatistical source of variability in the ordinary events plays an
important role in the emergence of fat-tailed extreme values (Zorzetto et al., 2016). This is in general justified
as the rainfall process is the result of a mixture of different mechanisms that appear every year with differ-
ent frequencies and thus determine a variation in shape and scale parameters of the parent distribution of
ordinary rainfall values.

2.5. Satellite Rainfall Data
The Tropical Rainfall Measurement Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3b42 data
set provides a 19-years long, quasi-global coverage of tropical and subtropical regions (Latitudes between
−50∘S and +50∘N), with remarkable spatial (0.25∘ × 0.25∘) and temporal (3-hourly) resolution. The TMPA
3b42 version 7, research-quality, data set provided by NASA and used in this study can be accessed at
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Figure 2. Schematic map of the Tropical Rainfall Measuring Mission
Multisatellite Precipitation Analysis (TMPA) pixels and of the rain gauge
network used in this study. The rain gauges in the Micronet Network are
represented by circles (red filled circles indicate stations with a complete
1998–2015 record, and green circles for rain gauges with shorter time
series), while blue squares represent the locations of the 4 Global Historical
and Climatology Network stations with longer records. The black grid
represents the boundaries of the the TMPA pixels used in the analysis. The
coordinates of the corners of the TMPA domain are also reported.

https://mirador.gsfc.nasa.gov/. TMPA estimates are obtained by merging
information from a set of different sensors (primarily passive microwave
and infrared) characterized by differing accuracy and resolution, with the
purpose of improving the overall quality and coverage of the final (level 3)
product. As a final step, ground-based gridded precipitation data from the
Global Precipitation Climatology Project (GPCP) are used to correct TMPA
precipitation estimates to preserve ground-estimated monthly means (see
Huffman et al., 2007, for details). For the purpose of this study, we extracted
a lattice of 3 × 3 TMPA pixels centered at the point with coordinates
34.785N,−98.125E (see Figure 2) to match the ground-based data used for
testing and validation of the methods. TMPA 3b42 gridded rain rate fields
are available every 3 hr. Here we regard these values as average quanti-
ties over the observation interval. After correcting for the local time zone
(since data are reported at a nominal observation time), we compute daily
totals based on the 3-hourly rainfall rates. The complete TMPA record in the
interval 1998–2015 was used in the analysis, after testing that for each QPE
time series the yearly fraction of missing data was less than 10%. Missing
data values were set to 0.

2.6. Ground-Based Observations
To test estimates of point-value extremes from TMPA data, we take advan-
tage of a dense rain gauge network (ARS Micronet), located in the Little
Washita River watershed, Oklahoma (Elliott et al., 1993). The network con-

sists of 42 tipping bucket rain gauges, 23 of which fall within one single pixel of the TMPA 3b42 gridded
product (see Figure 2). This particular network was selected to test our methodology because of (i) the remark-
able spatial density of the stations and (ii) the extensive characterization of TMPA performance available for
this particular location (e.g., Hossain & Huffman, 2008; Villarini & Krajewski, 2007). We identify and use for our
analysis a subset of the rain gauges in the network that fall within a single TMPA pixel and for which a con-
tinuous 19-year record exists (1998–2016), providing a perfect temporal overlap with the TMPA data set. The
daily data from the Oklahoma Micronet were obtained from http://ars.mesonet.org/ and were preprocessed
by removing data that the were marked as affected by certain or highly probable instrumental error (Elliott
et al., 1993).

For testing downscaling results with ground observations, we use the Micronet time series for which an almost
complete record exists in the interval 1998–2015, so as to match exactly the temporal range of TMPA QPEs. Of
the 23 Micronet stations over the pixel centered in 34.785N, −98.125E, only seven have a continuous record
in this range of years (with a maximum number of missing values/year less than 42). We use this subset of the
stations to fit the distribution of daily rainfall accumulations at a point and to compare it with the correspond-
ing TMPA pixel-average and downscaled distributions. For testing the TMPA-downscaled spatial correlation
function, all stations in the Micronet network are used.

Due to the limited length of the TMPA data set used in this study, it is desirable to use an independent, and
longer, set of observations in close proximity to the Micronet, to be able to empirically evaluate quantiles
with relatively large return periods. For this reason, we selected four stations from the National Oceanic and

Table 1
Summary of the GHCND Stations Used to Validate Downscaled High-Return Period Rainfall Values
Obtained From TMPA Data

Station GHCND station ID Latitude Longitude Elevation Time span

Anadarko USC00340224 35.0667 −98.25 354.8 1893–2016

Chickasha USC00341747 35.05 −97.95 332.5 1901–1965

Chickasha USC00341750 35.05 −97.91667 331.9 1954–2016

Duncan USC00342660 34.5011 −97.9591 343.2 1936–2016

Marlow USC00345581 34.6368 −97.9786 393.8 1900–2016

Note. GHCND = Global Historical and Climatology Network Daily; TMPA = Tropical Rainfall Measuring
Mission Multisatellite Precipitation Analysis.
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Figure 3. Comparison of rainfall correlation function in space as computed
from the rain gauges in the Micronet network (open circles) and TMPA
gridded precipitation (red circles). Fit of the exponential kernel model is
shown by the green dashed line and red line for rain gauges and TMPA
correlations, respectively. Result of the downscaling scheme is also indicated
(blue line). The result obtained by only downscaling the scale parameter
while is also reported for comparison (blue dashed line). TMPA = Tropical
Rainfall Measuring Mission Multisatellite Precipitation Analysis.

Atmospheric Administration (NOAA) Global Historical and Climatology
Network Daily (GHCND) data set (see Table 1). For each station, only years
with less than 10% of missing years were included in the analysis. The sta-
tions were selected on the basis of (i) the length of the record (set to be at
least 50 years) and (ii) their proximity to the Micronet stations. As shown
in the following, the precipitation field is still highly correlated at distances
larger than the maximum distance between these stations, suggesting
that observations from the GHCND gauges and the Micronet stations can
be regarded as samples of the same rainfall process.

3. Results
3.1. Correlation Structure and Downscaling of Daily Rainfall
Distribution
We start by comparing the spatial correlation function computed from the
9 TMPA time series corresponding to the pixels covering the study area,
the downscaled point correlation function obtained by the minimization
of equation (16), and the correlation independently estimated using the
Micronet rain gauges at the ground (Figure 2). The analysis of interstation
correlation for the Micronet network reveals that this site is characterized
by a slowly decaying correlation (Figure 3). The values of the parameters
defining the correlation model indicate a decay slower than predicted by a
simple exponential (the transition to power-law behavior occurs at about
𝜖 = 14 km, see Table 2), suggesting caution in using the common exponen-
tial correlation functions arising from spatial Poisson models (Cox & Isham,

1988; Del Jesus et al., 2015). The rainfall fields obtained from the TMPA 3b42 data set exhibit greater spatial
correlation than those from the point process, as expected. To test how well the correlation structure of the
continuous rainfall field can be reconstructed based on TMPA data alone, we minimize the SSE and deter-
mine the parameters (𝜖 and 𝛼) describing the point to point correlation. Figure 3 shows that the proposed
downscaling procedure yields correlation values which are consistent with the point correlation values esti-
mated from the Micronet network observations (see Table 2 for the specific parameter values). For distances
larger than 40 km (extrapolating beyond the range of distances available for fitting the spatial correlation
function), the downscaled correlation model appears to decay faster than the one obtained from fitting the
point observations.

This evidence confirms the importance of correctly accounting for the area-averaged nature of remotely
sensed information when comparing correlation functions from satellite and ground-based precipitation
observations. The downscaling exercise was also repeated by keeping the exponent 𝛼 constant across scales,
and by solving the optimization of equation (16) only to determine the value of 𝜖, the scale parameter of the
correlation function at a point. This yielded a similar result to the one obtained by minimizing both parame-
ters (Figure 3). Application of equation (3) using the TMPA-downscaled spatial correlation function yielded a
value of the variance reduction function 𝛾0(L) = 0.89 between the pixel and the point scale.

Next, we compare the values of the intermittency ratio 𝛽0 obtained by applying Taylor’s hypothesis as
described in section 2.3 with ground and satellite observations averaged at different scales. The procedure

Table 2
Parameters 𝜖 (Scale) and 𝛼 (Shape) of the Exponential Kernel Model Describing the
Spatial Correlation Structure of Daily Rainfall

Data set 𝜖 (km) 𝛼

Micronet stations network 13.75 0.13

TMPA 3b42 pixels 53.14 0.28

Downscaling from TMPA, 𝛼 and 𝜖 26.50 0.23

Downscaling from TMPA, only 𝜖 34.79 0.28

Note. TMPA = Tropical Rainfall Measuring Mission Multisatellite Precipitation
Analysis.
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Figure 4. The results of downscaling for the wet fraction pr . The distribution
of the yearly number of wet days observed for the Micronet stations (pink,
Gi), for their pixel average (blue, ḠL), and for the TMPA time series at the
same location (orange, SL). The downscaled values at a point obtained from
the gauge average Ḡd and from the TMPA data Sd are included in cyan and
green, respectively. The boxplots report the mean (green triangles) and
median (orange line) of each distribution. The bars extend from the lower to
the upper distributional quartiles, and the whiskers represent the range of
each sample. TMPA = Tropical Rainfall Measuring Mission Multisatellite
Precipitation Analysis.

based on the Taylor hypothesis yields a value of 𝛽0(L) = 1.09, slightly
larger than the value obtained by averaging the intermittency ratio
from Micronet time series measured at the ground (NL∕N0 = 1.05).
Figure 4 shows a comparison of the yearly number of wet days distribution
observed at the ground (Micronet stations) with the corresponding values
at the pixel scale. The distribution of NL obtained from TMPA QPEs (SL) and
by averaging rain gauges at the ground (GL) both exhibit a larger mode
when compared to the point values observed at single rain gauges (Gi). We
then apply the Taylor hypothesis to also obtain estimates of the number of
wet days N0 at a point in space. The distributions of N0, obtained respec-
tively from downscaling gauge average (Gd) and TMPA QPEs (Sd), exhibit
lower mean and median than the original distributions of NL, yielding
results consistent with the distribution of values observed by rain gauges
at the ground.

We next illustrate the application of the downscaling approach to the
transformation of the pdf of rainfall values averaged/observed at a coarse
scale to the pdf of rainfall values at a finer spatial scale. Before applying
the method to infer extreme value statistics at a point, we first test how
well the method reproduces the distribution of ordinary rainfall values at
different spatial scales. To do so, we apply the downscaling method to
Weibull parameters obtained fitting the entire available satellite and rain
gauge time series. To downscale these probability distributions of ordinary
events, we proceed as follows. At the coarse scale, the Weibull parameters
are estimated by means of the probability weighted moments technique

(Greenwood et al., 1979). We then estimate the values of the parameters at the point scale by use of the
downscaling relations, equations (10) and (11), using the values of 𝛽0 and 𝛾0 obtained from TMPA time series.

We first select the Micronet stations within the pixel centered in 34.875N, −98.125E (central pixel in Figure 2)
with at least 18 years of data, in order to obtain a perfect overlapping with the time interval of the TMPA data
set and compute their average time series. The downscaling procedure is then applied to this “exact” areal
average rainfall to test whether the approach can recover the distribution of daily rainfall accumulations at a

Figure 5. (a) Exceedance probability distributions observed for single Micronet stations with at least 19 years of data
(open circles) and from their pixel average (red circles). The Weibull fits are reported in red for the average, and black for
the single station (mean and 1𝜎 standard deviation confidence interval). The blue line shows the distribution obtained
by downscaling from the pixel scale to a point. (b) Comparison of the same exceedance probability distribution for
Micronet stations (open circles) and satellite observations (red circles), and the respective Weibull fit (red line and black
area, respectively). The blue line represent the probability distribution downscaled from the satellite data set.
TMPA = Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis.
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Figure 6. (a) Exceedance probability distributions observed for Tropical Rainfall Measuring Mission Multisatellite
Precipitation Analysis time series aggregated spatially at different scales. (a) Results for the downscaling from scale 3L to
scale L, and (b) downscaling from scale 3L to 2L.

point. Results show that the downscaling procedure provides a good estimation of the distribution at a point
(Figure 5a), which is within the range of variability of the Micronet stations at the ground. Comparison with the
TMPA daily time series over the same pixel shows that its distribution closely resemble the one obtained from
data observed at a point (Figure 5b). In both cases, the magnitude of the scale correction directly depends on
the decay of the correlation function, which exhibits a long tail.

Given the large spatial extent of the correlation over the study area, and in order to more stringently test
the downscaling approach formulated here, we consider progressively coarser data obtained by averaging
over 2 × 2 pixels (linear characteristic scale 2L) and over 3 × 3 pixels (scale 3L) centered in −98.125E, 34.785N
(see lattice in Figure 2). Again, in order to test the downscaling method using homogeneous observations

Figure 7. Extreme values observed and estimated for the Micronet stations
within the TMPA pixel centered in 34.785N, −98.125E. Observed annual
maxima from the Micronet stations with 19 years of data (black, mean and
1𝜎 confidence interval), quantiles estimated from MEVD fitted directly to
time series at a point (blue, mean and 1𝜎 confidence intervals), and from
downscaling Weibull parameter values from the pixel-average time series
(green circles). MEVD = Metastatistical Extreme Value distribution.

at different scales, we focus our attention on satellite estimates only, per-
forming the downscaling from scale 3L to scale L (a single pixel) and
from 3L to 2L. This application of the downscaling method confirms that
the methodology, even when applied to the coarse observations at the
3L scale, is able to correctly reproduce the exceedance probability dis-
tribution at smaller spatial scales (downscaling from scale 3L to scales
L and 2L are featured in Figures 6a and 6b respectively). The shape of
the exceedance probability distribution changes more markedly in this
case, as large values become significantly less likely at coarser aggregation
scales (see green and red lines in Figure 6). Overall, we find a better perfor-
mance when the method is applied and tested using homogeneous data
(using either TMPA QPEs or gauges averaged at different spatial scales),
while some discrepancy exists when gauge and satellite data are com-
pared, as in Figure 5b. These findings suggest that such added differences
can be attributed to observational limitations affecting remote sensing
QPE values.

3.2. Extreme Value Analysis
After testing how the distributions of ordinary values can be reconstructed
at a small spatial scale given knowledge of the distribution at the TMPA
pixel scale, we now turn to the inference of the extreme value distribu-
tion at the point scale. We first apply MEVD to the stations of the Little
Washita Micronet, despite the short record length available. In this case,
the empirical quantiles observed at the ground appear to be somewhat
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Figure 8. Extreme quantiles observed for the four GHCN stations in the vicinity of the Micronet network (black markers).
The corresponding estimated quantiles have been obtained from directly fitting the extreme value models GEVD (red
lines) and MEVD (blue lines) to the entire observed time series. Green lines show the corresponding MEVD quantiles
obtained by fitting the Weibull distribution to corresponding TMPA pixel time series and by downscaling the yearly
Weibull parameters in the MEVD expression to the point scale. MEVD = Metastatistical Extreme Value distribution;
GEVD = Generalized Extreme Value distribution; TMPA = Tropical Rainfall Measuring Mission Multisatellite Precipitation
Analysis; GHCN = Global Historical and Climatology Network.

overestimated (Figure 7), similarly to what happens when downscaling the Weibull parameters from the
pixel-average time series. We explain this behaviour by recalling that the MEVD yields an optimal performance
when the return time for which a quantile is estimated is greater than the sample size used for the estimation
(e.g., see Zorzetto et al., 2016). In the present case the same sample is used for both calibration and validation,
and the relatively short sample limits the range of return times that can be explored in the comparison with
ground observations.

Hence, to more accurately investigate the performance of the proposed model over a wider range of return
times, we compare MEVD downscaling results with those obtained from rain gauge stations from the GHCND
network, with record lengths ranging from 72 to 115 years (Table 1). For each station, the corresponding TMPA
pixel time series was used to fit the Weibull distribution and estimate the values of parameters CL and wL,
which were subsequently downscaled to the point scale (C0 and w0). Downscaled parameter values were
used to construct the MEVD according to equation (18) and estimate quantiles for a set of return times up to
the length of the available time series. Comparisons are then performed with the empirical quantiles, that is,
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Figure 9. Effect of the detection threshold used to define ordinary rainfall
values on extreme value estimates for a return times of Tr = 15 years. The
relative error is reported for TMPA-downscaled estimates (red) and GHCND
stations (blue). Solid lines and shaded areas refer to average and 1𝜎 intervals
over the four stations. GHCND = Global Historical and Climatology Network
Daily; TMPA = Tropical Rainfall Measuring Mission Multisatellite Precipitation
Analysis.

the actual AM observed. Results are also comparatively evaluated
with estimates obtained by directly fitting GEVD and MEVD to rain
gauge-measured time series (Figure 8). High quantile estimates obtained
fitting GEVD and MEVD (to time series of AM and ordinary rainfall
events, respectively) both exhibit a good match with the empirical quan-
tiles extracted from the same time series. While some overestimation of
extreme quantiles is still seen for one of the stations for estimates down-
scaled from TMPA QPEs, the comparison with longer observational time
series shows a good match with empirical quantiles.

The effect of the specific detection threshold used to detect ordinary rain-
fall events is also evaluated (Figure 9). For small values of the threshold (q <

1 mm), the estimated quantiles seem to depend on the particular value
of the threshold used in the analysis. In particular, this variation is more
significant for the TMPA data when compared to the GHCND estimated
quantiles. This difference is explained by considering that rainfall values
are only recorded at finite intervals by the tipping bucket rain gauges,
while discretization effects are negligible for TMPA QPEs. Significantly, vari-
ations in QPE-based quantile estimates are modest when one considers
values of the threshold of 1 mm or larger. For this reason we have limited
our analysis to the value q = 1 mm, within the range of values in which
results are weakly dependent on the specific threshold value adopted and
justified by a largely used definition of “wet day.”

The considerable length of the GHCND records allows us to further quantify model performance using inde-
pendent samples for calibration and testing. For each station, observations are resampled with resubstitution
to generate realizations that preserve the set of parameters (N,C,w) from the original time series. Subse-
quently, the synthetic time series thus obtained are divided into two independent subsamples, of which one
is used for calibration and one for testing. The test was performed by extracting from test samples the AM
and by estimating the corresponding return times by means of the Weibull plotting position formula (e.g., see
Zorzetto et al., 2016). This procedure was repeated for a number of times ng = 100. For each such bootstrap
realization, observed (hobs) and estimated quantiles for a given return time (ĥ(Tr)) were used to compute a

Figure 10. Fractional square error obtained from the cross-validation test using samples of 20 years (a) and 30 years
(b) in fitting MEVD (blue) and GEVD (red) to rain gauge GHCND data. The results from the application of the MEVD
distribution calibrated from TMPA observations and downscaled at a point is reported in green for both panels. Lines
and shaded areas depict averages and standard deviations respectively, computed by repeating the procedure for the
set of GHCND stations. Vertical dashed lines indicate the value of the return time corresponding to the sample size used
for calibration of MEVD and GEVD with rain gauge data. MEVD = Metastatistical Extreme Value distribution;
GEVD = Generalized Extreme Value distribution; TMPA = Tropical Rainfall Measuring Mission Multisatellite Precipitation
Analysis.
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fractional square error (FSE), defined as

FSE(s, Tr) =
⎛⎜⎜⎝ 1

ng

ng∑
i=1

[
ĥi(Tr) − hobs

i (ss, Tr)
hobs

i (Tr)

]2⎞⎟⎟⎠
1∕2

(19)

where s is the calibration sample size and Tr is the return time. This procedure was here applied to rain-gauge
calibration samples with length 20 and 30 years, respectively, representative of the typical satellite record
length, and for values of Tr up to 40 years (limited by the available test sample sizes).

The entire bootstrap procedure was then repeated using the downscaled parameters obtained from the TMPA
record, and again using a set of ng = 100 synthetic samples of 40 years, randomly extracted from the relevant
GHCND station for testing. In this case only the validation sample (randomly extracted from a GHCND station
at the ground) varied, while the calibration sample was kept constant (corresponding to the entire TMPA time
series available).

The results of this analysis (Figure 10) show that the performance of MEVD and GEVD calibrated using rain
gauge data are comparable for small values of the return time (up to about Tr = 15 years for the sample size
of s = 20 years, and to about Tr = 20 years in the case of s = 30 years). In essence, the advantage in using
the MEVD over the GEVD distribution becomes evident for values of Tr greater than the length of the sample
used for calibration, as found in previous work (Zorzetto et al., 2016). The extreme values estimates obtained
by downscaling TMPA statistics to the point scale (green line in Figure 10) yield values of the FSE which are
consistently higher when compared to ground observations, as one would expect. However, as the return
time increases, the error increases at a rate that is lower than that characterizing ground-based estimates, and
results are comparable for return times of 20 years and larger. In this range of return times, estimation uncer-
tainty is particularly large for the GEVD model, as observed when calibration and validation are performed
using independent data sets. We note that this result was obtained without applying any bias correction to
the TMPA-derived distribution of rainfall accumulations. Overall, these results support the robustness of the
method proposed, when applied to relatively short time-series record, as is the case for the TMPA data set,
and when relatively high quantiles need to be estimated.

4. Discussion and Conclusions

We developed and tested a new downscaling approach to infer point rainfall extreme value distributions
from satellite observations. The approach, outlined in sections 2.1–2.5, introduces a stochastic framework that
provides estimates of “ordinary” and extreme value probability distributions at the point scale. The procedure
is parsimonious and its application only requires (1) the specification and fitting of the probability distribution
of “ordinary” values observed at the coarse aggregation scale; (2) knowledge of the correlation structure of
the rainfall field as observed from remote sensing at the coarse scale; and (3) knowledge of the intermittency
structure of rainfall events as quantified by 𝛽0, ratio of the wet fractions at the pixel and point scales, which can
also be estimated from satellite observations using the Taylor hypothesis. A summary of the steps necessary
for the application of the method is provided in Appendix A.

The use of the dense Little Washita Micronet rain gauge network allowed some detailed testing of the pro-
posed approach. In particular, we performed downscaling tests from/to the following spatial scales: 75 km
(3 × 3 TMPA pixels), 25 km (1 TMPA pixel), and the point scale (rain gauges). The ordinary and extreme value
distributions downscaled from coarser scale observations exhibit a good agreement with those obtained
from observations at target (smaller) scales when homogeneous observations (either rain gauges or TMPA
QPE fields) averaged at different spatial scales are used. When the method is applied to TMPA QPEs and
validated using independent ground observations, we observe some discrepancy in the downscaled proba-
bility distributions of daily rainfall. Comparison between these results (obtained by comparing downscaled
TMPA statistics and rain gauges at the ground) with those obtained using homogeneous observations sug-
gests that this behavior is primarily due to the performance of TMPA QPEs over this particular location. This
result is appealing as extensive application of the method can lead to the evaluation of multisensor-derived
precipitation fields over regional to global scales.

For the study location, the application of the MEVD-downscaled method to TMPA data led to errors in quantile
estimates that are comparable to those obtained by application of MEVD or GEVD distribution directly to the
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gauge data for the largest values of return time explored here. This result is quite encouraging in terms of (1)
testing remote sensing rainfall observations (and TMPA data in particular) against point observations at the
ground at the global scale and (2) evaluating with reasonable and quantifiable accuracy point extremes at
the global scale using TMPA (and possibly other rainfall remote sensing) observations.

While this work builds a new framework for estimating rainfall extremes from satellite data, a significant
result with many hydrological applications, a number of hypotheses are made. First, the assumption of
isotropic correlation structure, while commonly used, could limit the application of the method, for example,
in the presence of orographic forcing. However, the covariance expression, equation (12), can in principle be
adapted to different and nonisotropic forms, if additional information on the spatial correlation structure is
available. This is particularly important in applications over complex terrain. The Taylor hypothesis used here
has also been derived for an homogeneous fields advected by a mean velocity field, and its application should
be carefully evaluated over heterogenous terrains, and in location characterized by intense localized events
where the average advection velocity is very low, as can be the case in mountainous areas. However, we note
that the methods presented here can be directly applied to higher-resolution satellite products, and in partic-
ular to the IMERG data set, as longer time series become progressively available. The application to data sets
with higher spatial resolution is likely to reduce the effects of the assumptions made here for the covariance
of the rainfall process and the wet fraction (Taylor hypothesis). Where rain gauges at the ground are available,
their information could also be incorporated in the downscaling procedure and used to improve the estima-
tion of 𝛽0 and the correlation function at a point. This information could be used even when a few stations
are available at the location of interest, which would not be enough to compute pixel-average properties for
direct comparison with TMPA QPEs.

The downscaling method proposed assumes that the form of the probability distribution of rainfall values
(Weibull in this case) is preserved across different spatial scales. While it is known that this is not rigorously
the case, our results suggest that this assumption approximately holds in the range of scales explored here
(linear scales ranging from 0.1 m up to about 75 km).

We tested our approach in a region which is characterized by a relatively simple orography, where a dense
network of ground observations is available for independent testing and where TMPA uncertainty is relatively
well characterized in the absence of additional confounding factors (e.g., large variability in surface emissivity
and high relief ). It will be important to further test the proposed method, which is general in nature and can
potentially be applied to any multisensor satellite QPE product, by exploring a wider set of locations with
different rainfall regimes. In particular, applications to coastal areas, tropical climates and locations with high
relief will be particularly challenging, for the coexistence of different precipitation mechanisms and severe
storms likely to affect the shape of the daily rainfall pdf as well as the performance of TRMM sensors (Li et al.,
2018; Rossow et al., 2013).

In applying the proposed approach at larger scales, we note that, because the downscaling procedure con-
nects satellite- and point-scale probability distributions, it can also be used to correct the satellite-inferred
ordinary distribution and MEVD in data-scarce regions where only sparse rain gauges are available. Even in
the presence of a single rain gauge in a given location, it would be possible to compare satellite-derived point
rainfall statistics (𝛽0, 𝛾0, and Weibull parameters) with the corresponding values observed at a point. The
approach can thus potentially lead to a self-contained procedure, yielding internal bias correction as well as
high quantile rainfall estimates.

The scale-wise dependence of the distribution of daily rainfall was here combined with the MEVD framework
to infer extreme value properties of the rainfall field at a point in space. The downscaling approach presented
here can improve extreme rainfall estimation in data-scarce regions, where information from satellite QPEs
can now be employed at subpixel scales. The link proposed here between key statistical properties of the
rainfall process at different spatial scales has broad implications for hydrological and ecological watershed
studies, with the broader goal of better understanding the global distribution of hydrologic extremes over a
wide range of scales.

Appendix A: Variance of the Compound Process

The compound rainfall process (wet and dry periods) is characterized by a pdf fc(h) that has a finite atom of
probability in h = 0, such that fc(h) = (1 − pr)𝛿(h) + prfr(h), where fr(h) is the pdf of wet events only, 𝛿(h) is
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the Dirac delta function centered in 0, and pr is the probability of a day being wet. Therefore, the mean of the
compound process is𝜇c = 𝜇rpr as there is no contribution from the atom of probability in zero. The variance is

𝜎2
c = E

[(
h − 𝜇c

)2
]
= E

[
h2
]

c
− E [h]2

c (A1)

where E[⋅] is the expected value operator. Therefore,

𝜎2
c = (1 − pr)∫

𝜈

0
h2𝛿(h − 0)dh + pr ∫

+∞

𝜈

h2fr(h)dh − E [h]2
c (A2)

in the limit 𝜈 → 0. Since the value of the first integral in equation (A2) is zero, one obtains
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h2
]
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− p2

r 𝜇
2
r (A3)

from which, summing and subtracting pr𝜇
2
r

𝜎2
c = prE

([
h2
]

r
− 𝜇2

r

)
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2
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r 𝜇
2
r (A4)

thus proving equation (5)
𝜎2

c = 𝜎2
r pr + 𝜇2

r

(
1 − pr

)
pr (A5)

Appendix B: Summary Description of the Downscaling Methodology
1. Extraction of the local lattice of TMPA 3b42 pixels QPEs time series at the 3-hourly time scale, centered over

the location of interest.
2. Aggregation of TMPA data at the daily scale, construction of the time series of exceedances over the detec-

tion threshold, evaluation of the cross correlation between the TMPA QPEs time series, and minimization of
equation (16) in order to estimate the parameters 𝛼 and 𝜖 defining the point correlation function.

3. Application of the procedure detailed in section 2.3 to estimate the quantity 𝛽0 using Taylor’s frozen
turbulence hypothesis.

4. Evaluation of the the variance reduction function equation (3) by integrating the correlation function
𝜌(d; 𝛼, 𝜖) at a point.

5. Estimation of the yearly parameters CL and wL by fitting the Weibull distribution to the TMPA QPE time series
over the location of interest.

6. Downscaling of the yearly parameters of the Weibull distribution at a point (C0 and w0) using equations (10)
and (11).

7. Numerical inversion of the MEVD nonexceedance probability expression equation (18) to compute extreme
value quantiles ĥ(Tr) for the desired return time.

Notation

i instantaneous rainfall rate at a point (mm/hr)
Lx , Ly effective linear dimensions of a TMPA pixel (km)
L characteristic linear dimension of a TMPA pixel (km)
T generic time integration interval (hr)
X generic linear characteristic averaging scale (km)
U advection speed (km/hr)
Td (=24 hr) daily time integration interval
h daily rainfall accumulation at a point (mm)
hL daily rainfall accumulation at the pixel scale (mm)
pr yearly fraction of rainy days
𝝁2

r mean of wet process (mm)
𝝈2

r variance of wet process (mm2)
𝜸0(L) variance function
𝜷0(L) intermittency function
𝜷(L1, L2) intermittency function between two generic scales
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𝜸(L1, L2) variance function between two generic scales
𝝆(x,y) autocorrelation function at a point
d distance between two points in space (km)
𝝆hL ,h

′
L
(d) correlation of local averages

𝝆j Pearson correlation between two TMPA time series at distance dj .
𝚫 Integral variance function
F(h) cumulative distribution function of ordinary rainfall
𝜻(h) cumulative distribution function of extreme rainfall
w Weibull shape parameter
C Weibull scale parameter (mm)
�⃗� Generic set of parameters of the MEV distribution
N yearly number of rainy days (days)
𝝐 autocorrelation function scale parameter (km)
𝜶 autocorrelation function shape parameter
s sample size (years)
Tr return time (years)
FSE fractional square error
SSE sum of square errors
q rainfall detection threshold (mm)
y excesses over threshold (mm)
ng number of resamplings for bootstrapping

References
Bell, T. L. (1987). A space-time stochastic model of rainfall for satellite remote-sensing studies. Journal of Geophysical Research, 92(D8),

9631–9643.
Byrd, R. H., Lu, P., Nocedal, J., & Zhu, C. (1995). A limited memory algorithm for bound constrained optimization. SIAM Journal on Scientific

Computing, 16(5), 1190–1208.
Camuffo, D., Bertolin, C., Diodato, N., Cocheo, C., Barriendos, M., Dominguez-Castro, F., et al. (2013). Western mediterranean precipitation

over the last 300 years from instrumental observations. Climatic change, 117(1-2), 85–101.
Coles, S., Bawa, J., Trenner, L., & Dorazio, P. (2001). An introduction to statistical modeling of extreme values. London: Springer.
Cowpertwait, P., Kilsby, C., & O’Connell, P. (2002). A space-time Neyman-Scott model of rainfall: Empirical analysis of extremes. Water

Resources Research, 38(8), 1131. https://doi.org/10.1029/2001WR000709
Cox, D., & Isham, V. (1988). A simple spatial-temporal model of rainfall. Proceedings of the Royal Society of London A: Mathematical, Physical

and Engineering Sciences, 415, 317–328.
Deidda, R. (2000). Rainfall downscaling in a space-time multifractal framework. Water Resources Research, 36(7), 1779–1794.
Del Jesus, M., Rinaldo, A., & Rodríguez-Iturbe, I. (2015). Point rainfall statistics for ecohydrological analyses derived from satellite integrated

rainfall measurements. Water Resources Research, 51, 2974–2985. https://doi.org/10.1002/2015WR016935
Eggert, B., Berg, P., Haerter, J., Jacob, D., & Moseley, C. (2015). Temporal and spatial scaling impacts on extreme precipitation. Atmospheric

Chemistry and Physics, 15(10), 5957–5971.
Elliott, R., Schiebe, F., Crawford, K., Peter, K., & Puckett, W. (1993). A unique data capability for natural resources studies. In International

Winter Meeting of the American Society of Agricultural Engineers (pp. 14–17). Chicago, IL.
Frisch, U., & Sornette, D. (1997). Extreme deviations and applications. Journal de Physique I, 7(9), 1155–1171.
Gebremichael, M., & Krajewski, W. F. (2004). Assessment of the statistical characterization of small-scale rainfall variability from radar:

Analysis of trmm ground validation datasets. Journal of Applied Meteorology, 43(8), 1180–1199.
Gnedenko, B., & Kolmogorov, A. (1954). Independent random variables Cambridge. Massachusetts: Addison-Wesley.
Greenwood, J. A., Landwehr, J. M., Matalas, N. C., & Wallis, J. R. (1979). Probability weighted moments: Definition and relation to parameters

of several distributions expressable in inverse form. Water Resources Research, 15(5), 1049–1054.
Gupta, V. K., & Waymire, E. C. (1993). A statistical analysis of mesoscale rainfall as a random cascade. Journal of Applied Meteorology, 32(2),

251–267.
Habib, E., Krajewski, W. F., & Ciach, G. J. (2001). Estimation of rainfall interstation correlation. Journal of Hydrometeorology, 2(6), 621–629.
Haerter, J. O., Eggert, B., Moseley, C., Piani, C., & Berg, P. (2015). Statistical precipitation bias correction of gridded model data using point

measurements. Geophysical Research Letters, 42, 1919–1929. https://doi.org/10.1002/2015GL063188
Hossain, F., & Huffman, G. J. (2008). Investigating error metrics for satellite rainfall data at hydrologically relevant scales. Journal of

Hydrometeorology, 9(3), 563–575.
Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K., Joyce, R., Xie, P., & Yoo, S.-H. (2014). Nasa global precipitation measurement (GPM)

integrated multi-satellite retrievals for GPM (IMERG). Algorithm Theoretical Basis Document (ATBD), NASA/GSFC. Greenbelt, MD, USA.
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., et al. (2007). The TRMM Multisatellite Precipitation Analysis (TMPA):

Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8(1), 38–55.
Kidd, C., Becker, A., Huffman, G. J., Muller, C. L., Joe, P., Skofronick-Jackson, G., & Kirschbaum, D. B. (2016). So, how much of the Earth’s surface

is covered by rain gauges? Bulletin of the American Meteorological Society, 98, 69–78.
Kirstetter, P.-E., Hong, Y., Gourley, J., Chen, S., Flamig, Z., Zhang, J., et al. (2012). Toward a framework for systematic error modeling of

spaceborne precipitation radar with NOAA/NSSL ground radar–based national mosaic QPE. Journal of Hydrometeorology, 13(4),
1285–1300.

Klein Tank, A. M. G., Zwiers, F. W., & Zhang, X. (2009). Guidelines on analysis of extremes in a changing climate in support of informed
decisions for adaptation, World Meteorological Organization.

Acknowledgments
The authors acknowledge support
from the National Aeronautics and
Space Administration NESSF
17-EARTH17F-0270 and from the
National Science Foundation grant
NSF-EAR-13-44703 “The Direct and
Indirect Effects of Plantation Forestry
Expansion on Usable Water in the
Southeastern US.” The data sets used in
this study are available online at
https://mirador.gsfc.nasa.gov/ (TMPA
data), https://www.ncdc.noaa.gov/
(GHCND station data), and
http://ars.mesonet.org/ (Micronet
station data).

ZORZETTO AND MARANI 173

https://doi.org/10.1029/2001WR000709
https://doi.org/10.1002/2015WR016935
https://doi.org/10.1002/2015GL063188
https://mirador.gsfc.nasa.gov/
https://www.ncdc.noaa.gov/
http://ars.mesonet.org/


Water Resources Research 10.1029/2018WR022950

Laherrere, J., & Sornette, D. (1998). Stretched exponential distributions in nature and economy: ‘Fat tails’ with characteristic scales. The
European Physical Journal B-Condensed Matter and Complex Systems, 2(4), 525–539.

Li, X., Wang, X., & Babovic, V. (2018). Analysis of variability and trends of precipitation extremes in Singapore during 1980–2013. Interna-
tional Journal of Climatology, 38(1), 125–141.

Libertino, A., Sharma, A., Lakshmi, V., & Claps, P. (2016). A global assessment of the timing of extreme rainfall from TRMM and GPM for
improving hydrologic design. Environmental Research Letters, 11(5), 054003.

Marani, M. (2003). On the correlation structure of continuous and discrete point rainfall. Water Resources Research, 39(5), 1128.
https://doi.org/10.1029/2002WR001456

Marani, M. (2005). Non-power-law-scale properties of rainfall in space and time. Water Resources Research, 41, W08413. https://doi.org/
10.1029/2004WR003822

Marani, M., & Ignaccolo, M. (2015). A metastatistical approach to rainfall extremes. Advances in Water Resources, 79, 121–126.
Marani, M., & Zanetti, S. (2015). Long-term oscillations in rainfall extremes in a 268 year daily time series. Water Resources Research, 51,

639–647. https://doi.org/10.1002/2014WR015885
Marra, F., Nikolopoulos, E. I., Anagnostou, E. N., & Morin, E. (2018). Metastatistical extreme value analysis of hourly rainfall from short records:

Estimation of high quantiles and impact of measurement errors. Advances in Water Resources, 117, 27–39.
Menabde, M., & Sivapalan, M. (2000). Modeling of rainfall time series and extremes using bounded random cascades and levy-stable

distributions. Water Resources Research, 36(11), 3293–3300.
Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E., & Houston, T. G. (2012). An overview of the global historical climatology network-daily

database. Journal of Atmospheric and Oceanic Technology, 29(7), 897–910.
Müller, M. F., & Thompson, S. E. (2013). Bias adjustment of satellite rainfall data through stochastic modeling: Methods development and

application to Nepal. Advances in Water Resources, 60, 121–134.
Nogueira, M., & Barros, A. (2015). Transient stochastic downscaling of quantitative precipitation estimates for hydrological applications.

Journal of Hydrology, 529, 1407–1421.
Ntegeka, V., & Willems, P. (2008). Trends and multidecadal oscillations in rainfall extremes, based on a more than 100-year time series of 10

min rainfall intensities at Uccle, Belgium. Water Resources Research, 44, W07402. https://doi.org/10.1029/2007WR006471
Over, T. M., & Gupta, V. K. (1996). A space-time theory of mesoscale rainfall using random cascades. Journal of Geophysical Research,

101(D21), 26,319–26,331.
Pan, M., Li, H., & Wood, E. (2010). Assessing the skill of satellite-based precipitation estimates in hydrologic applications. Water Resources

Research, 46, W09535. https://doi.org/10.1029/2009WR008290
Rossow, W. B., Mekonnen, A., Pearl, C., & Goncalves, W. (2013). Tropical precipitation extremes. Journal of Climate, 26(4), 1457–1466.
Schertzer, D., & Lovejoy, S. (1987). Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes. Journal

of Geophysical Research, 92(D8), 9693–9714.
Stull, R. B. (1988). An introduction to boundary layer meteorology, Atmospheric Sciences Library. Dordrecht, Netherlands: Kluwer Academic

Publishers.
Taylor, G. I. (1938). The spectrum of turbulence. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 164,

476–490.
Vanmarcke, E. (1983). Random fields: Analysis and synthesis (394 pp.). Cambridge, MA: MIT Press.
Villarini, G., & Krajewski, W. F. (2007). Evaluation of the research version TMPA three-hourly 0.25× 0.25 rainfall estimates over Oklahoma.

Geophysical Research Letters, 34, L05402. https://doi.org/10.1029/2006GL029147
Villarini, G., Krajewski, W. F., & Smith, J. A. (2009). New paradigm for statistical validation of satellite precipitation estimates: Application to a

large sample of the TMPA 0.25∘ 3-hourly estimates over Oklahoma. Journal of Geophysical Research, 114, D12106. https://doi.org/
10.1029/2008JD011475

Villarini, G., Mandapaka, P. V., Krajewski, W. F., & Moore, R. J. (2008). Rainfall and sampling uncertainties: A rain gauge perspective. Journal of
Geophysical Research, 113, D11102. https://doi.org/10.1029/2007JD009214

Wilson, P., & Toumi, R. (2005). A fundamental probability distribution for heavy rainfall. Geophysical Research Letters, 32, L14812.
https://doi.org/10.1029/2005GL022465

Zhou, Y., Lau, W. K., & Huffman, G. J. (2015). Mapping TRMM TMPA into average recurrence interval for monitoring extreme precipitation
events. Journal of Applied Meteorology and Climatology, 54(5), 979–995.

Zorzetto, E., Botter, G., & Marani, M. (2016). On the emergence of rainfall extremes from ordinary events. Geophysical Research Letters, 43,
8076–8082. https://doi.org/10.1002/2016GL069445

ZORZETTO AND MARANI 174

https://doi.org/10.1029/2002WR001456
https://doi.org/10.1029/2004WR003822
https://doi.org/10.1029/2004WR003822
https://doi.org/10.1002/2014WR015885
https://doi.org/10.1029/2007WR006471
https://doi.org/10.1029/2009WR008290 
https://doi.org/10.1029/2006GL029147
https://doi.org/10.1029/2008JD011475
https://doi.org/10.1029/2008JD011475
https://doi.org/10.1029/2007JD009214
https://doi.org/10.1029/2005GL022465
https://doi.org/10.1002/2016GL069445

	Abstract
	References

