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ABSTRACT

The fatty acid profile of milk is a prevailing issue due 
to the potential negative or positive effects of different 
fatty acids to human health and nutrition. Mid-infrared 
spectroscopy can be used to obtain predictions of oth-
erwise costly fatty acid phenotypes in a widespread and 
rapid manner. The objective of this study was to evalu-
ate the prediction of fatty acid content for the Cana-
dian dairy cattle population from mid-infrared spectral 
data and to compare the results produced by altering 
the partial least squares (PLS) model development set 
used. The PLS model development sets used to develop 
the predictions were reference fatty acids expressed as 
(1) grams per 100 g of fatty acid, (2) grams per 100 g 
of milk, (3) the natural logarithmic transform of grams 
per 100 g of milk, and (4) subsets of samples randomly 
selected by removing excess records around the mean 
to present a more uniform distribution, repeated 10 
times. Gas chromatography measured fatty acid con-
centration and spectral data for 2,023 milk samples of 
373 cows from 4 breeds and 44 herds were used in the 
model development. The coefficient of determination of 
cross-validation Rcv

2( ) increased when fatty acids were 
expressed on a per 100 g of milk basis compared with 
on a per 100 g of fat basis for all examined fatty acids. 
The logarithmic transformation used to create a more 
Gaussian distribution in the development set had little 
effect on the prediction accuracy. The individual fatty 
acids C12:0, C14:0, C16:0, C18:0, C18:1n-9 cis, and 
saturated, monounsaturated, unsaturated, short-chain, 
medium-chain, and long-chain fatty acid groups had 

Rcv
2  greater than 0.70. When model development was 

performed with subsets of the original samples, slight 
increases in Rcv

2  values were observed for the majority 
of fatty acids. The difference in Rcv

2  between the top- 
and bottom-performing prediction equation across the 
different subsets for a single predicted fatty acid was on 
average 0.055 depending on which samples were ran-
domly selected to be used in the PLS model develop-
ment set. Predictions for fatty acids with high accura-
cies can be used to monitor fatty acid contents for cows 
in milk recording programs and possibly for genetic 
evaluation.
Key words: mid-infrared spectroscopy, fatty acid

INTRODUCTION

Milk and milk products are major contributors of 
nutrients to the diet of many humans, and consumer 
awareness of the health effects of milk requires an in-
creased look at its fatty acid profile. Over 400 different 
fatty acids have been identified in milk fat, although 
most appear only in trace amounts (Christie, 1995). 
Bovine milk fat has only about 12 fatty acids present 
at above 1% concentration (Jensen, 2002). Milk fat is 
rich in many fatty acids with significance to human 
health (Haug et al., 2007). An increase in the propor-
tion of fatty acids beneficial to health may therefore 
be of interest. Beyond the nutritional aspect of fatty 
acids, the relative concentrations of different fatty ac-
ids have implications on the technological properties of 
milk and milk products (Huppertz and Kelly, 2009). As 
well, changes in milk fatty acids may be an indicator 
of cow health and energy status (Stoop et al., 2009). 
Therefore, strategies for managing or altering the fatty 
acid content of milk are of interest to the dairy indus-
try, and a practical method for phenotyping this trait 
is required.
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Milk composition testing is routinely performed by 
certified milk recording laboratories using mid-infrared 
(MIR) spectroscopy for payment, quality control, herd 
management, and genetic selection purposes. The ob-
tained spectra of milk samples are used to simultane-
ously provide information on a variety of compositional 
parameters in a rapid and inexpensive manner. In 2015, 
approximately 700,000 cows in Canada (72% of all 
Canadian dairy cows) were enrolled on official or man-
agement milk recording programs (Canadian Dairy In-
formation Centre, Agriculture and Agri-Food Canada, 
2016). A high volume of data is produced and stored 
in the form of MIR spectra, which can potentially be 
exploited to predict additional milk traits. De Marchi 
et al. (2014) reviewed the expanded use of MIR for milk 
phenotyping. Mid-infrared spectra-based prediction of 
fatty acid content in milk has shown some, though var-
ied, success using model development sample sets from 
other dairy cattle populations (Rutten et al., 2009; De 
Marchi et al., 2011; Soyeurt et al., 2011; Lopez-Vil-
lalobos et al., 2014). Therefore, MIR technology may 
provide a method of obtaining fatty acid composition 
phenotypes on large numbers of samples in Canada at 
a low cost from existing milk recording data.

The samples included in the prediction model de-
velopment sample set have major implications on the 
effectiveness of the model in predicting new records. 
Selecting samples based on spectral characteristics has 
been a popular method in infrared prediction equation 
development. This procedure involves recording the 
spectra, selecting samples likely to provide the best 
prediction based on the spectral variance, and finally 
performing reference analysis on these samples only. 
Mid-infrared predictions of fatty acids performed by 
Soyeurt et al. (2011) identified samples for their model 
development set by first examining the spectra, which 
allowed for analyzing fewer milk samples yet still 
achieving a high amount of variation. In the present 
study, milk samples and MIR spectra were obtained 
during routine milk recording and the high volume of 
samples, the fast throughput of this process, and the 
vast geography involved, required samples marked for 
minor milk constituent analysis to be selected before 
collection. As well, further work with the recorded 
milk data is suited to multiple samples per cow. As a 
result of the sampling technique, the samples included 
in the model development data set for the fatty acids 
may have an overabundance of samples with the same 
composition. Restricting the number of similar samples 
included in the model development set could better the 
prediction of some fatty acids.

The objective of this study was to investigate the 
capability of predicting fatty acid content from MIR 

spectral data collected during routine Canadian DHI 
milk recording by altering the model development data 
set by adjusting the scale and distribution of samples in 
the model development data set.

MATERIALS AND METHODS

Milk Sampling

Milk samples were collected during routine Cana-
dian DHI milk recording by CanWest DHI (Guelph, 
ON) from February 2014 to October 2015 and Valacta 
(Sainte-Anne-de-Bellevue, QC) from February 2014 to 
May 2015. The 44 participating herds were located in 
the provinces of Alberta, Ontario, and Quebec with 
Ayrshire, Brown Swiss, Holstein, or Jersey breeds. 
From each herd, approximately 10 cows were identified 
(5 at the beginning and 5 at the middle part of the 
lactation on the first test) and multiple milk samples 
through 1 or 2 lactations were collected over the study 
period (20 mo for Ontario and Alberta herds, and 15 
mo for the Quebec herds). Individual cow milk samples 
(50 mL) were collected by DHI field staff and sent to a 
DHI laboratory with the preservative Bronopol added 
as per normal milk recording procedures. At the labora-
tory, the required quantity of milk needed for DHI milk 
testing was removed and the remainder was sent to the 
University of Guelph (Guelph, ON) for additional, fine 
milk component analysis.

Milk Analysis

Milk MIR spectra were obtained from 1 of 2 
MilkoScan FT6000 spectrometers (FOSS, Hillerød, 
Denmark) at either CanWest DHI or Valacta laborato-
ries following routine milk recording methodology. The 
specifications of the 2 machines and protocols used by 
the 2 DHI laboratories were identical. The MIR data 
for each sample contained 1,060 data points in the 
infrared range of 5,000 to 900 cm−1. Standardization 
of the historical spectra between the 2 machines and 
across time was performed per Bonfatti et al. (2017). 
In this standardization method, a correction factor was 
used for each wavenumber to correct for shifts in princi-
pal component analysis scores that were observed over 
time. For the purpose of creating prediction equations, 
regions 3,105 to 3,444 cm−1 and 1,628 to 1,658 cm−1 
of the MIR spectra were removed due to low signal to 
noise ratio caused by the high absorption of water. No 
spectral pretreatments were applied to the spectra.

Milk fat extraction was performed at the University of 
Guelph (Guelph, ON, Canada) using methods adapted 
from Christie (1982) and Chouinard et al. (1997). The 
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milk sample (1 mL) was transferred to an acid-washed 
(sulfuric acid, A300–212, Fisher Scientific, Fair Lawn, 
NY) glass test tube with a screw-cap GL25, and 0.15 
mL of 25% ammonium hydroxide solution (A669–500, 
Fisher Scientific) was added. Next, 1 mL of anhydrous 
ethyl alcohol (Commercial Alcohol, Brampton, ON), 
4.5 mL of anhydrous ethyl ether (E138–4, Fisher Scien-
tific), and 4.5 mL of pentane (P399–4, Fisher Scientific) 
were added and vortexed using a Fisher Vortex Genie 
2 (12–812, Fisher Scientific). Two phases were clearly 
separated after 15 min. The upper layer (0.5 mL) was 
transferred by glass pipette (13–678–20A, Fisher Scien-
tific) into a 1.5-mL Eppendorf tube (Thermo Fisher Sci-
entific, Waltham, MA, #3451). The solvent was dried 
by nitrogen gas (grade 4.8, Linde Canada, Guelph, ON, 
Canada). Then, 1 mL of ethyl ether (E138–4, Fisher 
Scientific) was added to reconstitute the fat, and 200 
µL of methyl acetate (45999–250 mL-F, Sigma-Aldrich, 
St. Louis, MO) was added to methylate. Next, 10 µL 
of 25% sodium methoxide solution (156256–25 mL, Sig-
ma-Aldrich) was added, and the reaction occurred for 
5 min. Then, 60 µL of saturated oxalic acid (A219–500, 
Fisher Scientific) in ethyl ether was added to stop the 
reaction. Eppendorf tubes were centrifuged at 3,340 × 
g at room temperature for 5 min using an Eppendorf 
centrifuge 5415D (Eppendorf, Hauppauge, NY).

Fatty acid composition was determined using an 
Agilent Technology (New Castle, DE) model 7890B 
GC equipped with an automatic on-column injector 
(Agilent G4513A), and a flame-ionization detector used 
on a CP-Sil88 fused silica capillary column (CP 7489 
100 m × 0.25 mm × 0.2 µm film thickness, Agilent 
J&W). Column conditions were set up as follows: 40 
µL of clear methylated samples were dissolving in 1 mL 
of hexanes (H302–4, Fisher Scientific). Hydrogen was 
generated by hydrogen generator (Parker Balston, Lan-
caster, NY), and was used as the carrier gas at flow rate 
of 1 mL/min, and nitrogen gas was used as the makeup 
gas (grade 5.0, Linde Canada, Guelph, ON, Canada). 
Then, 1 µL of the sample was injected directly cold 
on-column at an oven temperature of 35°C. After initia-
tion, the column temperature was held at 35°C for 5 
min, increased by 14°C/min to 165°C, then increased by 
2°C/min to 220°C, and was subsequently held there for 
17 min. Identification of fatty acid methyl eater peaks 
was based on retention time of FAME mix C4-C24 fatty 
acid standard (Supelco, Bellefonte, PA), and methyl 
tricosanoate (C17, T9900–500mg, Sigma-Aldrich) was 
used as an internal standard. Individual fatty acid 
concentrations were obtained as a percentage of total 
fatty acids. Along with individual fatty acid content, 
fatty acids were classified into saturated, unsaturated, 
monounsaturated, polyunsaturated, short-chain (4 to 

10 carbons), medium-chain (11 to 16 carbons), or long-
chain (17 to 22 carbons) fatty acid groups.

Data

In the final data set, fatty acid analysis was com-
pleted on 2,064 milk samples from 374 cows (average 
5.52 samples per cow; range 1 to 12 samples per cow). 
The large range in the number of samples per cow was 
due to the frequency of tests for a herd, the condition of 
the sample at the time of analysis, and the condition of 
the cow (entering their dry period, being in subnormal 
health, or leaving the herd). Individual and groups of 
fatty acids were converted from grams per 100 g of fatty 
acid to grams per 100 g of milk using the fat content 
determined by the DHI laboratory during milk record-
ing using MIR spectroscopy. Total milk fat content was 
only obtainable for 1,952 of the samples and thus fewer 
samples had fatty acids expressed on a per milk basis. 
To maintain as much variation as possible, but still 
remove extreme values, individual fatty acid amounts 
(g/100 g of fat) more than 5 standard deviations away 
from the mean were removed. Due to the nature of the 
fatty acid determination, the entire record was deleted 
if one value was deemed an outlier. After editing, 2,023 
samples with fatty acids were expressed as grams per 
100 g of fat and 1,911 samples were expressed as grams 
per 100 g of milk. The number of cows, herds, and per-
cow samples after editing by breed is shown in Table 1.

MIR Prediction Development Sets

Four measures of fatty acid content were evaluated for 
building fatty acid prediction equations from MIR spec-
tra: fatty acid content measured (1) as grams per 100 g 
of fatty acid, (2) as grams per 100 g of milk, (3) as the 
natural logarithm of the grams per 100 g of milk fatty 
acid content plus a constant of 1 (to include samples 
with values of 0), and (4) by eliminating samples with 
fatty acid content coming from overrepresented areas of 
the fatty acid content [in ln(g/100 g of milk + 1)] dis-
tribution. The natural logarithm of fatty acid contents 
on a milk basis was considered to reduce the skewness 
of the fatty acid content distribution, which was posi-
tively skewed for some fatty acids. The final method of 
eliminating samples was examined because histograms 
of the fatty acid concentrations showed that many more 
samples were closer to the mean concentrations than 
were in the tails of the distributions (a leptokurtic dis-
tribution). For the purpose of building prediction equa-
tions, having equal numbers of samples across the full 
range of fatty acid concentrations would be ideal, but 
impractical to collect. Prediction equations developed 
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with sample sets having a Gaussian distribution may 
cause predictions of future samples to regress toward 
the mean, a phenomenon known as the Dunne effect 
(Dunne and Anderson, 1976; Williams, 2001). This ef-
fect will be more pronounced in sample sets with very 
large variance and low correlation between the infrared 
spectrum and reference values (Williams, 2007). Thus, 
a more uniform distribution was generated from the 
original model development samples using a uniform 
random selection procedure. To create the subset inde-
pendently for each individual fatty acid or each fatty 
acid group, the natural log-transformed grams per 100 
g of milk fatty acid records were partitioned into bins 
equal to 1/100th of the range of that particular fatty 
acid. A maximum of 18 samples per bin were randomly 
selected from each bin (1% of the total number of sam-
ples). So, if a bin had only 18 or fewer samples, then all 
of the records in that particular bin were included in 
the subset. The number of samples used in the training 
set to create the prediction equation using the subsets 
was therefore far fewer than the other approaches and 
varied between the different fatty acids depending on 
the original distribution. This subset selection process 
was repeated 10 times to create 10 different subsets for 
each individual fatty acid or group. An examination of 
the distribution of all created model development sets 
was performed using the UNIVARIATE procedure in 
SAS (version 13.1, SAS Institute Inc., Cary, NC).

MIR Prediction Models

All prediction equations were constructed by partial 
least squares (PLS) regression using the PLS proce-
dure of SAS (SAS Institute Inc.). First, all samples 
with both milk fatty acid data and spectral data avail-
able were included in the PLS model development set 
and the individual and groups of fatty acids were re-
gressed on the spectral data using PLS one at a time. 
The root mean square error for standardized predictors 
was examined for each milk sample as a measure of the 
distance between the data point and the model plane in 

X-space. Sample spectra with a mean square error 
greater than 3 standard deviations above the mean 
value were considered outliers and omitted from the 
analysis. The PLS procedure with a 10-fold cross-vali-
dation was then used on the remaining data to produce 
the final prediction equation results. In particular, the 
milk samples were randomly divided into 10 partitions 
and one at a time a partition was reserved as holdout 
data for testing and all other samples were used to 
train the model. This process was repeated until each 
partition has been predicted in turn, with the valida-
tion errors saved each time and then averaged to create 
the standard error of cross-validation. To account for 
instability in the prediction model performance due to 
the random assignment of samples in the cross-valida-
tion procedure, the process was repeated 10 times for 
each prediction and the results were averaged. The 
same procedure was followed for each of the 10 subsets 
of fatty acids and the final fitting statistics were aver-
aged across the 10 repeats. The coefficient of determi-
nation of cross-validation Rcv

2( ), which indicates the 
proportion of the sample variation explained by the 
regression model, was used to assess how well the pre-
diction fit the data. Additionally, the ratio of perfor-
mance to deviation (RPD), calculated as the ratio of 
the standard deviation of the PLS model development 
set to the standard error of cross-validation, was deter-
mined as an additional measure of model utility.

RESULTS AND DISCUSSION

Descriptive Statistics

Descriptive statistics of the GC-measured individual 
and grouped fatty acids expressed on a fat basis (g/100 
g of fat) and milk basis (g/100 g of milk) are summa-
rized in Table 2. The fatty acids appearing in the high-
est concentrations were C16:0, C18:1n-9 cis, and C14:0. 
Sufficient variation was observed in the measured fatty 
acids to produce prediction equations, which is a sig-
nature of sampling from a wide range of management 

Table 1. The number of cows, herds, and samples after editing with fatty acid content expressed on a fat 
(g/100 g of fat) and milk (g/100 g of milk) basis by breed of cow

Breed

In fat (g/100 g of fat)

 

In milk (g/100 g of milk)

Cows Herds1 Records Cows Herds1 Records

Ayrshire 58 7 431  57 7 412
Brown Swiss 25 3 146  20 3 118
Holstein 230 29 1,206  227 29 1,165
Jersey 60 8 240  58 8 216
Total 373 44 2,023  362 44 1,911
1Three herds had multiple breeds.
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practices. The coefficient of variation for milk samples 
in the full data set expressed as grams per 100 g of fat 
ranged from 6.804 to 220.496%, which is comparable, 
although on average slightly lower, to that of Soyeurt et 
al. (2011). Not surprisingly, fatty acids given on a per 
milk basis showed slightly more variation than those 
given as per fat due to differences in the fat content 
of the milk samples. Fatty acids that were on average 
present in very small quantities had large coefficient 
of variation values. This trend was particularly true 
for C22:6n-3, which had the lowest concentration of all 
measured fatty acids. Approximately 80% of the milk 
samples had recorded concentrations of zero for this 
fatty acid, which could in part be due to minimum 
detection values. Consequently, C22:6n-3 had a highly 
positively skewed, leptokurtic distribution and the as-
sociated mean and standard deviation were greatly af-
fected by the presence of zeros. However, upon omission 
of almost all recorded zeros, the coefficient of variation 
decreased to a value similar to that of the other fatty 
acids.

Prediction Equations

The fitting statistics for all of the prediction models 
are shown in Table 3. Soyeurt et al. (2011) suggested 
that prediction equations with Rcv

2  > 0.95 could be used 
for payment purposes, and equations with an Rcv

2  > 
0.75 could be used for animal breeding purposes. How-
ever, Cecchinato et al. (2009) showed that despite low 
prediction R2 for their MIR predicted milk coagulation 
properties, the genetic correlation between the mea-
sured and predicted values were large and predicted 
values could be used successfully as indicator traits to 
genetically improve milk coagulation properties. In the 
present study, the Rcv

2  of the predictions of fatty acids 
ranged from 0.13 to 0.76 for g/100 g of fat and 0.17 to 
0.94 for g/100 g of milk. For all examined individual 
and groups of fatty acids, the Rcv

2  value increased when 
fatty acids were expressed per milk compared with per 
fat. No individual fatty acid achieved a Rcv

2  of at least 
0.70 when expressed as grams per 100 g of fat. The 
fatty acid groups of saturated, monounsaturated, un-

Table 2. Mean and coefficient of variation of GC-determined fatty acid content on a fat (g/100 g of fat; n = 
2,023) and milk (g/100 g of milk; n = 1,911) basis

Fatty acid

In fat  
(g/100 g of fat)

 

In milk  
(g/100 g of milk)

Mean CV Mean CV

Individual fatty acid     
 C4:0 3.729 18.676  0.157 26.003
 C6:0 1.835 35.532  0.078 41.678
 C8:0 1.609 37.292  0.067 41.264
 C10:0 3.488 27.372  0.147 34.990
 C11:0 0.446 48.862  0.019 51.353
 C12:0 3.793 29.083  0.161 37.573
 C13:0 0.180 79.231  0.008 82.541
 C14:0 12.314 17.272  0.519 25.935
 C14:1 1.116 32.629  0.047 38.066
 C15:0 1.236 24.409  0.052 31.364
 C16:0 31.281 13.189  1.324 23.965
 C16:1 1.944 23.421  0.082 30.916
 C17:0 0.733 21.807  0.031 29.931
 C17:1 0.209 54.427  0.009 59.993
 C18:0 9.820 24.424  0.411 30.927
 C18:1n-9 trans 2.229 38.447  0.092 40.148
 C18:1n-9 cis 18.597 21.701  0.778 27.847
 C18:2n-6 trans 0.224 55.616  0.009 55.722
 C18:2n-6 cis 1.962 32.455  0.082 35.503
 C18:3n-3 0.727 44.182  0.030 46.910
 C18:2 cis-9,cis-12 0.619 43.448  0.026 45.166
 C22:6n-3 0.045 220.486  0.002 222.902
Fatty acid group1     
 SFA 70.465 6.804  2.974 20.655
 MUFA 24.095 17.776  1.001 24.600
 PUFA 3.577 23.462  0.149 27.179
 UFA 27.672 17.264  1.158 23.917
 Short-chain 10.661 16.842  0.449 25.882
 Medium-chain 52.311 11.523  2.212 22.905
 Long-chain 35.166 18.448  1.471 25.224
1Short-chain (4 to 10 carbons), medium-chain (11 to 16 carbons), and long-chain (17 to 22 carbons) fatty acid 
groups.
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saturated, medium-chain, and long-chain had Rcv
2  val-

ues greater than 0.70. When prediction models were 
created for fatty acids on a per milk basis, 5 individual 
fatty acids had Rcv

2  values over 0.70. These findings are 
in line with Soyeurt et al. (2006) and Rutten et al. 
(2009), who also observed higher accuracies when fatty 
acids were expressed on a per milk basis versus per fat 
basis. This is explained partly by the fact that milk 
samples contain different amounts of total fat and 
samples with the same relative concentrations of fatty 
acids can contain very different total quantities of the 
fatty acids. The MIR spectrum correlates to a greater 
extent with the total amount of a fatty acid than the 
proportion of fatty acids.

These results can also be observed from the related 
RPD values. For RPD a higher value is desired and 
models with an RPD greater than 2 are said to pro-
duce good predictions (De Marchi et al., 2011). Manley 
(2014) reported that the RPD attempts to scale the 
error in prediction with the standard deviation of the 

property. They state RPD values greater than 3 are 
useful for screening, values greater than 5 can be used 
for quality control, and values greater than 8 can be 
used for any application. In the present study, only sat-
urated and medium-chain fatty acids had RPD values 
greater than 3 on a per milk basis and the majority do 
not surpass RPD values of 2. Therefore, the application 
of many of the presented predictions may be limited.

In most cases, the individual or groups of fatty acids 
examined in the present study that appeared in greater 
concentrations had the highest Rcv

2 . The 11 individual 
or grouped fatty acids that were most prevalent in the 
milk samples, were the only ones for which Rcv

2  > 0.70 
when expressed as grams per 100 g of milk. As well, the 
fatty acids appearing in negligible amounts did not 
predict well enough to be useful. The relationship be-
tween the fatty acid concentration and predictive 
model performance has also been identified and dis-
cussed by Soyeurt et al. (2006) and De Marchi et al. 
(2011). Rutten et al. (2009) modeled the relationship 

Table 3. Fitting statistics of each prediction equation estimating fatty acid concentrations using the model development data sets expressed as 
g/100 g of fat (F), g/100 g of milk (M), ln(g/100 g of milk + 1) (LN), and the subsets (S)1

Fatty acid

N samples

 

Rcv
2

 

RPD

F M LN S F M LN S F M LN S

Individual fatty acid                    
 C4:0 1,984 1,874 1,871 907 0.32 0.66 0.66 0.73 1.22 1.71 1.71 1.94
 C6:0 1,976 1,873 1,873 938 0.18 0.38 0.37 0.46 1.11 1.27 1.26 1.37
 C8:0 1,984 1,863 1,871 977 0.21 0.37 0.39 0.40 1.12 1.26 1.29 1.29
 C10:0 1,985 1,875 1,876 843 0.52 0.66 0.67 0.75 1.45 1.72 1.74 2.00
 C11:0 1,976 1,868 1,868 742 0.13 0.21 0.20 0.20 1.07 1.12 1.12 1.12
 C12:0 1,980 1,872 1,873 836 0.61 0.71 0.72 0.76 1.59 1.85 1.89 2.06
 C13:0 1,976 1,870 1,873 572 0.14 0.19 0.36 0.14 1.08 1.11 1.25 1.08
 C14:0 1,970 1,861 1,859 946 0.60 0.80 0.80 0.85 1.59 2.23 2.25 2.56
 C14:1 1,983 1,877 1,877 902 0.48 0.61 0.61 0.68 1.39 1.60 1.59 1.77
 C15:0 1,982 1,875 1,875 882 0.42 0.61 0.61 0.67 1.31 1.61 1.61 1.74
 C16:0 1,971 1,876 1,876 990 0.64 0.86 0.86 0.91 1.67 2.70 2.69 3.25
 C16:1 1,983 1,875 1,875 836 0.39 0.62 0.63 0.66 1.28 1.63 1.65 1.73
 C17:0 1,975 1,864 1,865 749 0.17 0.53 0.52 0.58 1.10 1.46 1.45 1.55
 C17:1 1,977 1,870 1,870 637 0.14 0.31 0.30 0.43 1.08 1.21 1.19 1.32
 C18:0 1,983 1,865 1,867 900 0.58 0.73 0.73 0.80 1.54 1.93 1.94 2.23
 C18:1n-9 trans 1,982 1,875 1,875 903 0.55 0.60 0.61 0.63 1.50 1.58 1.59 1.65
 C18:1n-9 cis 1,974 1,873 1,873 746 0.69 0.79 0.78 0.83 1.80 2.18 2.11 2.45
 C18:2n-6 trans 1,979 1,872 1,873 456 0.14 0.17 0.14 0.13 1.08 1.10 1.08 1.07
 C18:2n-6 cis 1,978 1,874 1,874 780 0.58 0.62 0.62 0.68 1.54 1.63 1.63 1.78
 C18:3n-3 1,981 1,863 1,864 914 0.53 0.58 0.58 0.61 1.45 1.54 1.54 1.60
 C18:2 cis-9,cis-12 1,981 1,875 1,875 784 0.62 0.65 0.65 0.72 1.62 1.70 1.70 1.91
 C22:6n-3 1,982 1,876 1,876 392 0.16 0.22 0.21 0.16 1.09 1.13 1.13 1.10
Fatty acid group2                  
 SFA 1,984 1,867 1,874 905 0.76 0.94 0.93 0.96 2.05 3.95 3.91 4.76
 MUFA 1,984 1,874 1,874 837 0.75 0.84 0.83 0.88 1.98 2.54 2.44 2.85
 PUFA 1,973 1,865 1,865 844 0.55 0.66 0.65 0.72 1.49 1.71 1.70 1.91
 UFA 1,984 1,874 1,874 837 0.75 0.84 0.83 0.87 1.99 2.54 2.44 2.83
 Short-chain 1,974 1,870 1,869 870 0.42 0.72 0.73 0.78 1.32 1.88 1.94 2.12
 Medium-chain 1,973 1,876 1,875 1,005 0.72 0.90 0.89 0.92 1.87 3.09 3.02 3.54
 Long-chain 1,975 1,873 1,873 868 0.72 0.83 0.81 0.85 1.89 2.43 2.32 2.62
1Bold face represents the model with the highest value. Rcv

2  = coefficient of determination of cross validation; RPD = ratio of performance de-
viation.
2Short-chain (4 to 10 carbons), medium-chain (11 to 16 carbons), and long-chain (17 to 22 carbons) fatty acid groups.
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between fatty acid concentration (g/dL of milk) and 
prediction R2 and reported an R2 value of 0.64.

Compared with De Marchi et al. (2011), the present 
study had greater prediction accuracies for most of the 
fatty acids examined by both, but the former results 
were based on a smaller number of milk samples (n = 
267) and only Brown Swiss cows. The one exception 
was C8:0, which predicted poorly in our samples. Soy-
eurt et al. (2011) used a diverse fatty acid data set of 
517 samples, and developed prediction equations with 
larger Rcv

2  than reported here for examined fatty acids, 
with models performing marginally or considerably 
better. With a larger number of samples (n = 3,622) 
studied by Rutten et al. (2009), validation R2 reported 
for fatty acids predictions were also greater than ob-
served presently. Most notably the short-chain fatty 
acids in our data were predicted unsatisfactorily, 
whereas Rutten et al. (2009) observed validation R2 
values greater than 0.90 for all C4:0, C6:0, and C8:0. 
Ferrand et al. (2011) also showed that these short-chain 
fatty acids could predict well.

The better results in other studies could be a result 
of differences in the variability in the model develop-
ment data set, and the statistical procedures used (De 
Marchi et al., 2014). The procedures used for GC mea-
surement of fatty acids could affect the end accuracy of 
the predictions. Also, importantly, the sample set used 
to develop the prediction equations needs to incorpo-
rate all of the variation expected to be in the popula-
tion to be predicted. Wojciechowski and Barbano 
(2016) attained sample variation for the development of 
PLS models for fatty acid chain length and unsatura-
tion by including bulk tank milk from individual herds 
in different regions, individual cow milk samples at dif-
ferent lactation stages, and modified milk calibration 
samples. They achieved Rcv

2  of 0.78 and 0.90 for average 
chain length and unsaturation, respectively. The meth-
odologies for developing the prediction equations and 
the different pretreatments that other studies have 
tried on the received spectra could also create differ-
ences. Improved accuracies of prediction equations have 
been achieved by other studies by using first-derivative 
preprocessing of the spectra or wavelength selection 
before PLS regression (Soyeurt et al., 2011; Ferrand-
Calmels et al., 2014).

Logarithmic Transformation Development Set

Partial least squares regression methods perform 
best with data that are fairly symmetrically distributed 
(Wold et al., 2001). The distributions of the measured 
fatty acids used in the model development were gen-
erally not symmetrical. The skewness ranged between 

−0.498 and 2.597 with an average skewness of 0.688 for 
fatty acids in grams per 100 g of fat. In most cases, the 
skewness of the distribution was lower when fatty acids 
were expressed as grams per 100 g of fat compared with 
grams per 100 g of milk (range 0.493 to 2.647, average 
1.059). Just over half of the examined individual and 
groups of fatty acids had skewness greater than 1 when 
expressed per milk. After a natural logarithmic trans-
formation was performed to produce the PLS model 
development data set, the skewness ranged from 0.035 
to 2.628 and averaged 0.827, with 8 fatty acids still 
having skewness greater than 1. Some improvement oc-
curred in the amount of skewness, although most of the 
fatty acids still had nonsymmetric distributions.

However, the performance of the prediction models 
based on the log-transformed development sets did not 
greatly affect the Rcv

2  and RPD values (Table 3), with 
the exception of that for C13:0. The log-transformation 
on C13:0 improved the model Rcv

2 , although the value 
still remained very low. The fatty acids with the most 
skewed distributions are those detected in small quanti-
ties in milk and did not have adequate prediction to 
start, and thus, no improvements were noted.

Sample Subset Model Development Set

For most fatty acids, the created subsets succeeded in 
creating more uniform distributions suitable for predic-
tion equation development. The skewness of the subsets 
ranged from 0.029 to 1.674 and averaged 0.495. The 
distributions of those fatty acids appearing mostly in 
small quantities were still positively skewed due to a 
lack of available samples in the tail of the distribution. 
The Rcv

2  of the predictive models improved when using 
the subset data for all but 4 fatty acids (Table 3). These 
fatty acids were C11:0, C13:0, C18:2n-6 trans, and 
C22:6n-3, all of which had Rcv

2  values less than 0.5 and 
thus seemed unsatisfactory for prediction.

The subset models were repeated 10 times each with 
a different randomly selected subset. The Rcv

2  achieved 
by the 10 repeats were not identical and the differences 
between them varied depending on the component. The 
individual fatty acid C22:6n-3 exhibited the most dra-
matic differences in Rcv

2  between the 10 repeats with a 
range of 0.15. This is likely due to the much smaller 
sample size of 392 milk samples used, a resultant of the 
very large number of samples having no quantifiable 
concentration. However, the performance of the predic-
tion of this fatty acid is far below the level of being 
useful for all tested development sets and this large Rcv

2  
range is not indicative of problems for other fatty acids. 
Rutten et al. (2010) examined the relationship between 
the number of samples used in the model development 
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and the validation R2 in MIR predicted fatty acids. 
When using a small number of samples (n = 100) they 
observed a large range in R2 values from 0.05 to 0.30 for 
C16:0, but as the number of samples increased, the 
magnitude of the observed range decreased. The aver-
age range in Rcv

2  values observed between the different 
subsets in the present study was 0.057. In general, it is 
expected that increasing the number of samples within 
a development set will produce better predictions and 
more robust models. Rutten et al. (2010) also observed 
an improvement in their R2 with increasing sample 
numbers. The current study largely saw an increase in 
Rcv

2  when the number of samples was decreased. The 
reduced sample numbers in the model development sets 
were still sufficiently large for the most part, but these 
results illustrate the importance of which samples are 
included in the development set. Note that the number 
of unique or influential samples could be more impor-
tant than the total number of samples. However, exter-
nal validation will be required to satisfactorily identify 
the precision of the present models and how well they 
perform on another population of milk samples.

An alternate method for selecting subsets that take 
into consideration the sample spectra itself should be 
examined in the future. Assuming that samples with 
like MIR spectra are compositionally similar, perhaps 
samples with near identical spectra can be removed 
from the development set, as they are not contributing 
new information. This selection process would lessen 
the Gaussian distribution of model development sam-
ples and largely eliminate the Dunne effect, which is 
why this method is attractive for selecting samples for 
analytic analysis. However, due to the complex nature 
of the composition of milk, it may still be challenging 
to uncover samples differing in a minor milk component 
of interest if it does not dominate the spectra. Addi-
tionally, specific milk components may have different 
ideal model development sets. By randomly selecting 
samples out of a group with near identical quantities 
of one fatty acid, inadvertently, samples with similar 
composition for another, possibly correlated milk trait 
such as total fat content may be selected together. This 
could cause the predictive models to inappropriately 
put strength on the regions of the spectrum relating to 
the other component and incorporate the correlation in 
the model. When measured milk components are read-
ily available, along with spectral data, coupling sample 
selection strategies involving both sample composition 
and spectral information could be an improvement 
upon randomly selecting samples with similar composi-
tion to produce the more uniform distribution. Such 
selection strategies may aid in ensuring variability in 
regard to other milk components within a group of 

samples with the same quantity of the fatty acid of 
interest. As a substitute for spectra, selecting samples 
based on the trait of interest while also considering 
other known, measured milk component traits influenc-
ing the spectrum could also be investigated. In cases 
where the prediction model development set is skewed, 
such as the case with the present fatty acid data, it may 
be worthwhile to look at alternatives to PLS regression, 
such as partial quantile regression.

CONCLUSIONS

We examined the use of MIR spectra to predict fatty 
acid content in bovine milk for the Canadian dairy 
population. The accuracy of the predictions depended 
on the fatty acid examined and the PLS model develop-
ment set used to create the equation. The greatest Rcv

2  
was achieved for fatty acids with high concentrations in 
milk and when they were expressed on a per milk weight 
basis. Excluding excess samples from overabundant re-
gions of the distribution made further improvements to 
the equations and can be further investigated. The 
predictions for some of the fatty acids are sufficient for 
monitoring changes in fatty acid profiles and for use in 
animal breeding programs for potential genetic changes. 
Predicted fatty acids from equations with lower Rcv

2  
may still be useful as indicators for actual fatty acid 
contents. Future research will further examine the ideal 
model development set for different fatty acids and 
spectral pretreatment procedures to improve prediction 
equations as well as their utility in genetic improve-
ment programs.
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