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ABSTRACT

The objective of this study was to evaluate the 
ability of milk infrared spectra to predict blood 
β-hydroxybutyrate (BHB) concentration for use as a 
management tool for cow metabolic health on pasture-
grazed dairy farms and for large-scale phenotyping for 
genetic evaluation purposes. The study involved 542 
cows (Holstein-Friesian and Holstein-Friesian × Jersey 
crossbreds), from 2 farms located in the Waikato and 
Taranaki regions of New Zealand that operated under 
a seasonal-calving, pasture-based dairy system. Milk 
infrared spectra were collected once a week during the 
first 5 wk of lactation. A blood “prick” sample was 
taken from the ventral labial vein of each cow 3 times a 
week for the first 5 wk of lactation. The content of BHB 
in blood was measured immediately using a handheld 
device. After outlier elimination, 1,910 spectra records 
and corresponding BHB measures were used for predic-
tion model development. Partial least square regression 
and partial least squares discriminant analysis were 
used to develop prediction models for quantitative de-
termination of blood BHB content and for identifying 
cows with hyperketonemia (HYK). Both quantitative 
and discriminant predictions were developed using the 
phenotypes and infrared spectra from two-thirds of the 
cows (randomly assigned to the calibration set) and 
tested using the remaining one-third (validation set). A 
moderate accuracy was obtained for prediction of blood 
BHB. The coefficient of determination (R2) of the pre-
diction model in calibration was 0.56, with a root mean 
squared error of prediction of 0.28 mmol/L and a ratio 
of performance to deviation, calculated as the ratio 
of the standard deviation of the partial least squares 
model calibration set to the standard error of predic-

tion, of 1.50. In the validation set, the R2 was 0.50, with 
root mean squared error of prediction values of 0.32 
mmol/L, which resulted in a ratio of performance to 
deviation of 1.39. When the reference test for HYK was 
defined as blood concentration of BHB ≥1.2 mmol/L, 
discriminant models indicated that milk infrared spec-
tra correctly classified 76% of the HYK-positive cows 
and 82% of the HYK-negative cows. The quantitative 
models were not able to provide accurate estimates, 
but they could differentiate between high and low BHB 
concentrations. Furthermore, the discriminant models 
allowed the classification of cows with reasonable accu-
racy. This study indicates that the prediction of blood 
BHB content or occurrence of HYK from milk spectra 
is possible with moderate accuracy in pasture-grazed 
cows and could be used during routine milk testing. 
Applicability of infrared spectroscopy is not likely 
suited for obtaining accurate BHB measurements at an 
individual cow level, but discriminant models might be 
used in the future as herd-level management tools for 
classification of cows that are at risk of HYK, whereas 
quantitative models might provide large-scale pheno-
types to be used as an indicator trait for breeding cows 
with improved metabolic health.
Key words: infrared spectroscopy, blood 
β-hydroxybutyrate, ketosis, prediction model

INTRODUCTION

Hyperketonemia (HYK) is an abnormally high 
concentration of circulating ketone bodies, mainly 
BHB, which can occur during extreme negative energy 
balance in early lactating dairy cows (Duffield et al., 
2009). Serum BHB concentrations equal or greater 
than 1.2 or 1.4 mmol/L are the generally accepted ref-
erence thresholds to diagnose HYK, and are associated 
with increased risks of displaced abomasum, metritis, 
and clinical ketosis (CK, Duffield et al., 2009), in addi-
tion to decreased conception rates and decreased milk 
production (Duffield, 2000) in cows managed in housed 
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systems. Therefore, these thresholds for HYK are often 
used to diagnose subclinical ketosis (SCK).

Across different dairying systems, observed inci-
dences for SCK, when defined as the percentage of 
cows that have at least one blood BHB concentration 
≥1.2 mmol/L during early lactation, ranged from 11 to 
37% in Europe (Suthar et al., 2013) and 40 to 60% in 
North America (Duffield, 2000; McArt et al., 2012). In 
pasture-grazed systems in New Zealand, Compton et 
al. (2015) reported that, on average, 68% of cows tested 
HYK-positive during the first 5 wk postcalving. Hence, 
HYK or SCK is common across different dairying sys-
tems, and the rates are far higher than the incidence 
rates reported for CK, in a review of 18 studies, from 
0.2 to 17.2% (Pryce et al., 2016).

Hyperketonemia diagnosis is based on BHB in blood, 
so blood analysis represents the gold standard method 
for determination. However, due to practical limitations 
arising from individual blood sampling and sample 
processing time, the routine testing of all animals at 
risk using blood tests is unfeasible. These limitations 
also apply to the more user-friendly, cow-side tools that 
have been developed to help veterinary practitioners in 
on-farm HYK diagnosis, based on a rapid assessment 
of BHB in blood. Implementing a HYK surveillance 
program using records from routine milk tests, and 
potentially, in-line milk sensors may be more practical 
and less labor-intensive. Routine predictions of ketone 
bodies content in milk can be obtained by infrared (IR) 
spectroscopy analysis of test-day milk samples (Gre-
let et al., 2016). Even though IR predictions (IP) of 
ketone bodies concentrations in milk have a relatively 
low accuracy (R2 = 0.71, Grelet et al., 2016), they are 
moderately heritable and have a moderate to high ge-
netic correlation with CK (Koeck et al., 2014, 2016). In 
addition, they can predict the occurrence of HYK bet-
ter than fat-to-protein ratio (van Knegsel et al., 2010).

Commercial calibration equations for the IP of milk 
ketone bodies have typically been developed for cows 
managed in housed systems and have not been tested 
in certain pasture-grazed dairy systems, including New 
Zealand. Hence, national IP of milk BHB are not yet 
available. Moreover, due to their differences in seasonal 
management, whereby cows calve in late winter/early 
spring and are grazed outdoors for all or part of the 
year, these systems are likely to benefit from the de-
velopment of dedicated calibration equations that ac-
count for the joint effect of season and lactation stage. 
Compared with housed systems popular in Europe and 
North America, cows managed in pasture-grazing sys-
tems generally have a relatively lower milk yield, and 
higher fat and protein concentration, while also having 
higher circulating BHB concentrations (Roche et al., 
2010) due to differences in diet composition and cow 

genetics. Considering that the average content of milk 
BHB is below the limit of detection of IR spectrometers 
(Broutin, 2015) and IP of milk BHB relies on correlated 
traits (e.g., concentration of fat and protein, lactose, 
fatty acid profile, and so on), developing dedicated cali-
bration models is particularly important.

An alternative approach to the prediction of milk 
BHB is to predict blood BHB. By avoiding intermediate 
steps, prediction errors can be minimized when traits of 
interest (e.g., HYK) are predicted directly from spectra 
(Gengler et al., 2016). Depending on the accuracy of 
IR prediction models, IP might be used to define best 
practices, adjust feeding and health management, and 
ultimately improve animal welfare. Under the condition 
that spectral data are available on a large scale and 
IP are sufficiently accurate, phenotypes for blood BHB 
might also allow genetic and genomic evaluations for 
cow metabolic health traits.

The objective of this study was to evaluate the ability 
of milk IR spectra to predict the concentration of BHB 
in blood and the occurrence of HYK in pasture-grazed, 
early-lactation dairy cows to serve in the future as a 
tool for large-scale phenotyping for selective breeding 
purposes and for on-farm management.

MATERIALS AND METHODS

Care and Use of Animals

All research animals were acquired, retained, and 
used in compliance with national laws and regulations. 
The Ruakura Animal Ethics Committee (Hamilton, 
New Zealand) approved all animal manipulations 
(RAEC#13902) in accordance with the New Zealand 
Animal Welfare Act (Ministry of Primary Industries, 
1999).

Animals and Reference Analysis

This study was part of a larger project investigating 
treatment of HYK that involved in total 967 cows, from 
2 research farms and one university demonstration 
farm located in the Waikato, Taranaki, and Canterbury 
regions of New Zealand. Milk spectral data were only 
available from the Waikato and Taranaki farms (542 
cows; Holstein-Friesian and Holstein-Friesian × Jersey 
cows in both farms).

Both farms operated under a seasonal-calving, pas-
ture-based dairy system. Lactation number of the cows 
ranged from 1 to 12. A blood “prick” sample was taken 
using a 29-gauge needle and 0.5-mL syringe (without 
anticoagulant) from the ventral labial vein of each cow 
3 times a week (on Monday, Wednesday, and Friday) 
for the first 5 wk of lactation. Therefore, each cow was 
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tested 15 times. The BHB concentration in blood was 
measured immediately after blood sampling, using a 
handheld device (FreeStyle Optium Blood Glucose 
and Ketone Monitoring System, Abbott Diabetes Care 
Ltd., Maidenhead, Berkshire, UK), as per the manu-
facturer’s instructions. This handheld device has been 
recently validated previously for use on dairy cows and 
is known to provide very accurate results (Fiorentin 
et al., 2017). All blood samples were collected at ap-
proximately the same time of the day (0700 h; before 
the AM milking and before a fresh allocation of pasture 
and supplementary feed were offered), between June 
and October 2016.

Cows in each farm were randomly assigned to either 
a control or a treatment group before calving. Cows 
in the control group (n = 267) were not treated for 
HYK, whereas cows in the treatment group (n = 275) 
were drenched with 300 mL of mono-propylene glycol 
(equivalent dose 310 g) every time the blood BHB 
results were between ≥1.2 to <3.0 mmol/L. The treat-
ment was repeated once daily until BHB concentration 
tested <1.2 mmol/L. However, irrespective of group, 
if cows tested ≥3.0 mmol/L they were treated for CK 
with 240 mL of Ketol (Bayer New Zealand Ltd., Glen-
field, New Zealand; active ingredients propylene glycol, 
mineral glycerophosphates, choline, cobalt, and iodide) 
drenched twice daily for 3 d as per the manufacturer’s 
instructions.

Infrared Spectra Acquisition

Individual milk yields were recorded at each milk-
ing (Waikato herd using DeLaval Milk Meter, DeLaval 
Ltd., Hamilton, New Zealand; Taranaki herd using 
Westfalia Surge Metatron Milk Meter, GEA Farm 
Technologies, Cambridge, New Zealand). Milk IR spec-
tra were determined once a week on composite milk 
samples collected using the herd testing system, for the 
first 5 wk of lactation. Representative samples from the 
Monday evening milking and next morning (Tuesday) 
milking were mixed in relative proportion to milk vol-
ume before obtaining spectra. Milk samples were stored 
at 4°C before milk spectral analysis and samples from 
the Taranaki herd were also preserved using 0.02% 
bronopol antimicrobial before refrigerated transport for 
laboratory analysis. Absorbance spectra were recorded 
at a central laboratory (DairyNZ Ltd., Hamilton, New 
Zealand) using a Milko-Scan FT1 (Foss Electric A/S, 
Hillerød, Denmark) over the spectral range from 5,010 
to 925 cm−1 within 48 h after sampling. Milk compo-
nent data were verified by reference techniques for a 
subset of milk samples for each farm [milk fat by the 
Röse-Gottlieb method (IDF, 1987), CP by the Kjeldahl 
technique (Barbano et al., 1991), and lactose by the 

chloramine-T method (Amin et al., 1982)]. Due to the 
interference of water absorption, the O–H bending and 
O–H stretching regions of the spectra (between 1,628 
and 1,658 cm−1 and between 3,105 and 3,444 cm−1, 
respectively) were removed before the chemometric 
analysis (Hewavitharana and Brakel, 1997). Spectra 
transmittances (T) were transformed to absorbances 
(A) with the equation A = log(1/T). The number of 
spectra records per cow ranged from 1 to 5.

Spectra with a global standardized Mahalanobis dis-
tance (Shenk and Westerhaus, 1995) greater than 3 (n 
= 45) were considered outliers and eliminated. After 
outlier elimination, 1,910 spectra records and relative 
BHB measures, from 542 cows, were available for cali-
bration. Of these cows, 267 were in the control group 
and 275 were in the treatment group.

Calibration-Validation Partitions

Prediction models were developed using the records 
of two-thirds of the cows and validated on the remain-
ing one-third. Cows in the calibration and validation 
set were randomly selected ensuring that all the records 
from a cow (through lactation wk 1 to 5) were either 
in the calibration or the validation subset; thus, the 
analysis assessed the “across-cow” predictive power of 
the calibration equations. The calibration-validation 
procedure described above was replicated 10 times.

Selection of the Reference Values

In preliminary analyses, either Monday, Wednesday, 
or Friday blood BHB measures were associated with 
the closest day of measurement of IR spectra and used 
for model development. As an alternative, the weekly 
average BHB was also explored. However, slightly 
higher prediction accuracies (~1.5% higher R2) were 
obtained when the concentration of blood BHB mea-
sured on Monday and Wednesday (i.e., the closest days 
to milk spectra collection) were averaged together and 
associated with the closest spectra record. In addition, 
the removal of treated animals, in addition to when the 
BHB measures were taken after an animal had been 
treated, were also explored, but the results were consis-
tent with those obtained when all records were included 
in the analysis. Hence, we will discuss only the results 
obtained using the records from all cows and using 
Monday and Wednesday averaged blood BHB content 
as reference values.

Spectral Data Transformation

Several spectra mathematical treatments were com-
pared before chemometric analysis: spectra were trans-
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formed using standard normal variate, multiplicative 
scatter correction, and extended multiplicative scatter 
correction, first and second order derivatives. The gaps 
over which derivatives were calculated ranged from 1 
to 10 data points and the smooth ranged from 1 to 
8. Preliminary prediction models were also developed 
using a reduced number of selected spectral variables. 
The selected spectra regions included 212 wavenumbers 
in the region covering 968.1 to 1,577.5 cm−1, 1,731.8 to 
1,762.6 cm−1, 1,781.9 to 1,808.9 cm−1, and 2,831.0 to 
2,966.0 cm−1 (Grelet et al., 2016).

The best prediction performance was obtained using 
the spectra that excluded the water absorbance regions 
and the noninformative region ranging from 2,966 to 
5,010 cm−1, transformed using extended multiplicative 
scatter correction and a 1st derivative calculated over 
a window of 5 points. Consequently, 574 spectral vari-
ables were used in the final models.

Normalization of the BHB Distribution

Preliminary statistics indicated that BHB values were 
not normally distributed, with a higher proportion of 
low values (Figure 1). According to Grelet et al. (2016), 
when performing calibration models, this type of distri-
bution gives too much weight to the low values, impair-
ing the accuracy in predicting high values. Therefore, 
following the approach used by those authors, several 
low value samples in the distribution of BHB pheno-
types were randomly removed to obtain a reduced data 
set that covered the same range of values, but gave less 
weight to low values. Visual inspections of the data 
indicated that most of low values were between 0.3 and 
0.6 mmol/L. Preliminary prediction models were devel-

oped: (1) using the full data set (n = 1,910), (2) after 
randomly removing 25% of the data with low values 
(n = 1,780), and (3) after randomly removing 50% of 
the data with low values (n = 1,650). The values were 
then log10-transformed to approach a normal distribu-
tion. To evaluate the predictive ability of models when 
applied to a random population, the distribution of the 
samples in the validation sets was not modified. As 
the accuracy of validation did not improve when the 
models were built with a reduced proportion of low 
BHB values, the final prediction models were developed 
using all the available records, with no sample removal 
in calibration. Consequently, the average number of 
cows for each of the 10 calibration-validation partitions 
was 360 and 182, respectively, which corresponded, on 
average, to 1,267 (ranging from 1,250 to 1,283) and 643 
(ranging from 627 to 660) spectra records, respectively.

Quantitative Prediction Models

Quantitative models for predicting blood BHB 
were developed on the calibration sets using partial 
least squares (PLS) regression with a 10-fold cross-
validation, implemented in the R (R Development Core 
Team, 2018) package PLS (Mevik and Wehrens, 2007). 
Partial least squares regression is the most common 
multivariate method used in spectroscopy and it has 
been demonstrated to perform equally well than more 
innovative methods such as Bayesian regression models 
(Bonfatti et al., 2017a).

Models were then tested on the corresponding valida-
tion sets. The optimal number of PLS components was 
determined based on first local minimum value in root 
mean squared error of prediction (RMSEP). The RM-

Figure 1. Distribution of blood BHB concentration (average of 2 measurements taken at an interval of 3 d) in the totality of the samples (n 
= 1,910) before and after log10-transformation.
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SEP in calibration and validation sets, the coefficient 
of determination between the predicted and measured 
values in calibration (R2c) and validation (R2v), and 
the ratio of performance to deviation (RPD, i.e., the 
ratio of the SD of measured BHB values to RMSEP) 
were calculated and expressed as the average of the val-
ues obtained across 10 calibration-validation replicates.

In preliminary analyses, the daily milk yield (L/cow) 
recorded on the day of spectra acquisition was included 
with the spectra as an additional predictor in models, 
but led to only a minor improvement in the prediction 
accuracy in calibration and had no benefits in validation 
(data not reported). Hence, milk yield was not included 
in the subsequent analyses. As an alternative to the 
use of the IR spectra, prediction models based on milk 
yield, fat-to-protein ratio, and lactose were also tested, 
but resulted a poor predictive ability (R2 = 0.15) and 
are, therefore, not given further consideration.

Discriminant Analysis

Discriminant models aiming to differentiate HYK-
positive from HYK-negative cows were developed with 
partial least squares discriminant analysis (PLS-DA; 
Lê Cao et al., 2011), implemented in the R package 
mixOmics (Rohart et al., 2017). Duffield et al. (2009) 
reported an increased health risk and reduced milk 
production when blood BHB concentrations exceeded 
either 1.2 or 1.4 mmol/L. Hence, these 2 thresholds 
were used as a diagnostic reference to discriminate cows 
with HYK (positives) from non-HYK (negatives) cows 
in 2 subsequent analyses. Discriminant models were de-
veloped and tested on the same calibration-validation 
sets created for developing and testing the quantitative 
prediction models.

The accuracy of discriminant models was assessed by 
producing and calculating the area under the receiver 
operating characteristic curve (AUC) based on a 10-
fold cross-validation. The optimal cut-off value for each 
test variable was defined as the point where the sum 
between sensitivity and specificity was at a maximum 
(i.e., equal weighing of false-positive and false-negative 
test results). The PLS-DA method used in this study 
implemented in the mixOmics package already uses a 
prediction threshold based on distances that optimally 
determine class membership of the samples tested. As 
such, AUC and ROC are not needed to estimate the 
performance of the model and are provided only as 
complementary performance measures. The estimated 
P-value provided is from a Wilcoxon test between the 
predicted scores of one class and the other.

The statistics of the discriminant models were ex-
pressed in terms of sensitivity (the proportion of 
positives that are correctly classified), specificity (the 

proportion of negatives that are correctly classified), 
and global accuracy (total percentage of correct classi-
fication). A high specificity can still result in numerous 
false positive tests when most of the cows tested are 
actually negative. For this reason, the results were also 
expressed in terms of positive and negative predictive 
values (PPV and NPV, respectively). Positive pre-
dictive value is the proportion of positive results that 
are true positive and is calculated as PPV = number 
of true positives/(number of true positives + number 
of false positives). Negative predictive value is the 
proportion of negative results that are true negatives, 
calculated as follows: NPV = number of true negative/
(number of true negative + number of false negatives). 
Distributions of observed blood BHB concentrations for 
each of the test result categories (i.e., true negative, 
false positive, false negative, and true positive) were 
also investigated.

Statistical analyses and plots were obtained in R (v. 
3.4.4, R Development Core Team, 2018).

RESULTS AND DISCUSSION

Descriptive Statistics of Blood BHB Content  
and Frequency of HYK and CK

On average, cows produced 21.6 ± 4.8 kg of milk 
per day, containing 4.41 ± 0.61% of fat and 3.54 ± 
0.30% of protein from wk 1 to 5 in lactation. Descrip-
tive statistics for weekly blood BHB content and the 
frequency of HYK-positive blood samples (defined as 
number of HYK-positive blood samples, using a thresh-
old of either BHB ≥1.2 or ≥1.4 mmol/L, divided by 
the total number of averaged Monday and Wednesday 
blood samples) during this period are reported in Table 
1. Mean blood BHB concentrations decreased with the 
increasing number of week in lactation. The average 
blood BHB concentration was 0.77 ± 0.43 mmol/L, 
and ranged from 0.15 to 4 mmol/L. In a study per-
formed by Compton et al. (2014), on a large sample 
of pasture-grazed, New Zealand dairy cows, the overall 
mean blood BHB concentration was similar (0.82 ± 
0.59 mmol/L, median = 0.7) to our study.

In the current study, using the defined threshold 
of blood BHB ≥1.2 mmol/L, the frequency of HYK-
positive blood samples during the first 5 wk of lacta-
tion was, on average, 10.4%. The average frequency 
of HYK-positive samples calculated using a threshold 
of 1.4 mmol/L was 6.5%. It is worth noting that the 
actual incidence of HYK in New Zealand dairy cows is 
expected to be higher than that reported in this study, 
as roughly half of the cows were treated for HYK (treat-
ment group) and all cows diagnosed as affected by CK 
were treated. Furthermore, BHB values for Monday 
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and Wednesday measures were combined and Friday 
measures were not included in the current study, which 
would likely have removed additional positive cases 
because the median time to spontaneous resolution of 
HYK is approximately 5 d (McArt et al., 2011). On av-
erage, for the cows belonging to the control group, the 
frequency of HYK-positive samples, defined as BHB 
≥1.2 or ≥1.4 mmol/L, was 12.5 and 8.3%, respectively.

The frequency of HYK-positive samples was greatest 
in the first week of lactation and reduced with increas-
ing week of lactation. This result is consistent with 
McArt et al. (2012), who reported that the peak daily 
prevalence of SCK occurred at 5 DIM when 28.9% of 
housed cows had a positive test when measured 3 times 
a week during the first 30 DIM. Daily prevalence was 
defined as the number of cows with BHB ≥1.2 mmol/L 
on each DIM divided by the total number of cows tested 
on that DIM. Similarly, Compton et al. (2014) reported 
that the prevalence of SCK (BHB ≥ 1.2 mmol/L) in 
pasture-grazed cows was 23.8% at 7 to 12 d postcalving 
but had decreased to 5.9% when measured again at 35 
to 40 d postcalving. In contrast, Compton et al. (2015) 
reported that the prevalence of SCK in pasture-grazed 
cows was lowest during 0 to 4 d postcalving (17.9%) 
relative to weekly measures taken between 7 and 39 d 
postcalving (range 26.0 to 34.2%).

Mean blood BHB was higher in first and fourth and 
later parities and at its lowest in parity 2 to 3. Hence, 
the frequency of HYK-positive samples was lower in 
cows from parity 2 to 5 compared with cows at first 
parity and from parities 6 and higher. The greater risk 
of HYK in older cows is consistent with previous stud-
ies conducted in both housed (Duffield et al., 1998) and 
pasture-grazing (Compton et al., 2015) systems.

On average, cows with blood BHB <1.2 mmol/L 
produced 21.6 ± 4.8 L/d, with 4.38 ± 0.68 fat % and 
3.55 ± 0.30 protein %. Cows with at least one blood 
BHB ≥1.2 mmol/L had comparable milk yield (21.4 ± 

4.8), but slightly higher fat % (4.67 ± 0.59) and lower 
protein % (3.39 ± 0.30), as expected (Duffield, 2000).

Prediction of Blood BHB Content

The scatter plot of predicted versus measured blood 
BHB content obtained in one of the validation sets is 
presented in Figure 2. Results indicate that models 
were more accurate in predicting the low than the high 
BHB values, in agreement with Grelet et al. (2016). 
The relatively low number of samples with high values 
of BHB is a limiting factor in development of IR pre-
diction models. Hence, as an alternative preliminary 
approach, a proportion of the samples (25 and 50%) in 
the calibration sets were excluded from the analysis, to 
obtain a more balanced distribution of the BHB values. 
This approach has been used by Grelet et al. (2016) in 
the IR prediction of milk BHB and NEFA and has been 
tested by Fleming et al. (2017) for the IR prediction of 
milk fatty acid profile.

The R2c increased (up to 0.63, data not reported) as 
the proportion of samples excluded increased but this 
led to a reduced R2v (0.42, data not reported). These 
results indicate that this approach is not expected to 
improve the predictive ability of models when they are 
applied at the population level. Grelet et al. (2016) and 
Fleming et al. (2017) concluded that artificially modify-
ing the distribution of the variable would be beneficial 
for the predictive ability of models. However, in both 
studies, models have been tested on data having the 
same “modified” distribution of the calibration set. If 
the models are to be used to predict a large population, 
the BHB distribution in the new samples are likely 
to be similar to the full data set, with most samples 
characterized by very low, or low values. In our study, 
the models were developed on calibration sets that had 
a distribution that was artificially modified, but they 
were then tested on a random sample to mimic the con-

Table 1. Descriptive statistics for blood BHB concentration (average of 2 measures taken over 3 d) and frequency of blood samples that tested 
positive for hyperketonemia (HYK; defined as a concentration of blood BHB ≥1.2 or 1.4 mmol/L) across weeks of lactation and parities

Source of  
variation n

Blood BHB concentration, mmol/L

 

HYK frequency, %

Median Mean SD Minimum Maximum BHB ≥1.2 mmol/L BHB ≥1.4 mmol/L

DIM          
 1–7 212 0.80 0.87 0.40 0.25 3.05  16.04 8.49
 8–14 384 0.75 0.83 0.40 0.20 2.65  12.50 6.51
 15–21 434 0.70 0.80 0.45 0.20 3.40  11.75 8.29
 22–28 495 0.70 0.75 0.45 0.15 3.55  8.28 6.46
 29–35 385 0.60 0.66 0.40 0.15 4.00  6.23 3.65
Parity          
 1 447 0.70 0.77 0.47 0.15 3.05  12.08 8.05
 2–3 721 0.65 0.68 0.34 0.15 3.20  6.52 3.33
 4–5 295 0.65 0.74 0.39 0.20 3.40  8.81 6.78
 6–7 246 0.88 0.95 0.45 0.30 3.45  17.07 9.76
 >7 201 0.80 0.93 0.54 0.25 4.00  14.43 10.45
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ditions that the models will operate under in the future. 
This can explain the inconsistent results obtained in 
our study when compared with those in the literature.

Average fitting statistics of final prediction models 
for blood BHB are reported in Table 2. A moderate 
accuracy was obtained for prediction of blood BHB. 
On average, for log(BHB), the R2c was 0.58 (RPD = 
1.56), whereas when predicted values were back-trans-
formed to mmol/L, R2c was 0.56, with RMSEP = 0.28 
mmol/L, and RPD = 1.50. In validation, the R2 was 
only slightly lower than in calibration. Specifically, R2v 
was 0.52 and 0.50, with RMSEP values of 0.15 and 
of 0.32 mmol/L, which translated into RPD of 1.43 
and 1.39, for log(BHB) and BHB, respectively. These 
results indicate that the models are not expected to 
provide accurate quantitative values at the individual 

cow level, but the moderate R2v indicate that they 
could potentially be used to distinguish low and high 
values, or used to predict aggregate values (i.e., herd 
average) with reasonable accuracy. Because the predic-
tion error variance of the mean of a group of n samples 
is √n times smaller than the prediction error variance 
of an individual sample (Heuer et al., 2001), the IP are 
expected to be accurate enough to be used as a herd 
health indicator. For example, in a herd of 100 cows, 
the prediction error variance of the herd average BHB 
is expected to be 10 times lower than the prediction 
error variance of the BHB in individual samples.

Previous studies have focused on using milk IR spec-
trum to predict indicators of energy status of cows, 
such as acetone, BHB, and citrate, in milk (Heuer et 
al., 2001; de Roos et al., 2007; Grelet et al., 2016). 

Figure 2. Relationship between measured blood BHB contents and infrared predictions obtained in validation for one of the validation sets, 
before (left) and after (right) back-transformation of log10-transformed BHB values to millimoles per liter. The dashed line corresponds to the 
linear regression y = x. The solid line corresponds to the linear regression of infrared predicted BHB on measured blood BHB. R2v is the R2 in 
validation, and RMSEP is the root mean squared error of the prediction model.

Table 2. Average fitting statistics (SD in parentheses) of quantitative prediction models for blood BHB 
concentration obtained across 10 calibration-validation partitions1

Trait n
No. of  
terms RMSEP R2 RPD

Log10 (BHB)      
 Calibration 1,267 (11) 24 (4.14) 0.14 (0.003) 0.58 (0.027) 1.56 (0.045)
 Validation 643 (11) 24 (4.14) 0.15 (0.004) 0.52 (0.033) 1.43 (0.056)
Back-transformed BHB      
 Calibration 1,267 (11) 24 (4.14) 0.28 (0.013) 0.56 (0.028) 1.50 (0.048)
 Validation 643 (11) 24 (4.14) 0.32 (0.033) 0.50 (0.046) 1.39 (0.068)
1n = number of records in the data sets; no. of terms = number of optimal partial least square components; 
RMSEP = root mean squared error of prediction; RPD = RMSEP/SD of measurements.
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However, little information is available in the literature 
concerning the direct prediction of blood BHB. Brou-
tin (2015) reported an R2c of 0.54 and a RMSEP of 
0.39 mmol/L, but no external validation was reported. 
Belay et al. (2017a) reported an R2cv of 0.38 (RMSEP 
= 0.22 mmol/L) and an R2v of 0.43 (RMSEP = 0.24 
mmol/L). More recently, Luke et al. (2019) reported 
values of R2v of 0.48. Hence, the prediction accuracy 
found in our study is either in line, or higher, than that 
reported in the previous studies, with a comparable or 
lower prediction error.

The values of R2 are relatively low compared with 
those achieved for prediction of milk ketone bodies (Gre-
let et al., 2016), but the accuracies can be considered 
satisfactory considering that blood components were 
predicted indirectly from milk composition. It should 
also be noted that blood metabolites can be subject 
to a considerable variation over time, even within the 
same day (Oetzel, 2004), thus affecting the reliability 
of the reference measures, and there might be a time 
lag between the release of metabolites in blood and 
modification of milk composition. Besides the biological 
limitation, an additional technical issue is the fact that 
reference values produced by the handheld ketone me-
ter are 1-digit values and, consequently, have a discrete 
variation. This factor offsets the differences in reference 
BHB values between samples having different spectra, 
generating prediction errors.

In addition, the data set used in our study included 
samples from only 2 farms, hence accuracy and robust-
ness of prediction models is likely to improve with the 
addition of new samples, collected across more herds 
and seasons, to the calibration set (Blanco Romía and 
Alcalà Bernàrdez, 2009). While the predominant breeds 
present in New Zealand dairy cow population (Holstein-
Friesian and crossbreds) were well represented in the 
data set used in this study, the representativeness of 
farming system types was limited, so the models are 
not expected to be robust if applied to other diets 
or geographical regions (Blanco Romía and Alcalà 
Bernàrdez, 2009). Also, the data were only available 
for one season, and variation in pasture quality and 
quantity is known to affect cow performance (Dalley, 
2003), so extending the experiment to another season 
is likely to build confidence in the models developed. 
Consequently, calibration models should be enriched by 
the inclusion of additional samples, as described, before 
being applied on a large scale.

Infrared spectroscopy has a relatively low accuracy 
in predicting blood BHB and a limitation of practical 
application of IR models is the frequency of milk re-
cordings. When milk herd testing is practiced monthly, 
many cows with HYK will be missed (ideally, for rou-
tine detection of HYK, milk recordings should be per-

formed weekly). However, IR spectroscopy is still a very 
attractive option for routine ketosis diagnosis, due to 
the opportunity of prompt and inexpensive upgrading 
of the equipment with additional prediction equations 
for new traits. It has been demonstrated that even low 
accuracy milk IP can become useful in the context of 
animal breeding because of the generally high genetic 
correlation between measured traits and their IP (Bon-
fatti et al., 2017b) and IR spectroscopy might gener-
ate large scale and easily accessible phenotypes that 
would not be available otherwise. In a recent study, 
Belay et al. (2017b) demonstrated that, using even a 
comparatively low accuracy model (R2cv = 0.38) that 
was developed using Polish Holstein cows, the IP of 
blood BHB correctly classified more than 77% of ke-
totic Norwegian Red cows correctly, using confirmation 
by veterinary intervention. In addition, BHB predic-
tions were moderately heritable (h2 ranged from 0.25 to 
0.37 across lactation stages), and genetically correlated 
with CK (0.47), milk yield (0.28), and protein content 
(−0.37). This means that effects of different breeds and 
environments might not necessarily prevent the use of 
prediction models in a different breed and environment. 
Application of commercial calibration equations for the 
IP of milk ketone bodies (or of models developed in 
other countries for the IP of blood BHB content), to 
New Zealand milk samples would allow comparison of 
the predictive ability of models developed using differ-
ent populations. In addition, reference data from differ-
ent countries might be shared in future to create more 
robust equations.

Prediction of HYK Occurrence

The number of true positives, true negatives, false 
positives, and false negatives obtained by discriminant 
models is reported in Table 3, as well as the sensitiv-
ity, specificity, overall accuracy, PPV, NPV, and AUC. 
When the reference test for HYK was defined as blood 
concentration of BHB ≥1.2 mmol/L, sensitivity and 
specificity in calibration were respectively around 82 
and 84%, meaning that 82 and 84% of the HYK-pos-
itive cows and HYK-negative cows, respectively, were 
classified as such. The global accuracy (i.e., the total 
proportion of correct classified records) was 84%. In 
validation, the global accuracy was 82 and 76% of the 
HYK-positive cows and 82% of the HYK-negative cows 
were classified as such. Hence, while the quantitative 
models developed could differentiate between high and 
low BHB values, the discriminant models developed 
here allow the classification of cows with reasonable 
accuracy.

From a management perspective, it is of interest to 
correctly identify hyperketonemic cows, as they have 
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increased risks of metabolic and reproductive disorders 
(Duffield et al., 2009), but a high specificity does not 
necessarily translate to a low number of false positive 
tests. In calibration, the PPV was 37%, meaning that 
only 37% of the cows that were predicted as being “af-
fected,” were actually hyperketonemic. This proportion 
slightly decreased in validation (35%), leading to a 
proportion of false positives (expressed on the number 
of cows predicted as positive) of 63%. At a threshold of 
1.4 mmol/L, despite the higher sensitivity and specific-
ity, the PPV decreased to 32 and 28% in calibration 
and validation, respectively. This is likely due to the 
lower prevalence of HYK at a threshold of 1.4 mmol/L, 
compared with the prevalence at a threshold of 1.2 
mmol/L. Conversely, the NPV was always greater than 
97%.

Plasma BHB concentrations of cows that were false 
positively or false negatively misclassified by the dis-
criminant model were compared with those of correctly 
classified as positive or negative cows (results not re-
ported). Mean plasma BHB concentrations of misclas-
sified records were closer to the threshold value of 1.2 
or 1.4 mmol/L than those of cows correctly classified 
as either HYK-positive or HYK-negative. Of the false-
positives obtained, independent of the threshold used 
to classify cows, 50% had BHB ≥0.95 mmol/L and 75% 
had had BHB ≥0.75 mmol/L.

In the literature, models that use milk IR spectra for 
classification of hyperketonemic cows have mostly been 
developed defining HYK based on the concentration of 
ketone bodies in milk (Hansen, 1999; Heuer et al., 2001; 
de Roos et al., 2007). If compared with our results, the 
sensitivity, specificity, and PPV reported in these stud-

ies is generally very high. However, the determination 
of BHB in blood is considered the reference test for 
SCK (Duffield, 2000) and these methods have not been 
validated for their ability to detect cows with HYK 
using blood BHB concentration as the diagnostic refer-
ence criterion.

Only few studies (van Knegsel et al., 2010; van der 
Drift et al., 2012) reported classification models based 
on IP and blood BHB as a diagnostic method for HYP 
and only 2 of those (Gelé et al., 2015; Pralle et al., 2018) 
used the full IR spectra for classifying cows. Excluding 
the results reported by van der Drift et al. (2012), be-
cause their model was not validated on an independent 
set of samples, sensitivity values in these studies ranged 
from 0.80 (van Knegsel et al., 2010) to 0.83% (Pralle et 
al., 2018), whereas specificity ranged from 0.69 (Gelé et 
al., 2015) to 81% (Pralle et al., 2018), in line with our 
results. A common finding, consistent across studies, is 
the low PPV, ranging from less than 20% (van Knegsel 
et al., 2010) to 48% (Gelé et al., 2015). This is also 
in line with our results, meaning that the application 
of models would result in unnecessary treatment of a 
significant proportion of healthy cows.

It is worth noting that the PPV, albeit of clinical 
relevance, is dependent on the prevalence of the disease 
(i.e., it increases at increasing proportions of positive 
tests). Hence, differences in prevalence (deriving by 
factors such as breed, farming system, parity, feeding 
management, production level of the cows, HYK detec-
tion method, and so on) can affect model performance. 
The prevalence of HYK in the study with the best per-
formance in terms of PPV (Gelé et al., 2015) was much 
higher (35%) than that reported by van Knegsel et al. 

Table 3. Performance in classification, obtained in calibration and external validation, for the discrimination of cows affected by hyperketonemia 
(HYK)1

Item

Threshold for diagnosis of HYK

BHB ≥1.2 mmol/L

 

BHB ≥1.4 mmol/L

Calibration Validation Calibration Validation

Records, no. 1,267 ± 11 643 ± 11  1,267 ± 11 643 ± 11
Prevalence, % 10.14 ± 0.76 10.82 ± 1.50  6.29 ± 0.75 7.05 ± 1.42
Model components,2 no. 8 ± 2 8 ± 2  10 ± 2 10 ± 2
True positives, no. 105 ± 9 53 ± 8  68 ± 10 35 ± 9
True negatives, no. 960 ± 16 473 ± 20  1,040 ± 23 510 ± 15
False positives, no. 179 ± 17 100 ± 11  148 ± 15 87 ± 10
False negatives, no. 23 ± 3 17 ± 4  12 ± 3 11 ± 4
Sensitivity, % 81.90 ± 2.47 76.16 ± 4.83  85.17 ± 4.57 76.29 ± 11.21
Specificity, % 84.27 ± 1.38 82.48 ± 2.12  87.54 ± 1.32 85.44 ± 1.65
Global accuracy, % 84.03 ± 1.31 81.81 ± 1.59  87.40 ± 1.32 84.85 ± 1.17
Positive predicted value, % 37.08 ± 3.43 34.56 ± 4.61  31.53 ± 4.11 28.23 ± 5.60
Negative predicted value, % 97.64 ± 0.00 98.89 ± 0.00  98.01 ± 0.01 98.01 ± 0.01
Area under the curve, % 91.63 ± 1.16 87.99 ± 1.39  94.78 ± 1.11 90.94 ± 1.81
1Values correspond to the average ± SD obtained for 10 calibration-validation partitions. 
2Number of components used by the discriminant model.
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(2010) and van der Drift et al. (2012; 7–13 and 11%, re-
spectively), and much higher than that observed in our 
study (10.4%, if considering a threshold of 1.2 mmol/L 
of BHB). Hence, given the relatively low frequency of 
HYK in our sample and the sole use of spectral variables 
as predictors, our results can be considered promising.

On farm, the percentage of cows classified as affected 
by HYK might be used as an evaluation parameter for 
cow metabolic health, for example, for diet or inter-
vention management. Validation of IP of BHB with 
measures of BHB in blood using data from different 
farms with more variation in cow characteristics and 
diets could help assess the value of prediction models. 
However, the practical utility of calibration models 
relies not only on accuracy of prediction, but on the 
relationship of the predicted BHB values (or of the 
predicted class) with cow profitability. In New Zealand 
dairy cows, concentration of blood BHB ≥1.2 mmol/L 
during early lactation was associated with decreased 
6-wk pregnancy rate (Compton et al., 2015); however, 
more in-depth investigations of the effect of treating 
high BHB concentration on production and reproduc-
tion parameters are needed. Determining phenotypic 
and genetic associations between the IP and milk 
production and reproduction traits will be particularly 
important for evaluating the potential of IP of blood 
BHB as a genetic or management tool, to improve cow 
metabolic health through selective breeding or through 
on-farm practices.

CONCLUSIONS

The prediction of blood BHB content from milk is 
possible and moderately accurate and can potentially 
be used as a herd-level management tool or for genetic 
selection purposes in pasture-grazed systems. Applica-
bility of IR spectroscopy is not likely suited for obtain-
ing accurate BHB measurements at an individual cow 
level, but at this level of accuracy, because of the gener-
ally high genetic correlation between measured traits 
and their IP, it might be used by breeding organiza-
tions as an indicator trait for cow metabolic health in 
genetic selection programs. The number of samples and 
farms should be increased in the future to maximize 
the variability of the calibration set and increase model 
robustness. Other blood metabolites could also be ana-
lyzed with the aim of predicting cow metabolic status 
using information from different sources. To evaluate 
the usefulness of IP as indicator traits of blood BHB 
content in future selective breeding programs, genetic 
parameters of the IR predicted blood BHB and its rela-
tionship with productive and reproductive performance 
should also be estimated.
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