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Fig. 8. Smoothed binned signal-to-noise bispectrum B for the Planck 2015 cleaned sky map, as determined with the binned estimator, as a function
of `1 and `2 for a fixed `3-bin [518, 548]. From left to right results are shown for the four component separation methods SMICA, SEVEM, NILC,
and Commander. From top to bottom are shown: TTT, TTT cleaned from radio and CIB point sources; T2E, TE2; and EEE. The colour range is in
signal-to-noise from �4 to +4. The light grey regions are where the bispectrum is not defined, either because it is outside the triangle inequality or
because of the cut `Emax = 2000.

contamination in the cleaned TTT bispectra, in agreement with
the results of Table 3. However, after removing it we do not see
a clear signal of any other residual NG. Of course this is for the
moment only a qualitative statement; more quantitative tools for
studying the amount of NG in these smoothed bispectra are in
development.

Looking at the polarized bispectra in the high-`3 slices, in
particular TE2 and EEE, we do see some bluer and redder re-
gions that might indicate residual NG. This agrees with state-
ments made earlier, and discussed in greater detail in the next
section, that the Planck polarized bispectrum is for the moment
not as clean and well-understood as the temperature one. We also
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Fig. 9. Similar to Fig. 8, but with `3 2 [1291, 1345].

see a very good qualitative agreement between the four compo-
nent separation methods in temperature, which worsens some-
what when mixing in more and more polarization; in particular
SMICA and NILC give very similar results.

6.3. Primordial curvature reconstruction

In this section, we compress the information in T and E maps
into maps of projected primordial curvature fluctuations, ⇣. To
the extent that the primary CMB temperature and polarization

are Gaussian fields and the early universe ⇣ fluctuations are pre-
sumed Gaussian, all of the information in T, E is encoded in
the mean field (Wiener-filtered map) plus fluctuations, character-
ized by a covariance matrix; it is just a di↵erent compression/re-
expression of the original statistics. Thus, one could look for
non-Gaussian deviations by directly evaluating the 3-point and
higher statistics of this re-expression. Since fluctuations as well
as the mean are given, a full description of the errors follows.
That a Gaussian assumption is made does not mean that the
Wiener-filtered map is in fact Gaussian, since the constraining
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data may drive it from a map consistent with Gaussianity. Hence
one can search in the statistics of the Wiener-filtered map for
evidence for non-Gaussianity.

The weighting of the temperature and E-mode polarization
associated with the Wiener filter is an optimal one (inverse-
total-covariance weighted), and estimators for non-Gaussianity
constructed using this expression are nearly optimal. However,
since a (fiducial) primordial power spectrum is assumed for the
Wiener filter (usually a uniform ns ⇣-spectrum, using the best fit
Planck 2015 scalar spectral index and power amplitude As), this
approach is best suited for perturbative non-Gaussianity of the
sort we treat in this paper. In practice, the estimators used here
for non-Gaussianity act directly on temperature and polarization
data, rather than through the intermediary of optimal ⇣-maps and
their fluctuations.

The scalar fluctuations can be expressed in terms of the cur-
vature variable ⇣(x) = ln a(x) on uniform total density hypersur-
faces, where a is the inhomogeneous expansion factor, or, equiv-
alently, by its wavenumber transform ⇣(k). In turn, ⇣(k) can be
expanded in multipoles, ⇣LM(k). Instead of the magnitude of the
wavenumber k, a mixed representation gives a multipole expan-
sion at each comoving distance from our location, �, ⇣LM(�),
M = 0, ..., L. Here  = c or s, with  = c referring to the real part
of ⇣LM and  = s to the imaginary part. For M = 0 there is no
s component, only c. The mean of the ⇣ field given the temper-
ature field T and its covariance describing allowed fluctuations
about that mean are

h⇣LM(�) | aT
LMi = C⇣TL (�)

h
CTT

L

i�1
aT

LM (52)

⇥ h�⇣LM(�)�⇣L0M00 (�0) |T i = �LL0�MM0�0 (53)

⇥

⇢
C⇣⇣L (�, �0) �C⇣TL (�)

h
CTT

L

i�1
CT⇣

L (�0)
�
.

In these expressions, CTT is the total covariance for the tem-
perature, including both signal and noise variances. The specific
forms assume the CTT matrix is diagonal in multipole space,
depending only on CTT

L , but if the noise is inhomogeneous it
will have o↵-diagonal components and the equations become
matrix equations. In this section, we assume the noise is diag-
onal. Equation (52) shows the unsurprising result that for each
LM only one mode is determined by T . Replacing T by E gives
h⇣LM(�) | aE

LMi and h�⇣�⇣†|Ei. Although T and E are correlated,
the uncorrelated part of E delivers a di↵erent mode for ⇣ from
the one given by T . Thus when ⇣ is constrained by both T and
E, the two modes deliver substantially more information than for
T and E alone, and the fluctuations about the mean are thereby
diminished. This is further helped by the acoustic oscillations of
polarization being out of phase with those for T , so when T is
down, E is not, and vice versa. The interplay of the two modes
is quantified by signal-to-noise in Fig. 10.

When both T and E are included as constraints, a two by
two matrix appears which includes the CT E correlation in the
o↵-diagonal as well as the CTT and CEE along the diagonal:

h⇣LM(�) | aT
LM, a

E
LMi =

h
C⇣TL (�) C⇣EL (�)

i†
0
BBBBB@
CTT

L CT E
L

CET
L CEE

L

1
CCCCCA

�1 2666664
aT

LM

aE
LM

3
777775 . (54)
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�
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Fig. 10. Signal-to-noise for T and E as a function of multipole L and
comoving distance � for an ideal cosmic-variance limited experiment
(upper panels) and for the Planck experiment, with noise determined
from FFP8 simulations (lower panels). The complementary nature of
the information provided by T and E is evident. The di↵erential visibil-
ity is shown for comparison.

Figure 11 shows an all-sky mean field (Wiener-filtered) map of
the curvature variable ⇣ constructed in (densely-packed) shells
from the multipoles ⇣LM(�). The figure actually shows ⇣ pro-
jected onto di↵erential visibility, w = de�⌧/d�. The map ⇣w(✓, �)
is the spherical transform of ⇣LMw =

R
w(�)d�⇣LM(�). The top

left map is h⇣w|T i using the all-sky maps SMICA DX11. The
middle left map is h⇣w|Ei, based on just the polarization infor-
mation. (The E-maps did not have high pass filtering imposed,
so that an indication of the full results obtainable with E alone
can be seen.) The bottom left panel shows h⇣w|T, Ei. Visually
the combined two-mode constraint has more detail than either
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Fig. 11. Mean field and fluctuations for di↵erential visibility projected ⇣, as described in the text. The filter used in these maps is a 400 FWHM
Gaussian. The grey regions are masked out.

of the one-mode constrained maps, enhancing the estimation of
⇣w. In each of the three cases, two sample realizations are shown
which include allowed fluctuations about the mean map. These
illustrate the level of uncertainty in the patterns found in the
mean maps, necessary ingredients to the full statistical descrip-
tion. Note that the fluctuations about the mean are larger for T
or E alone than for the combined T, E.

In all cases, the fluctuations become very large indeed if we
allow for arbitrary projections, not conditioned by the visibility.
Another approach similar to the di↵erential visibility projection
is to make a slice at � = �dec; i.e., making the projection a delta-
function in � at the peak where dw/dln � = 0, which defines �dec.
This single slice case is shown in Fig. 12. The figures look quite
similar in structure to the projected di↵erential visibility plots.
Although � ⇠ �dec is where most information is, the fluctuations
of a single slice are somewhat larger than for the di↵erential vis-
ibility projection. The di↵erential visibility includes a subdom-
inant “reionization bump”, with a small weight focused at low
L where sample variance is large; restricting the projection of ⇣
to be just over the reionization region results in a low L mean
map that is largely swamped by the allowed fluctuations about
it. The fluctuations about the mean become much larger if we

project over all �, since there are vast terrains in � in which there
is very little CMB temperature or polarization information; in
particular between recombination and reionization. For that un-
charted territory, a realization of the reconstructed ⇣-map reverts
to a realization of the fiducial ⇣-power.

Figure 10 quantifies where the information resides in
L�� space. Here, the signal variance is the ensemble average
of the square of the mean field, assuming the ⇣ are drawn from a
Gaussian with fiducial covariance,

hh⇣LM(�) |T ih⇣LM(�0) |T ii = C⇣TL (�)
h
CTT

L

i�1
CT⇣

L (�0), (56)

and the noise (i.e., fluctuation) variance is the covariance matrix,
as given by Eq. (54) for T and the equivalent for E. Figure 10
plots the signal-to-noise at each individual � slice (hence ignores
the components o↵-diagonal in �):

[S/N]T
L (�) =

⇢
p

(1 � ⇢2)
; ⇢ ⌘

C⇣TL (�)
q

CTT
L C⇣⇣L (�, �)

(57)

for T , with an equivalent expression for E. The signal-to-noise
structure in � can be contrasted with the di↵erential visibility
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Fig. 12. Mean field and fluctuations for a �dec slice of ⇣, as described in the text. The filter used in these maps is a 400 FWHM Gaussian. The grey
regions are masked out.

plotted in the bottom panel: Fig. 10 shows that the L–� infor-
mation has a reach beyond the di↵erential visibility structure,
especially for low multipoles, because the associated waves can
straddle the last scattering surface. The “reionization bump” in
signal-to-noise seen in Fig. 10 is not that prominent. The Inte-
grated Sachs Wolfe impact on the S/N is evident, but is rela-
tively low, with the consequence that we cannot draw out high
significance results from the ISW e↵ect for ⇣ reconstruction (or
equivalently for gravitational potential reconstruction).

The top panels in Fig. 10 are for an ideal experiment, with
no noise (apart from the cosmic variance “noise” in the Wiener
map fluctuations). The bottom panels of Fig. 10 include realistic
Planck noise, as estimated from the FFP8 simulations: the high
signal to noise in E in the top panels is noticeably diminished
around L ⇠ 100 over what a cosmic variance limited experiment
would give.

Figures 11 and 12 are Gaussian-filtered on a relatively large
L ⇠ 200 scale (400 FWHM). To see what happens at higher res-
olution, Figs. 13 and 14 zoom in on a typical 20� ⇥ 20� patch,
with long waves removed using a filter WL = sin2(L�Lc)/�L for
Lc < L < Lc+�L. The specific choices are Lc = 20 and �L = 20,
the values used for the Planck high pass for polarization maps.

To allow direct comparison, we have just done the same high
pass filtering for the T map. We also removed the means of the
maps. The resolution is L ⇠ 400 (200 FWHM). Figures 13
and 14 illustrate that the fluctuations play a larger role in this
higher resolution regime. Note that the �dec slice has about the
same fluctuation level as the di↵erential visibility projection.

Lensing e↵ects are not taken into account in these ⇣-maps.
In principle one could de-lens the temperature and polarization
maps before forming the Wiener filter. In practice this would be a
highly noisy operation with current Planck data. Hence the con-
taminating influence of lensing on these ⇣-reconstructions would
be treated by comparing simulated ⇣-maps with and without
lensing. Such corrections are expected to be a subdominant bias,
as it has been modelled in the rest of the paper.

7. Validation of Planck results

In this section, we perform a battery of tests aimed at verify-
ing the robustness of the results obtained in the previous sec-
tion. Table 10 shows excellent agreement with our 2013 analy-
sis of nominal mission data (Planck Collaboration XXIV 2014).
The agreement using di↵erent component separation methods in
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Fig. 13. Mean field and fluctuations for di↵erential visibility projected ⇣, for a 20 deg by 20 deg patch, as described in the text. The filter used in
these maps is a 200 FWHM Gaussian. Sources in grey are masked out.

Fig. 14. Mean field and fluctuations for a �dec slice of ⇣, for a 20 deg by 20 deg patch, as described in the text. The filter used in these maps is a
200 FWHM Gaussian. Sources in grey are masked out.
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temperature is also generally very good. Our focus here is thus
on polarization bispectra. Redundancy is perhaps the most im-
portant element in our analysis, as far as robustness is concerned.
We devote considerable attention to comparing the outcomes
of di↵erent estimators and component separation pipelines, and
assess their level of internal consistency. We also verify the
stability of our results in the harmonic and pixel domains, by
considering di↵erent sky cuts and multipole intervals. Given the
large computational requirements of these tests, and since re-
sults from di↵erent optimal estimators agree very well, as shown
in previous sections, we will variously use the KSW, binned,
or modal pipeline for di↵erent tests. In doing this we will also
exploit the complementarity of di↵erent decompositions, which
might make some of them more suited for di↵erent tests than
others (for example, the binned pipeline directly works with a
harmonic space decomposition of the bispectrum, thus making
it perfectly suited for tests of `-dependence, the modal pipeline
can perform quick model-independent tests by working on a rel-
atively small subset of bispectrum modes, and so on).

7.1. Dependence on foreground cleaning method

7.1.1. Comparison between fNl measurements

In Table 10 we show fNL results for the local, equilateral and
orthogonal shapes, using four di↵erent optimal estimators, and
four di↵erent foreground cleaning pipelines. The agreement be-
tween di↵erent estimators, on a given map, is within a fraction
of a standard deviation, in line with theoretical expectations and
simulations, as reported in Sect. 5. This level of agreement ap-
plies to all of the T+E, (TTT), and (EEE) bispectra.

The overall picture becomes more complex when compar-
ing outputs across di↵erent foreground cleaning methods and
estimators. Whereas for TTT and T+E results the agreement also
seems quite good in this case (being at the level of half a sigma or
better, for nearly all combinations of cleaned maps and shapes),
larger discrepancies are present in the EEE bispectrum measure-
ments. The most notable di↵erences are found for the equilateral
shape, where SMICA and NILC find values of fNL consistent with
0 within 1�, while SEVEM and Commander measure a roughly
2� deviation from Gaussianity. The largest discrepancy is found
for the pair Commander–NILC, using the binned pipeline (see
Table 10). This estimator recovers f equil

NL = 369 ± 160 using the
Commander E-map and f equil

NL = 97± 141 using the NILC E-map.
Other pipelines, and di↵erent choices of component separation
methods, show slightly smaller but similar discrepancies, at a
level of about 1.5�. The same shape and estimator analysis of
temperature maps shows good agreement: Commander recovers
f equil
NL = �36± 73, while NILC gives f equil

NL = �45± 71. The com-
bined T+E measurement, still for the same modal pipeline and
equilateral shape, yields f equil

NL = 26 ± 50 for Commander and
f equil
NL = �4±46 for NILC, corresponding to about half a standard

deviation di↵erence. This general trend is seen for other shapes
and estimators.

Simulations were used to give insight into the expected level
of disagreement. For each of the four component separation
methods, we generated 100 FFP8-based Gaussian simulations
with realistic beams and noise levels. These simulations start
from the same initial single frequency realizations, and are pro-
cessed through the four di↵erent foreground cleaning pipelines.
The starting maps do not include any foreground component (the
same map generation procedure is used in the Monte Carlo deter-
mination of error bars). The di↵erences in final simulations are

thus generated only by the di↵erent data filtering and coadding
operations performed either in pixel, harmonic, or needlet do-
mains by the various foreground cleaning methods, and by addi-
tional manipulations of the maps which are required for fNL es-
timation, such as inpainting. Therefore, the average scattering in
fNL, measured from these realizations, provides us with a base-
line assessment of the expected discrepancies between di↵erent
methods when foreground residuals and other spurious sources
of NG are negligible. We can then compare them with di↵er-
ences observed on the data to establish whether they are consis-
tent with expectations, or are too large. The latter would raise
the concern that foreground contamination, or other systematics,
might be a↵ecting the results.

Results are shown in Table 12, for EEE and T+E and two dif-
ferent sky coverages. The scatter between fNL values from sim-
ulations is about 0.5� for both T+E and EEE. This is smaller
than the di↵erences in the Planck fNL values obtained from
EEE analysis of di↵erent foreground-cleaned maps, especially
for the equilateral shape. However, for the final combined T+E
measurement, observed di↵erences are in good agreement with
expectations from simulations for the majority of cases. Another
important point is that the consistency shown in Table 12 for
T+E measurements is stable to the change of sky coverage (in
polarization) from fsky = 0.74 to fsky = 0.64. This will be con-
firmed by additional tests later in this section. For the SMICA–
SEVEM pair we also verified stability using an even larger mask
with fsky = 0.52.

Residual foregrounds may be responsible for at least some
of the observed excess of scatter in EEE-derived fNL between
di↵erent cleaning algorithms. This is supported by the fact that
several EEE results for this test change significantly for di↵erent
masks, and that discrepancies are alleviated by using a larger
mask, especially for equilateral shapes (see e.g., SEVEM–NILC
and SMICA–SEVEM in Table 12). However, modal coe�cients and
their correlations are stable to a change of mask (see below), as
are values of fNL for a given component separation method (see
Table 13).

Another possible contributor is a mismatch between the
noise model (used to build the estimator normalization, weights
and linear term), and the actual noise in the data. Polarization
data are very noisy, and it is a known problem that the model
assumed underestimates the true noise. This means that the error
bars for EEE fNL results, quoted in Table 10, are somewhat un-
derestimated, which does not seem to be a problem for the final
T+E results, since the weight of the EEE bispectrum in the fi-
nal combined measurement is very low. This is confirmed by the
results of this test. Indeed, we investigate EEE in detail because
it is a useful and sensitive indicator of various systematics in the
polarized maps (which could eventually leak into the TTE and
TEE bispectra), rather than for its statistical weight in the final
measurement. It is then fair to say that issues in the EEE bispec-
tra, and related fNL measurements are not yet fully understood
and will require further investigation. Even though the T+E are
consistent, we recommend that results that include polarization
data are regarded as preliminary at this stage.

7.1.2. Comparison between reconstructed bispectra

It is important to stress that the conclusions reached at the end
of the previous subsection refer to the three main bispectra in
our analysis, defined by the standard scale-invariant local, equi-
lateral, and orthogonal primordial shapes. These shapes select a
specific subset of configurations in the overall bispectrum do-
main (essentially squeezed, equilateral, and flattened triangles).

A17, page 30 of 66



Planck Collaboration: Planck 2015 results. XVII.

Table 12. Comparison between local, equilateral, and orthogonal fNL results, obtained using the four di↵erent component separation pipelines.

fNL (method1) � fNL (method2)

fsky = 0.74 fsky = 0.64
Methods Local Equilateral Orthogonal Local Equilateral Orthogonal

SMICA–SEVEM
T . . . . . . . . . �1.2 ± 0.9 �6.0 ± 8.7 1.5 ± 4.8 . . . . . . . . .
E . . . . . . . . . �19 ± 21 �155 ± 86 34 ± 57 5 ± 22 �82 ± 90 �11 ± 66
T+E . . . . . . . �2.4 ± 1.6 �10 ± 18 13.5 ± 9.4 �1.5 ± 1.7 �12 ± 18 13 ± 10

SMICA–NILC
T . . . . . . . . . 0.4 ± 1.0 14.5 ± 8.9 2.5 ± 4.7 . . . . . . . . .
E . . . . . . . . . 26 ± 11 83 ± 52 �59 ± 27 26 ± 13 32 ± 56 �96 ± 28
T+E . . . . . . . �0.7 ± 0.9 20.0 ± 8.2 �3.3 ± 3.8 0.6 ± 0.9 18.4 ± 8.4 �4.5 ± 4.0

SMICA–Commander
T . . . . . . . . . 0.4 ± 3.5 �14 ± 23 1.7 ± 14 . . . . . . . . .
E . . . . . . . . . �3 ± 16 �130 ± 77 �81 ± 42 �13 ± 17 �117 ± 100 �59 ± 40
T+E . . . . . . . �1.3 ± 3.2 �25 ± 18 9 ± 10 �1.4 ± 3.3 �26 ± 18 13 ± 10

SEVEM–NILC
T . . . . . . . . . 1.6 ± 1.0 20 ± 12 1.0 ± 4.5 . . . . . . . . .
E . . . . . . . . . 45 ± 26 239 ± 94 �94 ± 69 30 ± 29 114 ± 105 �86 ± 79
T+E . . . . . . . 3.1 ± 1.8 30 ± 18 �17 ± 10 2.2 ± 1.9 30 ± 18 �18 ± 10

SEVEM–Commander
T . . . . . . . . . 1.6 ± 3.4 �8 ± 22 0 ± 14 . . . . . . . . .
E . . . . . . . . . 16 ± 22 25 ± 112 �116 ± 59 �18 ± 25 �35 ± 121 �48 ± 64
T+E . . . . . . . 1.2 ± 3.3 �14 ± 21 �5 ± 11 0.2 ± 3.4 �14 ± 20 0 ± 11

NILC–Commander
T . . . . . . . . . 0.0 ± 3.0 �28 ± 22 �1 ± 12 . . . . . . . . .
E . . . . . . . . . �29 ± 21 �213 ± 84 �22 ± 54 �39 ± 23 �149 ± 108 38 ± 55
T+E . . . . . . . �1.9 ± 3.1 �45 ± 18 12 ± 11 �2.0 ± 3.2 �44 ± 17 18 ± 11

Notes. For each pair of cleaning methods, and for each NG model, we compute the di↵erence in the measured fNL. The quoted error bar is the
standard deviation of the same di↵erence, extracted from a set of 100 realistic Gaussian simulations per method, not including foregrounds. These
results have been obtained using the low resolution modal pipeline. See main text for comments and further details.

Therefore, testing consistency between methods for these shapes
does not guarantee that results for the many other NG models
considered in this work (such as, for example, the oscillatory
bispectra of Sect. 8) will display the same level of agreement.
For this reason we decided to perform a model-independent
test of consistency between methods, based on comparisons be-
tween the �n eigenmodes used for bispectrum reconstruction
in Sect. 6.2. We also reconstruct the bispectrum starting from
a binned `-decomposition, and this will be used in Sect. 7.4
to study stability of the results in the harmonic domain. For
the �n study we consider a simple test based on measuring
the correlation coe�cient between modes extracted from dif-
ferent foreground-cleaned maps. The correlation is defined, as
usual, by

r2
i j =

cov
⇣
�i

n, �
j
n

⌘2

(�2
n)i(�2

n) j
, (58)

and we measure it for each combination of the SMICA, SEVEM,
NILC, and Commander maps, labelled by the indices i, j. Results
are given in Tables 14 and 15 for the two modal pipelines and are
illustrated in Fig. 15. These results show an excellent degree of
correlation between di↵erent maps in temperature (especially for
SMICA, SEVEM, and NILC), which is reduced when polarization
is considered. In fact the correlation for polarization is not much
lower than temperature for SMICA and NILC, while it reduces
the correlation for the pairs SMICA–SEVEM, and NILC–SEVEM,

and for Commander when paired with any other method. This
is consistent with previous findings of our fNL-based test. To
test if these results are due to foreground residuals (or other ef-
fects that are not included in the simulations), we evaluate the
same mode-mode correlations on the same sets of 100 realis-
tic, foreground-free, Gaussian simulations as previously used,
and processed through each of the di↵erent component sepa-
ration pipelines. For this analysis we consider TTT and EEE
bispectra, expanded via the low-resolution modal estimator. Our
results are reported in Table 14, in the simulation column, and
they clearly show that the trend in the simulations is consistent
with what we see in the Planck data. In particular, EEE results
show a lower degree of correlation in simulated maps, for the
same pairs of methods. The observed loss of correlation in po-
larization does not seem to come from unresolved foregrounds
or other unaccounted systematics, but rather something intrin-
sic to the foreground-removal algorithms. They are substantially
di↵erent, as SMICA and NILC both perform the cleaning in har-
monic space, at the level of E and B multipoles, whereas SEVEM
is essentially a pixel-space template fitting method, performing
the subtraction on Q and U maps, or inpainted before fNL estima-
tion. These issues will be studied in greater detail in future work,
using Wiener-filtered, as well as inpainted maps for fNL estima-
tion. However, we have already seen that the larger scatter be-
tween modes from di↵erent foreground cleaning methods does
not have a serious impact on fNL estimation, at least for the stan-
dard local, equilateral, and orthogonal shapes. The non-standard
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Table 13. For each of the four foreground cleaned maps, we compute fNL for the local, equilateral, and orthogonal modes using two di↵erent
polarization masks, one with fsky = 0.74 and the other with fsky = 0.64, while for temperature we use a single mask with fsky = 0.76.

fsky = 0.74 fsky = 0.64 Di↵erence

Local Equilateral Orthogonal Local Equilateral Orthogonal Local Equilateral Orthogonal

SMICA

T . . . . . 6.8 ± 5.4 �17 ± 66 �48 ± 33 . . . . . . . . . . . . . . . . . .
E . . . . . 25 ± 30 147 ± 159 �137 ± 73 48 ± 31 220 ± 168 �180 ± 81 �23 ± 16 �73 ± 68 43 ± 34
T+E . . . 4.0 ± 4.8 5 ± 46 �30 ± 21 4.6 ± 5.2 19 ± 55 �37 ± 22 �0.7 ± 1.2 �14 ± 14 6.7 ± 7.7

SEVEM

T . . . . . 8.1 ± 5.8 �11 ± 75 �49 ± 34 . . . . . . . . . . . . . . . . . .
E . . . . . 44 ± 38 302 ± 183 �172 ± 91 43 ± 39 303 ± 191 �170 ± 96 1 ± 19 0 ± 76 �2 ± 49
T+E . . . 6.4 ± 5.0 15 ± 52 �44 ± 23 6.2 ± 5.3 31 ± 54 �50 ± 25 0.2 ± 1.3 �16 ± 15 6.3 ± 8.8

NILC

T . . . . . 6.4 ± 5.8 �31 ± 76 �50 ± 33 . . . . . . . . . . . . . . . . . .
E . . . . . �1 ± 30 64 ± 162 �78 ± 77 22 ± 30 190 ± 162 �84 ± 77 �23 ± 16 �124 ± 67 6 ± 37
T+E . . . 3.3 ± 4.9 �15 ± 50 �27 ± 23 4.0 ± 5.3 1 ± 56 �33 ± 23 �0.7 ± 1.3 �16 ± 13 5.4 ± 7.5

Commander

T . . . . . 6.4 ± 6.6 �3 ± 77 �49 ± 36 . . . . . . . . . . . . . . . . . .
E . . . . . 28 ± 37 278 ± 178 �56 ± 81 61 ± 38 337 ± 188 �122 ± 91 �32 ± 20 �60 ± 92 66 ± 47
T+E . . . 5.2 ± 5.4 30 ± 50 �39 ± 23 6.0 ± 5.7 45 ± 55 �51 ± 25 �0.7 ± 1.5 �15 ± 14 11.5 ± 8.9

Notes. We then calculate the di↵erence between the two measurements and compare with expectations from simulations, obtained in the following
way: firstly, we generate realistic Gaussian realizations for each component separation pipeline, not including foregrounds; then, for each simulated
map and NG model, we measure fNL using the two masks in turn; finally, we calculate the standard deviation on 100 realizations. See the main
text for more details and a discussion of these results, which were obtained using the low resolution modal pipeline.

Table 14. Correlation coe�cients between pairs of bispectrum modes, extracted using two di↵erent component-separated maps.

fsky = 0.74 fsky = 0.64

TTT EEE EEE

Methods Data Simul. Data Simul. Data Simul.

SMICA–SEVEM . . . . . . . 0.97 0.97 0.61 0.62 0.60 0.61

SMICA–NILC . . . . . . . . 0.97 0.97 0.95 0.95 0.95 0.95

SMICA–Commander . . . 0.78 0.81 0.70 0.70 0.73 0.73

SEVEM–NILC . . . . . . . . 0.96 0.97 0.54 0.55 0.54 0.54

SEVEM–Commander . . . 0.81 0.83 0.69 0.67 0.70 0.70

NILC–Commander . . . . 0.85 0.86 0.64 0.63 0.66 0.66

Notes. For both TTT and EEE we compare correlations measured from data with averages over 100 Gaussian realizations. The simulations
are processed through the di↵erent component separation pipelines in the same way as the data, but they do not include any foregrounds. The
correlation is clearly lower for EEE bispectra than for TTT. However, this is seen not only in data but also in simulations, indicating that it is
not due to foreground residual contamination or other unaccounted for systematics. The results presented in this table are obtained using the
low resolution modal pipeline, with 610 modes; results on data have also been cross-checked with the high-resolution modal estimator, using
2001 modes, and they are stable.

shapes need to be analysed separately to check robustness of NG
polarization results. This is the approach we will take for the var-
ious non-standard NG models.

7.2. Dependence on sky coverage

For each of the four component separation methods, we
have used two di↵erent polarization masks, namely the same
polarization mask as in Sect. 6, with fsky = 0.74 (defined as
the polarization “common mask” in Sect. 3.4), and an extended
mask with fsky = 0.64. The temperature mask is kept unchanged
in this test, and it covers a sky fraction fsky = 0.76 (the tem-
perature “common mask” of Sect. 3.4). We report the variation
in fNL for the three standard shapes in Table 13, which shows

insensitivity to fsky, in agreement with earlier results on T+E.
In this case, however, the EEE results also seem quite stable,
supporting the view that foreground residuals are not a↵ecting
our local, equilateral, and orthogonal fNL results, especially for
the final, combined T+E measurements. Tests on FFP8 simu-
lations including foregrounds (see Sect. 7.3) suggest that fNL
measurements obtained from the SMICA and SEVEM maps are
the most accurate under the current choice of mask. As a fur-
ther check of these two methods we consider a third polarization
mask, with fsky = 0.53, and repeat the combined T+E fNL mea-
surement, also finding stable results. For SMICA we find f local

NL =

5.6±5.4, f equil
NL = 65±58, and f ortho

NL = �30±26, while for SEVEM
we obtain f local

NL = 9.4 ± 5.4, f equil
NL = 75 ± 59, f ortho

NL = �50 ± 30.
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