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1 Introduction

The elastic scattering of muons and electrons is one of the simplest and cleanest processes

in particle physics. In spite of this simplicity, µe scattering measurements are scarse. In

the 60s, experiments at CERN and Brookhaven measured this scattering cross section

using accelerator-produced muons [1–4]. At the same time, µe collisions were measured

by cosmic-ray experiments [5–8]. The scattering of muons off polarized electrons was then

proposed as a polarimeter for high-energy muon beams in the late 80s [9] and measured by

the SMC collaboration at CERN a few years later [10].

Recently, a new experiment, MUonE, has been proposed at CERN to measure the dif-

ferential cross section of the elastic scattering of high-energy muons on atomic electrons as

a function of the spacelike (negative) squared momentum transfer [11]. This measurement

will provide the running of the effective electromagnetic coupling in the spacelike region
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and, as a result, a new and independent determination of the leading hadronic contribution

to the muon g-2 [11, 12]. In order for this new determination to be competitive with the

present dispersive one, which is obtained via timelike data, the µe differential cross section

must be measured with statistical and systematic uncertainties of the order of 10ppm. This

high experimental precision demands an analogous accuracy in the theoretical prediction.

Until recently, the process µe → µe had received little attention also on the theory

side. The few existing theoretical studies mainly focused on its QED corrections at next-

to-leading order (NLO) [13–19] and tests of the Standard Model (SM) [20–22]. The QED

corrections at next-to-next-to-leading order (NNLO), crucial to interpret the high-precision

data of future experiments like MUonE, are not known, although some of the two-loop

corrections which were computed for Bhabha scattering in QED [23, 24], for the heavy-to-

light quark decay [25–29] and the tt̄ production [30–33] in QCD can be applied to elastic

µe scattering as well.

In this work we take a first step towards the calculation of the full NNLO QED cor-

rections to µe scattering. In particular, we consider the evaluation of the master integrals

(MIs) occurring in the decomposition of the genuine two-loop 2 → 2 planar box-diagrams,

namely all the two-loop four-point topologies for µe scattering except for the crossed double

box diagram. Given the small value of the electron mass me when compared to the muon

one m, we work in the approximation me = 0. In this case, integration-by-parts identi-

ties [34–36] yield the identification of a set of 65 MIs, which we compute analytically by

means of the differential equation method [37–39]. Elaborating on recent ideas to simplify

the system-solving strategy [40, 41], we choose a set of MIs obeying a system of first-order

differential equations (DEQs) in the kinematical variables s/m2 and t/m2 which is linear

in the space-time dimension d, and, by means of Magnus exponential matrix [41], we derive

an equivalent system of equations in canonical form [40], where the d-dependence of the

associated matrices is factorized from the kinematics. Let us emphasize that the use of

Magnus exponential matrix to identify a canonical basis of master integrals turned out

to be very effective in the context of multi-loop integrals involving several scales [41–44].

The matrices associated with the canonical systems admit a logarithmic-differential (d log)

form, whose entries are rational functions of the kinematics; therefore, the canonical MIs

can be cast in a Taylor series around d = 4, with coefficients written as combinations of

generalised polylogarithms (GPLs) [45–48]. The final determination of the MIs is achieved

after imposing the boundary conditions, implemented by requiring the regularity of the

solutions at special kinematics points, and by using simpler integrals as independent input.

The analytic expressions of the MIs have been numerically evaluated with the help of

GiNaC [49] and were successfully tested against the values provided by the computer code

SecDec [50]. The package Reduze [51] has been used throughout the calculations.

It is important to observe that the MIs of the QED corrections to µe→ µe scattering

are related by crossing to the MIs of the QCD corrections to the tt̄-pair production at

hadron colliders. The analytic evaluation of the MIs for the leading-color corrections to

pp → tt̄, due to planar diagrams only, was already considered in refs. [30–33]. They cor-

respond to the MIs appearing in the evaluation of the Feynman graphs associated to the

topologies Ti with i ∈ {1, 2, 3, 7, 8, 9, 10} in figure 1, which we (re)compute here indepen-
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dently. The MIs for the planar topology T4 and T5, instead, would correspond to the MIs

of subleading-color contributions to tt̄-pair production, and were not considered previously.

For certain classes of MIs, like the ones of the processes µe → µe and pp → tt̄, the

choice of the boundary conditions may still constitute a challenging problem. In some cases

considered in refs. [30–33], the direct integration of the MIs in special kinematic configura-

tions was addressed by using techniques based on Mellin-Barnes representations [52, 53].

Alternatively, here we exploit either the regularity conditions at pseudo-thresholds or the

expression of the integrals at well-behaved kinematic points. The latter might be obtained

by solving simpler auxiliary systems of differential equations, hence limiting the use of

direct integration only to a simple set of input integrals. Our preliminary studies make us

believe that the strategy we adopt for the determination of the considered integrals is not

only limited to the planar contributions, but it can be applied to the non-planar graphs as

well. In particular, we show its application for the determination of the MIs for the non-

planar vertex graph [25–29]. Moreover, due to the similarity of the cases, we are confident

that it can be very helpful for completing the analytic evaluation of the MIs needed for the

two-loop QCD corrections to pp→ tt̄, which are currently known only numerically [54–58].

The paper is organized as follows. In section 2 we describe the kinematics of µe

scattering and we give a brief review of the LO and NLO QED contributions to the cross

section. In section 3 we fix our notation and conventions for the four-point topologies. In

section 4 we discuss the general features of the systems of differential equations satisfied

by the MIs and their general solution in terms of generalised polylogarithms. In section 5

we describe the computation of the one-loop MIs and in section 6 we present the results

for the planar two-loop MIs. Finally, in section 7 we compute the MIs for the non-planar

two-loop vertex. In section 8 we give our conclusions. The information provided in the

text is complemented by two appendices: in appendix A we discuss the computation of

the auxiliary integrals which have been used to extract some of the boundary constants

and, in appendix B, we give the expressions of the dlog-form of the matrices associated to

canonical systems.

The analytic expressions of the considered MIs are given in the ancillary files accom-

panying the arXiv version of this publication.

2 LO cross section and NLO QED corrections

Let us consider the elastic scattering

µ+(p1) + e−(p2)→ e−(p3) + µ+(p4), (2.1)

and define the Mandelstam variables

s = (p1 + p2)
2, t = (p2 − p3)2, u = (p1 − p3)2, (2.2)

satisfying s + t + u = 2m2 + 2m2
e, with the physical requirements s > (me + m)2,

−λ(s,m2,m2
e)/s < t < 0, and λ(x, y, z) = x2 +y2 +z2−2xy−2xz−2yz is the Källen func-

tion.
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The LO QED prediction for the differential cross section of the scattering in (2.1) is

dσ0
dt

= −4πα2

(
m2 +m2

e

)2 − su+ t2/2

t2λ (s,m2,m2
e)

, (2.3)

where α is the fine-structure constant. The NLO QED corrections to this cross section

were computed long time ago [13–18] and revisited more recently [19]. As a first check,

we recalculated these corrections and found perfect agreement with ref. [19], both for the

virtual corrections and the soft photon emissions. We note that some of the pioneering

publications, like [14, 16], contain typos or errors, so that they cannot be directly employed.

In the rest of this paper we will work in the approximation of vanishing electron mass,

me = 0, i.e. with the kinematics specified by p21 = p24 = m2 and p22 = p23 = 0. The master

integrals will be conveniently evaluated in the non-physical region s < 0, t < 0.

3 Four-point topologies

The main goal of this work is the evaluation of the master integrals (MIs) of the planar two-

loop four-point functions contributing to µe scattering, drawn in figure 1. For completeness,

we will discuss also the evaluation of the MIs of the one-loop four-point function in figure 2.

We consider `-loop m-denominator Feynman integrals in d = 4 − 2ε dimensions of

the type ∫ ∏̀
i=1

d̃dki
1

Dn1
1 . . . Dnm

m
, ni ∈ Z . (3.1)

In our conventions, the integration measure is defined as

d̃dki =
ddki
(2π)d

(
i Sε

16π2

)−1(m2

µ2

)ε
, (3.2)

with µ being the ’t Hooft scale of dimensional regularization and

Sε = (4π)ε Γ(1 + ε) . (3.3)

We choose the following set of propagators for the relevant planar four-point topologies

at one- and two-loop:

• For the one-loop integral family, depicted in figure 2,

D1 = k21 −m2 , D2 = (k1 + p1)
2 ,

D3 = (k1 + p1 + p2)
2 , D4 = (k1 + p4)

2 . (3.4)

• For the first two-loop integral family, which includes the topologies T1, T2, T3, T7 and

T8 of figure 1,

D1 = k21 −m2, D2 = k22 −m2, D3 = (k1 + p1)
2, D4 = (k2 + p1)

2,

D5 = (k1 + p1 + p2)
2, D6 = (k2 + p1 + p2)

2, D7 = (k1 − k2)2,
D8 = (k1 + p4)

2, D9 = (k2 + p4)
2 . (3.5)
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Figure 1. Two-loop four-point topologies for µe scattering.

• For the second two-loop family, which contains topologies T4, T5, T9 and T10 shown

in figure 1,

D1 = k21 −m2, D2 = k22,

D3 = (k2 + p2)
2, D4 = (k1 + p2)

2,

D5 = (k2 + p2 − p3)2, D6 = (k1 + p2 − p3)2 −m2, D7 = (k1 − p1)2,
D8 = (k2 − p1)2 −m2, D9 = (k1 − k2)2 −m2 . (3.6)

For all families, k1 and k2 denote the loop momenta. In the following sections, MIs will

be represented by diagrams where thick lines stand for massive particles (muon), whereas

thin lines stand for massless ones (electron, photon).

4 System of differential equations

In order to determine all MIs appearing in the three integral families defined above, we

initially derive their DEQs in the dimensionless variables −s/m2 and −t/m2. Upon the

change of variable,

− s

m2
= x, − t

m2
=

(1− y)2

y
, (4.1)

the coefficients of the DEQs are rational functions of x and y. According to our system

solving strategy, by means of integration-by-parts identities (IBPs), we choose an initial
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set of MIs F that fulfills a system of DEQs

∂F

∂x
= Ax(ε, x, y)F ,

∂F

∂y
= Ay(ε, x, y)F , (4.2)

where the matrices Ax(ε, x, y) and Ay(ε, x, y) are linear in the dimensional regularization

parameter ε = (4 − d)/2, being d the number of space-time dimensions. According to the

algorithm described in [41–44], by means of Magnus exponential matrix, we identify a set

of MIs I obeying canonical systems of DEQs [40], where the dependence on ε is factorized

from the kinematics,

∂I

∂x
= εÂx(x, y)I ,

∂I

∂y
= εÂy(x, y)I . (4.3)

After combining both systems of DEQs into a single total differential, we arrive at the

following canonical form

dI = εdAI , dA ≡ Âxdx+ Âydy , (4.4)

where the generic form of the total differential matrix for the considered MIs reads as,

dA =
9∑
i=1

Mi d log(ηi) , (4.5)

with Mi being constant matrices. The arguments ηi of this d log-form, which contain all

the dependence of the DEQ on the kinematics, are referred to as the alphabet and they

consist in the following 9 letters:

η1 = x , η2 = 1 + x ,

η3 = 1− x , η4 = y ,

η5 = 1 + y , η6 = 1− y, ,
η7 = x+ y , η8 = 1 + x y,

η9 = 1− y (1− x− y) .

(4.6)

Let us observe that, currently, there is neither a proof of existence, nor any systematic

algorithm to build a basis of integrals whose system of DEQs is linear in ε. Nevertheless,

by trial and error, we have been always able to find it within the physical contexts we have

so far studied [41–44], as well as for the µe scattering. We believe it is a very important

property which could be considered a prerequisite for the existence of a canonical basis:

in fact, a system of DEQs whose matrix is linear in ε can be brought into canonical form

by a rotation matrix built either by means of Magnus exponential, or equivalently by

means of the Wronskian matrix (formed by the solutions of the associated homogenous

equations, and their derivatives), as shown for the case of systems of DEQs involving

elliptic solutions [59–61].

The MIs presented in this paper are computed in the kinematic region where all letters

are real and positive,

x > 0 , 0 < y < 1 , (4.7)
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which corresponds to the Euclidean region s < 0, t < 0. All MIs are chosen to be finite in

the ε→ 0 limit, in such a way that I(x, y) admits a Taylor expansion in ε,

I(ε, x, y) = I(0)(x, y) + ε I(1)(x, y) + ε2I(2)(x, y) + . . . , (4.8)

with the n-th order coefficient given by

I(n)(x, y) =

n∑
i=0

∆(n−i)(x, y;x0, y0)I
(i)(x0, y0), (4.9)

where I(i)(x0, y0) is a vector of boundary constants and ∆(k) the weight-k operator

∆(k)(x, y;x0, y0) =

∫
γ
dA . . . dA︸ ︷︷ ︸

k times

, ∆(0)(x, y;x0, y0) = 1 , (4.10)

which iterates k ordered integrations of the matrix-valued 1-form dA along a piecewise-

smooth path γ in the xy-plane. Since the alphabet given in eq. (4.6) is rational and has

only algebraic roots, the iterated integrals (4.10) can be directly expressed in terms of

GPLs, which are defined as

G(~wn;x) ≡ G(w1, ~wn−1;x) ≡
∫ x

0
dt

1

t− w1
G(~wn−1; t), (4.11)

G(~0n;x) ≡ 1

n!
logn(x), (4.12)

with ~wn being a vector of n arguments. The number n is referred to as the weight of

G(~wn;x) and amounts to the number of iterated integrations needed to define it. Equiva-

lently one has

∂

∂x
G(~wn;x) =

∂

∂x
G(w1, ~wn−1;x) =

1

x− w1
G(~wn−1;x). (4.13)

GPLs fulfill shuffle algebra relations of the form

G(~m;x)G(~n;x) = G(~m;x)ttG(~n;x) =
∑

~p=~mtt~n
G(~p;x), (4.14)

where the shuffle product ~mtt~n denotes all possible merges of ~m and ~n while preserving

their respective orderings.

The analytic continuation of the MIs to the physical region defined in section 2 can be

obtained through by-now standard techniques.

4.1 Constant GPLs

Many of the boundary values I(i)(x0, y0) of the MIs have been determined by taking special

kinematics limits on the general solution of the DEQs written in terms of GPLs. Through

this procedure, the boundary constants are expressed as combinations of constant GPLs

of argument 1, with weights drawn from six different sets:

• {−1, 0, 1, 3,−(−1)
1
3 , (−1)

2
3 },

– 7 –
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• {−1
2 ,−

2
7 , 0,

1
7 ,

1
2 ,

4
7 , 1,−

1
2(−1)

1
3 , 12(−1)

2
3 } ,

• {−1,−1
2 , 0,

1
2 , 1, 2, 3, 4,

1
2(−1)

1
3 ,−1

2(−1)
2
3 } ,

• {−1,−1
2 , 0,

1
4 ,

1
2 , 1,

7
4 ,

1
2(−1)

1
3 ,−1

2(−1)
2
3 } ,

• {−2,−1
2 , 0,

1
2 , 1, 4, 7,−

1
2(−1)

1
3 , 12(−1)

2
3 } ,

• {−2,−1,−1
2 , 0,

1
4 , 1,

7
4 , 2,−2(−1)

1
3 , 2(−1)

2
3 } .

Each set arises from a different kinematic limit imposed on the alphabet given in eq. (4.6).

We used GiNaC to numerically verify that at each order in εn (up to the order n = 4), the

corresponding combination of constant GPLs is proportional to Riemann ζn. In particu-

lar, ζn functions are known to be primitive [62–64], i.e. they have irreducible coproducts,

∆(ζn) = 1 ⊗ ζn + ζn ⊗ 1. Therefore, they must have vanishing coproducts components

∆p(ζn) = 0 with p ∈ Π(n), where

Π(n) = {(n− 1, 1), (n− 2, 2), (n− 2, 1, 1), . . . ,

. . . , (1, 1, 1, . . . , 1, 1, 1), . . . , (1, 1, n− 2), (2, n− 2), (1, n− 1)} (4.15)

is the set of the integer partitions of n with dimensions larger than one. We explicitly ver-

ified that the combinations of GPLs of argument 1, appearing in the boundary conditions,

are also primitive, although the considered coproducts components do not necessarily van-

ish when acting separately on each GPL involved in those combinations. Therefore, we

made a simple ansatz that these combinations could be proportional to ζn, and we checked

it by means of high-precision arithmetic. Below we show some examples for these identities,

ζ2 = − 1

2
G(−1; 1)2 +G(0,−2; 1) +G

(
0,−1

2
; 1

)
, (4.16)

−59ζ4 = π2
(
G(−1; 1)2 − 2G(0,−(−1)

1
3 ; 1)− 2G(0, (−1)

2
3 ; 1)

)
− 21 ζ3G(−1; 1)

−G(−1; 1)4 − 18G(0, 0, 0,−(−1)
1
3 ; 1)− 18G(0, 0, 0, (−1)

2
3 ; 1)

+ 12G(0, 0,−(−1)
1
3 ,−1; 1) + 12G(0, 0, (−1)

2
3 ,−1; 1)

+ 12G(0,−(−1)
1
3 ,−1,−1; 1) + 12G(0, (−1)

2
3 ,−1,−1; 1) + 24G(0, 0, 0, 2; 1) .

(4.17)

For related studies see also [65–67].

5 One-loop master integrals

In this section we briefly discuss the computation of the master integrals of the one-loop

four-point graph shown in figure 2, corresponding to the integral family defined in eq. (3.4).

We choose the following set of MIs, which satisfy an ε-linear DEQ,

F1 = ε T1 , F2 = ε T2 , F3 = ε T3 , F4 = ε2 T4 , F5 = ε2 T5 , (5.1)
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Figure 2. One-loop four-point topology for µe scattering.
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Figure 3. One-loop MIs T1,...,5.

where the Ti are depicted in figure 3. With the help the Magnus algorithm we can identify

the corresponding canonical basis

I1 = F1 , I2 = −sF2 ,

I3 = −tF3 , I4 = λt F4 ,

I5 = (s−m2)(−t)F5 . (5.2)

with λt =
√
−t
√

4m2 − t.
This set of MIs satisfies a canonical DEQ of the form given in eq. (4.4), whose coefficient

matrices read (in this case, M3 and M9 vanish),

M1 =


0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 , M2 =


0 0 0 0 0

−1 −2 0 0 0

0 0 0 0 0

0 0 0 0 0

2 4 0 0 −2

 , M4 =


0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

1 0 −1 0 0

1 2 0 0 0

 , M5 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 2 0

0 0 0 0 0

 ,

M6 =


0 0 0 0 0

0 0 0 0 0

0 0 −2 0 0

0 0 0 −2 0

0 0 2 0 −2

 , M7 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−1 −2 −1 −1 1

 , M8 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−1 −2 −1 1 1

 . (5.3)

The integration of the DEQ in terms of GPLs as well as the fixing of boundary constants

is straightforward. I1,3 are obtained by direct integration and, by using the normalization

of eq. (3.2), are given by

I1(ε) = 1 , I3(ε, y) =

(
(1− y)2

y

)−ε (
1− ζ2ε2 − 2ζ3ε

3 +O
(
ε4
))
. (5.4)

The boundary constants for I2, I4 and I5 can be fixed by respectively demanding regularity

at pseudothresholds s → 0, at t → 4m2, and at s = −t → m2/2. The final expression of

the other MIs are,

Ii(ε, x, y) =
2∑

k=0

I
(k)
i (x, y)εk +O(ε3) , (5.5)
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with

I
(0)
2 (x) = 0 ,

I
(1)
2 (x) = −G(−1;x) ,

I
(2)
2 (x) = 2G(−1,−1;x)−G(0,−1;x) , (5.6)

I
(0)
4 (y) = 0 ,

I
(1)
4 (y) = 0 ,

I
(2)
4 (y) = − 4ζ2 −G(0, 0; y) + 2G(0, 1; y) , (5.7)

I
(0)
5 (x, y) = 2 ,

I
(1)
5 (x, y) = − 2G(−1;x) +G(0; y)− 2G(1; y) ,

I
(2)
5 (x, y) = − 5ζ2 + 2G(−1;x) (2G(1; y)−G(0; y)) . (5.8)

6 Two-loop master integrals

In this section we present the results for the planar two-loop MIs contributing to the NNLO

virtual QED corrections to µe scattering, which are the main results of this work. We first

discuss the computation of the MIs belonging to the integral family defined in eq. (3.5),

which is associated to the topologies T1, T2, T3, T7 and T8 of figure 1, and then the MIs

belonging to the integral family defined by eq. (3.6), which groups the topologies T4, T5,

T9 and T10.

6.1 The first integral family

For the two-loop family defined in eq. (3.5), the following set of 34 MIs fulfill an ε-linear

system of DEQs,

F1 = ε2 T1 , F2 = ε2 T2 , F3 = ε2 T3 ,
F4 = ε2 T4 , F5 = ε2 T5 , F6 = ε2 T6 ,
F7 = ε2 T7 , F8 = ε2 T8 , F9 = ε2 T9 ,

F10 = ε3 T10 , F11 = ε3 T11 , F12 = ε3 T12 ,
F13 = ε3 T13 , F14 = ε2 T14 , F15 = ε2 T15 ,
F16 = ε3 T16 , F17 = ε4 T17 , F18 = ε3 T18 ,
F19 = ε4 T19 , F20 = ε2(1 + 2ε) T20 , F21 = ε4 T21 ,
F22 = ε3 T22 , F23 = ε3 T23 , F24 = ε2 T24 ,
F25 = ε3 T25 , F26 = ε3(1− 2ε) T26 , F27 = ε3 T27 ,
F28 = ε4 T28 , F29 = ε3(1− 2ε) T29 , F30 = ε4 T30 ,
F31 = ε4 T31 , F32 = ε4 T32 , F33 = ε4 T33 ,
F34 = ε4 T34 , (6.1)

where the Ti are depicted in figure 4.
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Figure 4. Two-loop MIs T1,...,34 for the first integral family.

Through the Magnus exponential, we rotate this set of integrals to the canonical basis

I1 = F1 , I2 = −sF2 ,

I3 = −tF3 , I4 = m2 F4 ,

I5 = −sF5 , I6 = 2m2 F5 + (m2 − s) F6 ,

I7 = −tF7 , I8 = s2 F8 ,

I9 = t2F9 , I10 = −tF10 ,
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I11 = (m2 − s) F11 , I12 = λt F12 ,

I13 = λt F13 , I14 = λtm
2 F14 ,

I15 = (t−λt)
(

3

2
F13+m2F14

)
−m2 tF15 , I16 = −t λt F16 ,

I17 = (m2 − s) F17 , I18 = m2(m2 − s) F18 ,

I19 = λt F19 , I20 =
λt−t

2
(F12−4 F19)−m2tF20 ,

I21 = (m2 − s− t) F21 , I22 = −m2 tF22 ,

I23 = s tF23 , I24 = −m2 tF23+(s−m2)m2 tF24 ,

I25 = −(m2 − s) tF25 , I26 = λt F26 ,

I27 = −(m2 − s) tF27 , I28 = (m2 − s)λt F28 ,

I29 = −2tF21 − (m2 − s)(2(λt − t)F28 − F29) , I30 = −(m2 − s)2tF30 ,

I31 = (m2 − s)2 F31 , I32 = (m2 − s) t2 F32 ,

I33 = −λt tF33 , I34 = −m2 t2 F32 + t2 F34 . (6.2)

This set of MIs I satisfies a system of DEQ of the form given in eq. (4.4), which can

easily be integrated in terms of GPLs. The 34 × 34 coefficient matrices are collected in

appendix B.1.

To determine the solution of the DEQ, we need to choose proper boundary values for

each master integral. The boundary fixing can be achieved either by knowing the integral

at some special kinematic point or by demanding the absence of unphysical thresholds that

appear in the alphabet of the generic solution, defined in eq. (4.6).

Below we describe in detail how the boundary constants for each integral were chosen:

• The boundary values of I1,3,4,7,9 were obtained by direct integration,

I1(ε) = 1, (6.3)

I3(ε) =

(
(1− y)2

y

)−ε(
1− ζ2ε2 − 2ζ3ε

3 − 9

4
ζ4ε

4 +O(ε5)

)
, (6.4)

I4(ε) = −1

4
− ζ2ε2 − 2ζ3ε

3 − 16ζ4ε
4 +O

(
ε5
)
, (6.5)

I7(ε, y) =

(
(1− y)2

y

)−2ε (
−1 + 2ζ2ε

2 + 10ζ3ε
3 + 11ζ4ε

4 +O
(
ε5
))
, (6.6)

I9(ε) =

(
(1− y)2

y

)−2ε (
1− 2 ζ2 ε

2 − 4 ζ3 ε
3 − 2 ζ4 ε

4 +O(ε5)
)
, (6.7)

I10(ε) =

(
(1− y)2

y

)−2ε(
1

4
− 2 ζ3 ε

3 − 3 ζ4 ε
4 +O(ε5)

)
. (6.8)

• The boundary constants of I2,8,11,23 are fixed by demanding finiteness in the limit

s→ 0.
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• In the regular limit s→ 0, I5 and I6 become, respectively,

I5(ε, 0) = 0 ,

I6(ε, 0) = ε2m2 (2F5(ε, 0) + F6(ε, 0)) . (6.9)

F5(ε, 0) and F6(ε, 0) correspond to two-loop vacuum diagrams which can be reduced

via IBPs to a single integral which can be analytically computed

F5(ε, 0) =
2ε(2ε− 1)

m4
,

F6(ε, 0) = −2(ε+ 1)(2ε− 1)

m4
. (6.10)

In this way, we obtain the boundary values

I5(ε, 0) = 0 , I6(ε, 0) = −1− 2ζ2ε
2 + 2ζ3ε

3 − 9ζ4ε
4 +O

(
ε5
)
. (6.11)

• The integration constants of I12...16,19,20,26,27,32,33 are fixed by demanding finiteness in

the t→ 4m2 limit and by demanding that the resulting boundary constants are real.

• The integrals I17 and I18 are regular in the s → 0 limit. By imposing the regularity

on their DEQ we can only fix the constant of one of them, say I18. The boundary

constants of I17 must be then computed in an independent way. We observe that the

value of I17(ε, 0) can be obtained in the limit p21 → m2 of a similar vertex integral

with off-shell momentum p21 and s ≡ (p1 + p2)
2 = p22 = 0,

I17(ε, 0) = ε4m2 lim
p21→m2

. (6.12)

We discuss the computation of the auxiliary vertex integral in appendix A, where we

show that the limit appearing in the r.h.s. of eq. (6.12) is indeed smooth and gives,

I17(ε, 0) = −27

4
ζ4ε

4 +O
(
ε5
)
. (6.13)

• The regularity of the four-point integrals I21,22,25,28 ... ,31 in either s → 0 or t →
4m2 provides two boundary conditions, which can be complemented with additional

relations obtained by imposing the regularity of the integrals at s = −t = m2/2.

• The boundary constants of integral I24 are determined by demanding regularity in

the limit s→ −m2 and t→ 4m2.

• The boundary constants of I34 are found by demanding finiteness in the limit u→∞.

All results have been numerically checked with the help of the computer codes GiNaC and

SecDec, and the analytic expressions of the MIs are given in electronic form in the ancillary

files attached to the arXiv version of this manuscript.
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6.2 The second integral family

For the two-loop integral family defined in (3.6), we identify 42 MIs obeying an ε-linear

system of DEQs:

F1 = ε2 T1 , F2 = ε2 T2 , F3 = ε2 T3 ,
F4 = ε2 T4 , F5 = ε2 T5 , F6 = ε2 T6 ,
F7 = ε2 T7 , F8 = ε2 T8 , F9 = ε2 T9 ,

F10 = ε2 T10 , F11 = ε2 T11 , F12 = ε3 T12 ,
F13 = ε2 T13 , F14 = ε2 T14 , F15 = ε3 T15 ,
F16 = ε2 T16 , F17 = ε2 T17 , F18 = ε3 T18 ,
F19 = ε3 T19 , F20 = ε2 T20 , F21 = ε3 T21 ,
F22 = ε2 T22 , F23 = ε3 T23 , F24 = ε2 T24 ,
F25 = ε3 T25 , F26 = (1− 2ε)ε3 T26 , F27 = ε3 T27 ,
F28 = ε2 T28 , F29 = ε3 T29 , F30 = ε2 T30 ,
F31 = (1− 2ε)ε3 T31 , F32 = ε3 T32 , F33 = ε4 T33 ,
F34 = ε3 T34 , F35 = ε3 T35 , F36 = ε4 T36 ,
F37 = ε4 T37 , F38 = ε3 T38 , F39 = ε4 T39 ,
F40 = ε4 T40 , F41 = ε4 T41 , F42 = ε4 (T26 + T42) , (6.14)

where the Ti are depicted in figure 5. Through the Magnus exponential, we identify the

corresponding canonical basis:

I1 = F1 , I2 = −tF2 ,

I3 = λtF3 , I4 = −tF4 ,

I5 =
1

2
(λt − t) F4 − λt F5 , I6 = −sF6 ,

I7 = 2m2 F6 + (m2 − s) F7 , I8 = m2 F8 ,

I9 = m2F9 , I10 = −sF10 ,

I11 = −t λt F11 , I12 = −tF12 ,

I13 = −tm2 F13 , I14 = −m2(λt − t)
(

3

2
F12 + F13

)
−m2 λt F14 ,

I15 = λt F15 , I16 = m2 λt F16 ,

I17 = m2(t− λt)
(

3

2
F15 + F16

)
−m2 tF17 , I18 = λt F18 ,

I19 = (m2 − s) F19 , I20 = m2 (m2 − s) F20 ,

I21 = (m2 − s) F21 , I22 = −3

2
sF9 + (s2 −m4) F22 ,

I23 = λt F23 , I24 =
1

4

(
4m2 − t+ λt

)
(F4 + 2F5)

+m2(4m2 − t) F24 ,
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I25 = λt F25 , I26 = −tF26 ,

I27 = s tF27 , I28 = −m4 tF27 −m2(m2 − s) tF28 ,

I29 = −s λt F29 , I30 = m4λt F29 +m2 (m2 − s)λt F30 ,

I31 = −(m2 − s)F31 I32 = (m2 − s)λtF32 ,

− (m2 − s) (4m2 − t+ λt) F31 ,

I33 = (m2 − s− t) F33 , I34 = (m2 − s)λt F34 ,

I35 = 2
m4(m2 − s)
2m2 − t− λt

F34 +m2 (m2 − s)F35 , I36 = λt F36 ,

I37 = −t (4m2 − t) F37 , I38 = −(m2 − s) tF38 ,

I39 = −(m2 − s) tF39 , I40 = −(m2 − s) t λt F40 ,

I41 = tλt (F40 − F41) ,

I42 = (m2 − t+ λt)

×
(

2

3
F3 +

1

4
F4 +

1

2
F5 −

1

2
tF11 +

5

2
F12 +

5

3
m2F13 +

5

3
m2F14

+2F36 −
1

2
(m2 + s)F40 + tF41

)
+m2

(
1

3
F3 −

1

2
tF11 +

1

2
F12 +

1

3
m2F13 +

1

3
m2F14 +

1

2
F18 −

1

2
F40

)
−t (m2 − s) F11 − 2

m4

2m2 − t− λt
F15 + tF26 +

m2(m2 − s)(t+ λt)

2m2 − t− λt

(
2

3
F29−F34

)
−2

3

m2 s (t− λt)
2m2 − t− λt

F29 + 2tF33 +
4

3
tm4m

2 − s
λt + t

F30 − tF42 , (6.15)

which satisfies a system of DEQs of the form in eq. (4.4), whose corresponding 42 × 42

matrices are collected in appendix B.2. We observe that I1,2,6,7,8,10,15,16,17,27,28 correspond,

respectively, to I1,3,5,6,4,2,13,14,15,23,24 of integral family (3.5) previously discussed. The

boundary constants of the remaining integrals can be fixed in the following way:

• The integration constants of I3,4,5,11,...,14,18,23,24,26,29...,35 by demanding regularity in

the limit t→ 0.

• The boundary values of I9 can be obtained by direct integration and it is given by

I9(ε) =− ζ2
2
ε2 +

1

4
(12ζ2 log(2)− 7ζ3) ε

3

+

(
−12Li4

(
1

2

)
+

31

40
ζ4 −

log4(2)

2
− 6ζ2 log2(2)

)
ε4 +O

(
ε5
)
. (6.16)

• The boundary constants of I19,21 can be fixed by demanding regularity when s→ 0.

• The boundary constants of I20,22,25 are determined by demanding regularity, respec-

tively, when s→ −1
2

(
2m2 − t−λt

)
, s→ −m2, and t→ 4m2.

• Finally, the boundary constants of I36...42 can be all determined by demanding regu-

larity in the simultaneous limits t→ 9
2m

2 and s→ −2m2.
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All results have been numerically checked with the help of the computer codes GiNaC and

SecDec, and the analytic expressions of the MIs are given in electronic form in the ancillary

files attached to the arXiv version of this manuscript.

7 Towards the non-planar integrals

The complete computation of the NNLO virtual QED corrections to µe scattering requires

the evaluation of one last missing four-point topology, which corresponds to the non-planar

diagram T6 of figure 1. In view of future studies dedicated to this last class of integrals, we

hereby show how the previously adopted strategy, based on differential equations, Magnus

exponential and regularity conditions, can be efficiently applied to compute the MIs of a

simpler vertex integral belonging to same family.

7.1 Master integrals for the non-planar vertex

We consider the non-planar vertex depicted in figure 6, whose integral family is defined as∫
d̃dk1d̃dk2

Dn4
4

Dn1
1 Dn2

2 Dn3
3 Dn5

5 Dn6
6 Dn7

7

, ni ≥ 0 , (7.1)

where the loop propagators are chosen to be

D1 = k21 −m2 , D2 = k22 −m2 ,

D3 = (k1 + p1 + p2)
2 , D4 = (k2 + p1 + p2)

2 ,

D5 = (k1 − k2 + p3)
2 , D6 = (k2 + p4)

2 , D7 = (k1 − k2)2 . (7.2)

The MIs belonging to this integral family, which will be part of the full set of MIs

needed for the computation of T6, have been already considered in the literature [25–29].

In all previous computations, the determination of the boundary constants resorted either

to the fitting of numerical values to trascendental constants [25–27] or to Mellin-Barnes

techniques [29]. With the present calculation, we show that they can be fixed equivalently

by imposing the regularity of the solution at specific kinematic pseudo-thresholds and by

matching a particular linear combination of integrals to their massless counterpart.

In order to determine the MIs belonging to the integral family (7.1), we derive their

DEQ in the dimensionless variable x. We identify a set of 14 MIs which fulfills an ε-linear

system of DEQs,

F1 = ε2 T1 , F2 = ε2 T2 , F3 = ε2 T3 ,
F4 = ε2 T4 , F5 = ε2 T5 , F6 = ε3 T6 ,
F7 = ε2 T7 , F8 = ε3 T8 , F9 = ε2 T9 ,

F10 = ε2 T10 , F11 = ε2(2ε− 1) T11 , F12 = ε4 T12 ,
F13 = ε3 T13 , F14 = ε4 T14 , (7.3)

where the Ti are depicted in figure 7.
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Figure 5. Two-loop MIs T1,...,42 for the second integral family.
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Figure 6. Non-planar two-loop three-point topology.
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Figure 7. Two-loop MIs T1,...,14 for the non-planar vertex.

By making use of the Magnus exponential, we can transform these MIs into the canon-

ical basis

I1 = F1 , I2 = −sF2 ,

I3 = −sF3 , I4 = 2m2 F3 + (m2 − s) F4 ,

I5 = m2F5 , I6 = (m2 − s) F6 ,

I7 = m2(m2 − s) F7 , I8 = (m2 − s) F8 ,

I9 = m2
(
3 F8 + (2m2 − s) F9 + 2m2 F10

)
, I10 = m2(m2 − s)F10 , (7.4)

I11 =
1

(s+m2)

(
−2m4 F5 + (s−m2)sF11

)
, I12 = (m2 − s) F12 ,

I13 = m2(m2 − s) F13 , I14 = (m2 − s)2 F14 ,

– 18 –



J
H
E
P
1
1
(
2
0
1
7
)
1
9
8

which satisfies a system of DEQ of the form,

dI = ε (M1 d log(x) + M2 d log(1 + x) + M3 d log(2 + x)) I , (7.5)

where Mi are the constant matrices

M1 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 4 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
2 0 1 1

2 0 3 2 0 0 0 0 0 0 0
1
2 0 1

2
1
2 0 3 2 0 0 0 0 0 0 0

1
2 0 0 0 2 0 0 1 1 0 0 0 0 0
3
2 1 0 0 6 0 0 3 3 0 0 0 0 0

0 1
2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 4 0 0 0 0 0 2 0 0 0
1
4 0 0 1

4 1 0 0 0 0 0 1
2 3 2 0

1
2

1
2

1
2

1
2 0 0 0 0 0 0 0 6 4 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0



, M2 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 2 1 0 0 0 0 0 0 0 0 0 0

0 0 4 2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 2 0 0 0 0 0 0 0 0

0 0 0 0 0 3 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 2 0 0 0 0 0 0
3
2 1 0 0 6 0 0 6 4 2 0 0 0 0

0 0 0 0 0 0 0 3 0 2 0 0 0 0

0 0 0 0 4 0 0 0 0 0 4 0 0 0

0 0 0 0 0 0 0 0 0 0 0 2 0 0

0 0 0 0 0 0 0 0 0 0 0 6 4 0

1 1 4
3

2
3 4 3 4 0 2 2 1 2 2 2



,

M3 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 3 1 2 0 0 0 0

0 0 0 0 0 0 0 3 1 2 0 0 0 0

0 0 0 0 0 0 0 3 1 2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0



. (7.6)

The 3 letters are real and positive in the range x > 0, which corresponds to the Euclidean

region s < 0. The general solution of the system can be written in terms of one-dimensional

GPLs. In order to completely determine the solution of the DEQ, we fix the boundary

constants as follows:

• I1,2,3,4,5 correspond, respectively, to I1,2,5,6,4 of the first integral family, defined in

eq. (3.5).

• I6,7 correspond, respectively, to I19,20 of the second integral family, defined in eq. (3.6).

• The regularity at s → 0 of I8,9,10 can be used to fix the boundary constants of one

single master integrals, which we choose to be I9. The boundary values I8(ε, 0) and

I10(ε, 0) can be obtained in the limit p24 → m2 of similar vertex integrals with off-shell

momentum p24 and s ≡ (p1 + p2)
2 = p23 = 0,

I8(ε, 0) = ε3m2 lim
p24→m2

, I10(ε, 0) = ε2m4 lim
p24→m2

.

(7.7)
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The computation of the auxiliary vertex integrals, which is discussed in appendix A,

leads to

I8(ε, 0) =

(
5ζ3
4
− 3ζ2 log(2)

)
ε3 +

(
8Li4

(
1

2

)
− 33

8
ζ4 +

log4(2)

3
− 2ζ2 log2(2)

)
ε4 ,

I10(ε, 0) =
π2

12
ε2 +

(
ζ3
4

+ 3ζ2 log(2)

)
ε3

+

(
−8Li4

(
1

2

)
+

65

4
ζ4 −

log4(2)

3
+ 2ζ2 log2(2)

)
ε4 +O

(
ε5
)
. (7.8)

• The boundary constant of I11 is determined by imposing regularity when s→ 0.

• I12 corresponds to I17 of the integral family (3.5) and the boundary constant of I13
can be fixed by demanding regularity when s→ 0.

• The boundary condition for I14 is determined from the m → 0, or equivalently s →
∞ behaviour of the solutions, where all the internal lines of the diagrams become

massless. In this regime, we search for a combination of integrals behaving as,

lim
z→0

∑
i

ciIi = zaεF (ε) , a ∈ Z , (7.9)

where F (ε) is finite as z → 0.

Following the ideas outlined in [68], we begin by performing a change of variables

z = 1/x = (−m2/s), yielding a total differential equation of the form,

dI = ε
(
M1 d log(z) + M2 d log(1 + z) + M3 d log(1 + 2z)

)
I , (7.10)

where Mi are the constant matrices

M1 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
2 0 −1 1

2 0 1 2 0 0 0 0 0 0 0

−12 0 1
2 − 1

2 0 0 0 0 0 0 0 0 0 0
1
2 0 0 0 2 0 0 2 2 2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1
2 0 0 0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 0 0 0

−14 0 0 −14 −1 0 0 0 0 0 −12 1 2 0
1
2

1
2 −12

1
2 0 0 0 0 0 0 0 0 0 0

−1 −1 −43 −23 −4 −3 −4 0 −2 2 −1 −2 −2 2



, M2 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 −2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −2 −1 0 0 0 0 0 0 0 0 0 0

0 0 −4 −2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 2 0 0 0 0 0 0 0 0

0 0 0 0 0 − 3 −2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 2 0 0 0 0 0 0

−32 −1 0 0 −6 0 0 −6 −4 −2 0 0 0 0

0 0 0 0 0 0 0 −3 0 −2 0 0 0 0

0 0 0 0 −4 0 0 0 0 0 −4 0 0 0

0 0 0 0 0 0 0 0 0 0 0 2 0 0

0 0 0 0 0 0 0 0 0 0 0 −6 −4 0

1 1 4
3

2
3 4 3 4 0 2 −2 1 2 2 −2



,

M3 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −3 −1 −2 0 0 0 0

0 0 0 0 0 0 0 3 1 2 0 0 0 0

0 0 0 0 0 0 0 3 1 2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0



. (7.11)
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Around the z = 0 singularity, the system reduces to

dI ≈ ε M1 d log(z)I . (7.12)

We perform a Jordan decomposition of M1, identifying the matrices J and S, related

by J ≡ SM1S−1,

J =



0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 2



, S =



5
2 1 0 0 3 0 −1 0 3

2 −1 0 0 −1 0

1 0 0 0 0 0 0 0 1 0 0 0 0 0

−12 −12
1
2 −12 0 0 0 0 0 0 0 0 1 0

5
4 1 −1 1 1 0 0 0 0 0 0 0 −2 0

−12 −12 0 0 0 0 0 0 0 1 0 0 0 0

−12 0 0 0 0 0 0 0 −1 0 0 0 0 0
1
2

1
2 0 0 0 0 0 0 0 0 0 0 0 0

3
2 3 −83

25
6 0 3 6 0 0 0 0 0 0 0

−14
1
4 −16

2
3 −12

3
4

3
2 0 0 0 1

4
1
2 1 0

1
2

1
2 −12

1
2 0 0 0 0 0 0 0 0 0 0

−32 −2 2
3 − 8

3 −1 −3 −5 0 − 3
2 1 −1 −2 −3 1

0 0 0 −14 0 0 0 0 0 0 − 1
2 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0
1
2

1
2 0 0 1 0 0 1 1

2 1 0 0 0 0



.

(7.13)

The latter can be used to define a change of the integral basis, H ≡ SI, which, by

construction, obeys a system of differential equations in Jordan form,

dH = ε J d log(z)H . (7.14)

In particular, the differential equation of the truly diagonal elements Hi, say i =

2, 3, 4, 6, 10, 11, 12, 13, 14 (not belonging to any block-diagonal sector), obey a trivial

first-order differential equation of the form,

dHi

dz
= ε

Jii
z

Hi ; (7.15)

therefore, their expression is of the type,

Hi = zJiiε Hi,0 , (7.16)

where Hi,0 is a boundary constant which may still depend on ε. Among the possible

choices of i, we look at the element i = 11,

H11 = S11,jIj = z2ε H11,0 , (7.17)

from which we infer the behaviour around z = 0 of the following combination of

canonical integrals,

H11,0 = lim
z→0

z−2ε
(
−3

2
I1 − 2I2 +

2

3
I3 −

8

3
I4 − I5 − 3I6 − 5I7

−3

2
I9 + I10 − I11 − 2I12 − 3I13 + I14

)
, (7.18)

involving the integral I14. On the other side, H11 can be computed by taking the

limit z → 0 on the r.h.s. of eq. (7.18) directly at the integrand level, for the integrals
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I must be evaluated in the limit m → 0 (or alternatively s → ∞). To this aim, we

need to pull out the prefactor m4ε coming from the integration measure defined in

eq. (3.2), and to consider the definition of the canonical integrals I in terms of the

linear-ε basis F given in eq. (7.4),

H11,0 = (−s)2ε
(

2sF3 + 3sF6 − sF11 + 2sF12 + s2F14

)∣∣∣
m=0

. (7.19)

In the latter equation, we took into account the vanishing of the massless tadpole in

dimensional regularisation and the symmetries arising from the massless limit of the

F integrals. After applying the IBPs to the massless integrals, the contributions due

to all subtopologies cancel and the contribution of the massless non-planar vertex

F14

∣∣
m=0

[23] is the only one left,

H11,0 = (−s)2+2ε F14

∣∣
m=0

, (7.20)

where

F14

∣∣
m=0

= (−s)−2−2ε F(ε) (7.21)

with

F(ε) ≡ 1− 7 ζ2 ε
2 − 27 ζ3 ε

3 − 57

2
ζ4 ε

4 +O(ε5) . (7.22)

Therefore,

H11,0 = F(ε) . (7.23)

Finally the boundary constant of integral I14 can be determined by demanding the

equality of eq. (7.18) and eq. (7.23).

All results have been numerically checked with the help of the computer codes GiNaC and

SecDec, and the analytic expressions of the MIs are given in electronic form in the ancillary

files attached to the arXiv version of this manuscript.

8 Conclusions

The scattering of high-energy muons on atomic electrons has been recently proposed as an

ideal framework to determine the leading hadronic contribution to the anomalous magnetic

moment of the muon. The ambitious experimental goal of measuring the differential cross

section of the µe → µe process with an accuracy of 10ppm requires, on the theoretical

side, the knowledge of the QED corrections at NNLO. In this work, after calculating the

QED corrections at NLO, which were found to be in agreement with the latest results in

the literature, we investigated the feasibility of the evaluation of the corrections at NNLO.

In particular, we began by considering the two-loop planar box-diagrams contributing

to this process. We employed the method of differential equations and of the Magnus

exponential series to identify a canonical set of master integrals. Boundary conditions
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were derived from the regularity requirements at pseudothresholds, or from the knowledge

of the integrals at special kinematic points, evaluated by means of auxiliary, simpler systems

of differential equations.

The considered master integrals were expressed as a Taylor series around four space-

time dimensions, whose coefficients are written as a combination of generalised polyloga-

rithms. We worked in the massless electron approximation, while keeping full dependence

on the muon mass. Besides µe scattering, our results are relevant also for crossing-related

processes such as muon-pair production at e+e−-colliders, as well as for the QCD correc-

tions to top-pair production at hadron colliders.

The evaluation of the missing contributions due to non-planar box graphs will be the

subject of a dedicated, future work — we are confident that the techniques employed here

can be systematically applied for that case as well.
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A Auxiliary integrals

In this appendix we briefly discuss the solution of the system of differential equations

for the vertex integrals which has been used in eqs. (6.12) and (7.7) as an input for the

determination of the boundary constants of some of the MIs considered in this paper.

Auxiliary vertex integral for eq. (6.12). We consider the integral family∫
d̃dk1d̃dk2

Dn6
6 Dn7

7

Dn1
1 Dn2

2 Dn3
3 Dn4

4 Dn5
5

, ni ≥ 0 , (A.1)
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identified by the set of denominators

D1 = k21 −m2, D2 = k22 −m2, D3 = (k1 + p1)
2, D4 = (k2 + p1 + p2)

2,

D5 = (k1 − k2)2, D6 = (k2 + p1)
2, D7 = (k1 + p1 + p2)

2, (A.2)

and by external momenta p1, p2 and p3 satisfying

p22 = 0 , p23 = (p1 + p2)
2 = 0 . (A.3)

All integrals belonging to this family can be reduced to a set of 8 MIs, whose dependence

on p21 is parametrized in terms of the dimensionless variable

x = − p21
m2

. (A.4)

The basis of integrals

I1 = ε2 , I2 = − ε2p21 ,

I3 = − ε2p21 ,

I4 = ε2 2m2 + ε2(m2 − p21) ,

I5 = ε(1− ε)m2 , I6 = − ε3p21 ,

I7 =− ε4 p21 , I8 = ε3 p21(p
2
1 −m2) (A.5)

fulfills a canonical system of differential equations,

dI = ε dA I , (A.6)

where

dA = M1 d log x+ M2 d log(1 + x) , (A.7)

with

M1 =



0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 4 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 −1
4 −

1
2 0 0 1

4
1
2

3
4

0 −1
2 −1 0 0 1

2 −1 5
2


, M2 =



0 0 0 0 0 0 0 0

−1 −2 0 0 0 0 0 0

0 0 −2 −1 0 0 0 0

0 0 −4 − 2 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 −1
2 − 3 0 0

0 0 0 0 0 0 0 0

1 2 0 0 −1
2 − 3 0 −4


. (A.8)
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In the Euclidean region x > 0 the general solution of the system of differential equations

can be expressed in terms of harmonic polylogarithms (HPLs) [46], and the boundary

constants of all master integrals, with the only exception of I1 = 1 and

I5(ε) = 1 + 2ζ2ε
2 − 2ζ3ε

3 + 9ζ4ε
4 +O

(
ε5
)
, (A.9)

can be fixed by demanding their regularity at x→ 0. In particular, for the I7(ε, x) we obtain

I7(ε, x) = (−2ζ2H(0,−1;x)−H(0,−1,−1,−1;x) +H(0,−1, 0,−1;x)) ε4 +O(ε5). (A.10)

This expression, when it is analytically continued to the region x < 0, has a smooth limit

for x→ −1 ( p21 = m2 ),

I7(ε,−1) =
27

4
ζ4ε

4 +O(ε5) , (A.11)

which has been used in eq. (6.13).

Auxiliary vertex integral for eq. (7.7). We consider the integral family∫
d̃dk1d̃dk2

Dn5
5 Dn6

6 Dn7
7

Dn1
1 Dn2

2 Dn3
3 Dn4

4

, ni ≥ 0 , (A.12)

identified by the set of denominators

D1 = k21, D2 = k22 −m2,

D3 = (k1 + p1)
2 −m2, D4 = (k1 + k2 + p1 + p2)

2,

D5 = (k1 + p2)
2, D6 = (k2 + p1)

2, D7 = (k2 + p1 + p2)
2, (A.13)

and by external momenta p1, p2 and p3 satisfying

p21 = p22 = 0 , (p1 + p2)
2 = p23 . (A.14)

All integrals belonging to this family can be reduced to a set of 5 MIs, whose dependence

on p23 is parametrized in terms of the dimensionless variable

x = − p23
m2

. (A.15)

The basis of integrals

I1 = ε2 , I2 = − ε2p23 ,

I3 = ε2 2m2 + ε2(m2 − p23) ,

I4 = − ε3 p23 , I5 = − ε4 p23m2 , (A.16)
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fulfils a canonical system of differential equations,

dI = ε dA I , (A.17)

where

dA = M1 d log x+ M2 d log(1 + x) + M3 d log(1− x) , (A.18)

with

M1 =


0 0 0 0 0

0 1 0 0 0

0 4 0 0 0

0 0 0 1 0

0 1
2 0 −2 −2

 , M2 =


0 0 0 0 0

0 −2 −1 0 0

0 −4 −2 0 0

0 0 0 0 0

0 0 0 0 0

 , M3 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−1
2 1 −1

2 −2 −2
1
2 −1 1

2 2 2

 . (A.19)

In the Euclidean region x > 0 the general solution of the system of differential equations

can be expressed in terms of HPLs. The boundary constants I4,5, which are the only MIs

appearing for the first time in this computation, can be fixed by demanding their regularity

at x→ 0. In this way, we obtain

Ii(ε, x) =
4∑

k=2

I
(k)
i (x, y)εk +O(ε5) , (A.20)

with

I
(2)
4 (x) = 0 ,

I
(3)
4 (x) = − ζ2H(1;x) + 2H(1, 0,−1;x) ,

I
(4)
4 (x) = ζ3H(1;x)− ζ2H(0, 1;x) + 2H(0, 1, 0,−1;x)− 8H(1, 0,−1,−1;x) , (A.21)

and

I
(2)
5 (x) =

1

2
H(0,−1;x) ,

I
(3)
5 (x) = ζ2H(1;x)− 2H(0,−1,−1;x)− 1

2
H(0, 0,−1;x)− 2H(1, 0,−1;x)) ,

I
(4)
5 (x) = − ζ3H(1;x) + ζ2H(0,−1;x)8H(0,−1,−1,−1;x)− 3H(0,−1, 0,−1;x)

+ 2H(0, 0,−1,−1;x) +
3

2
H(0, 0, 0,−1;x) + 8H(1, 0,−1,−1;x) . (A.22)

The analytic continuation of these expressions to x→ −1 ( p23 = m2 ) produces the smooth

limits

I4(ε,−1) =−
(

5ζ3
4
− 3ζ2 log(2)

)
ε3 −

(
8Li4

(
1

2

)
− 33

8
ζ4 +

log4(2)

3
− 2ζ2 log2(2)

)
ε4 ,

I5(ε,−1) =− ζ2
2
ε2 −

(
ζ3
4

+ 3ζ2 log(2)

)
ε3

−
(
−8Li4

(
1

2

)
+

65

4
ζ4 −

log4(2)

3
+ 2ζ2 log2(2)

)
ε4 +O

(
ε5
)
, (A.23)

which have been used in eq. (7.8).
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B d log-forms

In this appendix we collect the coefficient matrices of the d log-forms

dA = M1 d log(x) + M2 d log(1 + x) + M3 d log(1− x)

+ M4 d log(y) + M5 d log(1 + y) + M6 d log(1− y)

+ M7 d log(x+ y) + M8 d log (1 + x y)

+ M9 d log (1− y(1− x− y)) , (B.1)

for the master integrals in the first and second integral family, respectively defined in

eqs. (3.5), (3.6).

B.1 First integral family

For the first integral family, given in eq. (3.5), we have (M3 is vanishing for this integral

family):

M1 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
4 0 0 1

2 0 1
4 0 0 0 0 1 0 0 0 0 0 −3 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−12 −12 0 0 1
2 −12 0 0 0 0 0 0 0 0 0 0 6 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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1
2 2 0 3 11

3
1
3

3
2 2 0 0 4 0 0 0 0 0 −2 −2 0 0 −6 −4 0 0 −2 0 0 2 0 2 2 0 0 0

−14 −1 0 −6 −196
17
12 −218 −1 0 0 2 −14 0 0 0 0 −1 −1 1 1

2 12 6 0 0 2 0 0 −2 0 −1 −1 0 0 0

0 0 0 6 4 −1 9
2 0 1 3 0 −3 3 4 0 −1 0 0 0 0 −12 −8 −2 −2 0 0 −2 0 0 0 0 2 1 1

0 0 1 −9 −6 3
2 −3 0 0 0 0 0 −3 −2 −2 1 0 0 0 0 18 10 2 2 0 0 2 0 0 0 0 −1 0 −1

0 0 0 −9 −6 3
2 −92 0 −1 0 0 −3 0 0 0 0 0 0 0 0 18 10 2 2 0 −3 3 0 0 0 0 −1 −1 0
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M9 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −6 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



. (B.9)

B.2 Second integral family

For the second integral family, given in eq. (3.6), we find:

M1 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−12 0 0 0 0 1 −12 0 0 0 0 0 0 0 0 0 0 0 −3 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
2 0 0 0 0 −12

1
2 0 0 0 0 0 0 0 0 0 0 0 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −12 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −32 1 0 0 0 0 0 0 0 0 0 0 −3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −12 1 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−14 0 0 0 0 1 −14 0 0 0 0 0 0 0 0 0 0 0 −32 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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M2 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −4 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 4 −1 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −2 2 −6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 −2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 −2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −12 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 0 0 0 0 0 0 0 0 0 −4 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 −4 0 0 0 2 0 0 0 0 0 2 0 0

0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 −4 0 0 0 0 0 0 0



, (B.11)

M3 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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M4 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 −6 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −4 −2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1
2 0 0 0 0 0 0 0 0 3 2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 −6 −2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −2 0 0 0 0 0 0 −4 −2 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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