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Abstract: A design of experiment (DOE) strategy applied to multi-objective optimisation is proposed in order to evaluate
the influence of design variables variations to optimised quantities. A secondary objective function is the sensitivity of a
primary objective function to design variable variations evaluated by means of DOE strategy. The optimisation problem
includes also a third objective function that considers device constraint because of technological limitations on power
generator. The proposed case study deals with the design of an electromagnetic device that will be used to carry out
laboratory experiments on magneto-fluid hyperthermia, that is, a clinic treatment for cancer cure. The induction system
is designed to apply a controlled time-varying magnetic field to biological cells, cultured in Petri dish and mixed with
magnetic nanoparticles. This study presents an original cost-effective method of multi-objective design optimisation
taking into account design uncertainties.
1 Introduction

Currently, the optimal design of electromagnetic device is largely
researched also to include the effect of uncertainties on design
variables or parameters [1–7]. In fact, in production process, the
device and its components are affected by tolerances that can
significantly modify its performance [8–12] and tolerance intervals
are given to each geometrical dimension. The design of a device
needs to find optimal solutions insensitive to small perturbations
of design variables. Various strategies to take into account
uncertain variables in the design of a device have been proposed,
see, for example, [1–6, 11–14]; a comparative review of
optimisation procedures based on worst-case scenario can be
found in [2], whereas an approach based on the approximated
Lipschitz constant is proposed in [15]. Another possible strategy is
the concept of multidimensional hypercube centred on the current
solution [16]. More generally, parametric and non-parametric
multi-objective optimisation can be used in the design of
electromagnetic devices [17–27].

The aim of the proposed multi-objective optimisation is to design an
inductor to obtain homogenous magnetic field intensity in the bottom of
a Petri dish used in some experiments of magneto-fluid hyperthermia
[28–31]. In particular, the aim is to obtain a uniform magnetic field in
a prescribed region to heat a magnetic nanoparticle fluid by means of
a time-varying magnetic field at radio-frequency in the range of
100–400 kHz [32, 33]. Accordingly, the main objective function is the
field inhomogeneity, to be minimised with respect to the geometric
variables of induction-heating device; in this paper, the geometric
model depends on five design variables. The second objective
function is the sensitivity of the solution against small perturbations in
a subset of three design variables, to be minimised too. Perturbations
of design variables have been investigated using design of experiment
(DOE) strategy [34, 35]. Finally, a third objective function is defined
in terms of either the voltage at inductor ends or the supplied electrical
current. Therefore an optimal shape-design problem characterised by
three-objective space is investigated. A detailed description of the case
study is given in Section 3.

In the past, the DOE strategy has been proposed, for example, in
[34] to numerically evaluate the sensitivity of a solution with respect
to a small perturbation of some parameters not incorporated in the
design variable set, like material properties in a problem of
optimal shape design. In this paper, in turn, the DOE strategy has
been applied to evaluate the sensitivity of a solution just with
respect to variations of design variables in a cost-effective way;
moreover, sensitivity is considered as an additional objective
function. Methodological aspects are focused on in Section 2.
2 Sensitivity computation methods

The sensitivity of design variables was computed using a DOE
strategy [34] in order to evaluate the effect of a set of uncertain
parameters meant as quantities different from the design variables.
In contrast, the same DOE strategy is here applied to a subset of
Np out of N design variables, Np < N (N is the total number of
design variables, Np is the number of uncertain design variables in
the subset).
2.1 DOE method

According to the multi-factorial DOE strategy [35] in the case of
Np = 3, given the current solution of the optimisation problem,
four extra solutions (Yj, j = 1, 4) are computed by varying the
values of the uncertain variables, pk k = 1, …, 3, around their
current nominal value, as shown in Table 1. To consider more
than three uncertain variables, according to the DOE strategy
proposed by Placket–Burmann [35], a table of sign alternance with
more experiments has to be considered. Sign alternance follows
the Placket–Burmann rule [35]. For instance, when the uncertain
variables are between 4 and 7, 8 supplementary experiments, k =
1, …, 8, are required. In Table 1, it is assumed that the Np

uncertain design variables has been attributed an uncertainty
range; then the signs ‘ + ’ and ‘− ’, in Table 1, correspond to
select the upper or lower limit in the range of the design variable
uncertainty, respectively.

Therefore, given a solution, four values of the fi objective
functions, named fi,j, j = 1, …, 4, ( fi,1, fi,2, fi,3, fi,4), are computed
by varying the design variable values as described as follows.
Given the step function defined as

U (Y j, pk ) =
1, if (Y j, pk ) = ′+′

0, if (Y j, pk ) = ′−′

{
(1)
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Table 1 Table of design: sign alternance of uncertain variables pk, k = 1,
3 for evaluating sensitivity

p1 p2 p3 fi (i = 1)

Y1 + + + fi,1
Y2 − + − fi,2
Y3 − − + fi,3
Y4 + − − fi,4
the sensitivity is evaluated this way [34]: for the kth uncertain design
variable, k = 1, 3, the sums of fi values ( fi, j) corresponding to a ‘ + ’
in Table 1, S+,Pk, and the ones corresponding to a ‘− ’, S−,Pk, are
computed as follows

S+,Pk =
∑4
j=1

fi, j·U (Y j, pk ) (2)

S−,Pk =
∑4
j=1

fi, j· 1− U (Y j, pk )
[ ]

(3)

Then, the influence sPk of a variation of the kth design variable on the
value of objective function fi is evaluated as [34]

sPk =
S+,Pk

N+
− S−,Pk

N−
(4)

where N+ and N− are the number of sign ‘ + ’ and ‘− ’ in the column
corresponding to the considered variable in Table 1. For the kth
design variable, the partial sensitivity, sPk, is estimated just using
(4), which is the core equation. After (4) it can be remarked that
the multi-factorial DOE (linear number of experiments) is
cost-effective with respect to the full-factorial DOE (exponential
number of experiments). Finally, the total sensitivity with respect
to all the uncertain design variable, f2, is given by

f2 =
��������∑3
k=1

s2Pk

√√√√ (5)

Under a multi-objective context, f2 given by (5) can well be regarded
Fig. 1 Case study

a Geometry of the induction-heating device with design variables (the uncertain ones are in b
b Detail of the FE mesh
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as a secondary objective function in addition to the design criterion
f1: this is exactly the leading idea of Section 3.

2.2 Method comparison and validation

For the sake of a comparison, the sensitivity of f1 is computed also by
means of a different method, that is, using Taylor first-order
approximation and varying only one design variable at a time
inside the interval ±d, for example, d = 1 mm

∂f1
∂xi

� f1(xi + d)− f1(xi − d)

2d

points

mm

[ ]
(6)

Given the uncertainty σk in [millimetres] computed for the kth design
variable, and given the objective function f1, computed for the
current solution and evaluated in [points], the global effect of a
variation of a design variable on the solution Sn, σi,n(Sn), is
calculated using a classical method to evaluate measurement
uncertainty [36]

si, n(Sn) =

����������������∑Np

k=1

∂fi
∂xk

( )2

s2
k

√√√√ [points] (7)

Equation (7) is a more accurate method to evaluate the influence of a
variation of a set of Np variables on function fi. In fact, (7) includes
the weight of a variation of each variable (with a value <1 or >1)
evaluated as a derivative of the examined objective function. In
this paper, the derivative is approximated numerically performing
two extra simulations for each design variables around the solution
evaluated by means of the optimisation procedure. It is expected
that (5), that is, an estimation of the solution variability, be
comparable with (7).
3 Case study

In Fig. 1a, the cross-section of the axi-symmetric geometry of the
device considered as the case study is shown [37]. The
electromagnetic device is composed of an inductor with two
copper turns, four ferrite rings and a ferrite disc placed as in
Fig. 1a. Ferrite blocks allow to shape the magnetic flux lines in
old character)
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Table 2 Lower and upper bounds of design variables and uncertainty
intervals of design variables

Uncertain design
variable

Range,
mm

Uncertainty,
mm

Design
variable

Range,
mm

hf0 [1, 30] ±1 HS [10, 60]
hf1 [1, 30] ±1 st [0, 30]
hf2 [1, 30] ±1
order to achieve the prescribed field homogeneity. The size of ferrite
blocks has been chosen using some preliminary results presented in
[37], and considering ferrite elements commercially available. A
Petri dish is placed in a thermally insulated box in order to
mitigate the influence of the environment temperature; in Fig. 1a,
the thermal box is sketched only to show the whole device: in
fact, temperature field simulation falls out of the scope of the
work. The magnetic problem is solved in time-harmonics
conditions using a finite element (FE) code [38]. The inductor
can be supplied by imposing either a current (e.g. 500 Arms at
350 kHz) or a voltage (600 Vrms at 350 kHz). A typical mesh
(Fig. 1b) exhibits 24 000 nodes and 9900 second-order surface
elements.

Table 2 shows the N = 5 design variables characterising the case
study, with the relevant range; the uncertainty intervals of the Np

design variable subset (height of the ferrite disks in the upper part
of the device, that is, hf0, hf1 and hf2 in Fig. 1a) are also prescribed.
The other two design variables are the z-directed size of the
inductor turn, HS, and the distance between the two inductor turns, st.

3.1 Electromagnetic analysis problem

The electromagnetic axi-symmmetric problem is solved using the
A–V formulation. The problem is solved in terms of the phasor of
magnetic vector potential, A, coupled with the electric scalar
potential, V. When the Coulomb gauge is applied on the magnetic
vector potential, that is, ∇ · Ȧ = 0, the following coupled
equations are solved [39]

∇ × 1

m
∇ × Ȧ+ jvm

1

r
Ȧ = − 1

r
∇V̇ (8)

∇ · 1
r
(jvmȦ+∇V̇ ) = 0 (9)

with µ being the material permeability, ω is the field pulsation and ρ
is the material resistivity for copper turns, while Ȧ is the phasor of the
magnetic vector potential.

3.2 Optimisation problem

The optimisation aim is three-fold: maximising the magnetic field
homogeneity in the bottom of the Petri dish, minimising the
design sensitivity and limiting the voltage supply at inductor ends
or, alternatively, the inductor current. Consequently, the following
three-objective functions have been considered:

( f1) is the inhomogeneity of the magnetic field, H, on the bottom of
the Petri dish, to be minimised as in [37] with a tolerance interval of
±10 A/m. Once (8) and (9) are solved, the H-field intensity can be
computed from magnetic vector potential A in a straight forward
way. Therefore the inhomogeneity of H in terms of the H-norm
discrepancy, that is dimensionless, is evaluated on the bottom of
the Petri dish on a fixed grid of points;
( f2) is the sensitivity of f1 with respect to the set of uncertain design
variables shown in Table 2, evaluated according to (5), to be
minimised; and
( f3) is the end voltage (or current) when the inductor is supplied by
applying a current (or a voltage, respectively). The rationale is that,
in general, the end voltage must not exceed the typical value
IET Sci. Meas. Technol., 2015, Vol. 9, Iss. 5, pp. 579–586
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available at the converter output (e.g. 700 Vrms as maximum
voltage of capacitance with a current up to 700 Arms). The third
objective function, f3, can consider the following two cases:
(a) the inductor has been supplied by a current I of 500 Arms at
350 kHz, and the voltage at the inductor ends ( f3) is minimised and
(b) alternatively, the inductor has been supplied by a voltage of
600 Vrms at 350 kHz, and the supply current ( f3) is minimised.

The aforementioned objective functions, subject to bounds in
Table 2, have been minimised in the Pareto sense (i.e. search for the
front of non-dominated solutions) using a standard evolutionary
algorithm (Non-dominated Sorting Genetic Algorithm (NSGA)-II).

An additional remark on voltage and current calculation in the
inductor is worthwhile. The FE electromagnetic solution takes into
account the actual distribution of current density in the inductor,
Iturn, that in turn depends on the induced electric field and the
voltage applied by an external supply. The last quantity represents
the imposed current source

İ turn = − 1

r

∫
Sturn

(jvmȦ+∇V̇ ) dS (10)

where Sturn is the cross-sectional area of the inductor turn, normal to
the current flow in a 2D axi-symmetric model. The inductor is
composed by two turns series connected, so each turn must carry
the same current intensity. When the external supply imposes a
current intensity, the applied voltage is calculated for each turn
using a circuital approach based on the node-voltage analysis to
fulfil the requirements about total imposed current and series
connected turns. The same circuital approach is applied to
compute the complex voltage values of each turn when the total
voltage is the supply value (the solution is trivial when the
inductor comprises only 2 turns). As a consequence, the value of
voltage (or current) to feed the inductor depends on the actual
electromagnetic field distribution that affects the induced term.

The implemented version of NSGA-II algorithm [15, 25, 34]
exploits simulated binary cross-over (Simulated Binary Crossover
(SBX) algorithm [40]) with a probability of cross-over of 0.9 and
polynomial mutation, with a mutation probability of 1/N. The
distribution indices for cross-over and mutation operators are both
equal to 20. The number of individual for each generation is 20
and the number of generations is 50. The optimisation process
lasted approximately one day using a 64 bit workstation with 24
GB random access memory and an Intel Xeon central processing
unit at 3.33 GHz. Results are presented in Section 4.
4 Results

The results of the two optimisation case studies defined in Section 3
are summarised. In case (a), the voltage at inductor ends is
minimised, whereas in case (b) the current in the inductor is
minimised.
4.1 Case (a)

Fig. 2 reports the approximated three-dimensional (3D) Pareto front
that was obtained by minimising the three-objective functions in the
case of the inductor supplied by a constant current. Each point in
Fig. 2 corresponds to a different FE analysis. Black crosses
represent the non-dominated solutions among all generated
individuals.

Fig. 3 reports the corresponding 2D orthogonal projections of the
3D front: sensitivity ( f2) and inductor voltage ( f3) as a function of the
magnetic field inhomogeneity ( f1).

In Table 3, a set of four solutions located along the Pareto fronts
are reported in terms of design variables and objective functions
values. The corresponding geometries are shown in Fig. 4.
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Fig. 2 3D objective space: generated individuals (Grey points) and
approximated Pareto front (black crosses)

Solutions in Table 3 have been highlighted

Table 3 Selected solutions on the Pareto front

hf0,
mm

hf1,
mm

hf2,
mm

Hs,
mm

st,
mm

f1 f2 f3, V

S0 8.02 17.16 7.54 60 8.52 188 614.9 656.3
S1 1.93 14.76 29.39 42.19 28.84 1080 2.8 735
S2 13.44 30 25.67 59.89 25.36 1048 12.9 616.5
S3 20.45 19.82 21.33 49.72 3.79 376 182.6 737.8

Design variables, objective functions f1, f2 and f3.
Fig. 5a reports the magnetic field intensity along a line in the
bottom of the Petri dish. The magnetic flux lines and the magnetic
field intensity on the Petri dish are shown in Fig. 5b. The typical
value of magnetic field, in the examined case, is close to 7 kA/m
(peak value).

The effects on objective functions because of a positive or
negative variation of an uncertain design variable at a time (the
ones used in the DOE computation) are reported in Table 4. For
Fig. 4 Geometries of the designed device for solutions on Pareto front for the ca

Fig. 3 2D orthogonal projections of Pareto fronts

a Sensitivity
b Voltage against H inhomogeneity
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each solution, Si, the optimised values are shown (row named
‘Start’). The second row, named (‘round’), shows the effect on
objective functions because of rounding the design variable values
to the nearest integer and, finally, the effect obtained by applying
a perturbation to a single design variables in the set of Np ones.
Considering the objective function f1, the partial derivatives (6) are
computed for the design variable hf0, hf1 and hf2. In particular,
‘hfk,+ ’ and ‘hfk,− ’ correspond to a positive or negative variation
of the design variable hfk, k = 1, 3, respectively.

Finally, the sensitivity of each solution in Table 3, computed on
design variables using (4) and data in Table 4, is reported in
Table 5. To compute (4), four extra FE computations are needed.
To compute (7) the extra FE solutions are six. To compare the two
methods to evaluate the sensitivity of a solution, Table 5 reports
also the values of the sensitivity computed by means of DOE
strategy. The values of the sensitivity computed using (4) are
proportional with the ones computed using the DOE strategy
during the optimisation process (Fig. 6).

It appears that the better solution in terms of magnetic field
uniformity is the more sensitive to design variables variations,
se (a)
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Fig. 5 Magnetic field intensity along a line in the bottom of the Petri dish

a Magnetic field in the bottom of the Petri dish as a function of the x-coordinate
b Magnetic flux line of direct problem and magnetic field colour map on the Petri dish for solution S0

Table 4 Effect of a variation d = ±1 mm on the solutions listed in Table 3

hf0, mm hf1, mm hf2, mm Hs, mm st, mm f1 f2 f3, V

S0 start 8.02 17.16 7.54 60 8.52 188 616.4 656.3
round 8 17 8 60 9 274 572 654.8
hf0,+ 9 17 8 60 9 529 250.9 654.4
hf0,− 7 17 8 60 9 805 316.3 655.3
hf1,+ 8 18 8 60 9 263 584 655.1
hf1,− 8 16 8 60 9 284 556.9 654.7
hf2,+ 8 17 9 60 9 775 309.3 655.2
hf2,− 8 17 7 60 9 532 262.7 654.6

S1 start 1.93 14.76 29.39 42.19 28.84 1080 2.8 735.1
round 2 15 29 42 29 1080 2.2 737.4
hf0,+ 3 15 29 42 29 1080 5.5 735.9
hf0,− 1 15 29 42 29 1081 3.3 738.9
hf1,+ 2 16 29 42 29 1081 2.2 738.7
hf1,− 2 14 29 42 29 1080 5.1 735.3
hf2,+ 2 15 30 42 29 1080 4.6 734.5
hf2,− 2 15 28 42 29 1080 2.2 739.4

S2 start 13.44 30 25.67 59.89 25.36 1048 12.9 616.5
round 13 30 26 60 25 1051 12.1 617.3
hf0,+ 14 30 26 60 25 1046 14.3 616.4
hf0,− 12 30 26 60 25 1056 10.4 618.1
hf1,+ 13 31 26 60 25 1050 12.1 617.1
hf1,− 13 29 26 60 25 1052 10.7 617.4
hf2,+ 13 30 27 60 25 1054 10.1 617.9
hf2,− 13 30 25 60 25 1047 13.6 616.7

S3 start 20.45 19.82 21.33 49.72 3.79 376 182 737.8
round 20 20 21 50 4 382 182.2 735.4
hf0,+ 21 20 21 50 4 427 151.5 735.1
hf0,− 19 20 21 50 4 474 202 735.9
hf1,+ 20 21 21 50 4 364 219.1 734.6
hf1,− 20 19 21 50 4 400 159.7 736.5
hf2,+ 20 20 22 50 4 463 151.3 734.7
hf2,− 20 20 20 50 4 412 170.5 736.2
whereas the worst case in terms of homogeneity is the less
sensitive.

4.2 Case (b)

Fig. 7 reports the 3D Pareto front obtained minimising the
three-objective functions for the inductor supplied by a constant
Table 5 Approximated partial derivatives computed using (6) and
sensitivity, for solutions in Table 3, exploiting (5), (7) and Table 4

∂f1/∂(hf0) ∂f1/∂(hf1) ∂f1/∂(hf2) σi,n(Sn) (7) f2 (5)

S0 −138 −10.5 121.5 212.7 614.9
S1 −0.5 0.5 0 0.8 2.8
S2 −5 −1 3.5 7.1 12.9
S3 −23.5 −18 25.5 45.1 182.6 Fig. 6 Sensitivity – DOE computed using (5) as a function of sensitivity –

analytical computed using (7) for the case (a)

IET Sci. Meas. Technol., 2015, Vol. 9, Iss. 5, pp. 579–586
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Fig. 7 3D objective space: generated individuals (green points) and
approximated Pareto front (black crosses)

Solutions in Table 6 have been highlighted

Table 6 Selected solutions on the Pareto front

hf0,
mm

hf1,
mm

hf2,
mm

Hs,
mm

st,
mm

f1 f2 f3, A

S0 1 20.7 26.7 19.8 17.2 1041 13 304.2
S1 5.1 12.1 4.5 30.8 22 229 579.3 347
S2 10.3 18.3 15.2 13.8 22.4 357 122.3 290.5

Design variables, objective functions f1, f2 and f3.
voltage. Each point in Fig. 7 corresponds to a different FE analysis.
Black crosses represent the non-dominated solutions among
generated individuals.

Fig. 8 reports the corresponding 2D orthogonal projections of the
3D front: sensitivity ( f2) or current ( f3) as a function of the magnetic
field inhomogeneity ( f1).

In Table 6, a set of three solutions on the Pareto front are reported
in terms of design variables and objective functions values. The
corresponding geometries are in Fig. 9.
Fig. 8 2D projections of Pareto front

a Sensitivity
b Supply current against H inhomogeneity

Fig. 9 Geometries of the designed device for solutions on Pareto front for the ca
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Fig. 10a reports the magnetic field intensity along a line in
the bottom of the Petri dish. The magnetic flux lines and the
magnetic field intensity on the Petri dish are in Fig. 10b. In this
case the typical value of magnetic field, in the examined case, is
close to 6 kA/m (peak value); correspondingly, the current is close
to 300 A.

In Table 7, the effects on objective functions of a positive or
negative variation on a single design variable (only the ones used
in the DOE computation) are reported. For each solution, Si, the
same evaluations reported in Table 4 have been repeated. Positive
and negative variations on design variables as in case (a) have
been applied.

Finally, the sensitivity of each solution in Table 6, computed on
design variables using (4) and data in Table 7, is reported in
Table 8. It can be underlined that the values of the sensitivity
computed using (4) are proportional to the ones computed using
the DOE strategy during the optimisation process. The two
methods to evaluate the sensitivity are compared in Table 8 and
Fig. 11 and also in this case the obtained values are correlated.
se (b)
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Fig. 10 Magnetic flux lines and the magnetic field intensity on the Petri dish

a Magnetic field in the bottom of the Petri dish as a function of the x-coordinate
b Magnetic flux line of direct problem and magnetic field colour map on the Petri dish for solution S1

Table 7 Effect of a variation d = ±1 mm on the solutions listed in Table 6

hf0, mm hf1, mm hf2, mm Hs, mm st, mm f1 f2 f3, A

S0 start 1 20.7 26.7 19.8 17.2 1041 13.7 304.2
round 1 21 27 20 17 1040 13.5 304.8
hf0,+ 2 21 27 20 17 1033 16.5 305.3
hf0,− 0 21 27 20 17 1046 10 304.3
hf1,+ 1 22 27 20 17 1037 13.7 305.1
hf1,− 1 20 27 20 17 1043 13.6 304.5
hf2,+ 1 21 28 20 17 1040 13.7 304.7
hf2,− 1 21 26 20 17 1040 14.2 304.8

S1 start 5.1 12.1 4.5 30.8 22 228 575.9 346.9
round 5 12 5 31 22 322 517 348
hf0,+ 6 12 5 31 22 524 261.9 348.3
hf0,− 4 12 5 31 22 800 294.9 347.6
hf1,+ 5 13 5 31 22 318 531 348
hf1,− 5 11 5 31 22 324 498.3 347.9
hf2,+ 5 12 6 31 22 762 314 348.6
hf2,− 5 12 4 31 22 543 258.4 347.4

S2 start 10.3 18.3 15.2 13.8 22.4 348 126.3 290.3
round 10 18 15 14 22 397 140.9 290.4
hf0,+ 11 18 15 14 22 395 263.2 290.8
hf0,− 9 18 15 14 22 524 174.7 290
hf1,+ 10 19 15 14 22 418 145.4 290.5
hf1,− 10 17 15 14 22 362 134.3 290.3
hf2,+ 10 18 16 14 22 481 127.8 290.7
hf2,− 10 18 14 14 22 338 196.9 290.1

Fig. 11 Sensitivity – DOE computed using (5) as a function of sensitivity –
analytical computed using (7) for the case (b)

Table 8 Approximated partial derivatives computed using (6) and
sensitivity, for solutions in Table 3, exploiting (5), (7) and Table 7

∂f1/∂(hf0) ∂f1/∂(hf1) ∂f1/∂(hf2) σi, n(Sn) (7) f2 (5)

S0 −6.5 −3 0 8.3 13
S1 −138 −3 109.5 203.4 579.3
S2 −64.5 28 71.5 115.8 122.3
Also for case (b), the lower sensitivity corresponds to the worst
case in terms of magnetic field intensity uniformity, whereas it can
be observed that considering solution with a better uniformity, the
sensitivity increases. Moreover, considering the third objective
function, the better solution shows a lower sensitivity.

The proposed multi-objective optimisation gives to the designer
the possibility to select the best feasible solutions in terms of field
uniformity and in accordance with the power supply
characteristics. The designer has to decide to achieve an excellent
field uniformity using a weak solution in terms of sensitivity or
vice versa accordingly to the his/her experience in practical
realising such a kind of devices. For instance, referring to Table 7,
the selection of an optimal solution in terms of robustness could
IET Sci. Meas. Technol., 2015, Vol. 9, Iss. 5, pp. 579–586
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be S0 at the expenses of a higher inhomogeneity; in contrast a
solution like S1 would be oriented to a more uniform magnetic
field, but with higher sensitivity to fabrication tolerances. The final
choice depends on the quality of the available manufacturing
technology.
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Accordingly to the optimisation results, the Laboratory for the
Electroheat of Padua University will realise an inductor with high
uniformity of magnetic field, with low supplied voltage and
accepting a quite high sensitivity. This design has been realised to
carry out laboratory experiments where a high-precision inductor
manufacturing is required.
5 Conclusion

Optimisation algorithms coupled to commercially available
numerical tools can be used for the robust design of
electromagnetic devices. Sensitivity analysis allows evaluating the
influence effect of a variation on design variables on an objective
function. This is important because during the production process,
the device or component is affected by manufacturing tolerances.
Sensitivity computation can help the designer to exclude solutions
largely affected by tolerance deviations.

Actually, sensitivity is used in manifold ways: for example, it
could be evaluated just at the start of the optimisation procedure,
by means of a technique of design of computer experiments, in
order to identify a reduced set of design variables and so discard
the less sensitive ones. Alternatively, it can be evaluated at the end
of the optimisation procedure, in order to assess the robustness of
the optimised solution; moreover, when sensitivity is incorporated
in the objective or constraint functions, there is an extra cost at
each iteration for simulating the local perturbation. In this paper,
sensitivity has been computed in a cost-effective way exploiting a
multi-factorial approach to the DOEs; subsequently, sensitivity has
been considered as an auxiliary objective function, in addition to
the main design criterion: therefore a multi-objective design
problem is originated that has been solved according to Pareto
optimality theory; the proposed method has been validated by
means of a real-life case study.
6 Acknowledgment

This work is supported by a grant ‘Progetto di Ateneo’ of the Padua
University (CPDA114144).
7 References

1 Ren, Z., Pham, M.-T., Song, M., Kim, D.-H., Koh, C.-s.: ‘A robust global
optimization algorithm of electromagnetic devices utilizing gradient index and
multi-objective optimization method’, IEEE Trans. Magn., 2011, 47, (5),
pp. 1254–1257

2 Ren, Z., Pham, M.-T., Koh, C.S.: ‘Robust global optimization of electromagnetic
devices with uncertain design parameters: comparison of the worst case
optimization methods and multiobjective optimization approach using gradient
index’, IEEE Trans. Magn., 2013, 49, (2), pp. 851–859

3 Ren, Z., Zhang, D., Koh, C.-S.: ‘New reliability-based robust design optimization
algorithms for electromagnetic devices utilizing worst case scenario
approximation’, IEEE Trans. Magn., 2013, 49, (5), pp. 2137–2140

4 Ren, Z., Park, C., Koh, C.-S.: ‘Numerically efficient algorithm for reliability-based
robust optimal design of TEAM problem 22’, IEEE Trans. Magn., 2014, 50, (2),
pp. 661–664

5 Coenen, I., Gracia, M.H., Hameyer, K.: ‘Influence and evaluation of non-ideal
manufacturing process on the cogging torque of a permanent magnet excited
synchronous machine’, COMPEL – Int. J. Comput. Math. Electr. Electron. Eng.,
2011, 30, (3), pp. 876–884

6 Abdallh, A., Crevecoeur, G., Dupré, L.: ‘Impact reduction of the uncertain
geometrical parameters on magnetic material identification of an EI
electromagnetic inductor using an adaptive inverse algorithm’, J. Magn. Magn.
Mater., 2012, 324, (7), pp. 1353–1359

7 Alotto, P., Molfino, P., Molinari, G.: ‘Optimisation of electromagnetic devices with
uncertain parameters and tolerances in the design variables’, COMPEL –
Int. J. Comput. Math. Electr. Electron. Eng., 2001, 20, (3), pp. 808–812

8 Aghabeigi, M., Movahhedy, M.R.: ‘An algorithm for geometrical uncertainty
analysis in planar truss structures’, Struct. Multidiscip. Optim., 2014, 49, (2),
pp. 225–238

9 Jayaprakash, G., Thilak, M., SivaKumar, K.: ‘Optimal tolerance design for
mechanical assembly considering thermal impact’, Int. J. Adv. Manuf. Technol.,
2014, 73, pp. 859–873
586
10 Saravanan, A., Balamurugan, C., Sivakumar, K., Ramabalan, S.: ‘Optimal
geometric tolerance design framework for rigid parts with assembly function
requirements using evolutionary algorithms’, Int. J. Adv. Manuf. Technol., 2014,
73, pp. 1219–1236

11 Lee, S., Kim, K., Cho, S., Jang, J., Lee, T., Hong, J.: ‘Optimal design of interior
permanent magnet synchronous motor considering the manufacturing tolerances
using Taguchi robust design’, IET Electr. Power Appl., 2014, 8, (1), pp. 23–28

12 Pleshivtseva, Y.E., Rapoport, E.Y.: ‘The successive parameterization method of
control actions in boundary value optimal control problems for distributed
parameter systems’, J. Comput. Syst. Sci. Int., 2009, 48, (3), pp. 351–362

13 Hsu, C.-C., Chang, S.-C., Yu, C.-Y.: ‘Tolerance design of robust controllers for
uncertain interval systems based on evolutionary algorithms’, IET Control
Theory Appl., 2007, 1, (1), pp. 244–252

14 Kim, D.-H., Sykulski, J.K., Lowther, D.: ‘Design optimisation of electromagnetic
devices using continuum design sensitivity analysis combined with commercial
EM software’, IET Sci. Meas. Technol., 2007, 1, (1), pp. 30–36

15 Di Barba, P.: ‘Multiobjective shape design in electricity and magnetism’ (Springer,
Doredrecht; New York, 2010)

16 Di Barba, P., Dughiero, F., Sieni, E.: ‘Magnetic field synthesis in the design of
inductors for magnetic fluid hyperthermia’, IEEE Trans. Magn., 2010, 46, (8),
pp. 2931–2934

17 Di Barba, P., Dughiero, F., Forzan, M., Sieni, E.: ‘Parametric vs non-parametric
optimal design of induction heating devices’, Int. J. Appl. Electromagn. Mech.,
2014, 44, (2), pp. 193–199

18 Di Barba, P., Dughiero, F., Sieni, E.: ‘Non-parametric optimal shape design of a
magnetic device for biomedical applications’, COMPEL – Int. J. Comput. Math.
Electr. Electron. Eng., 2012, 31, (5), pp. 1358–1367

19 Di Barba, P., Dughiero, F., Sieni, E.: ‘Parameter-free paretian optimisation in
electromagnetics: a kinematic formulation’, IET Sci. Meas. Technol.., 2013, 7,
(2), pp. 93–103

20 Campelo, F., Watanabe, K., Igarashi, H.: ‘Topology optimization with smoothness
considerations’, Int. J. Appl. Electromagn. Mech., 2008, 28, (1), pp. 187–192

21 Kim, Y.S., Byun, J.K., Park, I.H.: ‘A level set method for shape optimization of
electromagnetic systems’, IEEE Trans. Magn., 2009, 45, (3), pp. 1466–1469

22 Di Barba, P., Pleshivtseva, Y., Rapoport, E., et al.: ‘Multi-objective optimisation
of induction heating processes: methods of the problem solution and examples
based on benchmark model’, Int. J. Microstruct. Mater. Prop., 2013, 8, (4),
pp. 357–372

23 Di Barba, P., Dughiero, F., Sieni, E.: ‘Synthesizing a nanoparticle distribution in
magnetic fluid hyperthermia’, COMPEL – Int. J. Comput. Math. Electr.
Electron. Eng., 2011, 30, (5), pp. 1507–1516

24 Di Barba, P., Dughiero, F., Sieni, E.: ‘Synthesizing distributions of magnetic
nanoparticles for clinical hyperthermia’, IEEE Trans. Magn., 2012, 48, (2),
pp. 263–266

25 Di Barba, P., Dughiero, F., Sieni, E.: ‘Field synthesis for the optimal treatment
planning in magnetic fluid hyperthermia’, Arch. Electr. Eng., 2012, 61, (1),
pp. 57–67

26 Alotto, P., Baumgartner, U., Freschi, F., et al.: ‘SMES optimization benchmark
extended: introducing Pareto optimal solutions into TEAM22’, IEEE Trans.
Magn., 2008, 44, (6), pp. 1066–1069

27 Fulginei, F., Salvini, A.: ‘The flock of starlings optimization: influence of
topological rules on the collective behavior of swarm intelligence’, in Wiak, S.,
Napieralska-Juszczak, E.(Eds.): ‘Computational methods for the innovative
design of electrical devices’ (Springer, Berlin, Heidelberg, 2011), pp. 129–145

28 Goya, G.F., Asín, L., Ibarra, M.R.: ‘Cell death induced by AC magnetic fields and
magnetic nanoparticles: current state and perspectives’, Int. J. Hyperth., 2013, 29,
(8), pp. 810–818

29 Hildebrandt, B., Wust, P., Ahlers, O., et al.: ‘The cellular and molecular basis of
hyperthermia’, Crit. Rev. Oncol./Hematol., 2002, 43, (1), pp. 33–56

30 Jordan, A., Scholz, R., Wust, P., Fahling, H., Felix, R.: ‘Magnetic fluid
hyperthermia (MFH): cancer treatment with AC magnetic field induced
excitation of biocompatible superparamagnetic nanoparticles’, J. Magn. Magn.
Mater., 1999, 201, (1–3), pp. 413–419

31 Di Barba, P., Dughiero, F., Sieni, E., Candeo, A.: ‘Coupled field synthesis in
magnetic fluid hyperthermia’, IEEE Trans. Magn., 2011, 47, (5), pp. 914–917

32 Rosensweig, R.E.: ‘Heating magnetic fluid with alternating magnetic field’, J.
Magn. Magn. Mater., 2002, 252, (1–3), p. 370

33 Fortin, J.P., Gazeau, F., Wilhelm, C.: ‘Intracellular heating of living cells through
Neel relaxation of magnetic nanoparticles’, Eur. Biophys. J. : EBJ., 2008, 37, (2),
pp. 223–228

34 Di Barba, P., Dughiero, F., Forzan, M., Sieni, E.: ‘A paretian approach to optimal
design with uncertainties: application in induction heating’, IEEE Trans. Magn.,
2014, 50, (2), pp. 917–920

35 Plackett, R.L., Burman, J.P.: ‘The design of optimum multifactorial experiments’,
Biometrika, 1946, 33, (4), pp. 305–325

36 13005 E. Guide to the expression of uncertainty in measurement, 1999
37 Bertani, R., Ceretta, F., Di Barba, P., et al.: ‘Optimal inductor design for nanofluid

magnetic characterisation’ (Annecy, France, 2014)
38 FLUX. (CEDRAT). Available at http://www.cedrat.com/software/flux/flux.html
39 Binns, K.J., Lawrenson, P.J., Trowbridge, C.W.: ‘The analytical and numerical

solution of electric and magnetic fields’ (Wiley, Chichester, 1992)
40 Deb, K.: ‘Multi-objective optimization using evolutionary algorithms’ (John Wiley

& Sons, Chichester, New York, 2001, 1st edn.)
IET Sci. Meas. Technol., 2015, Vol. 9, Iss. 5, pp. 579–586
& The Institution of Engineering and Technology 2015

http://www.cedrat.com/software/flux/flux.html
http://www.cedrat.com/software/flux/flux.html
http://www.cedrat.com/software/flux/flux.html
http://www.cedrat.com/software/flux/flux.html
http://www.cedrat.com/software/flux/flux.html
http://www.cedrat.com/software/flux/flux.html

	1 Introduction
	2 Sensitivity computation methods
	3 Case study
	4 Results
	5 Conclusion
	6 Acknowledgment
	7 References

