
European Journal of Operational Research 263 (2017) 258–264

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Innovative Applications of O.R.

Using a general-purpose Mixed-Integer Linear Programming solver for

the practical solution of real-time train rescheduling

Matteo Fischetti a , ∗, Michele Monaci b

a DEI, Università di Padova, Via Gradenigo 6/A, Padova I-35131, Italy
b DEI, Università di Bologna, Viale Risorgimento 2, Bologna I-40136, Italy

a r t i c l e i n f o

Article history:

Received 21 September 2016

Accepted 30 April 2017

Available online 4 May 2017

Keywords:

Combinatorial optimization

Railways optimization

Train rescheduling

Mixed-Integer Linear Programming

Real-time optimization

a b s t r a c t

At a planning level, train scheduling consists of optimizing the routing and scheduling for a set of trains

on a railway network. In real-time operations, however, the planned schedule constantly needs to be ver-

ified and possibly updated due to disruptions/delays that may require train rerouting or cancelation. In

practice, an almost immediate reaction is required when unexpected events occur, meaning that trains

must be rescheduled in a matter of seconds. This makes the time-consuming optimization tools success-

fully used in the planning phase completely inadequate, and ad-hoc (heuristic) algorithms have to be

designed.

In the present paper we develop a simple approach based on Mixed-Integer Linear Programming (MILP)

techniques, which uses an ad-hoc heuristic preprocessing on the top of a general-purpose commercial

solver applied to a standard event-based MILP formulation. A computational analysis on real cases shows

that our approach can be successfully used for practical real-time train rescheduling, as it is able to de-

liver (almost) optimal solutions within the very tight time limits imposed by the real-time environment.

© 2017 Elsevier B.V. All rights reserved.

v

r

c

n

r

a

o

i

m

v

a

s

T

o

d

t

w
1. Introduction

Train scheduling consists of routing and scheduling a set of

trains traveling on a railway network, satisfying some operational

constraints and optimizing some measure of the efficiency of the

infrastructure. Different models have been proposed in the litera-

ture for describing this problem: the reader is referred to Szpigel

(1972) , Jovanovic and Harker (1991) , Oliveira and Smith (20 0 0) ,

Caprara, Fischetti, and Toth (2002) and Mascis and Pacciarelli

(2002) , among others, and to Caprara, Kroon, Monaci, Peeters, and

Toth (2007 , chap. 3) and D’Ariano, Samà, D’Ariano, and Pacciarelli

(2014) for recent surveys on this topic.

In principle, the above models could be used not only for plan-

ning but also at an operational real-time level. In this latter con-

text, the nominal train timetable is fixed but some unexpected

events (e.g., delays and/or disruptions) occur on the network, in-

troducing possible conflicts and making the nominal schedule in-

feasible. In this case, suitable repair operations must be quickly de-

cided and implemented to recover feasibility, a task that often in-
∗ Corresponding author.

E-mail addresses: matteo.fischetti@unipd.it (M. Fischetti), michele.monaci@

unibo.it (M. Monaci).

l

r

t

I

i

http://dx.doi.org/10.1016/j.ejor.2017.04.057

0377-2217/© 2017 Elsevier B.V. All rights reserved.
olves several trains with a redefinition of their timetable and/or

outing.

Typically, rescheduling has the main objectives to produce a

onflict-free schedule that is as close as possible to the ideal (or

ominal) planned timetable, while minimizing operational costs

elated to the rescheduled trains. To restore the timetable within

 reasonable time horizon, rescheduling usually needs to consider

nly a subset of the trains, meaning that the size of the reschedul-

ng problem is not as large as in the planning phase. However, a

ain complication is that recovery actions must be decided in a

ery short time, as they must be validated by a human operator

nd henceforth implemented. Thus, an automatic support decision

ystem must be able to propose conflict-free solutions in real-time.

ypically, the available time for producing a new schedule after the

riginating event has been detected ranges from 2 to 10 seconds,

epending on the time-window size and on the number of affected

rains.

In this paper we describe the outcome of our collaboration

ith Alstom Ferroviaria SpA (just Alstom in what follows), a global

eader in the world for railways infrastructure. Alstom developed in

ecent years a proprietary decision support system, called ICONIS,

o monitor and control railway traffic in stations and railway lines.

n 2013, Alstom activated international collaborations with experts

n the field, with the aim of improving its dispatching system. In

http://dx.doi.org/10.1016/j.ejor.2017.04.057
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2017.04.057&domain=pdf
mailto:matteo.fischetti@unipd.it
mailto:michele.monaci@unibo.it
http://dx.doi.org/10.1016/j.ejor.2017.04.057

M. Fischetti, M. Monaci / European Journal of Operational Research 263 (2017) 258–264 259

p

r

z

h

m

a

i

a

l

s

s

t

a

t

g

b

e

t

e

e

o

i

a

p

b

i

w

a

Y

R

t

a

t

w

i

I

a

(

i

c

i

t

m

2

u

e

w

e

c

u

c

a

f

(

r

e

b

v

t

i

t

s

t

p

P

M

t

(

s

F

i

o

M

w

t

a

L

t

w

e

a

t

t

i

a

(

t

r

n

n

c

t

n

t

m

f

E

a

m

a

&

o

e

e

s

m

a

e

l

o

a

p

e

t

b

a

t

I

s

i
articular, a set of real instances has been provided to all collabo-

ators, representing simulated disruption within a given time hori-

on for a line nearby the city of London.

The test bed is made by 29 instances: 10 small (disruption time

orizon of 15 minutes), 9 medium (30 minutes) and 10 large (60

inutes) instances. Even the small instances involve reordering

nd rerouting of several trains (up to 41), so they are far from triv-

al. The interested reader is referred to D’Ariano et al. (2014) for

 description of this project and of its challenges. Reasonable time

imits for computation were set by Alstom to 2 seconds (small in-

tances), 5 seconds (medium instances), and 10 seconds (large in-

tances), on “any reasonable hardware”—meaning even a local clus-

er with tens PCs running in parallel, if required.

In view of our specific integer programming expertize, we were

sked to provide a feasibility study to answer a challenging ques-

ion: In view of the greatly improved technology, can a modern

eneral-purpose Mixed-Integer Linear Programming (MILP) solver

e successful in performing real-time rescheduling in a practically

ffective way? This paper answers to that question essentially in

he affirmative. We found that, even for the small instances, mod-

rn MILP technology is still not able to solve the rescheduling mod-

ls within the few-second time frame required. However, to our

wn pleasant surprise we found that simple heuristic preprocess-

ng operations have a dramatic effect in the MILP performance, and

llow one to achieve the orders-of-magnitude speedup required in

ractice.

We want to stress here that we do not claim that our approach

eats all the sophisticated ad-hoc methods from the literature, and

n fact we do not compare it with any such methods (many of

hich are proprietary). As a matter of fact, similar methods have

lready been considered; see, e.g., (Cacchiani et al., 2014; Fang,

ang, & Yao, 2015; Pellegrini, Marliere, Pesenti, & Rodriguez, 2015).

ather, we want to share with the reader the lesson we learnt from

his project—train rescheduling can become much easier once an

pparently trivial preprocessing step is applied. We are confident

hat, in spite of its simplicity, this is an important message that

ill attract the attention of researchers and practitioners working

n the field.

The remaining part of the paper is organized as follows.

n Section 2 we sketch the MILP model proposed by Mascis

nd Pacciarelli (2002) , D’Ariano, Corman, Pacciarelli, and Pranzo

2008) and Mannino and Mascis (2009) that we used in our exper-

ments, and computationally analyze it by using a state-of-the-art

ommercial MILP solver (IBM ILOG Cplex 12.6.2). In Section 3 , we

ntroduce two heuristic preprocessing procedures based on bound

ightening and variable fixing, and analyze their practical perfor-

ance in Section 4 . Some comments are finally drawn in Section 5 .

. State of the art

As already mentioned, train (re)scheduling can be modeled by

sing the MILP paradigm. In our approach, we use a standard

vent-based model for job-shop scheduling problems (Balas, 1969)

here variables are associated with the time instant in which rel-

vant operations take place.

The model, specialized for train scheduling by Mascis and Pac-

iarelli (2002) , is based on the definition of an alternative graph

sed to model event incompatibilities and involves big-M coeffi-

ients to express disjunctive terms. Main variables of the model

re binary variables y selecting at most one of the possible routes

or each train to be rescheduled, binary variables x associated with

unknown) precedences between events using a same unsplittable

esource (e.g., a track or a platform), and continuous variables t

xpressing the unknown time instant when a certain event will

e rescheduled. The model also involves additional continuous

ariables z j giving the delay of some relevant events j with respect
o planned time. The objective function used in our experiments

s the average of all such z j ’s. As customary in scheduling models,

he alternative graph contains a dummy node ω (say) that repre-

ents the end of the schedule. By construction, variable z ω gives

he maximum delay in the schedule—a feature that plays an im-

ortant role in our approach. The reader is referred to Mascis and

acciarelli (2002) , D’Ariano et al. (2008 , 2014) and Mannino and

ascis (2009) for details on the alternative-graph model and on

he corresponding MILP model, and to Lamorgese and Mannino

2015) and Lamorgese, Mannino, and Piacentini (2016) for a recent

olution approach based on advanced decomposition techniques.

or the sake of completeness, the full model we used in our study

s reported in the Appendix.

A possible way for rescheduling trains on a rail network is

f course to solve the model above by using a general-purpose

ILP solver. To the best of our knowledge, however, this approach

as never used for real applications as the associated computing

imes would be by far too large for the real-time setting. Actu-

lly, computational experiences reported in the literature (see, e.g.,

amorgese & Mannino, 2015; Lamorgese et al., 2016) show that

his approach is not suitable for real-time applications. To verify

hether this is still the case when using the most recent and pow-

rful MILP solvers, we performed a preliminary set of experiments

imed at directly solving the instances in our testbed. As men-

ioned, our dataset includes 10 “small” instances associated with a

ime horizon of 15 minutes (numbered from 1 to 10), 9 “medium”

nstances with a 30-minute horizon (numbered from 11 to 19),

nd 10 “large” instances for which the time horizon is 60 minutes

numbered from 20 to 29). For these instances, a good (almost op-

imal) solution needs to be computed within 2, 5 and 10 seconds,

espectively.

Table 1 reports the main characteristics of each instance,

amely the number of trains (NT) to be rescheduled, the total

umber of alternative routes (NR), the number of variables and

onstraints in the associated MILP model (#rows and #cols, respec-

ively), and the value z BST of the best known solution. (Using the

otation in the Appendix, NT = | �| and NR =

∑

θ∈ � | R θ | .) Compu-

ational results refer to one of the best commercial solvers on the

arket, namely IBM ILOG Cplex in its version 12.6.2 (Cplex in the

ollowing), with a time limit of 1 hour on a quadcore Intel Xeon

3-1220V2 running at 3.1 gigahertz, with 16 gigabytes of RAM.

We report results for Cplex in its default settings as well as in

 heuristic version that proved to be more effective in our experi-

ents, in which all cut-generation procedures are disabled. To take

dvantage of the effects of erraticism of the MILP solver (Fischetti

 Monaci, 2014; Lodi & Tramontani, 2014 , chap. 2), each version

f Cplex was run 10 times using 10 different random seeds. For

ach algorithm, we report the best result obtained among the 10

xecutions, namely: the minimum computing time t TOT required to

olve the instance, the value z FIN of the best solution found, the

inimum time t 1 required to compute a feasible solution and the

ssociated value z 1 . All times are expressed in wall-clock seconds;

ntries in bold face in column z 1 refer to the cases where this so-

ution was found within the target computing time of 2/5/10 sec-

nds. Observe that our experiments simulate the behavior of an

rchitecture in which 10 identical PCs are available and used in

arallel to solve the same instance, and all PCs are halted when-

ver one solves the instance to optimality or reaches the 1-hour

ime limit (columns t TOT and z FIN) or when one finds its first feasi-

le solution (columns t 1 and z 1).

The results of Table 1 confirm that, even using a state-of-the-

rt MILP solver and 10 fast quadcore PCs, the direct solution of

he model above is not a viable option for real-life applications.

ndeed, in some cases Cplex is not even able to compute a fea-

ible solution within 5 minutes. Even restricting to the smallest

nstances, there are cases with less than 40 trains for which com-

260 M. Fischetti, M. Monaci / European Journal of Operational Research 263 (2017) 258–264

Table 1

Solution of our instances using Cplex in two different settings by using 10 quadcore PCs (1 hour time limit). Boldface entries meet the target

computing time of 2/5/10 seconds.

Instance Cplex Cplex heu

ID NT NR #cols #rows z BST t TOT z FIN t 1 z 1 t TOT z FIN t 1 z 1
1 33 55 4508 8528 0.90 1.57 0.90 1.52 13.46 1.37 0.90 1.16 49.55

2 37 46 3499 6289 15.76 0.89 15.76 0.51 68.57 0.36 15.76 0.21 30.49

3 41 62 5331 10,127 151.02 8.86 151.02 2.41 290.28 9.28 151.02 1.61 159.23

4 38 58 10,056 19,653 8.52 27.22 8.52 4.41 9.08 42.99 8.52 2.91 14.01

5 40 43 2867 4548 15.51 0.50 15.51 0.47 15.51 0.55 15.51 0.34 95.93

6 34 42 5742 10,606 8.82 2.55 8.82 2.55 8.82 2.03 8.82 1.99 8.82

7 36 44 4994 9187 13.44 1.42 13.44 1.03 58.46 1.51 13.44 1.46 13.67

8 32 40 4462 8216 3.86 0.71 3.86 0.62 3.86 1.00 3.86 0.97 3.86

9 33 45 9363 17,827 40.50 51.44 40.50 51.39 40.50 18.92 40.50 16.14 52.85

10 37 48 6994 13,226 90.78 17.69 90.78 12.80 128.78 9.96 90.78 3.30 90.78

11 40 73 14,506 28,139 3.41 31.88 3.41 6.11 29.26 9.00 3.41 4.11 34.93

12 48 79 15,182 197,594 44.11 490.36 44.11 20.17 223.53 485.57 44.11 9.46 241.85

13 54 72 16,232 30,958 25.36 1410.71 25.36 197.49 194.66 948.29 25.36 8.48 41.45

14 52 59 8529 15,181 10.75 23.10 10.75 3.96 66.17 9.95 10.75 2.63 20.63

15 49 53 7318 12,559 24.30 33.19 24.30 3.88 140.66 10.05 24.30 2.80 24.59

16 42 51 11,996 22,459 67.53 90.12 67.53 13.59 141.47 34.68 67.53 7.34 1024.36

17 44 57 12,683 24,020 23.84 116.57 23.84 18.21 54.42 51.62 23.84 27.92 135.25

18 43 54 9081 16,778 11.91 18.61 11.91 2.26 45.98 10.65 11.91 2.85 116.00

19 41 55 15,145 28,876 58.81 170.77 58.81 147.36 69.41 123.07 58.81 61.85 97.15

20 59 65 16,431 30,025 189.35 109.98 189.35 11.64 198.49 33.23 189.35 4.52 237.52

21 57 83 34,339 67,124 7.36 265.14 7.36 28.86 19.78 94.92 7.36 17.80 10.92

22 58 87 58,036 114,982 14.62 2529.88 14.62 710.88 31.06 1938.17 14.62 332.58 65.21

23 64 80 26,061 49,277 37.14 656.77 37.14 105.01 38.64 523.92 37.14 187.67 38.92

24 58 91 41,827 81,587 8.11 542.45 8.11 469.67 22.49 174.25 8.11 90.17 20.82

25 66 97 34,052 762,030 44.75 360 0.0 0 121.53 355.92 121.53 3600.01 45.48 103.59 299.78

26 90 128 52,542 101,789 69.11 360 0.0 0 98.87 1141.91 98.87 3600.04 69.11 51.64 95.23

27 59 64 19,014 34,616 34.57 234.90 34.57 17.45 120.74 258.49 34.57 17.19 68.56

28 85 105 56,520 108,630 – 360 0.0 0 – – – 360 0.0 0 – – –

29 52 59 8529 15,181 10.75 23.08 10.75 4.04 66.17 9.93 10.75 2.64 20.63

d

p

t

s

a

r

t

t

u

a

o

M

a

f

s

p

t

c

t

t

s

g

p

t

A

d

b

i

p

a

U
puting a feasible solution takes more than 10 seconds. Results are

slightly better for the heuristic version of Cplex , but even in this

case a feasible solution can be found within the target computing

time only in 13 out of 29 cases. Though the use of faster comput-

ers could in principle reduce the reported times, it is clear that a

speedup of 1–2 orders of magnitude would be required to make

this approach sufficiently reliable to be used in operation.

Finally, note that none of the 10+10 Cplex runs could find a

feasible solution for instance 28 even within the 1-hour time limit,

hence we removed this instance from our testbed in our next ex-

periments.

3. Model preprocessing

In the attempt of improving Cplex ’s heuristic performance, we

implemented and tested a number of ideas. Eventually, we found

a satisfactory implementation that allowed us to meet the tight

real-time time limits imposed by Alstom. We then followed an in-

verse path and disabled/simplified the new features until we found

which are the ideas that really made a difference. It turned out

that the performance boost was due to just two very simple pre-

processing operations, which we describe in the following.

3.1. Heuristic bound tightening

A main reason for the hardness of the MILP model is the pres-

ence of big-M coefficients that are used to activate/deactivate con-

straints according to the alternative arcs and/or train routes that

are selected in the solution. It is well known that the presence of

such large coefficients may lead to weak continuous relaxations,

making the model unsolvable in practice. Indeed, reducing the

value of these coefficients may be highly beneficial for a MILP

solver; see, e.g., the very recent experience reported in Belotti et al.

(2016) .
In event-based models for scheduling applications, big-M re-

uction boils down to the determination of tight lower and up-

er bound on variables t j giving the time instant in which opera-

ions take place. As a matter of fact, modern MILP solvers are quite

uccessful in tightening the model coefficients (including vari-

ble bounds) by using sophisticated probing and propagation algo-

ithms akin to those successfully used in Constraint Programming.

During our preliminary experience, we performed a number of

ests to evaluate the sensitivity of the MILP solver with respect to

he imposed variable bounds. We soon discovered that the single

pper bound on variable z ω has a prominent role, in that imposing

 tight upper bound on z ω triggers the tightening of the domain

f many other variables. Indeed, as we already observed, in our

ILP model variable z ω gives the maximum delay in the schedule

mong all relevant events, hence its upper bound immediately af-

ects all the delay variables z j ’s. As a consequence, imposing a re-

trictive upper bound on z ω typically allows the automatic MILP

reprocessing to reduce the number of possible routes for each

rain, to fix many binary variables, and to tighten some constraint

oefficients.

We therefore implemented a simple scheme where we heuris-

ically define a value UB ω (say) and impose an upper bound to

he time of the last operation through the (possibly invalid) con-

traint z ω ≤ UB ω . Reasonably small values of UB ω likely produce

ood heuristic solutions, as the objective function for rescheduling

roblems is naturally driven towards the case where z ω is close

o its smallest-possible value. (This is in fact what happens in the

lstom’s instances addressed in our computational study.) In ad-

ition, small values of UB ω allow for large variable fixings and

ound tightenings, hence they can have a dramatic effect in reduc-

ng computing times. Of course, if UB ω is too small, the resulting

roblem becomes infeasible—a property that is typically discovered

lmost immediately by MILP preprocessing.

As one is interested in automatically estimating the smallest

B ω that does not lead to infeasibility, in our code we perform a

M. Fischetti, M. Monaci / European Journal of Operational Research 263 (2017) 258–264 261

n

c

s

f

c

U

p

i

c

v

d

t

i

e

d

t

3

m

t

d

t

c

r

r

i

a

b

s

t

m

m

m

b

p

i

t

t

w

p

4

a

m

e

c

p

g

g

2

(

m

t

i

o

t

u

i

m

t

W

i

C

c

c

r

e

e

(

s

s

m

s

5

i

w

C

a

i

l

r

w

i

(

o

o

l

c

2

d

h

e

l

r

t

P

o

s

l

o

o

g

2

1

e

r

t

t

p

m

t

m

w

o

i

p

t

a
umber of iterations starting with a “small” value for UB ω and in-

reasing this value until a feasible solution is found and the MILP

olver is applied with the given time limit. As already observed, in-

easible UB ω ’s are typically detected very quickly by MILP prepro-

essing, so the overhead spent in the initial trials with too-small

B ω ’s is acceptable and the overall approach is quite effective in

ractice.

It is worth mentioning that, in a first version of our code, we

mplemented an ad-hoc heuristic check (based on longest-path

omputations on an acyclic digraph) to determine whether a given

alue of UB ω would produce an infeasible instance, thus quickly

iscarding too-small values for UB ω . According to our computa-

ional experience, however, the MILP-solver internal preprocess-

ng (that also implements propagation for bound tightening) was

qually fast in detecting this kind of infeasibility, so in the end we

ecided to remove our ad-hoc check to simplify our implementa-

ion as much as possible.

.2. Heuristic variable fixing

The second complication in our MILP model is the presence of

any binary variables y associated with alternative routes for each

rain. These variables appear in big-M constraints, as the prece-

ence constraints must be disabled for paths that are not used in

he solution. Therefore, to reduce the complexity of the model one

an heuristically reduce, for each train, the number of available

outes.

Without loss of generality, we assume that the first available

oute for each train is the ideal route, i.e., the route correspond-

ng to the nominal schedule before disruption. Routing each train

long its ideal route is a desirable option, denoted as non-rerouting

y the planners, as this does not require major changes in the re-

ources required by the train but only adds appropriate delays in

he planned timetable. Using different routes, instead, introduces

any more complications—though it can be unavoidable in case of

ajor disruptions.

A natural heuristic choice is to force non-rerouting for all trains,

eaning that one is allowed to delay some trains at some points

ut cannot change their paths. However, this choice may lead to

roblems that are infeasible with respect to the actual UB ω value,

.e., it may be impossible to reschedule all trains within the given

ime horizon without rerouting some of them. Thus, an alterna-

ive strategy is to choose one route for each train, in a random

ay, removing all the remaining routes and checking the resulting

roblem for feasibility.

. Computational experiments

In this section we report on the performance of our heuristic

pproach built on top of IBM ILOG Cplex 12.6.2. All the experi-

ents in this section were performed on a set of identical comput-

rs, each equipped with the Intel Core i7-2820QM quadcore pro-

essor running at 2.3 gigahertz and with 16 gigabytes RAM. This

rocessor is a second-generation Intel Core i7 launched at the be-

inning of 2011. Note that significantly faster Intel Core i7 seventh-

eneration processors are available at the time of writing (February

017), that are about twice as fast as the one used in our tests.

All runs are executed by using Cplex in its default mode

including cut generation) unless otherwise specified. In case of

ulti-thread runs, we selected the opportunistic parallel mode as

his is most appropriate in a real-time setting where speed is more

mportant than reproducibility of the results.

To obtain diversified results, we ran our heuristic in parallel

n NPC (say) independent computers, without communication be-

ween the single runs. For example, case NP C = 4 simulates a sit-

ation in which 4 identical computers are available and the same
nstance is solved in parallel on each computer, without any com-

unication: when the time limit is reached, all runs are stopped,

he individual solutions are compared and the best one is selected.

e report results for NP C = 1 , 4 and 8.

Each run has an input parameter s = { 1 , 2 , . . . , NP C} that

s used both as the “random seed” for Cplex (parameter

PX_PARAM_RANDOMSEED , that ensures different runs for each

omputer), and to produce diversified route-fixing strategies ac-

ording to the scheme described below. To further diversify the

uns, for s odd an aggressive presolve strategy is selected (param-

ter CPX_PARAM_PRESLVND = 3). The runs with s ∈ {1, 8} are

xecuted without any route-fixing. Run with s = 2 fixes the first

i.e., ideal) path for each train, while for s ∈ {3, ���, 7} the path is

elected in a random way using s to initialize the internal random

equence.

Each run uses the mechanism outlined in Section 3.1 to auto-

atically determine a suitable upper bound for z ω by trying, in

equence, values UB ω = 60 0, 90 0, 120 0, 20 0 0, 250 0, 30 0 0, 40 0 0,

0 0 0, + ∞ , until the problem becomes feasible or the time limit

s exceeded. To be more specific, at the very beginning of the run

e read the input file containing the MILP model, and define the

plex’s parameters (and possibly fix a certain path for each train)

ccording to the input parameter s . Then we fix UB ω = 600, and

nvoke the Cplex’s MILP solver on the resulting model for the al-

owed time limit reduced by the wall-clock time spent so far. On

eturn from Cplex, if the time limit was not exceeded we check

hether the current model was proved to be infeasible by Cplex,

n which case we consider the next UB ω value in the sequence

90 0, 120 0, etc.) and repeat; otherwise we just stop. According to

ur computational tests, for each instance in our testbed (except

f course the removed instance 28), at least one among the paral-

el runs was able to determine the first feasible UB ω in very short

omputing time. Indeed, for the runs on NP C = 8 parallel PCs, for

/3 of our instances the very first attempt (i.e., UB ω = 600) pro-

uced a feasible solution and preprocessing took no time. For some

ard instances, one had to try several UB ω values (at most 7, in our

xperiments) but the required preprocessing time was always be-

ow 0.2 seconds.

It is worth observing that preprocessing time is included in the

eported runtimes, hence this phase is taken into account in the

ime limit. As already explained, each parallel run on a different

C autonomously computes its own UB ω value, that also depends

n the different routes that are fixed. Again, we stress that in our

cheme there is absolutely no communication among the paral-

el runs—such a communication would in fact require some kind

f synchronization, and could even result into a slow-down of the

verall computation.

Table 2 gives the summary of the results for our heuristic al-

orithm with different configurations, assuming a time limit TL of

 (for the small instances 1–10), 5 (for the medium instances 11–

9) or 10 (for the large instances 20–29) wall-clock seconds. For

ach instance and configuration of our algorithm, we report the

atio between the best solution found within the time limit and

he optimal (or best known) solution value for the given instance,

he latter value being reported in column z BST . The left-hand-side

art of the table (columns labeled “Standard PC”) refers to experi-

ents performed on our (relatively old) hardware. As already no-

iced, computing times could be significantly reduced by using a

ore recent processor. So in the columns labeled “50% faster PC”

e also report the results obtained after 3, 7 and 15 seconds on

ur hardware, which would meet the Alstom’s requirement assum-

ng the use of a more recent processor with a modest 50% speedup.

Reported results are obtained by using NP C = 1 , 4 and 8 com-

uters, in parallel. On each computer, we consider both the 4-

hread option (which is the default setting on our quadcore PCs)

s well as the 1-thread option, the latter being interesting for

262 M. Fischetti, M. Monaci / European Journal of Operational Research 263 (2017) 258–264

Table 2

Ratio between the value of the best solution found by our heuristic (within the required time limit TL of 2, 5 and 10 seconds) and the value of

the best known solution.

Instance Standard PC 50% faster PC

NPC 1 4 8 1 4 8 cpx_8 1 4 8 1 4 8 cpx_8

#threads 1 1 1 4 4 4 cpx_4 1 1 1 4 4 4 cpx_4

ID z BST TL Best solution ratio at time limit Best solution ratio at time limit

1 0.90 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 15.76 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

3 151.02 2 – 1.31 1.31 40.20 1.31 1.31 – 1.05 1.05 1.01 1.00 1.00 1.00 1.01

4 8.52 2 – 1.17 1.02 – 1.17 1.02 – – 1.17 1.02 1.00 1.02 1.02 –

5 15.51 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

6 8.82 2 1.00 1.00 1.00 1.00 1.00 1.00 – 1.00 1.00 1.00 1.00 1.00 1.00 1.00

7 13.44 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

8 3.86 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

9 40.50 2 – 2.65 1.97 – 2.65 2.65 – – 2.65 1.97 – 2.65 1.97 –

10 90.78 2 – 1.99 1.08 – 1.99 1.08 – – 1.99 1.08 – 1.99 1.08 –

11 3.41 5 1.00 1.00 1.00 1.00 1.00 1.00 – 1.00 1.00 1.00 1.00 1.00 1.00 –

12 44.11 5 1.27 1.27 1.27 1.20 1.14 1.05 – 1.26 1.26 1.26 1.01 1.01 1.01 –

13 25.36 5 – 2.21 2.21 – 1.86 1.86 – – 2.20 2.20 – 1.38 1.38 –

14 10.75 5 1.11 1.11 1.11 1.11 1.11 1.11 – 1.11 1.11 1.11 1.11 1.11 1.11 5.42

15 24.30 5 1.01 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.01

16 67.53 5 – 1.93 1.93 – – – – – 1.93 1.93 – 2.18 2.28 –

17 23.84 5 1.00 1.00 1.00 1.00 1.00 1.00 – 1.00 1.00 1.00 1.00 1.00 1.00 –

18 11.91 5 1.00 1.00 1.00 1.00 1.00 1.00 3.23 1.00 1.00 1.00 1.00 1.00 1.00 1.00

19 58.81 5 – 1.96 1.96 – 2.23 1.90 – – 1.90 1.77 – 1.90 1.90 –

20 189.35 10 – – 1.00 – – 1.00 1.24 – 1.24 1.00 – 1.25 1.00 1.24

21 7.36 10 – 1.79 1.00 – 1.79 1.00 – – 1.79 1.00 – 1.79 1.00 –

22 14.62 10 1.19 1.19 1.09 1.06 1.09 1.05 – 1.12 1.12 1.08 1.03 1.00 1.00 –

23 37.14 10 – – – – – 3.62 – – 3.61 3.61 – 2.65 2.65 –

24 8.11 10 1.00 1.00 1.00 1.00 1.00 1.00 – 1.00 1.00 1.00 1.00 1.00 1.00 –

25 44.75 10 – – – – – – – 1.85 1.85 1.75 1.01 1.52 1.10 –

26 69.11 10 – 1.19 1.19 – 1.10 1.14 – – 1.19 1.19 – 1.04 1.04 –

27 34.57 10 – – – – 84.69 84.16 – – 1.39 1.39 – 1.37 1.37 –

29 10.75 10 1.11 1.11 1.11 1.11 1.11 1.11 3.31 1.11 1.11 1.11 1.11 1.11 1.11 1.11

t

a

m

c

t

h

s

t

e

b

l

m

b

2

r

s

a

c

e

t

t

t

a

r

f

i

e

5

very short time limits as single-thread runs have a faster access

to memory and can trigger automatic overclocking of the proces-

sor (the so-called “turbo boost” feature of Intel Core i7).

To better evaluate the practical impact of our preprocessing and

train-path fixing strategies, Table 2 also reports the performances

of our code when these two latter features are disables, but all

remaining Cplex’s parameters are set as in our own code. The two

columns labeled “‘cpx_8/cpx_4” in the table (one for “Standard PC”

and the other for “50% Faster PC”) refer to runs with NP C = 8 PCs

and #threads = 4, and are intended be compared with the two

columns labeled “8/4” that appear on their left in the same table.

Results for NP C = 1 (hence s = 1) clearly show the impact of

the variable bound z ω ≤ UB ω described in Section 3.1 : using a sin-

gle PC (4 threads) already allows one to compute, within the given

time limit, a feasible solution in 16 cases out of 29—remind that

this figure was equal to 13 for the heuristic version of Cplex exe-

cuted on 10 PCs. Further improvements are obtained when heuris-

tically fixing some paths in the solution. Using NP C = 8 standard

PCs, we are able to compute a feasible solution within the given

time limit for 26 instances. In addition, in most cases the value

of the solution found is very close to the optimal (or best known)

solution value. In only 3 cases the ratio is about 2, which is con-

sidered acceptable by Alstom’s experts.

Using a more recent architecture (columns “50% Faster PC”) and

NPC ∈ {4, 8} PCs (both 1-thread and 4-threads), we were able to

find a very good solution in most of the cases within the time

limit—except for instance 28, for which no feasible solution could

be found even by the best-tuned Cplex on 10 PCs with a one-

hour time limit, hence it is not reported in the table. The solution

quality at the time limit is very good in all cases.

A comparison of columns “‘cpx_8/cpx_4” with their “8/4” coun-

terpart clearly shows the very significant performance improve-

ment obtained by the preprocessing and path-fixing strategies de-

scribed in the present paper. Indeed, removing these latter fea-
 s
ures leads to a much less effective heuristic that is able to find

 feasible solution in 12 (out of 28) cases only, even in the

ost powerful “50% Faster PC” hardware setting with 8 4-thread

omputers—while our proposed heuristic was successful in all

hose 28 instances.

Note that, as expected, using more PCs typically improves the

euristic performance. However, it can be the case that a worse

olution is obtained with a larger number of PCs, due to the use of

he opportunistic parallel mode (compare, e.g., the “50% Faster PC”

ntries associated with instance 16).

Though the motivation for our study was to evaluate the possi-

le use of MILP technology to solve the train rescheduling prob-

em, we mention here that alternative approaches that do not

ake an explicit use of a MILP model have been tested on our

enchmark. In particular, the results reported in (D’Ariano et al.,

014) show that the integration of the branch-and-bound algo-

ithm of D’Ariano, Pacciarelli, and Pranzo (2007) with the tabu

earch scheme of Corman, D’Ariano, Pacciarelli, and Pranzo (2010) ,

llows for the solution of all our instances within 30 seconds of

omputation on an Intel Core 2 Duo E6550@2.33 gigahertz. How-

ver, D’Ariano et al. (2014) only report the time needed to compute

he best solution found (9 seconds, on average) and provide no de-

ailed information about the quality of the solution found within

he required time limit of 2, 5 and 10 seconds. As a consequence,

 direct comparison with our approach is not possible, not even to

eport the number of instances for which a feasible solution was

ound within the tight given time limits. In any case, we believe it

s fair to conclude that both our method and the one by D’Ariano

t al. (2014) are viable options in a practical setting.

. Conclusions

We have addressed the possibility of using a black-box MILP

olver for the train rescheduling problem in a real-time context.

M. Fischetti, M. Monaci / European Journal of Operational Research 263 (2017) 258–264 263

O

o

n

u

c

p

s

m

a

a

v

r

s

s

a

c

r

M

p

m

f

r

d

p

t

i

t

o

n

t

A

d

R

i

T

“

t

t

m

A

i

M

t

t

w

R

p

i

e

p

n

l

fi

b

v

t

e

s

r

u

m

a

t

r

t

l

y

x

w

i

t

t

e

l

m

r

z

t

t

t

≥

t

≥

z

z

x

y

w

t

m
ur computational experience, as well as that reported by many

ther authors including D’Ariano et al. (2014) , Lamorgese and Man-

ino (2015) and Lamorgese et al. (2016) , has shown that the direct

sage of such a solver may require a computing time that is not

ompatible with the allowed time limits.

In the present paper, we have presented a simple heuristic pre-

rocessing framework (to be implemented on the top of the MILP

olver), that leads to a dramatic performance improvement and

akes the black-box MILP approach viable in practice. We have

lso shown how our heuristic can be effectively run in parallel on

 set of independent computers.

We have reported experiments on a real-world testbed pro-

ided by Alstom Ferroviaria SpA (a global leader in the world for

ailways infrastructure) for an UK railway network. Our results

how that the proposed approach qualifies as an effective way to

olve the rescheduling problem in real-time. Indeed, our heuristic

lgorithm has been able to compute high-quality solutions within

omputing times of just few seconds, which are compatible with

eal-time requirements. Finally, we have also shown that the same

ILP solver (run on the same hardware and with exactly the same

arameter configuration) without our preprocessing phase has a

uch degraded performance, in that it failed in even finding any

easible solution in many cases—hence it cannot be considered a

eliable tool to be used in practice.

Future work should address the applicability of similar ideas to

ifferent real-time train rescheduling contexts. Indeed, in our pre-

rocessing phase we did not take into account the relative impor-

ance of trains (e.g., passenger trains against freight trains), while

n practice one can allow for large delays for one category in order

o reduce delays for the other. Also of interest is the generalization

f our approach to more complex objective functions, e.g., to the

on-convex step functions that are often used by train operators

o assess punctuality.

cknowledgments

We want to thanks Alstom Ferroviaria SpA for proving us all

ata used in the experiments. Special thanks are due to Massimo

osti and Davide Nucci for their helpful support. MILP instances

n our experiments have been provided by D’Ariano et al. (2014) .

his research was partially supported by MiUR , Italy (PRIN project

Mixed-Integer Nonlinear Optimization: Approaches and Applica-

ions”), and by the Vienna Science and Technology Fund (WWTF)

hrough Project ICT15-014 . Thanks are also due to three anony-

ous referees for their constructive comments.

ppendix. Mathematical model

We next sketch the alternative graph model for train reschedul-

ng, and refer to D’Ariano et al. (2008) ; D’Ariano et al. (2014) ;

annino and Mascis (2009) ; Mascis and Pacciarelli (2002) for de-

ails.

Let us denote by � = { 1 , . . . , NT } the index set of the trains

o be rescheduled, e.g., those that are traveling on a certain area

ithin a given time horizon. Each train θ has an associated set

 θ of alternative routes, characterized by different operations to be

erformed in different points of the network. In the correspond-

ng alternative graph G = (N, F ∪ A) , node set N contains a node for

ach operation associated with any alternative routes of the trains,

lus two dummy nodes α and ω that act as source and terminal

odes, respectively. The arc set F ∪ A is instead constructed as fol-

ows. For each train θ ∈ � and route r ∈ R θ , we have a set F r θ of

xed arcs , each arc corresponding to a pair of operations that must

e executed according to a given order (fixed and known in ad-

ance). In addition, for each pair of routes (r 1 , r 2) associated with

wo different trains, there is a set A r r of pairs of alternative arcs ,

1 2
ach pair including an arc associated with route r 1 and an arc as-

ociated with r 2 . These arcs are mutually incompatible in that they

equire the use of a same resource, hence they must be sched-

led according to a certain precedence (to be decided by the opti-

izer). In the arc set, F =

⋃

θ∈ �,r∈ R θ F rθ contains all the fixed arcs

nd models all known precedences among operations (including

he obvious ones that define the journey of a train along a certain

oute), whereas A includes all the alternative arcs and corresponds

o unknown precedences.

The MILP model we use is based on the definition of the fol-

owing decision variables:

 rθ =

{
1 if train θ is routed through route r ;
0 otherwise θ ∈ �; r ∈ R θ

(1)

 k jhi =

{
1 if arc (k, j) is selected while arc (h, i) is not ;
0 otherwise { (k, j) , (h, i) } ∈ A

(2)

here A =

⋃

θ1 ,θ2 ∈ �,θ1 <θ2 ,r 1 ∈ R θ1
,r 2 ∈ R θ2

A r 1 r 2 contains all the pairs of

ncompatible arcs.

In addition the model uses, for each operation j , two variables

 j and z j to represent the time instant in which the operation

akes place and the associated delay, respectively. As to the dummy

vent ω, variable z ω is actually used to indicate the maximum de-

ay among all operations.

The model can be stated as follows:

in f (z) (3)

∑

∈ R θ
y rθ = 1 , θ ∈ � (4)

 j ≥ t j − p j , j ∈ N (5)

 α = 0 (6)

 j − t i + M(1 − y rθ) ≥ d i j , θ ∈ T , r ∈ R θ , (i, j) ∈ F rθ (7)

 i − t h + M(1 − y r 1 θ1
) + M(1 − y r 2 θ2

) + Mx k jhi

d hi , θ1 , θ2 ∈ �, θ1 < θ2 , r 1 ∈ R θ1
, r 2 ∈ R θ2

,

{ (k, j) , (h, i) } ∈ A r 1 r 2 (8)

 j − t k + M(1 − y r 1 θ1
) + M(1 − y r 2 θ2

) + M(1 − x k jhi)

d k j , θ1 , θ2 ∈ �, θ1 < θ2 , r 1 ∈ R θ1
, r 2 ∈ R θ2

,

{ (k, j) , (h, i) } ∈ A r 1 r 2 (9)

 ω ≤ UB ω (10)

 j ≥ 0 , j ∈ N (11)

 k jhi ∈ { 0 , 1 } , { (k, j) , (h, i) } ∈ A (12)

 rθ ∈ { 0 , 1 } , θ ∈ �, r ∈ R θ (13)

here f (·) denotes some linear objective function, to be defined by

he user, and M denotes a very large positive value (big-M). In the

odel, each arc (i , j) has an associated duration d ij representing

http://dx.doi.org/10.13039/501100003407
http://dx.doi.org/10.13039/501100001821

264 M. Fischetti, M. Monaci / European Journal of Operational Research 263 (2017) 258–264

t

C

D

F

F

J

L

L

M

M

O

P

S
the minimum time difference between operations i and j , in case

both are executed. In addition, each operation j has associated an

input “release time” p j that is used to define the associated delay z j
in (5) . In our experiments, the objective function f (z) =

1
N

∑

j∈ N z j
measures the average delay in the final solution.

Constraints (4) ensure that exactly one route is selected for

each train, while (5) define the delay variables z j used in the ob-

jective function. Constraints (7) model the implications “y rθ = 1 →
 j ≥ t i + d i j ”, i.e., they force the precedences related to the fixed

arcs for selected routes, while they are deactivated in case y rθ = 0 .

Similarly, because of the big-M coefficients, constraints (9) and

(10) are only active when y r 1 θ1
= y r 2 θ2

= 1 , in which case they im-

pose the disjunction “(t i ≥ t h + d hi) ∨ (t j ≥ t k + d k j) ” corresponding

to the incompatible arc pair { (k, j) , (h, i) } ∈ A r 1 r 2 . Finally, (10) im-

poses an input upper UB ω ∈
 + ∪ { + ∞} on variable z ω represent-

ing the maximum delay occurred in the schedule—this is due to an

ad-hoc definition of the duration d i ω of the arcs (i , ω) entering the

terminal node ω.

References

Balas, E. (1969). Machine sequencing via disjunctive graphs: An implicit enumera-
tion algorithm. Operations Research, 17 (6), 941–957. doi: 10.1287/opre.17.6.941 .

Belotti, P. , Bonami, P. , Fischetti, M. , Lodi, A. , Monaci, M. , Nogales-Gómez, A. ,
et al. (2016). On handling indicator constraints in mixed integer programming.

Computational Optimization and Applications, 65 (3), 545–566 .

Cacchiani, V. , Huisman, D. , Kidd, M. , Kroon, L. , Toth, P. , Veelenturf, L. , et al. (2014).
An overview of recovery models and algorithms for real-time railway reschedul-

ing. Transportation Research Part B, 63 , 15–37 .
Caprara, A. , Fischetti, M. , & Toth, P. (2002). Modeling and solving the train

timetabling problem. Operations Research, 50 (5), 851–861 .
Caprara, A. , Kroon, L. , Monaci, M. , Peeters, M. , & Toth, P. (2007). Passenger railway

optimization. In C. Bernhart, & G. Laporte (Eds.), Handbook in OR & MS: Vol. 14
(pp. 129–197). Elsevier, North-Holland .
orman, F. , D’Ariano, A. , Pacciarelli, D. , & Pranzo, M. (2010). A tabu search algorithm
for rerouting trains during railway operations. Transportation Research Part B,

44 (1), 175–192 .
D’Ariano, A. , Corman, F. , Pacciarelli, D. , & Pranzo, M. (2008). Reordering and local

rerouting strategies to manage train traffic in real time. Transportation Science,
42 (4), 405–419 .

’Ariano, A. , Pacciarelli, D. , & Pranzo, M. (2007). A branch and bound algorithm for
scheduling trains in a railway network. European Journal of Operational Research,

183 (2), 643–657 .

D’Ariano, A. , Samà, S. , D’Ariano, P. , & Pacciarelli, D. (2014). Evaluating the applicabil-
ity of advanced techniques for practical real-time train scheduling. Transporta-

tion Research Procedia, 3 , 279–288 .
ang, W. , Yang, S. , & Yao, X. (2015). A survey on problem models and solution ap-

proaches to rescheduling in railway networks. IEEE Transactions on Intelligent
Transportation Systems, 16 (6), 2997–3016 .

ischetti, M. , & Monaci, M. (2014). Exploiting erraticism in search. Operations Re-

search, 62 (1), 114–122 .
ovanovic, D. , & Harker, P. (1991). Tactical scheduling of rail operations: The scan i

system. Transportation Science, 25 (1), 46–64 .
Lamorgese, L. , & Mannino, C. (2015). An exact decomposition approach for the re-

al-time train dispatching problem. Operations Research, 63 (1), 48–64 .
amorgese, L. , Mannino, C. , & Piacentini, M. (2016). Optimal train dispatching by

Benders-like reformulation. Transportation Science, 50 (3), 910–925 .

odi, A., & Tramontani, A. (2014). Performance variability in mixed-integer program-
ming. In Theory driven by influential applications (pp. 1–12). http://pubsonline.

informs.org/doi/abs/10.1287/educ.2013.0112 . doi: 10.1287/educ.2013.0112 .
annino, C. , & Mascis, A. (2009). Optimal real-time traffic control in metro stations.

Operations Research, 57 (4), 1026–1039 .
ascis, A. , & Pacciarelli, D. (2002). Job shop scheduling with blocking and no-wait

constraints. European Journal of Operational Research, 143 (3), 498–517 .

liveira, E. , & Smith, B. (20 0 0). A job-shop scheduling model for the single-track
railway scheduling problem. Technical report: Research report 20 0 0.21 . School of

Computing, University of Leeds .
ellegrini, P. , Marliere, G. , Pesenti, R. , & Rodriguez, J. (2015). RECIFE-MILP: An effec-

tive MILP-based heuristic for the real-time railway traffic management problem.
IEEE Transactions on Intelligent Transportation Systems, 16 (5), 2609–2619 .

zpigel, B. (1972). Optimal train scheduling on a single track railway. Operational

Research , 343–351 .

http://dx.doi.org/10.1287/opre.17.6.941
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0002
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0002
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0002
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0002
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0002
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0002
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0002
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0002
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0003
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0003
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0003
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0003
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0003
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0003
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0003
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0003
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0004
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0004
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0004
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0004
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0004
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0005
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0005
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0005
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0005
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0005
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0005
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0005
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0006
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0006
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0006
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0006
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0006
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0006
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0007
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0007
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0007
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0007
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0007
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0007
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0008
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0008
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0008
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0008
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0008
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0009
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0009
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0009
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0009
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0009
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0009
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0010
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0010
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0010
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0010
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0010
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0011
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0011
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0011
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0011
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0012
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0012
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0012
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0012
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0013
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0013
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0013
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0013
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0014
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0014
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0014
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0014
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0014
http://pubsonline.informs.org/doi/abs/10.1287/educ.2013.0112
http://dx.doi.org/10.1287/educ.2013.0112
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0016
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0016
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0016
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0016
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0017
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0017
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0017
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0017
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0018
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0018
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0018
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0018
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0019
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0019
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0019
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0019
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0019
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0019
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0020
http://refhub.elsevier.com/S0377-2217(17)30404-6/sbref0020

	Using a general-purpose Mixed-Integer Linear Programming solver for the practical solution of real-time train rescheduling
	1 Introduction
	2 State of the art
	3 Model preprocessing
	3.1 Heuristic bound tightening
	3.2 Heuristic variable fixing

	4 Computational experiments
	5 Conclusions
	 Acknowledgments
	 Appendix. Mathematical model
	 References

