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ABSTRACT

It is becoming common to complement genome-wide 
association studies (GWAS) with gene-set enrichment 
analysis to deepen the understanding of the biological 
pathways affecting quantitative traits. Our objective 
was to conduct a gene ontology and pathway-based 
analysis to identify possible biological mechanisms in-
volved in the regulation of bovine milk technological 
traits: coagulation properties, curd firmness modeling, 
individual cheese yield (CY), and milk nutrient recovery 
into the curd (REC) or whey loss traits. Results from 2 
previous GWAS studies using 1,011 cows genotyped for 
50k single nucleotide polymorphisms were used. Overall, 
the phenotypes analyzed consisted of 3 traditional milk 
coagulation property measures [RCT: rennet coagula-
tion time defined as the time (min) from addition of en-
zyme to the beginning of coagulation; k20: the interval 
(min) from RCT to the time at which a curd firmness 
of 20 mm is attained; a30: a measure of the extent of 
curd firmness (mm) 30 min after coagulant addition], 6 
curd firmness modeling traits [RCTeq: RCT estimated 
through the CF equation (min); CFP: potential asymp-
totic curd firmness (mm); kCF: curd-firming rate con-
stant (% × min−1); kSR: syneresis rate constant (% × 
min−1); CFmax: maximum curd firmness (mm); and tmax: 
time to CFmax (min)], 3 individual CY-related traits 
expressing the weight of fresh curd (%CYCURD), curd 
solids (%CYSOLIDS), and curd moisture (%CYWATER) as 
a percentage of weight of milk processed and 4 milk 
nutrient and energy recoveries in the curd (RECFAT, 
RECPROTEIN, RECSOLIDS, and RECENERGY calculated as 
the % ratio between the nutrient in curd and the cor-
responding nutrient in processed milk), milk pH, and 
protein percentage. Each trait was analyzed separately. 
In total, 13,269 annotated genes were used in the 
analysis. The Gene Ontology and Kyoto Encyclopedia 

of Genes and Genomes pathway databases were queried 
for enrichment analyses. Overall, 21 Gene Ontology and 
17 Kyoto Encyclopedia of Genes and Genomes catego-
ries were significantly associated (false discovery rate 
at 5%) with 7 traits (RCT, RCTeq, kCF, %CYSOLIDS, 
RECFAT, RECSOLIDS, and RECENERGY), with some being 
in common between traits. The significantly enriched 
categories included calcium signaling pathway, salivary 
secretion, metabolic pathways, carbohydrate digestion 
and absorption, the tight junction and the phosphati-
dylinositol pathways, as well as pathways related to the 
bovine mammary gland health status, and contained 
a total of 150 genes spanning all chromosomes but 9, 
20, and 27. This study provided new insights into the 
regulation of bovine milk coagulation and cheese ability 
that were not captured by the GWAS.
Key words: milk coagulation and curd firmness, 
cow cheese ability, genome-wide association, gene-set 
enrichment, pathway-based analysis

INTRODUCTION

Cheese manufacture is the main final target of dairy 
cattle milk production in many countries worldwide. 
Recently, exploitable additive genetic variation has 
been reported for different measures of individual bo-
vine cheese yield (CY; Bittante et al., 2013). Moreover, 
milk coagulation properties (MCP) and curd firmness 
traits (CF) are used as indicators of cheese production. 
Although considerable additive genetic variation exists 
for a variety of direct or indirect cheese traits, high 
measurement costs and logistics place restrictions on 
the selection of cows for cheese productivity in breeding 
programs. A potential strategy is to identify and use 
genomic regions affecting the cow’s ability to produce 
cheese that could enhance genomic breeding programs. 
Genome-wide association studies (GWAS) are widely 
used for this purpose and were proved to be effective in 
identifying genomic regions associated with the traits 
of interest. However, due to the stringent statistical 
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thresholds used to deal with multiple testing, a con-
siderable number of important markers may remain 
undetected when dealing with polygenic traits (Peng 
et al., 2010). Moreover, with high SNP density panels, 
each gene might be represented by several proximal 
SNP, thus splitting its effect into parts that, in turn, 
might not be able to pass the defined GWAS threshold 
in a single marker regression (Ha et al., 2015). Ad-
ditionally, linkage disequilibrium spans a wide region in 
the genome, especially in livestock species. As a result, 
a plethora of SNP might be in linkage disequilibrium 
with the causal genomic region, which creates extra dif-
ficulties in detecting the causal mutation (Hayes, 2013). 
Besides, although GWAS may be able to locate SNP 
significantly associated with the trait of interest, it does 
not make use of the fact that genes work together in 
biological pathways and are organized into networks. 
Further, the effect of a multi-allelic QTL may not be 
fully captured due to the bi-allelic nature of SNP. As a 
result, GWAS alone may provide a limited understand-
ing of the complex nature of quantitative traits.

A solution to tackle the aforementioned problems, and 
deepen the understanding of the genetic background of 
complex traits, is to move up the analysis from the SNP 
to the gene and gene-set levels. In a gene-set analysis, 
a group of related genes (such as genes in a specific 
pathway or gene ontology) that harbor significant SNP 
previously identified in GWAS, is tested for over-rep-
resentation in a specific pathway (Wang et al., 2011). 
Indeed, an increasing interest on pathway analysis has 
been recently observed in dairy cattle, to complement 
GWAS analyses of quantitative traits (Gambra et al., 
2013; Peñagaricano et al., 2013; Iso-Touru et al., 2016; 
Abdalla et al., 2016).

Thus, the objective of this study was to conduct a 
gene ontology and pathway analysis to complement 
previously obtained GWAS results for phenotypes re-
lated to bovine MCP, curd firmness modeling (CFt), 
individual CY, and milk nutrient recovery into the curd 
(REC) or whey loss traits.

MATERIALS AND METHODS

Data

Phenotypes. Results of 2 recent GWAS analy-
ses were used, consisting of 11 MCP and CFt traits 
(Dadousis et al., 2016) as well as 7 individual CY traits 
(Dadousis et al., 2017). In brief, the milk MCP-CFt data 
set contained the milk pH, milk protein percentage, 3 
traditional MCP obtained from Formagraph [RCT: 
rennet coagulation time defined as the time (min) from 
addition of enzyme to the beginning of coagulation; 
k20: the interval (min) from RCT to the time at which 

a curd firmness of 20 mm is attained; a30: a measure 
of the extent of curd firmness (mm) 30 min after co-
agulant addition], 4 CFt equation parameters [RCTeq: 
RCT estimated through the CFt equation (min); CFP: 
potential asymptotical curd firmness (mm); kCF: curd-
firming rate constant (% × min−1); kSR: syneresis rate 
constant (% × min−1)], and 2 derived traits [CFmax: 
maximum curd firmness (mm) and tmax: time to CFmax 
(tmin)]. The second GWAS data set included 3 indi-
vidual CY traits expressing the weight of fresh curd 
(%CYCURD), curd solids (%CYSOLIDS), and curd 
moisture (%CYWATER) as a percentage of weight of 
milk processed, and 4 milk nutrient and energy recover-
ies into the curd (RECFAT, RECPROTEIN, RECSOLIDS, 
and RECENERGY), calculated as the % ratio between 
the nutrient in curd and the corresponding nutrient/en-
ergy in the processed milk. Details about the genotyp-
ing and the GWAS analyses are reported in (Dadousis 
et al., 2016, 2017).

Genotypic Data.  Briefly, 1,152 cows were geno-
typed with the Illumina BovineSNP50 Bead Chip v.2 
(Illumina Inc., San Diego, CA). After quality control 
[call rate >95%, minor allele frequency >0.05, and 
extreme deviation from Hardy-Weinberg proportions 
(P > 0.001, Bonferroni corrected)], 1,011 animals and 
37,568 SNP, located on 29 autosomes and in the X-
chromosome, were retained. Slight differences in the 
number of individuals and SNP between the 2 GWAS 
analyses are attributed to phenotypic editing.

Gene-Set Enrichment and Pathway-Based Analysis

The gene-set enrichment analysis workflow is rep-
resented in Figure 1. In brief, for each trait, nominal 
P-values < 0.05 from the GWAS analyses were used to 
identify significant SNP. Using the biomaRt R package 
(Durinck et al., 2005, 2009), the SNP were assigned to 
genes if they were within the genomic sequence of the 
gene or within a flanking region of 15 kb up- and down-
stream of the gene, to include SNP located in regula-
tory regions. The size of the flanking region was based 
on the finding that most SNP that affect the expression 
of a gene are located within 15 kb of the gene (Pickrell 
et al., 2010). The Ensembl Bos taurus UMD3.1 data-
base was used as reference (Zimin et al., 2009). The 
background SNP represent all the SNP tested in the 
GWAS analyses, while the background genes were the 
genes associated with those SNP. For the assignment of 
the genes to functional categories, the Gene Ontology 
(GO; Ashburner et al., 2000) and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) pathway (Ogata 
et al., 1999) databases were used. The GO database 
designates biological descriptors (GO terms) to genes 
based on attributes of their encoded products and it 
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is further partitioned into 3 components: biological 
process, molecular function, and cellular component. 
The KEGG pathway database contains metabolic and 
regulatory pathways, representing the actual knowledge 
on molecular interactions and reaction networks. To 
avoid testing narrow or broad functional categories, 
only GO and KEGG categories with more than 10 and 
less than 1,000 genes were tested. Finally, a Fisher’s 
exact test was performed to test for overrepresentation 
of the significant genes for each gene-set (i.e., pathway/
functional category). False discovery rate correction 
(controlled at 5%) was applied to account for multiple 
testing. The gene enrichment analysis was performed 
with the goseq R package (Young et al., 2010).

RESULTS AND DISCUSSION

In total, 17,006 SNP (out of the 37,568 tested) were 
located in annotated genes or in the 15 kb window (up-
stream or down-stream from a gene). The total num-
ber of background genes annotated in the Bos taurus 
UMD3.1 assembly was 13,269. Each trait was analyzed 
separately. On average, 1,700 SNP, ranging between 
1,301 for RECPROTEIN to 1,899 for RCTeq, were signifi-
cantly associated with each trait in the GWAS analysis. 
For each trait, 585 significant SNP were assigned to 500 
genes, on average (Figure 1, Table 1). The minimum 
number of mapped genes was found for RECPROTEIN (n 
= 399), whereas the maximum for RCTeq (n = 574).

Enrichment Pathway Analysis

After false discovery rate correction, 21 GO and 17 
KEGG categories were found associated with 7 of the 
tested traits, namely RCT, RCTeq, kCF, %CYSOLIDS, 
RECFAT, RECSOLIDS, and RECENERGY. Some of the cat-
egories were in common between traits. A total of 150 
significant genes spanning all Bos taurus chromosomes 
(BTA) but 9, 20, and 27 were included into the signifi-
cantly enriched GO and KEGG categories (Supplemen-
tal Table S1; https://doi.org/10.3168/jds.2016-11587). 
Table 2 summarizes all the significant pathways/
ontologies, some of which were shared among the afore-
mentioned traits. More precisely, the calcium signaling 
pathway (KEGG:bta04020) was associated with both 
RCT and RECFAT; the arrhythmogenic right ventricular 
cardiomyopathy (ARVC) pathway (KEGG:bta05412) 
was enriched for both %CYSOLIDS and RECSOLIDS; 
the leucocyte transendothelial migration pathway 
(KEGG:bta04670) was in common between RECSOLIDS 
and RECENERGY; and the synapse part cellular compo-
nent (GO:0044456) was shared between RCTeq and kCF. 
Moreover, 6 GO biological process categories related to 
female sex characteristics and the ovulation cycle ap-

peared significant for both RCTeq and RECFAT (Table 
2). Not surprisingly, different pathways/functional cat-
egories were enriched for RCT and RCTeq, reflecting 
the differences in their additive genetic variance found 
in the GWAS analysis.

Phosphatidylinositol Signaling Path-
way. The phosphatidylinositol signaling pathway 
(KEGG:bta04070) was significantly enriched for the 
RCT trait. In milk, phospholipids are mainly present 
on the surface of the milk fat globules (MFG) and are 
responsible for the stabilization of the milk fat against 
coalescence (Rombaut et al., 2007; Walstra et al., 2014). 
Due to their technological and nutritional properties, 
previous studies focused on determining the phospho-
lipid content of various dairy products (Rombaut et al., 
2007). Recently, the evolution of the phospholipids dur-
ing the quark cheese process from buttermilk was also 
examined (Ferreiro et al., 2016). Phosphatidylinositol 
represents a small fraction of the phospholipid com-
ponents of milk. Among the significant genes included 
in the phosphatidylinositol pathway, 3 phospholipase 
C β (PLCB) isoforms were present: PLCB1, PLCB3, 

Figure 1. Flowchart for the gene-set enrichment analysis. GWAS 
= genome-wide association studies; GO = Gene Ontology; KEGG = 
Kyoto Encyclopedia of Genes and Genomes; FDR = false discovery 
rate. Color version available online.

https://doi.org/10.3168/jds.2016-11587
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and PLCB4. Phospholipases are responsible for the 
hydrolyses of phospholipids of the MFG membrane, 
thereby affecting the stability of the cream emulsion. 
In addition, the phospholipase treatment of milk was 
found to reduce fat losses in whey and cooking water 
and to increase CY by improving fat and moisture re-
tention in the cheese curd in Mozzarella cheese (Lilbæk 
et al., 2006). Interestingly, an association between a 
SNP on PLCB1 (rs41624761) and kCF has been previ-
ously reported in a candidate gene analysis (Cecchinato 
et al., 2015). Moreover, studies related to the effect of 
MFG size on milk technological properties reported a 
significant relationship of MFG size with MCP (Bland 
et al., 2015), cheese ripening, and structure, as well as 
stability of dairy products (Lopez et al., 2011). Indeed, 
the biological explanation of the connection between 
phosphatidylinositol pathway and MCP can be found 
in the tight association between MFG size and phos-
pholipids contents, with higher amounts of phospho-

lipids in small versus large globules likely affecting, in 
turn, the technological properties of milk.

The salivary secretion pathway (KEGG:bta04970), 
which was also enriched for the RCT trait, shared 6 
genes with the phosphatidylinositol signaling pathway 
including PLCB1, PLCB3, and PLCB4. Interestingly, 
histatherin (HSTN) was also present in the list of sig-
nificant genes for this pathway (Supplemental Table S1; 
https://doi.org/10.3168/jds.2016-11587). Histatherin is 
a ruminant-specific gene that encodes for a host-de-
fense related protein in the cow’s oral cavity and milk, 
which may also be involved in the response to mastitis 
(Ju, 2014). The HSTN has been also proposed as a 
candidate gene related to MCP and CY traits in our 
previous GWAS analyses (Dadousis et al., 2016, 2017) 
and more precisely it was associated with the 3 MCP, 
CFP, CFmax, and RECFAT.

Calcium Signaling-Related Pathway. The cal-
cium signaling pathway (KEGG:bta04020) was sig-

Table 1. Number of significant1 SNP identified from genome-wide association studies (GWAS) and genes 
mapped by trait

Trait2
No. of  

significant SNP

No. of significant  
SNP assigned  

to genes
No. of significant  
mapped genes3

Milk composition    
 pH 1,848 624 552
 Protein, % 1,808 641 563
Traditional MCP    
 RCT 1,739 551 487
 k20 1,789 614 539
 a30 1,724 572 496
Curd firming    
 RCTeq 1,899 639 574
 CFP 1,423 486 422
 CFmax 1,724 599 536
 tmax 1,786 598 531
 kCF 1,822 603 545
 kSR 1,872 625 562
Cheese yields, %    
 %CYCURD 1,817 621 538
 %CYSOLIDS 1,796 590 533
 %CYWATER 1,826 605 525
Recoveries, %    
 RECSOLIDS 1,797 581 527
 RECFAT 1,496 503 447
 RECPROTEIN 1,301 444 399
 RECENERGY 1,800 627 548
 Background4 37,568 17,006 13,269
1P-value < 0.05.
2pH = milk pH; Protein, % = milk protein (%); MCP = milk coagulation properties; RCT = rennet coagula-
tion time (min) of samples coagulating within 45 min from enzyme addition; k20 = curd-firming time (min) 
of samples reaching 20 mm of firmness within 45 min from enzyme addition; a30 = curd firmness (mm) at 30 
min after enzyme addition; RCTeq = rennet coagulation time (min) estimated using the CFt equation; CFP = 
potential asymptotical curd firmness (mm); kCF = curd-firming rate constant (% × min−1); kSR = syneresis rate 
constant (% × min−1); CFmax = maximum curd firmness (mm); tmax = time to CFmax (min); %CY = weight of 
fresh curd, curd solids, and curd water as percentage of weight of milk processed; REC = protein, fat, solids, 
and energy of the curd as percentage of the protein, fat, solids, and energy of the milk processed.
3Ensembl Bos taurus UMD3.1 (http://www.ensembl.org/index.html); window: 15 kb.
4Background represents the total number of SNP used in the GWAS analyses, the number of SNP linked to 
genes and the genes mapped to those SNP.

https://doi.org/10.3168/jds.2016-11587
http://www.ensembl.org/index.html
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Table 2. Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways significantly enriched using genes 
associated with RCT, RCTeq, kCF, %CYSOLIDS, RECFAT, RECSOLIDS, and RECENERGY

Trait1  Category2  Term
No. of genes  
in the term

No. of  
significant  

genes3 FDR4

RCT KEGG bta04070:Phosphatidylinositol signaling 53 10 1.87 × 10−5

    bta04730:Long-term depression 44 8 1.69 × 10−4

    bta04540:Gap junction 57 9 2.07 × 10−4

    bta04270:Vascular smooth muscle contraction 74 10 3.47 × 10−4

    bta04020:Calcium signaling pathway 118 13 3.79 × 10−4

    bta04970:Salivary secretion 55 8 8.18 × 10−4

RCTeq GO_BP GO:0048511~Rhythmic process 46 9 1.87 × 10−4

    GO:0008585~Female gonad development 14 5 2.15 × 10−4

    GO:0022602~Ovulation cycle process 14 5 2.15 × 10−4

    GO:0042698~Ovulation cycle 14 5 2.15 × 10−4

    GO:0046545~Development of primary female sexual 
characteristics

14 5 2.15 × 10−4

    GO:0046660~Female sex differentiation 14 5 2.15 × 10−4

  GO_CC GO:0030425~Dendrite 39 11 5.01 × 10−7

    GO:0044456~Synapse part 76 15 7.12 × 10−7

    GO:0097458~Neuron part 162 22 1.84 × 10−6

    GO:0045202~Synapse 102 16 7.30 × 10−6

    GO:0036477~Somatodendritic compartment 62 11 6.15 × 10−5

    GO:0043005~Neuron projection 110 15 7.58 × 10−5

    GO:0008076~Voltage-gated potassium channel complex 12 5 9.15 × 10−5

    GO:0034705~Potassium channel complex 13 5 1.44 × 10−4

    GO:0008021~Synaptic vesicle 22 6 2.63 × 10−4

    GO:0098793~Presynapse 22 6 2.63 × 10−4

kCF GO_CC GO:0044456~Synapse part 76 13 1.16 × 10−5

    GO:0098794~Postsynapse 48 10 2.01 × 10−5

%CYSOLIDS KEGG bta05412:Arrhythmogenic right ventricular cardiomyopathy 
(ARVC)

50 10 2.42 × 10−5

    bta4260:Cardiac muscle contraction 41 8 1.90 × 10−4

RECFAT GO_BP GO:0008585~Female gonad development 14 6 3.37 × 10−6

    GO:0022602~Ovulation cycle process 14 6 3.37 × 10−6

    GO:0042698~Ovulation cycle 14 6 3.37 × 10−6

    GO:0046545~Development of primary female sexual 
characteristics

14 6 3.37 × 10−6

    GO:0046660~Female sex differentiation 14 6 3.37 × 10−6

    GO:0001541~Ovarian follicle development 10 5 9.30 × 10−6

    GO:0008406~Gonad development 21 6 4.98 × 10−5

    GO:0045137~Development of primary sexual characteristics 21 6 4.98 × 10−5

    GO:0007548~Sex differentiation 24 6 1.13 × 10−4

    GO:0048511~Rhythmic process 46 8 1.32 × 10−4

  KEGG bta04020:Calcium signaling pathway 118 13 1.68 × 10−4

RECSOLIDS KEGG bta05412:Arrhythmogenic right ventricular cardiomyopathy 
(ARCV)

50 9 1.34 × 10−4

    bta05218:Melanoma 44 8 2.94 × 10−4

    bta05200:Pathways in cancer 195 18 7.73 × 10−4

    bta01100:Metabolic pathways 635 42 8.10 × 10−4

    bta04260:Cardiac muscle contraction 41 7 1.04 × 10−3

    bta04670:Leucocyte transendothelial migration 66 9 1.13 × 10−3

    bta05213:Endometrial cancer 31 6 1.20 × 10−3

    bta04930:Type II diabetes mellitus 32 6 1.43 × 10−3

    bta04973:Carbohydrate digestion and absorption 24 5 2.20 × 10−3

RECENERGY KEGG bta04670:Leukocyte transendothelial migration 66 10 3.49 × 10−4

    bta04514:Cell adhesion molecules 79 11 3.81 × 10−4

    bta04530:Tight junction 83 11 5.87 × 10−4

1RCT = rennet coagulation time (min) of samples coagulating within 45 min from enzyme addition; RCTeq = rennet coagulation time (min) 
estimated using the CFt equation; kCF = curd-firming rate constant (% × min−1); %CYSOLIDS = weight of curd solids as percentage of weight of 
milk processed; REC = fat, solids, and energy of the curd as percentage of the fat, solids, and energy of the milk processed.
2KEGG: KEGG pathway; GO_BP: GO biological process; GO_CC: GO cellular component.
3Significant genes after mapping the significant SNP to genes using Ensembl Bos taurus UMD3.1 as reference (http://www.ensembl.org/index.
html).
4False discovery rate (FDR) correction for multiple testing (P-value < 0.05).

http://www.ensembl.org/index.html
http://www.ensembl.org/index.html
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nificantly enriched for both RCT and RECFAT. It is 
widely known that Ca is one of the major components 
of the casein micelles. During the cheese process, after 
rennet addition, the casein reacts with Ca ions and pre-
cipitates. This phenomenon consists the basis of milk 
clotting (Walstra et al., 2014). Moreover, low content 
of the total and micellar Ca has been associated with 
noncoagulating milk (Gustavsson et al., 2014; Malac-
arne et al., 2014). Interestingly, transcriptomic analysis 
of mammary gland in mice showed that the calcium 
ion binding ontology was significantly over-represented 
among the differentially expressed genes associated with 
enhanced maternal performance phenotype (Ramana-
than et al., 2008). Further analysis showed a positive 
correlation between the calcium signaling pathway and 
the lactation performance in mice (Wei et al., 2013).

The ARVC pathway (KEGG:bta05412) was enriched 
for both %CYSOLIDS and RECSOLIDS with 9 significantly 
enriched genes being in common. Moreover, this path-
way shared 6 genes with the cardiac muscle contraction 
pathway (KEGG:bta04260; Supplemental Table S1; 
https://doi.org/10.3168/jds.2016-11587), which was 
also enriched for the %CYSOLIDS. Notably, genes encod-
ing for several subunits of the voltage-dependent cal-
cium channel complex were included in these pathways 
(e.g., calcium voltage-gated channel subunit α-1D and 
calcium voltage-gated channel auxiliary subunit α-2/
delta-3].

Bovine Reproduction-Related Ontologies. The 
rennet coagulation time obtained from an extended CF 
testing time (RCTeq) and the RECFAT were associated 
with the GO terms related to female characteristics 
such as the ovulation cycle (GO:0042698) and female 
gonad development (GO:0008585). All the significant 
genes were shared among these biological processes 
(Supplemental Table S1; https://doi.org/10.3168/
jds.2016-11587). In a similar gene-set enrichment 
and pathway analysis, the broader GO categories of 
reproduction (GO:0000003) and reproductive process 
(GO:002214) were associated with milk yield, milk fat 
and protein yields, and fertility index in the Nordic 
Red cattle (Iso-Touru et al., 2016). Indeed, a close link 
between the duration of estrus and multiple ovulation 
rate and milk production in dairy cattle was previously 
reported (Wiltbank et al., 2006).

When specifically looking at the significant genes 
involved in these pathways/processes (Supplemental 
Table S1; https://doi.org/10.3168/jds.2016-11587), 
the α-caseinS1 (CSN1S1) and the luteinizing hormone 
receptor (LHCGR) were included. Interestingly, in a 
candidate gene approach, an association between an 
SNP on CSN1S1 (rs109817504) and CFP has been pre-
viously reported (Cecchinato et al., 2015). Moreover, 
CSN1S1 genetic variants were shown to affect MCP of 

buffalo and goat milk (Caravaca et al., 2011; Devold 
et al., 2011; Bonfatti et al., 2012). Considering LH-
CGR, this gene has been significantly associated with 
milk composition and in particular with milk fat and 
total solid percentages (Molee et al., 2015). Notably, a 
positive effect of fat on milk coagulation properties was 
highlighted by Bland et al. (2015).

Additionally, ontologies related to the nervous tissue 
and more specifically to neuron parts (e.g., dendrite) and 
functions (e.g., synapse) were enriched for the RCTeq. 
A possible interpretation can rely on the fact that dur-
ing pregnancy and lactation many factors and signals 
(including the neuroendocrine signal of prolactin) act 
to adapt the pattern of neuronal responses to the lac-
tating state (Grattan, 2002; Akers, 2016). Interestingly, 
in 3 of these GO terms (GO:0044456, GO:0097458, and 
GO:0045202), the vacuolar protein sorting-associated 
protein 35 gene (VPS35) was included. This gene has 
been recently proposed as a candidate gene strongly re-
lated to milk coagulation in Swedish Red cows (Duch-
emin et al., 2016).

Mammary Gland- and Mastitis-Related Path-
ways and Ontologies. Ontologies related to potas-
sium channels (GO:0008076, GO:0034705) were signifi-
cantly enriched for RCTeq. The role of the voltage-gated 
potassium channels is to transfer ions across the cell 
membrane (Yellen, 2002). In milk, the concentrations 
of Na+, K+, and Cl− are the most important ions for 
electrical conductivity (EC). It is well established that 
milk EC can be also used as an indicator of mastitis 
(Norberg, 2005; Viguier et al., 2009). Interestingly, 
the tight junction pathway (KEGG:bta04530) was sig-
nificantly enriched for the RECENERGY. Tight junctions 
of the mammary epithelium control the movement of 
lactose and K+ to the extracellular fluid, while Na+ 
and Cl− are moving into the milk. Tight junctions are 
known to be related to milk mammary gland develop-
ment and milk secretion (Nguyen and Neville, 1998; 
Ramanathan et al., 2008; Stelwagen and Singh, 2014). 
More precisely, increased milk secretion is connected 
to a decrease in the tight junction permeability. After 
intramammary infection, destruction of tight junctions 
and of the ion-pumping system causes an increase in 
the concentration of Na+ and Cl− in the milk and con-
sequently increases the milk EC (Norberg, 2005). It has 
been reported that the technological properties of milk 
(such as MCP and CFt) are unfavorably influenced by 
mastitis indicators (Bittante et al., 2012; Bobbo et al., 
2016). Indeed, other pathways related to the mastitis 
were significantly enriched. In particular, RECSOLIDS 
and RECENERGY were associated with the leucocyte 
transendothelial migration (KEGG:bta04670). Leuco-
cytes are typically present in milk and compose the ma-
jority of the SCC. Their concentration in milk increases 
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after bacterial infections and thus they are widely used 
as an indicator of mastitis (Dosogne et al., 2003). The 
leucocyte transendothelial migration pathway has been 
previously linked to milk and fat yield in dairy cattle 
(Edwards et al., 2015). Immune response-related cate-
gories [e.g., the immune system process (GO:0002376)], 
have been recently found to be related to fat yield, milk 
yield, and fertility (Iso-Touru et al., 2016). The tight 
junction and the leucocyte transendothelial migration 
pathways shared 3 significant genes, namely junctional 
adhesion molecule 2 (JAM2), actinin α 1 (ACTN1), 
and catenin α 3 (CTNNA3; Supplemental Table S1; 
https://doi.org/10.3168/jds.2016-11587). Interestingly, 
JAM2 is located on BTA1 at ~10.1 Mb and a weak 
signal for RCTeq at ~9.5 Mb has been detected in our 
GWAS analysis (Dadousis et al., 2016).

In addition to this, the cell adhesion molecule path-
way (KEGG:bta04514) was enriched for RECENERGY. 
The cell adhesion molecule pathway is involved in a 
wide range of biologic processes, including immune 
response and neuronal cell adhesion. In the study of 
Ramanathan et al. (2008), differentially expressed 
genes belonging to this pathway were also enriched 
and related to the mammary development and milk 
secretion in mice. Moreover, the gap junction pathway 
(KEGG:bta04540), related to cell communication, 
was enriched for RCT. Functional analyses evidenced 
that the broader pathway of cell-cell signaling was sig-
nificantly associated with MFG global gene expression 
during lactation in human (Maningat et al., 2009).

Interestingly, the ARVC pathway detected in our 
study has also been associated with the mammary 
gland functionality in pregnant sows in a study focus-
ing in sow’s mammary transcriptome in late gestation 
(Zhao et al., 2013).

Metabolism-Related Pathways. The broad cat-
egory of “metabolic pathways” (KEGG:bta01100) was 
associated with RECSOLIDS. Among the genes included 
in this specific pathway, 3 polypeptide N-acetylgalactos-
aminyltransferase (GALNT) isoforms were significant 
in our study (GALNT1, GALNT13, and GALNT18; 
Supplemental Table S1; https://doi.org/10.3168/
jds.2016-11587). Although no association was de-
tected in our previous GWAS analyses on BTA24, the 
GALNT1 gene located on BTA24 has been reported as 
a candidate gene in another recent GWAS study related 
to MCP (Gregersen et al., 2015). This gene encodes 
for the GalNAc-T enzyme that is involved to κ-casein 
glycosylation (Holland et al., 2005). Higher content of 
glycosylated kappa casein has been linked to improved 
milk coagulation (Poulsen et al., 2016). In the recent 
gene-set enrichment study of Iso-Touru et al. (2016), 
the metabolic process ontology (GO:0008152) was sig-
nificantly enriched for milk, fat, and protein yields and 

fertility in Nordic Red cattle. Moreover, in our study 
the carbohydrate digestion and absorption pathway 
(KEGG:bta04973) was enriched for RECSOLIDS. The 
central carbohydrate of the milk is lactose. Although a 
strong influence of lactose on MCP has been recently 
reported (Bland et al., 2015), our knowledge on the ex-
act mechanism is still limited. However, lactose is also 
related to SCC and mastitis. More precisely, a decrease 
of lactose is observed during mastitis (Kitchen, 1981). 
Not surprisingly, 2 genes (phosphoinositide-3-kinase, 
regulatory subunits 3 and 5; PIK3R3 and PIK3R5) 
were in common between the carbohydrate digestion 
and absorption, and the leukocyte transendothelial mi-
gration pathways (Supplemental Table S1; https://doi.
org/10.3168/jds.2016-11587).

Cancer-Related Pathways. Among the signifi-
cantly enriched pathways detected for RECSOLIDS, path-
ways in cancer (KEGG:bta05200), endometrial cancer 
(KEGG:bta05213), and melanoma (KEGG:bta05218) 
were present with some significant genes being in 
common, including also PIK3R3, PIK3R5, and AKT 
serine/threonine kinase 3 (AKT3; Supplemental Table 
S1; https://doi.org/10.3168/jds.2016-11587). These 
genes have a role in the PIK-Akt signaling pathway, 
which was associated with mammary development 
and breast cancer (Wickenden and Watson, 2010). 
Moreover, in a gene expression study in human mam-
mary gland investigating the MFG transcriptome, one 
of the most significant networks associated with the 
top expressed genes was the cancer pathway (Man-
ingat et al., 2009). Moreover, the aforementioned 
cancer-related KEGG pathways were associated with 
genetic variants in mammary development, prolactin 
signaling, and involution pathways, which were linked 
to bovine milk production traits (Raven et al., 2014). 
However, as highlighted by those authors, the sig-
nificance of this information is challenged by the fact 
that KEGG database includes a large compendium of 
cancer-related gene sets.

Apparently, aside from pathways that could be 
strictly associated with milk technological properties 
(e.g., phosphatidylinositol signaling), pathways not 
directly related to the traits of our interest were also 
detected (e.g., pathways related to cancer). However, 
as publicly available ontologies and pathways in cattle 
are still limited (compared with human) and not all are 
well described, some of our results may be misleading, 
especially when the detected genes are involved in vari-
ous biological processes (Fan et al., 2015). It is likely 
that, when more complete gene sets become available, 
more competitive pathways might be detected and the 
power to identify genomic regions influencing these 
traits might increase. In this respect, transcriptomic 
methods (e.g., RNA-seq) may represent a useful tool 
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to complement the present analysis and validate the 
achieved biological information.

Finally, it is worth noting that our gene-set enrich-
ment analysis was conducted using a panel of SNP 
obtained from a single marker regression GWAS, which 
relies on a simplified theory of the genomic background 
of traits, without considering for instance the joint 
effect of SNP. Hence, other approaches (e.g., GWAS 
exploring SNP by SNP interactions) might provide a 
better basis for biological pathway analysis.

CONCLUSIONS

To our knowledge, this is the first pathway-based as-
sociation analysis related to milk technological traits. 
In animal breeding, studies are generally focused on 
simple SNP-based associations with the traits of in-
terest. The present pathway-based analysis provided 
new insights with respect to the previously conducted 
GWAS analyses, confirming that complex traits (i.e., 
milk technological properties) may be affected by the 
joint additive effect of several genes which cluster in 
specific biological pathways. In particular, calcium and 
phosphatidylinositol signaling, overall metabolism, car-
bohydrate digestion and absorption as well as pathways 
related to the bovine mammary gland health status were 
significantly enriched. The highlighted pathways and 
gene ontologies detected associated with technological 
traits may be useful in further studies on fine mapping 
of genes and development of marker-assisted breeding 
programs. However, further validation and replication 
of the most promising described pathways is needed to 
explore their role in relation to bovine milk coagulation 
and cheese-making characteristics.

ACKNOWLEDGMENTS

The authors thank the Trento Province (Italy), the 
Italian Brown Swiss Cattle Breeders Association (AN-
ARB, Verona, Italy), and the Superbrown Consortium 
of Bolzano and Trento for financial and technical sup-
port. C. Dadousis benefitted from financial support 
of the CARIPARO (Cassa di Risparmio di Padova e 
Rovigo) Foundation (Padua, Italy). The authors also 
thank F. Peñagaricano (Department of Animal Sci-
ences, University of Florida) for his help in setting up 
the analysis.

REFERENCES

Abdalla, E. A., F. Peñagaricano, T. Byrem, K. Weigel, and G. Rosa. 
2016. Genome-wide association mapping and pathway analysis 
of leukosis incidence in a US Holstein cattle population. Anim. 
Genet.47:395–407. 

Akers, R. M. 2016. Lactation and the Mammary Gland. John Wiley 
& Sons, Hoboken, NJ.

Ashburner, M., C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. 
M. Cherry, A. P. Davis, K. Dolinski, S. S. Dwight, and J. T. Ep-
pig. 2000. Gene ontology: Tool for the unification of biology. Nat. 
Genet. 25:25–29.

Bittante, G., C. Cipolat-Gotet, and A. Cecchinato. 2013. Genetic pa-
rameters of different measures of cheese yield and milk nutrient 
recovery from an individual model cheese-manufacturing process. 
J. Dairy Sci. 96:7966–7979.

Bittante, G., M. Penasa, and A. Cecchinato. 2012. Invited review: 
Genetics and modeling of milk coagulation properties. J. Dairy 
Sci. 95:6843–6870.

Bland, J. H., A. S. Grandison, and C. C. Fagan. 2015. Evaluation of 
milk compositional variables on coagulation properties using par-
tial least squares. J. Dairy Res. 82:8–14.

Bobbo, T., C. Cipolat-Gotet, G. Bittante, and A. Cecchinato. 2016. 
The nonlinear effect of somatic cell count on milk composition, 
coagulation properties, curd firmness modeling, cheese yield, and 
curd nutrient recovery. J. Dairy Sci.99:5104–5119. 

Bonfatti, V., M. Giantin, M. Gervaso, A. Coletta, M. Dacasto, and P. 
Carnier. 2012. Effect of CSN1S1–CSN3 (α S1-κ-casein) composite 
genotype on milk production traits and milk coagulation proper-
ties in Mediterranean water buffalo. J. Dairy Sci. 95:3435–3443.

Caravaca, F., J. L. Ares, J. Carrizosa, B. Urrutia, F. Baena, J. Jor-
dana, B. Badaoui, A. Sànchez, A. Angiolillo, and M. Amills. 2011. 
Effects of α s1-casein (CSN1S1) and κ-casein (CSN3) genotypes 
on milk coagulation properties in Murciano-Granadina goats. J. 
Dairy Res. 78:32–37.

Cecchinato, A., S. Chessa, C. Ribeca, C. Cipolat-Gotet, T. Bobbo, 
J. Casellas, and G. Bittante. 2015. Genetic variation and effects 
of candidate-gene polymorphisms on coagulation properties, curd 
firmness modeling and acidity in milk from Brown Swiss cows. 
Animal 9:1104–1112.

Dadousis, C., S. Biffani, C. Cipolat-Gotet, E. Nicolazzi, A. Rossoni, E. 
Santus, G. Bittante, and A. Cecchinato. 2016. Genome-wide asso-
ciation of coagulation properties, curd firmness modeling, protein 
percentage, and acidity in milk from Brown Swiss cows. J. Dairy 
Sci. 99:3654–3666.

Dadousis, C., S. Biffani, C. Cipolat-Gotet, E. Nicolazzi, G. J. M. Rosa, 
D. Gianola, A. Rossoni, E. Santus, G. Bittante, and A. Cecchi-
nato. 2017. Genome-wide association study for cheese yield and 
curd nutrient recovery in dairy cows. J. Dairy Sci. https://doi.
org/10.3168/jds.2016-11586. 

Devold, T. G., R. Nordbø, T. Langsrud, C. Svenning, M. J. Brovold, E. 
S. Sørensen, B. Christensen, T. Ådnøy, and G. E. Vegarud. 2011. 
Extreme frequencies of the αs1-casein “null” variant in milk from 
norwegian dairy goats—Implications for milk composition, micel-
lar size and renneting properties. Dairy Sci. Technol. 91:39–51.

Dosogne, H., F. Vangroenweghe, J. Mehrzad, A. M. Massart-Leën, and 
C. Burvenich. 2003. Differential leukocyte count method for bovine 
low somatic cell count milk. J. Dairy Sci. 86:828–834.

Duchemin, S. I., M. Glantz, D. De Koning, M. Paulsson, and W. F. 
Fikse. 2016. Identification of QTL on chromosome 18 associated 
with non-coagulating milk in Swedish red cows. Front. Genet. 7:57.

Durinck, S., Y. Moreau, A. Kasprzyk, S. Davis, B. De Moor, A. 
Brazma, and W. Huber. 2005. BioMart and bioconductor: A pow-
erful link between biological databases and microarray data analy-
sis. Bioinformatics 21:3439–3440.

Durinck, S., P. T. Spellman, E. Birney, and W. Huber. 2009. Mapping 
identifiers for the integration of genomic datasets with the R/bio-
conductor package biomaRt. Nat. Protoc. 4:1184–1191.

Edwards, S. M., B. Thomsen, P. Madsen, and P. Sørensen. 2015. Par-
titioning of genomic variance reveals biological pathways associ-
ated with udder health and milk production traits in dairy cattle. 
Genet. Sel. Evol. 47:60.

Fan, H., Y. Wu, X. Zhou, J. Xia, W. Zhang, Y. Song, F. Liu, Y. 
Chen, L. Zhang, X. Gao, H. Gao, and J. Li. 2015. Pathway-based 
genome-wide association studies for two meat production traits in 
Simmental cattle. Sci. Rep. 5:18389.

https://doi.org/10.3168/jds.2016-11586
https://doi.org/10.3168/jds.2016-11586


Journal of Dairy Science Vol. 100 No. 2, 2017

PATHWAY-ANALYSIS FOR MILK TECHNOLOGICAL TRAITS 1231

Ferreiro, T., S. Martínez, L. Gayoso, and J. Rodríguez-Otero. 2016. 
Evolution of phospholipid contents during the production of quark 
cheese from buttermilk. J. Dairy Sci. 99:4154–4159.

Gambra, R., F. Peñagaricano, J. Kropp, K. Khateeb, K. Weigel, J. Lu-
cey, and H. Khatib. 2013. Genomic architecture of bovine κ-casein 
and β-lactoglobulin. J. Dairy Sci. 96:5333–5343.

Grattan, D. R. 2002. Behavioural significance of prolactin signalling 
in the central nervous system during pregnancy and lactation. Re-
production 123:497–506.

Gregersen, V. R., F. Gustavsson, M. Glantz, O. F. Christensen, H. 
Stålhammar, A. Andrén, H. Lindmark-Månsson, N. A. Poulsen, 
L. B. Larsen, and M. Paulsson. 2015. Bovine chromosomal regions 
affecting rheological traits in rennet-induced skim milk gels. J. 
Dairy Sci. 98:1261–1272.

Gustavsson, F., M. Glantz, A. J. Buitenhuis, H. Lindmark-Månsson, 
H. Stålhammar, A. Andrén, and M. Paulsson. 2014. Factors influ-
encing chymosin-induced gelation of milk from individual dairy 
cows: Major effects of casein micelle size and calcium. Int. Dairy 
J. 39:201–208.

Ha, N., J. J. Gross, A. van Dorland, J. Tetens, G. Thaller, M. Schlath-
er, R. Bruckmaier, and H. Simianer. 2015. Gene-based mapping 
and pathway analysis of metabolic traits in dairy cows. PLoS One 
10:e0122325.

Hayes, B. 2013. Overview of statistical methods for genome-wide as-
sociation studies (GWAS). Pages 149–169 in Genome-Wide As-
sociation Studies and Genomic Prediction. Methods in Molecular 
Biology. G. Cedric, J. van der Werf, and B. Hayes, ed. Humana 
Press, New York, NY.

Holland, J. W., H. C. Deeth, and P. F. Alewood. 2005. Analysis of 
o-glycosylation site occupancy in bovine κ-casein glycoforms sepa-
rated by two-dimensional gel electrophoresis. Proteomics 5:990–
1002.

Iso-Touru, T., G. Sahana, B. Guldbrandtsen, M. Lund, and J. Vilk-
ki. 2016. Genome-wide association analysis of milk yield traits in 
Nordic red cattle using imputed whole genome sequence variants. 
BMC Genet. 17:55.

Ju, Z. 2014. Single nucleotide polymorphisms haplotypes and com-
bined genotypes of histatherin gene and their associations with 
mastitis in Chinese Holstein. Page 173 in The 34th International 
Society for Animal Genetics Conference, Xi'an, China.

Kitchen, B. J. 1981. Review of the progress of dairy science: Bovine 
mastitis: Milk compositional changes and related diagnostic test. 
J. Dairy Res. 48:167–188.

Lilbæk, H. M., M. Broe, E. Høier, T. Fatum, R. Ipsen, and N. Sø-
rensen. 2006. Improving the yield of mozzarella cheese by phospho-
lipase treatment of milk. J. Dairy Sci. 89:4114–4125.

Lopez, C., V. Briard-Bion, O. Ménard, E. Beaucher, F. Rousseau, J. 
Fauquant, N. Leconte, and B. Robert. 2011. Fat globules selected 
from whole milk according to their size: Different compositions 
and structure of the biomembrane, revealing sphingomyelin-rich 
domains. Food Chem. 125:355–368.

Malacarne, M., P. Franceschi, P. Formaggioni, S. Sandri, P. Mariani, 
and A. Summer. 2014. Influence of micellar calcium and phospho-
rus on rennet coagulation properties of cows milk. J. Dairy Res. 
81:129–136.

Maningat, P. D., P. Sen, M. Rijnkels, A. L. Sunehag, D. L. Hadsell, 
M. Bray, and M. W. Haymond. 2009. Gene expression in the hu-
man mammary epithelium during lactation: The milk fat globule 
transcriptome. Physiol. Genomics 37:12–22.

Molee, A., C. Poompramun, and P. Mernkrathoke. 2015. Effect of 
casein genes—beta-LGB, DGAT1, GH, and LHR—on milk pro-
duction and milk composition traits in crossbred Holsteins. Genet. 
Mol. Res. 14:2561–2571.

Nguyen, D. A., and M. C. Neville. 1998. Tight junction regulation in 
the mammary gland. J. Mammary Gland Biol. Neoplasia 3:233–
246.

Norberg, E. 2005. Electrical conductivity of milk as a phenotypic and 
genetic indicator of bovine mastitis: A review. Livest. Prod. Sci. 
96:129–139.

Ogata, H., S. Goto, K. Sato, W. Fujibuchi, H. Bono, and M. Kanehisa. 
1999. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic 
Acids Res. 27:29–34.

Peñagaricano, F., K. Weigel, G. J. Rosa, and H. Khatib. 2013. Infer-
ring quantitative trait pathways associated with bull fertility from 
a genome-wide association study. Front. Genet. 3:307.

Peng, G., L. Luo, H. Siu, Y. Zhu, P. Hu, S. Hong, J. Zhao, X. Zhou, 
J. D. Reveille, and L. Jin. 2010. Gene and pathway-based second-
wave analysis of genome-wide association studies. Eur. J. Hum. 
Genet. 18:111–117.

Pickrell, J. K., J. C. Marioni, A. A. Pai, J. F. Degner, B. E. Engel-
hardt, E. Nkadori, J. Veyrieras, M. Stephens, Y. Gilad, and J. 
K. Pritchard. 2010. Understanding mechanisms underlying human 
gene expression variation with RNA sequencing. Nature 464:768–
772.

Poulsen, N., H. Jensen, and L. Larsen. 2016. Factors influencing degree 
of glycosylation and phosphorylation of caseins in individual cow 
milk samples. J. Dairy Sci. 99:3325–3333.

Ramanathan, P., I. C. Martin, M. Gardiner-Garden, P. C. Thomson, 
R. M. Taylor, C. J. Ormandy, C. Moran, and P. Williamson. 2008. 
Transcriptome analysis identifies pathways associated with en-
hanced maternal performance in QSi5 mice. BMC Genomics 9:197.

Raven, L., B. G. Cocks, M. E. Goddard, J. E. Pryce, and B. J. Hayes. 
2014. Genetic variants in mammary development, prolactin sig-
nalling and involution pathways explain considerable variation in 
bovine milk production and milk composition. Genet. Sel. Evol. 
46:29.

Rombaut, R., K. Dewettinck, and J. Van Camp. 2007. Phospho- and 
sphingolipid content of selected dairy products as determined by 
HPLC coupled to an evaporative light scattering detector (HPLC–
ELSD). J. Food Compos. Anal. 20:308–312.

Stelwagen, K., and K. Singh. 2014. The role of tight junctions in mam-
mary gland function. J. Mammary Gland Biol. Neoplasia 19:131–
138.

Viguier, C., S. Arora, N. Gilmartin, K. Welbeck, and R. O’Kennedy. 
2009. Mastitis detection: Current trends and future perspectives. 
Trends Biotechnol. 27:486–493.

Walstra, P., P. Walstra, J. T. Wouters, and T. J. Geurts. 2014. Dairy 
Science and Technology. CRC Press, Boca Raton, FL.

Wang, L., P. Jia, R. D. Wolfinger, X. Chen, and Z. Zhao. 2011. Gene 
set analysis of genome-wide association studies: Methodological 
issues and perspectives. Genomics 98:1–8.

Wei, J., P. Ramanathan, I. C. Martin, C. Moran, R. M. Taylor, and 
P. Williamson. 2013. Identification of gene sets and pathways as-
sociated with lactation performance in mice. Physiol. Genomics 
45:171–181.

Wickenden, J. A., and C. J. Watson. 2010. Key signalling nodes in 
mammary gland development and cancer. Signalling downstream 
of PI3 kinase in mammary epithelium: A play in 3 akts. Breast 
Cancer Res. 12:202.

Wiltbank, M., H. Lopez, R. Sartori, S. Sangsritavong, and A. Gümen. 
2006. Changes in reproductive physiology of lactating dairy cows 
due to elevated steroid metabolism. Theriogenology 65:17–29.

Yellen, G. 2002. The voltage-gated potassium channels and their rela-
tives. Nature 419:35–42.

Young, M. D., M. J. Wakefield, G. K. Smyth, and A. Oshlack. 2010. 
Method gene ontology analysis for RNA-seq: Accounting for selec-
tion bias. Genome Biol. 11:R14.

Zhao, W., K. Shahzad, M. Jiang, D. E. Graugnard, S. L. Rodriguez-
Zas, J. Luo, J. J. Loor, and W. L. Hurley. 2013. Bioinformatics and 
gene network analyses of the swine mammary gland transcriptome 
during late gestation. Bioinform. Biol. Insights 7:193–216.

Zimin, A. V., A. L. Delcher, L. Florea, D. R. Kelley, M. C. Schatz, D. 
Puiu, F. Hanrahan, G. Pertea, C. P. Van Tassell, and T. S. Son-
stegard. 2009. A whole-genome assembly of the domestic cow, Bos 
taurus. Genome Biol. 10:R42.


	Pathway-based genome-wide association analysis of milk coagulation properties, curd firmness, cheese yield, and curd nutrient recovery in dairy cattle
	INTRODUCTION
	MATERIALS AND METHODS
	Data
	Gene-Set Enrichment and Pathway-Based Analysis

	RESULTS AND DISCUSSION
	Enrichment Pathway Analysis

	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES


