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Abstract

Motivation: Single-molecule force spectroscopy (SMFS) experiments pose the challenge of analysing protein
unfolding data (traces) coming from preparations with heterogeneous composition (e.g. where different proteins are
present in the sample). An automatic procedure able to distinguish the unfolding patterns of the proteins is needed.
Here, we introduce a data analysis pipeline able to recognize in such datasets traces with recurrent patterns
(clusters).

Results: We illustrate the performance of our method on two prototypical datasets: �50 000 traces from a sample
containing tandem GB1 and �400 000 traces from a native rod membrane. Despite a daunting signal-to-noise ratio
in the data, we are able to identify several unfolding clusters. This work demonstrates how an automatic pattern
classification can extract relevant information from SMFS traces from heterogeneous samples without prior know-
ledge of the sample composition.

Availability and implementation: https://github.com/ninailieva/SMFS_clustering.

Contact: laio@sissa.it or nicola.galvanetto@sissa.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Atomic force microscopy (AFM)-based single molecule force spec-
troscopy (SMFS) is a powerful tool for studying proteins at the sin-
gle molecule level. In a typical AFM-SMFS experiment, the protein
is bonded on one side to a surface, and attaches on the other side to
the AFM tip (Engel and Gaub, 2008). As the tip retracts from the
surface, the protein gets stretched and unfolded. The resulting force
and extension values are stored in the form of a force–extension (F–
x) curve. In a single experimental session, thousands of F–x curves
are generated. Therefore, a dataset can easily contain more than 105

curves. F–x curves, also called traces, are direct representations of
the protein unfolding pathway and can be used to fingerprint specif-
ic proteins (Maity et al., 2015; Oesterhelt et al., 2000; Rief, 1997).

The vast majority of protein-related AFM-SMFS studies pub-
lished so far were performed on either membrane proteins or soluble
globular proteins. Membrane proteins can be purified and reconsti-
tuted in synthetic lipids. This procedure yields SMFS datasets that
are very homogeneous, as they include traces with the same F–x pro-
file and length. Recently, however, an improvement in extracting

membrane proteins directly from their original membrane has been
made (Galvanetto, 2018). Datasets coming from native membranes
are highly heterogeneous: the majority of traces do not represent
meaningful unfolding events, and if they do, they likely represent the
unfolding of different proteins, since a native membrane hosts hun-
dreds of different proteins. Soluble globular proteins are usually
engineered in tandem constructs so as to have multiple copies of the
same domain in the same amino-acid chain. These datasets are usu-
ally heterogeneous, too. Even though they contain one single protein
type, the proteins in the sample can be hooked at different positions
generating traces of different lengths.

Available data analysis tools (Bosshart et al., 2012; Galvanetto
et al., 2018; Kuhn et al., 2005; Marsico et al., 2007), which work
reasonably well for AFM-SMFS traces coming from experiments
performed with purified membrane proteins, perform poorly when
applied to sets of highly heterogeneous traces from multiprotein
samples. The most important stumbling block is possibly trace selec-
tion, because complete unfolding is observed in less than 1% of the
traces (Bosshart et al., 2012). In heterogeneous samples, the
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selection cannot be based on the protein contour length like in
homogeneous samples.

In this work, we introduce a procedure which allows the classifi-
cation of highly heterogeneous SMFS datasets. The main idea is to
detect sets of traces with recurrent F–x patterns, emerging in a vast
population of traces corresponding to statistically isolated events.
To find these patterns, we use density-peak clustering (Rodriguez
and Laio, 2014), an approach which allows detecting the maxima in
multidimensional probability distributions using as input only the
distance between each pair of data points (the traces, in the case of
this work). We estimate the distance between pairs of traces using a
modified version of the metric introduced by Marsico et al. The pro-
cedure is fully automatic. In addition, it allows the processing of
large amount of data in a reasonable computational time. It takes
�30 min to process 105 traces on a workstation with 16 CPUs.

We first show that our method can discriminate a single set of
meaningful traces, corresponding to the unfolding of a protein, from
a set of traces containing noise. We then show that the approach can
discriminate between different types of meaningful traces, corre-
sponding to the unfolding of different proteins. To this aim, we first
analyse a dataset containing subsets of traces corresponding to the
unfolding of four different proteins. Next, we test our method on
data generated in 20 experiments on a tandem globular construct of
GB1 proteins, and finally on a highly heterogeneous dataset of
�400 000 traces from experiments performed in the native plasma
membrane of the rod outer segment under physiological conditions.

2 Materials and methods

2.1 The algorithm: Overview and workflow
The workflow of the algorithm we developed consists of the four
major blocks depicted in Figure 1. The first block, Section 2.2, aims
at removing the physically irrelevant parts of the original trace,
clearing the space to meaningful unfolding events. The filtering con-
sists in discriminating spurious traces (Fig. 1). In the second block, a
quality score is computed for each trace based on the features of its
contour length (Lc) histogram. Depending on the score, a trace selec-
tion is performed, significantly reducing the total number of traces.
For each pair of the remaining traces, a similarity distance, almost
identical to the one used by Marsico et al., is computed and density-
peak clustering is applied to classify the emerging recurrent F–x pat-
terns into separate clusters (Fig. 1). In what follows, we provide a
detailed description of each block of the algorithm.

2.2 Cutting and filtering
Initially, each F–x curve is processed to remove all irrelevant parts
of the signal. Typically, an F–x curve contains a contact and a non-
contact part. The contact part comes from the interactions between
the AFM tip and the membrane surface. This part starts with highly
negative forces due to the upwards bending of the cantilever in the
beginning of the retraction cycle. The non-contact part (or the tail)
is noise coming from the free motion of the cantilever that is no lon-
ger in contact with the surface. This part is used to set the baseline
of zero force. We remove the negative contact part and the tail of
each trace as follows. For each trace, we find the first point at exten-
sion larger than 0 nm, followed by ncont ¼ 20 (all the parameters
used in the algorithm are listed in Supplementary Table S1) consecu-
tive force measures having positive values. We mark this point as
the starting point because this is where the positive contact part
begins. We exclude from the analysis the signal preceding the start-
ing point. To identify the non-contact part, we start from the end of
the trace and move backwards until the force exceeds the range
compatible with the free motion of the cantilever. In detail, we esti-
mate the standard deviation of the force rNOISE in 10 manually
selected tails. In general, this value depends on the instrument and
on the experimental condition (e.g. it is rNOISE ¼ 5:67 pN for our
dataset ‘Rod’). We then perform a linear fit to the last 8 nm of each
trace, extending the window stepwise in the backward direction by
2 nm (hence considering the last 10, 12, 14 nm, etc.; see
Supplementary Fig. S1). At each step, we compute the standard devi-
ation from the fit and check whether it exceeds the cutting thresh-
old, rcut ¼ 4rNOISE. If not, we continue, otherwise, we stop and cut
the trace there. We assume that at this point, the last force peak has
been reached and the non-contact part has ended. In our procedure,
the position of the last force peak determines the trace length.

At this point, we store the traces on a regular grid with width
Dxinterp ¼ 1 nm, and we perform filtering, which aims at selecting
only traces which are likely to correspond to the unfolding of a pro-
tein. In Supplementary Figure S2, we show some examples of traces
discarded by our procedure. A trace is discarded if it does not con-
tain a detectable contact point, e.g. if the starting point of the con-
tact part is blurred; if the points occupy an anomalously wide force
range; if after the tail removal, the trace is shorter than a minimal
length Lmin ¼ 50 nm and if the trace contains abnormal deflection
points (with values larger than xabn ¼ 5000 nm or/and Fabn ¼ 5000
pN), namely if the entire signal is shifted upwards with respect to
the zero force baseline. The non-contact part in relevant traces is
normally flat with fluctuations of the force compatible with rNOISE.
By detecting the position of the last force peak, we obtain the total
length of the non-contact part. This allows to compute its standard
deviation from a horizontal zero-force line. If this deviation exceeds
the threshold rtail ¼ 2rNOISE, the trace is considered spurious and is
discarded.

2.3 Quality score
We then compute a quality score which we use for further selecting
the meaningful F–x curves. The score we propose quantifies how
well the experimental data satisfy the worm-like chain (WLC)
model, which is the standard model used for the analysis of F–x
curves of linear (bio)polymers (Maity et al., 2015, 2017; Oesterhelt
et al., 2000; Rief, 1997). This choice excludes possibly meaningful
traces corresponding to an unfolding not described by this model. In
future applications, one can consider removing or modifying this fil-
ter. According to the WLC model, an F–x curve represents the
unfolding of different domains, each unfolding curve (each ‘tooth’ in
the pattern) being described by

FðxÞ ¼ kBT

lp

1

4
1� x

Lc

� ��2

þ x

Lc
� 1

4

 !
(1)

where F is force, x is extension, kB is Boltzmann’s constant, T is tem-
perature, lp is the persistence length and Lc is the contour length of
the domain. Usually, the WLC model is assumed and one retrieves
the Lc corresponding to different domains by means of an LcFig. 1. Block scheme of the algorithm
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histogram (Bosshart et al., 2012; Galvanetto et al., 2018). The WLC
equation is inverted to find an Lc value for any x, and the resulting
Lc values are plotted in a histogram. Ideally, the Lc histogram
should consist of narrow peaks centred at the Lc values correspond-
ing to the contour lengths of each domain. Thus, the Lc values corre-
sponding to the maxima of the histogram are taken to be the
contour length values for each domain. Lc histograms of meaningful
traces are characterized by the presence of a few maxima, well sepa-
rated by deep minima. We will define a score that quantifies how
well the data agree with this expectation.

For each point in the F–x curve, we compute Lc value by solving
Equation (1). We use a persistence length lp ¼ 0:4 nm, which is con-
sidered appropriate for membrane proteins (Oesterhelt et al., 2000).
The Lc is computed in this manner in the force range from FWLC

min ¼
30 to FWLC

max ¼ 500 pN which is the range of validity of the model
(Bosshart et al., 2012).

A critical parameter for our algorithm is the bin width used for
computing the histogram. Since the traces are unavoidably affected
by noise, if the bin width is too small (say smaller than 5 nm), the
histograms are characterized by the presence of spurious peaks,
which do not correspond to genuine force peaks. On the opposite, if
the bin width is too large (say more than 10 nm), peaks correspond-
ing to the unfolding of different domains get merged. In
Supplementary Figure S3b, d, f, we show such histograms for three
traces from the CNG dataset. We have chosen a bin size of 8 nm cor-
responding to approximately 20 a.a., which is close to the typical
length of a single transmembrane helix in membrane proteins
(Lehninger, 2000). In fact, in Supplementary Information, we show
that the results of a clustering analysis are only mildly affected if one
changes this to 7 or 9 nm, and only the precise size of the clusters
varies and only the precise size of the clusters is affected by this
parameter.

Once we have the histogram, we find all maxima and minima. A
maximum is considered meaningful if it is generated by more than
five points, and it includes more than 1% of the force measures of a
trace Next, we compute score W quantifying the consistency of each
maximum with the WLC model. We assume that a high-quality
peak has its two surrounding minima falling under 1/2 of the peak
height. We define fleft ¼ Pleft=Pmax; fright ¼ Pright=Pmax where Pmax,
Pleft and Pright are the probability densities of the maximum, of the
minimum at its left and of the minimum at its right. The ideal trace
will yield f ¼ 1

2 fleft þ frightÞ � 0
�

. We embed this requirement by esti-
mating the score of the peak as W ¼ exp ð�2f 2Þ. If, for example,
Pleft ¼ 1, Pright ¼ 2 and Pmax ¼ 16 one gets W¼0.98. If instead Pleft

¼ 13 and Pright ¼ 14, the peak has a low quality and one gets
W¼0.24. In Supplementary Figure S3, we provide a few examples
of F–x curves, their Lc histograms and the W-score for some peaks.

Subsequently, we assign the corresponding peaks scores to all
points in each trace. A score is assigned to a point in two steps: we
assign the peak’s score to all points contributing to the peak. If a
point has a force smaller than 30 pN it is not assigned to any peak,
since the signal-to-noise ratio is too small for small forces. We,
therefore, assign to it the same score of the first successive point
whose force is larger than 30 pN. We apply this criterion only for
points that are within 75 nm from the last point assigned to the peak
(Supplementary Fig. S4). We selected this value by visual inspection
of the traces, estimating the maximum widths of force peaks.

Finally, we sum up the scores for all points, and we obtain the
global score or the quality score of the trace, Sw. The higher the glo-
bal score, the higher the overall quality of that trace. The ratio be-
tween the global score Sw and the trace length L is used to select
high-quality traces for subsequent analysis. If this ratio is smaller
than 0.5, the trace is discarded (Supplementary Fig. S2). This is the
same as saying: if more than half of the trace is inconsistent with the
WLC model, it is a low-quality trace, and we are not interested in
analysing it. On the contrary, if more than half of the trace is con-
sistent with the WLC model, it is possibly a meaningful trace. In
Supplementary Information, we show that the final results we ob-
tain are quite robust with respect to small variations in the value of
this parameter. Therefore, the score/length threshold is not a critical
parameter of our approach.

2.4 The distance between traces
The final goal of our procedure is finding in an automatic manner
meaningful F–x curves bearing a specific unfolding pattern and
grouping them into clusters based on their similarity to each other.
We use the distance introduced by Marsico et al., which is based on
dynamic programming alignment score, to evaluate the similarity
between two traces. The distance between traces a and b, denoted
by dab is:

dab ¼ 1� SDðNa;NbÞ
Nmax

(2)

where SDðNa;NbÞ is the global alignment score, Na is the length of
trace a, Nb is the length of trace b and Nmax ¼ maxðNa;NbÞ. In our
method, we modified the original scoring function used to evaluate
match/mismatch score as follows:

Mði; jÞ ¼
1� jFaðiÞ � FbðjÞj

Fscoring
if jFaðiÞ � FbðjÞj < Fscoring

� jFaðiÞ � FbðjÞj
Fscoring

otherwise

8>><
>>: (3)

where FaðiÞ and FbðjÞ are the forces in points i and j in traces a and
b, and Fscoring ¼ 4rNOISE. The difference between this scoring func-
tion and the one used by Marsico et al. is that in the latter, the force
difference was divided by the average of the maximum force values
DFmax in the two traces, and not by a single value Fscoring, equal for
all the traces. If this choice is made, when two widely different traces
both have high DFmax, their difference may be weighted less than the
difference between two similar traces with low DFmax. In other
words, the distance magnitude depends on DFmax, leading to low
distance values for traces with high DFmax. Note that in Marsico
et al., this problem was absent, since the DFmax values were approxi-
mately uniform for all traces in the dataset. We are using the same
gap penalties d1 and d2 like Marsico et al.

To make the method computationally more efficient, we com-
pute the distance only between traces that differ by no more than 2
peaks in their Lc histograms or by no more than 20% in terms of
their trace length difference.

2.5 Density peak clustering
To group the traces in clusters, we use the density peak clustering
(DPC) algorithm (Rodriguez and Laio, 2014). In the datasets, we
are analysing meaningful clusters correspond to small subsets of the
traces, while most of the traces are statistically isolated events. In
such a situation, partitioning algorithms like K-means are not fully
appropriate because they classify in clusters all the traces, including
isolated ones. DPC is suitable because it excludes automatically the
outliers, which by definition do not belong to a density peak. The al-
gorithm can be summarized in the following steps:

1. First, one computes the densities, representing the density of

data points in the neighbourhood of each point. The densities

are computed with the k-nearest neighbour (k-NN) density esti-

mator (Altman, 1992), as the ratio between k and the volume

occupied by the k nearest neighbours:

~qi ¼
k

xdrd
k;i

(4)

where d is the intrinsic dimension (ID) of the dataset (Facco et al.,

2017), xd is the volume of the d-sphere with unitary radius and rk;i

is the distance of point i from its k-th nearest neighbour. In DPC, the

cluster membership of a data point is determined uniquely by the

rank of its density, and not by the exact value of the density.

Therefore, without loss of generality, instead of estimating the dens-

ity by Equation (4), we estimate it as: qi ¼ �log rk;i. It is easy to ver-

ify that the rank of qi is equal to the rank of ~qi, as the two are

related by a simple monotonic transformation. Using this definition
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of the density we are not required to estimate the intrinsic dimension

of the dataset. In addition, we multiply qi by the score-length ratio

of trace i. By doing so we assign bigger weight to the traces which

satisfy better the WLC model.

2. One then finds the minimum distance between point i and any

other point with higher density, di ¼ minj:qj>qi
ðdijÞ, where dij is

the distance between points i and j. This will be used to identify

local maxima of qi.

3. Next, one finds the cluster centres, identified as density peaks,

namely points with high values of qi and di. To identify the

peaks, following Rodriguez and Laio, we compute for each point

ci ¼ qidi. Points with high values of ci are good cluster centre

candidates. One then sorts in descending order all points by the

value of ci. The first point is a cluster centre. The second point is

also a cluster centre, unless it is at a distance smaller than rcut

from the first centre, where rcut is a free parameter of the ap-

proach (see below). One then considers the third point, which is

a cluster centre, unless it is at a distance smaller than rcut from

the two points with higher c. This test is then performed for all

the points, finding in this manner all the cluster centres, which,

by construction, will be further than rcut from all the points with

a higher c.
4. Subsequently, all points that are not centres are assigned to the

same cluster of the nearest point with higher density (Rodriguez

and Laio, 2014).

In the standard implementation of DPC, the distance between a clus-
ter member and the cluster centre can be arbitrarily large, if the
density peak has an elongated shape. This is not appropriate for the
analysis of SMFS traces, where the similarity between all the traces
belonging to a cluster is essential. We therefore assume all the clus-
ters to be spherical, and consider meaningful the assignation to a
cluster of a trace only if its distance from the cluster centre is smaller
than rcut and smaller than its distance to any other cluster centre.
The traces satisfying this condition will be called core traces. To de-
termine an appropriate value for the parameter rcut, we performed a
careful visual inspection on sets of traces characterized by an
increasing distance from a high-quality trace. We concluded that at
distances larger than 0.3 we can no longer be confident that two
traces are likely to correspond to the same protein. We therefore fix
rcut ¼ 0.3 and determine the size of the cluster core accordingly. In
the following, to simplify the description of the results, we discard
from the analysis clusters whose core has less than 10 members.

In Supplementary Table S1, the values of all parameters used in
this approach are listed. Furthermore, we explored the effects of
changing the values of all relevant parameters. We report the results
of these tests in Supplementary Information.

2.6 Experimental data
Dataset Oocyte: The first dataset contains 101 traces ascribed to the
unfolding of the CNGA1 channel and 4027 other traces generated
in the same experiments. CNGA1 channels were expressed in
Xenopus laevis oocytes with sample preparation, experimental pro-
cedure and selection described in Maity et al. SMFS experiments
were performed in the oocytes membrane with the AFM
(NanoWizard 3, JPK). The cantilever was calibrated before the start
of each experiment; its spring constant was �0.08 N/m. The AFM
tip was pushed into the surface and a force of 1 nN was applied for
0.5 s to enhance the non-specific binding to the proteins. The tip was
retracted from the surface at pulling speed 500 nm/s. The selection
of the CNG traces was based on two criteria: the contour length of
the curves and their force pattern: according to the interpretation of
the experimental data made by Maity et al., the last peak in the
CNG traces has a Lc value larger than 220 nm and all CNG traces
share a common unfolding fingerprint. The unfolding fingerprint
consists of a peak at Lc around 100 nm corresponding to the unfold-
ing of the cyclic nucleotide-binding (CNB) domain attached to the

C-terminus; 3 or 4 force peaks between Lc 120 and 250 nm corre-
sponding to the unfolding of the six transmembrane helices and the
detachment peak. The 101 CNG traces include traces that satisfy
these criteria and some other traces that miss a peak in the middle or
the last peak assuming different unfolding pathways as suggested in
the study by Maity et al.

Dataset ‘Mixed’: The second dataset contains a mixture of four
manually selected groups of F–x curves corresponding to the unfold-
ing of different proteins. Group number 1 includes the 101 manually
selected CNGA1 traces included in dataset Oocyte. Group number
2 includes 38 F–x curves representing the unfolding of a tandem
globular polyprotein (Alpha3D þ 4xNUG2) (Heenan and Perkins,
2018b). These experiments were performed by Marc-Andre LeBlanc
and are available on Dryad (Heenan and Perkins, 2018a). Group
number 3 includes 131 traces from dataset Rod representing the
unfolding of an unknown protein. To build this group, we selected a
template trace by visual inspection, and used the tool ‘Fingerprint
ROI’ in the software Fodis (Galvanetto et al., 2018) to mark the
sawtooth pattern of the template, and find traces similar to that tem-
plate. Finally, group number 4 includes 43 traces from dataset Rod
representing the unfolding of another unknown protein found fol-
lowing the same protocol used for group number 3.

Dataset ‘GB1’: The dataset consists of 48 769 F–x curves gener-
ated in 20 SMFS experiments performed on a (GB1)8 synthetic tan-
dem polyprotein terminated with a cysteine residue as described in
the study by Aioanei et al. (2011). Of the 48 769 F–x curves, ap-
proximately only the 10% shows binding events, the 90% are flat
curves. The extended details of the protein engineering and purifica-
tion can be found in the Supplementary Information in the study by
Aioanei et al. (2011). Briefly, (GB1)8 gene was obtained by iterative
cloning of the sequence on the basis of the identity of the sticky ends
generated by BamHI and BglII restriction enzymes. Then, (GB1)8
polyprotein was overexpressed in DH5 strain and purified by Ni2þ-
affinity chromatography. The purified polyprotein sample was at a
final concentration of 0.34 mg/ml and was stored at -20 �C in PBS
buffer with 0.2% (v/v) sodium azide. The experiments were per-
formed with a Bruker Multimode on a template-stripped gold sub-
strate. All the measurements were carried out in Tris/HCl (10 mM,
pH 7.5) buffer.

Dataset ‘Rod’: The fourth dataset comes from pulling SMFS
experiments performed in the native plasma membrane of the rod
outer segment (OS) of Xenopus laevis retinas. A detailed experimen-
tal protocol is provided in the study by Maity et al. (2017). As a con-
sequence the dataset is highly heterogeneous and poses a challenge
to traditional analysis tools. The entire dataset contains 386 912 F–x
curves. Briefly, the AFM (NanoWizard 3, JPK) was used with canti-
lever with spring constant 0.08 N/m. The cantilever was calibrated
before each experiment. The AFM tip was pushed into the sample
surface with 1 nN force and held for 0.5 s. It was then retracted at
constant speed 500 nm/s.

3 Results

3.1 Benchmark on the dataset ‘Oocyte’
Dataset Oocyte contains 4128 traces, 101 of which were selected
based on their contour length and visual inspection and attributed to
the unfolding of the membrane protein CNGA1 (Maity et al., 2015)
thanks to molecular tags (see Section 2.6 for details). After filtering
the traces with our procedure, their number was reduced to 440,
which is approximately 11% of the total amount of traces. 52% of
the previously selected CNG traces passed the filters. The traces
were divided into four clusters. All selected CNG traces were found
in cluster 1 and therefore, cluster 1 is the CNG cluster. With the
data that are available, we cannot relate the remaining clusters to
proteins or further investigate their molecular origin.

We then analysed more in detail the content of the CNG cluster.
In Figure 2a we plot the cluster members ranked by their density in
a descending order. The highest density traces are the CNG traces
with five to six peaks (the blue area) followed by the CNG traces
with four peaks (the green area). In Figure 2b we represent each
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group with a single F–x curve. When we looked more closely to the
highest density region in Figure 2a, we noticed a grey area represent-
ing high density traces that have not been included in the selection.
We looked at these traces and found out that they are very similar to
the cluster centre of the CNG cluster (Supplementary Fig. S5).
Therefore, these traces can be considered CNG traces which escaped
manual selection. Remarkably, our procedure was able to detect
previously unknown CNG traces and group them together in the
right cluster. These results demonstrate that our method can dis-
criminate a set of meaningful traces, corresponding to the unfolding
of a protein, from a set of traces containing noise.

3.2 Benchmark on the dataset ‘Mixed’
Dataset Mixed contains four groups of selected F–x curves, repre-
senting the unfolding of four different proteins (see Section 3 for
details). Each group is depicted in Supplementary Figure S6a. Since
all the traces of this dataset are manually selected, 83% of the traces
passed the filters. In Supplementary Figure S6b, we show the distri-
bution of the traces in the two-dimensional space of two representa-
tive descriptors, commonly used to discriminate among F–x curves:
the maximum contour length (approximately the total length of the

curve from the contact to the detachment of the polymer) and the
average force of the peaks. This representation does not allow distin-
guishing the four groups: indeed, the traces belonging to groups 2, 3
and 4 occupy approximately the same region.

Supplementary Figure S6c shows that with our procedure, the
vast majority of traces belonging to each group was correctly
assigned to a separate cluster. Our approach proved capable of clus-
tering together three out of the four groups which are not discrimi-
nated by standard descriptors. More in detail, the total number of
clusters we obtained was 5. Cluster 1 contains only traces represent-
ing the unfolding of the tandem globular polyprotein
Alpha3Dþ4xNUG2 (group 2). Cluster 2 contains only traces repre-
senting the unfolding of CNG (group 1). Group 3 (see Section 3) is
split in three clusters: 3, 4 and 5, one of which contains 50% of the
traces. Visual inspection of the traces belonging to these three differ-
ent clusters reveals some marginal differences, which justify their as-
signation do different groups. The traces belonging to group 4 do
not belong to the core of any of these clusters, indicating that they
are not similar enough, according to the criteria implemented in the
code. Indeed, if the rcut parameter value is changed from 0.3 to 0.4,
all the four groups of traces are found, and assigned to a single clus-
ter in a one-to-one correspondence. Indeed, with a larger rcut the
three clusters in which group 3 was split are merged in a single one,
and the traces belonging to group 4 are similar enough to form their
own cluster.

For this dataset, we compared the performance of the method
with spectral clustering (Von Luxburg, 2007) using the Scikit-learn
implementation (Pedregosa et al., 2011). The number of clusters in
this approach is chosen by visual inspection of the eigenvalue spec-
trum, which, in the case of the Mixed dataset, has a first gap after
the third eigenvalue, and another gap after the fifth eigenvalue.
Accordingly, we performed the analysis retaining three and five
eigenvectors. We quantified the consistency of a clustering partition
c and the ground truth partition gt by estimating two different mu-
tual information measures, NMIgt ¼ HcþHgt�Hc;gt

Hgt
, and

NMIsymm ¼ 2ðHcþHgt�Hc;gtÞ
HcþHgt

, where Hc and Hgt are the entropy of the
clustering and of the ground truth partition and Hc;gt is the cross en-
tropy. NMIsymm is a symmetric measure of consistency, and is equal
to 1 only if two partitions are fully equivalent, except for a permuta-
tion of the labels. NMIgt is a measure of consistency in which the
ground truth category prevails, and is equal to 1 also if a ground
truth cluster is split in two or more clusters. For spectral clustering,
we find NMIsymm¼0.77 (using three eigenvectors) and 0.84 (using
five eigenvectors). NMIsymm is equal to 0.79 for our approach.
NMIgt for spectral clustering is 0.69 (three eigenvectors) and 0.87
(five eigenvectors), indicating that the clusters contain traces with
different ground truth classification. Instead, with our approach we
find NMIgt¼1, indicating that the clusters found for this dataset are
pure, namely they contain only traces with the same ground truth
classification. These results demonstrate that our algorithm is able
to distinguish different unfolding patterns arising in the same dataset
and to properly assign the corresponding F–x curves to different
clusters without knowing a priori the protein composition.
Remarkably, at variance with other methods, the number of clusters
is determined automatically.

3.3 Analysis of the dataset ‘GB1’
Dataset GB1 consists of 48 769 F–x curves generated in 20 SMFS
experiments of a polyprotein tandem construct of GB1 domains
(Aioanei et al., 2011) (see Section 3). The tandems of 8 GB1
domains were designed with a cysteine in the N-terminus so that the
two tandems could dimerize in a single 16 domain protein. The
expected unfolding patterns should have 16 unfolding peaks spaced
by 19 nm plus the detachment peak. However, not all the proteins
are expected to dimerize, therefore a significant amount of traces
with eight peaks plus the detachment peak should be present in the
dataset. Moreover, as opposed to membrane proteins—which are
used to generate unfolding patterns of the same length of the
stretched amino-acid chain—tandem globular proteins may be
hooked at a random spot along the chain, resulting in shorter trace

Fig. 2. Graphical representation of the CNG cluster content. (a) The cluster mem-

bers are ranked by density in descending order. The blue area shows the manually

selected CNG traces with five or six force peaks; the green area—manually selected

CNG traces with 4 peaks; the red area—traces with contour length greater than

350 nm; the grey area corresponds to all traces assigned to the cluster. (b)

Representative traces for the different groups in panel a. The painted dot in the top

right corner indicates the group affiliation
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recordings. In summary, the dataset should contain mostly 17 and 9
peaks traces plus a fraction of shorter traces.

After filtering the initial 48 769 F–x curves, only 2701 traces
survived (�6%). More than 90% of the F–x curves in the GB1 data-
set showed no binding events. We found 24 clusters. In Figure 3 and
Supplementary Figure S7, we show all clusters which contain more
than 10 core traces. Clusters 5, 8, 9 and 10 in Figure 3 are the clus-
ters having the highest-quality scores (e.g. showing the best agree-
ment with the WLC model). These traces clearly bear the
prototypical patterns with 19 nm-spaced peaks—the length of the
GB1 domain. Clusters 5 and 8 represent the full unfolding of a di-
meric and a monomeric tandem, respectively. The other clusters,
shown in the Supplementary Information host much shorter traces,
likely corresponding to (rare) events in which the AFM tip hooks at
a random position, rather than at the N-terminus. The results in this
dataset reveal the performance of our clustering method on F–x
curves with different number of peaks. Namely, it tends to separate
them in different clusters while preserving each cluster’s
homogeneity.

3.4 Analysis of the dataset ‘Rod’
Dataset Rod, together with dataset GB1, motivates our work since it
poses a challenge to the traditional methods for AFM-SMFS data
analysis. The analysis of this dataset can be considered blind, since
the traces are collected in experiments performed in the plasma
membrane of the rod outer segment (rod OS) under native condi-
tions, and no pre-processing or selection was performed on the
traces before our analysis. It contains 386 912 F–x curves. For this
specific dataset, we restrict the analysis to traces with a quality score
W>0.65 and with at least three peaks in the Lc histogram. After fil-
tering and score-based trace selection, the total number of traces is
reduced to 7843, �2% of the initial amount of data (also in this case
the majority of the traces shows no binding event).

With our approach, we found 27 clusters. Six of them are shown
in Figure 4b. In Supplementary Figure S8, the cluster centres of the
other clusters with more than 10 members are shown. To visualize
the distribution of the most abundant traces in the relevant clusters,
we used also here the maximum contour length and the mean peaks’
force as descriptors (Fig. 4a). In dataset ‘Rod’, using these descrip-
tors it is impossible to discriminate the different clusters because
they form an almost continuous distribution.

Given that two of the dominant proteins in the plasma mem-
brane of the rod OS are rhodopsin and the CNG channel, one might
expect to find a rhodopsin cluster and a CNG cluster. The contour
length of rhodopsin with the intact S–S bond is �95 nm and
�120 nm when fully stretched (Sapra et al., 2006) with three–four
major peaks equally spaced by �20 nm. With our procedure, we
found that cluster 1—the most abundant one (Fig. 4b)—might cor-
respond to the unfolding of rhodopsin, although in this case, the
molecule must have been pulled from the opposite terminus com-
pared to the work of Sapra et al. The wild-type CNGA1 channel of
the Xenopus has a slightly different sequence than the bovine one
overexpressed in the oocytes (Maity et al., 2015). We expect the
contour length of the fully stretched CNG channel in the rod OS to
be around 260 nm. The most likely candidate for the CNG cluster is
cluster 9 which includes traces with Lc values up to 250 nm (Fig. 4b)
and with a periodicity of the peaks similar to the one described by
Maity et al.

4 Discussion

There is an increasing need for the development of automatic ana-
lysis tools for large-scale AFM experiments (Minelli et al., 2017;
Müller et al., 2019). Our approach is designed to face a specific
challenge: analysing the huge amount of data obtained by AFM-
SMFS experiments in highly heterogeneous samples, for example,
the sets of traces harvested in native membrane patches. Our method
does not require any previous knowledge on the sample composition
and the proteins contour length. In previous approaches (Bosshart
et al., 2012; Galvanetto et al., 2018; Kuhn et al., 2005; Marsico
et al., 2007), the most significant filtering step is based on the
expected contour length of the protein under investigation. Such an
approach requires knowledge of the sample composition. It reduces
tremendously the number of analysed traces but is not suitable for
data obtained from native cell membranes.

An important step in our procedure is trace selection based on a
quality score which measures the consistency of each trace with the
WLC model. By filtering traces according to this criterion, one can
miss some meaningful patterns that deviate from the WLC. If a
model characterizing the force-extension features of these patterns
was available, one could retain also traces consistent to that model.
Dedicated experiments in controlled conditions like the ones per-
formed by Takahashi et al. (2018) may offer a route to study these
deviations. We also remark that using a bin width of 8 nm for com-
puting the Lc histograms, we are allowing for significant deviations
of the persistence length (Sarkar et al., 2005), such that anomalous
patterns may still survive the filtering. In other words, traces not
perfectly adhering to the WLC model but still exhibiting the saw-
tooth pattern with well-defined peaks will survive the filter.

Following Marsico et al., we use dynamic programming align-
ment to measure how similar to each other two traces are. To group
similar traces into clusters, we use density-peak clustering
(Rodriguez and Laio, 2014). The major advantages of this approach
are that it does not require knowledge on the number of clusters in
advance, and is able to distinguish ‘density peaks’ formed by sets of
similar traces from the background noise, formed by traces associ-
ated with isolated unfolding events.

We benchmarked our method on a dataset containing a manual-
ly selected sample of CNG traces and �40 times more unevaluated
traces. Our method successfully detected the CNG traces and
grouped them in a separate cluster. Furthermore, the method proved
to be able to distinguish between groups of traces corresponding to
the unfolding of four different proteins, and to automatically find
the different patterns of GB1s among �50 000 traces generated in a
real-world experiment. Finally, we analysed a dataset containing
�400 000 traces of unidentified molecular origin from experiments
in the plasma membrane of the rod outer segment. Our program
turned out to be efficient taking only �30 min to process the entire
dataset revealing several unknown unfolding patterns calling for fur-
ther molecular identification.

It is important to underline that the method is mainly aimed at
finding statistically meaningful sets of similar traces which are likely
to correspond to the unfolding of the same protein. After a meaning-
ful pattern has been found, it is useful to adopt more conventional
methods based on fingerprinting [like in Fodis (Galvanetto et al.,
2018)] to enrich the clusters with other traces, that can be initially
discarded due to the filtering procedure.

This algorithm has still two parameters that affect in different
ways the overall results: bin size of Lc and rcut. The bin size of Lc

should be bigger than the noise of the instrument, and smaller than
the expected feature of the traces. If it is chosen in this range, it
affects only slightly the size of the clusters but it does not affect the
identification of their centres as discussed in Supplementary
Information. On the other hand, rcut plays a role mostly in the
‘front-end’ side of the algorithm: it works as a threshold that allows
the user to decide how precisely the clustering should operate de-
pending on the quality of the data and the scope of the analysis.
Higher rcut (e.g. >0.5) will generate less clusters but more popu-
lated, suitable when the data are very noisy (e.g. with native sam-
ples). Lower rcut (e.g. 0.3) will still find the bigger clusters found

Fig. 3. Most representative cluster centres (blue lines) and closest 10 neighbours

(grey points) of the dataset ‘GB1’
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with high rcut, but it will also generate more small clusters (which
might be suitable for experiments with purified proteins).

We should also underline that the method is not designed to
distinguish different unfolding pathways of the same protein. The
filtering and the clustering procedure are by far too coarse for
this scope. After the clusters have been found, one can further in-
vestigate them by one of the approaches in the studies by Bosshart
et al. (2012), Galvanetto et al. (2018), Kuhn et al. (2005) and
Marsico et al. (2007), which are much more appropriate for
this scope.
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Fig. 4. Results of the cluster analysis in dataset Rod. (a) Isoline density plot of the 7843 traces that survived the quality filter (each trace was codified as one single point in this

two-dimensional representation, the grey levels indicate the region of this space with higher density of points). The blue points indicate the position of the representative trace

shown in panel b while the black points represent the traces in Supplementary Figure S8. (b) Representative trace (solid lines) of 6 clusters with other 5 traces belonging to the

same cluster core (grey points) of Rod Dataset

5020 N.I.Ilieva et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/20/5014/5870382 by U
niversita Studi di Padova user on 19 January 2022

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa626#supplementary-data

