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ABSTRACT

The Planck full mission cosmic microwave background (CMB) temperature and E-mode polarization maps are analysed to obtain constraints on
primordial non-Gaussianity (NG). Using three classes of optimal bispectrum estimators – separable template-fitting (KSW), binned, and modal –
we obtain consistent values for the primordial local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result from temperature
alone f local

NL = 2.5 ± 5.7, f equil
NL = �16 ± 70, and f ortho

NL = �34 ± 33 (68% CL, statistical). Combining temperature and polarization data we obtain
f local
NL = 0.8 ± 5.0, f equil

NL = �4 ± 43, and f ortho
NL = �26 ± 21 (68% CL, statistical). The results are based on comprehensive cross-validation

of these estimators on Gaussian and non-Gaussian simulations, are stable across component separation techniques, pass an extensive suite of
tests, and are consistent with estimators based on measuring the Minkowski functionals of the CMB. The e↵ect of time-domain de-glitching
systematics on the bispectrum is negligible. In spite of these test outcomes we conservatively label the results including polarization data as
preliminary, owing to a known mismatch of the noise model in simulations and the data. Beyond estimates of individual shape amplitudes, we
present model-independent, three-dimensional reconstructions of the Planck CMB bispectrum and derive constraints on early universe scenarios
that generate primordial NG, including general single-field models of inflation, axion inflation, initial state modifications, models producing parity-
violating tensor bispectra, and directionally dependent vector models. We present a wide survey of scale-dependent feature and resonance models,
accounting for the “look elsewhere” e↵ect in estimating the statistical significance of features. We also look for isocurvature NG, and find no
signal, but we obtain constraints that improve significantly with the inclusion of polarization. The primordial trispectrum amplitude in the local
model is constrained to be glocal

NL = (�9.0± 7.7)⇥ 104 (68% CL statistical), and we perform an analysis of trispectrum shapes beyond the local case.
The global picture that emerges is one of consistency with the premises of the ⇤CDM cosmology, namely that the structure we observe today was
sourced by adiabatic, passive, Gaussian, and primordial seed perturbations.
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1. Introduction

This paper, one of a set associated with the 2015 release of data
from the Planck1 mission (Planck Collaboration I 2016), de-
scribes the constraints on primordial non-Gaussianity (NG) ob-
tained using the cosmic microwave background (CMB) maps
from the full Planck mission, including a first analysis of some
of the Planck polarization data.

Primordial NG is one of the most powerful tests of inflation,
and more generally of high-energy early Universe physics (for
some reviews, see Bartolo et al. 2004a; Liguori et al. 2010; Chen
2010b; Komatsu 2010; Yadav & Wandelt 2010). In fact, the sim-
plest models of inflation (characterized by a single scalar field
slowly rolling along a smooth potential) predict the generation
of primordial fluctuations that are almost Gaussian distributed,
with a tiny deviation from Gaussianity of the order of the slow-
roll parameters (Acquaviva et al. 2003; Maldacena 2003). The
2013 Planck results on primordial NG are consistent with such
a prediction, being compatible with Gaussian primordial fluc-
tuations: the standard scenario of single-field, slow-roll infla-
tion has survived its most stringent test to date. For example,
in Planck Collaboration XXIV (2014) we obtained f local

NL = 2.7±
5.8, f equil

NL = �42 ± 75, and f ortho
NL = �25 ± 39 for the amplitudes

of three of the most well-studied shapes of primordial NG. On
the other hand, it is well known that any deviations from the stan-
dard picture of inflation have the potential to produce distinctive
NG signatures at a detectable level in the CMB anisotropies2.
Therefore, as already shown in Planck Collaboration XXIV
(2014; see also Planck Collaboration XXII 2014) improved NG
constraints allow severe limits to be placed on various classes
of inflationary models that extend the simplest paradigm, in a
way that is strongly complementary to the power-spectrum con-
straints (i.e., scalar spectral index of curvature perturbations and
tensor-to-scalar amplitude ratio).

One of the main goals of this paper is to improve NG
constraints using mainly the angular bispectrum of CMB aniso-
tropies, i.e., the harmonic transform of the 3-point angular cor-
relation function. We also investigate higher-order NG cor-
relators like the trispectrum. We follow the same notation
as Planck Collaboration XXIV (2014). The CMB angular bis-
pectrum is related to the primordial bispectrum

h�(k1)�(k2)�(k3)i = (2⇡)3�(3)(k1 + k2 + k3)B�(k1, k2, k3), (1)

where the field �, related to the comoving curvature pertur-
bation ⇣ on super-horizon scales by � ⌘ (3/5)⇣, is such
that in the matter era, and on super-horizon scales, it reduces
to Bardeen’s gauge-invariant gravitational potential (Bardeen
1980). The bispectrum B�(k1, k2, k3) measures the correlation
among three perturbation modes. If translational and rotational
invariance are assumed, it depends only on the magnitude of the
three wavevectors. In general the bispectrum can be written as

B�(k1, k2, k3) = fNLF(k1, k2, k3), (2)

1 Planck (http://www.esa.int/Planck) is a project of the Euro-
pean Space Agency (ESA) with instruments provided by two scientific
consortia funded by ESA member states and led by Principal Investi-
gators from France and Italy, telescope reflectors provided through a
collaboration between ESA and a scientific consortium led and funded
by Denmark, and additional contributions from NASA (USA).
2 We refer the reader to Planck Collaboration XXIV (2014) and ref-
erences therein for a detailed summary of the models and underlying
physical mechanisms generating various types of primordial NG.

where we have introduced the dimensionless “nonlinearity
parameter” fNL (Gangui et al. 1994; Wang & Kamionkowski
2000; Komatsu & Spergel 2001; Babich et al. 2004), measur-
ing the NG amplitude. The bispectrum is obtained by sam-
pling triangles in Fourier space. The dependence of the func-
tion F(k1, k2, k3) on the type of triangle (i.e., the configuration)
formed by the three wavevectors describes the shape (and the
scale dependence) of the bispectrum (Babich et al. 2004), which
encodes much physical information. Di↵erent NG shapes are
linked to distinctive physical mechanisms that can generate such
NG fingerprints in the early Universe.

In this paper the limits on primordial NG are mainly im-
proved through the use of the full mission data, as well as by
exploiting the polarization information.

Planck results on primordial NG also provide a reconstruc-
tion of the full CMB bispectrum through di↵erent techniques
(see Sect. 6.2). This complements (and adds to) the extrac-
tion of single amplitudes fNL for specific bispectrum shapes.
Such a reconstruction can point to interesting features in the
bispectrum signal that go beyond the usual standard scale-
invariant shapes (such as the well known “local” and “equilat-
eral” configurations).

As we have seen, the Planck 2013 NG paper (Planck
Collaboration XXIV 2014) significantly improved constraints on
the standard primordial NG models with scale-invariant local,
equilateral or orthogonal shapes. The Planck NG paper also in-
cluded constraints from the modal estimator on a variety of other
primordial models, including DBI inflation, non-Bunch-Davies
models (excited initial states), directionally-dependent vector in-
flation models, warm inflation, and scale-dependent feature and
resonance models. All scale-invariant bispectra were strongly
constrained, with the possible exception of highly flattened non-
Bunch-Davies models. On the other hand, the preliminary in-
vestigation of primordial oscillatory models seemed to be more
promising, in that two specific feature models appeared to pro-
duce fits of some significance. One aim of the present work is
to expand the detail and scope of investigations of feature and
resonant models and to examine the significance of these re-
sults with a more careful analysis of the “look elsewhere” e↵ect,
through exploring multi-parameter results using large ensembles
of Gaussian simulations. Also we will thoroughly analyse or re-
analyse other primordial NG signals that are theoretically well-
motivated and those which have appeared in the literature since
the first data release. These include primordial NG arising in
the context of inflation models where vector fields play a non-
negligible role or primordial NG generated in the tensor (gravi-
tational waves) perturbations. Each of these primordial NG sig-
nals carry distinctive signatures that may have been imprinted at
the inflationary epoch, thus opening up a new window into the
detailed physics of inflation.

The paper is organized as follows. In Sect. 2 we briefly
discuss the primordial NG models that we test in this pa-
per. Section 3 summarizes the optimal statistical estimators
used to constrain the CMB bispectrum and trispectrum from
Planck temperature and polarization data. In Sect. 4 we dis-
cuss the non-primordial contributions to the CMB bispectrum
and trispectrum, including foreground residuals after compo-
nent separation and focusing on the fNL bias induced by the
ISW-lensing bispectrum. We also analyse the impact on pri-
mordial NG estimation from the residuals of the deglitching
processing. Section 5 describes an extensive suite of tests per-
formed on realistic simulations to validate the di↵erent esti-
mator pipelines, and compare their performance. Using simu-
lations, we also quantify the impact on fNL of using a variety
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of component-separation techniques. In Sect. 6 we derive con-
straints on fNL for the local, equilateral, and orthogonal bispec-
tra and present a reconstruction of the CMB bispectrum. We also
present a reconstruction of the primordial curvature fluctuations.
In Sect. 7 we validate these results by performing a series of null
tests on the data to assess the robustness of our results. Section 8
investigates scale-dependent NG models and other selected bis-
pectrum shapes. Section 9 presents the Planck limits on the
CMB trispectrum. In Sect. 10 we provide constraints on CMB
local bispectrum and trispectrum from Minkowski functionals.
In Sect. 11 we discuss the main implications of Planck’s con-
straints on primordial NG for early Universe models. We con-
clude in Sect. 12. Appendix A contains the derivation of the sta-
tistical estimator for the amplitudes characterizing a “direction-
dependent” primordial non-Gaussianity. Appendix B contains
some details about Minkowski functionals.

2. Models

In this section we briefly highlight the classes of inflationary
models investigated in this paper, and describe the distinctive NG
they generate. Within each class a common underlying physi-
cal process gives rise to the corresponding NG shape, illustrated
by concrete realizations of inflationary models. For each class
we therefore provide the explicit form of the bispectrum shapes
chosen for the data analysis, emphasizing extensions with vari-
ants and distinctly new shapes beyond those already described
in Planck Collaboration XXIV (2014).

2.1. General single-field models of inflation
This class of models includes inflationary models with a non-
standard kinetic term (or more general higher-derivative inter-
actions), in which the inflaton fluctuations propagate with an
e↵ective sound speed cs which can be smaller than the speed
of light. For example, models with a non-standard kinetic term
are described by an inflaton Lagrangian L = P(X, �), where
X = gµ⌫@µ�, @⌫�, with at most one derivative on �, and the sound
speed is given by c2

s = (@P/@X)/(@P/@X + 2X(@2P/@X2)).
The NG parameter space of this class of models is generi-

cally well described by two NG shapes – “equilateral” and “or-
thogonal” (Senatore et al. 2010) – since usually there are two
dominant interaction terms of the inflaton field giving rise to the
overall NG signal. One of these typically produces a bispectrum
very close to the equilateral type with fNL ⇠ c�2

s in the limit
cs ⌧ 1 (Chen et al. 2007b; Senatore et al. 2010).

The equilateral-type NG is well approximated by the tem-
plate (Creminelli et al. 2006)

Bequil
�

(k1, k2, k3) = 6A2 f equil
NL

⇥
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Here P�(k) = A/k4�ns represents Bardeen’s gravitational po-
tential power spectrum, A2 being the normalization and ns the
scalar spectral index. DBI inflationary models based on string
theory (Silverstein & Tong 2004; Alishahiha et al. 2004) pro-
vide physically well-motivated examples of the P(X, �)-model.
They are characterized by an almost equilateral NG with f equil

NL =

�(35/108)c�2
s for cs ⌧ 1, which typically is f equil

NL < �5.

The “orthogonal” shape template is (Senatore et al. 2010)

Bortho
� (k1, k2, k3) = 6A2 f ortho

NL
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Equilateral and orthogonal shapes emerge also in models char-
acterized by more general higher-derivative interactions, such
as ghost inflation (Arkani-Hamed et al. 2004), e↵ective field
theories of inflation (Cheung et al. 2008; Senatore et al. 2010;
Bartolo et al. 2010a), or the so “Galileon-like” models of in-
flation (see, e.g., Burrage et al. 2011). The latter model is con-
structed starting from some specific underlying symmetry for
the inflaton field, and is characterized by strongly constrained
derivative interactions.

2.2. Multi-field models

This class of models is characterized by the presence of addi-
tional light scalar degrees of freedom besides the inflaton, whose
fluctuations give rise, or contribute, to the final primordial cur-
vature perturbation at the end of inflation. This includes the case
of “multiple-field inflation”, where inflation is driven by more
than one scalar field, as well as scenarios in which additional
scalar fields remain subdominant during the inflationary expan-
sion. From the point of view of primordial NG, the element in
common to all these models is that a potentially detectable level
of NG in the curvature perturbation is generated via a transfer
of super-horizon non-Gaussian isocurvature perturbations in the
second field (not necessarily the inflaton) to the adiabatic (cur-
vature) density perturbations, accompanied by nonlinearities in
the transfer mechanism. This process typically takes place on
super-horizon scales, thus implying a local form of NG in real
space. When going to Fourier space, this leads to a correlation
between large and small scale modes. The bispectrum for this
class of models is indeed largest on so-called “squeezed” trian-
gles (k1 ⌧ k2 ' k3). The local bispectrum is (Falk et al. 1993;
Gangui et al. 1994; Gangui & Martin 2000; Verde et al. 2000;
Wang & Kamionkowski 2000; Komatsu & Spergel 2001)

Blocal
� (k1, k2, k3) = 2 f local

NL

h
P�(k1)P�(k2) + P�(k1)P�(k3)

+ P�(k2)P�(k3)
i

= 2A2 f local
NL

2
666664

1
k4�ns

1 k4�ns
2

+ cycl.
3
777775 . (5)

There is a broad literature on examples and specific realiza-
tions of this transfer mechanism from isocurvature to adi-
abatic perturbations (Bartolo et al. 2002; Bernardeau & Uzan
2002; Vernizzi & Wands 2006; Rigopoulos et al. 2006, 2007;
Lyth & Rodriguez 2005; Tzavara & van Tent 2011; for a re-
view on NG from multiple-field inflation models, see
Byrnes & Choi 2010). An alternative, important possibility is
the curvaton model (Mollerach 1990; Linde & Mukhanov 1997;
Enqvist & Sloth 2002; Lyth & Wands 2002; Moroi & Takahashi
2001). In this type of scenario, a second light scalar field, sub-
dominant during inflation, decays after inflation, generating pri-
mordial density perturbations with a potentially high level of
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NG (e.g., Lyth & Wands 2002; Lyth et al. 2003; Bartolo et al.
2004c). In the (simplest) adiabatic curvaton models, the local
fNL parameter was found to be (Bartolo et al. 2004c,b) f local

NL =
(5/4rD)�5rD/6�5/3, when the curvaton field has a quadratic po-
tential (Lyth & Wands 2002; Lyth et al. 2003; Lyth & Rodriguez
2005; Malik & Lyth 2006; Sasaki et al. 2006). In the previous
formula, rD = [3⇢curvaton/(3⇢curvaton + 4⇢radiation)]D is the “curva-
ton decay fraction” evaluated at the epoch of the curvaton decay
in the sudden decay approximation. It is then easy to see that, for
low values of rD, a high level of NG can be generated3.

2.3. Isocurvature non-Gaussianity

Isocurvature NG, which was only sketched from the purely the-
oretical point of view in the 2013 paper, can now be analysed
thanks to the polarization information.

In most of the models mentioned above, the main focus
is on the level of primordial NG in the final curvature per-
turbation ⇣. However, in inflationary scenarios where di↵er-
ent scalar fields play a non-negligible role, residual isocurva-
ture perturbation modes can remain after inflation. Isocurvature
modes are usually investigated by considering their contribu-
tion to the power spectrum. However, if present, they would
also contribute to the bispectrum, producing in general both a
pure isocurvature bispectrum and mixed bispectra because of the
cross-correlation between isocurvature and adiabatic perturba-
tions (Komatsu 2002; Bartolo et al. 2002; Komatsu et al. 2005;
Kawasaki et al. 2008, 2009; Langlois et al. 2008; Hikage et al.
2009; Langlois & Lepidi 2011; Langlois & van Tent 2011,
2012; Kawakami et al. 2012). While one might expect isocurva-
ture NG to be negligible, since both (linear) isocurvature modes
and (adiabatic) NG appear to be very small, and searches for
isocurvature NG using WMAP data did not lead to any detec-
tions (Hikage et al. 2013a,b), this expectation can be tested at
significantly higher precision by Planck. Moreover, there exist
inflation models (Langlois & Lepidi 2011) where isocurvature
modes, while remaining a small fraction in the power spectrum,
would dominate the bispectrum.

At the time of recombination there are in principle four pos-
sible distinct isocurvature modes (in addition to the adiabatic
mode): cold dark matter (CDM); baryon; neutrino density; and
neutrino velocity isocurvature modes (Bucher et al. 2000). In
this paper we will only consider isocurvature NG of the lo-
cal type and always limit ourselves to considering the adia-
batic mode together with just one type of isocurvature mode
(considering each of the four types separately). Otherwise the
number of free parameters becomes so large that no mean-
ingful limits can be derived. Moreover, we assume the same
spectral index for the primordial isocurvature power spectrum
and the isocurvature-adiabatic cross-power spectrum as for the
adiabatic power spectrum. Under those assumptions, as shown
by Langlois & van Tent (2011), we have in principle six inde-
pendent fNL parameters: the usual purely adiabatic one; a purely
isocurvature one; and four correlated ones.

3 NG perturbations can arise also at the end of inflation, e.g., from
nonlinearities during the (p)reheating phase (e.g., Enqvist et al. 2005;
Chambers & Rajantie 2008; Barnaby & Cline 2006; see also Bond et al.
2009) or from fluctuations in the inflaton decay rate or interac-
tions, as found in modulated (p)reheating and modulated hybrid in-
flation (Kofman 2003; Dvali et al. 2004a,b; Bernardeau et al. 2004;
Zaldarriaga 2004; Lyth 2005; Salem 2005; Lyth & Riotto 2006;
Kolb et al. 2006; Cicoli et al. 2012).

The primordial shape templates are a generalization of
Eq. (5), see Langlois & van Tent (2011, 2012):

BIJK(k1, k2, k3) = 2 f I,JK
NL P�(k2)P�(k3) + 2 f J,KI

NL P�(k1)P�(k3)

+ 2 f K,IJ
NL P�(k1)P�(k2), (6)

where I, J,K label the di↵erent modes (adiabatic and isocurva-
ture). The invariance under the simultaneous exchange of two
of these indices and the corresponding momenta means that
f I,JK
NL = f I,KJ

NL , hence reducing the number of independent param-
eters from eight to six, in the case of two modes. The di↵erent
bispectra vary most importantly through the fact that di↵erent
types of radiation transfer functions gI

`(k) are used to project the
primordial template onto the CMB: the reduced bispectra are of
the form

bI,JK
`1`2`3

= 6
Z
1

0
r2dr,↵I

(`1 (r)�J
`2

(r)�K
`3)(r), (7)

with

↵I
`(r) ⌘

2
⇡

Z
k2dk, j`(kr), gI

`(k), (8)

�I
`(r) ⌘

2
⇡

Z
k2dk, j`(kr), gI

`(k), P�(k). (9)

Here j` is the spherical bessel function and we use the notation
(`1`2`3) ⌘ [`1`2`3 + 5perm.]/3!. In addition to the isocurvature
index, each transfer function carries a polarization index that we
do not show here. It is important to note that, unlike the case of
the purely adiabatic mode, the inclusion of polarization improves
the constraints on the isocurvature NG significantly, as predicted
by Langlois & van Tent (2011, 2012).

2.4. Resonance and axion monodromy models

Oscillatory models for NG are physically well-motivated. Large-
field inflation faces an inherent UV completion problem because
the inflaton field is required to move over large distances in
field space relative to the Planck mass mPl. An e↵ective shift
symmetry can enforce potential flatness and this can be naturally
implemented in a string theory context with axions and a period-
ically modulated potential, so-called “axion monodromy” mod-
els. This periodicity can generate resonances in the inflationary
fluctuations with logarithmically-spaced oscillations, creating
imprints in the power spectrum, the bispectrum and trispectrum
(Chen et al. 2008; Flauger et al. 2010; Hannestad et al. 2010;
Flauger & Pajer 2011). On the other hand, sharp features or
corners in an inflationary potential can temporarily drive the
inflaton away from slow-roll; these large changes in the field
and derivatives can create evenly-spaced oscillations, to be dis-
cussed in the next subsection. However, in multifield models
residual oscillations after corner-turning can also lead to log-
spaced oscillations, just as in the resonance models (Chen 2011;
Achúcarro et al. 2011; Battefeld et al. 2013; Chen et al. 2015).
A preliminary search for bispectrum resonance signals was per-
formed in the first Planck analysis (Planck Collaboration XXIV
2014) and our purpose here is to substantially increase the fre-
quency range and number of models investigated.

Simple resonance model: periodic features in the inflationary po-
tential can induce oscillations with frequency! that can resonate
through any interactions with the inflationary fluctuations, con-
tributing to the bispectrum. Provided that ! > H, this mode
starts inside the horizon but its frequency decreases as it is
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stretched by inflation, until frozen when ! ' H. Thus peri-
odic features introduce a driving force which can scan across
a wide range of frequencies. The simplest basic behaviour of
such resonant models yields logarithmic stretching and can be
described by the non-scale-invariant shape (see Chen et al. 2008;
Chen 2010b)

Bres
� (k1, k2, k3) =

6A2 f res
NL

(k1k2k3)2 sin
⇥
C ln(k1 + k2 + k3) + �

⇤
, (10)

where the constant C = 1/ln(3k⇤), k⇤ is a wavenumber associ-
ated with the periodicity, and � is a phase. These oscillations
constructively and destructively interfere with the oscillations
created by the CMB transfer functions, introducing additional
nodal points in the CMB bispectrum.

Generalized resonance models: in a more general context, it
is possible to have more complicated resonant shapes and
envelopes. Resonant single-field models with varying sound
speed cs generate three leading-order bispectrum terms (Chen
2010a):

Bres�cs(k1, k2, k3) =
6A2

(k1k2k3)2

(
f res1
NL sin

⇥
C ln(k1 + k2 + k3) + �

⇤

+ 3 f res2
NL

k2
1 + k2

2 + k2
3

(k1 + k2 + k3)2 cos
⇥
C ln(k1 + k2 + k3) + �

⇤

+ 27 f res3
NL

k1k2k3

(k1 + k2 + k3)3 sin
⇥
C ln(k1 + k2 + k3) + �

⇤
)
. (11)

The first term on the right-hand side of Eq. (11) is the basic res-
onant shape given in Eq. (10), while the second and third terms
have the same oscillatory behaviour, but modulated by a (mildly)
flattened shape, and an equilateral shape respectively. The third
term is in fact the second generic shape arising in e↵ective field
theory and correlates well with the equilateral shape in Eq. (12).
The second term in Eq. (11) weakly favours flattened triangles,
but there are regimes for resonant models that can generate much
stronger flat shapes. If the resonance begins very deep inside the
horizon, then the second (negative energy) mode can also make
a significant contribution that is associated with enfolded or flat
bispectra; this is similar to having an excited initial state or non-
Bunch-Davies (NBD) vacuum.

With these two physical motivations in mind we also inves-
tigate classes of models with resonant oscillations modulated by
both the equilateral and flattened shapes, defined by

S eq(k1, k2, k3) =
k̃1k̃2k̃3

k1k2k3
, S flat = 1 � S eq, (12)

where k̃1 ⌘ k2+k3�k1 (here, for simplicity we ignore the spectral
index dependence of the equilateral shape in Eq. (3)). The corre-
sponding equilateral and flattened resonant bispectra ansätze are
then

Bres�eq(k1, k2, k3) ⌘ S eq(k1, k2, k3) ⇥ Bres(k1, k2, k3)

=
6A2 f res�eq

NL

(k1k2k3)2
k̃1k̃2k̃3

k1k2k3
sin

⇥
C ln(k1 + k2 + k3) + �

⇤
, (13)

Bres�flat(k1, k2, k3) ⌘ S flat(k1, k2, k3) ⇥ Bres(k1, k2, k3). (14)

We note that typically non-Bunch-Davies bispectra can be much
more sharply peaked in the flattened or squeezed limits than
Eq. (14), but our purpose here is to determine if this type
of resonant model is favoured by the Planck data; that is,
whether Eq. (14) warrants further investigation with other flat-
tened profiles.

2.5. Scale-dependent oscillatory feature models

Temporary violations of slow-roll inflation can occur if there are
sharp features in the inflationary potential (Chen et al. 2007a),
as well as changes in the sound speed cs or sharp turns in field
space in multifield inflation. The inflaton field makes temporary
departures from the attractor solution, which typically have a
strong scale-dependent running modulated by a sinusoidal os-
cillation; there are model-dependent counterparts in the power
spectrum, bispectrum, and trispectrum. For example, sharper or
narrower features induce a relatively larger signal in the bispec-
trum (see e.g., Chen 2010b). An example is the analytic envelope
solutions predicted for both the power spectrum and bispectrum
for the single field models with a specific inflaton feature shape
(Adshead et al. 2012); a search for these was presented previ-
ously in the Planck Inflation paper (Planck Collaboration XXII
2014) and likewise no significant signal was found using the cor-
responding bispectrum envelopes at the available modal reso-
lution (Planck Collaboration XXIV 2014). In this new analysis,
we will emphasize the search for generic oscillatory behaviour
in the data over a larger range in modal resolution, although we
will also look for the shapes predicted for simple features in sin-
gle field models.

Constant feature model: In the previous investigation of Planck
data using a coarse parameter grid (Planck Collaboration XXIV
2014), we searched for the simplest ansatz for an oscillatory bis-
pectrum signal (Chen et al. 2007a):

Bfeat(k1, k2, k3) =
6A2 f feat

NL

(k1k2k3)2 sin
⇥
!(k1 + k2 + k3) + �

⇤
, (15)

where � is a phase factor and ! is a frequency associated with
the specific shape of the feature in the potential that disrupts the
slow-roll evolution. In the earlier analysis, we also considered
a damping envelope, which slightly increased the apparent sig-
nificance of the best-fit feature models, though at the cost of an
additional parameter (see single-field solutions below).

Generalized feature models: here, we again search for oscillatory
signals in a model-independent manner. We will modulate the
bispectrum cross-sections with the physically motivated equi-
lateral and flattened shapes, reflecting the physical contexts in
which they could have been generated, as for the resonant mod-
els described above in Eq. (11). If there are potential features in
a model with a varying sound speed, then we can expect there to
be oscillatory contributions to the bispectrum signal with a dom-
inant equilateral shape. Motivated by the equilateral resonance
model in Eq. (11), we will search for the following equilateral
feature ansatz:

Bfeat�eq(k1, k2, k3) ⌘ S eq(k1, k2, k3) ⇥ Bfeat(k1, k2, k3) (16)

=
6A2 f feat�eq

NL

(k1k2k3)2
k̃1k̃2k̃3

k1k2k3
sin

⇥
!(k1 + k2 + k3)+�

⇤
.

(17)

For extremely sharp features, it is possible to excite the inflation-
ary fluctuations as if there were a non-Bunch Davies vacuum:
the oscillatory signal becomes modulated with a flattened shape
(Chen et al. 2007a). Again, motivated by the enfolded resonance
model in Eq. (14), we take the following simple flattened ansatz:

Bfeat�flat(k1, k2, k3) ⌘ S flat(k1, k2, k3) ⇥ Bfeat(k1, k2, k3). (18)

Although the exact profile of the flattened shape can be much
more highly peaked on the faces in these NBD models, this
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ansatz should be adequate for testing whether these models are
favoured. We note that while the power spectrum is insensi-
tive to the underlying scenario creating the features, the bispec-
trum shape will reveal whether features arise from varying sound
speed or highly excited features in the potential.
Single field feature solutions: here we use the full analytic bis-
pectrum solution given by Adshead et al. (2012), but the domi-
nant leading-order behaviour takes the form

BK2 cos(k1, k2, k3) =
6A2 f K2 cos

NL

(k1k2k3)2 K2D(↵!K) cos(!K), (19)

where K = k1 + k2 + k3 and D(↵!K) = ↵!/(K sinh(↵!K)) is
an envelope function, with parameter ↵ setting an overall cut-o↵
for the bispectrum at large wavenumbers or multipoles. This en-
velope and the overall K2 scaling distinguishes this realistic case
from the simple separable constant feature ansatz of Eq. (15). We
shall allow the envelope parameter ↵ to vary from ↵ = 0, with no
envelope (the infinitely thin limit for a feature in the potential)
through to large ↵, with a narrow domain for the bispectrum. Al-
ternative analytic solutions where the bispectrum is created by a
variation in the sound speed cs are dominated by the K sin(!K)
term, as in

BK sin(k1, k2, k3) =
6A2 f K sin

NL

(k1k2k3)2 K,D(↵!K) sin(!K). (20)

For the simplest models there is a predicted relationship between
the power spectrum and bispectrum amplitude (e.g., see also
Achucarro et al. 2013 for a two-field model). We note that typ-
ically the power spectrum has larger signal-to-noise at low fre-
quency (i.e., below ! ' 1000) while the bispectrum dominates
at higher frequency.

2.6. Non-Gaussianity from excited initial states

It is well known that if the initial vacuum state for infla-
tion is excited and deviates from the standard Bunch-Davies
vacuum, then measurable non-Gaussianities can be produced
(Chen et al. 2007b; Holman & Tolley 2008; Meerburg et al.
2009; Ashoorioon & Shiu 2011). These models generically lead
to non-Gaussianity that peaks in the flattened limit, where k1 +
k2 ⇡ k3, and also often has oscillatory behaviour. Here we
constrain the same selection of templates found in the 2013
Planck analysis, namely the flat model in Eq. (12), Non-Bunch-
Davies (NBD; Chen et al. 2007b), NBD1 and NBD2 models
(Agullo & Parker 2011; now called “NBD1 cos” and “NBD2
cos”) and NBD3 (Chen 2010b). We also introduce three new
templates, NBD sin which is motivated by (Chen 2010a) and
takes the form

BNBD�sin (k1, k2, k3) =
2A2 f NBD�sin

NL

(k1k2k3)2

⇣
e�!k̃1 + e�!k̃2 + e�!k̃3

⌘

⇥ sin (!K + �) , (21)

where again K = k1 + k2 + k3 and k̃i = K � 2ki. The other two
templates are extensions of the NBD1 cos and NBD2 cos models
found in Agullo & Parker (2011) and take the form

BNBDi�sin (k1, k2, k3) =
2A2 f NBDi�sin

NL

(k1k2k3)2
⇥
fi(k1; k2, k3)

⇥ sin(!k̃1)/k̃1 + 2perm.
⇤
, (22)

where f1(k1; k2, k3) = k2
1(k2

2 + k2
3)/2, which is dominated by

squeezed configurations, and f2(k1; k2, k3) = k2
2k2

3, which has a
flattened shape.

2.7. Directional-dependence motivated by gauge fields

Some models where primordial vector fields are present during
inflation predict interesting NG signatures. This is the case of
a coupling of the inflaton field ' to the kinetic term of a gauge
field Aµ, L contains �I2(')F2, where Fµ⌫ = @µA⌫ � @⌫Aµ and
the coupling I2(')F2 is chosen so that scale invariant vector per-
turbations are produced on superhorizon scales (Barnaby et al.
2012b; Bartolo et al. 2013a). The bispectrum turns out to be the
sum of two contributions: one of the local shape; and another that
is also enhanced in the squeezed limit (k1 ⌧ k2 ' k3), but fea-
turing a non-trivial dependence on the angle between the small
and the large wave vectors through the parameter µ12 = k̂1 · k̂2
(where k̂ = k/k) as µ2

12. Also, primordial magnetic fields sourc-
ing curvature perturbations can cause a dependence on both µ
and µ2 (Shiraishi et al. 2012).

We can parametrize these shapes as variations on the local
shape (Shiraishi et al. 2013a), as

B�(k1, k2, k3) =
X

L

cL[PL(µ12)P�(k1)P�(k2) + 2 perm.], (23)

where PL(µ) is the Legendre polynomial with P0 = 1, P1 = µ,
and P2 =

1
2 (3µ2

� 1). For example, for L = 1 we have the shape

BL= 1
� (k1, k2, k3) =

2A2 f L= 1
NL

(k1k2k3)2 ,

2
66664

k2
3

k2
1k2

2

⇣
k2

1 + k2
2 � k2

3

⌘
+ 2 perm.

3
77775 .

(24)

The local template corresponds to ci = 2 fNL�i0. Here and in the
following the nonlinearity parameters f L

NL are related to the cL

coe�cients by c0 = 2 f L= 0
NL , c1 = �4 f L= 1

NL , and c2 = �16 f L= 2
NL .

The L = 1, 2 shapes exhibit sharp variations in the flattened
limit, for example for k1 + k2 ⇡ k3, while in the squeezed limit,
L = 1 is suppressed whereas L = 2 grows like the local bispec-
trum shape (i.e., the L = 0 case). The I2(')F2 models predict
c2 = c0/2, while primordial curvature perturbations sourced by
large-scale magnetic fields generate non-vanishing c0, c1, and c2.
Quite interestingly, in the proposed “solid inflation” scenario
(Endlich et al. 2013, 2014; see also Bartolo et al. 2013b, 2014;
Sitwell & Sigurdson 2014) bispectra similar to Eq. (23) can be
generated, in this case with c2 � c0 (Endlich et al. 2013, 2014).
Therefore, measurements of the ci coe�cients can be an e�cient
probe of some detailed aspects of the inflationary mechanism,
such as the existence of primordial vector fields during inflation
(or a non-trivial symmetry structure of the inflaton fields, as in
solid inflation).

2.8. Non-Gaussianity from gauge-field production
during axion inflation

The same shift symmetry that leads to axion (monodromy)
models of inflation (Sect. 2.4) naturally allows (from an ef-
fective field theory point of view) for a coupling between a
pseudoscalar axion inflaton field and a gauge field of the type
L � �(↵/4 f )�Fµ⌫F̃µ⌫, where the parameter ↵ is dimensionless
and f is the axion decay constant (F̃µ⌫ = ✏µ⌫��F��/2). This sce-
nario has a rich and interesting phenomenology both for scalar
and tensor primordial fluctuations (see, e.g., Barnaby & Peloso
2011; Sorbo 2011; Barnaby et al. 2011, 2012c; Linde et al.
2013; Meerburg & Pajer 2013; Ferreira & Sloth 2014). Gauge
field quanta are produced by the background motion of the in-
flaton field, and these in turn source curvature perturbations
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through an inverse decay process of the gauge field. A bispec-
trum of curvature fluctuations is generated as (Barnaby et al.
2011; Meerburg & Pajer 2013)4

Binv.dec = 6A2 f inv.dec
NL

P
i k3

iQ
k3

i

f3
⇣
⇠⇤,

k2
k1
, k3

k1

⌘

f3(⇠⇤, 1, 1)
, (25)

where the exact expression for the function f3 can be found in
Eq. (3.29) of Barnaby et al. (2011; see also Meerburg & Pajer
2013). Here ⇠ characterizes the coupling strength of the axion to
the gauge field ⇠ = ↵|�̇|/(2 f H). The inverse decay bispectrum
peaks for equilateral configuration, since �' is mostly sourced
by the inverse decay (�A + �A ! �'), when two modes of the
vector fields are of comparable magnitude (the correlation with
the equilateral template is 94% and with the orthogonal one is
4%). We do however constrain the exact shape in Eq. (25), with-
out resorting to the equilateral template. Another interesting ob-
servational signature that can shed light on the role played by
pseudo-scalars in the early Universe is provided by tensor NG,
to which we turn next.

2.9. Parity-violating tensor non-Gaussianity motivated
by pseudo-scalars

While the majority of the studies on primordial and CMB
NG focus on the scalar mode, tensor-mode NG has been at-
tracting attention as a probe of high-energy theories of grav-
ity (e.g., Maldacena & Pimentel 2011; McFadden & Skenderis
2011; Soda et al. 2011; Shiraishi et al. 2011; Gao et al. 2011)
or primordial magnetic fields (Brown & Crittenden 2005;
Shiraishi et al. 2012; Shiraishi 2012)5.

Recently, the possibility of observable tensor bispectra has
been vigorously discussed in a model where the inflaton cou-
ples to a pseudoscalar field (Barnaby et al. 2012a; Cook & Sorbo
2013; Ferreira & Sloth 2014). In this model, through the grav-
itational coupling to the U(1) gauge field, gravitational waves
(hi j ⌘ �gTT

i j /a
2 =

P
s=± h(s)e(s)

i j ) receive NG corrections, where
only one of the two spin states is enhanced. The bispectrum, gen-
erally formed as
* 3Y

i=1

h(si)(ki)
+
= (2⇡)3�(3)(k1 + k2 + k3)Bs1 s2 s3

h (k1, k2, k3), (26)

is accordingly polarized, with B+++h � B++�h , B+��h , B��h . This
NG enhancement is a sub-horizon e↵ect and therefore B+++h is
maximized at the equilateral limit (k1 ' k2 ' k3) (Cook & Sorbo
2013).

A model-independent template of the equilateral-type polar-
ized tensor bispectrum is given by (Shiraishi et al. 2013b, 2015)

B+++h (k1, k2, k3) = f tens
NL Fequil

⇣ (k1, k2, k3)

⇥
16
p

2
27

e(+)⇤
i j (k̂1)e(+)⇤

jk ( k̂2)e(+)⇤
ki ( k̂3), (27)

with the polarization tensor e(s)
i j obeying e(s)

i j ( k̂)e(s0)
i j ( k̂) = 2�s,�s0

and e(s)⇤
i j ( k̂) = e(�s)

i j ( k̂) = e(s)
i j (� k̂). We here have intro-

duced a tensor nonlinearity parameter, by normalizing with
the equilateral bispectrum template of curvature perturbations

4 For simplicity we assume a scale-invariant bispectrum.
5 See Planck Collaboration XIX (2016) for the Planck constraints on
magnetically-induced NG.

(Fequil
⇣ ⌘ (5/3)3Fequil

�
= (5/3)3Bequil

�
/ f equil

NL ) in the equilateral
limit, yielding

f tens
NL ⌘ lim

ki!k

B+++h (k1, k2, k3)

Fequil
⇣ (k1, k2, k3)

· (28)

The template Eq. (27) can adequately reconstruct the ten-
sor bispectra created in the pseudoscalar inflation models6

(Shiraishi et al. 2013b), and thus the amplitude f tens
NL is directly

connected with the model parameters, e.g., the coupling strength
of the pseudoscalar field to the gauge field ⇠ (for details see
Sect. 11).

The CMB temperature and E-mode bispectra sourced by the
parity-violating tensor NG have not only the usual parity-even
(`1+`2+`3 = even) signals but also parity-odd (`1+`2+`3 = odd)
contributions, which cannot be sourced by known scalar bispec-
tra (Kamionkowski & Souradeep 2011; Shiraishi et al. 2011).
Moreover, their shapes are mostly distinct from the scalar tem-
plates, due the di↵erent radiation transfer functions; hence they
can be measured essentially independently of the scalar NG
(Shiraishi et al. 2013b). The analysis of the WMAP temperature
data distributed in `1+`2+`3 = odd configurations leads to an ob-
servational limit f tens

NL = (0.8 ± 1.1) ⇥ 104 (Shiraishi et al. 2015).
This paper updates the limit, by analysing both parity-even and
parity-odd signals in the Planck temperature and E-mode polar-
ization data.

3. Statistical estimation of the CMB bispectrum

for polarized maps

We now provide a brief overview of the main statistical tech-
niques that we use to estimate the nonlinearity parameter fNL
from temperature and polarization CMB data, followed by a de-
scription of the data set that will be used in our analysis.

The CMB temperature and polarization fields are character-
ized using the multipoles of a spherical harmonic decomposition
of the CMB maps:

�T
T

(n̂) =
X

`m

aT
`mY`m(n̂),

E(n̂) =
X

`m

aE
`mY`m(n̂). (29)

At linear order, the relation between the primordial perturbation
field and the CMB multipoles is (e.g., Komatsu & Spergel 2001)

aX
`m = 4⇡(�i)`

Z
d3k

(2⇡)3 �(k)Y`m(k̂)�X
` (k), (30)

where X = {T, E} denotes either temperature or E-mode polar-
ization, � is the primordial gravitational potential, and �X

` rep-
resents the linear CMB radiation transfer function.

The CMB angular bispectrum is the three-point correlator of
the a`ms

Bm1m2m3,X1X2X3
`1`2`3

⌘ haX1
`1m1

aX2
`2m2

aX3
`3m3
i, (31)

where Xi = {T, E}. If the CMB sky is rotationally invariant, and
the bispectra we are considering have even parity (which is true
for combinations of T and E), then the angular bispectrum can
be factorized as

haX1
`1m1

aX2
`2m2

aX3
`3m3
i = G`1`2`3m1m2m3

bX1X2X3
`1`2`3

, (32)

6 The form of the tensor bispectrum is the same whether the inflaton
field is identified with the pseudoscalar field or not.
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where bX1X2X3
`1`2`3

is the so-called reduced bispectrum, and G`1`2`3m1m2m3

is the Gaunt integral, defined as the integral over the solid angle
of the product of three spherical harmonics,

G
`1`2`3
m1m2m3

⌘

Z
Y`1m1 (n̂) Y`2m2 (n̂) Y`3m3 (n̂) d2 n̂. (33)

The Gaunt integral (often written in terms of Wigner
3 j-symbols) enforces rotational symmetry, and restricts attention
to a tetrahedral domain of multipole triplets {`1, `2, `3}, satisfy-
ing both a triangle condition and a limit given by some maximum
resolution `max (the latter being defined by the finite angular res-
olution of the experiment under study).

Our goal is to extract the nonlinearity parameter fNL from
the data, for di↵erent primordial shapes. To achieve this, we es-
sentially fit a theoretical CMB bispectrum ansatz b`1`2`3 to the
observed 3-point function. Theoretical predictions for CMB an-
gular bispectra arising from early Universe primordial models
can be obtained by applying Eq. (30) to the primordial bispectra
of Sect. 2, (see e.g., Komatsu & Spergel 2001). Optimized cubic
bispectrum estimators were introduced by Heavens (1998), and
it has been shown that for small NG the general optimal polar-
ized fNL estimator can be written as (Creminelli et al. 2006)

f̂NL =
1
N

X

Xi,X0i

X

`i,mi

X

`0i ,m
0

i

G
`1 `2 `3

m1m2m3
bX1X2X3, th
`1`2`3

⇥

⇢⇣
C�1
`1m1,`01m01

⌘X1X01 aX01
`01m01

⇣
C�1
`2m2,`02m02

⌘X2X02 aX02
`02m02

⇥

⇣
C�1
`3m3,`03m03

⌘X3X03 aX03
`03m03

�

�

⇣
C�1
`1m1,`2m2

⌘X1X2
⇣
C�1
`3m3,`03m03

⌘X3X03 aX03
`03m03
+ cyclic

��
, (34)

where N is a suitable normalization chosen to produce unit re-
sponse to bth

`1`2`3
. Note that we are implicitly defining a suitable

normalization convention so that b`1`2`3 = fNLbth
`1`2`3

, and bth
`1`2`3

is the value of the theoretical template when fNL = 1. C�1 is the
inverse of the block matrix:

C =
 

CTT CT E

CET CEE

!
, (35)

and the blocks represent the full TT, TE, and EE covariance ma-
trices, with CET being the transpose of CT E . All quantities in the
previous equation (i.e., CMB multipoles, bispectrum template
and covariances matrices) are assumed to properly incorporate
instrumental beam and noise.

As standard for these estimators, we note in square brack-
ets (below) the presence of two contributions. One is cubic
in the observed a`ms, and correlates the bispectrum of the
data to the theoretical fitting template bth

`1`2`3
. This is generally

called the “cubic term” of the estimator. The other contribu-
tion is linear in the observed a`ms (“linear term”). This part
corrects for mean-field contributions to the error bars, intro-
duced by rotational invariance-breaking features, such as a mask
or anisotropic/correlated instrumental noise (Creminelli et al.
2006; Yadav et al. 2008).

The inverse covariance filtering operation implied by
Eq. (34) is a challenging numerical task, which has been
successfully performed only recently (Smith et al. 2009;
Elsner & Wandelt 2012). This step can be avoided by working
in the “diagonal covariance approximation”. In this approach,

the estimator is built by neglecting o↵-diagonal entries of the
covariance matrix in the cubic term in Eq. (34), and then finding
the linear term that minimizes the variance for this specific cubic
statistic. Applying such a procedure yields (Yadav et al. 2007)

f̂NL =
1
N

X

Xi,X0i

X

`i,mi

G
`1 `2 `3

m1m2m3

⇣
C�1

⌘X1X01
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⇣
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⌘X2X02
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⇣
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⌘X3X03
`3
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`1`2`3
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aX02
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�
, (36)

where C�1
` is the inverse of the 2 ⇥ 2 matrix

C` =
 

CTT
` CT E

`
CET
` CEE

`

!
. (37)

This expression can also be written as

f̂NL =
hbth, bobs

i

hbth, bthi
, (38)

where the observed (reduced) bispectrum includes the linear cor-
rection term and the inner product is defined as

hbA, bB
i = (39)

X
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`1`2`3

h2
`1`2`3
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(C�1)X3X03
`3

bX01X02X03, B
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with

h`1`2`3 =

r
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4⇡

 
`1 `2 `3
0 0 0

!
, (40)

where the last term is the Wigner 3j symbol. The denominator in
Eq. (38), hbth, bth

i is the normalization constant N.
The price to pay for the simplification obtained in Eq. (36) is,

in principle, loss of optimality. However, in practice we found in
our previous temperature analysis (Planck Collaboration XXIV
2014) that error bars obtained with this simplified proce-
dure are very close to optimal, provided the a`ms are pre-
filtered with a simple di↵usive inpainting technique (see
Planck Collaboration XXIV 2014 for details). We find that this
still holds true when we include polarization and pre-inpaint
the T, Q, U input maps. Given its practical advantages in terms
of speed and simplicity, we adopt this method in the following
analysis.

A well-known, major issue with both Eqs. (34) and (36)
is that their direct implementation would require evaluation of
all the bispectrum configurations from the data. The computa-
tional cost of this would scale like `5max and be totally prohibitive
for high-resolution CMB experiments like Planck. The di↵er-
ent bispectrum estimation techniques applied to our analysis are
essentially defined by the approach adopted to circumvent this
problem. The advantage of having multiple independent imple-
mentations of the optimal bispectrum estimator is twofold. First,
by cross-validating and comparing outputs of di↵erent pipelines,
it strongly improves the robustness of the results. Second, di↵er-
ent methods are complementary, in the sense that they have spe-
cific capabilities which go beyond simple fNL estimation. For
example, the skew-C` method defined below facilitates the mon-
itoring of NG foreground contamination, while the binned and
modal estimators allow model-independent reconstruction of the
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data bispectrum, and so on. The skew-C` method enables the na-
ture of any detected NG to be determined. Thus, the simultane-
ous application of all these techniques also allows us to increase
the range and scope of our analysis.

In the following, we briefly outline the main features of
the three optimal bispectrum estimation pipelines that are used
for Planck measurements of fNL. We will only provide a
short summary here, focused on the extension to polariza-
tion data, referring the reader who is interested in more tech-
nical aspects to our previous analysis of temperature data
(Planck Collaboration XXIV 2014).

3.1. KSW and skew-C` estimators

KSW and skew-C` estimators (Komatsu et al. 2005; Munshi &
Heavens 2010) can be used for bispectrum templates that are
written in factorizable (separable) form, i.e., as a linear combi-
nation of separate products of functions7 of k1, k2, and k3. This
allows reduction of the three-dimensional integration over the
bispectrum configurations into a product of three separate one-
dimensional sums over `1, `2, `3. This leads to a massive re-
duction in computational time (O(Npix), where Npix is the num-
ber of pixels in the map). The main di↵erence between the
KSW and skew-C` pipelines is that the former estimates the fNL
amplitude directly, whereas the latter initially estimates the so
called “bispectrum-related power spectrum” (in short, “skew-
C`”) function. Roughly speaking, the skew-C` associates, with
each angular wavenumber `, the contribution to the amplitude
fNL (for each given shape) extracted from all triangles with one
fixed side of size `. After resumming over the contributions from
each `-bin, the final point-like fNL estimate is obtained exactly as
KSW. Equipping the KSW estimator with a skew-C` extension
can be particularly useful in the presence of (expected) spurious
NG contaminants in the data. The slope of the skew-C` statistic
is in fact shape-dependent and can be used to separate multiple
NG components in the map.

3.2. Modal estimators

Modal estimators (Fergusson et al. 2010a, 2012) are based on
decomposing the bispectrum (both from theory and from data)
into a sum of uncorrelated separable templates, forming a com-
plete basis in bispectrum space, and measuring the amplitude
of each. The evaluation of the amplitude for each template can
be sped up by using a KSW approach (since the templates them-
selves are separable by construction). All amplitudes form a vec-
tor, also referred to as the “mode spectrum”. It is then possible
to measure the correlation of the observed data mode spectrum
with the theoretical mode spectra for di↵erent primordial shapes,
in order to obtain estimates of the primordial fNL. Note also that
the observed mode spectrum from data is theory-independent,
and contains all the information from the data. Correlating the
observed mode spectrum to theoretical mode vectors then allows
the extraction of all the fNL amplitudes simultaneously. This
makes modal estimators naturally suited for NG analyses, both
when there are a large number of competing models to analyse,

7 We note that the local, equilateral, and orthogonal templates of
Sect. 2 are separable. In fact, while the theoretical local NG models
are manifestly separable, the equilateral and orthogonal templates of
Eqs. (3) and (4) are factorizable approximations of the original non-
separable shapes, that were derived exactly with the purpose of allow-
ing the application of this type of estimator (Creminelli et al. 2006;
Senatore et al. 2010).

or when a model has free parameters through which we wish to
scan (more than 500 shapes were analysed when applying this
technique to Planck data). Another advantage is that by expand-
ing into separable basis templates, the modal estimator does not
require separability of the starting theoretical shape in order to
be applicable. Finally, after obtaining the data mode spectrum, it
is possible to build a linear combination of the basis templates,
using the measured amplitudes as coe�cients, thus obtaining a
model-independent full reconstruction of the bispectrum of the
data. Of course the reconstructed bispectrum will be smoothed,
as the estimator must use a finite number of basis templates.

For this analysis, the modal method is implemented in two
ways. One of them generalizes our previous temperature modal
pipeline by expanding, for each shape, the corresponding TTT,
EEE, TTE and EET bispectra. We then exploit separability to
build the covariance matrix of these expanded bispectra (Liguori,
in prep.), and to measure fNL e�ciently using Eq. (36). This
modal pipeline will be referred to throughout the paper as the
“Modal 1” pipeline.

The other implementation, which we will refer to as
“Modal 2”, utilizes a novel approach where the aT

`m and aE
`m are

first orthogonalized to produce new uncorrelated unit variance
â`m coe�cients,

âT
`m =

aT
`mq
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`

(41)

âE
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`
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· (42)

We then decompose the new bispectra as
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mi
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! D
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âX2
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E
, (43)

which can be constrained independently, since they are
uncorrelated. In this case the estimator then takes on a partic-
ularly simple form (Fergusson 2014). This new form is math-
ematically equivalent to the previous modal method, but in-
volves significantly fewer terms in the estimator. However, due
to the orthogonalization procedure we cannot constrain the full
EEE bispectrum without further processing, just the additional
part which is orthogonal to temperature. For this reason, al-
though the “Modal 2” T+E results incorporate all the polariza-
tion information, the EEE results alone are not presented here.

In our analysis, both modal techniques (together with all the
other estimators described in this section) were used to measure
fNL for the three main shapes i.e., local, equilateral, and orthog-
onal. Besides this, we optimized the two pipelines for di↵erent
purposes. The “Modal 1” estimator was adopted to perform a
large number of robustness tests of our results, especially in re-
lation to the local, equilateral and orthogonal measurements. The
“Modal 2” pipeline was instead mostly used to study a large
number of “non-standard” primordial shapes (e.g., oscillatory
bispectra). For this reason, each pipeline uses a di↵erent set of
basis templates. The “Modal 1” estimator starts from a poly-
nomial basis with 600 modes, and includes nine more modes
that are the contributions from last scattering to the exact radial
KSW expansion of the local, equilateral and orthogonal tem-
plates. The “Modal 2” expansion uses a high-resolution basis
with 2000 polynomial modes, augmented with a Sachs-Wolfe
local bispectrum template, in order to improve convergence ef-
ficiency in the squeezed limit. In this way, the high resolution
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estimator provides the ability to scan across a wide variety of
non-separable and oscillatory shapes, while the lower resolution
pipeline gives e�cient convergence in the fNL measurements for
the standard local, equilateral, and orthogonal shapes, o↵ering
rapid analysis for validation purposes. The “Modal 1” pipeline
can also be generalized for the estimation of parity-odd bispec-
tra, which is included in our analysis of non-standard shapes.

3.3. Binned bispectrum estimator

One can also use a binned estimator (Bucher et al. 2010, 2015),
exploiting the fact that the theoretical bispectra of interest are
generally smooth functions in `-space. As a result, data and tem-
plates can be binned in ` with minimal loss of information, but
with large computational gains from data compression. The data
bispectrum in the binning grid is then computed and compared
to the binned primordial shapes to obtain fNL. No KSW-like ap-
proach, which requires separability and mixing of theoretical and
observational bispectra in the computation, is required. Instead,
the binned data bispectrum and the binned theoretical bispec-
trum and covariance are computed and stored completely inde-
pendently, and only combined at the very last stage in a sum over
the bins to obtain fNL. This means that it is very easy to test addi-
tional shapes or di↵erent cosmologies, and the data bispectrum
can also be studied on its own in a non-parametric approach. In
particular the smoothed binned bispectrum approach, also used
in this paper, investigates the (smoothed) binned bispectrum of
the map divided by its expected standard deviation, to test if there
is a significant bispectral NG of any type in the map. Another
advantage of the binned bispectrum estimator is that the depen-
dence of fNL on ` can be investigated for free, simply by leaving
out bins from the final sum.

In more detail, the computation for the binned bispectrum
estimator is based on Eqs. (38) and (39). However, instead of us-
ing the reduced bispectrum bX1X2X3

`1`2`3
, all expressions start from the

alternative rotationally-invariant reduced bispectrum BX1X2X3
`1`2`3

=

h2
`1`2`3

bX1X2X3
`1`2`3

, where h is defined in Eq. (40). The expression in
Eq. (39) for the inner product remains the same when replac-
ing b by B, except that the h2 becomes h�2. The importance of
BX1X2X3
`1`2`3

is that it can be determined directly from maximally-
filtered maps;

BX1X2X3
`1`2`3

=

Z
d2 n̂ MX1

`1
(n̂)MX2

`2
(n̂)MX3

`3
(n̂), (44)

where

MX
` (n̂) =

X

m

aX
`mY`m(n̂). (45)

Binning is then implemented by adding a sum over all ` inside a
bin to the expression for the filtered map given in Eq. (45), thus
obtaining the observed binned bispectrum of the map BX1X2X3, obs

i1i2i3 ,
with bin indices i1, i2, i3. The linear correction term is obtained
in a similar way (and subtracted from the cubic term), but with
two of the maps in Eq. (44) replaced by Gaussian simulations,
and taking the average over a large number of those.

The theoretical templates are binned simply by summing the
exact expression over the `s inside a bin8, and the same is true for

8 We note that the enormous computational gain of the binned bispec-
trum estimator comes from the binned determination of the observed
bispectrum; determining the theoretical bispectrum templates is fast,
even when done exactly.

the covariance matrix h2
`1`2`3

CX1X01
`1

CX2X02
`2

CX3X03
`3

. The binning is op-
timized in such a way as to maximize the overlap, defined using
the inner product of Eq. (39) between the binned and the exact
template for all shapes under consideration. Finally the estimate
of fNL is computed using Eq. (38), where the inner product now
contains a sum over bin indices i instead of multipoles `, and
the bispectra and covariance matrix are replaced by their binned
versions.

3.4. Data set and simulations

In the following, we will apply our bispectrum estimation
pipelines both to simulations and data, and consider a large
number of shapes, either primordial or non-primordial in ori-
gin. Simulations will be used for a wide range of purposes, from
comparisons of the outcomes of di↵erent estimators, to tests of
instrumental systematics and foreground contamination, as well
as Monte Carlo evaluation of error bars. For this reason, many
di↵erent sets of simulated maps will be used, with features that
will vary, depending on the specific application, and will be de-
scribed case by case throughout the paper. Most of the time,
however, we will use the FFP8 simulation data set described in
Planck Collaboration XII (2016), or mock data sets obtained by
processing FFP8 maps in various ways. These are the most real-
istic simulations available, modelling the CMB sky and the in-
strumental e↵ects of Planck to the best of our current knowledge.
They have passed through the same steps of the component sep-
aration pipelines as the real sky map and are the same maps as
used for the final validation of the estimators in Sect. 5.3.

As far as actual data are concerned (Planck
Collaboration I 2016; Planck Collaboration II 2016;
Planck Collaboration III 2016; Planck Collaboration IV 2016;
Planck Collaboration V 2016; Planck Collaboration VI 2016;
Planck Collaboration VII 2016; Planck Collaboration VIII
2016) the maps analysed in this work are the Planck 2015 sky
map, both in temperature and in E polarization, as cleaned with
the four component separation methods SMICA, SEVEM, NILC,
and Commander (Planck Collaboration IX 2016). As explained
in Planck Collaboration VII (2016), the polarization map has
had a high-pass filter applied to it, since the characterization
of systematics and foregrounds in low-` polarization is not
yet satisfactory. This filter removes the scales below ` = 20
completely, and those between ` = 20 and ` = 40 partially. In
all our analyses we use `min = 40 for polarization, in order to
be independent of the details of this filter. For temperature, we
use `min = 2. All the final cleaned maps are smoothed with a
50 Gaussian beam in temperature, and a 100 Gaussian beam in
polarization.

The maps are masked to remove the brightest parts of the
Galaxy as well as significant point sources. The masks used
are the common masks of the Planck 2015 release in tem-
perature and polarization, which are the union of the con-
fidence masks for the four component separation methods9

(Planck Collaboration IX 2016). The sky coverages are respec-
tively fsky = 0.76 in temperature and fsky = 0.74 in polariza-
tion. The stability of our results as a function of the mask is

9 We note that the Planck collaboration produced two slightly di↵erent
sets of union masks (see Planck Collaboration IX 2016 for details). We
choose to adopt the more conservative set in this paper, as we found that
the agreement between di↵erent component separation methods signif-
icantly increases with these masks when we measure fNL of shapes that
peak in the squeezed limit (while the di↵erences are very small in other
cases).
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investigated in Sect. 7.2, where we show that our temperature
and joint temperature plus polarization results do not change sig-
nificantly when we consider a larger sky coverage.

In Sects. 7.1 and 7.3 we also compare the performance of
di↵erent component separation methods, and conclude that, with
respect to bispectrum estimation, the most accurate results are
obtained using the SMICA data set. As already done for the 2013
release, we will thus consider SMICA as our main data set, using
the other methods for important cross-checking purposes.

If we consider only temperature, current SMICA data become
noise dominated at ` ' 2000, while previous nominal mis-
sion data were noise dominated at ` ' 1700. The mask used
for the 2013 release was also slightly larger than the current
one ( fsky = 0.73 in 2013 vs. fsky = 0.76 in 2015). Since the
fNL signal-to-noise ratio, as quantified by the Fisher Informa-
tion Matrix, scales as (S/N) / `

p
fsky in the signal dominated

regime and saturates in the noise-dominated regime, we expect
an improvement in our fNL temperature constraints of about 20%
when going from the 2013 nominal mission release to the cur-
rent results. Adding polarization and accounting for all possible
TTE, EET, and EEE bispectra produces further improvements.
Since we are neglecting the first 40 polarization multipoles, such
improvements are expected to be fairly small for shapes peak-
ing in the squeezed limit, and more pronounced for equilateral
type bispectra. A Fisher matrix approach shows that error bars
are expected to improve by about 10% for the local shape and
about 40% for the equilateral shape. This is in good agreement
with our actual measurements, as can be seen from the results
presented in Sect. 6 onwards.

3.5. Data analysis settings

Now we detail the general setup adopted for the analysis of
Planck 2015 data by the four di↵erent optimal bispectrum es-
timation pipelines, described in previous sections.

As already explained, inpainting of the masked regions of
the sky is a preliminary data filtering operation that all pipelines
must perform, in order to retain optimality. We found that the
inpainting method used in 2013 (Planck Collaboration XXIV
2014) for temperature maps still works well when polarization
is included (note that it is the original T, Q, and U maps that
should be inpainted, not the derived E map). We adopt a sim-
ple di↵usive inpainting method. First the masked regions of the
map are filled with the average value of the rest of the map. Then
the value of each masked pixel is replaced by the average value
of its (generally eight) direct neighbour pixels. The latter step is
repeated a fixed number of times (2000)10. Relevant, final com-
putations in map space (see e.g., Eq. (44)) are always done after
remasking, so that the inpainted regions of the map are not used
directly. The relevance of the inpainting procedure is that it re-
duces the e↵ect of the sharp edges and the lack of large-scale
power inside the mask leaking into the rest of the map during
harmonic transforms.

For the linear correction term and to determine error bars,
we use the FFP8 simulations (see Planck Collaboration XII
2016, and Sect. 3.4), filtered through the di↵erent component

10 For bispectrum purposes we found no di↵erence between the results
when performing the procedure without a bu↵er (the so-called “Gauss-
Seidel” method, where amongst the neighbours will be pixels both at
the current and at the previous iteration) and with a bu↵er (the so-called
“Jacobi” method, where all neighbour pixels will be at the previous iter-
ation), except that the former converges faster. We found 2000 iterations
to work well in the “Gauss-Seidel” case.

separation pipelines, using the same weights as used for the
actual data when co-adding frequency channels. To compute
all theoretical quantities (like the bispectrum templates and the
ISW-lensing bias) we use the Planck 2015 best-fit cosmological
parameters as our fiducial cosmology. However, results are quite
insensitive to small changes in these parameters.

As pointed out in Sect. 3.4, low-` multipoles are filtered out
of the input polarization data set, so that all of our analyses will
use `min = 40 in polarization, and `min = 2 in temperature. The
choice of `max is dictated by the angular resolution of the cleaned
maps, which is 50 in temperature, and 100 in polarization, and
by the fact that the temperature data become noise-dominated at
` ' 2000, while the polarization information saturates around
` ' 1000. The KSW and binned estimators use `max = 2500
for temperature, while the modal estimators use `max = 2000.
As shown explicitly in Sect. 7.4, results are completely stable
between ` = 2000 and ` = 2500, so that this has no impact
on fNL. Similarly the binned estimator uses `max = 2000 for po-
larization, while the other estimators use `max = 1500, but again
Sect. 7.4 shows that this di↵erence is unimportant. The estima-
tors also di↵er in the number of maps used to compute the linear
correction term and the error bars, but generally it is of the or-
der of 200. This di↵erence is due to the di↵erent convergence
properties of the estimators, some converging faster than others.

The binned bispectrum estimator uses 57 bins11 for the anal-
ysis, which were determined by optimizing the correlation be-
tween the exact and the binned templates for the di↵erent shapes
in temperature and polarization, as well as the full combined
case. This is equivalent to minimizing the variance of the dif-
ferent fNL parameters, where we focus in particular on the pri-
mordial shapes.

As previously explained, we use two di↵erent versions of
the polarized modal pipelines, called “Modal 1” and “Modal 2”
in the paper. Besides technical and conceptual implementation
di↵erences, the two modal estimators also use di↵erent sets of
basis templates. The “Modal 1” pipeline uses 600 polynomial
modes, plus nine “KSW radial modes”, computed at last scat-
tering, while “Modal 2” has a basis formed by 2000 polyno-
mial modes, augmented with a Sachs-Wolfe local bispectrum
template. Due to the way polarization is implemented in the
“Modal 2” pipeline, it cannot determine results for E-only. More
details and explanations of the di↵erent choices are provided in
Sect. 3.2.

As already stressed, the use of several independent bispec-
trum estimators, and several completely independent component
separation methods allows a remarkable level of cross-validation
of our results in order to establish their robustness. The fact that
the bispectrum estimators are statistically equivalent and pro-
duce practically optimal results will be established in Sect. 5.
The validation of the component separation methods is described
in Planck Collaboration IX (2016) and Sect. 7.

4. Non-primordial contributions to the CMB

bispectrum

Here we investigate several bispectra of non-primordial origin
that are expected to be present in the data, and quantify their
11 The boundary values of the bins are: 2, 4, 10, 18, 30, 40, 53, 71, 99,
126, 154, 211, 243, 281, 309, 343, 378, 420, 445, 476, 518, 549, 591,
619, 659, 700, 742, 771, 800, 849, 899, 931, 966, 1001, 1035, 1092,
1150, 1184, 1230, 1257, 1291, 1346, 1400, 1460, 1501, 1520, 1540,
1575, 1610, 1665, 1725, 1795, 1846, 1897, 2001, 2091, 2240, and 2500
(i.e., the first bin is [2, 3], the second [4, 9], etc., while the last one is
[2240, 2500]).
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impact on our fNL results. We devote particular attention to as-
sessing potential biases that these NG signals might induce on
the primordial bispectra. When forecasting such biases, we as-
sume the data analysis settings discussed in Sects. 3.4 and 3.5.

4.1. Non-Gaussianity from the lensing-ISW bispectrum

The correlation between the gravitational lensing of the
CMB anisotropies and the integrated Sachs-Wolfe (ISW) e↵ect
gives rise to a secondary CMB bispectrum – characterized by
an oscillatory behaviour and peaked on squeezed configura-
tions – that is a well-known contaminant to the primordial
NG signal (Hanson & Lewis 2009; Mangilli & Verde 2009;
Lewis et al. 2011; Mangilli et al. 2013). The temperature-only
2013 Planck results (Planck Collaboration XXIV 2014;
Planck Collaboration XIX 2014; Planck Collaboration XVII
2014) showed evidence for the first time for the lensing-
ISW CMB bispectrum and associated bias. Based on the
same methodology used for the 2013 Planck data analysis
(Planck Collaboration XXIV 2014), here we update the compu-
tation of the lensing-ISW bispectrum and its bias to include the
full mission temperature and polarization data.

As shown by Cooray & Melchiorri (2006), the direct
lensing-ISW correlation in E-polarization due to rescattering of
the temperature quadrupole generated by the ISW e↵ect is neg-
ligible. However, as explained in Lewis et al. (2011), there is
an important correlation between the lensing potential and the
large-scale E-polarization generated by scattering at reioniza-
tion. Because the lensing potential is highly correlated with the
ISW signal, this also leads to a non-zero lensing-ISW bispectrum
in polarization.

To determine f LISW
NL , the amplitude parameter of the lensing-

ISW bispectrum, one simply inserts the theoretical template for
this shape into the general expression of Eq. (38). The template
is given by (Hu 2000; Lewis et al. 2011)
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Here CT�
` and CE�

` are the temperature/polarization-lensing po-
tential cross power spectra, and the tilde on C̃TT
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indicates that it is the lensed TT , T E, or EE power spectrum.
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if `1 + `2 + `3 is even and `1, `2, `3 satisfy the triangle inequality,
and zero otherwise.

In this paper our main concern with the lensing-ISW bispec-
trum is not so much to determine its amplitude (although that is
also of great interest), but to compute its influence on the primor-
dial shapes. The bias � f P

NL due to the lensing-ISW bispectrum on

Table 1. Bias in the three primordial fNL parameters due to the lensing-
ISW signal for the four component separation methods.

Lensing-ISW fNL bias

Shape SMICA SEVEM NILC Commander

T Local . . . . . . . . 7.5 7.5 7.3 7.0
T Equilateral . . . . . 1.1 1.2 1.3 1.8
T Orthogonal . . . . �27 �27 �26 �26

E Local . . . . . . . . 1.0 1.1 1.0 1.1
E Equilateral . . . . . 2.6 2.7 2.5 2.9
E Orthogonal . . . . �1.3 �1.3 �1.2 �1.5

T+E Local . . . . . . 5.2 5.5 5.1 4.9
T+E Equilateral . . 3.4 3.4 3.4 3.6
T+E Orthogonal . . �10 �11 �10 �10

the estimation of a given primordial amplitude f P
NL is given by

� f P
NL =

hbLISW, bP
i

hbP, bPi
, (48)

where the inner product is defined in Eq. (39).
The values for the bias are given in Table 1. It should

be noted that these are the results as computed exactly with
Eq. (48). They can di↵er slightly from the ones used in e.g.,
Table 10, where each estimator adopts values computed us-
ing the approximations appropriate to the method. However,
these di↵erences are completely insignificant. As seen already
in Planck Collaboration XXIV (2014), for T-only the bias is very
significant for local and to a lesser extent for orthogonal NG. For
local NG the bias is larger than the error bars on fNL. We see that
for E-only the e↵ect is non-zero but not significant. For the full
T+E case, the bias is smaller than for T-only, but large enough
that it is important to take into account.

The results for f LISW
NL can be found in Table 2. The polarized

version of the template has only been implemented in the binned
bispectrum estimator. Error bars have been determined based on
FFP8 simulations as usual12. The KSW estimator implements
the lensing-ISW template exactly, while the binned and modal
estimators use approximations, as explained in Sect. 3. In partic-
ular for the binned estimator the correlation between the binned
and exact lensing-ISW template is relatively low, since it is a dif-
ficult template to bin (unlike all the other templates considered
in this paper), which is reflected in the larger error bars. Tests
performed on FFP8, as well as other tests, demonstrate that the
lower correlation does not lead to a bias compared to the other
estimators. We will use the KSW results to draw our conclusions.

We see that temperature results from the full mission are
consistent with the 2013 nominal mission (Planck Collabora-
tion XXIV 2014). Including polarization yields results that also
appear consistent and decrease the error bars. However, for now
the T+E conclusions should be considered preliminary, for the
reasons related to polarization data discussed in detail in Sects. 6

12 The average value of the lensing-ISW amplitude determined from
the FFP8 simulations is around 0.85 of the expected value. This value is
very consistent across bispectrum estimators and component separation
methods, which provides a useful consistency test in its own right. Ex-
cept for this e↵ect, all other tests on the temperature FFP8 maps show
them to be very robust and to behave as expected, for example in the
determination of the lensing-ISW bias on the local shape. We took this
e↵ect into account by increasing all error bars in the table by the appro-
priate factor (i.e., dividing them by '0.85).
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Fig. 1. Skew-C` spectrum for the lensing-ISW e↵ect (red line with data
points), from the temperature map. The blue curve is the theoretically-
expected spectrum. Note that the points beyond ` = 1500 are signifi-
cantly correlated.

Table 2. Results for the amplitude of the lensing-ISW bispectrum from
the SMICA, SEVEM, NILC, and Commander foreground-cleaned maps, for
di↵erent bispectrum estimators.

Lensing-ISW amplitude

Method SMICA SEVEM NILC Commander

T
KSW . . . . 0.79 ± 0.28 0.78 ± 0.28 0.78 ± 0.28 0.84 ± 0.28
Binned . . . 0.59 ± 0.33 0.60 ± 0.33 0.68 ± 0.33 0.65 ± 0.36
Modal2 . . 0.72 ± 0.26 0.73 ± 0.26 0.73 ± 0.26 0.78 ± 0.27

T+E
Binned . . . 0.82 ± 0.27 0.75 ± 0.28 0.85 ± 0.26 0.84 ± 0.27

Notes. Error bars are 68% CL; see the main text for how they have been
determined.

and 7. The error bars will also improve when measured with the
other bispectrum estimators. As already seen in 2013, the val-
ues for f LISW

NL are slightly low compared to the expected value
of 1, but not significantly so. On the other hand, the detection
of the lensing-ISW bispectrum is significant, even with our con-
servative rescaling of the error bars. The hypothesis of having
no lensing-ISW bispectrum is excluded at 2.8� using tempera-
ture alone, and improves to 3.0� with the current preliminary
result when including polarization. As mentioned above, the lat-
ter result is likely to improve with further analysis of the Planck
data. In Fig. 1 we present the results of the skew-C` analysis
for lensing-ISW NG for the T map, which illustrates that the
instrument and data processing are not removing this expected
NG signal from the data.

4.2. Non-Gaussianity from extragalactic point sources

The auto-bispectra of extragalactic point sources are a potential
contaminant to primordial NG estimates at Planck frequencies.
The basic modelling and methodology of this section follows the
corresponding section in Planck Collaboration XXIV (2014).

Extragalactic point sources are divided into populations
of unclustered and clustered sources. The former are radio
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Fig. 2. Skew-C` spectrum for unclustered point sources (red line with
data points), from the temperature map. The blue curve is the theoretical
spectrum, given the amplitude determined with the KSW estimator.

and late-type infrared galaxies (see e.g., To↵olatti et al. 1998;
González-Nuevo et al. 2005), while the latter are dusty star-
forming galaxies constituting the cosmic infrared background
(CIB; Lagache et al. 2005). The contamination due to both types
of sources in NG estimators is handled via dedicated bispec-
trum templates which are fitted jointly with the primordial
NG templates.

The unclustered sources have a white noise distribution, and
hence constant polyspectra. Their reduced angular bispectrum
template is thus

bunclust
`1`2`3

= const. (49)

This constant is usually noted bPS or bsrc in the literature (e.g.,
Komatsu & Spergel 2001). This constant template is valid in po-
larization as well as temperature, since the polarization angles
of point sources are less clustered than the source density. How-
ever, since not all these point sources are polarized, we do not
measure the same sources in temperature and in polarization. In
fact, there is no detection of the bispectrum of unclustered point
sources in the cleaned Planck polarization map, unlike in the
temperature map, where Table 3 (binned bispectrum estimator)
and Fig. 2 (skew-C`s) show a clear detection.

The clustered sources (CIB) have a more complex bispec-
trum in temperature, reflecting the distribution of the large-
scale structure and the clustering of galaxies in dark matter
halos (Argüeso et al. 2003; Lacasa et al. 2012; Crawford et al.
2014). The Planck results have allowed the measurement of the
CIB bispectrum at frequencies 217, 353, 545 GHz in the range
` ' 200�700 (Planck Collaboration XXX 2014). In this multi-
pole range, a power law was found to fit the measurement, with
an exponent consistent between frequencies. However, at lower
multipoles theoretical models for the CIB power spectrum (e.g.,
Planck Collaboration XXX 2014) and bispectrum (Lacasa et al.
2014; Pénin et al. 2014) predict a flattening of the CIB power.
We thus take the TTT CIB bispectrum template to be a broken
power law,

bCIB
`1`2`3

/

"
(1 + `1/`break)(1 + `2/`break)(1 + `3/`break)

(1 + `0/`break)3

#q

, (50)
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Table 3. Joint estimates of the bispectrum amplitudes of unclustered
and clustered point sources in the cleaned Planck temperature map, de-
termined with the binned bispectrum estimator.

Map bPS/(10�29) ACIB/(10�27)

SMICA . . . . . . . . 5.6 ± 2.7 0.4 ± 1.4
SEVEM . . . . . . . . 7.9 ± 2.8 0.8 ± 1.4
NILC . . . . . . . . . 9.3 ± 2.7 �0.3 ± 1.4
Commander . . . . 5.9 ± 3.2 1.4 ± 1.6

Notes. The error bars have been determined using FFP8 simulations.

where the index is q = 0.85, the break is located at `break =
70, and `0 = 320 is the pivot scale for normalization. Dusty
star-forming galaxies emit with a low polarization fraction, and
polarization correlates only over the smallest scales, so that the
CIB is negligibly polarized. We thus take vanishing templates
for its polarized bispectra

bCIB,TT E
`1`2`3

= bCIB,T EE
`1`2`3

= bCIB,EEE
`1`2`3

= 0. (51)

Both point source templates, Eqs. (49) and (50), have been
implemented in the binned bispectrum estimator described in
Sect. 3. The results for these two templates applied to the Planck
temperature map, cleaned with the four component separation
methods, can be found in Table 3. Since the two templates are
highly correlated, the results have been determined in a com-
bined analysis. The results have also been determined jointly
with the primordial local, equilateral, and orthogonal templates,
and the lensing-ISW bias has been subtracted, but all of this
makes a negligible di↵erence. Contamination from unclustered
sources is detected in all component-separated maps. However,
ACIB is not detected.

The order of magnitude of the bispectrum amplitudes found
in Table 3 is consistent with expectations. Indeed, for radio
sources at 217 GHz and with a flux cut based on the Planck
ERCSC (Planck Collaboration VII 2011), Lacasa & Aghanim
(2014), the forecasted bPS is approximately 2 ⇥ 10�28. For the
CIB, the Planck 2013 measurement (Planck Collaboration XXX
2014) at 217 GHz gives ACIB ' 6 ⇥ 10�27 when translated into
dimensionless units. The results reported in Table 3 are con-
sistent at the order-of-magnitude level with these estimates, al-
though they are lower, because we are analysing cleaned maps.

The unclustered point source and CIB templates are highly
correlated, at 93%. For this reason it was not deemed a prior-
ity for the other bispectrum estimators to implement the CIB
template as well. Moreover, both point source templates are
negligibly correlated with the primordial NG templates and the
lensing-ISW template (the maximum being the correlation be-
tween equilateral and CIB templates at 2.7%, while correlations
with the unclustered point source template are well below 1%).
For this reason, and despite the detection of point sources in the
cleaned maps, it makes no di↵erence for the primordial results
if point sources are included in a joint analysis or completely
neglected.

An additional contaminant to the cosmological CMB
bispectrum arises from the correlation between the gravitational
lensing of the CMB anisotropies and the CIB anisotropies. This
correlation was detected in Planck Collaboration XVIII (2014)
using an optimal cross-spectrum estimator. The CIB-lensing bis-
pectrum might couple with any of the primordial shapes. How-
ever, the amplitude of the CIB bispectrum is predicted to be
small in the cleaned Planck maps and it has actually not been

detected (see Table 3). The CIB-lensing bispectrum signal is fre-
quency dependent, and it is mostly dominant in the very high
Planck frequencies (see e.g., Curto et al. 2015).

4.3. Non-Gaussianity from residuals of the deglitching
processing

Cosmic rays interacting with the cryogenic detectors induce
spikes in timelines. These high-amplitude, fast-rising signals are
followed by a decay tail. We observe three families of glitches,
characterized by their temporal shape. The amplitude and time
constants of the decays depend on which part of the satellite is hit
(Catalano et al. 2014; Planck Collaboration X 2014). These ran-
dom events are Poisson-distributed in time and produce highly
non-Gaussian systematics.

A method has been developed to remove them directly at the
time-ordered information (TOI) level. This process is performed
iteratively, and is described in detail in Planck Collaboration X
(2014). The short glitches are just flagged in the data, whereas
for the long ones only the fast part is flagged, and the long tail
is substracted from the timeline. This procedure is not perfect,
and there are residuals from the potentially biased errors in the
fit, and the undetected glitches under the threshold of 3.2� of the
TOI noise rms. They could in principle produce a non-Gaussian
signal in the final map. In addition, these residuals could inter-
act with the mapmaking procedure at the destriping level, since
the error on the o↵set determination could be non-Gaussian due
to undetected glitches or a possible bias in the errors of the re-
moval of tails. This is important, because in more than 95% of
the TOI data, tails have been subtracted.

To estimate the e↵ect of these residuals on the determi-
nation of NG, we created two sets of simulations (one in-
cluding glitches and the other not) for every bolometer of the
143 GHz channel. We generated Gaussian CMB maps, and
applied the full TOI processing with a realistic instrumental
noise (Planck Collaboration VII 2016). In the simulations with
glitches, we added glitches at the TOI level, following the prop-
erties measured in the data, and cleaned them with the procedure
applied to the data. For the simulations without glitches, we have
the same CMB and noise realization, but no glitches added at the
TOI level.

We estimated the bias caused by glitches on the measurement
of fNL using the binned bispectrum estimator. The bias on fNL
induced by the glitch residuals g on a map T , including noise and
CMB is given by h f̂NL(T + g) � f̂NL(T )i, where the noise in the
weighting of the estimator is determined from the simulations
with glitches (as it would be for the data). Results are shown
in Table 4. For most shapes, we detect no significant bias. The
higher signal and high dispersion for the local shape might be
due to a mis-calibration of the linear correction. In any case, for
all shapes the bias due to glitches is a negligible correction to
the value of fNL, given its error bars, and we will not take it into
account in the remainder of the paper.

5. Validation tests

During the work for the 2013 release, culminating in the NG
results of Planck Collaboration XXIV (2014), the advantage of
having multiple independent bispectrum estimator implemen-
tations was amply demonstrated. This allows for very useful
cross-checking of results, both during development and for the
final analysis, thus greatly improving the robustness of and con-
fidence in the final results. For this new release we followed
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Table 4. Results on the impact of cosmic ray residuals on the estimation of fNL at 143 GHz, determined using the binned bispectrum estimator.

Local Equilateral Orthogonal Di↵use PS (⇥1029) Lens-ISW

T-only
bias mean . . . . . . . 1.1 ± 0.6 0.8 ± 1.6 �1.0 ± 0.7 0.5 ± 0.2 0.01 ± 0.01
� fNL . . . . . . . . . . . 5.2 64 34 2 0.2

E-only
bias mean . . . . . . . 2.4 ± 5.8 �9.6 ± 8.7 �7.1 ± 14.8 0.0 ± 0.1 �3.0 ± 1.4
� fNL . . . . . . . . . . . 38 157 90 0.6 7.8

T+E
bias mean . . . . . . . 1.8 ± 1.0 �5.1 ± 2.2 0.1 ± 1.5 0.01 ± 0.04 0.01 ± 0.01
� fNL . . . . . . . . . . . 4.4 43 22 0.3 0.2

Notes. We produced 10 simulations. We report the mean of the bias defined in the text, and the error on this mean. We also show the Fisher error
bars on fNL for these simulations.

Table 5. Results from the di↵erent fNL estimators for the set of CMB simulations described in Sect. 5.1 in the ideal case without noise or mask.

fNL

Shape KSW Binned Modal 1 Modal 2 B � KSW M1 � KSW M2 � KSW

T Local . . . . . . . . . . . . . . 7.6 ± 5.4 7.4 ± 5.6 7.4 ± 5.1 7.2 ± 5.7 �0.3 ± 0.6 �0.2 ± 0.4 �0.5 ± 2.2
T Equilateral . . . . . . . . . . . 7 ± 53 5 ± 58 6 ± 53 8 ± 56 �2 ± 12 �1.0 ± 8.4 0 ± 17
T Orthogonal . . . . . . . . . . �22 ± 27 �22 ± 28 �22 ± 27 �17 ± 30 0.5 ± 9.4 �0.2 ± 4.2 5 ± 11

E Local . . . . . . . . . . . . . . �0.9 ± 4.1 �1.3 ± 3.4 �0.9 ± 3.7 . . . �0.3 ± 2.9 0.1 ± 0.5 . . .
E Equilateral . . . . . . . . . . . �9 ± 42 �10 ± 42 �10 ± 40 . . . �1 ± 11 �0.7 ± 9.2 . . .
E Orthogonal . . . . . . . . . . 4 ± 13 5 ± 13 4 ± 12 . . . 0.1 ± 3.8 �0.3 ± 2.7 . . .

T+E Local . . . . . . . . . . . . 2.2 ± 3.1 1.5 ± 2.5 2.1 ± 2.8 2.0 ± 3.3 �0.6 ± 1.0 0.0 ± 0.8 �0.2 ± 1.9
T+E Equilateral . . . . . . . . 0 ± 20 2 ± 22 3 ± 21 0 ± 23 1.4 ± 5.8 2.3 ± 7.3 0 ± 12
T+E Orthogonal . . . . . . . . �4 ± 10 �4 ± 9 �6 ± 9 �5 ± 12 0.3 ± 2.2 �1.1 ± 3.1 �1.0 ± 7.1

Notes. Both the results for the estimators individually and for the di↵erences with KSW are given, for T-only, E-only, and the full combined T+E
analysis. The shapes are assumed independent.

the same procedure, with the same three principal bispectrum
estimators: KSW; binned; and modal, all of which had their
pipelines updated to handle polarization data in addition to
temperature.

Beyond the usefulness of cross-checking, the three esti-
mators complement each other and have di↵erent strengths.
The KSW estimator can treat separable bispectrum templates
without approximation, but it is more work to add new tem-
plates and non-separable templates cannot be handled at all. The
binned and modal estimators can reconstruct the full bispectrum
(smoothed in di↵erent domains), while the skew-C` extension
of the KSW estimator can be used to investigate the bispectrum
beyond fNL. The binned bispectrum estimator is the fastest on a
single map or a set of unrelated maps, but becomes slower than
the other two on a large set of realizations based on the same set-
tings, because the linear correction term cannot be precomputed.
The modal estimator can investigate a wide selection of oscil-
lating or otherwise rapidly changing bispectrum templates that
would be di�cult to bin, while the binned bispectrum estimator
can quickly implement and determine the fNL of an additional
template or the e↵ect of a di↵erent cosmology if the binned bis-
pectrum of the maps has already been computed. The binned es-
timator gets the dependence of fNL on ` for free with its results,
while the modal estimator allows for a statistical investigation of
the mode coe�cients.

In this section we show some of the validation tests, in par-
ticular for polarization. In Sect. 5.1 we investigate the agreement

between estimators, map-by-map, on sets of successively more
realistic maps. In Sect. 5.2 we show that the estimators are un-
biased in the presence of a non-zero fNL. Finally, in Sect. 5.3
we show that the estimators are essentially optimal on a set of
the most realistic Planck simulations available, which are those
used to compute the error bars on our final results.

5.1. Agreement between estimators on a map-by-map basis

The maps used in this subsection are realistic simulations of the
CMB (at resolution Nside = 2048) but without any foregrounds.
They do not contain any primordial NG, but do include ISW-
lensing. Since the final FFP8 simulations were not yet available,
the main goal was to make sure that the estimators agreed with
each other, not only on average, but also on a map-by-map basis.
For this purpose it was enough to look at only 49 maps. Estab-
lishing optimality of the estimators requires a larger number of
maps, and is shown on the FFP8 simulations in Sect. 5.3.

In our first test we include the e↵ect of the 143 GHz beam,
but in other respects the simulations are ideal (no noise, and no
mask). The analysis used `max = 2000 for both T and E. The re-
sults for the average over the maps for the KSW, binned, and
both modal estimators, as well as for the di↵erence between
each estimator and KSW, are shown in Table 5. The shapes
are assumed to be independent in this analysis, which means
that the bias on the local shape due to the ISW-lensing e↵ect
is clearly visible. Results are shown for T-only, E-only, and the

A17, page 15 of 66



A&A 594, A17 (2016)

Table 6. As Table 5, but with noise and no mask.

fNL

Shape KSW Binned Modal 1 Modal 2 B � KSW M1 � KSW M2 � KSW

T Local . . . . . . . . . . . . . . 6.7 ± 4.8 6.4 ± 5.2 6.7 ± 4.7 7.0 ± 5.3 �0.3 ± 1.0 0.1 ± 0.4 0.3 ± 1.2
T Equilateral . . . . . . . . . . . 11 ± 61 12 ± 65 9 ± 63 12 ± 62 1 ± 15 �1.9 ± 9.6 1 ± 12
T Orthogonal . . . . . . . . . . �19 ± 31 �18 ± 34 �20 ± 32 �18 ± 35 1 ± 12 �1.3 ± 5.1 0.8 ± 8.8

E Local . . . . . . . . . . . . . . �2 ± 29 �4 ± 28 �1 ± 29 . . . �2 ± 12 0.4 ± 5.5 . . .
E Equilateral . . . . . . . . . . . 1 ± 191 �18 ± 195 �6 ± 200 . . . �19 ± 47 �7 ± 23 . . .
E Orthogonal . . . . . . . . . . �6 ± 101 0 ± 107 �6 ± 102 . . . 6 ± 25 �0.3 ± 10 . . .

T+E Local . . . . . . . . . . . . 4.9 ± 4.2 4.5 ± 4.4 5.0 ± 4.2 4.9 ± 4.9 �0.4 ± 1.2 0.1 ± 1.5 �0.0 ± 1.2
T+E Equilateral . . . . . . . . 13 ± 46 11 ± 49 9 ± 48 13 ± 47 �2 ± 10 �4 ± 13 �0.3 ± 7.0
T+E Orthogonal . . . . . . . . �11 ± 22 �11 ± 24 �13 ± 22 �11 ± 24 0.0 ± 7.3 �1.3 ± 7.1 0.7 ± 4.5

Table 7. As Table 5, but with noise and a mask.

fNL

Shape KSW Binned Modal 1 Modal 2 B � KSW M1 � KSW M2 � KSW

T Local . . . . . . . . . . . . . . 6.5 ± 5.1 6.1 ± 5.3 6.4 ± 5.0 6.0 ± 5.3 �0.4 ± 1.5 �0.1 ± 0.7 �0.5 ± 1.3
T Equilateral . . . . . . . . . . . 11 ± 73 9 ± 75 6 ± 76 11 ± 70 �2 ± 19 �5 ± 14 0 ± 12
T Orthogonal . . . . . . . . . . �22 ± 37 �21 ± 37 �23 ± 36 �20 ± 37 2 ± 14 �0.9 ± 6.1 2.6 ± 9.2

E Local . . . . . . . . . . . . . . 4 ± 36 0 ± 35 5 ± 37 . . . �4 ± 16 1 ± 13 . . .
E Equilateral . . . . . . . . . . . �32 ± 242 �49 ± 209 �38 ± 246 . . . �17 ± 88 �6 ± 34 . . .
E Orthogonal . . . . . . . . . . �9 ± 138 �7 ± 139 �7 ± 142 . . . 2 ± 45 2 ± 19 . . .

T+E Local . . . . . . . . . . . . 5.1 ± 5.3 4.2 ± 5.1 4.8 ± 5.0 4.5 ± 5.2 �1.0 ± 1.7 �0.3 ± 1.7 �0.6 ± 1.3
T+E Equilateral . . . . . . . . 19 ± 50 16 ± 50 15 ± 53 16 ± 45 �3 ± 14 �4 ± 19 �3.2 ± 9.8
T+E Orthogonal . . . . . . . . �12 ± 25 �11 ± 26 �13 ± 25 �11 ± 23 1.9 ± 8.7 �1.0 ± 9.9 1.4 ± 5.9

full combined T+E analysis. Note that the second modal imple-
mentation cannot compute results for E alone. One clearly sees
that the results agree very well. It is also interesting to note that
in this ideal noiseless case, one can actually determine fNL more
accurately from polarization alone than from temperature alone.
This is due to the narrower transfer function in polarization, so
that the primordial bispectrum is less smoothed in its projection
to two-dimensional harmonic space.

The second test is identical to the first, except that we add
realistic anisotropic noise realizations to the full-sky maps, based
on the 143 GHz channel. The estimators now require the use of
the linear correction term, and results are shown in Table 6. The
agreement is still very good, although slightly worse than in the
ideal case, as expected. The fact that the error bars for the T-only
local case here are actually a bit smaller than in the ideal case is
an artefact of the small number of maps; i.e., the error bars have
not completely converged yet. On the other hand, the fact that
the error bars for E-only are much larger than in the ideal case is
a real e↵ect; the Planck single-frequency polarization maps are
noise-dominated.

Finally, the third test is identical to the second, except that
we now also add a mask. The mask chosen is realistic, based on
the union of the confidence masks provided by the SMICA, NILC,
SEVEM, and Commander methods for this particular set of simu-
lations. It contains both a Galactic and a point source part. The
temperature mask leaves 79% of the sky unmasked, while the
polarization mask leaves 76%. The results are shown in Table 7,
while the map-by-map comparison is given in Fig. 3. From the
table we see that the agreement between the di↵erent bispectrum
estimators is still very good and only slightly degraded when

compared to the previous case. The typical discrepancy between
the bispectrum estimators, even in this most realistic case, is less
than about a third of the uncertainty on fNL. This is apparent in
the map-by-map comparison of Fig. 3.

5.2. Validation of estimators in the presence of primordial
non-Gaussianity

After the map-by-map comparison of the previous section, we
next want to make sure that the estimators are unbiased. For
this purpose we prepared a di↵erent set of 100 T and E CMB
simulations, still with cosmological parameters as determined
by Planck. This time ISW-lensing is not present, but there is
a nonzero local fNL = 12. To these maps we add the same
beam, anisotropic noise, and mask as before. We again take
`max = 2000, and the results are given in Table 8.

We see that all the estimators correctly recover the input
value, both in temperature and in polarization. The results for the
equilateral and orthogonal shapes are consistent with the fact that
those templates have a non-zero correlation with the local shape
(the table gives the results for an analysis where all shapes are
assumed independent). For example, a joint analysis of the T+E
binned estimator gives f local

NL = 11.5±6.4, f equil
NL = �7.5±51, and

f ortho
NL = �0.4±29. Except for the first modal estimator in E-only

(due to an insu�cient number of maps in the linear correction
term), we also find that the error bars for the bispectrum-based
estimators are very close to the Fisher errors. Note that a slight
increase in the error bars compared to Fisher estimates is ex-
pected for the local shape in T-only and in T+E, due to the signal
being significantly di↵erent from zero there (the Fisher error bars

A17, page 16 of 66



Planck Collaboration: Planck 2015 results. XVII.

10 20 30 40

Map number

�
5

0
5

10
15

20

fl
o
ca

l
N

L
(T

)

10 20 30 40

Map number
�

15
0�

10
0

�
50

0
50

10
0

15
0

20
0

feq
u
il

N
L

(T
)

10 20 30 40

Map number

�
15

0
�

10
0

�
50

0
50

10
0

fo
rt

h
o

N
L

(T
)

KSW

Binned

Modal1

Modal2

10 20 30 40

Map number

�
10

0
�

50
0

50
10

0
15

0

fl
o
ca

l
N

L
(E

)

10 20 30 40

Map number

�
80

0�
60

0�
40

0�
20

0
0

20
0

40
0

60
0

80
0

feq
u
il

N
L

(E
)

10 20 30 40

Map number
�

40
0�

30
0�

20
0�

10
0

0
10

0
20

0
30

0
40

0

fo
rt

h
o

N
L

(E
)

10 20 30 40

Map number

�
15

�
10

�
5

0
5

10
15

20

fl
o
ca

l
N

L
(T

+
E
)

10 20 30 40

Map number

�
10

0
�

50
0

50
10

0
15

0

feq
u
il

N
L

(T
+

E
)

10 20 30 40

Map number

�
10

0�
80

�
60

�
40

�
20

0
20

40
60

fo
rt

h
o

N
L

(T
+

E
)

Fig. 3. Map-by-map comparison of the results from the di↵erent estimators for local (left), equilateral (centre), and orthogonal (right) fNL (taking
the shapes to be independent), for the third set of simulations described in Sect. 5.1, including both noise and a mask. Results are shown for T-only
(top), E-only (centre), and the full combined T+E case (bottom). The legend for the estimators can be found in the top right figure. The horizontal
solid line is the average value of all maps for KSW, and the dashed and dotted horizontal lines correspond to ±1� and ±2� deviations, respectively.

for the local case are 5.8 for T-only, 26 for E-only, and 5.0 for
T+E). Hence the estimators are e↵ectively optimal, as will be
illustrated in more detail in the next section.

5.3. Validation of estimators on realistic Planck simulations

As a final validation test, we ran our estimators on a large
set of the most realistic simulations available. These are
the FFP8 simulations (Planck Collaboration XII 2016) using
SMICAfor foreground separation. They are the same simulations
we use to determine the error bars on our final SMICA results in
Sect. 6. They contain the Collaboration’s best estimates of the
CMB sky and of Planck’s noise and beam e↵ects, and have been

cleaned by SMICA in the same way as the real sky map. The mask
used is the same common mask defined for the real data analy-
sis. For this test the estimators were all processed with the same
settings used for the final data analysis.

Here we take 159 of these maps, and process these using all
the estimators. By contrast, for the final results in Sect. 6, the
convergence of the error bars of each estimator was carefully
checked, using more maps if required. This explains why there
are some small di↵erences between the error bars in Sect. 6 and
the ones presented here.

The results are shown in Table 9. Note that these are the
results from an independent analysis, without subtracting the
ISW-lensing bias. We also show the results from Minkowski
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Table 8. Results from the di↵erent estimators for fNL for the set of CMB
simulations with f local

NL = 12 described in Sect. 5.2.

fNL

Shape KSW Binned Modal 1 Modal 2

T
Local . . . 11.2 ± 6.7 10.9 ± 6.3 11.9 ± 6.6 11.6 ± 6.6
Equilateral 26 ± 78 24 ± 77 31 ± 82 27 ± 76
Orthogonal �33 ± 34 �33 ± 35 �34 ± 36 �33 ± 36

E
Local . . . 11 ± 29 12 ± 26 9 ± 36 . . .
Equilateral 34 ± 182 32 ± 153 10 ± 241 . . .
Orthogonal �37 ± 110 �28 ± 115 �31 ± 143 . . .

T+E
Local . . . 11.3 ± 5.5 11.2 ± 5.0 11.1 ± 5.8 11.0 ± 5.4
Equilateral 29 ± 52 24 ± 50 28 ± 54 24 ± 50
Orthogonal �29 ± 26 �28 ± 23 �30 ± 28 �26 ± 23

Notes. Results are given for T-only, E-only, and the full combined
T+E analysis. The shapes are assumed independent (see the main text
for a discussion of this point).

functionals (for the local case only)13. We see that there is very
good agreement between the bispectrum estimators even on this
most complex and realistic set of simulations. The standard devi-
ation of the di↵erence between bispectrum estimators generally
stays below one third of the error bar on fNL, the only excep-
tion being the T-only equilateral result for the Modal 1 pipeline,
which is still smaller than one half of the error bar. We see
that the results from Minkowski functionals are consistent, but
clearly suboptimal for fNL. They are however a valuable, inde-
pendent check.

The exact Fisher error bars for the nine shapes considered
in the table are, in the same order as the table: 5.4, 69, 35; 31,
131, 74; 4.7, 43, 21. Taking into account the relative error in the
standard deviation of 1/

p
2(n � 1), which is 5.6% for 159 maps,

we see that all bispectrum estimators are e↵ectively optimal on
all shapes, except for the E-only equilateral case where they ap-
pear slightly suboptimal. The small suboptimality of the Modal 2
pipeline for the local shape seen here disappears once more maps
are used (see the results in Sect. 6).

In conclusion, all these validation tests show that we have
very good agreement between the results from the di↵erent bis-
pectrum estimators, not just on average, but also on a map-by-
map basis. In addition we see that, despite the approximations
made in the pipelines, and the simple treatment of the masked
part of the maps (di↵usive inpainting method and fsky factor),
the bispectrum estimators we use are all essentially optimal.

6. Results

6.1. Constraints on local, equilateral, and orthogonal fNL

In this section we investigate the local, equilateral, and orthogo-
nal primordial templates. These are now established as the stan-
dard shapes to study first when investigating the bispectrum
(see Sect. 2 for a theoretical motivation and description of these

13 Since the Minkowski-functional pipeline automatically subtracts the
ISW-lensing bias, the theoretical value for the bias as computed from
the Fisher matrix has been added to its results, to make a direct compar-
ison possible.

shapes). However, they represent only the tip of the bispectral
iceberg, and many more shapes are investigated in Sect. 8, while
full model-independent reconstructions of the bispectrum are
presented in Sect. 6.2.

For a complete description of the Planck data set and the
bispectrum estimator configurations we have used, we refer the
reader in particular to Sects. 3.4 and 3.5. To summarize the over-
all analysis methodology, we have employed four independent
bispectrum estimators on the full mission Planck temperature
and polarization maps obtained from the four di↵erent compo-
nent separation pipelines, SMICA, SEVEM, NILC and Commander.
The bispectrum estimators are the KSW estimator with its skew-
C` extension using exact separable templates (Sect. 3.1), the
Binned estimator using fixed multipole bins (Sect. 3.3), and
the Modal 1 and Modal 2 estimators, which both use separa-
ble eigenmode expansions (Sect. 3.2). Temperature is analysed
over the multipole range `min = 2 to `max = 2000 or above and
polarization is analysed from `min = 40 to `max = 1500 or above
(Sect. 3.5). By employing inpainting and a linear term, all these
estimators essentially achieve optimality (as shown by compar-
ison with Fisher matrix forecasts). The linear term in Eq. (36)
and the uncertainties are determined using the FFP8 simulations
(Sect. 3.5), also processed through the di↵erent foreground-
separation pipelines. Our thorough validation campaign for these
estimators is presented in Sect. 5.

The results of the analysis of the four cleaned maps with the
four estimators, for T-only, E-only, and full T+E, are shown in
Table 10, which is one of the main results of this paper. Results
are determined while assuming all shapes to be independent, and
are shown both with and without subtraction of the ISW-lensing
bias (see Sect. 4.1 for more details about ISW-lensing). This bias
is most important (relative to the size of the error bars) for the
local shape, but also non-negligible for the orthogonal shape.
Results here have not been marginalized over the point source
contributions. While Sect. 4.2 shows that there is still a signifi-
cant contamination by unclustered point sources in the cleaned
maps, the correlation with the primordial templates is so small
that this has no impact on the results reported here (as checked
explicitly).

While Table 10 is the main result of this section, in order
to simplify the use of the Planck results by the wider scientific
community, we also present in Table 11 the results that can be
considered the final Planck 2015 results for the local, equilateral,
and orthogonal shapes. As in 2013, we select the combination of
the KSW estimator and the SMICA map for this. The SMICA map
consistently performs well in all data validation tests, which are
discussed in detail in Sect. 7. The KSW estimator, while unable
to deal with non-separable templates, treats separable templates
exactly, and the local, equilateral, and orthogonal template are all
separable. On the other hand, the binned and modal estimators
can deal with non-separable shapes and have other advantages
as well (like full bispectrum reconstruction), but at the price of
using approximations for the templates. However, they have all
been optimized in such a way that the correlation with the ex-
act templates for the three primordial shapes is close to perfect,
so that in the end the results by the di↵erent estimators are sta-
tistically equivalent. Compared to the corresponding values in
Table 10, the di↵erence in the numbers in the last column of
Table 11 is due to the fact that in the latter the equilateral and
orthogonal fNL have been determined jointly.

Focusing on the results for temperature-only and the full
temperature plus polarization (T+E) results, we see that there is
no evidence for a non-zero bispectrum with any of these three
primordial shapes (local, equilateral, and orthogonal). After
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Table 9. Results from the di↵erent estimators for fNL for the set of SMICA simulations based on FFP8 described in Sect. 5.3.

fNL

Shape KSW Binned Modal 1 Modal 2 Mink.F. B � KSW M1 � KSW M2 � KSW MF � KSW

T
Local . . . . . 7.1 ± 5.5 7.0 ± 5.4 6.2 ± 5.5 6.3 ± 6.2 7 ± 12 �0.1 ± 1.1 �0.9 ± 1.9 �0.8 ± 1.9 0 ± 11
Equilateral . 2 ± 67 4 ± 67 �4 ± 73 5 ± 66 . . . 2 ± 19 �6 ± 32 3 ± 18 . . .
Orthogonal . �23 ± 32 �24 ± 33 �24 ± 33 �20 ± 36 . . . �1 ± 11 �0.9 ± 9.1 3 ± 14 . . .

E
Local . . . . . 0.5 ± 32 0 ± 35 1 ± 30 . . . 0 ± 49 �0.8 ± 8.3 0.7 ± 8.3 . . . 0 ± 37
Equilateral . 7 ± 144 7 ± 143 9 ± 152 . . . . . . 0 ± 37 2 ± 35 . . . . . .
Orthogonal . 5 ± 72 7 ± 75 4 ± 73 . . . . . . 2 ± 22 �1 ± 17 . . . . . .

T+E
Local . . . . . 5.6 ± 5.1 5.0 ± 4.9 4.7 ± 4.8 4.3 ± 5.3 5 ± 11 �0.6 ± 1.2 �0.9 ± 1.5 �1.3 ± 1.7 �1 ± 11
Equilateral . 3 ± 46 5 ± 44 3 ± 46 4 ± 43 . . . 2 ± 14 0 ± 14 1.0 ± 9.7 . . .
Orthogonal . �10 ± 22 �9 ± 22 �9 ± 21 �7 ± 22 . . . 0.8 ± 7.0 0.8 ± 7.3 2.7 ± 7.7 . . .

Notes. Both the results for the estimators individually and for the di↵erences with KSW are given, for T-only, E-only, and the full combined T+E
analysis. The shapes are assumed independent and the lensing-ISW bias has not been subtracted.

ISW-lensing subtraction, all fNL values are consistent with 0
at 68% CL. The temperature results are all very similar to
the ones from the nominal mission data published in 2013
(Planck Collaboration XXIV 2014), with very minor improve-
ments in the error bars due to the additional temperature data.
We also see that results are quite consistent when including po-
larization, with error bars shrinking by about 15% for local, 35%
for equilateral, and 40% for orthogonal.

Table 10 displays very good agreement between the results
from the di↵erent estimators, at the level expected from the val-
idation tests in Sect. 5. We also note how the error bars, which
are determined using the FFP8 simulations, are statistically in-
distinguishable from the optimal Fisher expectation.

Di↵erent component separation methods also show a good
level of agreement when looking at temperature-only and com-
bined temperature plus polarization results. The accuracy of this
statement will be shown and quantified in detail in Sect. 7. How-
ever, in the same section, we will also show how the agreement
between fNL extracted from di↵erent cleaned maps becomes
significantly degraded when considering polarization-only re-
sults14. The reasons behind this loss of internal consistency are
not fully understood at present. Polarization data are, however,
much noisier than temperature data, implying that the EEE bis-
pectra have a close to negligible weight in the final combined
measurement, which is dominated by the TTT and TTE config-
urations. In fact, as just mentioned above, the combined mea-
surement looks perfectly self-consistent: local, equilateral and
orthogonal fNL measurements in the T+E column of Table 10
pass all our tests of robustness.

We can thus conclude that, while highly challenging from
a technical point of view, the inclusion of polarization in our
estimator pipelines has been a success, allowing for a significant
tightening of the constraints on the three standard primordial bis-
pectrum shapes. On the other hand, in light of the outstanding
issues in E-only results, we present our results conservatively,
and recommend the reader to consider all fNL constraints that
make use of polarization data throughout this paper as prelimi-
nary at the current stage. We stress again that this is a conser-
vative choice, which is made despite the fact that no test to date
shows any evidence of leakage of the issues in EEE bispectra
14 The E-only fNL agreement is still at a reasonable 1� fNL level in most
cases. However this is larger than expectations from simulations, as de-
scribed in Sect. 7.

into the T+E measurements. A detailed description of all the data
validation tests, which lead to the robustness-related assessments
summarized here, can be found in Sect. 7 (for readers less inter-
ested in the technical details, the main results and conclusions of
all these tests are summarized in Sect. 7.6).

6.2. Bispectrum reconstruction

6.2.1. Modal bispectrum reconstruction

The starting point for modal bispectrum estimation is the ro-
bust extraction of the modal coe�cients �n from each of the
full mission foreground-separated maps, that is, SMICA, SEVEM,
NILC, and Commander. The �n-coe�cients are obtained for each
of the temperature, polarization, and mixed bispectrum compo-
nents, TTT, TTE, TEE, and EEE. Their cross-correlation between
cleaning methods is an important validation of their accuracy, as
we shall discuss in the next section, with excellent correspon-
dence for temperature and some di↵erences remaining in polar-
ization. The modal basis number nmax = 2001 for the full mis-
sion analysis has been substantially increased o↵ering a higher
e↵ective resolution when compared to the 2013 Planck Data Re-
lease where nmax = 601 modes were used. Several di↵erent ba-
sis functions have been used, including trigonometric functions,
sinlog basis functions, and polynomials (closely related to Leg-
endre functions), with the latter chosen because of excellent con-
vergence in the squeezed and flattened limits.

We can reconstruct the full three-dimensional Planck bis-
pectrum, obtained using these basis functions, to visualize its
main properties and to determine robustness. A comparison be-
tween the temperature-only bispectra from the Nominal Mis-
sion and full mission at the same nmax = 601 modal resolu-
tion is shown in Fig. 4. Note the excellent agreement with all
the main features replicated in the new data. In Fig. 4 in the
third bispectrum, we also demonstrate the much higher bispec-
trum resolution achieved with the full nmax = 2001 modes.
The tetrapyd shape reflects the constraints on the wavenum-
bers `1, `2, and `3, with the squeezed configuration appearing
on the axes that lie along one `i = 0. The expected ISW-lensing
bispectrum is an oscillating signal in the squeezed limit along
the tetrapyd edges; it is now measured with a significance of
3.0� (see Sect. 4.1). This ISW-lensing signal sets an interesting
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Table 10. Results for the fNL parameters of the primordial local, equilateral, and orthogonal shapes, determined by the KSW, binned and modal
estimators from the SMICA, NILC, SEVEM, and Commander foreground-cleaned maps.

fNL

Independent ISW-lensing subtracted
Shape KSW Binned Modal 1 Modal 2 KSW Binned Modal 1 Modal 2

SMICA T
Local . . 10.2 ± 5.7 8.7 ± 5.4 6.8 ± 5.5 7.8 ± 6.0 2.5 ± 5.7 1.3 ± 5.4 0.5 ± 5.5 1.7 ± 6.0
Equilateral �13 ± 70 �26 ± 66 �16 ± 67 �12 ± 68 �11 ± 70 �27 ± 66 �12 ± 67 �13 ± 68
Orthogonal �56 ± 33 �41 ± 33 �47 ± 33 �63 ± 36 �34 ± 33 �14 ± 33 �20 ± 33 �44 ± 36
SMICA E
Local . 26 ± 32 35 ± 34 20 ± 30 . . . 26 ± 32 34 ± 34 20 ± 30 . . .
Equilateral 144 ± 141 156 ± 143 147 ± 159 . . . 144 ± 141 155 ± 143 147 ± 159 . . .
Orthogonal �128 ± 72 �128 ± 75 �137 ± 73 . . . �128 ± 72 �126 ± 75 �137 ± 73 . . .
SMICA T+E
Local . 6.5 ± 5.0 5.8 ± 4.9 4.0 ± 4.8 4.8 ± 4.9 0.8 ± 5.0 0.7 ± 4.9 �0.6 ± 4.8 0.7 ± 4.9
Equilateral 3 ± 43 12 ± 44 5 ± 48 6 ± 42 3 ± 43 9 ± 44 3 ± 48 5 ± 42
Orthogonal �36 ± 21 �34 ± 22 �30 ± 21 �37 ± 21 �25 ± 21 �24 ± 22 �21 ± 21 �30 ± 21

SEVEM T
Local . 11.3 ± 5.7 9.7 ± 5.4 8.1 ± 5.8 9.3 ± 6.0 3.6 ± 5.7 2.3 ± 5.4 1.4 ± 5.8 3.1 ± 6.0
Equilateral �3 ± 69 �16 ± 66 �11 ± 75 �6 ± 68 �2 ± 69 �18 ± 66 �12 ± 75 �7 ± 68
Orthogonal �59 ± 33 �47 ± 33 �49 ± 34 �66 ± 36 �36 ± 33 �20 ± 33 �23 ± 34 �48 ± 36
SEVEM E
Local . 60 ± 42 62 ± 42 44 ± 38 . . . 60 ± 42 61 ± 42 44 ± 38 . . .
Equilateral 292 ± 167 320 ± 154 302 ± 183 . . . 292 ± 167 318 ± 154 302 ± 183 . . .
Orthogonal �184 ± 91 �156 ± 93 �172 ± 91 . . . �183 ± 91 �154 ± 93 �172 ± 91 . . .
SEVEM T+E
Local . 9.3 ± 5.2 8.3 ± 4.9 6.4 ± 5.0 7.9 ± 5.0 3.3 ± 5.2 2.8 ± 4.9 2.1 ± 5.0 3.5 ± 5.0
Equilateral 9 ± 47 21 ± 48 15 ± 52 5 ± 45 8 ± 47 17 ± 48 14 ± 52 4 ± 45
Orthogonal �50 ± 23 �46 ± 23 �44 ± 23 �55 ± 22 �39 ± 23 �35 ± 23 �33 ± 23 �47 ± 22

NILC T
Local . 10.5 ± 5.6 8.7 ± 5.4 6.4 ± 5.6 8.0 ± 6.2 3.0 ± 5.6 1.4 ± 5.4 0.3 ± 5.6 2.2 ± 6.2
Equilateral �28 ± 69 �45 ± 66 �31 ± 75 �15 ± 66 �28 ± 69 �47 ± 66 �30 ± 75 �17 ± 67
Orthogonal �67 ± 33 �48 ± 33 �50 ± 33 �63 ± 35 �45 ± 33 �22 ± 33 �28 ± 33 �44 ± 35
NILC E
Local . 0 ± 33 18 ± 36 �1 ± 30 . . . �1 ± 33 17 ± 36 �2 ± 30 . . .
Equilateral 75 ± 140 97 ± 141 64 ± 162 . . . 75 ± 140 96 ± 141 64 ± 162 . . .
Orthogonal �79 ± 76 �96 ± 81 �78 ± 77 . . . �78 ± 76 �94 ± 81 �78 ± 77 . . .
NILC T+E
Local . 6.9 ± 5.1 6.1 ± 4.9 3.3 ± 4.9 5.3 ± 5.2 1.2 ± 5.1 0.9 ± 4.9 �2.4 ± 4.9 4.4 ± 5.2
Equilateral �9 ± 44 �4 ± 44 �15 ± 50 8 ± 42 �9 ± 44 �7 ± 44 �16 ± 50 4 ± 42
Orthogonal �35 ± 21 �31 ± 22 �27 ± 23 �32 ± 21 �25 ± 21 �21 ± 22 �16 ± 23 �26 ± 21

Commander T
Local . 9.6 ± 6.1 9.4 ± 5.7 6.4 ± 6.6 7.9 ± 6.3 4.0 ± 6.1 2.4 ± 5.7 1.4 ± 6.6 3.3 ± 6.3
Equilateral �19 ± 71 �36 ± 68 �3 ± 77 �14 ± 70 �20 ± 71 �38 ± 68 �4 ± 77 �18 ± 70
Orthogonal �49 ± 35 �38 ± 34 �49 ± 36 �45 ± 37 �29 ± 35 �12 ± 34 �25 ± 38 �28 ± 37
Commander E
Local . 33 ± 39 56 ± 40 28 ± 37 . . . 33 ± 39 55 ± 40 28 ± 37 . . .
Equilateral 327 ± 165 369 ± 157 278 ± 178 . . . 327 ± 165 368 ± 157 278 ± 178 . . .
Orthogonal �52 ± 88 �70 ± 88 �56 ± 81 . . . �52 ± 88 �67 ± 88 �56 ± 81 . . .
Commander T+E
Local . 7.7 ± 5.2 7.9 ± 5.0 5.2 ± 5.4 6.8 ± 5.2 3.7 ± 5.2 3.0 ± 5.0 1.6 ± 5.4 3.7 ± 5.2
Equilateral 16 ± 46 26 ± 45 30 ± 50 29 ± 46 14 ± 46 23 ± 45 28 ± 50 26 ± 46
Orthogonal �37 ± 22 �37 ± 23 �39 ± 23 �35 ± 22 �29 ± 22 �27 ± 23 �30 ± 23 �28 ± 22

Notes. Results have been determined using an independent single-shape analysis and are reported both without and with subtraction of the ISW-
lensing bias; error bars are 68% CL.

benchmark or threshold against which to compare the other
strong features observed in the bispectrum and now defined with
greater precision. The original “plus-minus” feature, with a large
positive red peak around ` ⇡ 150 followed by a larger nega-
tive peak near ` ⇡ 250, remains though with more substruc-
ture, together with a broad negative peak in the equilateral limit

around ` ⇡ 900, which can be associated with the third acous-
tic peak from the transfer functions. Oscillatory models, which
can connect these three peaks, achieve higher significance. The
apparent signal observed in the flattened limit remains, with a
distinct pattern of blue and red features on the surface of the
tetrapyd.

A17, page 20 of 66



Planck Collaboration: Planck 2015 results. XVII.

Fig. 4. Modal bispectrum reconstruction for Planck 2013 (top left) and 2015 (top right) temperature-only data, both using the SMICA maps.
Here, we restrict the 2015 resolution to the same as 2013, using similar polynomials with nmax = 601. The two bispectra are very close to being
in complete agreement in the signal-dominated regime shown up to `max = 1500. In the lower panel, we show the Planck 2015 temperature
bispectrum at high resolution using the full nmax = 2001 polynomial modes. Large-scale features in the top panels become subdivided but the main
2013 signals remain, notably a stronger measurement of the ISW-lensing signal (the regular oscillations in the squeezed limit).

We also include a comparison with WMAP-9 in Fig. 5,
where we have restricted the reconstructions to `max = 600 for
comparison with nmax = 601 modes. These plots, using identical
isosurfaces, show the same bispectrum structure including the
“plus-minus” feature clearly bisecting the main ` = 200 peak
and the first oscillation of the ISW-lensing bispectrum visible
along the lower tetrapyd edges. The WMAP-9 reconstruction
only shows significant di↵erences from Planck in the top right

region, where the higher noise levels in WMAP-9 make its re-
construction less reliable.

All four components of the temperature and polarization
bispectrum reconstruction obtained from SMICA are shown in
Fig. 6. A direct comparison of the EEE polarization bispectrum
for SEVEM, NILC and Commander, is shown in Fig. 7, where
we note that these are orthogonalized E-mode contributions (see
the Modal 2 discussion in Sect. 3). It is interesting to observe
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Fig. 5. Modal reconstruction for the WMAP-9 bispectrum (left) and the Planck SMICA 2015 T-only bispectrum (right) plotted for the domain
`  450, using identical isosurface levels. Here, we employed the full 2001 eigenmodes for both the Planck analysis at `max = 2000 and for
WMAP-9 analysis at `max = 600, but for comparison purposes we have only used the first 600 eigenmodes in order to obtain a comparable
resolution. The main features in the WMAP-9 bispectrum have counterparts in the Planck version, revealing an oscillatory pattern in the central
region, as well as features on the tetrapyd surface. The WMAP-9 bispectrum has a much larger noise signal beyond ` = 350 than the more sensitive
Planck experiment, leading to apparent residuals in this region.

Table 11. Results for the fNL parameters of the primordial local, equi-
lateral, and orthogonal shapes, determined by the KSW estimator from
the SMICA foreground-cleaned map.

fNL(KSW)

Shape and method Independent ISW-lensing subtracted

SMICA (T)
Local . . . . . . . . . 10.2 ± 5.7 2.5 ± 5.7
Equilateral . . . . . . �13 ± 70 �16 ± 70
Orthogonal . . . . . �56 ± 33 �34 ± 33
SMICA (T+E)

Local . . . . . . . . . 6.5 ± 5.0 0.8 ± 5.0
Equilateral . . . . . . 3 ± 43 �4 ± 43
Orthogonal . . . . . �36 ± 21 �26 ± 21

Notes. Both independent single-shape results and results with the ISW-
lensing bias subtracted are reported; error bars are 68% CL. The di↵er-
ence between the last column in this table and the corresponding values
in the previous table is that in the second column here the equilateral
and orthogonal shapes have been analysed jointly. The final reported
results of the paper are shown in bold.

patterns of features evident in the polarization bispectra from
the di↵erent foreground-cleaned maps, which, although inher-
ently noisier, have qualitative similarities. At a quantitative level,
however, the polarization bispectra modes from di↵erent meth-
ods are less correlated in polarization than in temperature, as we
discuss in Sect. 7.

6.2.2. Binned bispectrum reconstruction

The (reconstructed) binned bispectrum of a given map is a
natural product of the binned bispectrum estimator code (see
Sect. 3.3). To test if any bin has a significant NG signal, we
study the binned bispectrum divided by its expected standard
deviation, a quantity for which we will use the symbol Bi1i2i3 .

With the binning used in the estimator, the pixels are dominated
by noise. We thus smooth in three dimensions with a Gaussian
kernel of a certain width �bin. To avoid edge e↵ects, due to the
sharp boundaries of the domain of definition of the bispectrum,
we renormalize the smoothed bispectrum, so that the pixel val-
ues would be normal-distributed for a Gaussian map.

In Figs. 8 and 9, we show slices of this smoothed binned
signal-to-noise bispectrum Bi1i2i3 with a Gaussian smoothing of
�bin = 2, as a function of `1 and `2. Very red or very blue regions
correspond to a significant NG of any type. The two figures only
di↵er in the value chosen for the `3-bin, which is [518, 548] for
the first figure, and [1291, 1345] for the second. We have de-
fined two cross-bispectra here: BT2E

i1i2i3 ⌘ BTT E
i1i2i3 + BT ET

i1i2i3 + BETT
i1i2i3 ;

and BT E2
i1i2i3 ⌘ BT EE

i1i2i3 + BET E
i1i2i3 + BEET

i1i2i3 . These two cross-bispectra
are then divided by their respective standard deviations (taking
into account the covariance terms) to produce the correspond-
ing BT2E

i1i2i3 and BT E2
i1i2i3 . Those three di↵erent permutations are not

equal a priori due to the condition i1  i2  i3, which is imple-
mented in the code to reduce computations by a factor of six.
However, part of the smoothing procedure involves adding the
other five identical copies, so that in the end the plots are sym-
metric under interchange of `1 and `2 (and Bi1i2i3 is symmetric
under interchange of all its indices). The grey areas in the plots
are regions where the bispectrum is not defined, either because
it is outside of the triangle inequality, or because of the limita-
tion `Emax = 2000. Given that in both plots `3 is fixed at less than
2000, BT E2

i1i2i3 is not defined if both `1 and `2 are larger than 2000,
while BEEE

i1i2i3 is undefined if either `1 or `2 (or both) are larger
than 2000.

Results are shown for the four component separation meth-
ods SMICA, SEVEM, NILC, and Commander, and for TTT, T2E,
TE2, and EEE. In addition we show on the second line of each
figure the result for TTT with the radio (unclustered) and CIB
(clustered) point source bispectra subtracted according to their
jointly measured amplitudes. It is clear, in particular in the sec-
ond figure, that at higher ` there is a very significant point source
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Planck Collaboration: Planck 2015 results. XVII.

Fig. 6. CMB temperature and polarization bispectrum reconstructions for Planck SMICA maps using the full set of polynomial modes with nmax =
2001 and with signal-to-noise weighting. The top bispectra are the symmetric pure temperature TTT (left) plotted with `  1500 and E-mode
polarization EEE (right) shown for 30  `  1100. Below are the mixed temperature/polarization bispectra with TTE on the left (with E multipoles
in the z-direction) and TEE on the right (with T multipoles in the z-direction). All S/N thresholds are the same.

Fig. 7. Comparison of CMB polarization bispectrum EEE reconstructions for Planck NILC, SEVEM, and Commander foreground-separated maps
with signal-to-noise weighting. Note that these results are not as internally consistent between the four methods, also comparing SMICA shown in
Fig. 6, which is closest to NILC. We will compare the underlying modal coe�cients below to demonstrate these di↵erences quantitatively.
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