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Abstract The work presents a general strategy to design high-order conservative co-located finite-difference
approximations of viscous/diffusion terms for flows featuring extreme variations of diffusive properties. The
proposed scheme becomes equivalent to central finite-difference derivatives with corresponding order in the
case of uniform flow properties, while in variable viscosity/diffusion conditions it grants a strong preservation
and a proper telescoping of viscous/diffusion terms. Presented tests show that standard co-located discretisation
of the viscous terms is not able to describe the flow when the viscosity field experiences substantial variations,
while the proposed method always reproduces the correct behaviour. Thus, the process is recommended for
such flows whose viscosity field highly varies, in both laminar and turbulent conditions, relying on a more
robust approximation of diffuse terms in any situation. Hence, the proposed discretisation should be used in
all these cases and, for example, in large eddy simulations of turbulent wall flows where the eddy viscosity
abruptly changes in the near-wall region.

1 Introduction

Numerical simulations of flowswith variable viscosity or diffusivity represent a crucial target for a wide variety
of applications. It is well known that the numerical modelling of such flows is of fundamental importance
for most of the future technological improvements like external aerodynamics [1], turbomachinery [2–4],
propulsion [5, 6], and power plant systems [7–9]. Beyond the typical example of multiphase flows, which
in any case experience considerable variations in diffusion properties, the problem can be significant even in
single-phase conditions. That is the case of all compressible flows for which stratification or thickening near the
walls is expected, with consequent local modification of the viscosity field due to the changed thermodynamic
conditions [10–14]. In addition to these examples, themajority of large eddy simulation (LES)models provides
eddy-viscosity definitions which are strongly related to the velocity and thermodynamic fields. As a result,
whatever type of (i) empirical formulation is adopted to describe the laminar diffusive parameters and (ii)
turbulence model is employed in the description of the subgrid-scale (SGS) contributions, the latter are always
variously complex functions of the flow field, thus also experiencing all the nonlinear convective dynamics.

Despite the importance, viscosity/diffusivity variability is often marginally considered in most of the finite-
difference (FD) numerical models, and the co-located nature of these schemes for hyperbolic problems makes
it difficult to assess this contribution properly. Anyhow, in the case of FD methods, the problem can impact the
stability of the simulation, and it is known that numerical FD solvers which deal with hyperbolic-dominant
systems are incredibly unstable if used in minimal diffusion conditions. The diffusive terms, in particular, if
wrongly resolved, can induce disastrous results in the simulations. Here, it is not worthless to be mentioned
that the finite-volume (FV) methods do not suffer from the issue since the numerical discretisation inherently
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accounts for the cell-bound fluxes. In the field of computational fluid dynamics (CFD), the problem is not
particularly felt when direct numerical simulations (DNS) are dealt with, since the resolution often mitigates
it. Conversely, it is dominant in the case of LES. In particular, the LES approach, employing the same high-order
discretisation techniques of the DNS, wants the computational mesh to be sufficiently coarse compared to the
DNS setup. The method represents a superior technology if compared to a more standard Reynolds averaged
Navier–Stokes (RANS) approach since the flow-dependent/energy-dominant large eddies are resolved rather
than being modelled [15, 16]. On the other hand, coarsening the grid and avoiding to inject artificial viscosity
impacts on the correct behaviour of the local diffusion and quickly accumulates aliasing errors which result
in the blow-up of the simulation. Since the majority of the stability issues are linked to the Navier–Stokes
equations’ nonlinear terms, many contributions have been proposed to better treat these components. In the
last decades, the formulation of high-order shock-capturing numerical methods such the Essentially Non-
Oscillatory (ENO) and the Weighted-Essentially Non-Oscillatory (WENO) schemes [17–24], today allows
to evolve complex interactions between shocks and discontinuities stably. The extension of these schemes to
a hybrid-compact/central formulations [25–28] combined with shock-detection strategies [29, 30] improved
the numerical resolution and reduced the computational efforts in the discretisation process. In particular,
avoiding any artificial diffusion and dealing with high-order central-FD discretisation, the idea of splitting the
convective derivatives and replicate the energy-conservation properties of the Euler equations represents one
of the most valuable attempts in the field of accurate numerical simulation of compressible flows [28]. In this
path, from the pioneering work of [31], many results have been proposed in the literature [32–35], involving
more andmore properties to the numerical discretisation. Indeed, the split formulations of the convective terms
proposed by [27] represent the state of art in this field. Even if a lot of effort has been spent accounting for
a more accurate and stable description of the Navier–Stokes nonlinear contributions, only a few words have
been written concerning a better way to treat the viscous terms especially in a high-order FD framework and,
in this field, no more than standard co-located approximations are employed.

In the present work, a high-order conservative FD discretisation of viscous fluxes for variable viscosity
flows is presented. The method is proposed for compressible flow simulations but results in a generally
conservative strategy in any flow conditions. In particular, the authors present a numerical strategy which
conservatively discretised the incompressible contribution of the viscous terms, while the rest of the diffusive
contributions, which represents a high-order series expansion of incompressible phenomena, still be computed
in the co-located nodes. The discretisation process grants the proper telescoping of the viscous terms and
strong conservation properties of the stress components in the limit of incompressible or weakly compressible
flows, relying on a more robust approximation, especially in the under-resolved flow regions. The proposed
procedure is then coupled with the energy-preserving scheme developed by Kennedy, Grüber, and Pirozzoli
[27] in the treatment of the nonlinear convective terms. Thus, the numerical recipe results in a thoroughly
conservative approximation of the Navier–Stokes system of equations in the limit of incompressible or weakly
compressible flows. Since the variability of eddy-viscosity is inherent in the field of LES of wall-bounded
flows, the method is a promising and a superior strategy for such kind of computations. Moreover, even if the
conservation properties of the proposed method are recovered just for weakly compressible flows, a high-order
conservative discretisation of viscous terms is of considerable help in any flow conditions, also in multiphase
or stratified flows or in shocked states, if a high-order discretisation framework wants to be taken into account.

The present paper is organised as follows: In Sect. 2, the mathematical model is described, while, in Sect. 3,
the numerical method employed in the discretisation of the Navier–Stokes equations is presented. In Sect. 4,
the method is applied to both laminar and turbulent shockless flow conditions, providing the accuracy of the
proposal for a wide variety of low Mach number test cases. Finally, in Sect. 5 concluding remarks are given.

2 Numerical methodology

2.1 Governing equations

The present study is carried out using URANOS (Unsteady Robust All-around Navier–StOkes Solver) [36,
37], a general-purpose DNS/LES solver recently developed at the University of Padova. The solver deals with
the compressible Navier–Stokes system of equations in a conservative formulation. In particular, the filtered
version of the equations is employed. Being φ a general scalar quantity, both the Reynolds (φ � φ̄ + φ′) and
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the Favre (φ � φ̃ + φ′′, φ̃ � ρφ/ρ̄) decompositions are used for the model description. Thus, the obtained
Navier–Stokes system is:

∂ρ̄

∂t
� −∂ρ̄ũ j

∂x j
, (1.1)

∂ρ̄ũi
∂t

+
∂ρ̄ũi ũ j

∂x j
� −∂ p̄iδi j

∂x j
+

∂τ̄i j

∂x j
− ∂T SGS

i j

∂x j
+ f j , (1.2)

∂ρ̄ Ẽ

∂t
+

∂ρ̄ũ j Ẽ

∂x j
� −∂ p̄ũ j

∂x j
+

∂ ũ j τ̄i j

∂x j
− ∂J̄ j

∂x j
− ∂ESGS

j

∂x j
+ f j ũ j (1.3)

where ρ̄ is the filtered density, ũi is the Favre velocity component in the i-th direction, p̄ is the filtered
thermodynamic pressure, Ẽ � ẽ + ũi ui/2 is the Favre total energy per unit mass, ẽ is the Favre internal energy
per unit mass, and J̄ j is the j-th component of the filtered molecular heat flux. The thermodynamic variables
are correlated by the filtered pressure field expressed as p̄ � ρ̄RT̃ where T̃ denotes the Favre temperature and
R is the specific gas constant. The molecular viscous stress tensor τ̄i j and the j-th component of the filtered
molecular heat flux, J̄ j , are expressed as:

τ̄i j �2μ(T̃ )

(
S̃i j − 1

3
S̃kkδi j

)
, (2)

J̄ j � − λ(T̃ )
∂ T̃

∂x j
(3)

where S̃i j � 1
2

(
gi j + g ji

)
is the resolved strain-rate tensor, gi j � ∂ ũi/∂x j is the resolved velocity gradient, and

μ(T̃ ) is the molecular viscosity. Apart where different stated, the latter is assumed to obey the Sutherland’s law.
λ(T̃ ) denotes the molecular thermal diffusivity, expressed as λ(T̃ ) � γ R/(γ − 1)μ(T̃ )/Pr , while γ � cp/cv

and Pr are the specific heat ratio and the molecular Prandtl number, respectively. The latter parameters are
set equal to 1.4 and 0.71. f j denotes the external forcing term components whose corresponding power (i.e.
f j ũ j ) is also included in the right-hand side (RHS) of the total energy equation.

Concerning the SGS stress tensor, T SGS
i j � ρuiu j − ρ̄ũi ũ j , the latter is modelled via the canonical

Boussinesq’s hypothesis. Thus, its deviator part is expressed as:

T SGS
i j − 1

3
T SGS
kk δi j � −2μSGS

(
S̃i j − 1

3
S̃kkδi j

)
(4)

where μSGS is the SGS eddy-viscosity and T SGS
kk the isotropic contribution. In the present model, T SGS

kk is set
to zero since it is expected to assume large values near shocks and discontinues (see for more details [16]).
Finally, the SGS term of the filtered energy equation is expanded as:

ESGS
j � (ρE + p)u j − (ρ̄ Ẽ + p̄)ũ j , (5.1)

�
[
ρcpT u j − ρ̄cpT̃ ũ j

]
︸ ︷︷ ︸

Q j

+

[
1

2
(ρuiuiu j − ρ̄ũi ũi ũ j )

]
︸ ︷︷ ︸

ψi i j

−1

2
T SGS
ii ũ j . (5.2)

The SGS heat flux Q j is modelled as Q j � −λSGS∂ T̃ /∂x j where λSGS � μSGSγ R/(γ − 1)/PrSGS , while
ψi i j , the triple velocity correlation tensor, is neglected. The SGS Prandtl number PrSGS is set equal to 0.9. The
model is made fully non-dimensional since the groups γ, Re∞, Ma∞, and Pr univocally determine the flow
conditions. The proposed version of the filtered Navier–Stokes equations relies on an efficient formulation
since it allows to switch between a DNS approach to a LESmodel easily. In particular, if the grid resolution lies
in the range of a DNS application, the SGS viscosity is set to zero, and the system recovers the Navier–Stokes
unfiltered version completely. Otherwise, when the grid resolution is expected to induce some SGS turbulence
effects, a specification for μSGS is demanding, and the filtered version of the equations is automatically
employed.

Concerning the SGS viscosity, the Wall-Adaptive Large-Eddy (WALE) viscosity model by [38] is
employed. Among the variety of SGS models, the latter has peculiar characteristics in the field of wall tur-
bulence since the SGS viscosity automatically vanishes between the bulk of the flow and the boundary layer
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without prescribing any damping function or artificial transition. In particular, the WALE model defines the
SGS viscosity as

μSGS � ρ̄(CW 
̄)2
(Sdi j S

d
i j )

3/2

(Si j Si j )5/2 + (Sdi j S
d
i j )

5/4
(6)

where

Sdi j � 1

2

(
gil gl j + g jl gli

)− 1

3
gmlglmδi j (7)

is the traceless symmetric part of the square of the resolved velocity gradient tensor. [38] proved that the
model automatically detects both the laminar and the near-wall regions of the flow and provides the correct
μ̄SGS/μ̄ ∼ O(y+)3 asymptotic behaviour at the wall locations. CW � 0.325 accurately fits a wide variety of
flow conditions, while 
̄ � (
x
y
z)1/3 is the local mesh size.

3 Numerical methods

3.1 Spatial discretisation of viscous terms

The entire model is discretised via a high-order central-FD approach. In particular, the solver allows both
uniform and non-uniform structured Cartesian grids discretisation. As said, the peculiarity of the discretisation
process stands in the numerical treatment of the viscous terms, which provides strong preservation of viscous
stresses in the limit of incompressible or weakly compressible flows. In the following, the authors provide a
detailed description of the numerical scheme related to the viscous contributions. Thanks to a simple manipu-
lation of the viscous momentum fluxes of the Navier–Stokes equations, a formulation can be obtained in which
the incompressible and the compressible contributions are highlighted.

∂τ̄i j − T SGS
i j

∂x j
� ∂

∂x j

(
μ̄tot

∂ ũi
∂x j

)
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+
∂

∂x j

(
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∂ ũ j

∂xi
− 2

3
μ̄tot

∂ ũs
∂xs
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)
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Compressible contribution

. (8)

In particular, the former acts in both compressible and incompressible flow conditions, while the latter is
expected to take large values just near shocks and discontinuities or in highly expanding/deleting regions.
μ̄tot � μ̄ + μSGS denotes the overall viscosity. A numerical discretisation which accounts for the variability
of the overall viscosity usually takes advantage of the standard Laplacian formulation:

∂

∂x

(
μ̄tot

∂ ũ

∂x

)
� ∂μ̄tot

∂x

∂ ũ

∂x
+ μ̄tot

∂2ũ
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, (9.1)

� 1


x2

L∑
l�−L

α
(1)
l μ̄tot

i+l ũi+l + μ̄tot
i

1


x2

L∑
l�−L

α
(2)
l ũi+l . (9.2)

The method expands all the mixed derivatives and accounts for the viscosity and the velocity gradients sepa-
rately in a co-located fashion way (see, e.g. [28, 39]). Here α

(1)
l and α

(2)
l maximise the formal order of accuracy

of a central approximation of 2L-size stencils for the first and the second derivative, respectively. Supposing the
grid resolution in the range of the scheme convergence and the overall viscosity vary smoothly, the technique
allows to resolve the viscous stresses accurately. However, especially in the case of poorly resolved flows or
where the total viscosity experiences highly local variations, the method can provide erroneous behaviours
of the diffusive contributions resulting in a wrong prediction of the entire flow field. In these situations, a
numerical approximation which strongly conserves the shear stress components represents a more suitable
description of incompressible viscous contributions. Let us describe the method for uniform Cartesian grids.
The extension to non-uniform meshes is straightforward, and the interested reader is addressed to look at
Appendix 6 for the details and the implementation issues. Thus, recalling the definition of a conservative
method [27], the incompressible viscous stress components can be cast as:

∂

∂x

(
μ̄tot

∂ ũ

∂x

)
� 1


x

(
τ̂i+1/2 − τ̂i−1/2

)
. (10)
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Table 1 Interpolation coefficients for a conservative approximation of viscous terms up to the 6th-order. The Table reports the
interpolation coefficients for a thoroughly conservative approximation of viscous incompressible terms. {βl }ml�n denote the mid-
point interpolation coefficient for a general scalar variable, while {γl }ml�n recover the maximum formal order of accuracy of a
second derivative cast in conservative form

Accuracy β−2 β−1 β0 β1 β2 β3

2 1/2 1/2
4 − 1/16 9/16 9/16 − 1/16
6 3/256 − 25/256 75/128 75/128 − 25/256 3/256

γ−2 γ−1 γ0 γ1 γ2 γ3

2 − 1 1
4 1/12 − 5/4 5/4 − 1/12
6 − 1/90 5/36 − 49/36 49/36 − 5/36 1/90

Here τ̂i+1/2 is a high-order representation of the viscous stresses at the cell interface. The latter can be expressed
as a linear combination which accounts for both the viscosity and the velocity gradient interpolations at the
i + 1/2 node in a high-order path:

τ̂i+1/2 � 1


x

n∑
l�m

βl μ̄i+l · γl ũi+l . (11)

The interpolation coefficients {βl , γl}ml�n depend on the desired order of accuracy, and the authors derived
their values as listed in Table 1. In particular, the {βl}ml�n coefficients provide an (m − n + 1)-order explicit
interpolation forμi+1/2 at the cell bound, while the {γl}ml�n allow for the interpolation of the velocity gradient in
the intermediate node maximising the formal order of accuracy of a standard 2L-size stencils second derivative
approximation, therefore respecting the following constraint:

m∑
l�n

γl(ũi+l − ũi−1+l) �
L∑

l�−L

α
(2)
l ũi+l . (12)

Here it is notworthless to bementioned that, apart from2nd-order of accuracy, the proposed {γl}ml�n coefficients
do not represent the only possible choice for the interpolation of cell-bound gradients. In particular, accord-
ing to [40], these coefficients do not maximise the formal order of accuracy of a first cell-bound derivative
(d f/dx)i+1/2. However, if the (d f/dx)i+1/2 is interpolated according to [40], the process leads to a cell-centred
second derivative (d2 f/dx2)i with 2nd-order of accuracy if this is resembled in a conservative formulation,
according to Eq. (10). Thus, the proposed {γl}ml�n coefficients are the only which provide a (d f/dx)i+1/2 inter-
polation able to fall back to standard co-located FD second derivatives, with corresponding order of accuracy,
if uniform viscosity/diffusivity distributions are taken into account. In the following, the method is addressed
as conservative discretisation. As said, the method recovers the standard Laplacian formulation (i.e. Eq. (9.1)),
with corresponding order of accuracy, in the case of uniform viscosity fields. Besides, due to the inherent
characteristic of conservative schemes, in the limit of incompressible or weakly compressible flows, the con-
servative approach provides the high-order conservation of the viscous terms independently to the resolution
and grid stretching (see Appendix 6 for details). Thus, the method relies on a more robust strategy of diffusive
terms in any situation, even if the flow embedded shocks.

To conclude, a note is demanded concerning the heat flux components in the total energy equation. Even
if the conservative method is explained looking at the momentum viscous components, nothing forbids in
applying it for the discrete treatment of the heat flux divergence observing that

∂

∂x

(
λ̄tot

∂ T̃

∂x

)
� − 1


x

(Ji+1/2 − Ji−1/2
)

(13)

is structurally similar to the one given in Eq. (10). If employed, the process relies in the conservation also of
the heat flux components. Here λ̄tot � λ + λSGS is the total diffusion. In the present work, apart from where
differently stated, the viscous terms are treated with 6th-order formulas.
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3.2 Spatial discretisation of convective terms

As far as the convective terms of the Navier–Stokes system of equations are concerned, the latter are discretised
using the central 6th-order energy-preservingmethod byKennedy,Grüber, and Pirozzoli (KGP) [27]. As shown
by [27], the scheme guarantees that the total kinetic energy is discretely conserved in the limit case of inviscid
incompressible flows. The property is also effective on strongly non-uniform Cartesian grids [41, 42]; thus,
combined with the proposed discretisation form of the viscous components, the entire Navier–Stokes system
of equations results in a central strong-conservative formulation without the addition of artificial viscosity.

3.3 Temporal integration

Finally, the solution is advanced in time with the 3rd-order low-storage Total Variation Diminishing
(TVD) Runge–Kutta scheme proposed by [43]. The method provides stability up to a maximum Couran-
t–Friedrich–Lewy equal to CFLmax � 1. In the authors’ numerical computations, a CFL equal to 0.5 is
assumed apart where differently stated. The value represents a good compromise between stability and com-
putational efficiency.

4 Results and discussion

The present Section aims at validating and discussing the results obtained with the proposed numerical method.
The latter is firstly validated concerning its theoretical error decay. Thereafter, a wide variety of flows in
laminar conditions is presented as benchmark for severe-varying viscosity conditions. Finally, the numerical
assessment of a channel configuration is analysed, providing the effectiveness of the method also in complex
three-dimensional turbulent conditions.

4.1 Kolmogorov flow

To quantify the error scaling of the proposed interpolation method, a doubly periodic Kolmogorov flow (KF)
in laminar and steady-state conditions is solved. The problem consists in forcing the two-dimensional
Navier–Stokes system of equations along with a single Cartesian direction with a stationary monochromatic
harmonic,

f (y) � α sin(ωk y). (14)

Here ωk � 2πk/Ly is the reduced frequency, k is the wave number, α is the force amplitude, and Ly is the
length of the domain along with the y-coordinate. Employing a doubly periodic configuration and keeping
the system in low-speed and laminar conditions, the entire Navier–Stokes system reduces to the following
equilibrium equation:

d

dy

(
μ
du

dy

)
+ f (y) � 0. (15)

In the case of uniform viscosity, Eq. (15) admits the following analytical solution:

u(y) � α

μ∞ω2
k

sin(ωk y). (16)

The KF is of considerable help in verifying the error scaling of a numerical method since the numerical
assessment could rely on a fully periodic setup so that no uncertainties can be ascribed to the numerical
treatment of the boundary conditions. To reproduce the problem numerically, the Navier–Stokes system of
equations is solved in a square box of size Lx × Ly � L0 × L0. As far as the external force is concerned,
the amplitude α is set equal to 0.1u∞, and the fourth wave number (k � 4) is employed. To keep the system
in laminar conditions, μ∞ and u∞ are set in such a way that reference Mach and Reynolds numbers of
Ma∞ � u∞/c∞ � 0.1 and Re∞ � ρ∞u∞L0/μ∞ � 10 are recovered. The flow is initialised with zero
velocity components, and the non-dimensional temperature T/T0 and the non-dimensional pressure p/p0 are
set equal to one. The computation is carried out until the steady-state convergence of the system. To avoid any
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Fig. 1 Error scaling of the conservative method for smooth flow conditions and several orders of accuracy. Solid dotted lines
denote the L (·) computed norms, while dashed lines show the slope of theoretical order of accuracy

Table 2 Error scaling for the conservative method upto the 6th-order of accuracy

order Ny L1 L2 L∞ L1 order L2 order L∞ order

2 5 1.68E-02 1.93E-02 2.60E-02 – – –
10 7.27E-04 8.35E-04 1.12E-03 4.534 4.534 4.534
20 1.39E-04 1.60E-04 2.15E-04 2.386 2.386 2.386
40 3.44E-05 3.76E-05 5.31E-05 2.016 2.088 2.016
80 8.36E-06 9.25E-06 1.29E-05 2.039 2.022 2.039

4 5 1.50E-02 1.72E-02 2.31E-02 - - -
10 3.33E-04 3.82E-04 5.14E-04 5.495 5.495 5.495
20 2.40E-05 2.76E-05 3.71E-05 3.791 3.791 3.791
40 1.72E-06 1.87E-06 2.65E-06 3.808 3.881 3.808
80 1.09E-07 1.20E-07 1.68E-07 3.981 3.963 3.980

6 5 1.47E-02 1.68E-02 2.27E-02 - - -
10 2.01E-04 2.31E-04 3.11E-04 6.191 6.191 6.191
20 5.39E-06 6.20E-06 8.33E-06 5.222 5.222 5.222
40 1.06E-07 1.16E-07 1.64E-07 5.670 5.742 5.669
80 1.80E-09 2.00E-09 2.84E-09 5.881 5.854 5.849

uncertainty due to the time and the convective errors contributions, the CFL number is set equal to 0.1, and
the convective terms are set to zero.

The comparative process is carried out on five uniform grids {Mi }5i�1, employing an increasing number of
points along the y-direction. Thus, we set Nx × Ny � {[5 × 5]; [5 × 10]; [5 × 20]; [5 × 40]; [5 × 80]}T . The
L p and the L∞ norms defined as

LMi
p �

⎛
⎝ 1

Ny

Ny∑
j�1

∣∣u j − u(y j )
∣∣p
⎞
⎠

1/p

, (17)

LMi∞ � Ny
max
j�1

∣∣u j − u(y j )
∣∣ (18)

are retained as metrics of the error scaling, and in particular the p � 1 and p � 2 definitions are used. Here
u(y j ) and u j denote the analytical and the numerical solutions, respectively. Whatever the type of norm is

used, the error should asymptotically decay as LMi
(·) � C/Nq

i , where C is a constant value and q denotes the
error order of accuracy. Thus, comparing the ratio of the error decay, the accuracy order results as

q �
log
(
LMi
(·) /LMi−1

(·)
)

log(1/r )
(19)

with r � 2 representing the grid ratio of the computations.
Figure 1 reports the error scaling of the present numerical method for a wide variety of formulas accuracy,

while the corresponding data are listed in Table 2. From the obtained results, it can be claimed that the current
conservative form of the incompressible viscous terms provides the expected high order of accuracy, validating
the correctness of the obtained interpolation coefficients.
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Fig. 2 Velocity profile for a Kolmogorov flow with severe-varying viscosity law. The red dotted line and blue dots denote the
numerical solutions obtained with the standard and conservative methods, respectively. The solid black line shows the analytical
solution

Table 3 Non-smooth solution error scaling for the conservative method upto nominal 6th-order formulas

order Ny L1 L2 L∞ L1 order L2 order L∞ order

2 5 9.25E-03 1.03E-02 1.19E-02 - - -
10 5.44E-04 6.44E-04 1.08E-03 4.088 4.006 3.462
20 9.73E-05 1.27E-04 2.97E-04 2.483 2,341 1.870
40 4.27E-05 5.09E-05 1.05E-04 1.189 1.321 1.496
80 2.09E-05 2.51E-05 5.92E-05 1.027 1.017 0.829

4 5 9.75E-03 1.14E-02 1.73E-02 - - -
10 2.93E-04 3.40E-04 5.76E-04 5.058 5.072 4.909
20 6.88E-05 8.46E-05 1.90E-04 2.089 2.007 1.599
40 1.97E-05 3.24E-05 1.31E-04 1.806 1.385 0.536
80 8.75E-06 1.28E-05 6.94E-05 1.170 1.338 0.919

6 5 8.41E-03 9.41E-03 1.10E-02 - - -
10 1.98E-04 2.32E-04 4.01E-04 5.408 5.341 4.779
20 6.24E-05 8.65E-05 2.02E-04 1.666 1.426 0.992
40 1.06E-05 2.74E-05 1.19E-04 2.552 1.658 0.764
80 1.85E-06 9.59E-06 6.06E-05 2.526 1.514 0.972

Due to its inherent bi-periodical arrangement, the KF numerical solution provides a valid benchmark also
in studying the convergency of the proposed method even if severe-varying viscosity flows are accounted for.
In particular, assuming the viscosity to vary as

μ(y)

μ∞
�
{
3 if − 0.25 < y < 0.25
1 elsewhere (20)

this profile grants an analytical solution to Eq. (15) which holds as:

u(y) � α

μ(y)μ∞ω2
k

sin(ωk y). (21)

The problem is treated numerically in a similar manner to the previous one, employing the same Reynolds and
Mach regime. Therefore, a uniform grid is used along with the y-coordinate, and the meshes are increasingly
refined from a minimum of Ny � 5 up to a maximum of Ny � 80 computational nodes. The grid ratio of r is
kept equal to 2. Again, the fourth wave number is employed in the forcing term. Since the analytical solution
is not differentiable, whatever type of (i) norm used as a metric of the numerical error and (ii) theoretical
order of accuracy employed in the discretisation scheme, the latter can scale at most first order (if convergent).
Moreover, according to [44], if even just one discontinuity is present in a dynamical system, a non-conservative
scheme does not converge to any consistent solution. Thus, the non-conservative approach is expected to fail
in reproducing the physical behaviour of the flow in the case of step-gradient viscosity.

Figure 2 shows the results of the computation. In particular, a comparison between the standard and the
proposed conservativemethod is presented. The obtained results reveal that a standard co-located discretisation
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fails in the flow description. As expected, the standard strategy provides an erroneous prediction of the system
dynamics, and themethod is not able to converge to the analytical reference. On the other hand, the conservative
scheme converges to the analytical solution proving an asymptotic accuracy order around unity for all the
interpolation formulas. The data related to the error scaling are reported in Table 3.

4.2 Poiseuille flow with non-trivial viscosity distributions

To highlight the effectiveness of the present method, a Poiseuille flow (PF) with non-trivial viscosity distri-
butions is considered as the first benchmark in wall-bounded conditions. The computation is performed in a
two-dimensional rectangular box with a size equal to Lx × Ly � 4h × 2h along the x- and y-coordinate,
respectively, where h is the channel half-height. A uniform points distribution is employed in both the stream-
wise and wall-normal directions, and in particular, the computations featured an increasingly wall-normal
resolution. The number of points, along with the streamwise direction, is kept constant and equal to Nx � 20.
The computational grid is built up in such a way that the first and the last cell interfaces coincide with the
walls. Periodic boundary conditions are set along the streamwise direction since the flow infinitely recycles
in the channel and is dynamically sustained thought as a constant pressure drop dp/dx. The latter, added as a
forcing term to the RHS of the Navier–Stokes system, is defined as

dp

dx
� −2γ Ma2

Re
(22)

where Ma � u∞/cw is the Mach number of the flow and Re � u∞h/ν∞ is the Reynolds number. Here,
u∞ denotes the reference speed, cw is the wall speed of sound, and ν∞ the reference kinematic viscosity.
To avoid any compressible effects and to keep the system in laminar conditions, the latter parameters are
set in such a way that a Mach and a Reynolds number equal to 0.1 and 10 are recovered, respectively. The
flow is initialised with ambient conditions setting to zero all the velocity components and imposing an initial
non-dimensional pressure field p/p0 � 1. The lateral boundaries are modelled with a no-slip isothermal wall
discretely enforcing to zero all the velocity components at the locations of the walls and setting to Tw/T0 � 1
the wall non-dimensional temperature. With these assumptions, the entire Navier–Stokes system of equations
reduces to the steady-state equilibrium expressed by the following equation:

dp

dx
� d

dy

(
μ
du

dy

)
. (23)

Equation (23) states that the shear stress τ � μdu/dy must be balanced by the pressure drop, independently
from the viscosity distribution, resulting in that τ (y) is a linear function of the y-coordinate only. Independently
from the employed numerical discretisation, the shear stress behaviour must be granted to accurately resolved
the entire flowfield. In the present analysis, theNavier–Stokes systemof equations is solved until its stationarity.
Thus, dynamically converging to the steady-state equilibrium is expressed by Eq. (23).

To convince the reader that a standard co-located discretisation quickly fails the analytical behaviour
expressed by Eq. (23), two different viscosity laws are employed. Then the results with two numerical dis-
cretisations are compared. The first viscosity law expresses a smooth highly varying profile in the form of

μ1(y/h)

μ∞
� 1 + tanh

(
y − y1
ah

)
− tanh

(
y − y2
ah

)
(24)

where a � 0.03, y2 � −y1 � 0.5, while the second law provides an intense step-gradient distribution which
reads as

μ2(y/h)

μ∞
�
{
1 if |y|/h > 0.5
4 if |y|/h < 0.5 . (25)

In Fig. 3, the results related to the first setup (μ1) are given and compared in terms of velocity and stress
distributions. Figure 4a and c shows the results obtained with the conservative method, while Fig. 4b and d
reports the solution obtained with a standard discretisation as a function of the grid resolution. Compared to the
higher-resolved case (solid black line), the classical method can capture the steady-state system equilibrium
both in terms of velocity and shear stress. Nevertheless, to capture the analytical distribution accurately, the
method requires the grid to place a sufficient number of points inside the intense viscosity-variation region. This
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Fig. 3 Velocity profile and shear stress distributions for a Poiseuille flow with a smooth highly varying viscosity law. a reports
the velocity profiles for a Poiseuille flow with sinusoidal viscosity law obtained with the current conservative approach, while
b reports the same information obtained with a standard co-located discretisation. c and d draw the shear stress distribution
obtained with the two methods as a function of the grid resolution

issue is not detectable in the case of the proposed conservative discretisation for which the stress distribution
is fully respected regardless of the grid spacing (see Fig. 3). The test can be considered as additional proof
on how highly varying diffusive properties act as discontinuities if the grid resolution is not sufficient, thus
according to the Hou & Le Floch theorem [44], that leads to non-physical solutions.

Even if the previous results already show the superiority of the conservative approach compared to a standard
co-located description, Fig. 4 depicts the behaviour of the same system if a step-gradient (μ2) viscosity law is
employed. Again, Fig. 4a and b reports the velocity distributions, while Fig. 4d and c shows the stress profiles.
In this case not only a conservative approach can guarantee the correct decaying of the shear stress along with
the channel, but even a co-located approach provides an entirely erroneous behaviour of the system producing
a non-physical solution.

This result allows for making further comments. Although the authors’ method can strictly conserve the
viscous stresses in the limit of incompressible or weakly compressible flows, this approach can be very helpful
also in shocked embedded conditions. In these cases, upstream of a discontinuity the viscosity field experiences
strong gradients related to the high local temperature variations. For this reason, a numerical approximation
of viscous terms such as the proposed one is superior also in these situations.

4.3 First Stokes problem with different viscosity ratios

To verify the effectiveness of the present method in a time-dependent condition using a non-uniform grid, the
so-called First Stokes Problem (FSP) is selected as the benchmark. The problem consists of a y-infinite region
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Fig. 4 Velocity profile and shear stress distributions for a Poiseuille flow with a step-gradient viscosity law. a and b report the
velocity distributions for a Poiseuille flow with step-gradient viscosity obtained with the present conservative method and with
a standard discretisation, respectively, as a function of the grid resolution. c and d report the comparison of the two methods
applied to the shear stress distribution

occupied by two different layers of fluids, initially at rest. Suddenly, one layer (the driver) gains a steady speed
of u∞ and starts to perturb the system. Due to the fluid viscosity, a velocity perturbation propagates in the
system and diffuses the speed of the driving region. According to this hypothesis, in the limit of incompressible
flows, the Navier–Stokes system reduces to the following equation:

∂u

∂t
� ∂

∂y

(
μ

∂u

∂y

)
. (26)

As a result, the flow speed is a function of the y-coordinate and the time only. Equation (26) states that spatial
variation of the shear stress τ � μ∂u/∂y is dynamically balanced by the speed rate ∂u/∂t changing. Thus,
a wrong prediction of the shear stress distribution can result in an erroneous behaviour of the entire system.
The problem is a classic textbook benchmark since Eq. (26) admits an analytical solution if the two layers are
perfectly homogeneous. In this case, the velocity profile is expressed as

u(y, t)

u∞
� 1 − erf

(
y√
4μ∞

)
(27)

where erf is the Gauss’ error function expressed as

erf(x) � 2√
π

∫ x

0
e−t2dt (28)
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Fig. 5 Sketch of the flow organisation for the First Stokes Problem

and μ∞ is the uniform reference viscosity. A detailed description of the problem can be found in [45, 46]. In
the present work, an ad hoc version of the original problem is considered. In particular, as sketched in Fig. 5,
two layers of fluid with different viscosity are employed.

This setup can be considered as a prototype for shear layer dynamics in laminar conditions and represents
a crucial test for the proposed method accounting for both temporal dependency and non-uniform grids. To
reproduce the problem numerically, the flow is simulated in a pseudo-infinite configuration employing a two-
dimensional box of sizes Lx × Ly � L0 × 40L0. Periodic boundary conditions are enforced along with the
x-direction, while the field variables are extrapolated at the top and the bottom sides. To avoid any compressible
effect, the driver layer is made to flow at a constant speed u∞ which induces a reference Mach number
Ma∞ � u∞/c∞ equal to 0.1. Moreover, the flow is kept in laminar conditions setting the reference kinematic
viscosity ν∞ in such a way that a Reynolds number Re∞ � u∞L0/ν∞ of 10 is granted. The computational
grid features Nx × Ny � 10× 120 grid points. A hyperbolic tangent function is employed to cluster the nodes
in the interface region. The flow is initialised with zero speed and imposing the non-dimensional temperature
T/T0 and pressure p/p0 equal to one, respectively.

Even if an analytical description of the problem is not available for arbitrary viscosity ratios (i.e. R �
μ2/μ1), any consistent physical behaviour would see the system dynamic to change gradually, while the R
parameter increases. To verify this statement, the R parameter is varied in the range [1; 5]. Consequently, the
dynamics of the system is observed at a reduced time t/t0 equal to 100. The obtained results are reported in
Fig. 6. In particular, Fig. 6a and b shows the velocity distribution as a function of the y-coordinate obtained with
the conservative and the standard methods, respectively. Figure 6c and d reports the shear stress distributions.
The reader can easily recognise that the standard co-located approach fails in transferring the information from
the driver layer to the one at rest, and the driver layer seems to be insensitive to thefluid at its top, especiallywhile
the viscosity ratio increases. This behaviour leads to an unstable dynamics for the interface while approaching
the highest viscosity ratio (R � 5). Thus, the shear stress suddenly changes its sign. On the other hand, the
conservative approach grants the proper role to the diffusion, and the interface region continuously smears,
dynamically sharing the stress between the two fluid areas. Thus, the presented results show the effectiveness
of the conservative method, even in the case of time-dependent problems with non-uniform grids. Therefore,
the effectiveness of the proposed method compared to a standard co-located description of the incompressible
viscous terms is also confirmed in this test case.

4.4 Large eddy simulation of turbulent channel flow

The proposed numericalmethod is of real help in the field of LES.All of the eddy-viscosity LESmodels provide
an SGS contribution which is always a function of the velocity field and the thermodynamic quantities. It
automatically follows that the latter can inherit all the intrinsic nonlinearities to the mechanics of compressible
flow, experiencing large local variations and intense gradients. Moreover, dealing with LES, the grid resolution
is often far from the scheme convergence, providing under-resolved flow regions of conspicuous extension. For
these reasons, the present Section reports how the proposed numerical method better performs in accurately
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Fig. 6 First Stokes Problem dynamics with different viscosity ratios (R � μ2/μ1). Figure 6a and b reports the velocity dis-
tributions of the problem at a reduced time t/t0 � 100 as a function of the viscosity ratio. Figure 6c and d reports the shear
distributions at the same time level. The solution obtained with conservative method (left panels) is compared with the one drawn
with a standard strategy (right panels). The line colours shade from blue to red increasing the density ratio parameter

heading a poorly resolved LES, since the turbulent stresses generated by the SGS model can better propagate
in the domain. Thus, the strategy results in a higher accuracy compared to DNS references.

To provide this effectiveness, the numerical assessment of a turbulent channel flow is retained as a bench-
mark for the proposed approach. In particular, an LES computation is performed in a nearly incompressible
condition. Anyhow, independently of the Mach regime, the channel flow configuration does not exhibit com-
pressible features like shocks or discontinuities relying on a proper setup to provide the effectiveness of the
proposed method. An LES model with Mb � ub/cw � 0.1 is run and compared with the DNS database of
[47]. It is not worthless to be said that dealing with such low Mach conditions in wall-bounded configurations
represents an extremely challenging target for a compressible solver, since the acoustical phenomena play a
crucial role concerning the aliasing of the pressure field. The problem often results in the instability and the
blow-up of the simulations if an accurate numerical description of the flow is not employed. The Reynolds
number of the flow is set equal to Reb � 2ρbubh/μw � 21579. Here, ρb � 1/V

∫
V ρdV is the bulk channel

density, ub � 1/(ρbV )
∫
V ρudV is the bulk channel speed, whileμw and cw are the wall viscosity and the wall

speed of sound, respectively. The configuration corresponds to a friction Reynolds number Reτ � ρwuτh/μw

of 581 for the conservative method and 593 for the standard discretisation. uτ � √
τw/ρw is the friction

velocity, and τw is the wall shear stress.

The simulation is carried out in a three-dimensional rectangular box with a size of Lx × Ly × Lz �
2πh×2h×πh. As in the Poiseuille flow, h is the channel half-height. To stress the method, an under-resolved
LES is performed. In particular, the mesh features Nx × Ny × Nz � 48 × 48 × 48 computational nodes
resulting in an internal spacing of 
x+ ×
y+ ×
z+ � 77× (3÷40)×38. A uniform grid is used along with
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the wall parallel directions, while an error mapping function, stretched near the wall regions, is employed in
the wall-normal direction. The latter, in particular, is prescribed as follows:

y j
h

� erf
[
α
(
η j − 1

2

)]
erf
( 1
2α
) , j � 1, . . . , Ny . (29)

Here η j � ( j − 1/2)/Ny is the computational coordinate, α � 2.8 is the stretching parameter, while erf
denotes the Gauss’ error function as in Eq. (28). Such resolution is not recommended for LES of wall-bounded
flows since the numerical scheme hardly captures most of the nonlinear wall turbulent features. However,
the combination with high-order and strong-conservative methods has made the computation not excessively
impacted by the coarseness of the grid, and the obtained results feature the DNS wall-normal statistics quite
accurately.

Periodic boundary conditions are employed alongwith the homogeneous directions, while a no-slip isother-
malwall condition is imposed at the channelwalls. The lateral boundaries aremodelledwith a no-slip isothermal
wall enforcing to zero the velocity components and setting to Tw/T0 � 1 the wall non-dimensional temper-
ature. Like in the Poiseuille flow setup, the mesh is staggered in such a way that the nominal wall location
coincides with a cell interface. The process grants strong conservation of all the conservative variables and
the viscous stresses. The flow initialisation takes advantage of the [48] procedure. Therefore, to the analytical
solution of the Poiseuille flow, a vortex pair is superimposed promoting an early transition to turbulence.

Concerning the forcing term f in the RHS of the Navier–Stokes equations, the latter is evaluated at each
time step to enforce a constant mass flow rate discretely. The corresponding power, fu, is added to the RHS
of the total energy equation. This arrangement ensures the mass flow rate to be strictly conserved during the
time; hence, the bulk Reynolds number Reb is constant during the whole simulation. The simulation is carried
out until the flow variables are statistically steady.

Figure 7 shows the results of the computation and the comparison between a standard method and the
proposed conservative one. In particular, Fig. 7a reports the mean velocity profiles; Fig. 7b shows the Favre-

filtered turbulent velocity fluctuations scaled by the friction velocity (i.e. (˜u′′
i u

′′
i /u

2
τ )

1/2); Fig. 7c depicts the

Favre-filtered Reynolds’ stresses (i.e. −˜u′′v′′/u2τ ) as a function of y+ � yReτ coordinate, and finally 7d
provides the stress budget for the channel flow. From the obtained results it can be noticed that the proposed
numerical method, in combination with wall-consistent LES algebraic model, can accurately predict the DNS
reference and the entire highly nonlinear behaviour related to wall-turbulence, even if the resolution is very
poor.

In particular, the scaled mean velocity profile u+ � u/uτ is remarkably accurate, and the velocity fluctua-
tions are in a good agreement with the DNS reference even if the resolution is very poor. However, the most
exciting result is the stress budget (Fig. 7d). Since the turbulent viscosity changes by two orders of magni-
tude in the two first two grid points, the present computation relies on a perfect benchmark for the proposed
numerical method. Thus, as shown in Fig. 7d, the conservative form better conserves the turbulent shear stress
components along with the channel height, and the overall stress budget shows the scheme much more aligned
with the theoretical datum compared with the standard procedure. The result definitively proves the superiority
of the present method even in modelling turbulent conditions using a varying eddy viscosity, resulting in a
superior way compared to a standard co-located discretisation.

5 Conclusions

Ageneral strategy to design high-order conservative finite-difference (FD) approximations of viscous/diffusion
terms for variable viscosity/diffusionflows is proposed.Results show that a standard co-located discretisation of
viscous contributions in laminar conditions fails in the description offlows in the case of highly varyingviscosity
conditions, even in laminar flows. The proposed method instead grants the high-order proper telescoping of the
shear stresses independently of the grid stretching and resolution, resulting in a superior numerical technique
even if step-gradient viscosity behaviours are provided. Numerical tests have been performed for laminar
and turbulent test cases and nearly incompressible Mach regimes. In particular, from steady laminar flows to
unsteady problems, up to complex three-dimensional turbulent flows, the proposed method is always found
superior compared to a standard viscous term discretisation when substantial variations of the viscosity are
considered.



High-order conservative formulation of viscous terms 2129

 0

 5

 10

 15

 20

 25

 1  10  100

u+

y+

Vreman (2014)
Standard

Conservative

(a) Velocity distribution

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 10  100

(u
i"

u i
"/

u τ
2 )1/

2

y+

Vreman (2014)
Standard

Conservative

(b) Velocity fluctuations

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10  100

−
u’

’v
’’

/u
τ2

y+

Vreman (2014)
Standard

Conservative

(c) Reynolds’ stress

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

St
re

ss
 c

om
po

ne
nt

s

y/h

µdu/dy (S)
µdu/dy (C)

µSGSdu/dy (S)
µSGSdu/dy (C)

−u"u"/τw (S)
−u"u"/τw (C)

τtot/τw (S)
τtot/τw (C)

exact

(d) Stress budget

Fig. 7 Comparison of large eddy simulations of a channel flow at Mb � 0.1 and Reτ � 590 with different viscous terms
discretisation. a reports the mean streamwise velocity u+ � u/uτ as a function of inner wall distance y+ � yReτ . b shows

the scaled velocity fluctuation (˜u′′
i u

′′
i /u

2
τ )

1/2 as a function of y+. c reports the scaled Reynolds’ stresse −˜u′′v′′/u2τ , and finally
d provides the comparison of the stress budgets for the standard (S) and the conservative (C) methods. Present data are compared
to incompressible DNS results of [47] (black circles)

The method seems very promising for large eddy simulations (LES) of turbulent wall-bounded flows
where strong eddy viscosity variations occur in the near-wall region, relying on a thoroughly conservative
approximation of the Navier–Stokes system of equations in the limit of incompressible or weakly compressible
flows. In these concerns, the present scheme for viscous terms, in combination with conservative treatment of
convective fluxes [27], allows an accurate representation of the total stress balance.

Since the present formulation provides strong preservation properties of viscous stresses, even in poorly
resolved conditions and with highly varying overall viscosity, the method is a promising strategy for LES of
complex three-dimensional compressible flows even in case of shocked conditions.
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Appendix A: Spatial discretisation of viscous terms on non-uniform grids

In this Appendix we extend the proposed conservative discretisation method for the viscous terms on arbitrary
non-uniform Cartesian grids. For the sake of clarity, let us consider a conservative discretisation of the first
component of the viscous incompressible contribution. Similar reasoning can be done for the other viscous
components and for the heat flux. Thus, being

∂

∂x

(
μ̄tot

∂ ũ

∂x

)
i
� 1


xi

[(
μ̄tot

∂ ũ

∂x

)
i+1/2

−
(

μ̄tot
∂ ũ

∂x

)
i−1/2

]
(30)

the first component of the incompressible viscous terms contribution, the expression, accounting for the grid’s
variability, can be expanded as:

∂

∂x

(
μ̄tot

∂ ũ

∂x

)
i
� 1


ξ
(x−1

ξ )i

[(
μ̄tot ũξ x

−1
ξ

)
i+1/2

−
(
μ̄tot ũξ x

−1
ξ

)
i−1/2

]
. (31)

Here ξi � (i − 1/2)/Nx , i � 1, . . . , Nx is a new uniform coordinate describing the so-called computational
space, ũξ � ∂ ũ/∂ξ is the velocity gradient with respect to the ξ -coordinate, while xξ � ∂x/∂ξ is the Jacobian
of the transformation between the physical coordinate (i.e. x) and the computational space. Thus, knowing a
map x � x(ξ ) which describes the nodal distribution as a function of the computational grid coordinate ξ ,
this strategy allows computing the velocity gradient on a simple uniform mesh. The metrics of the function
x � x(ξ ) are later employed for the non-uniform extension (the interested reader is addressed to have a look
to [49] for further details), so that the velocity gradient at the cell board (∂ ũ/∂x)i+1/2 can be straightforwardly
computed as:

(
∂ ũ

∂x

)
i+1/2

�
(

∂ ũ

∂ξ

)
i+1/2

·
(

∂x

∂ξ

)−1

i+1/2
, (32.1)

� 1


ξ

n∑
l�m

γl ũi+l ·
n∑

l�m

βl

(
∂x

∂ξ

)−1

i+l
, (32.2)

obtaining that

γ̃l � 
x


ξ
γl

n∑
h�m

βh

(
∂x

∂ξ

)−1

i+h
, l � m, . . . , n (33)

represents the interpolation coefficients for the velocity gradient at the cell interface which account for the grid
variability (here {γl}ml�n and {βh}mh�n denote the same coefficients as reported in Table 1, while 
x � Lx/Nx
is the uniform grid spacing).

Concerning the mid-point overall viscosity value, μ̄tot
i+1/2, a different strategy must be employed to account

for the grid variability. Let us suppose μ̄tot to be locally representable by a polynomial of degree 2p, with
p ∈ N. Let also the polynomial be centred around themid-cell location xi+1/2 � 1/2(xi +xi+1). This hypothesis
gives the following expression:

μ̄tot (x) �
2p∑
l�1

β̃l
(
x − xi+1/2

)l−1
, p ∈ N (34)
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where {β̃l}2pi�1 are the polynomial coefficients to be determined. The interpolation task is easily translated
in finding the coefficients’ values which fit the nodal values of μ̄tot over a selected stencil S � {i − p +
1, . . . , i, . . . , i + p}. Enforcing Eq. (34) to pass through the nodal values of μ̄tot we get:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β̃1 + β̃2
(
xi−p+1 − xi+1/2

)
+ β̃3

(
xi−p+1 − xi+1/2

)2 + · · · + β̃2p
(
xi−p+1 − xi+1/2

)2p−1 � μ̄tot (xi−p+1)

β̃1 + β̃2
(
xi−p+2 − xi+1/2

)
+ β̃3

(
xi−p+2 − xi+1/2

)2 + · · · + β̃2p
(
xi−p+2 − xi+1/2

)2p−1 � μ̄tot (xi−p+2)
...
β̃1 + β̃2

(
xi+p − xi+1/2

)
+ β̃3

(
xi+p − xi+1/2

)2 + · · · + β̃2p
(
xi+p − xi+1/2

)2p−1 � μ̄tot (xi+p)

.

(35)

This system of equations can be resembled in a matrix formulation as:

Aml β̃l � μ̄tot
i−p+m m, l � 1, . . . , 2p. (36)

Here μ̄tot
i−p+m denotes the array of the nodal values of μ̄tot over the stencil S, while Aml is the matrix that

collects the grid’s metrics. The latter reads as:

Aml � (xi−p+l − xi+1/2
)l−1

m, l � 1, . . . , 2p. (37)

With these positions, the interpolation coefficients can be computed as

β̃l � A−1
ml μ̄

tot
i−p+m . (38)

In particular, since Eq. (34) states that μ̄tot (xi+1/2) � β̃1, we obtain

μ̄tot (xi+1/2) � A−1
m,1μ̄

tot
i−p+m, (39)

concluding that β̃m � A−1
m,1 represents the set of the interpolation coefficients which yield to a 2p-order of

accuracy for the μ̄tot
i+1/2 value on an arbitrary non-uniform grid. It is not worthless to be said that the β̃m � βm

∀m if the grid is uniform.
To conclude, since the γ̃m and the β̃m coefficients equal γm and βm in a uniform grid case, the proposed

coefficients fall back to standard FD coefficients if a uniform mesh is employed. Conversely, if non-uniform
grids are considered, the method provides the proper cell-bound interpolated values taking into account the
local grid variance.
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