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Abstract

An emerging picture suggests that glial cells' loss of beneficial roles or gain of toxic functions can contribute to
neurodegenerative conditions. Among glial cells, microglia and astrocytes have been shown to play phagocytic
roles by engulfing synapses, apoptotic cells, cell debris, and released toxic proteins. As pathogenic protein
accumulation is a key feature in Parkinson’s disease (PD), compromised phagocytic clearance might participate in
PD pathogenesis. In contrast, enhanced, uncontrolled and potentially toxic glial clearance capacity could contribute
to synaptic degeneration. Here, we summarize the current knowledge of the molecular mechanisms underlying
microglial and astrocytic phagocytosis, focusing on the possible implication of phagocytic dysfunction in neuronal
degeneration. Several endo-lysosomal proteins displaying genetic variants in PD are highly expressed by microglia
and astrocytes. We also present the evidence that lysosomal defects can affect phagocytic clearance and discuss
the therapeutic relevance of restoring or enhancing lysosomal function in PD.
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Background
Parkinson’s disease (PD) is a neurodegenerative condition
characterized as a movement disorder of bradykinesia,
tremor, rigidity, and postural instability, accompanying a
number of non-motor symptoms [1]. Several etiological
factors have been identified that contribute to the lifetime
risk of PD, including a strong effect of aging [2]. However,
numerous studies have confirmed that genetic factors
contribute to the pathogenesis of PD. Highly penetrant
mutations producing rare, monogenic forms of the disease
were discovered in several genes and unique variants with
incomplete penetrance were shown to be strong risk fac-
tors for PD. Moreover, more than 20 variants are now rec-
ognized to modulate the risk for apparently sporadic PD
[3] and the largest-to-date meta-analysis revealed over 100
semi-independent risk variants (BioRxiv, https://doi.org/
10.1101/388165). Therefore, the risk of developing PD is
determined by both non-genetic and genetic factors.

The clinical symptoms of PD reflect the underlying
systemic neurodegeneration and protein deposition. A
common denominator of both inherited and sporadic
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forms of PD is the loss of dopaminergic (DA) neurons of
the substantia nigra pars compacta projecting to the pu-
tamen that control voluntary movements [4]. Addition-
ally, proteinaceous inclusions mainly composed by the
protein a-synuclein (a-syn) are located in the perikarya
(Lewy Bodies, LBs) and within the cell processes (Lewy
neurites, LNs) of the surviving nerve cells. Using protein
deposition pathology as a marker of disease progression,
it was shown that the substantia nigra is affected later
over the course of pathology compared with other re-
gions of the nervous system, including from the auto-
nomic and enteric nervous system, while it precedes the
extensive cortical pathology [5]. Therefore, PD is a
multi-system and complex disorder where neuronal dys-
function evolves over time.

Although less often discussed than neuronal path-
ology, a-syn-containing inclusions in astrocytes have
been repeatedly detected in the substantia nigra, cere-
bral cortex and other brain regions in idiopathic PD
samples [6, 7]. The density of a-syn immunoreactive as-
trocytes parallels the occurrence of LNs and LBs in neu-
rons [6]. Neuronal loss and the presence of cytoplasmic
inclusions in neuronal and non-neuronal cells are also
accompanied by reactive changes of astrocytes and
microglia referred to as gliosis. Microglia as well as
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astrocytes are inflammatory cells that express
immune-associated molecules including the major histo-
compatibility complex (MHC) class II, pro-inflammatory
cytokines, and inducible oxide synthase (iNOS). More-
over, astrocytes become hypertrophic and accumulate
the intermediate filament protein, glial fibrillary acidic
protein (GFAP) [4, 8].

Although reactive glial cells and the upregulation of
cytokines was found in the brains and cerebrospinal fluid
of patients with PD, the role of neuroinflammation in the
pathogenesis of PD is still undetermined [2]. Neuroinflam-
mation in PD has long been considered a downstream re-
sponse to neuronal damage. However, alteration of glial
physiological functions are emerging as causally linked to
brain diseases. In the healthy brain, astrocytes maintain
ion homeostasis of the microenvironment, provide struc-
tural and metabolic support, regulate synaptic transmis-
sion, water transport and blood flow [9]. Additionally,
microglia continuously extend and retract their process to
interact with neurons and other types of glial cells, includ-
ing astrocytes. Microglial phagocytosis (alongside other
mechanisms, such as synaptic stripping and “trogocyto-
sis”) plays an important role in the engulfment of synaptic
elements [10-16]. Recent studies also revealed that astro-
cytes contribute to phagocytic clearance in a similar man-
ner during normal physiological conditions [17] and there
is abundant evidence that microglia and astrocytes com-
municate with each other [18-22]. It was further proposed
that astrocytes can ingest aggregated proteins from the
extracellular environment, suggesting that astrocytes keep,
in coordination with microglia, the brain clean [23-26].
Since the elimination of unwanted and potentially harmful
matter is crucial for central nervous system (CNS) func-
tion, dysregulation of glial phagocytosis and degradation
might have a key role in PD pathogenesis. PD-related
genes are expressed in astrocytes and microglia at levels
comparable to neurons, while proteins encoded by several
of these genes are implicated in degradative processes
[27-30]. Here, we will discuss the role of glial phagocytic
clearance in pathological conditions and the possible im-
plication of PD-linked mutations in this important
process. Finally, we will discuss the therapeutic potential
of enhancing or restoring glial cell phagocytic and
degradative capacity as future treatment for PD.

Mechanisms of phagocytosis

Phagocytosis is defined as the cellular uptake of particles
(>0.5um) within a plasma membrane envelope and
partly overlaps with other cellular engulfing mechanisms
such receptor-mediated endocytosis and macropinocyto-
sis [31]. Phagocytes comprising monocytes, macro-
phages, dendritic cells, Langerhans cells, osteoclasts and
microglia [32, 33], are responsible for the clearance of
infectious agents, dead cells and tissue debris and are
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involved in the immune response. Astrocytes are also
considered phagocytes and are able to ingest cellular
debris and other material such as synaptic elements
[34, 35]. During phagocytosis, self and non-self target
particles are recognized by specific receptors on the
plasma membrane and the target-receptor recognition
depends on specific engulfment signals (Fig. 1, Targets;
Receptor-Target recognition). Apoptotic cells secrete mole-
cules called ‘find me’ signals to attract phagocytes toward
them (e.g. lysophosphatidylcoline, LPC; sphingosine-1-
phosphate, S1P; CX3C motif chemokine ligand 1, CX3CL1;
nucleotides). For instance, secreted CX3CL1 binds to
CX3C motif chemokine receptor 1 (CX3CR1) on microglia
resulting in their migration [36]. Dying cells expose ‘eat me’
signals to be engulfed by macrophages, of which the
best-characterized are the externalized phosphatidylserine
(PS) on the cell surface. Exposed PS are recognized directly
by PS receptors or indirectly by bridging molecules named
opsonins (e.g. MFG-E8, Gas6, C3 and C1q). Fc receptor y
(FcRy), the complement receptor 3 (CR3) and MEGFIO0,
which are classified as opsonic receptors, are expressed in
glial cells [37, 38]. FcRs bind to the constant (Fc portion) of
immunoglobulin IgG or IgA antibodies whereas CRs bind
to C3 deposited on the particle following complement acti-
vation. In microglia, pathogen-associated molecular pat-
terns (PAMPs) are recognized by Toll-like receptors (TLRs)
as well as by scavenger receptors (SRs), which are both
non-opsonic receptors. Of note, TLRs are also expressed in
astrocytes and TLR signaling can activate astrocytes to me-
diate neuroinflammation [39-42]. Upon recognition by the
appropriated receptor, additional receptors are recruited eli-
citing complex signalling cascades that involve cytoskeletal
rearrangement of actin filaments (F-actin) (see Fig. 1, In-
ternalization). Actin polymerization is the force driving
membrane extension and phagosome formation. Cdc42
and Rac were identified as players downstream of FcyR,
while RhoA is implicated in phagocytosis mediated by CR3
[43]. One set of well characterized Cdc42/Rac effectors is
the WASP family, WASP and WAVE, which are actin nu-
cleation complexes that activate the Arp2/3 nucleation hot-
spot leading to the remodelling of actin network. In
macrophages, uptake of exogenous particles and their deg-
radation share features with autophagy, a process that in-
corporates endogenous organelles and misfolded proteins,
and converges onto the lysosomal pathway (reviewed in
[44, 45]) (see Fig. 1, Maturation). Specifically, maturating
phagosomes acquire microtubule-associated protein 1A/
1B-light chain 3 (LC3) and the recruitment of LC3 is medi-
ated by the ubiquitin-like conjugation system proteins,
Atg5 and Atg7 [46-48]. During LC3-associated phagocyt-
osis (LAP), the phagosome surface decorated with
phosphatidylinositol-3-phosphate (PI3P) binds to the Atg8/
LC3 conjugation machinery, including Atg5, 12, and 16 L1,
and NADPH oxidase 2 (NOX2)-dependent reactive oxygen
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species (ROS) production is required for LAP [49]. Atg8/
LC3 conjugation to phagosomes regulates their fusion with
lysosomes (see Fig. 1, Lysosomal fusion and degradation).
Notably, no study has yet assessed whether LAP occurs in
microglia and astrocytes, together with the consequences of
LAP deficiency or dysfunction in the CNS. Nonetheless,
given that glial cells are phagocytic, as notably shown
in vivo, and that the proteins discussed above are expressed
in both astrocytes and microglia, then it is reasonable to
infer that these cells are capable of LAP. Once internalized,
the phagosome can fuse selectively with early endosomes
and acquire the small GTPases Rab5. The transition from
an early phagosome to a late phagosome is marked by the
conversion from Rab5 to Rab7. Rab7 activity is essential for
the movement of phagosomes to the cell centre and, there-
fore, for further phagosome maturation [50]. In addition,
the phagosome acquires lysosomal-associated protein 1 and
2 (LAMP1 and LAMP2), which are required for phagolyso-
somal fusion. During the maturation phase, other vesicles,
from endoplasmic reticulum (ER) and trans-Golgi Network
Golgi (TGN) complex, can be recruited to promote mem-
brane extension [51]. Certain phagosomal cargo proteins
are recycled back to the plasma membrane or the TGN,
mediated by different Rab proteins (Rab4, Rabll, and
Rab10) and the retromer complex, respectively. Overall,
these observations demonstrate that the phagocytic path-
way is highly dynamic, involves several protein compo-
nents, and requires extensive membrane remodelling and
recycling events that intersect with other cellular processes
such as autophagy.

Microglial phagocytosis and its role in PD

During development, microglia are specifically involved
in synaptic pruning [52], notably by engulfing and elim-
inating viable C3/Clq-positive synaptic structures via
C3R [53]. Microglia are also responsible for the elimin-
ation of apoptotic neurons generated in the context of
adult neurogenesis in a process mediated by two
TAM-receptor kinases, AXL and MER [54, 55]. How-
ever, microglia do not have a monopoly on synaptic
pruning or CNS cleaning as astrocytes also play crucial
roles in these processes (see next section). Recent data
also indicate that microglial Triggering receptor expressed
on myeloid cells 2 (TREM2) controls the process of syn-
aptic pruning during postnatal development [56]. TREM2
is a cell surface receptor of the immunoglobulin super-
family that is expressed is several cell types including
microglia. When activated, TREM2 signals promote sur-
vival, proliferation, secretion of cytokines, and, import-
antly, phagocytosis [57]. Therefore, the role of microglia
in phagocytosis of synapses, when still viable, and neu-
rons, when dead or dying, suggests that aberrations in
these normal functions can contribute to synaptic loss and
neurodegeneration. A clear link between impaired
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microglial phagocytosis and neurodegenerative diseases
emerges from human genetic studies, including
genome-wide association studies (GWAS). Indeed, vari-
ants in TREM?2 are well-known for increasing the risk for
Alzheimer’s disease (AD), reviewed in [57]. Supporting the
notion that deficient microglial phagocytosis might trigger
neuronal death, several other genes with a role in amyloid
B (AP) clearance were shown to confer susceptibility to
AD (e.g. CD33, CLU and CRI) [58, 59]. Interestingly,
TREM?2 and CD33 variants have been associated with PD
[60-62] and the recycling of microglial TREM2 at the
plasma membrane was suggested to be regulated by the
vacuolar protein sorting 35 (VPS35) [63], which is associ-
ated with autosomal dominant PD [64]. However, the gen-
etic data linking TREM2 with PD have not been replicated
[65] and the involvement of TREM2 in PD still requires
investigation.

Analysis of histological samples from human PD brains
revealed the presence of antigen presentation markers and
a generally increased pro-inflammatory status [66—68]
suggesting that microglial reactivity might compromise
their homeostatic support to neurons, further influencing
the pathogenesis of PD. Near the remaining nigral DA
neurons, microglia also displayed morphologies character-
istic of phagocytic cells, similar to those seen in aging [69].
However, the presence of reactive microglia alone does
not define the helpful or harmful role that their phagocyt-
osis plays in PD neuropathology.

Microglia show reactive phenotypes in animals injected
with 6-hydroxydopamine (6-OHDA) or 1-methyl 4-phenyl
1,2,3,6-tetrahydro-pyridine (MPTP), two toxins widely used
to produce lesions of DA neurons, and in neuron-glial
co-cultures upon treatment with the pesticide rotenone
[70-73]. Microglia-linked neuroinflammation was associ-
ated with an increased expression of microglial synaptic
pruning receptor, CR3, in rotenone-exposed rats [74] and
the presence of complement activation markers in human
patients [75]. Of note, the knockout of C3, the component
of complement system that induces phagocytosis through
its interaction with C3R, rescues DA neurodegeneration in
mice upon injection of the bacterial component lipopoly-
saccharide (LPS) [76]. Overall, these results suggest that
DA loss might depend on pro-inflammatory microglia,
exerted through an aberrant activation of the complement-
phagosome pathway.

The involvement of microglial phagocytosis in PD
pathogenesis is further supported by the fact that micro-
glia uptake and remove DA cell debris in vivo. Moreover,
microglia can also engulf a-syn, the deposited protein in
LBs, possibly via the TLR4 receptor [72, 77, 78]. Consid-
ering the recently reported ability of misfolded a-syn re-
leased by degenerating neurons to propagate to other
cells [79, 80], it is important to consider if glial-mediated
phagocytosis plays a role in this spreading process. One
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possibility is that ineffective a-syn degradation in micro-
glia may result in a-syn release through extracellular
vesicles which in turn contributes to the diffusion of tox-
icity. Extracellular a-syn or neuronal debris might con-
tribute to neurodegeneration by interfering with
microglial phagocytic functions. For example, aggregated
but not monomeric a-syn can inhibit phagocytosis by
blocking FcyR signalling [78, 81]. Additionally, excess
a-syn compromises phagocytosis as demonstrated by
measuring fibrillar a-syn uptake in iPSC-derived macro-
phages from PD patients with a-syn (SNCA) A53T and
SNCA triplication [82]. Consequently, extracellular
a-syn may accumulate due to impairment of the micro-
glial phagocytic molecular machinery.

Additional evidence suggests that several proteins
encoded by genes implicated in mendelian forms of PD
or positioned within PD risk Joci impinge on microglial
phagocytic activity. Leucine rich repeat kinase 2
(LRRK?2) regulates the phagocytic response of myeloid
cells via specific modulation of the actin-cytoskeletal
regulator, WAVE2 [83]. Specifically, the G2019S mutation
in LRRK2, a relatively common cause of familial PD, in-
duces a WAVE2-mediated enhancement of phagocytic re-
sponse in macrophages and microglia from patients and
mouse models [83]. Consistent with this observation,
LRRK?2 depletion decreased microglial phagocytosis and
inhibition of LRRK2 kinase activity reduced Tat-induced
microglial phagocytosis in the BV2 immortalized micro-
glial cell line [83, 84]. However, whether LRRK2-mediated
increases of phagocytosis might contribute to DA-
neuronal loss in animal models of PD has not been re-
ported to date. Interestingly, LRRK2 is a negative regulator
of Mycobacterium tuberculosis phagosome maturation in
mouse and human macrophages [85]. This result suggests
that LRRK2 may have evolved as part of the response to
infectious diseases.

LRRK2 knockout mice also display reduced microglial
expression of the fractalkine receptor CX3CR1 [86].
Signalling between the neuronal chemokine fractalkine
(CX3CL1) and its receptor (CX3CR1l) expressed by
microglia, is a main mode of communication between
neurons and microglia in the brain [36]. In CX3CR1
knockout mice, microglial phagocytosis was shown to be
increased [87, 88]. However, the role of fractalkine sig-
nalling in the regulation of microglial phagocytosis still
remains unclear.

Mutations in the DJ-1 gene are known to be associated
with rare cases of autosomal recessive PD [89]. DJ-1 acts
as a multifunctional protein involved in gene transcrip-
tion regulation and anti-oxidative defence. However,
DJ-1 loss-of-function in microglia induces a reduced ex-
pression of TREM2 [90]. Further investigation demon-
strated that DJ-1 knock-down reduces cell-surface lipid
raft expression in microglia and impairs their ability to
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uptake and clear soluble a-syn, possibly by impacting on
the autophagy pathway [91].

Syt11, the encoding gene for Synaptotagmin-11 (Syt11) is
contained within a genome wide associated study-identified
locus implicated in PD risk [92]. Sytll localized to the
TGN and recycling endosomes and appears to be involved
in cytokine secretion and phagocytosis in microglia [93].
Sytl1 was recruited to phagosomes and Syt11 deficiency in-
hibits microglial phagocytosis of a-syn fibrils, supporting its
association with PD [93].

Additionally, in a mouse model that overexpresses hu-
man mutant a-syn in neurons of the spinal cord, micro-
glial density and expression of AXL were increased [55].
As mentioned above, AXL, together with MER and
TYROS, is part of the TAM receptor family of tyrosine
kinases regulating microglial phagocytosis of newborn
apoptotic cells in the context of adult neurogenesis. In
the a-syn transgenic mouse, loss of both MER and AXL
increased the lifespan [55]. It was thus proposed that
microglia could remove distressed motor neurons in this
model through TAM receptor-mediated “phagoptosis” of
living neurons [94]. In this case, microglial phagocytosis
was not reduced, instead exacerbated and perhaps mis-
targeted, to living neurons, thus becoming pathological.

In conclusion, microglia can phagocytose dead and
dying neurons, but also viable ones, as well as synapses
and aggregated a-syn, which are all potentially relevant
to PD pathogenesis. Therefore, a delicate regulation of
the microglial phagocytosis seems to be critical in PD.
On the one hand, elevated CNS inflammation might ex-
acerbate microglial phagocytosis, causing enhanced, mis-
targeted, and potentially pathological clearance capacity.
On the other hand, aging and/or genetic factors that alter
substrate recognition, incorporation, sorting and lyso-
somal degradation might compromise microglial phago-
cytic clearance function, hence contributing to increased
unwanted material among the CNS environment.

Astrocytic phagocytic activity: does it contribute to PD
development?

Astrocytes are the most abundant glial cells in the brain
and have a range of essential functions required for
maintaining neuronal health. Importantly, both micro-
glia and astrocytes are inflammatory cells and many
functions described for microglia are also shared by as-
trocytes. Specifically, astrocytes are crucial regulators of
innate and adaptive immune responses in the injured
CNS [95]. They respond to pathological states by secret-
ing inflammatory mediators and increasing their expres-
sion of GFAP. However, in the context of PD, whether
the effects of astrocyte activation plays a positive or
negative role in disease outcome is still not well under-
stood. As for microglia, it has been reported that astro-
cytes actively participate in phagocytic processes [96].
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Consistent with this finding, transcriptome analysis
identified high expression of genes involved in engulf-
ment and phagocytosis in astrocytes [97]. However, the
molecular mechanisms behind astrocytic pruning are still
being elucidated. In 2013, Chung et al. reported that astro-
cytes phagocytize synapses in vitro and in vivo through a
conserved pathway that involves two membrane recep-
tors, MEGF10 and, as found for microglial cells, MER
[98]. Once internalized, neuronal material is carried to ly-
sosomes where degradative processes take place [98, 99].
MEGFI10 also mediates the clearance of apoptotic cells
in vitro and in mice, and the process appears to be medi-
ated by binding of MEGF10 to the bridging molecule Clq
associated with PS [100, 101]. MEGF10 is the orthologue
of draper in D. melanogaster and is capable to intracellular
signalling via specific downstream effectors (e.g. GULP1/
ced-6) that control cytoskeletal rearrangements and lyso-
somal degradation [102, 103]. Of note, the stimulation of
phagocytic activity by the overexpression of Draper/
MEGF10 provides neuroprotection in an AD model of
Drosophila reducing levels of AB peptides, reversing loco-
motor defects, and extending lifespan [104]. Similar to
MEGF10, MER is highly expressed in astrocytes and rec-
ognizes specific bridging molecules (e.g. Gas6) that binds
phophatidylserine in target debris [97, 105, 106].
Astrocytic phagocytic processes appear to be altered
during prolonged stress, aging and diseases. Upon sleep
deprivation in mice, the MER receptor is upregulated
and astrocytic phagocytosis of presynaptic components
is enhanced, suggesting a role in the recycling of heavily
used synapses [17]. The involvement of MER in phago-
cytizing neuronal materials both in astrocytes and
microglia might suggest overlapping functions between
the two types of cells. In pathological conditions, react-
ive astrogliosis is characterized by a profound change in
astrocyte phenotype in response to injury or disease
[107]. An intimate crosstalk exists between microglia
and astrocytes. By releasing signaling molecules, both
microglia and astrocytes establish a reciprocal communi-
cation during neuroinflammation (reviewed in [21]). In
this regard, it has been proposed that neuroinflamma-
tion associated with ischemia can induce two different
types of reactive astrocytes named Al and A2, respect-
ively [19, 108]. A2 are protective and, possibly, promote
CNS recovery and repair during ischemia [19]. For ex-
ample, Morizawa et al. showed that astrocytes enhance
phagocytosis, upregulate ABCA1, a protein known to be
involved in cellular phagocytosis in the periphery, and
its pathway molecules, MEG10 and GULP1, and contrib-
ute to the remodelling of damaged tissues after transient
ischemic injury in vivo [34]. In contrast, Al astrocytes
are neurotoxic and lose many normal astrocytic func-
tions including the ability to support synapse formation
and function and instead tend to phagocytize neuronal
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elements. It has been demonstrated that activated micro-
glia induce A2 to Al phenotypic conversion of astro-
cytes by the release of Il-1, TNF and Clq [18]. Of note,
the neurotoxic Al astrocyte population is specifically
observed in human neurodegenerative diseases including
AD and PD, and during normal aging, suggesting that
impaired astrocytic phagocytic clearance may contribute
to increasing neuronal debris and abnormal protein accu-
mulation, thus triggering neuroinflammation and neuro-
degeneration processes [18, 19]. Indeed, phagocytic
activity of astrocytes appears to be important as a mech-
anism recruited for clearing damaged cells [35, 109]. In
vitro, the release of cellular materials from laser-irradiated
astrocytes or neurons induces a phagocytic response in
nearby astrocytes [35]. In rats, synaptic debris produced
by the degeneration of the striatal DA terminals upon
6-OHDA injection in lateral ventricles were found within
specific structures named spheroids that were transferred
to astrocytes [109]. Astrocytes can phagocytize large
amounts of a-syn fibrils in vitro [25, 26]. a-syn is
endogenously expressed at low levels in astrocytes
[110, 111], but it can spread from neurons to glial
cells and from one astrocyte to another astrocyte
through the extracellular space, possibly inside of
extracellular vesicles or via direct cell-to-cell transfer
[23, 110, 112]. Astrocytes are able to degrade fibrillar
a-syn as well as human a-syn purified from LBs both
in vitro and in ex vivo brain slices, suggesting an ac-
tive role for these cells in the clearance of a-syn de-
posits [110]. However, the majority of fibrillar a-syn
ingested by cultured astrocytes is stored intracellularly
rather than degraded. The accumulation of aggregated
a-syn in astrocytes also disrupts their lysosomes,
impacts mitochondria homeostasis and may induce
cell-to-cell transfer of a-syn via tunneling nanotubes
[23, 25, 26]. Similar findings were reported for AP
fibrils [26]. Consistent with these results, there is
evidence that cortical and striatal astrocytes from PD
patients brains contain extensive a-syn deposits [7, 8,
113-115]. It is hypothesized that misfolded a-syn can
spread from affected to unaffected regions of the
CNS, leading to neurodegeneration and the progres-
sion of PD pathology (reviewed in [116]). Therefore,
ineffective degradation of neuron-derived a-syn by as-
trocytes might contribute to PD pathogenesis and to
intervene with the kinetics of astrocytic phagocytic
capacity might be useful to slow down a-syn toxicity
and stop its transmission.

Similar to microglia, astrocytes phagocytize and this
activity is physiologically important. Although their role
in neurodegenerative diseases and specifically in PD is
still emerging, compelling evidence suggests that loss of
proper astrocytic phagocytosis might contribute to neu-
rodegenerative process. Unfortunately, mechanistic
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details on specific neuronal tags that signal for astrocytic
degradation, astrocytic receptors involved in the
recognition of aggregated a-syn as well as delivery to
lysosomes are still unknown. Moreover, whether
PD-linked mutations influence astrocytic phagocytosis
remains undetermined.

Dysfunction in the endolysosomal pathway: implication
for glial phagocytic clearance

The identification of genes linked to familial forms of
PD with pathological and clinical overlap with the spor-
adic syndrome has improved our understanding of
pathogenic mechanisms involved in this disease [117].
Genetic studies provided some evidence that endo-
lysosomal dysfunction may play an important role in the
pathogenesis of PD. Among the several loci associated
with PD, at least 11 are either directly or indirectly con-
nected to the autophagy-lysosomal pathway [29]. More-
over, other protein products of PD loci can be placed
into cell biological machineries that impinge on endoso-
mal membrane trafficking [118]. Since phagocytic clear-
ance relies on functional endocytosis, sorting, vesicle
transport and compartment acidification as well as deg-
radation, it is conceivable that variants or mutations in
all of these proteins might be responsible for altering the
ability of glial cells to remove degenerating synapses and
release toxic/aggregated proteins. Although the majority
of the reported PD-linked proteins are present at notable
protein levels in glial cells, their biological function and
the implication of their pathological mutations have
been deeply studied in neurons yet rarely in microglia
and astrocytes. In this section, we will discuss relevant
PD genes focusing on their expression, localization,
function and potential participation in taking up and de-
grading extracellular materials.

Two PD-associated proteins are specifically located at
the lysosome and are essential for lysosomal functional-
ity. ATPase type 13A2 (ATP13A2) is a protein involved
in lysosomal cation homeostasis that is linked to auto-
somal recessive familial PD [119, 120]. ATP13A2 accu-
mulates within LBs and ATP13A2 levels are decreased
in DA nigral neurons from patients with sporadic PD
[121] suggesting that ATP13A2 loss-of-function might
contribute also to sporadic PD. ATP13A2 is a trans-
membrane protein localized both in lysosomes and late
endosomes and dysfunction of ATP13A2 diminishes
lysosomal degradation and autophagic flux [122-124],
exosome externalization [125], and induces an accumu-
lation of fragmented mitochondria [124, 126, 127].
Taken together, these findings point to a role of
ATP13A2 in controlling the endolysosomal and autoph-
agic pathways. Loss of ATP13A2 leads to lysosomal dys-
function and subsequent a-syn accumulation in cell
cultures [128] while ATP13A2-null mice exhibit motor
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deficits, widespread gliosis, and lysosomal abnormalities
[129]. PD-linked mutations in ATP13A2 lead to several
lysosomal alterations in patient-derived fibroblasts, in-
cluding impaired lysosomal acidification, decreased pro-
teolytic processing of lysosomal enzymes, reduced
degradation of lysosomal substrates, and diminished
lysosomal-mediated clearance of autophagosomes [122].
Similar to other proteins involved in PD, ATP13A2 is
expressed by microglia [27] and astrocytes [28] and defi-
ciency of ATP13A2 induces astrocyte-related intense in-
flammation which exacerbates DA neuron damage in
co-cultures [130]. However, the precise role of ATP13A2
in the lysosomal pathway of glial cells and the impact of
ATP13A2 loss-of-function in glial degradative capacity is
as yet unexplored.

Mutations in Glucocerebrosidase (GBA) gene, which
codes for a lysosomal enzyme implicated in a lysosomal
storage disorder (LSD) called Gaucher’s disease (GD) in
the homozygous state, are common risk factors for PD
[131]. Clinically, PD patients with GBA mutations ex-
hibit typical manifestations of PD or dementia with Lewy
bodies. The glucocerebrosidase enzyme (GCase), which
catalyzes the breakdown of sphingolipid glucosylcera-
mide to ceramide and glucose within lysosomes and re-
duces the enzymatic activity caused by mutations, may
lead to impaired lysosomal protein degradation and in-
creased exosomal release of a-syn [132, 133]. Both GD
and PD patients with GBA mutations show two com-
mon features: abnormal o-syn accumulation and glial
cells reactivity, suggesting that gliosis may be an import-
ant contributor to pathogenesis [134]. Consistent with
this idea, studies in Gba-deficient mice revealed that
reactive microglia and astrocytes accumulate in degener-
ating brain regions [135]. Additionally, primary macro-
phages from patients with GD recognize and take up
apoptotic cells but do not correctly digest engulfed cells
[136]. This is caused by aberrant recruitment of
phagosome-associated proteins, leading to substantially
impaired phagosome maturation and phagosome-
lysosome fusion [136]. However, only one report specif-
ically analyzed autophagic and proteasomal machinery
in mouse astrocytes lacking Gba showing that mitophagy
was impaired [137].

As mentioned above, mutations in LRRK2 are a com-
mon cause of familial and sporadic PD [138-140].
LRRK2 plays a major role in vesicular membranes, as
well as autophagy and lysosome biology [141], and its
function is mediated by the phosphorylation of a subset
of Rab GTPases (e.g. Rab8A and Rabl10) [142, 143].
LRRK2 has been implicated in the regulation of lyso-
somal morphology and function in several models,
including astrocytes [144—148]. Lysosomal abnormalities
in different tissues have been observed upon the inhib-
ition of LRRK2 kinase activity and in many LRRK2
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knockout models [145-149]. iPSC-derived DA neurons
from G2019S mutation carriers show an increase in au-
tophagic vacuoles and an accumulation of aggregated
a-syn [150]. In addition, vesicles with multiple mem-
branes resembling autophagosomes or autophagic vacu-
oles within regions enriched in axons and/or synapses
have been reported in transgenic mice overexpressing
the G2019S LRRK2 mutation [151]. G2019S knock-in
mutation in LRRK2 induces significant changes in lyso-
somal morphology and acidification, and decreased basal
autophagic flux in mouse brain neurons. These
changes are associated with an accumulation of
detergent-insoluble a-syn and increased neuronal
release of a-syn [152].

Similar to ATP13A2 and GBA, LRRK2 is highly
expressed in mouse and human astrocytes and plays a key
role in the lysosomal function of these cells [27, 144, 153].
In mouse primary astrocytes, LRRK2 co-localizes with the
lysosomal markers, LAMP1 and LAMP2, and LRRK2 de-
ficiency significantly enhances lysosomal number [144].
Interestingly, pathogenic mutations in LRRK2 in astro-
cytes produce enlarged lysosomes with a decreased de-
gradative capacity and this effect is dependent on the
kinase activity [144]. Thus, LRRK2-dependent lysosomal
dysfunction in astrocytes might exacerbate the neurode-
generation process because of their inability to clear up
unhealthy neurons and the released a-syn. In neurons,
LRRK2? is also recruited to the TGN and promotes the
clearance of Golgi-derived vesicles by interacting with and
phosphorylating Rab7L1 (Rab29) [154-156]. Along this
line, LRRK2 was shown to regulate late endocytic mem-
brane trafficking in a Rab7-dependent manner while mu-
tated LRRK2 delays the recycling of the epidermal growth
factor receptor (EGFR) [157]. In addition, several papers
point to a functional interaction between LRRK2 and
VPS35, a core component of the retromer cargo recogni-
tion complex that plays a critical role in cargo retrieving
pathway from the endosome to the TGN, involved in gen-
etic PD [158-160]. PD-associated defects in LRRK2 or
LRRK2 deficiency disrupt retromer cargo mannose
6-phosphate receptor (M6PR) trafficking and impairs
secretory autophagy and Golgi-derived vesicle secretion
[154, 161]. Expression of wild-type VPS35, but not a famil-
ial PD-associated mutant form (D620N), rescued these
defects in D. melanogaster models [154]. Noteworthy,
VPS35 D620N knock-in mutation strikingly elevates
LRRK2-mediated phosphorylation of Rab8A, Rab10, and
Rab12 in mouse indicating that the two proteins function
in a converging pathway and that mutant VPS35
exacerbates LRRK2 toxicity [158]. Taking together,
these observations might suggest possible implica-
tions of mutated LRRK2 and VPS35 in phagosome
formation and/or phagocytic receptors internalization
and recycling.
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A recent characterization of the biological function of
Transmembrane protein 175 (TMEM175), encoded by a
gene located under one of the most significant PD
GWAS peak [92], Biorxiv: https://doi.org/10.1101/
388165, suggests a role in the pathogenesis of PD. Spe-
cifically, TMEM175 is a lysosomal K" channel that stabi-
lizes lysosomal pH and regulates lysosome catalytic
activity [162—164]. In neuronal systems, TMEM175 defi-
ciency decreases GBA activity and the lysosomal-
mediated clearance of autophagosomes with a conse-
quent impairment in the clearance of exogenous fibrillar
a-syn [163]. Of note, TMEM175 mRNA was detected in
brain glial cells with a particularly elevated expression in
mouse and human astrocytes [27]. However, TMEM175
function is poorly understood and no data is available
regarding the effect of its ablation in glial cells. Since
lysosomal degradation serves as a key final step to re-
solve protein aggregation upon glial phagocytosis, it is
likely that TMEM175 dysfunction negatively impacts on
this pathway.

Concluding, a better understanding of the involvement
of endo-lysosomal pathway and the implication of PD
pathological mutations in the context of glial phagocyt-
osis might be helpful to understand the molecular basis
of neurodegeneration in PD.

Conclusions and future directions

The elimination of unwanted and harmful material is
crucial for CNS homeostasis and the ability of certain
brain cells to phagocytize is particularly relevant during
neurodegeneration when neuronal debris and neuronal-
released toxic proteins accumulate. Astrocytes surround
neurons and closely encapsulate synapses and they might
be required to constantly and promptly phagocytize and
eliminate degenerating synapses and cell debris (Fig. 2a).
Once the degenerating process becomes acute, microglia
are recruited and start to exert their neuroprotective func-
tion by massively finalizing the clearance of cells and
unfolded proteins. Exacerbated microglia-mediated neuro-
inflammation might be detrimental for more than a rea-
son. First, enhanced microglial phagocytic activity might
start to eliminate healthy synapses and second, the released
proinflammatory cytokines might speed down astrocytic
phagocytosis. Both PD causal genes and PD genetic risk
factors involved in endosome maturation as well as lyso-
somal function encoded for proteins highly expressed in
glial cells. In this scenario, glial cells carrying PD muta-
tions could fail to degrade engulfed materials because of
endo-lysosomal impairment. Since both microglia and as-
trocytes endogenously express low levels of aggregate-
prone proteins including a-syn, the intracellular accumu-
lation of undigested material could interfere with the glial
homeostatic functions, thus affecting neuronal health and
sustaining neurodegeneration (Fig. 2b).
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Fig. 2 Phagocytic clearance dysfunction in PD neurodegeneration. a Dopaminergic terminals in the striatum are surrounded by astrocytic and
microglial processes. b PD is characterized by dopaminergic neuronal death, proteinaceous accumulations positive for a-syn in the surviving
neurons as well as in astrocytes, accompanied by extended gliosis and neuroinflammation. Reactive glia can phagocytize neuronal debris and
released aggregated a-syn, attenuating neurodegeneration. Multiple factors can cause phagocytic clearance mistargeting or dysfunction (enhance

Based on these considerations, could the modulation of
glial phagocytic clearance serve as a valuable therapeutic
approach in PD? Ideally, cell-targeted factors promoting
lysosome acidification and/or biogenesis might enhance
lysosomal function, thus allowing for improved degrada-
tive capacity. However, scarce information is available
regarding the molecular mechanisms and the specific,
possibly distinct, roles of microglial versus astrocytic
phagocytic clearance in the onset and progression of PD.
Future studies comparing the kinetics of microglia and
astrocyte phagocytic activities are warranted to clearly dis-
sect the molecular machineries as well as unravel the bio-
logical basis of communication between these two cell
types in the CNS.
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