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Abstract

Background: Targeted amplicon sequencing of the 16S ribosomal RNA gene is one of the key tools for studying
microbial diversity. The accuracy of this approach strongly depends on the choice of primer pairs and, in particular,
on the balance between efficiency, specificity and sensitivity in the amplification of the different bacterial 16S
sequences contained in a sample. There is thus the need for computational methods to design optimal bacterial 16S
primers able to take into account the knowledge provided by the new sequencing technologies.

Results: We propose here a computational method for optimizing the choice of primer sets, based on multi-objective
optimization, which simultaneously: 1) maximizes efficiency and specificity of target amplification; 2) maximizes
the number of different bacterial 16S sequences matched by at least one primer; 3) minimizes the differences
in the number of primers matching each bacterial 16S sequence. Our algorithm can be applied to any desired amplicon
length without affecting computational performance. The source code of the developed algorithm is released
as the mopo16S software tool (Multi-Objective Primer Optimization for 16S experiments) under the GNU General
Public License and is available at http://sysbiobig.dei.unipd.it/?q=Software#mopo16S.

Conclusions: Results show that our strategy is able to find better primer pairs than the ones available in the literature
according to all three optimization criteria. We also experimentally validated three of the primer pairs identified by our
method on multiple bacterial species, belonging to different genera and phyla. Results confirm the predicted efficiency
and the ability to maximize the number of different bacterial 16S sequences matched by primers.
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Background
Targeted amplicon sequencing of the ribosomal small
subunit, 16S ribosomal RNA gene (16S rRNA) is a
common approach to investigate the diversity of
microbial communities in a site [1, 2]. The 16S rRNA
gene is present in all prokaryotes and contains both
fast-evolving regions, which can be used to classify
organisms at different taxonomic levels, and slowly-
evolving regions, which are relatively conserved
throughout different species. The slowly-evolving re-
gions can be used to design broad-spectrum primer
pairs for polymerase chain reaction (PCR) amplifica-
tion, which in turn can be used to isolate species-
specific fast-evolving regions. A primer pair is

composed of a forward and a reverse primer: the
former is meant to match the sense sequence of the
bacterial 16S, while the latter should match the anti-
sense sequence [1]. The accuracy of 16S rRNA se-
quencing strongly depends on the choice of the
primer pairs. Many of the current bacterial 16S
primers have been designed from sequence data
obtained from in vitro cultured species, even though
environmental microbiologists estimate that less than
2% of bacteria can be cultured in the laboratory. How-
ever, our knowledge over unculturable bacterial se-
quences is rapidly growing thanks to Next-Generation
Sequencing (NGS), a technology that is continuously
evolving and improving [3]. As a consequence, several
16S sequence databases have been created and are be-
ing maintained up to date by the scientific community
[4–6]. There is thus the need for automated methods* Correspondence: barbara.dicamillo@unipd.it
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that leverage such newly available information in the
design and update of bacterial 16S primers.
Since the 16S gene sequence is similar but not iden-

tical in different organisms, degenerate primers are
used for 16S rRNA sequencing. A primer set is called
degenerate when it is used as a mixture of oligonucleo-
tide molecules that contain different nucleotides in
defined positions. A pair of degenerate primers can be
naturally expanded into a set of non-degenerate
primer pairs, whose elements are obtained by assign-
ing all possible combinations of values to the degener-
ate nucleotides of the original pair. We define such a
set of non-degenerate primer pairs a primer-set-pair
(Table 1).
An optimal primer-set-pair should exhibit several

properties:

� Maximize experimental efficiency and specificity, in
terms of how much a primer pair is able to amplify
the selected DNA sequence, and not others, during
PCR amplification. Efficiency and specificity depend
on a number of parameters intrinsic to the PCR
method, which need to be set in order to guarantee
the success of the reaction. Key parameters are the
primer length, the amplicon length, the number and
position of mismatches with respect to the template,
the primer GC-content, and the ability of primers to
produce secondary structures by inter- or intra-
molecular interactions [7]. In the following, for
the sake of conciseness, we refer to this objective
with the term efficiency.

� Maximize coverage, in terms of the fraction of all
bacterial 16S sequences from different species that
are targeted by at least one forward and one reverse
primer from the primer-set-pair.

� Minimize primer matching-bias, in terms of differences
in the number of combinations of primers from the
forward and reverse sets matching each bacterial 16S.

In the literature, the majority of the approaches for
automated primer design for a set of reference se-
quences are based on multiple alignment of the set of
sequences. Among these, Linhart and Shamir [8] for-
mulate the problem as the Degenerate Primer Design

problem and propose a dynamic programming solution,
implemented in the HYDEN software. An improvement
of the HYDEN software is proposed by Hugerth et al.
[9] as the DegePrime software. None of these ap-
proaches account for primer efficiency, which instead is
taken into account by Brodin et al. [10] in the Primer-
Design software, as a set of constraints on admissible
primer pairs. Multiple alignment, however, is based on
heuristic approaches [11] and is inherently ineffective
in producing a correct final alignment when thousands
of sequences are involved in the process, especially
when sequences show a certain degree of heterogeneity
as in the case of 16S.
Multiple alignment of the 16S bacteria sequences from

the Ribosomal Database Project (RDP) [5] is used by
Wang and Qian [12] to identify conserved fragments use-
ful for primer design, but the approach focuses just on sin-
gle primers and does not extend the analysis to primer
pairs. Finally, the SPYDER software for 16S primer design
and assessment [13] exploits the RDP Probe Match tool to
quickly assess coverage of candidate primer pairs, but the
primer design has to be manually carried out by the user,
rather than automated by the software.
In this work, we propose an algorithm for optimizing

the primer choice, which searches within the set of all
possible primer-set-pairs for those simultaneously exhi-
biting high efficiency and coverage and low matching-
bias. The novelty of our approach is many-fold. First, by
formulating coverage, efficiency and matching-bias as
optimization criteria, we allow the user to explicitly
model the trade-off between the three competing objec-
tives. Second, we consider for the first time minimal
matching-bias among the characteristics that a good
primer-set-pair must exhibit. While efficiency and cover-
age are usually taken into account when designing a pri-
mer set, matching-bias is seldom considered in the
literature. However, it should be taken into account in
quantitative studies, where the objective is to quantify
the relative abundance of the different species, and the
presence of species matched by more combinations of
forward and reverse primers may lead to unwanted
amplification biases. Third, by relying on primer-to-
sequence alignment, rather than on multiple alignment,
we avoid potential artefacts in the results due to incor-
rect final alignment when thousands of sequences are in-
volved in the process. Fourth, we remove the constraint
that the sets of forward and reverse primers should be
summarizable as a pair of degenerate primers: indeed,
the inclusion of degenerate base sites in primer design
may lead to inefficient target amplification, due the pres-
ence of mismatches between primers and target se-
quences [14]. In addition, the use of degenerate primers
might lead to low-reproducibility in primer synthesis
and thus biases among different primer batches. By

Table 1 Example of the mapping from a pair of degenerate
primers to a primer-set-pair

DG (forward) DG (reverse) NDG (forward) NDG (reverse)

ACGTHACGT RACGTYACGT ACGTAACGT AACGTCACGT

ACGTCACGT AACGTTACGT

ACGTTACGT GACGTCACGT

GACGTTACGT

DG degenerate primer, NDG non-degenerate primer
The degenerate bases are shown in bold
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avoiding degenerate primers, we thus provide the user
with more control over what is actually amplified and
over possible biases.
Our approach exploits the bacterial sequence know-

ledge available in public databases such as GreenGenes
[4], the probeBase 16S primers database [15], recently
updated after a comprehensive literature survey [16],
and SILVA [6]. As an example of application, we present
the optimization of primer choice for amplicons in the
range 700–800 bp, but the procedure is general and can
be applied to any desired amplicon length and represen-
tative bacteria population.
In silico results show that our strategy is able to find

better primer-set-pairs than the ones available in the lit-
erature according to all three optimization criteria. Fur-
thermore, experimental validation demonstrates that the
optimal primer-set-pairs are suitable for the amplification
of 16S rRNA from a variety of bacterial species belonging
to different genera, thus confirming the predicted effi-
ciency, wide coverage and low matching-bias.

Methods
Problem constraints
As stated in the previous paragraph, an optimal
primer-set-pair should simultaneously maximize effi-
ciency and coverage and minimize matching-bias. In
the following, we describe how we quantitatively
encoded these constraints.

Efficiency
The perfect primer-set-pairs should satisfy several con-
straints, aimed at improving PCR efficiency and specifi-
city [7]. However, concurrently satisfying all constraints
is often impractical and most state-of-the-art primers
violate one or more constraints [16]. We thus decided to
introduce efficiency as an optimization score, encoding
many of the constraints as fuzzy score functions. More
precisely, we defined our efficiency score as the sum of
ten score terms: seven fuzzy score terms related to
single-primer efficiency constraints, averaged across all
primers in the primer-set-pairs, plus three score terms
related to the efficiency of the primer-set-pairs as a
whole. Since all terms are meant to vary between 0 and
1, the optimization score ranges from 0 (minimal effi-
ciency) to 10 (maximal efficiency).
Broadly speaking, our fuzzy score counts 1 for each

constraint that is perfectly satisfied, or, alternatively, a
value between 0 and 1 depending on how close the pri-
mer is to the constraint limit. As an example, consider
the primer melting temperature, Tm. Tm should be
greater than or equal to 52 degrees in a perfect primer
[7], but 51 is still tolerable, albeit not ideal. In this case,
our fuzzy scoring function assigns 1 to temperatures of
52 degrees or greater, 0 to temperatures of 50 degrees or

less and considers a linear increasing function between
50 and 52 degrees. Each term is precisely described in
what follows.
The 7 single-primer score terms are:

1. Melting temperature: the melting temperature Tm of
a primer is computed with the nearest-neighbour
formula [17]. The score term is 1 if Tm ≥ 52, 0 if
Tm ≤ 50 and (Tm - 50)/2 if 50 < Tm < 52.

2. GC-content: GC-content is the fraction fGC of base
pairs in the primer sequence equal to either G
(guanine) or C (cytosine). The score term is 1 if
0.5 ≤ fGC ≤ 0.7, 0 if fGC > 0.7 or fGC < 0.4 and
(0.5 - fGC)/0.1 if 0.4 ≤ fGC < 0.5.

3. 3′-end stability - score term 1: two score terms are
defined concerning 3′-end stability. The first term is
0 if the last three bases of the primer consist entirely
of As (adenines) and Ts, (thymines) and 1 otherwise.

4. 3′-end stability - score term 2: the second score
term is 0 if the last 5 bases contain more than 3 Cs
or Gs, and 1 otherwise.

5. Homopolymers: a homopolymer is a sequence of
identical nucleotides. The score term is 1 if there
are no homopolymers longer than 4 nt, 0.5 if there
are no homopolymers longer than 5 nt, and 0 if
there is at least a homopolymer longer than 5 nt in
the sequence.

6. Self-dimers: the presence of self-complementary
regions between couples of identical primers can
lead to the generation of self-dimers. Considering
the maximum number of matches in a gap-free
alignment between a primer with its reverse
complement, maxM, the score term is 1 if
maxM ≤ 8, 0 if maxM ≥ 11 and (11 - maxM)/3 if
8 < maxM < 11.

7. Hairpins: a hairpin can be formed in the presence
of self-complementarity within the primer sequence,
especially at its 3′-end. The score term is 0 if, for at
least one gap-free alignment between the primer and
the reverse complement of its 3′-end, both the last
nucleotide and 3 or more of the 4 preceding
nucleotides match, and 1 otherwise.

The 3 primer-set-pairs score terms are defined as follows:

1. Melting temperature range: the melting temperature
range ΔTm of a primer-set-pair is computed as the
maximum minus the minimum of the melting
temperatures of all primers in the set pair. The score
term is 1 if ΔTm ≤ 3, 0 if ΔTm ≥ 5 and (5 - ΔTm)/2 if
3 < ΔTm < 5.

2. Dimers: we consider the maximum number of
matches maxM across all possible alignments
between all possible combinations of forward and
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reverse primers from a primer-set-pair. The score term
is 1 if maxM ≤ 8, 0 if maxM ≥ 11 and (11 - maxM)/3 if
8 <maxM < 11.

3. Amplicon length range: due to the known reduction
of PCR efficiency with increasing amplicon length
[7], we want the lengths of the generated amplicons
to lie in a narrow range.We especially want to avoid
amplicons much shorter than the target length, since
they would be over-amplified with respect to the
others. However, we want to be able to tolerate a
small fraction of outliers, in order to avoid penalizing
potentially valuable primer-set-pairs due just to a few
rare sequences. Given a representative set of bacterial
16S sequences, called “reference set” from now on,
we consider the difference Δamplen between the
median and the first percentile of amplicon lengths
across all possible amplicons, formed by matching all
combinations of forward and reverse primers from
the set pair with the reference set. The score term is
1 if Δamplen ≤ 50 nucleotides, 0 if Δamplen ≥ 100 and
(100 - Δamplen)/50 if 50 < Δamplen < 100.

The choice of the scoring criteria and the default
threshold are based on previous literature [7, 18, 19].
However, both the thresholds and the fuzzy tolerance in-
tervals can be set by the user differently from the default
and according to his/her experimental needs by specify-
ing the desired values as input parameters when calling
the command line tool.

Coverage
The coverage score is defined as the number of 16S
sequences matched by at least one primer. Given the
sequences of a primer and of a bacterial 16S, we define
seed the last 5 nucleotides at the 3′-end of a primer
and we consider a 16S sequence as matched by the
primer if a region of the 16S sequence exists that
matches i) the seed of the primer exactly; and ii) the
remainder of the primer with at most 2 mismatches
[20]. A 16S sequence from a reference set is consid-
ered covered by a primer-set-pair if at least one for-
ward and one reverse primer in the primer-set-pair
match the sequence. Since PCR efficiency decreases
with amplicon length, we impose a further constraint:
given a primer-set-pair and a reference set of 16S se-
quences, we estimate the target amplicon length as the
median of the lengths of all amplicons obtained by
matching all combinations of forward and reverse
primers from the primer-set-pair with the reference
set. We then consider as not covered all 16S reference
sequences whose amplicon length differs more than
100 nucleotides (either longer or shorter) from the
target length.

Matching-bias
Given a reference set of 16S sequences and a primer-set-
pair, the third optimization score measures the variabil-
ity of the number of combinations of forward and
reverse primers matching each 16S reference sequence.
Coverage variability due to matching bias should be
minimized, or at least accounted for, when the study is
meant to quantify the relative abundances of the differ-
ent bacterial species, because of the amplification bias
towards the species covered by more combinations of
forward and reverse primers. As a measure of matching-
bias, we exploit the coefficient of variation of the
coverage across the target sequences, computed as the
standard deviation over the mean of the number of com-
binations matching each sequence.

Reference set of 16S sequences, preparation and
annotation
To optimize the three scores above, we rely on a repre-
sentative set of bacterial 16S sequences extracted from a
public 16S sequence database, GreenGenes [4]. The
GreenGenes 16S sequence database is organized in
Operational Taxonomic Units (OTUs), which are nested
clusters of sequences in the database, organized at differ-
ent levels of inter-cluster similarity. For each level of
similarity, a reference sequence is associated to each
cluster, maximally similar to all other sequences in the
same cluster [4]. The set of reference sequences can thus
be considered a representative subset of the entire se-
quence database, becoming more and more accurate for
increasing levels of inter-cluster similarity (and, thus,
number of reference sequences). We chose an 85%
inter-cluster similarity level as a good trade-off between
representativeness and complexity, corresponding to a
set of 5088 representative sequences to be used to assess
the optimization criteria.
Albeit very sensitive in annotating the Bacteria and

Archaea domains, the GreenGenes taxonomy is not de-
signed to distinguish sequences belonging to eukaryotes
or viruses. For this reason, we decided to re-annotate 16S
bacterial sequences leveraging the original NCBI tax-
onomy [21] to accurately identify, among the representa-
tive sequences, only the ones belonging to the Bacteria
domain. Since domain information is missing from the
NCBI annotation for around 20% of the sequences, we de-
signed an ad hoc procedure to identify bacterial sequences
among these. The procedure is described in detail in the
Supplementary Materials (see Additional file 1). We con-
servatively chose to consider only the sequences anno-
tated as bacteria both in our curated, NCBI-based
annotation and in the original GreenGenes annotation.
This resulted in a set of 4573 representative 16S sequences
belonging to the Bacteria domain.
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Optimization algorithm
Since the problem of optimal primers choice requires the
simultaneous optimization of different competing scores,
it can be cast as a multi-objective optimization problem,
where the search space is the set of all possible
primer-set-pairs and a scoring function, or optimization
criterion, can be defined so to maximize efficiency and
coverage and minimize matching-bias. When more than
one criterion needs to be optimized concurrently, but the
objectives to be optimized are conflicting, one is usually
not interested in a single solution, but rather in the set of
Pareto optimal solutions, i.e. in the set of solutions for
which none of the objectives can be improved without
sacrificing at least one other objective [22]. The result of
multi-objective optimization is no longer a unique optimal
primer-set-pair, as in single-objective optimization, but ra-
ther a collection of primer-set-pairs that are not worse
than any other primer-set-pair and strictly better accord-
ing to at least one of the criteria. More precisely, for the
tri-objective optimization problem of maximizing the effi-
ciency (E) and coverage (C) optimization scores and min-
imizing the matching-bias (M) score, as defined in the
previous section, candidate primer-set-pairs are evaluated
according to an objective function vector f = (f E ; f C ; fM).
Given two primer-set-pairs p and p′, we say that p
dominates p′ (p ≺ p′) if and only if f (p) ≠ f (p′), fE (p) ≥
fE (p′), fC (p) ≥ fC (p′) and fM (p) ≤ fM (p′). If no p′ exists such
that p′≺ p, the primer-set-pair p is called Pareto-optimal. In
this context, the goal of optimal primers choice is to
determine (or approximate) the set of all Pareto-optimal
primer-set-pairs, whose image in the tri-objective space is
called the Pareto front [22].
To search for the optimal Pareto front we rely on the

two-phase iterated best improvement local search ap-
proach proposed by Dubois-Lacoste et al. [23] and effect-
ively exploited in Sambo et al. [24] and Borrotti et al. [25]
for the optimal multi-objective design of experiments.
Local search starts from an initial solution and itera-

tively refines it by applying small local changes and asses-
sing each time their effect on solution quality; it stops
when no further local changes can improve the solution.
The process is iterated from several different starting
points and the best solution ever found is returned, as an
approximation of the unknown optimum [26]. A common
extension of local search to the multi-objective case is to
start from a set of initial Pareto solutions, sample one so-
lution from the front, optimize with local search a random
scalarization of the problem, i.e. a linear combination of
the optimization scores with weights sampled uniformly
at random from the unit simplex, update the Pareto front
and iterate until a termination condition is met [23].
The procedure MULTI-OBJECTIVE-SEARCH, whose

pseudo-code is reported in what follows, receives as in-
puts the desired range of amplicon lengths (rangeamplen),

a representative set of 16S sequences (repset), an initial
set of (possibly degenerate) primer pairs (init) and the
number of restarts (nres). The procedure begins by
selecting from init all possible primer pairs with the de-
sired amplicon length, primer length (between 17 and 21
nucleotides) and target domain (Bacteria or Universal).
Degenerate primer pairs are converted to non-degener-

ate primer-set-pairs and added to an archive. The proced-
ure then iterates nrest times, each time sampling a random
primer-set-pair pstart from the Pareto front and a random
vector α of relative weights for the optimization scores,
with weights sampled uniformly from the unit simplex;
the procedure, then, solves a scalarization of the
multi-objective problem, i.e. a single-objective problem in
which a linear combination of the three objectives with
relative weights α is maximized, and adds the result to the
archive. To this purpose, efficiency, coverage and
matching-bias scores are normalized to their maximum,
so that each normalized score ranges between 0 and 1,
and matching-bias is redefined as 1 – matching-bias, so
that it can be maximized as the other scores.

MULTI-OBJECTIVE-SEARCH (rangeamplen ; repset ;
init ; nrest)
1 Select all (possibly) degenerate primer pairs from the
set init with amplicon length in rangeamplen

2 Add to archive the corresponding non-degenerate
primer-set-pairs

3 for r = 1 to nrest
4 pf = PARETO-FRONT(archive)
5 Sample pstart from pf
6 Sample α from [0, 1]3, with Σi αi = 1
7 p = LOCAL-SEARCH(pstart , α , repset)
8 Add p to archive
9 return archive

Single-objective optimization is obtained using the Best
Improvement Local Search algorithm [26]: starting from
an initial primer-set-pair, the LOCAL-SEARCH algorithm
cycles through the primers of the set-pair and, for each pri-
mer, scans its neighbourhood, i.e. the set of all possible local
perturbations of the primer. Local perturbations consist in
all possible flips of one nucleotide (assessing the three
other possible bases) and all possible additions and re-
movals of one nucleotide at the extremities. The search in
the solution space is performed with the best improvement
local search approach: after generating the entire neigh-
bourhood as explained above, the algorithm selects the
best neighbour perturbation, starts from it to generate the
next neighbourhood, and iterates until it reaches a solution
for which no better neighbour perturbation can be found.
The procedure terminates when no further local improve-
ments can be applied to any primer in the primer-set-pair.
The WEIGHTED-SCORE function computes the three
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optimization scores from a primer-set-pair and the repre-
sentative set, multiplies the scores by the relative weights α
and returns the sum of the results.
We developed a software tool implementing our ap-

proach and released it under the GNU General Public
Licence as the mopo16S software tool (Multi-Objective
Primer Optimization for 16S experiments) at http://
sysbiobig.dei.unipd.it/?q=Software#mopo16S. mopo16S
is implemented as a multithreading C++ command
line tool; the software tool relies on the efficient
algorithms and data structures from the SeqAn library
[27] and uses the openMP library [28] for multi-
threading.

LOCAL-SEARCH(pstart , α , repset)
1 pbest = pcurr = pstart
2 scorebest = scorecurr = WEIGHTED-SCORE(pcurr, α ,
repset)

3 while improvement
4 for i = 1 to |pcurr|
5 pri = i-th primer of pcurr
6 for pnew = pcurr with all possible additions and

removals of a base at the extremities and re-
placements of a base of pri

7 scorenew = WEIGHTED-SCORE(pnew , α , repset)
8 if scorenew > scorebest
9 pbest = pnew
10 scorebest = scorenew
11 pcurr = pbest
12 return pcurr

State-of-the-art primer pairs as initial solutions
We selected the online database probeBase [15, 16]
as a source of candidate primer-set-pairs to be used
as initial solutions by mopo16S. The database con-
tains more than 500 pairs of (possibly degenerate)
primers and reports for each primer its sequence, the
strand and position at which it matches the reference
16S Escherichia coli gene, and the target domain for
which it is designed (being either Bacteria, Archaea
or Universal).
Given a desired range for the target amplicon length

as input of mopo16S, we selected all primer pairs from
the probeBase database satisfying all the following
properties:

� Amplicon length in the desired range;
� Length of both primers greater than or equal to 17 nt

and smaller than or equal to 21 nt;
� Bacteria or Universal target domain of both primers.

Since our approach is to work with sets of non-
degenerate primers, in case of degeneracies in either
the forward or the reverse primer, we substitute the

degenerate primer with a corresponding set of non-
degenerate primers, obtained by assigning all possible
combinations of values to the degenerate nucleotides in
the primer. An example of this procedure is given in
Table 1.
We computed the three scores for each of the

primer-set-pairs and identified, among these, the
primer-set-pairs forming the initial Pareto front.

Results
We present a case study of optimal primer choice pro-
cedure targeting amplicons in the range of 700–800 bp.
From the set of initial primer-set-pairs in the probeBase
database, we identified 37 set pairs satisfying all the re-
quired properties and having reference amplicons in the
desired range. Exploiting the 4573 16S sequences of the
GreenGenes bacterial OTUs as representative set (see
the Methods section), we computed the three scores for
each of the primer-set-pairs and identified three primer-
set-pairs forming the initial Pareto front, represented as
squares in Fig. 1.
We then executed mopo16S, launching 20 runs of

the MULTI-OBJECTIVE-SEARCH algorithm, each with
20 restarts, for a total of more than 33,000,000 function
evaluations. The lists of solutions returned by the 20
runs are quite heterogeneous, having a mean Jaccard
index (size of intersection over size of union) between
each pair of lists equal to 0.007. The software collected
the results of all the 20 runs in a single archive and
computed the new Pareto front, represented as circles
in Fig. 1 (note that the ideal points should be bright

Fig. 1 Representation of the efficiency, coverage and matching-bias
optimization criteria for the Pareto front. Efficiency is represented on
the y-axis, coverage on the x-axis and matching-bias using color
shading. The initial primer-set-pairs are represented as squares; the
primer-set-pairs after multi-objective optimization are represented
as circles
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yellow and located to the top right corner of the figure).
mopo16S completed its execution in less than 9 min,
using less than 900 MB of RAM and up to 4 threads on
a desktop workstation equipped with a 3.3 GHz Intel®
Core™ i5–2500.
The initial primer-set-pairs, chosen as the best-

performing primer-set-pairs extracted from the probe-
Base database (indicated as squares in Fig. 1), are
outperformed by all primer-set-pairs obtained by our
approach (circles in Fig. 1) according to at least two cri-
teria and, some of them, according to all three criteria.
In particular, one of the initial primer-set pairs consid-
ered in the probeBase database (cyan square in Fig. 1)
has maximum efficiency (score 10), but the lowest
coverage and the highest matching-bias compared to all
the other solutions. The other two initial primer-set
pairs, instead, are outperformed by all the new solu-
tions according to all three criteria, with a single excep-
tion of a solution with equal matching-bias (purple
square and purple circle in Fig. 1).

In-silico validation
From the optimal primer-set-pair solutions (circles) in
Fig. 1, we selected the three set pairs marked with ar-
rows for further inspection. The forward primers of all
three pairs align to the reference 16S sequence of the
Escherichia coli bacterium between hypervariable
regions V2 and V3, at positions 355–358, and all three
reverse primers align between regions V6 and V7, at
positions 1059–1063, thus resulting in amplicon
lengths between 701 and 708 nucleotides. The
complete sequence of each forward and reverse primer
is reported in Table 2. Each primer-set-pair was com-
pared to the human genome to exclude nonspecific
amplification of human sequences. Primer sequences
were compared to the GRCh38 human genome with
ssearch36 [29], allowing no gaps and up to 2 mis-
matches, consistently with the Coverage constraints.
None of the possible primer pairs amplifies a region of

the human genome shorter than 4000 nt, which is
5.6-fold the length of the amplicons generated in the
bacterial 16S rRNA.
The efficiency, coverage and matching-bias of the

three primer-set-pairs computed on the representative
set are reported in the first three rows of Table 3. In
order to assess how our new primer-set-pairs perform
on much broader and complete datasets, we computed
coverage and matching-bias of the three primer-set-
pairs on the 195,279 16S sequences of the GreenGenes
99% bacterial OTUs and on the 464,618 bacterial 16S
sequences of the SILVA SSU Ref 119 Non Redundant
(NR) set, obtained by applying a 99% identity criterion
to remove highly similar sequences. Results are shown
in Table 3 (efficiency is not reported since it does not
depend on the considered dataset) and confirm the
performance obtained on the representative set.
Slightly improved results might depend on the numer-
osity of the clusters associated to highly representative
reference sequence (see paragraph “Reference set of
16S sequences, preparation and annotation”).

Experimental validation
The three primer-set-pairs individuated by mopo16S were
also evaluated in a panel of bacteria isolated from clinical
specimens, including representatives of different phyla
within the Bacteria domain (Additional file 1: Table S1),
and compared with three non-optimized primer sets, used
as controls, selected among those used to initialize
mopo16S and reported by Klindworth et al. [16] (For-
ward: Bact-0008-b-S-20 - Reverse: Bact-0785-a-A-21; For-
ward: Bact-0347-a-S-19; Reverse: Bact-1028-b-A-19;
Forward: Bact-0337-a-S-20; Reverse: Bact-1046-a-A-19).
Bacteria were isolated as pure culture in standard culture
media and identified by automated biochemical testing
and MALDI-TOF analysis on Vitek 2 and Vitek MS Sys-
tems, respectively (BioMerieux, Marcy l’Etoile, France).
Nucleic acids were purified from bacteria by using MP 96
DNA SV kits on a MagNA Pure 96 System workstation

Table 2 Complete sequence of each forward and reverse primer of the three selected primer-set-pairs

Forward Reverse

Primer-set-pair 1 TCCTACGGGAGGCAGCA, TCCTACCGGAGGCACCA,
TCCTACGGGCGAATGCAG, CCTACGCGAGGCTGCAA,
CCTACGCGAGGCAGCAA, CCTACGGAAGGCAGCAG,
CCTACGGGTGGCTGCAG, CTACGGTGGGCTGCAGT

TCACGGCACGAGCTGAC, GACACGAGCTGACGACA

Primer-set-pair 2 TCCTACGGGAGGCAGCA, TCCTACCGGAGGCACCA,
TCCTACGGGTGGTTGCAG, TCCTACGGAAGGCAGCAG,
CCTACGCGAGGCAGCAA, CCTACGCGAGGCTGCAA,
CCTACGGGCGAATGCAG, CTACGGTTGGCTGCAGT

TCACGGCACGAGCTGAC, ACGACACGAGCTGACGAC

Primer-set-pair 3 CTCCTACGGAAGGCAGCA, TCCTACGGGAGCCTGCA,
TCCTACGGAAGGGTGCAG, CCTACGGGTTGCAGCAG,
CCTACGCGAGGCAGCAA, CCTACGCGTGGTTGCAG,
TCTACGGACGGCAGCAA, CTACGTGCGGTTGCAGT

ACGACACGAGCTGACGA, ACGACACGAGCTGACAAC,
CACCACGAGCTGACGAC, CAACACGAGCTGACGAGAG
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(Roche, Basel, Switzerland), quantified and diluted in
order to achieve approximately the same final concentra-
tion. Primer efficiency was evaluated by real-time PCR
using SYBR Green I reagent on Real-time PCR on a
7900HT Fast Real-Time PCR System (ThermoFisher Sci-
entific, Carlsbad, CA, USA) with the following steps:
10 min at 95 °C, 35 cycles of denaturation for 30 s at 95 °
C, annealing at the selected target temperature for 60 s
(60 °C for set 1 and control 3, 56 °C for sets 2 and 3 and
control 1 and 2), and extension at 72 °C for 90 s. The
specificity of the amplification product was checked by
melting curve analysis, which showed no non-specific
amplification of human genomic DNA with any of the pri-
mer sets under evaluation (Additional file 1: Figure S1).
Amplification efficiency and correlation between
threshold cycle and target quantity in the sample were
demonstrated by amplification of serial dilutions of
reference samples. Results of real-time PCR amplifica-
tion of the panel of bacteria isolates demonstrated that
the three PCR primer sets are suitable for the amplifi-
cation of 16S rRNA from a variety of bacterial genera
from different families and phyla, thus confirming the
predicted efficiency and wide coverage. Figure 2 shows
the boxplots of the ΔCt values calculated as the differ-
ence between the mean of threshold cycle (Ct) values
calculated across different primer pairs on a specific
sample and the Ct value on the same sample obtained
with a specific primer-pair. Since Ct levels are in-
versely proportional to the amount of target nucleic
acid in the sample, positive ΔCt values indicate higher
efficiency than average; negative ΔCt values indicate
lower efficiency than average. Comparison of amplifi-
cation efficiency based on threshold cycle values
showed that optimal primer-set-pairs 2 and 3 outperform
literature primers (two-sided paired t-test p-value lower
than 0.05 for all comparisons with literature primer-sets)
with primer-set-pair 3 as the best performer (Fig. 2). Opti-
mal primer-set-pair 1 shows comparable experimental effi-
ciency with literature primers. Cycle sequencing of PCR

products obtained with primer-set-pair 3, followed by
phylogenetic analysis on the leBIBI-PPF webserver (Jean-
pierre Flandrois, Guy Perrière, Simon Penel, Bénédicte
Lafay and Manolo Gouy, University of Lyon, 1. http://
umr5558-bibiserv.univ-lyon1.fr/lebibi/PPF-in.cgi) was
performed to check the ability to identify bacteria at
genus and species levels. All the samples under evalu-
ation were classified at genus level with scores > 0.99
according to Shimodaira and Hasegawa test [30, 31],
while classification at species level was achieved in >
50% of cases.

Discussion
In this paper, we presented a novel algorithm, mopo16S,
for optimal primer design in 16S metagenomics experi-
ments. Primers are optimized according to three criteria,
namely efficiency of the primer sets, coverage of the
representative set and coverage bias across the represen-
tative set.
Both the representative set of sequences to be covered

and the initial set of state-of-the-art primers are drawn
from publicly available and up-to-date databases. Thus,
new solutions can always be aligned with the current
knowledge on the 16S gene.
In our study, we selected primers that could generate

relatively long amplicons because we wanted to include
several variable regions of the 16S rRNA gene, in order
to improve the ability to taxonomically classify bacterial
sequences (OTU) at genera or even species level [32].
Please note, however, that mopo16S is general enough

Fig. 2 Boxplots of values demonstrating amplification of 16S DNA
from bacteria isolates. Primer sets 1, 2 and 3 (Table 2) and three
primer pairs from the literature (Forward: Bact-0008-b-S-2 - Reverse:
Bact-0785-a-A-21; Forward: Bact-0347-a-S-19; Reverse: Bact-1028-b-A-19;
Forward: Bact-0337-a-S-20; Reverse: Bact-1046-a-A-19) were used
as real-time PCR primer sets on a panel of bacteria isolated from
clinical specimens, including representatives of common Gram-positive
and Gram-negative human pathogens belonging to different genera
and phyla (Additional file 1: Table S2). ΔCt values were calculated as
the difference between the mean of threshold cycle (Ct) values
calculated for each sample using different primer-pairs and the
Ct value obtained using a specific primer-pair. Positive ΔCt values
indicate higher efficiency than average; negative ΔCt values indicate
lower efficiency than average

Table 3 Numerical values of the efficiency, coverage and
matching-bias scores for the three selected primers assessed
on GreenGenes and SILVA reference sequences
Representative set Score Primer-set-

pair 1
Primer-set-
pair 2

Primer-set-
pair 3

GreenGenes 85% Efficiency 9.66 9.93 10

Coverage 0.863 0.854 0.833

Matching-bias 0.45 0.44 0.51

GreenGenes 99% Coverage 0.969 0.963 0.954

Matching-bias 0.22 0.22 0.27

SILVA 99% Coverage 0.974 0.969 0.962

Matching-bias 0.20 0.19 0.24

The scores have been computed with respect to the GreenGenes 85%
representative set, the GreenGenes 99% set and the SILVA 99% not
redundant set. Efficiency ranges from 0 to 10 and coverage ranges from 0 to 1
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to be applicable to any desired amplicon length. Of note,
amplicon length is not affecting the computational per-
formance of the algorithm, as the search for the optimal
solution is performed in the space of primers. Only the
parameters related to the amount of effort in searching
for the optimal solution (i.e. the number of runs of the
MULTI-OBJECTIVE-SEARCH algorithm and the num-
ber of restarts nrest of each run) can affect the execution
time of the software. To mitigate this effect, mopo16S
executes each run of the MULTI-OBJECTIVE-SEARCH
algorithm on a different thread, resulting in an execution
time speed-up that is almost linear in the number of
threads used.
To solve the multi-objective optimization problem

we chose to use a local search approach rather than a
population-based search algorithm, such as a multi-
objective evolutionary algorithm, for several reasons.
First, the nature of our search space, i.e. the space of
all possible primer pairs, lends itself naturally to a
local search paradigm, where the effect of changing,
adding or dropping one base at a time starting from
an initially good solution (the literature primer pairs)
is often not harnessing much the primer feasibility.
On the other hand, we reckon that the recombination
operator typical of genetic algorithms used to com-
bine two parent solutions [33, 34] would almost often
result in unfeasible primers, slowing down the search for
the optimum. Second, the strength of local search is the
scarcity of parameters to be tuned. In particular, for
single-objective local search we chose the iterated best im-
provement local search approach, which is parameter-less
and terminates when no further improvement is found.
On the opposite, evolutionary algorithms, compared to
local search, have many more parameters that need to be
accurately tuned and that, even when optimally tuned for
a set of instances, do not guarantee to remain optimal for
unseen data.

Conclusions
Many of the current bacterial 16S primers have been de-
signed from sequence data obtained from in vitro cultured
species, even though only a minority of bacterial species
can be cultured in the laboratory. However, our knowledge
of unculturable bacteria sequences is rapidly growing
thanks to NGS and several 16S sequence databases have
been created and are being maintained up to date by the
scientific community. There is thus the need for automated
methods to design and update bacterial 16S primers able to
take into account such new available information.
In this work, we give our contribution to the field by

presenting a method for optimal multi-objective primer
choice, which exploits publicly available databases such
as GreenGenes [3], probeBase [15, 16] and SILVA [5].

mopo16S can be applied to any desired amplicon length
and representative bacteria population. Our approach:

� Maximizes experimental efficiency and specificity, in
terms of how much a primer pair is able to amplify
the selected DNA sequence during PCR.

� Maximizes coverage, in terms of the fraction of all
bacterial 16S sequences from different species that
are matched by at least one forward and one reverse
primer from the set pair.

� Minimizes matching-bias, in terms of differences in
the number of combinations of primers from the
forward and reverse sets matching each bacterial 16S.

We developed a software tool implementing our ap-
proach and released it under the GNU General Public
Licence as the mopo16S software tool (Multi-Objective
Primer Optimization for 16S experiments) at http://sysbio-
big.dei.unipd.it/?q=Software#mopo16S.
We tested mopo16S on an example problem: the opti-

mal primers choice for Bacterial 16S and amplicons in the
range of 700–800 bp. The three resulting primer-set-pairs,
when assessed in silico, outperformed state-of-the-art
primers according to all three optimization criteria. Experi-
mentally, the three PCR primer sets were demonstrated to
be suitable for the amplification of 16S rRNAs from a var-
iety of bacterial species belonging to different genera, thus
confirming the predicted efficiency, wide coverage and low
matching-bias.

Additional file

Additional file 1: Table S1. Supplementary information on the
identification of bacterial 16S sequences and experimental performance.
(DOCX 610 kb)
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