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Abstract
The main result of the present article is a Rademacher-type theorem for intrinsic Lipschitz graphs of codimension
𝑘 ≤ 𝑛 in sub-Riemannian Heisenberg groups H𝑛. For the purpose of proving such a result, we settle several related
questions pertaining both to the theory of intrinsic Lipschitz graphs and to the one of currents. First, we prove an
extension result for intrinsic Lipschitz graphs as well as a uniform approximation theorem by means of smooth
graphs: both of these results stem from a new definition (equivalent to the one introduced by B. Franchi, R. Serapioni
and F. Serra Cassano) of intrinsic Lipschitz graphs and are valid for a more general class of intrinsic Lipschitz
graphs in Carnot groups. Second, our proof of Rademacher’s theorem heavily uses the language of currents in
Heisenberg groups: one key result is, for us, a version of the celebrated constancy theorem. Inasmuch as Heisenberg
currents are defined in terms of Rumin’s complex of differential forms, we also provide a convenient basis of
Rumin’s spaces. Eventually, we provide some applications of Rademacher’s theorem including a Lusin-type result
for intrinsic Lipschitz graphs, the equivalence between H-rectifiability and ‘Lipschitz’ H-rectifiability and an area
formula for intrinsic Lipschitz graphs in Heisenberg groups.
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1. Introduction

The celebrated Rademacher’s theorem [82] states that a Lipschitz continuous function 𝑓 : Rℎ → R
𝑘

is differentiable almost everywhere in Rℎ; in particular, the graph of f in Rℎ+𝑘 has an h-dimensional
tangent plane at almost all of its points. One of the consequences of Rademacher’s theorem is the
following Lusin-type result, which stems from Whitney’s extension theorem [96]: for every 𝜀 > 0, there
exists 𝑔 ∈ 𝐶1(Rℎ ,R𝑘 ) that coincides with f out of a set of measure at most 𝜀. From the viewpoint
of geometric measure theory, this means that Lipschitz-regular objects (functions, submanifolds, etc.)
are essentially as nice as 𝐶1-smooth ones and has profound implications; for instance, in the theory of
rectifiable sets and currents [42, 72, 90].

The present article aims to develop a similar theory for submanifolds with (intrinsic) Lipschitz
regularity in sub-Riemannian Heisenberg groups. Before introducing our results, we feel the need to list
them at least quickly. We believe that our main result is a Rademacher-type theorem for intrinsic Lipschitz
graphs, which was the main open problem since the beginning of this theory. Some applications –
namely, a Lusin-type result and an area formula for intrinsic Lipschitz graphs – are provided here as well;
however, we believe that further consequences are yet to come concerning, for instance, rectifiability
and minimal submanifolds in Heisenberg groups. Some of the tools we develop for proving our main
result are worth mentioning; in fact, we prove an extension result for intrinsic Lipschitz graphs as well as
the fact that they can be uniformly approximated by smooth graphs. Both results stem from what can be
considered as another contribution of the present article; that is, a new definition of intrinsic Lipschitz
graphs that is equivalent to the original one, introduced by B. Franchi, R. Serapioni and F. Serra Cassano
and now widely accepted. Recall, in fact, that intrinsic Lipschitz graphs in Heisenberg groups played a
fundamental role in the recent proof by A. Naor and R. Young [79] of the ‘vertical versus horizontal’
isoperimetric inequality in H𝑛 that settled the longstanding question of determining the approximation
ratio of the Goemans–Linial algorithm for the sparsest cut problem. Let us also say that our proof of
Rademacher’s theorem heavily uses the language of currents in Heisenberg groups; a key result is for us
(a version of) the celebrated constancy theorem [42, 90, 65]. From the technical point of view, the use
of currents constitutes the hardest part of the article; in fact, currents in Heisenberg groups are defined
in terms of the complex of differential forms introduced by M. Rumin in [85, 86], which is not easy to
handle. Among other things, we had to provide a convenient basis of Rumin’s covectors that could be
fruitfully employed in the computation of Rumin’s exterior derivatives. We were surprised by the fact
that the use of standard Young tableaux from combinatorics proved to be crucial in performing this task.

It is time to introduce and discuss our results more appropriately.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2021.84
Downloaded from https://www.cambridge.org/core. IP address: 94.34.96.60, on 02 Feb 2022 at 13:50:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2021.84
https://www.cambridge.org/core


Forum of Mathematics, Sigma 3

1.1. Heisenberg groups and intrinsic graphs

For 𝑛 ≥ 1, the Heisenberg group H𝑛 is the connected, simply connected and nilpotent Lie group
associated with the Lie algebra 𝔥 with 2𝑛 + 1 generators 𝑋1, . . . , 𝑋𝑛, 𝑌1, . . . , 𝑌𝑛, 𝑇 ; all Lie brackets
between these generators are null except for

[𝑋 𝑗 , 𝑌 𝑗 ] = 𝑇 for every 𝑗 = 1, . . . , 𝑛.

The algebra 𝔥 is stratified, as it can be decomposed as 𝔥 = 𝔥1 ⊕𝔥2 with 𝔥1 := span{𝑋 𝑗 , 𝑌 𝑗 : 𝑗 = 1, . . . , 𝑛}
and 𝔥2 := span{𝑇}. The first layer 𝔥1 in the stratification is called horizontal.

It will often be convenient to identify H𝑛 with R2𝑛+1 by exponential coordinates

R
𝑛 × R𝑛 × R � (𝑥, 𝑦, 𝑡) ←→ exp(𝑥1𝑋1 + · · · + 𝑥𝑛𝑋𝑛 + 𝑦1𝑌1 + · · · + 𝑦𝑛𝑌𝑛 + 𝑡𝑇) ∈ H𝑛,

where exp : 𝔥 → H
𝑛 is the exponential map and 0 is the group identity. The Heisenberg group is a

homogeneous group according to [43]; indeed, for 𝜆 > 0 the maps 𝛿𝜆 (𝑥, 𝑦, 𝑡) := (𝜆𝑥, 𝜆𝑦, 𝜆2𝑡) determine
a one-parameter family of group automorphisms of H𝑛 called dilations. We endow H𝑛 with a left-
invariant and homogeneous distance d, so that

𝑑 (𝑞𝑝, 𝑞𝑝′) = 𝑑 (𝑝, 𝑝′) and 𝑑 (𝛿𝜆𝑝, 𝛿𝜆𝑞) = 𝜆𝑑 (𝑝, 𝑞) ∀ 𝑝, 𝑝′, 𝑞 ∈ H𝑛, 𝜆 > 0.

It will be convenient to assume that d is rotationally invariant; that is, that

‖(𝑥, 𝑦, 𝑡)‖H = ‖(𝑥 ′, 𝑦′, 𝑡)‖H whenever | (𝑥, 𝑦) | = | (𝑥 ′, 𝑦′) |,

where we set ‖𝑝‖H := 𝑑 (0, 𝑝) for every 𝑝 ∈ H𝑛. Relevant examples of rotationally invariant distances
are the well-known Carnot–Carathéodory and Korányi (or Cygan–Korányi) distances.

An intensive search for a robust intrinsic notion of 𝐶1 or Lipschitz regularity for submanifolds was
conducted in the last two decades; in fact (see [3]), the Heisenberg group H1 is purely k-unrectifiable,
in the sense of [42], for 𝑘 = 2, 3, 4. It can, however, be stated that the theory of H-regular submanifolds
(i.e., submanifolds with intrinsic 𝐶1 regularity) is well-established; see, for instance, the beautiful paper
[51]. It turns out that H-regular submanifolds in H𝑛 of low dimension 𝑘 ∈ {1, . . . , 𝑛} are k-dimensional
submanifolds of class 𝐶1 (in the Euclidean sense) that are tangent to the horizontal bundle 𝔥1. On
the contrary, H-regular submanifolds of low codimension 𝑘 ∈ {1, . . . , 𝑛} are more complicated: they
are (locally) noncritical level sets of R𝑘 -valued maps on H𝑛 with continuous horizontal derivatives
(see Subsection 4.4 for precise definitions) and, as a matter of fact, they can have fractal Euclidean
dimension [63].

A key tool for the study of H-regular submanifolds is provided by intrinsic graphs. Assume that
V,W are homogeneous complementary subgroups of H𝑛; that is, that they are invariant under dilations,
V ∩W = {0} and H𝑛 = WV = VW; given 𝐴 ⊂ W and a map 𝜙 : 𝐴 → V, the intrinsic graph of 𝜙 is
gr𝜙 := {𝑤𝜙(𝑤) : 𝑤 ∈ 𝐴} ⊂ H𝑛. It is worth recalling that, ifV,W are homogeneous and complementary
subgroups, then one of the two is necessarily horizontal (i.e., contained in exp(𝔥1)), abelian and of
dimension 𝑘 ≤ 𝑛, while the other has dimension 2𝑛 + 1 − 𝑘 ≥ 𝑛 + 1, is normal and contains the group
center exp(𝔥2); see [51, Remark 3.12]. The first appearance of intrinsic graphs is most likely to be
attributed to the implicit function theorem of the fundamental paper [48], where the authors prove an
H-rectifiability result for (boundaries of) sets with finite perimeter in H𝑛. As a matter of fact, H-regular
submanifolds are locally intrinsic graphs whose properties have been studied in many papers (see, e.g.,
[4, 5, 6, 9, 17, 18, 29, 32, 33, 36, 35, 37, 51, 61, 70, 76]).

Intrinsic graphs also provide the language for introducing a theory of Lipschitz submanifolds in H𝑛.
Observe that, while for the case of low-dimensional submanifolds one could simply consider Euclidean
Lipschitz submanifolds that are almost everywhere (a.e.) tangent to the horizontal distribution, for
submanifolds of low codimension there is no immediate way of modifying the ‘level set definition’ of
H-regularity into a Lipschitz one. Intrinsic Lipschitz graphs in H𝑛 first appeared in [50]; their definition
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is stated in terms of a suitable cone property. Given 𝛼 > 0, consider the homogeneous cone of axis V
and aperture 𝛼,

𝒞𝛼 := {𝑤𝑣 ∈ H𝑛 : 𝑤 ∈ W, 𝑣 ∈ V, ‖𝑤‖H ≤ 𝛼‖𝑣‖H}.

We say that a map 𝜙 : 𝐴 ⊂ W→ V is intrinsic Lipschitz if there exists 𝛼 > 0 such that

gr𝜙 ∩ (𝑝𝒞𝛼) = {𝑝} for every 𝑝 ∈ gr𝜙 .

Intrinsic Lipschitz graphs can be introduced in the more general framework of Carnot groups: apart
from the elementary basics contained in Section 2, we refer to [53] for a beautiful introduction to the
topic and to [16, 27, 30, 37, 38, 41, 44, 45, 80, 87, 88] for several facets of the theory.

1.2. Rademacher’s theorem for intrinsic Lipschitz graphs and consequences

One of the main questions about intrinsic Lipschitz graphs concerns their almost everywhere ‘intrinsic’
differentiability. Consider an intrinsic Lipschitz map 𝜙 : 𝐴 → V defined on some relatively open subset
𝐴 ⊂ W. IfW has low dimension 𝑘 ≤ 𝑛, then (see [8] or also [50, Remark 3.11], [53, Proposition 3.7]) gr𝜙
is a k-dimensional submanifold with Euclidean Lipschitz regularity that is a.e. tangent to the horizontal
bundle 𝔥1; therefore, the problem reduces to the case of H-regular graphs with low codimension
𝑘 = dimV ≤ 𝑛. A positive answer ([52]) is known only for the case of codimension 𝑘 = 1; in fact, in
this case gr𝜙 is (part of) the boundary of a set with finite H-perimeter ([25, 46]) in H𝑛 and one can use
the rectifiability result [48] available for such sets. A Rademacher-type theorem for intrinsic Lipschitz
functions of codimension 1 was proved in Carnot groups of type ★; see [44]. After a preliminary version
of the present article was made public, it was found that the Rademacher theorem may dramatically fail
for intrinsic Lipschitz graphs of codimension 2 (or higher) even in certain Carnot groups of step 2; see
[60]. In this article, we provide a full solution to the problem in H𝑛, as stated in our main result.

Theorem 1.1. If 𝐴 ⊂ W is open and 𝜙 : 𝐴 → V is intrinsic Lipschitz, then 𝜙 is intrinsically differentiable
at almost every point of A.

In Theorem 1.1, ‘almost every’ must be understood with respect to a Haar measure on the subgroup
W; for instance, the Hausdorff measure of dimension 2𝑛 + 2 − 𝑘 . Concerning the notion of intrinsic
differentiability (see Subsection 4.2), recall that left-translations and dilations of intrinsic Lipschitz
graphs are intrinsic Lipschitz graphs; in particular, for every 𝑤 ∈ 𝐴 and every 𝜆 > 0 there exists an
intrinsic Lipschitz 𝜙𝜆𝑤 : 𝐵 → V, defined on some open subset 𝐵 ⊂ W, such that

𝛿𝜆 ((𝑤𝜙(𝑤))−1gr𝜙) = gr𝜙𝜆
𝑤

.

One then says ([9, §3.3]) that 𝜙 is intrinsically differentiable at w if, as 𝜆 → +∞, the blow-ups 𝜙𝜆𝑤
converge locally uniformly onW to an intrinsic linear map; that is, to a map 𝜓 :W→ V such that gr𝜓 is
a homogeneous subgroup of H𝑛 with codimension k. This subgroup, which is necessarily vertical (i.e.,
it contains the center of H𝑛) and normal, is called tangent subgroup to gr𝜙 at 𝑤𝜙(𝑤) and is denoted by
TanHgr𝜙 (𝑤𝜙(𝑤)).

For the reader’s convenience, the proof of Theorem 1.1 is sketched at the end of the Introduction. We
are now going to introduce a few consequences of our main result: the first one is a Lusin-type theorem
for intrinsic Lipschitz graphs.

Theorem 1.2. Let 𝐴 ⊂ W be an open set and 𝜙 : 𝐴 → V an intrinsic Lipschitz function. Then for every
𝜀 > 0 there exists an intrinsic Lipschitz function 𝜓 : 𝐴 → V such that gr𝜓 is a H-regular submanifold
and

𝒮𝑄−𝑘 ((gr𝜙 Δ gr𝜓) ∪ {𝑝 ∈ gr𝜙 ∩ gr𝜓 : TanHgr𝜙 (𝑝) ≠ TanHgr𝜓 (𝑝)}) < 𝜀.
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As is customary, the integer 𝑄 := 2𝑛 + 2 denotes the homogeneous dimension of H𝑛 and 𝒮𝑄−𝑘 is the
spherical Hausdorff measure of dimension 𝑄 − 𝑘; by 𝐴Δ𝐵 := (𝐴\𝐵) ∪ (𝐵\ 𝐴) we denote the symmetric
difference of sets 𝐴, 𝐵. Theorem 1.2 is part of Theorem 7.2; the latter stems from the equivalent
definition of intrinsic Lipschitz graphs provided by Theorem 1.4 and is proved by an adaptation of the
classical argument of Whitney’s extension theorem; see also [48, 49, 92, 94]. Theorem 1.2 implies that,
as in the Euclidean case, the notion of H-rectifiability (Definition 4.22) can be equivalently defined
in terms of either H-regular submanifolds or intrinsic Lipschitz graphs; see Corollary 7.4. We refer to
[7, 19, 27, 28, 31, 37, 41, 73, 74, 75] for more about rectifiability in Heisenberg groups.

We stress the fact that Rademacher’s Theorem 1.1 also allows defining a canonical current �gr𝜙�
carried by the graph of an intrinsic Lipschitz map 𝜙 : W → V. This current turns out to have zero
boundary; see Proposition 7.5.

A further consequence of Theorem 1.2 is an area formula for intrinsic Lipschitz graphs of low
codimension. For H-regular submanifolds, area formulae are proved in [48, 51, 4] for submanifolds of
codimension 1 and in [33] for higher codimension (see also [71]). For intrinsic Lipschitz graphs of
low dimension, an area formula is proved in [8, Theorem 1.1]. Our area formula is stated in Theorem
1.3 and, once Lusin’s Theorem 1.2 is available, it is a quite simple consequence of [33, Theorem 1.2],
where a similar area formula is proved for intrinsic graphs that are also H-regular submanifolds. As
in [33], the symbol 𝐽𝜙𝜙(𝑤) denotes the intrinsic Jacobian of 𝜙 at w (see Definition 4.9), while 𝐶𝑛,𝑘

denotes a positive constant, depending only on 𝑛, 𝑘 and the distance d, which will be introduced later in
Proposition 1.9.

Theorem 1.3. Assume that the subgroups W,V are orthogonal1 and let 𝜙 : 𝐴 → V be an intrinsic
Lipschitz map defined on some Borel subset 𝐴 ⊂ W; then for every Borel function ℎ : gr𝜙 → [0, +∞),
there holds ∫

gr𝜙
ℎ 𝑑𝒮𝑄−𝑘 = 𝐶𝑛,𝑘

∫
𝐴
(ℎ ◦ Φ)𝐽𝜙𝜙 𝑑ℒ2𝑛+1−𝑘 ,

where Φ denotes the graph map Φ(𝑤) := 𝑤𝜙(𝑤).

By abuse of notation, ℒ2𝑛+1−𝑘 denotes the Haar measure on W associated with the canonical
identification ofWwithR2𝑛+1−𝑘 induced by exponential coordinates. It is worth observing that Theorem
1.3 and Proposition 1.9 are the only points where we use the rotational invariance of the distance d.
In case of general distances, area formulae for intrinsic Lipschitz graphs can be easily deduced using
Theorem 1.2 and [33, Theorem 1.2], but they are slightly more complicated than ours, as they involve a
certain area factor that depends on the tangent plane to the graph.

1.3. Equivalent definition, extension and approximation of intrinsic Lipschitz graphs

We now introduce two of the ingredients needed in the proof of Theorem 1.1 that are of indepen-
dent interest: namely, an extension theorem for intrinsic Lipschitz graphs in the spirit of the classical
McShane–Whitney theorem and an approximation result by means of smooth graphs. They are stated
in Theorems 1.5 and 1.6 and are both based on a new, equivalent definition of intrinsic Lipschitz graphs
(Theorem 1.4), which can be regarded as another contribution of this article.

Our alternative definition of intrinsic Lipschitz graphs appeared in [93] for graphs of codimension
1; it can be seen as a generalisation of the original level-set definition of H-regular submanifolds.
Observe, however, that it is not immediate to give a level-set definition even for Lipschitz submanifolds
of codimension 1 in R𝑛; in fact, every closed set 𝑆 ⊂ R𝑛 is the level set of some Lipschitz function; for
instance, the distance from S. Anyway, we leave as an exercise to the reader the following observation,
which was actually the starting point of [93]: a set 𝑆 ⊂ R𝑛 = R𝑛−1 × R is (contained in) the graph of a

1By orthogonal we mean thatW,V are orthogonal as linear subspaces of H𝑛 ≡ R2𝑛+1.
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Lipschitz function 𝜙 : R𝑛−1 → R if and only if there exist 𝛿 > 0 and a Lipschitz function 𝑓 : R𝑛 → R

such that 𝑆 ⊂ {𝑥 ∈ R𝑛 : 𝑓 (𝑥) = 0} and 𝜕 𝑓
𝜕𝑥𝑛

≥ 𝛿 a.e. on R𝑛.
Since their proofs present no extra difficulty with respect to the Heisenberg case, Theorems 1.4,

1.5 and 1.6 are stated in the more general setting of a Carnot group G where two homogeneous
complementary subgroupsW,V are fixed with V horizontal. This means that V ⊂ exp(𝔤1), where 𝔤1 is
the first layer in the stratification of the Lie algebra of G. When V is horizontal, we say that an intrinsic
Lipschitz graph 𝜙 : W → V is co-horizontal; see [6]. Observe that V is necessarily abelian and there
exists a homogeneous isomorphism according to which we can identify V with R𝑘 ; see (2.5). This
identification is understood in the scalar product appearing in (1.2).

Theorem 1.4. Assume that a splitting G =WV is fixed in such a way that the subgroup V is horizontal;
set 𝑘 := dimV. If 𝑆 ⊂ G is not empty, then the following statements are equivalent:

(a) there exist 𝐴 ⊂ W and an intrinsic Lipschitz map 𝜙 : 𝐴 → V such that 𝑆 = gr𝜙;
(b) there exist 𝛿 > 0 and a Lipschitz map 𝑓 : G→ R𝑘 such that

𝑆 ⊂ {𝑥 ∈ G : 𝑓 (𝑥) = 0} (1.1)

and 〈 𝑓 (𝑥𝑣) − 𝑓 (𝑥), 𝑣〉 ≥ 𝛿 |𝑣 |2 for every 𝑣 ∈ V and 𝑥 ∈ G. (1.2)

It is worth remarking that, if 𝑋1, . . . , 𝑋𝑘 ∈ 𝔤1 are such that V = exp(span{𝑋1, . . . , 𝑋𝑘 }), then
statement (1.2) is equivalent to the a.e. uniform ellipticity (a.k.a. coercivity) of the matrix col
[ 𝑋1 𝑓 (𝑥) | . . . | 𝑋𝑘 𝑓 (𝑥) ]; see Remark 2.7. In case 𝑘 = 1, Theorem 1.4 was proved in [93, Theorem 3.2].

Let us underline two of the most interesting features of this alternative definition. First, it allows for
a definition of co-horizontal intrinsic Lipschitz submanifolds in the more general setting of Carnot–
Carathéodory spaces, as in [93]. Second, it gives gratis an extension result for intrinsic Lipschitz maps;
in fact (Remark 2.8), the level set {𝑥 ∈ G : 𝑓 (𝑥) = 0} appearing in (1.1) is the graph of an intrinsic
Lipschitz map that is defined on the wholeW and extends 𝜙. We can then state the following result.

Theorem 1.5. Let 𝐴 ⊂ W and 𝜙 : 𝐴 → V be a co-horizontal intrinsic Lipschitz graph; then there exists
an intrinsic Lipschitz extension 𝜙 : W → V of 𝜙. Moreover, 𝜙 can be chosen in such a way that its
intrinsic Lipschitz constant is controlled in terms of the intrinsic Lipschitz constant of 𝜙.

Theorem 1.5 was proved in [93, Proposition 3.4] for the case of codimension 𝑘 = 1; see also
[52, 53, 79, 84].

In Proposition 2.10 we use a standard approximation argument based on group convolutions (see,
e.g., [43, §1.B]) to show that the function f appearing in Theorem 1.4 can be chosen with the additional
property that 𝑓 ∈ 𝐶∞({𝑥 ∈ G : 𝑓 (𝑥) ≠ 0}). This fact has the following consequence.

Theorem 1.6. Let 𝐴 ⊂ W and 𝜙 : 𝐴 → V be a co-horizontal intrinsic Lipschitz graph. Then there
exists a sequence (𝜙𝑖)𝑖∈N of 𝐶∞-regular and intrinsic Lipschitz maps 𝜙𝑖 :W→ V such that

𝜙𝑖 → 𝜙 uniformly in 𝐴 as 𝑖 → ∞ .

Moreover, the intrinsic Lipschitz constant of 𝜙𝑖 is bounded, uniformly in i, in terms of the intrinsic
Lipschitz constant of 𝜙.

A similar result has been proved in [30] for intrinsic Lipschitz graphs of codimension 1 in Heisenberg
groups; see also [4, 6, 76, 93].

1.4. Currents and the constancy theorem

As in the classical setting, currents in Heisenberg groups are defined in duality with spaces of smooth
forms with compact support; here, however, the De Rham complex must be replaced by the complex
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introduced by M. Rumin [85, 86] in the setting of contact manifolds. The construction of the spaces Ω𝑚
H

of Heisenberg differential m -forms is detailed in Subsection 3.2; here we only recall that, for 1 ≤ 𝑘 ≤ 𝑛,
Heisenberg forms of codimension k are smooth functions on H𝑛 with values in a certain subspace
J2𝑛+1−𝑘 of (2𝑛 + 1 − 𝑘)-covectors. We denote by J2𝑛+1−𝑘 the (formal) dual of J2𝑛+1−𝑘 ; clearly, every
(2𝑛+1−𝑘)-vector t canonically induces an element [𝑡]J ∈ J2𝑛+1−𝑘 defined by [𝑡]J(𝜆) := 〈 𝑡 | 𝜆 〉, where
〈 · | · 〉 is the standard pairing vectors-covectors. See Subsection 3.1 and Subsection 3.2 for more details.

The starting point of the theory of Heisenberg currents is the existence of a linear second-order
operator 𝐷 : Ω𝑛

H
→ Ω𝑛+1

H
such that the sequence

0 → R→ Ω0
H

𝑑
→ Ω1

H

𝑑
→ . . .

𝑑
→ Ω𝑛

H

𝐷
→ Ω𝑛+1

H

𝑑
→ . . .

𝑑
→ Ω2𝑛+1

H
→ 0

is exact, where d is (the operator induced by) the standard exterior derivative. A Heisenberg m-current
T is by definition a continuous linear functional on the space D𝑚

H
⊂ Ω𝑚

H
of Heisenberg m-forms

with compact support. The boundary 𝜕T of T is the Heisenberg (𝑚 − 1)-current defined, for every
𝜔 ∈ D𝑚−1

H
, by

𝜕T(𝜔) := T(𝑑𝜔) if 𝑚 ≠ 𝑛 + 1
𝜕T(𝜔) := T(𝐷𝜔) if 𝑚 = 𝑛 + 1.

We say that T is locally normal if both T and 𝜕T have locally finite mass; that is, if they have order 0 in
the sense of distributions. Recall that, if T has locally finite mass, then there exist a Radon measure 𝜇
on H𝑛 and a locally 𝜇-integrable function 𝜏 with values in a suitable space of multivectors (which, for
𝑚 ≥ 𝑛 + 1, is precisely J𝑚) such that T = 𝜏𝜇, where

𝜏𝜇(𝜔) :=
∫
H𝑛

〈 𝜏(𝑝) | 𝜔(𝑝) 〉 𝑑𝜇(𝑝) for every 𝜔 ∈ D𝑚
H

.

One can also assume that |𝜏 | = 1 𝜇-a.e., where | · | denotes some fixed norm on multivectors2; in this
case, we write �T and ‖T‖ in place of 𝜏 and 𝜇, respectively.

Relevant examples of currents will be for us those concentrated on H-rectifiable sets of low codi-
mension. Recall that a set 𝑅 ⊂ H𝑛 is locally H-rectifiable of codimension 𝑘 ∈ {1, . . . , 𝑛} if 𝒮𝑄−𝑘 𝑅
is locally finite and R can be covered by countably many H-regular submanifolds of codimension k
plus a 𝒮𝑄−𝑘 -negligible set. In this case, a (unit) approximate tangent (2𝑛 + 1 − 𝑘)-vector 𝑡H𝑅 (𝑝) to R
can be defined at 𝒮𝑄−𝑘 -a.e. 𝑝 ∈ R; see Subsection 4.4. We denote by �𝑅� the Heisenberg current
[𝑡H𝑅]J𝒮

𝑄−𝑘 𝑅 naturally associated with R.
A fundamental result in the classical theory of currents is the constancy theorem (see, e.g., [42, 4.1.7]

and [90, Theorem 26.27]), which states that, if T is an n-dimensional current in R𝑛 such that 𝜕T = 0,
then T is constant; that is, there exists 𝑐 ∈ R such that T(𝜔) = 𝑐

∫
R𝑛

𝜔 for every smooth n-form 𝜔 with
compact support. A more general version of the constancy theorem can be proved for currents supported
on an m-dimensional plane 𝒫 ⊂ R𝑛: if T is an m-current with support in 𝒫 and such that 𝜕T = 0, then
there exists 𝑐 ∈ R such that T(𝜔) = 𝑐

∫
𝒫

𝜔 for every smooth m-form 𝜔 with compact support. For this
statement, see, for example, [65, Proposition 7.3.5]. The following Theorem 1.7 can be considered as
the Heisenberg analogue of this more general constancy theorem; besides its importance for the present
article, Theorem 1.7 is a fundamental tool for the outcomes of the recent [62].

Theorem 1.7. Let 𝑘 ∈ {1, . . . , 𝑛} be fixed and let T be a Heisenberg (2𝑛 + 1 − 𝑘)-current supported
on a vertical plane 𝒫 ⊂ H𝑛 of dimension 2𝑛 + 1 − 𝑘 . Assume that 𝜕T = 0; then there exists a constant
𝑐 ∈ R such that T = 𝑐�𝒫�.

Using a procedure involving projection on planes (see [89, Theorem 4.2]; let us mention also [1, §5]
and [2] for some related results), the (version on planes of the) constancy theorem inR𝑛 has the following

2More precisely, when 𝑚 ≥ 𝑛 + 1, one needs a norm on J𝑚.
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8 Davide Vittone

consequence: if 𝑅 ⊂ R𝑛 is an m-rectifiable set and T = 𝜏𝜇 is a normal m-current, where 𝜇 is a Radon
measure and 𝜏 is a locally 𝜇-integrable m-vectorfield with 𝜏 ≠ 0 𝜇-a.e., then

(i) 𝜇 𝑅 is absolutely continuous with respect to the Hausdorff measure ℋ𝑚 𝑅 and
(ii) 𝜏 is tangent to R at 𝜇-almost every point of R.

A consequence of this fact, which might help explaining its geometric meaning, is the following one: if
T = 𝜏𝜇 is a normal current concentrated3 on a rectifiable set R, then 𝜇 � ℋ𝑚 𝑅 and 𝜏 is necessarily
tangent to 𝑅 𝜇-almost everywhere.4

In our proof of Rademacher’s Theorem 1.1, we will utilise the following result, which is the Heisen-
berg counterpart of the ‘tangency’ property (ii) above; we were not able to deduce any ‘absolute con-
tinuity’ statement analogous to (i) because no good notion of projection on planes is available in H𝑛.
Notice, however, that, in the special case when T is concentrated on a vertical plane, Theorem 1.7 allows
deducing a complete result including absolute continuity.

Theorem 1.8. Let 𝑘 ∈ {1, . . . , 𝑛} and let a locally normal Heisenberg (2𝑛 + 1 − 𝑘)-current T and a
locally H-rectifiable set 𝑅 ⊂ H𝑛 of codimension k be fixed. Then

�T(𝑝) is a multiple of [𝑡H𝑅 (𝑝)]J for ‖T‖𝑎-a.e. 𝑝.

In Theorem 1.8 we decomposed ‖T‖ = ‖T‖𝑎 + ‖T‖𝑠 as the sum of the absolutely continuous and
singular part of ‖T‖ with respect to 𝒮𝑄−𝑘 𝑅. Observe that 𝑡H𝑅 is defined only 𝒮𝑄−𝑘 -almost everywhere
on R; hence, it could be undefined on a set with positive ‖T‖𝑠-measure. The geometric content of
Theorem 1.8 is again clear: for a current T concentrated on R to be normal, it is necessary that �T is
almost everywhere tangent to R.

The proof of Theorem 1.8 follows a blow-up strategy according to which one can prove that, at𝒮𝑄−𝑘 -
a.e. 𝑝 ∈ 𝑅, the current �T(𝑝)𝒮𝑄−𝑘 TanH𝑅 (𝑝) has zero boundary, where TanH𝑅 (𝑝) = exp(span 𝑡H𝑅 (𝑝))

is the approximate tangent plane to R at p. Proposition 5.3 shows that this is possible only if �T(𝑝) is
a multiple of [𝑡H𝑅 (𝑝)]J. Proposition 5.3 is essentially a simpler version of Theorem 1.7; its classical
counterpart can be found, for instance, in [57, Lemma 1 in §3.3.2]. The proof of Proposition 5.35

consists in feeding the given boundaryless current with (the differential of) enough test forms in order to
eventually deduce the desired ‘tangency’ property. Apart from the computational difficulties pertaining
to the second-order operator D (at least in case 𝑘 = 𝑛), one demanding task we had to face was the
search for a convenient basis of J2𝑛+1−𝑘 ; see Subsection 1.5.

We conclude this section with an important observation. Assume that S is an oriented submanifold
of codimension k that is (Euclidean) 𝐶1-regular; in particular, the tangent vector 𝑡H𝑆 is defined except
at characteristic points of S, which, however, are 𝒮𝑄−𝑘 -negligible [15, 69]. Then, on the one side, S
induces the natural Heisenberg current �𝑆� = [𝑡H𝑆 ]J𝒮

𝑄−𝑘 𝑆; on the other side, associated to S is also
the classical current �𝑆� defined by �𝑆�(𝜔) :=

∫
𝑆

𝜔 for every (2𝑛 + 1 − 𝑘)-form 𝜔 with compact support.
The following fact holds true provided the homogeneous distance d is rotationally invariant.

Proposition 1.9. Let 𝑘 ∈ {1, . . . , 𝑛}; then there exists a positive constant 𝐶𝑛,𝑘 , depending on 𝑛, 𝑘 and the
rotationally invariant distance d, such that for every 𝐶1-regular submanifold 𝑆 ⊂ H𝑛 of codimension k,

�𝑆�(𝜔) = 𝐶𝑛,𝑘�𝑆�(𝜔) for every 𝜔 ∈ D2𝑛+1−𝑘
H

. (1.3)

In particular, if S is a submanifold without boundary, then 𝜕�𝑆� = 0 is a Heisenberg (2𝑛 − 𝑘)-current.

In other words, �𝑆� and �𝑆� coincide, as Heisenberg currents, up to a multiplicative constant. This
is remarkable. The first part of the statement of Proposition 1.9 is proved in Lemma 3.31, while the

3By concentrated we mean that 𝜇 (H𝑛 \ 𝑅) = 0.
4Equivalently, there exists a ℋ𝑚 𝑅-measurable function 𝑓 : 𝑅 → R such that T(𝜔) =

∫
𝑅
𝑓 𝜔.

5It is worth pointing out that we cannot deduce Proposition 5.3 from Theorem 1.7; in fact, Proposition 5.3 is needed for proving
Theorem 1.8, which in turn is needed for the proof of Theorem 1.7.
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second one is a consequence of the fact that the operator D is the composition of the differential d with
another operator; see Corollary 3.34. For the exact value of 𝐶𝑛,𝑘 , see Remark 4.21. Proposition 1.9 is
crucial in the proof of our main result Theorem 1.1.

1.5. A basis for Rumin’s spaces J2𝑛+1−𝑘

We believe it is worth introducing, at least quickly, the basis of J2𝑛+1−𝑘 that we use; we need some
preliminary notation. Assume that the elements of a finite subset 𝑀 ⊂ N with cardinality |𝑀 | = 𝑚 are
arranged (each element of M appearing exactly once) in a tableau with two rows, the first row displaying
ℓ ≥ 𝑚

2 elements 𝑅1
1, . . . , 𝑅1

ℓ and the second one displaying 𝑚−ℓ ≥ 0 elements 𝑅2
1, . . . , 𝑅2

𝑚−ℓ , as follows:

𝑅 =
𝑅1

1 𝑅1
2 · · · 𝑅1

𝑚−ℓ 𝑅1
𝑚−ℓ+1 · · · 𝑅1

ℓ

𝑅2
1 𝑅2

2 · · · 𝑅2
𝑚−ℓ

.

Such an R is called Young tableau (see, e.g., [55]). Clearly, R has to be read as a (2 × ℓ) rectangular
tableau when ℓ = 𝑚/2 while, in case ℓ = 𝑚, we agree that the second row is empty. Given such an R,
define the 2ℓ-covector

𝛼𝑅 := (𝑑𝑥𝑦𝑅1
1
− 𝑑𝑥𝑦𝑅2

1
) ∧ (𝑑𝑥𝑦𝑅1

2
− 𝑑𝑥𝑦𝑅2

2
) ∧ · · · ∧ (𝑑𝑥𝑦𝑅1

𝑚−ℓ
− 𝑑𝑥𝑦𝑅2

𝑚−ℓ
) ∧ 𝑑𝑥𝑦𝑅1

𝑚−ℓ+1
∧ · · · ∧ 𝑑𝑥𝑦𝑅1

ℓ
,

where for shortness we set 𝑑𝑥𝑦𝑖 := 𝑑𝑥𝑖 ∧ 𝑑𝑦𝑖; when ℓ = 𝑚 (i.e., when the second row of R is empty), we
agree that 𝛼𝑅 = 𝑑𝑥𝑦𝑅1

1
∧ · · · ∧ 𝑑𝑥𝑦𝑅1

ℓ
. One key observation is the fact that

𝛼𝑅 ∧
∑
𝑖∈𝑀

𝑑𝑥𝑦𝑖 = 0, (1.4)

which is essentially a consequence of the equality (𝑑𝑥𝑦𝑖 − 𝑑𝑥𝑦 𝑗 ) ∧ (𝑑𝑥𝑦𝑖 + 𝑑𝑥𝑦 𝑗 ) = 0.
Before stating Proposition 1.10, we need some further notation. First, we say that R is a standard

Young tableau when the elements in each row and each column of R are in increasing order; that is,
when 𝑅𝑖

𝑗 < 𝑅𝑖
𝑗+1 and 𝑅1

𝑗 < 𝑅2
𝑗 . Second, given 𝐼 = {𝑖1, . . . , 𝑖 |𝐼 | } ⊂ {1, . . . , 𝑛} with 𝑖1 < 𝑖2 < · · · < 𝑖 |𝐼 | ,

we write

𝑑𝑥𝐼 := 𝑑𝑥𝑖1 ∧ · · · ∧ 𝑑𝑥𝑖|𝐼 |
, 𝑑𝑦𝐼 := 𝑑𝑦𝑖1 ∧ · · · ∧ 𝑑𝑦𝑖|𝐼 |

.

Eventually, we denote by 𝜃 := 𝑑𝑡 + 1
2
∑𝑛
𝑖=1(𝑦𝑖𝑑𝑥𝑖 − 𝑥𝑖𝑑𝑦𝑖) the contact form onH𝑛, which is left-invariant

and then can be thought of as a covector in ∧1𝔥. Observe that 𝜃 vanishes on horizontal vectors.

Proposition 1.10. For every 𝑘 ∈ {1, . . . , 𝑛}, a basis of J2𝑛+1−𝑘 is provided by the elements of the form
𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 ∧ 𝜃, where (𝐼, 𝐽, 𝑅) ranges among those triples such that

◦ 𝐼 ⊂ {1, . . . , 𝑛}, 𝐽 ⊂ {1, . . . , 𝑛}, |𝐼 | + |𝐽 | ≤ 𝑘 and 𝐼 ∩ 𝐽 = ∅;
◦ R is a standard Young tableau containing the elements of {1, . . . , 𝑛} \ (𝐼 ∪ 𝐽) arranged in two rows

of length, respectively, (2𝑛 − 𝑘 − |𝐼 | − |𝐽 |)/2 and (𝑘 − |𝐼 | − |𝐽 |)/2.

Proposition 1.10 follows from Corollary 3.22. Observe that the tableaux R appearing in the statement
are rectangular exactly in case 𝑘 = 𝑛. In this case, it might happen that 𝐼 ∪ 𝐽 = {1, . . . , 𝑛}; that is, that
R is the empty table. If so, we agree that 𝛼𝑅 = 1. It is also worth observing that the covectors 𝜆𝐼 ,𝐽 ,𝑅 =
𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 ∧ 𝜃 appearing in Proposition 1.10 indeed belong to J2𝑛+1−𝑘 because 𝜆𝐼 ,𝐽 ,𝑅 ∧ 𝜃 = 0 (by
definition) and 𝜆𝐼 ,𝐽 ,𝑅∧𝑑𝜃 = 0, which comes as a consequence of (1.4) and the fact that 𝑑𝜃 = −

∑𝑛
𝑖=1 𝑑𝑥𝑦𝑖

is, up to a sign, the standard symplectic form.
During the preparation of this article, we became aware that a basis of J2𝑛+1−𝑘 is provided also in

the paper [11]: however, the basis in [11] is presented by induction on n, while ours is given directly
and is somewhat manageable in the computations we need.
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10 Davide Vittone

1.6. Sketch of the proof of Rademacher’s Theorem 1.1

For the reader’s convenience, we provide a sketch of the proof of our main result. Let 𝜙 : 𝐴 ⊂ W→ V
be intrinsic Lipschitz; by Theorem 1.5 we can assume that 𝐴 =W. We now use Theorem 1.6 to produce
a sequence of smooth maps 𝜙𝑖 : W → V converging uniformly to 𝜙: it can be easily proved that the
associated Heisenberg currents �gr𝜙𝑖

� converge (possibly up to a subsequence) to a current T supported
on gr𝜙 and, actually, that T = 𝜏𝒮𝑄−𝑘 gr𝜙 for some bounded function 𝜏 : gr𝜙 → J2𝑛+1−𝑘 \ {0}.
Moreover, we have 𝜕�gr𝜙𝑖

� = 0 for every i because of Proposition 1.9; therefore, also 𝜕T = 0. As we
will see, this equality carries the relevant geometric information.

Our aim is to prove that, at a.e. 𝑤 ∈ W, the blow-up of 𝜙 at w (i.e., the limit as 𝑟 → +∞ of
𝛿𝑟 ((𝑤𝜙(𝑤))−1gr𝜙)) is the graph of an intrinsic linear map; a priori, however, there could exist many
possible blow-up limits 𝜓 associated with different diverging scaling sequences (𝑟 𝑗 ) 𝑗 . In Lemma 4.16
we prove the following: for a.e. �̄� ∈ W, all of the possible blow-ups 𝜓 of 𝜙 at �̄� are t-invariant; that is,

𝜓(𝑤 exp(𝑡𝑇)) = 𝜓(𝑤(0, 0, 𝑡)) = 𝜓(𝑤) for every 𝑡 ∈ R, 𝑤 ∈ W.

The proof of Lemma 4.16 makes use of Rademacher’s theorem proved for the case of codimension 1
in [52].

Let then �̄� be such a point and fix a t-invariant blow-up 𝜓 of 𝜙 at �̄� associated with a scaling
sequence (𝑟 𝑗 ) 𝑗 . It is a good point to notice that, being both intrinsic Lipschitz (because it is the limit of
uniformly intrinsic Lipschitz maps) and t-invariant, 𝜓 is necessarily Euclidean Lipschitz; see Lemma
4.15. Consider now the current T∞ defined (up to passing to a subsequence) as the blow-up limit along
(𝑟 𝑗 ) 𝑗 of T at 𝑝 := �̄�𝜙(�̄�) ∈ gr𝜙 , namely,

T∞ := lim
𝑗→∞

(𝛿𝑟 𝑗 ◦ 𝐿 �̄�−1)#T,

where 𝐿 �̄�−1 denotes left-translation by 𝑝−1 and the subscript # denotes push-forward. If one assumes
that 𝑝 is also a Lebesgue point (in a suitable sense) of the function 𝜏, then the following properties hold
for T∞:

◦ T∞ = 𝑓 𝜏(𝑝)𝒮𝑄−𝑘 gr𝜓 for some positive and bounded function f on gr𝜓;
◦ gr𝜓 is locally Euclidean rectifiable and, in particular, it is locally H-rectifiable;
◦ 𝜕T∞ = 0, because T∞ is limit of boundaryless currents.

We can then apply Theorem 1.8 to deduce that [𝑡Hgr𝜓 (𝑝)]J is a multiple of 𝜏(𝑝) for a.e. 𝑝 ∈ gr𝜓 . By
t-invariance, the unit tangent vector 𝑡gr𝜓 (𝑝) coincides with 𝑡Hgr𝜓 (𝑝). Summarising, we have a t-invariant
Euclidean Lipschitz submanifold gr𝜓 whose unit tangent vector 𝑡gr𝜓 is always vertical (i.e., of the form
𝑡gr𝜓 = 𝑡 ′ ∧ 𝑇 for a suitable multivector 𝑡 ′) and has the property that, for a.e. point p, [𝑡gr𝜓 (𝑝)]J is a
multiple of 𝜏(𝑝) ∈ J2𝑛+1−𝑘 \ {0}. If we could guarantee that there is a unique (up to a sign) unit simple
vector 𝑡 that is vertical and such that [ 𝑡 ]J is a multiple of 𝜏(𝑝), then we would conclude that gr𝜓 is
always tangent to that particular 𝑡; that is, that gr𝜓 is a vertical plane 𝒫. Since 𝑡 (and then 𝒫) depends
only on 𝑝 and not on the particular sequence (𝑟 𝑗 ) 𝑗 , the blow-up 𝒫 is unique and is the graph of an
intrinsic linear map 𝜓: this would conclude the proof.

Unluckily, this is not always the case; in fact, in the second Heisenberg group H2 the unit simple
vertical 3-vectors 𝑋1 ∧ 𝑌1 ∧ 𝑇 and −𝑋2 ∧ 𝑌2 ∧ 𝑇 have the property that

[𝑋1 ∧ 𝑌1 ∧ 𝑇]J = [−𝑋2 ∧ 𝑌2 ∧ 𝑇]J.

This, however, is basically the worst-case scenario. A key, technically demanding result is Proposition
3.38, where we prove that there exist at most two linearly independent unit simple vertical vectors 𝑡1, 𝑡2
such that [𝑡1]J = [𝑡2]J are multiples of 𝜏(𝑝); moreover, the planes𝒫1,𝒫2 associated (respectively) with
±𝑡1, ±𝑡2 are not rank 1 connected; that is, dim𝒫1 ∩𝒫2 has codimension at least 2 in 𝒫1 (equivalently, in
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𝒫2). This means that the vertical Euclidean Lipschitz submanifold gr𝜓 has at most two possible tangent
planes 𝒫1,𝒫2; however (see, e.g., [14, Proposition 1] or [78, Proposition 2.1]), the fact that these two
planes are not rank 1 connected forces gr𝜓 to be a plane (either 𝒫1 or 𝒫2) itself.

This is not the conclusion yet: we have for the moment proved that, for a.e. �̄� ∈ W, all of the possible
blow-ups of 𝜙 at �̄� are either the map 𝜓1 parametrising 𝒫1 or the map 𝜓2 parametrising 𝒫2; both are
determined by 𝜏(𝑝) (i.e., by �̄�) only. However, it is not difficult to observe that the family of all possible
blow-ups of 𝜙 at a fixed point must enjoy a suitable connectedness property; hence, it cannot consist of
the two points 𝜓1, 𝜓2 only. This proves the uniqueness of blow-ups and concludes the proof of our main
result.

1.7. Structure of the article

In Section 2 we introduce intrinsic Lipschitz graphs in Carnot groups and prove Theorems 1.4, 1.5 and
1.6. Heisenberg groups are introduced in Section 3, where we focus on the algebraic preliminary material,
in particular, about multilinear algebra and Rumin’s complex. We also provide the basis of Rumin’s
spaces of Proposition 1.10, introduce Heisenberg currents and prove Proposition 1.9. Eventually, we
state Proposition 3.38, which we use in the proof of Rademacher’s Theorem 1.1 and whose long and
tedious proof is postponed to Appendix A. In Section 4 we deal with intrinsic Lipschitz graphs of low
codimension; in particular, we define intrinsic differentiability and we prove the crucial Lemma 4.16.
We also introduce H-regular submanifolds and H-rectifiable sets and we study (Euclidean) 𝐶1-regular
intrinsic graphs. Section 5 is devoted to the proof of the constancy-type Theorems 1.7 and 1.8. The
proof of Rademacher’s Theorem 1.1 is provided in Section 6. Section 7 contains the applications of our
main result concerning Lusin’s Theorem 1.2, the equivalence between H-rectifiability and ‘Lipschitz’
H-rectifiability (Corollary 7.4) and the area formula of Theorem 1.3.

2. Intrinsic Lipschitz graphs in Carnot groups: extension and approximation results

In this section we introduce Carnot groups and intrinsic Lipschitz graphs; our goal is to prove the
extension and approximation results stated in Theorems 1.5 and 1.6. These two results are used later
in the article for intrinsic Lipschitz graphs in Heisenberg groups; however, they can be proved with no
extra effort in the wider setting of Carnot groups, and we will therefore operate in this framework, which
also allows for some simplifications in the notation. The presentation of Carnot groups will be only
minimal, and we refer to [43, 20, 58, 66, 88] for a more comprehensive treatment. The reader looking
for a thorough account on intrinsic Lipschitz graphs might instead consult [53].

2.1. Carnot groups: algebraic and metric preliminaries

A Carnot (or stratified) group is a connected, simply connected and nilpotent Lie group whose Lie
algebra 𝔤 is stratified; that is, it possesses a decomposition 𝔤 = 𝔤1 ⊕ · · · ⊕ 𝔤𝑠 such that

∀ 𝑗 = 1, . . . , 𝑠 − 1 𝔤 𝑗+1 = [𝔤 𝑗 , 𝔤1], 𝔤𝑠 ≠ {0} and [𝔤𝑠 , 𝔤] = {0}.

We refer to the integer s as the step of G and to 𝑚 := dim 𝔤1 as its rank; we also denote by d the
topological dimension of G. The group identity is denoted by 0 and, as is customary, we identify 𝔤, 𝑇0G
and the algebra of left-invariant vector fields on G. The elements of 𝔤1 are referred to as horizontal.

The exponential map exp : 𝔤 → G is a diffeomorphism and, given a basis 𝑋1, . . . , 𝑋𝑑 of 𝔤, we will
often identify G with R𝑑 by means of exponential coordinates:

R
𝑑 � 𝑥 = (𝑥1, . . . , 𝑥𝑑) ←→ exp (𝑥1𝑋1 + · · · + 𝑥𝑑𝑋𝑑) ∈ G.
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We will also assume that the basis is adapted to the stratification; that is, that

𝑋1, . . . , 𝑋𝑚 is a basis of 𝔤1 and
∀ 𝑗 = 2, . . . , 𝑠, 𝑋dim(𝔤1 ⊕···⊕𝔤 𝑗−1)+1, . . . , 𝑋dim(𝔤1 ⊕···⊕𝔤 𝑗 ) is a basis of 𝔤 𝑗 .

In these coordinates, one has

𝑋𝑖 (𝑥) = 𝜕𝑥𝑖 +
𝑑∑

𝑗=𝑚+1
𝑃𝑖, 𝑗 (𝑥)𝜕𝑥 𝑗 for every 𝑖 = 1, . . . , 𝑚 (2.1)

for suitable polynomial functions 𝑃𝑖, 𝑗 . A one-parameter family {𝛿𝜆}𝜆>0 of dilations 𝛿𝜆 : 𝔤 → 𝔤 is
defined by (linearly extending)

𝛿𝜆 (𝑋) := 𝜆 𝑗𝑋 for any 𝑋 ∈ 𝔤 𝑗 ;

notice that dilations are Lie algebra homomorphisms and 𝛿𝜆𝜇 = 𝛿𝜆 ◦ 𝛿𝜇. By composition with exp, one
can then define a one-parameter family, for which we use the same symbol, of group isomorphisms
𝛿𝜆 : G→ G.

We fix a left-invariant homogeneous distance d on G, so that

𝑑 (𝑥𝑦, 𝑥𝑧) = 𝑑 (𝑦, 𝑧) and 𝑑 (𝛿𝜆𝑥, 𝛿𝜆𝑦) = 𝜆𝑑 (𝑥, 𝑦) for all 𝑥, 𝑦, 𝑧 ∈ G, 𝜆 > 0.

We use d to denote both the distance onG and its topological dimension, but no confusion will ever arise.
We denote by 𝐵(𝑥, 𝑟) the open ball of center 𝑥 ∈ G and radius 𝑟 > 0; it will also be convenient to denote
by ‖ · ‖G the homogeneous norm defined for 𝑥 ∈ G by ‖𝑥‖G := 𝑑 (0, 𝑥). Recall that ℒ𝑑 is a Haar measure
on G ≡ R𝑑 and that the homogeneous dimension of G is the integer 𝑄 :=

∑𝑠
𝑗=1 𝑗 dim𝔤 𝑗 . One has

ℒ𝑑 (𝐵(𝑥, 𝑟)) = 𝑟𝑄ℒ𝑑 (𝐵(0, 1)) for all 𝑥 ∈ G, 𝑟 > 0.

The number Q is always greater than d (apart from the Euclidean case 𝑠 = 1) and it coincides with
the Hausdorff dimension of G. Since the Hausdorff Q-dimensional measure is also a Haar measure, it
coincides with ℒ𝑑 up to a constant.

Given a measurable function 𝑓 : G → R, we denote by ∇G 𝑓 = (𝑋1 𝑓 , . . . , 𝑋𝑚 𝑓 ) its horizontal
derivatives in the sense of distributions. It is well-known that, if f is Lipschitz continuous, then it is
Pansu differentiable almost everywhere [81] and, in particular, the pointwise horizontal gradient ∇G 𝑓
exists almost everywhere on G. Moreover (see, e.g., [47, 56]), we have

if 𝑓 : G→ R is continuous, then f is Lipschitz if and only if ∇G 𝑓 ∈ 𝐿∞(G) (2.2)

where Lipschitz continuity, of course, is meant with respect to the homogeneous distance d on G. It is
worth mentioning that the Lipschitz constant of f is bounded by ‖∇G 𝑓 ‖𝐿∞ (G) , apart from multiplicative
constants that depend only on the distance d, both from below and from above.

We will need the following result later, proved in [93, Lemma 2.2], where we denote by −−→exp(𝑋) (𝑥)
the point reached in unit time by the integral curve of a vector field X starting at a point x.

Lemma 2.1. Let 𝑓 : R𝑑 → R be a continuous function and let Y be a smooth vector field in R𝑑 . Assume
that 𝑌 𝑓 ≥ 𝛿 holds, in the sense of distributions, on an open set 𝑈 ⊂ R𝑑 and for a suitable 𝛿 ∈ R. If
𝑥 ∈ 𝑈 and 𝑇 > 0 are such that −−→exp(ℎ𝑌 ) (𝑥) ∈ 𝑈 for every ℎ ∈ [0, 𝑇), then

𝑓 (−−→exp(𝑡𝑌 ) (𝑥)) ≥ 𝑓 (𝑥) + 𝛿𝑡 for every 𝑡 ∈ [0, 𝑇).
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2.2. Intrinsic Lipschitz graphs

Following [53], we fix a splitting G = WV in terms of a couple W,V of homogeneous (i.e., invariant
under dilations) and complementary (i.e.,W∩V = {0} andG =WV) Lie subgroups ofG. In exponential
coordinates,W,V are linear subspaces ofG ≡ R𝑑 . Clearly, the splitting induces for every 𝑥 ∈ G a unique
decomposition 𝑥 = 𝑥W𝑥V such that 𝑥W ∈ W and 𝑥V ∈ V; we will sometimes refer to the maps 𝑥 ↦→ 𝑥W
and 𝑥 ↦→ 𝑥V as the projections of G onW and on V, respectively.

Given 𝐴 ⊂ W and a map 𝜙 : 𝐴 → V, the intrinsic graph gr𝜙 of 𝜙 is the set

gr𝜙 := {𝑤𝜙(𝑤) : 𝑤 ∈ 𝐴} ⊂ G.

The notion of intrinsic Lipschitz continuity for maps 𝜙 from W to V was introduced by B. Franchi,
R. Serapioni and F. Serra Cassano [50] in terms of a cone property for gr𝜙 . The intrinsic cone 𝒞𝛼 of
aperture 𝛼 > 0 and axis V is

𝒞𝛼 := {𝑥 ∈ G : ‖𝑥W‖G ≤ 𝛼‖𝑥V‖G} .

Observe that 𝒞𝛼 is homogeneous (invariant under dilations) and that V ⊂ 𝒞𝛼. For 𝑥 ∈ G we also
introduce the cone 𝒞𝛼 (𝑥) := 𝑥𝒞𝛼 with vertex x.

Definition 2.2. Let 𝐴 ⊂ W; we say that 𝜙 : 𝐴 → V is intrinsic Lipschitz if there exists 𝛼 > 0 such that

∀ 𝑥 ∈ gr𝜙 gr𝜙 ∩ 𝒞𝛼 (𝑥) = {𝑥}. (2.3)

The intrinsic Lipschitz constant of 𝜙 is inf{ 1
𝛼 : 𝛼 > 0 and (2.3) holds}.

Since all homogeneous distances on G are equivalent, Definition 2.2 is clearly independent from
the fixed distance d on the group. It was proved in [53, Theorem 3.9] that, if 𝜙 : W → V is an entire
intrinsic Lipschitz map, then the Hausdorff dimension of gr𝜙 is the same as the Hausdorff dimension of
the domainW; actually, the corresponding Hausdorff measure on gr𝜙 is Ahlfors regular and then also
locally finite on gr𝜙 . This implies that for entire intrinsic Lipschitz graphs one has

ℒ𝑑 (gr𝜙) = 0, (2.4)

provided, of course, we are not in the trivial case W = G, V = {0}. As one can imagine, the equality
(2.4) holds, however, for every intrinsic Lipschitz 𝜙 : 𝐴 ⊂ W → V provided W ≠ G: one way of
proving this fact is by noticing that ℒ𝑑 (𝒞𝛼 (𝑥) ∩ 𝐵(𝑥, 𝑟)) is a fixed fraction of ℒ𝑑 (𝐵(𝑥, 𝑟)); hence,
gr𝜙 cannot have points of density 1 and (2.4) follows by Lebesgue’s differentiation theorem in doubling
metric spaces (see, e.g., [59, Theorem 1.8]).

Remark 2.3. For the purpose of future references, we observe the following easy fact. Let 𝑆 ⊂ G and
𝛼 > 0 be fixed; if

∀ 𝑥 ∈ 𝑆 𝑆 ∩ 𝒞𝛼 (𝑥) = {𝑥},

then 𝑆 = gr𝜙 for suitable 𝜙 : 𝐴 → V (which is clearly intrinsic Lipschitz) and 𝐴 ⊂ W. See, for example,
[53, §2.2.3].

2.3. A level set definition of co-horizontal intrinsic Lipschitz graphs

From now on we assume that the splittingWV of G is fixed in such a way that V is not trivial (V ≠ {0})
and it is horizontal; that is, V ⊂ exp(𝔤1). Of course, this poses some algebraic restrictions: for instance,
V is forced to be abelian. Moreover, it can be easily checked that free Carnot groups (of step at least 2)
have no splitting such that V is horizontal and dimV ≥ 2. Nonetheless, the theory we are going to
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develop here is rich enough to include intrinsic Lipschitz graphs of codimension 1 in any Carnot group
(in fact, every 1-dimensional horizontal subgroupV of a Carnot group provides a splittingWV for some
W) and intrinsic Lipschitz graphs of codimension at most n in the Heisenberg group H𝑛, which are the
main object of study of the present article.

With such assumptions on the splitting WV, intrinsic Lipschitz graphs Φ : 𝐴 ⊂ W → V will be
called co-horizontal (see [6]). We denote by k the topological dimension of V and we assume without
loss of generality that the adapted basis 𝑋1, . . . , 𝑋𝑑 of 𝔤 has been fixed in such a way that

V = exp(span{𝑋1, . . . , 𝑋𝑘 }).

We consequently identify V with R𝑘 through the map

R
𝑘 � (𝑣1, . . . , 𝑣𝑘 ) ←→ exp(𝑣1𝑋1 + · · · + 𝑣𝑘𝑋𝑘 ) ∈ V, (2.5)

and we accordingly write 𝑣 = (𝑣1, . . . , 𝑣𝑘 ) ∈ V. The map in (2.5) turns out to be a group isomorphism
as well as a bi-Lipschitz map between (R𝑘 , | · |) and (V, 𝑑): this proves that the Hausdorff dimension
of V equals the topological dimension k. We observe that, since the flow of a left-invariant vector field
corresponds to right multiplication, we have

𝑥𝑣 = −−→exp(𝑣1𝑋1 + · · · + 𝑣𝑘𝑋𝑘 ) (𝑥).

In particular, the projections on the factorsW,V can be written as

𝑥V = exp(𝑥1𝑋1 + · · · + 𝑥𝑘𝑋𝑘 ), 𝑥W = 𝑥 𝑥−1
V

= −−→exp(−(𝑥1𝑋1 + · · · + 𝑥𝑘𝑋𝑘 )) (𝑥)

and are therefore smooth maps.
Our first goal is to provide the equivalent characterisation of co-horizontal intrinsic Lipschitz graphs

stated in Theorem 1.4. However, we need some preparatory lemmata as well as some extra convention
about notation. First, we introduce the homogeneous (pseudo)-norm

‖𝑥‖∗ := ���
𝑠∑
𝑗=1

∑
𝑖:𝑋𝑖 ∈𝔤 𝑗

|𝑥𝑖 |
2𝑠!
𝑗
	
�

1
2𝑠!

, 𝑥 ∈ G,

which is equivalent to ‖ · ‖G in the sense that there exists 𝐶∗ ≥ 1 such that

‖𝑥‖G/𝐶∗ ≤ ‖𝑥‖∗ ≤ 𝐶∗‖𝑥‖G ∀ 𝑥 ∈ G. (2.6)

Observe that 𝑥 ↦→ ‖𝑥‖∗ is of class 𝐶∞ in G \ {0}. Second, given 𝑖 ∈ {1, . . . , 𝑘}, 𝛽 > 0 and 𝜀 > 0, we
introduce the homogeneous cone

𝒞𝑖,𝛽,𝜀 :=
⎧⎪⎪⎨⎪⎪⎩𝑤𝑣 : 𝑤 ∈ W, 𝑣 ∈ V, |𝑣𝑖 | + 𝜀

∑
𝑗∈{1,...,𝑘 }\{𝑖 }

|𝑣 𝑗 | ≥ 𝛽‖𝑤‖∗

⎫⎪⎪⎬⎪⎪⎭
=

⎧⎪⎪⎨⎪⎪⎩𝑥 ∈ G : |𝑥𝑖 | + 𝜀
∑

𝑗∈{1,...,𝑘 }\{𝑖 }

|𝑥 𝑗 | ≥ 𝛽‖𝑥W‖∗

⎫⎪⎪⎬⎪⎪⎭ ,
where we used the fact that 𝑥V = (𝑥1, . . . , 𝑥𝑘 ). Third, if 𝑡 ∈ R and 𝑓 : 𝐷 → R is a real-valued function
defined on some set D, we denote by { 𝑓 ≥ 𝑡} the set {𝑥 ∈ 𝐷 : 𝑓 (𝑥) ≥ 𝑡}. Similar conventions are
understood when writing { 𝑓 > 𝑡}, { 𝑓 < 𝑡}, { 𝑓 = 𝑡}, {𝑡1 < 𝑓 < 𝑡2}, etc.
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Lemma 2.4. For every 𝑖 ∈ {1, . . . , 𝑘}, 𝛽 > 0 and 𝜀 ∈ (0, 1) there exists a 1-homogeneous Lipschitz
function 𝑓𝑖,𝛽,𝜀 : G→ R such that

𝑓𝑖,𝛽,𝜀 (0) = 0 (2.7)

1 ≤ 𝑋𝑖 𝑓𝑖,𝛽,𝜀 ≤ 3 ℒ𝑑-a.e. on G (2.8)

𝜀 ≤ 𝑋ℓ 𝑓𝑖,𝛽,𝜀 ≤ 3𝜀 ℒ𝑑-a.e. on G ∀ ℓ ∈ {1, . . . , 𝑘} \ {𝑖} (2.9)

{ 𝑓𝑖,𝛽,𝜀 ≥ 0} ⊂ 𝒞𝑖,𝛽,𝜀 . (2.10)

Moreover, if 0 < 𝛽 ≤ 𝛽, then the Lipschitz constant of 𝑓𝑖,𝛽,𝜀 can be controlled in terms of 𝜀 and 𝛽 only.

Proof. Without loss of generality, we can assume that 𝑖 = 1. For 𝑥 ∈ G, define

𝑓 (𝑥) :=
⎧⎪⎪⎨⎪⎪⎩

2[𝑥1 + 𝜀(𝑥2 + · · · + 𝑥𝑘 ) − 𝛽‖𝑥W‖∗] if |𝑥1 + 𝜀(𝑥2 + · · · + 𝑥𝑘 ) | ≤ 2𝛽‖𝑥W‖∗

(𝑥1 + 𝜀(𝑥2 + · · · + 𝑥𝑘 )) if 𝑥1 + 𝜀(𝑥2 + · · · + 𝑥𝑘 ) > 2𝛽‖𝑥W‖∗

3[𝑥1 + 𝜀(𝑥2 + · · · + 𝑥𝑘 )] if 𝑥1 + 𝜀(𝑥2 + · · · + 𝑥𝑘 ) < −2𝛽‖𝑥W‖∗.

We prove that 𝑓1,𝛽, 𝜀 := 𝑓 satisfies all of the claimed statements. Property (2.7) and the homogeneity of
f are immediate. Property (2.10) is equivalent to the implication

|𝑥1 | + 𝜀(|𝑥2 | + · · · + |𝑥𝑘 |) < 𝛽‖𝑥W‖∗ =⇒ 𝑓 (𝑥) < 0,

which one can easily check. The function f is continuous on G and smooth on G \ 𝐷, where

𝐷 := {𝑥 ∈ G : |𝑥1 + 𝜀(𝑥2 + · · · + 𝑥𝑘 ) | = 2𝛽‖𝑥W‖∗}.

Since D is ℒ𝑑-negligible, statements (2.8) and (2.9) follow if we prove that for every ℓ = 2, . . . , 𝑘 ,

1 ≤ 𝑋1 𝑓 ≤ 3 and 𝜀 ≤ 𝑋ℓ 𝑓 ≤ 3𝜀 on G \ 𝐷. (2.11)

Using (2.1) one gets

∇G 𝑓 (𝑥) = (1, 𝜀, . . . , 𝜀, 0, . . . , 0) if 𝑥1 + 𝜀(𝑥2 + · · · + 𝑥𝑘 ) > 2𝛽‖𝑥W‖∗

∇G 𝑓 (𝑥) = (3, 3𝜀, . . . , 3𝜀, 0, . . . , 0) if 𝑥1 + 𝜀(𝑥2 + · · · + 𝑥𝑘 ) < −2𝛽‖𝑥W‖∗ .
(2.12)

We now notice that, for any 𝑥 ∈ G, the map 𝑦 ↦→ 𝑦W is constant on the coset 𝑥V, which is a smooth
submanifold tangent to 𝑋1, . . . , 𝑋𝑘 . This implies that

(𝑋1 𝑓 , . . . , 𝑋𝑘 𝑓 ) (𝑥) = (2, 2𝜀, . . . , 2𝜀) if |𝑥1 + 𝜀(𝑥2 + · · · + 𝑥𝑘 ) | < 2𝛽‖𝑥W‖∗,

which, together with (2.12), implies (2.11).
We have only to check that f is Lipschitz continuous on G and that a bound on the Lipschitz constant

can be given in terms of 𝜀 and 𝛽. Taking into account (2.12) and the continuity of f on G, by (2.2) it is
enough to prove the function 𝑔 : G→ R defined by

𝑔(𝑥) := 2[𝑥1 + 𝜀(𝑥2 + · · · + 𝑥𝑘 ) − 𝛽‖𝑥W‖∗]

satisfies

|∇G𝑔 | ≤ 𝐶 on {𝑥 ∈ G : |𝑥1 + 𝜀(𝑥2 + · · · + 𝑥𝑘 ) | < 2𝛽‖𝑥W‖∗} (2.13)

for some positive C. Since 𝑥 ↦→ 𝑥W is smooth on G and ‖ · ‖∗ is smooth on G \ {0}, we get that g is
smooth on G \ V. Moreover, g is 1-homogeneous; thus, ∇G𝑔 is 0-homogeneous (i.e., invariant under
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dilations) and continuous on G \ V. Inequality (2.13) will then follow if we prove that

|∇G𝑔 | ≤ 𝐶 on 𝜕𝐵(0, 1) ∩ {𝑥 ∈ G : |𝑥1 + 𝜀(𝑥2 + · · · + 𝑥𝑘 ) | ≤ 𝛽‖𝑥W‖∗};

in turn, this inequality and the bound (in terms of 𝜀, 𝛽) on the Lipschitz constant of f follow by proving
that

|∇G𝑔 | ≤ 𝐶 on 𝜕𝐵(0, 1) ∩ {𝑥 ∈ G : |𝑥1 + 𝜀(𝑥2 + · · · + 𝑥𝑘 ) | ≤ 𝛽‖𝑥W‖∗}. (2.14)

The set V is closed, while 𝜕𝐵(0, 1) ∩ {𝑥 ∈ G : |𝑥1 + 𝜀(𝑥2 + · · · + 𝑥𝑘 ) | ≤ 𝛽‖𝑥W‖∗} is compact; since they
are disjoint, they have positive distance and the continuity of ∇G𝑔 on G \ V ensures that

sup
{
|∇G𝑔(𝑥) | : 𝑥 ∈ 𝜕𝐵(0, 1) and |𝑥1 + 𝜀(𝑥2 + · · · + 𝑥𝑘 ) | ≤ 𝛽‖𝑥W‖∗

}
< +∞,

which is (2.14) and allows us to conclude. �

Lemma 2.5. Let 𝐴 ⊂ W be nonempty and let 𝜙 : 𝐴 → V be intrinsic Lipschitz. Then for every 𝜀 ∈ (0, 1)
and 𝑖 ∈ {1, . . . , 𝑘} there exists a Lipschitz function 𝑓𝑖, 𝜀 : G→ R such that

gr𝜙 ⊂ { 𝑓𝑖, 𝜀 = 0} (2.15)

1 ≤ 𝑋𝑖 𝑓𝑖, 𝜀 ≤ 3 ℒ𝑑-a.e. on G (2.16)

𝜀 ≤ 𝑋ℓ 𝑓𝑖, 𝜀 ≤ 3𝜀 ℒ𝑑-a.e. on G ∀ℓ ∈ {1, . . . , 𝑘} \ {𝑖}. (2.17)

Moreover, if the intrinsic Lipschitz constant of 𝜙 is not greater than �̄� > 0, then the Lipschitz constant
of 𝑓𝑖, 𝜀 can be bounded in terms of 𝜀 and �̄� only.

Proof. Assume that the intrinsic Lipschitz constant of 𝜙 is not greater than some Λ̄ > 0 and define
𝛼 := (2Λ)−1; then (2.3) holds for such 𝛼. Recalling that the constant 𝐶∗ > 0 was introduced in (2.6), we
set 𝛽 := 𝑘𝐶2

∗ /𝛼. Taking into account the inequalities

|𝑥𝑖 | + 𝜀
∑

𝑗∈{1,...,𝑘 }\{𝑖 }

|𝑥 𝑗 | ≤ |𝑥1 | + · · · + |𝑥𝑘 | ≤ 𝑘 ‖𝑥V‖∗ ≤ 𝑘𝐶∗‖𝑥V‖G,

𝛽‖𝑥W‖∗ ≥ 𝛽‖𝑥W‖G/𝐶∗

we obtain the inclusion 𝒞𝑖,𝛽,𝜀 ⊂ 𝒞𝛼. For 𝑦 ∈ G, set 𝑓𝑦 (𝑥) := 𝑓𝑖,𝛽,𝜀 (𝑦−1𝑥), where 𝑓𝑖,𝛽,𝜀 is the function
provided by Lemma 2.4, and define

𝑓 (𝑥) := sup
𝑦∈gr𝜙

𝑓𝑦 (𝑥).

We prove that 𝑓𝑖, 𝜀 := 𝑓 satisfies the claimed statement.
Let 𝑥 ∈ gr𝜙; then 𝑓 (𝑥) ≥ 𝑓𝑥 (𝑥) = 0, while for every 𝑦 ∈ gr𝜙 \ {𝑥} one has 𝑓𝑦 (𝑥) < 0 because of

(2.10) and

gr𝜙 ∩ { 𝑓𝑦 ≥ 0} = gr𝜙 ∩ 𝑦{ 𝑓𝑖,𝛽,𝜀 ≥ 0} ⊂ gr𝜙 ∩ 𝑦𝒞𝑖,𝛽,𝜀 ⊂ gr𝜙 ∩ 𝑦𝒞𝛼 = {𝑦}.

This proves that 𝑓 (𝑥) = 0, which is (2.15).
The functions 𝑓𝑦 are uniformly Lipschitz continuous; hence, f shares the same Lipschitz continuity.

Let 𝑥 ∈ G be fixed; then for every 𝜂 > 0 there exists 𝑦 ∈ gr𝜙 such that

𝑓𝑦 (𝑥) ≥ 𝑓 (𝑥) − 𝜂.
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Since 𝑋𝑖 𝑓𝑦 ≥ 1, by Lemma 2.1 we have for every 𝑡 ≥ 0

𝑓 (−−→exp(𝑡𝑋𝑖) (𝑥)) ≥ 𝑓𝑦 (
−−→exp(𝑡𝑋𝑖) (𝑥)) ≥ 𝑓𝑦 (𝑥) + 𝑡 ≥ 𝑓 (𝑥) + 𝑡 − 𝜂.

By the arbitrariness of 𝜂, one obtains

𝑓 (−−→exp(𝑡𝑋𝑖) (𝑥)) ≥ 𝑓 (𝑥) + 𝑡 for every 𝑡 ≥ 0;

that is, 𝑋𝑖 𝑓 ≥ 1 a.e. on G. A similar argument, using 𝑔 := − 𝑓 and the inequality 𝑋𝑖𝑔 ≥ −3, shows that
𝑓 (−−→exp(𝑡𝑋𝑖) (𝑥)) ≤ 𝑓 (𝑥) + 3𝑡 for every 𝑡 ≥ 0; that is, that 𝑋𝑖 𝑓 ≤ 3 a.e. on G. This proves (2.16).

The proof of (2.17) is completely analogous and we omit it. �

The following lemma is most likely well-known; however, we provide a proof for the sake of
completeness.

Lemma 2.6. Let 𝑓 : R𝑘 → R𝑘 be a Lipschitz map such that there exists 𝛿 > 0 for which

〈 𝑓 (𝑥 + 𝑣) − 𝑓 (𝑥), 𝑣〉 ≥ 𝛿 |𝑣 |2 for every 𝑥, 𝑣 ∈ R𝑘 . (2.18)

Then there exists a unique 𝑥 ∈ R𝑘 such that 𝑓 (𝑥) = 0.

Proof. We reason by induction on k and leave the case 𝑘 = 1 as an exercise to the reader. We assume
that the lemma holds for some 𝑘 ≥ 1 and we prove it for 𝑘 + 1.

By the 1-dimensional case of the lemma, for every 𝑥 ∈ R𝑘 there exists a unique 𝑔(𝑥) ∈ R such that
𝑓𝑘+1(𝑥, 𝑔(𝑥)) = 0; we claim that g is Lipschitz continuous. Letting L denote the Lipschitz constant of f,
we indeed have for every 𝑥, 𝑦 ∈ R𝑘

𝑓𝑘+1(𝑦, 𝑔(𝑥) + 𝐿
𝛿 |𝑦 − 𝑥 |)

(2.18)
≥ 𝑓𝑘+1(𝑦, 𝑔(𝑥)) + 𝐿 |𝑦 − 𝑥 |

≥ 𝑓𝑘+1(𝑥, 𝑔(𝑥)) − 𝐿 |𝑦 − 𝑥 | + 𝐿 |𝑦 − 𝑥 | = 0

and

𝑓𝑘+1(𝑦, 𝑔(𝑥) − 𝐿
𝛿 |𝑦 − 𝑥 |)

(2.18)
≤ 𝑓𝑘+1(𝑦, 𝑔(𝑥)) − 𝐿 |𝑦 − 𝑥 |

≤ 𝑓𝑘+1(𝑥, 𝑔(𝑥)) + 𝐿 |𝑦 − 𝑥 | − 𝐿 |𝑦 − 𝑥 | = 0.

The last two displayed formulae imply that

𝑔(𝑥) − 𝐿
𝛿 |𝑦 − 𝑥 | ≤ 𝑔(𝑦) ≤ 𝑔(𝑥) + 𝐿

𝛿 |𝑦 − 𝑥 |,

and the Lipschitz continuity of g follows. In particular, the function ℎ : R𝑘 → R
𝑘 defined by ℎ(𝑧) :=

( 𝑓1, . . . , 𝑓𝑘 ) (𝑧, 𝑔(𝑧)) is Lipschitz continuous; since

〈ℎ(𝑧 + 𝑣) − ℎ(𝑧), 𝑣〉 ≥ 𝛿 |𝑣 |2 for every 𝑧, 𝑣 ∈ R𝑘 ,

by inductive assumption there is a unique 𝑧 ∈ R𝑘 such that ℎ(𝑧) = 0. It follows that 𝑥 := (𝑧, 𝑔(𝑧)) is the
unique zero of f, which concludes the proof. �

Before passing to the the main proof of this section, we recall once more that V is identified with R𝑘
by

R
𝑘 � (𝑣1, . . . , 𝑣𝑘 ) ←→ exp(𝑣1𝑋1 + · · · + 𝑣𝑘𝑋𝑘 ) ∈ V.
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This identification is understood, in particular, when considering scalar products between elements of
R
𝑘 and V as in (1.2).

Remark 2.7. It is easily seen that, for a given Lipschitz map 𝑓 : G→ R𝑘 , statement (1.2) is equivalent
to the uniform ellipticity (a.k.a. coercivity) of the matrix col [𝑋1 𝑓 | . . . |𝑋𝑘 𝑓 ]; that is, to the fact that

col[𝑋1 𝑓 | . . . |𝑋𝑘 𝑓 ] (𝑥) ≥ 𝛿 𝐼 for ℒ𝑑-a.e. 𝑥 ∈ G (2.19)

in the sense of bilinear forms, where I denotes the 𝑘 × 𝑘 identity matrix. Observe that such a matrix is
defined a.e. on G by Pansu’s theorem [81, Théorème 2].

Proof of Theorem 1.4. Step 1. We prove the implication (a) ⇒(b). Consider the map

𝑓 := ( 𝑓1, 𝜀 , . . . , 𝑓𝑘,𝜀) : G→ R𝑘 ,

where 𝜀 ∈ (0, 1) will be determined later and the functions 𝑓𝑖, 𝜀 are provided by Lemma 2.5. The
inclusion (1.1) follows from (2.15). In order to prove (1.2), we first observe that for ℒ𝑑-a.e. 𝑥 ∈ G and
ℒ𝑘 -a.e. 𝑣 ∈ R𝑘 ≡ V one has

〈 𝑓 (𝑥𝑣) − 𝑓 (𝑥), 𝑣〉 =
∫ 1

0

〈
𝑘∑
𝑗=1

𝑣 𝑗𝑋 𝑗 𝑓 (𝑥𝛿𝑡𝑣), 𝑣

〉
𝑑𝑡,

where we used the fact that 𝑥𝛿𝑡𝑣 = −−→exp(𝑡 (𝑣1𝑋1 + · · · + 𝑣𝑘𝑋𝑘 )) (𝑥). Therefore,

〈 𝑓 (𝑥𝑣) − 𝑓 (𝑥), 𝑣〉 =
∫ 1

0

𝑘∑
𝑖, 𝑗=1

𝑣𝑖𝑣 𝑗𝑋 𝑗 𝑓𝑖 (𝑥𝛿𝑡𝑣) 𝑑𝑡

=
∫ 1

0

𝑘∑
𝑖=1

𝑣2
𝑖 𝑋𝑖 𝑓𝑖 (𝑥𝛿𝑡𝑣) 𝑑𝑡 +

∫ 1

0

∑
𝑖, 𝑗=1,...,𝑘

𝑖≠ 𝑗

𝑣𝑖𝑣 𝑗𝑋 𝑗 𝑓𝑖 (𝑥𝛿𝑡𝑣) 𝑑𝑡

≥(1 − 3(𝑘2 − 𝑘)𝜀) |𝑣 |2,

where in the last inequality we used (2.16) and (2.17). If 𝑘 = 1, this inequality is (1.2) with 𝛿 = 1; if
𝑘 ≥ 2, (1.2) follows with 𝛿 = 1/2 provided we choose 𝜀 = (6(𝑘2 − 𝑘))−1. This proves the implication
(a) ⇒(b).

Step 2. We now prove the converse implication (b) ⇒(a); it is enough to prove that 𝑍 𝑓 := { 𝑓 = 0}
is the intrinsic graph of some intrinsic Lipschitz function 𝜙 : W → V. For every 𝑤 ∈ W, define
𝑓𝑤 : V ≡ R𝑘 → R𝑘 as 𝑓𝑤 (𝑣) := 𝑓 (𝑤𝑣). By Lemma 2.6 there is a unique �̄� = �̄�(𝑤) such that 𝑓𝑤 (�̄�) = 0;
we define 𝜙 : W → V by 𝜙(𝑤) := �̄�. For 𝜆 ∈ (0, 1), which will be fixed later, we introduce the
homogeneous cone

𝐷𝜆 :=
⋃
𝑣 ∈V

𝐵(𝑣, 𝜆‖𝑣‖G) =
⋃
𝑣 ∈V

𝑣𝐵(0, 𝜆‖𝑣‖G).

By a simple topological argument (see, e.g., [39, Remark A.2]) there exists 𝛼 = 𝛼(𝜆) > 0 such that
𝒞𝛼 ⊂ 𝐷𝜆; in order to prove that 𝜙 is intrinsic Lipschitz, it is sufficient to show that

𝑍 𝑓 ∩ 𝑥𝐷𝜆 = {𝑥} ∀ 𝑥 ∈ 𝑍 𝑓 . (2.20)

To this aim, for every 𝑥 ∈ 𝑍 𝑓 and every 𝑦 ∈ 𝑥𝐷𝜆 \ {𝑥}, one has by definition

𝑦 = 𝑥𝑣𝑧 for some 𝑣 ∈ V \ {0} and 𝑧 ∈ G such that 𝑑 (0, 𝑧) ≤ 𝜆𝑑 (0, 𝑣).
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Denoting by L the Lipschitz constant of f we obtain

〈 𝑓 (𝑦), 𝑣〉 =〈 𝑓 (𝑥𝑣𝑧) − 𝑓 (𝑥𝑣), 𝑣〉 + 〈 𝑓 (𝑥𝑣) − 𝑓 (𝑥), 𝑣〉

≥ − 𝐿 𝑑 (0, 𝑧) |𝑣 | + 𝛿 |𝑣 |2

≥ − 𝐿𝜆 𝑑 (0, 𝑣) |𝑣 | + 𝛿 |𝑣 |2

≥ − 𝐿𝜆 𝐶∗‖𝑣‖∗ |𝑣 | + 𝛿 |𝑣 |2

≥(𝛿 − 𝐿𝜆𝐶∗𝑐𝑘 ) |𝑣 |2

for some positive constant 𝑐𝑘 depending on k only. It follows that, provided 𝜆 is chosen small enough,
one has 〈 𝑓 (𝑦), 𝑣〉 > 0; hence, 𝑓 (𝑦) ≠ 0 and 𝑦 ∉ 𝑍 𝑓 . This proves (2.20) and concludes the proof of the
theorem. �

Remark 2.8. In Step 2 of the previous proof we showed that, if f is as in Theorem 1.4 (b), then the level
set { 𝑓 = 0} is an entire intrinsic Lipschitz graph; that is, it is the intrinsic graph of a V-valued map 𝜙
defined on the wholeW.

Remark 2.9. It is worth pointing out that, in the implication (b) ⇒(a), the aperture 𝛼 depends, apart
from geometric quantities, only on the Lipschitz and coercivity constants 𝐿, 𝛿 of f. More precisely, if f
is as in Theorem 1.4 (b), the Lipschitz constant L of f is not greater than some �̄� > 0 and the coercivity
constant 𝛿 is not smaller than some 𝛿 > 0, then the aperture 𝛼 (and hence the intrinsic Lipschitz constant
of 𝜙) can be controlled in terms of �̄� and 𝛿 only.

A similar remark applies at the level of the implication (a) ⇒(b); in fact, if 𝜙 is as in Theorem 1.4
(a) and the intrinsic Lipschitz constant of 𝜙 is not greater than some positive Λ, then statement (b) in
Theorem 1.4 holds with 𝛿 = 1/2 and (by the second part of Lemma 2.5) a function f with Lipschitz
constant bounded in terms of Λ only.

2.4. Extension and smooth approximation of co-horizontal intrinsic Lipschitz maps

Given Remark 2.8, Theorem 1.5 is an immediate consequence of Theorem 1.4.

Proof of Theorem 1.5. Let 𝑆 := gr𝜙 and consider 𝑓 : G→ R as given by Theorem 1.4 (b); by Remark
2.8, the level set 𝑍 𝑓 := { 𝑓 = 0} is the graph of an intrinsic Lipschitz function 𝜙 : W → V defined on
the wholeW. Since gr𝜙 = 𝑆 ⊂ 𝑍 𝑓 = gr�̃� , 𝜙 is an extension of 𝜙. The bound on the intrinsic Lipschitz
constant of 𝜙 follows from Remark 2.9. �

We now state a technical improvement of Theorem 1.4 that will provide the key tool in the proof of
the approximation result stated in Theorem 1.6. In case 𝑘 = 1, Proposition 2.10 should be compared
with [93, Lemma 4.3].

Proposition 2.10. Let 𝐴 ⊂ W be nonempty and 𝜙 : 𝐴 → V be intrinsic Lipschitz. Then there exist
𝛿 > 0 and a Lipschitz map 𝑓 : G→ R𝑘 such that (1.1) (with 𝑆 := gr𝜙) and (1.2) hold together with

𝑓 ∈ 𝐶∞(G \ { 𝑓 = 0}). (2.21)

Moreover, if the intrinsic Lipschitz constant of 𝜙 is not greater than some positive Λ, then the statement
holds with 𝛿 = 1/4 and a function 𝑓 : G→ R with Lipschitz constant bounded in terms of Λ only.

Proof. By Theorem 1.4 and Remark 2.7 there exist 𝛿 > 0 and a Lipschitz function 𝑔 : G → R
𝑘 such

that S is contained in the level set 𝑍𝑔 := {𝑔 = 0} and

∇̂G𝑔(𝑥) := col[𝑋1𝑔 | . . . |𝑋𝑘𝑔] (𝑥) ≥ 2𝛿𝐼 for ℒ𝑑-a.e. 𝑥 ∈ G. (2.22)
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By Remark 2.9, one can also assume 𝛿 = 1/4 and that the Lipschitz constant of g is bounded in terms
of Λ only. For 𝑗 ∈ N, choose

(i) bounded open sets (𝑈 𝑗 ) 𝑗∈N such that 𝑈 𝑗 ⊂ G \ 𝑍𝑔 and G \ 𝑍𝑔 = ∪ 𝑗𝑈 𝑗 ;
(ii) positive numbers 𝜀 𝑗 such that 𝜀 𝑗 < 𝑑 (𝑈 𝑗 , 𝑍𝑔);

(iii) nonnegative functions 𝑢 𝑗 ∈ 𝐶∞
𝑐 (𝑈 𝑗 ) forming a partition of the unity on G \ 𝑍𝑔; that is,

∑
𝑗 𝑢 𝑗 =

1 on G \ 𝑍𝑔.

We can also assume that
∑

𝑗 𝜒𝑈 𝑗 ≤ 𝑀 for some 𝑀 > 0, where 𝜒𝑈 𝑗 denotes the characteristic function
of 𝑈 𝑗 . Notice, in particular, that the sum in (iii) is locally finite.

We are going to use the group convolution ★ (see, e.g., [43, Chapter 1]). Here we only recall that,
given 𝐺 : G→ R𝑘 and 𝐻 ∈ 𝐶∞

𝑐 (G), the group convolution

(𝐺 ★ 𝐻) (𝑥) :=
∫
G

𝐺 (𝑦−1𝑥)𝐻 (𝑦)𝑑ℒ𝑑 (𝑦) =
∫
G

𝐺 (𝑦)𝐻 (𝑥𝑦−1)𝑑ℒ𝑑 (𝑦)

is a smooth function satisfying

𝑋 (𝐺 ★ 𝐻) = (𝑋𝐺) ★ 𝐻 for every 𝑋 ∈ 𝔤.

We fix a positive kernel 𝐾 ∈ 𝐶∞
𝑐 (𝐵(0, 1)) such that

∫
G

𝐾 𝑑ℒ𝑑 = 1 and, for 𝜀 > 0, we set 𝐾𝜀 :=
𝜀−𝑄𝐾 ◦ 𝛿1/𝜀 . Possibly reducing 𝜀 𝑗 > 0, as specified later in (2.23), (2.25) and (2.26), define

𝑓 :=

{∑
𝑗 𝑢 𝑗 (𝑔 ★ 𝐾𝜀 𝑗 ) on G \ 𝑍𝑔

0 on 𝑍𝑔 .

Notice that the sum above is locally finite. We also observe that (1.1) holds because 𝑆 ⊂ 𝑍𝑔 ⊂ { 𝑓 = 0};
actually, the equality 𝑍𝑔 = { 𝑓 = 0} will come as a byproduct of what follows.

We first check that f is continuous on G; it is clearly smooth on G \ 𝑍𝑔 and hence continuity has to
be checked only at points of 𝑍𝑔. Up to reducing 𝜀 𝑗 , we can assume that

| (𝑔 ★ 𝐾𝜀 𝑗 ) − 𝑔 | ≤ 𝑑 (𝑈 𝑗 , 𝑍𝑔) on 𝑈 𝑗 , (2.23)

so that

| 𝑓 (𝑥) − 𝑔(𝑥) | ≤
∑
𝑗

𝑢 𝑗 (𝑥) |(𝑔 ★ 𝐾𝜀 𝑗 ) (𝑥) − 𝑔(𝑥) | ≤ 𝑑 (𝑥, 𝑍𝑔) ∀ 𝑥 ∈ G \ 𝑍𝑔 .

This implies that f is continuous also on 𝑍𝑔 = {𝑔 = 0} because, for every 𝑥 ∈ 𝑍𝑔, one has

lim
𝑥→�̄�

| 𝑓 (𝑥) − 𝑓 (𝑥) | = lim
𝑥→�̄�

| 𝑓 (𝑥) | ≤ lim
𝑥→�̄�

|𝑔(𝑥) | + 𝑑 (𝑥, 𝑥) = 0.

We prove that f is Lipschitz continuous on G. Since 𝑍𝑔 is an intrinsic Lipschitz graph, by (2.4) we
have ℒ𝑑 (𝑍𝑔) = 0; by (2.2), it is then enough to prove that |∇G 𝑓 | is bounded on G \ 𝑍𝑔. Using the
properties of convolutions and the fact that

∑
𝑗 ∇G𝑢 𝑗 = 0, one gets

∇G 𝑓 =
∑
𝑗

(𝑔 ★ 𝐾𝜀 𝑗 ) ⊗ (∇G𝑢 𝑗 ) +
∑
𝑗

𝑢 𝑗 ((∇G𝑔) ★ 𝐾𝜀 𝑗 )

=
∑
𝑗

(𝑔 ★ 𝐾𝜀 𝑗 − 𝑔) ⊗ (∇G𝑢 𝑗 ) +
∑
𝑗

𝑢 𝑗 ((∇G𝑔) ★ 𝐾𝜀 𝑗 ). (2.24)
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The second sum in (2.24) is bounded by ‖∇G𝑔‖𝐿∞ (G) and then by a multiple of the Lipschitz constant
L of g; possibly reducing 𝜀 𝑗 , we can assume that

|𝑔 ★ 𝐾𝜀 𝑗 − 𝑔 | ≤ (sup |∇G𝑢 𝑗 |)
−1 on 𝑈 𝑗 (2.25)

so that the first sum in (2.24) is bounded by M. This proves that f is Lipschitz continuous on G with
Lipschitz constant bounded in terms of the Lipschitz constant of g (and then in terms of Λ only).

Eventually, we have to check that f satisfies (1.2); we prove this by checking the equivalent inequality
(2.19). Writing ∇̂G 𝑓 := col[𝑋1 𝑓 | . . . |𝑋𝑘 𝑓 ] and reasoning as in (2.24), we obtain

∇̂G 𝑓 =
∑
𝑗

(𝑔 ★ 𝐾𝜀 𝑗 − 𝑔) ⊗ (∇̂G𝑢 𝑗 ) +
∑
𝑗

𝑢 𝑗 ((∇̂G𝑔) ★ 𝐾𝜀 𝑗 ) =: 𝐴 + 𝐵.

By (2.22) we have 𝐵 ≥ 2𝛿𝐼 a.e. on G. Given 𝜂 > 0, possibly reducing 𝜀 𝑗 we can assume that

|𝑔 ★ 𝐾𝜀 𝑗 − 𝑔 | ≤ 𝜂(sup |∇̂G𝑢 𝑗 |)
−1 on 𝑈 𝑗 (2.26)

so that ‖𝐴‖𝐿∞ (G) ≤ 𝑀𝜂. Inequality (2.19) immediately follows provided one chooses 𝜂 = 𝜂(𝛿) small
enough. The proof is complete. �

We have all of the tools needed for the proof of the approximation result stated in Theorem 1.6.

Proof of Theorem 1.6. By Theorem 1.5 we can assume without loss of generality that 𝐴 = W. Let
𝑓 : G→ R𝑘 be as in Proposition 2.10; for 𝑖 ∈ N, we consider

𝑍𝑖 := { 𝑓 = (1/𝑖, 0, . . . , 0)}.

By Theorem 1.4 (applied to the function 𝑓 − (1/𝑖, 0, . . . , 0)) and Remark 2.8, for every 𝑖 ∈ N the
level set 𝑍𝑖 is the graph of an intrinsic Lipschitz function 𝜙𝑖 : W → V defined on the whole W. By
Remark 2.9, the intrinsic Lipschitz constant of 𝜙𝑖 is bounded (uniformly in i) in terms of the intrinsic
Lipschitz constant of 𝜙. Recalling once more the identification V ≡ R𝑘 , which gives the equality
𝜙𝑖 (𝑤) = 𝜙(𝑤) (𝜙𝑖 (𝑤) − 𝜙(𝑤)), we have for every 𝑤 ∈ W

𝛿 |𝜙𝑖 (𝑤) − 𝜙(𝑤) |2 ≤ 〈 𝑓 (𝑤𝜙𝑖 (𝑤)) − 𝑓 (𝑤𝜙(𝑤)), 𝜙𝑖 (𝑤) − 𝜙(𝑤)〉

≤ | 𝑓 (𝑤𝜙𝑖 (𝑤)) − 𝑓 (𝑤𝜙(𝑤)) | |𝜙𝑖 (𝑤) − 𝜙(𝑤) |

=
|𝜙𝑖 (𝑤) − 𝜙(𝑤) |

𝑖
,

which proves that 𝜙𝑖 → 𝜙 uniformly as 𝑖 → ∞.
We have only to show that each 𝜙𝑖 is 𝐶∞ smooth. The quickest way is probably to reason in exponential

coordinates of the second type; that is, to identify G ≡ R𝑑 by

R
𝑑 � 𝑥 = (𝑥1, . . . , 𝑥𝑑) ←→ exp(𝑥𝑘+1𝑋𝑘+1 + · · · + 𝑥𝑑𝑋𝑑) exp(𝑥1𝑋1 + · · · + 𝑥𝑘𝑋𝑘 ) ∈ G.

Since V is abelian, we have for every 𝑗 = 1, . . . , 𝑘 ,

exp(𝑥𝑘+1𝑋𝑘+1 + · · · + 𝑥𝑑𝑋𝑑) exp(𝑥1𝑋1 + · · · + 𝑥𝑘𝑋𝑘 )

= exp(𝑥𝑘+1𝑋𝑘+1 + · · · + 𝑥𝑑𝑋𝑑) exp(𝑥1𝑋1 + · · · +�𝑥 𝑗𝑋 𝑗 + · · · + 𝑥𝑘𝑋𝑘 ) exp(𝑥 𝑗𝑋 𝑗 )

= −−→exp(𝑥 𝑗𝑋 𝑗 )
(
−−→exp(𝑥1𝑋1 + · · · +�𝑥 𝑗𝑋 𝑗 + · · · + 𝑥𝑘𝑋𝑘 )

(−−→exp(𝑥𝑘+1𝑋𝑘+1 + · · · + 𝑥𝑑𝑋𝑑) (0)
) )

,
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which proves that in these coordinates 𝑋 𝑗 = 𝜕𝑥 𝑗 for all 𝑗 = 1, . . . , 𝑘 . Since 𝑓 ∈ 𝐶∞(R𝑑 \ { 𝑓 = 0}),
the classical implicit function theorem ensures that the level set 𝑍𝑖 = { 𝑓 = (1/𝑖, 0, . . . , 0)} is the graph
of a 𝐶∞ smooth function 𝜓𝑖 = 𝜓𝑖 (𝑥𝑘+1, . . . , 𝑥𝑑) : R𝑑−𝑘 → R

𝑘 . Writing 𝑥 = (𝑥 ′, 𝑥 ′′) ∈ R𝑘 × R𝑑−𝑘 , we
observe that

𝑥 = (𝑥1, . . . , 𝑥𝑑) ∈ 𝑍𝑖

⇐⇒𝑥 ′ = (𝑥1, . . . , 𝑥𝑘 ) = 𝜓𝑖 (𝑥
′′)

⇐⇒𝑥 = −−→exp
(
(𝜓𝑖 (𝑥

′′))1𝑋1 + · · · + (𝜓𝑖 (𝑥
′′))𝑘𝑋𝑘 ) (

−−→exp(𝑥𝑘+1𝑋𝑘+1 + · · · + 𝑥𝑑𝑋𝑑) (0)
)

⇐⇒𝑥 = exp(𝑥𝑘+1𝑋𝑘+1 + · · · + 𝑥𝑑𝑋𝑑) exp((𝜓𝑖 (𝑥
′′))1𝑋1 + · · · + (𝜓𝑖 (𝑥

′′))𝑘𝑋𝑘 ),

which in turn proves that 𝜙𝑖 and 𝜓𝑖 coincide as maps from W to V. This proves that 𝜙𝑖 is smooth, as
wished. �

3. The Heisenberg group

From now on we will always work in Heisenberg groups, which provide the most notable examples
of Carnot groups; we refer to [26] for a thorough introduction. For every 𝑛 ≥ 1, the nth Heisenberg
group H𝑛 is the connected, simply connected and nilpotent Lie group H𝑛 associated with the (2𝑛 + 1)-
dimensional stratified Lie algebra 𝔥 generated by elements 𝑋1, . . . , 𝑋𝑛, 𝑌1, . . . , 𝑌𝑛, 𝑇 whose Lie brackets
vanish except for

[𝑋 𝑗 , 𝑌 𝑗 ] = 𝑇 for every 𝑗 = 1, . . . , 𝑛.

The algebra stratification is given by 𝔥 = 𝔥1 ⊕ 𝔥2, where

𝔥1 := span{𝑋1, . . . , 𝑋𝑛, 𝑌1, . . . , 𝑌𝑛}, 𝔥2 := span{𝑇};

the second layer 𝔥2 is the center of the algebra.
We identify H𝑛 with R2𝑛+1 = R𝑛𝑥 × R𝑛𝑦 × R𝑡 by means of exponential coordinates

H
𝑛 � exp(𝑥1𝑋1 + · · · + 𝑥𝑛𝑋𝑛 + 𝑦1𝑌1 + · · · + 𝑦𝑛𝑌𝑛 + 𝑡𝑇) ←→ (𝑥, 𝑦, 𝑡) ∈ R2𝑛+1.

In these coordinates, the group law reads as

(𝑥, 𝑦, 𝑡) (𝑥 ′, 𝑦′, 𝑡 ′) = (𝑥 + 𝑥 ′, 𝑦 + 𝑦′, 𝑡 + 𝑡 ′ + 1
2 〈𝑥, 𝑦′〉 − 1

2 〈𝑥 ′, 𝑦〉),

and left-invariant vector fields have the form

𝑋 𝑗 = 𝜕𝑥 𝑗 −
𝑦 𝑗

2
𝜕𝑡 , 𝑌 𝑗 = 𝜕𝑦 𝑗 +

𝑥 𝑗

2
𝜕𝑡 , 𝑇 = 𝜕𝑡 .

We also observe that, in exponential coordinates, we have 𝑝−1 = −𝑝 for every 𝑝 ∈ H𝑛. As in Section 2,
a one-parameter family (𝛿𝜆)𝜆>0 of group automorphisms is provided by the dilations 𝛿𝜆 (𝑥, 𝑦, 𝑡) :=
(𝜆𝑥, 𝜆𝑦, 𝜆2𝑡).

We fix a homogeneous distance d onH𝑛 and we denote by 𝐵(𝑝, 𝑟), 𝑝 ∈ H𝑛, 𝑟 > 0, the associated open
balls; for 𝑝 ∈ H𝑛 we also write ‖𝑝‖H := 𝑑 (0, 𝑝). It will be convenient to assume that d is rotationally
invariant; that is, that

‖(𝑥, 𝑦, 𝑡)‖H = ‖(𝑥 ′, 𝑦′, 𝑡)‖H whenever | (𝑥, 𝑦) | = | (𝑥 ′, 𝑦′) |. (3.1)
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Relevant examples of rotationally invariant homogeneous distances are provided by the Carnot–
Carathéodory distance 𝑑𝑐𝑐 ,

𝑑𝑐𝑐 (𝑝, 𝑞) := inf
⎧⎪⎪⎨⎪⎪⎩‖ℎ‖𝐿1 ( [0,1],R2𝑛) :

the curve 𝛾ℎ : [0, 1] → H𝑛 defined by
𝛾ℎ (0) = 𝑝,  𝛾ℎ =

∑𝑛
𝑗=1 (ℎ 𝑗𝑋 𝑗 + ℎ 𝑗+𝑛𝑌 𝑗 ) (𝛾ℎ)

has final point 𝛾ℎ (1) = 𝑞

⎫⎪⎪⎬⎪⎪⎭ ,
by the left-invariant distance 𝑑∞ (see [48, Proposition 2.1]) such that

𝑑∞(0, (𝑥, 𝑦, 𝑡)) := max{|(𝑥, 𝑦) |, 2|𝑡 |1/2} (3.2)

and by the Korányi (or Cygan–Korányi; see [34]) distance 𝑑𝐾 defined by

𝑑𝐾 (0, (𝑥, 𝑦, 𝑡)) :=
(
(|𝑥 |2 + |𝑦 |2)2 + 16𝑡2)1/4

. (3.3)

The Lebesgue measure ℒ2𝑛+1 is a Haar measure onH𝑛 ≡ R2𝑛+1 and 𝑄 := 2𝑛+2 is the homogeneous
dimension of H𝑛; in particular,

ℒ2𝑛+1 (𝐵(𝑝, 𝑟)) = 𝑟𝑄ℒ2𝑛+1 (𝐵(0, 1)) for every 𝑝 ∈ H𝑛 and 𝑟 > 0.

Actually, the Hausdorff and spherical Hausdorff measuresℋ𝑄,𝒮𝑄 are also Haar measure inH𝑛; hence,
ℒ2𝑛+1,ℋ𝑄 and 𝒮𝑄 coincide up to multiplicative constants. Recall in particular that the spherical
Hausdorff measure 𝒮𝑘 of dimension 𝑘 ≥ 0 is defined by

𝒮𝑘 (𝐸) := lim
𝛿→0+

inf

{
∞∑
𝑖=0

(2𝑟𝑖)
𝑘 : 𝐸 ⊂

∞⋃
𝑖=0

𝐵(𝑝𝑖 , 𝑟𝑖) for some 𝑝𝑖 ∈ H𝑛, 𝑟𝑖 ∈ (0, 𝛿)

}
.

One of the aims of this section is to introduce Rumin’s complex of differential forms inH𝑛, for which
we follow the presentations in [51, 86].

3.1. Multilinear algebra

The Heisenberg group H𝑛 is a contact manifold. The contact form 𝜃 defined by 𝜃 |𝔥1 = 0 and 𝜃 (𝑇) = 1
satisfies 𝜃 ∧ (𝑑𝜃)𝑛 ≠ 0 and, actually, the 2𝑛 + 1-form 𝜃 ∧ (𝑑𝜃)𝑛 is a left-invariant volume form. In
coordinates,

𝜃 = 𝑑𝑡 +
1
2

𝑛∑
𝑗=1

(𝑦 𝑗𝑑𝑥 𝑗 − 𝑥 𝑗𝑑𝑦 𝑗 ),

while

𝑑𝜃 = −
𝑛∑
𝑗=1

𝑑𝑥 𝑗 ∧ 𝑑𝑦 𝑗

is the standard symplectic 2-form in R2𝑛, up to a sign. Notice that the basis 𝑑𝑥1, . . . , 𝑑𝑦𝑛, 𝜃 is the dual
basis to 𝑋1, . . . , 𝑌𝑛, 𝑇 ; observe also that here we are identifying the dual of 𝔥 with left-invariant 1-forms
on H𝑛, in the same way as the algebra 𝔥 can be identified with left-invariant vector fields.
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It will sometimes be convenient to denote the family 𝑋1, . . . , 𝑌𝑛, 𝑇 by 𝑊1, . . . , 𝑊2𝑛+1, where

𝑊 𝑗 := 𝑋 𝑗 if 1 ≤ 𝑗 ≤ 𝑛

𝑊 𝑗 := 𝑌 𝑗−𝑛 if 𝑛 + 1 ≤ 𝑗 ≤ 2𝑛

𝑊2𝑛+1 := 𝑇.

(3.4)

Analogously, we use 𝜃1, . . . , 𝜃2𝑛+1 to denote, respectively, 𝑑𝑥1, . . . , 𝑑𝑦𝑛, 𝜃. Given a subset 𝐼 ⊂
{1, . . . , 2𝑛 + 1}, we write 𝐼 = {𝑖1, . . . , 𝑖𝑘 } for 𝑖1 < 𝑖2 < · · · < 𝑖𝑘 and we denote by 𝑊𝐼 , 𝜃𝐼 the (formal)
exterior products

𝑊𝐼 := 𝑊𝑖1 ∧ · · · ∧ 𝑊𝑖𝑘 , 𝜃𝐼 := 𝜃𝑖1 ∧ · · · ∧ 𝜃𝑖𝑘 . (3.5)

We also denote by |𝐼 | the cardinality of I. We can now introduce the exterior algebras ∧∗𝔥 and ∧∗𝔥 of
(multi)vectors and (multi-)covectors as

∧∗𝔥 :=
2𝑛+1⊕
𝑘=0

∧𝑘𝔥, ∧∗𝔥 :=
2𝑛+1⊕
𝑘=0

∧𝑘𝔥

where ∧0𝔥 = ∧0𝔥 = R and

∧𝑘 𝔥 := span{𝑊𝐼 : 𝐼 ⊂ {1, . . . , 2𝑛 + 1} with |𝐼 | = 𝑘}

∧𝑘 𝔥 := span{𝜃𝐼 : 𝐼 ⊂ {1, . . . , 2𝑛 + 1} with |𝐼 | = 𝑘}.

The elements of ∧𝑘𝔥 and ∧𝑘𝔥 are called, respectively, k-vectors and k-covectors. The inner product on
𝔥 making 𝑊1, . . . , 𝑊2𝑛+1 an orthonormal frame can be naturally extended to ∧𝑘𝔥 in such a way that the
elements 𝑊𝐼 form an orthonormal frame. In this way, one can define an explicit isomorphism

∧𝑘𝔥 � 𝑣 ↦−→ 𝑣∗ ∈ ∧𝑘𝔥

by requiring 〈𝑤 | 𝑣∗〉 := 〈𝑤, 𝑣〉 for every 𝑤 ∈ ∧𝑘𝔥, where 〈 · | · 〉 denotes duality pairing between
vectors and covectors.

We analogously introduce the exterior algebras of horizontal vectors and covectors

∧∗𝔥1 :=
2𝑛⊕
𝑘=0

∧𝑘𝔥1, ∧∗𝔥1 :=
2𝑛⊕
𝑘=0

∧𝑘𝔥1

where

∧𝑘 𝔥1 := span{𝑊𝐼 : 𝐼 ⊂ {1, . . . , 2𝑛} with |𝐼 | = 𝑘}

∧𝑘 𝔥1 := span{𝜃𝐼 : 𝐼 ⊂ {1, . . . , 2𝑛} with |𝐼 | = 𝑘}.

Remark 3.1. Given 𝜏 ∈ ∧𝑘𝔥 and 𝜆 ∈ ∧𝑘𝔥, 1 ≤ 𝑘 ≤ 2𝑛, we denote by 𝜏𝔥1 and 𝜆𝔥1 their horizontal
component; that is, the unique 𝜏𝔥1 ∈ ∧𝑘𝔥1 and 𝜆𝔥1 ∈ ∧𝑘𝔥1 such that 𝜏 = 𝜏𝔥1 + 𝜎 ∧𝑇 and 𝜆 = 𝜆𝔥1 + 𝜇 ∧ 𝜃
for some (unique) 𝜎 ∈ ∧𝑘−1𝔥1, 𝜇 ∈ ∧𝑘−1𝔥1.

Of special importance for us are vertical planes, which we now introduce. As is customary, given a
nonzero simple k-vector 𝜏 = 𝜏1 ∧ · · · ∧ 𝜏𝑘 , we denote by span 𝜏 the linear space generated by 𝜏1, . . . , 𝜏𝑘 ;
equivalently, span 𝜏 = {𝑣 : 𝑣 ∧ 𝜏 = 0}.
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Definition 3.2. A set 𝒫 ⊂ H𝑛 is a vertical plane of dimension k if there exists a nonzero 𝜏 ∈ ∧𝑘−1𝔥1
such that

𝒫 = exp(span(𝜏 ∧ 𝑇)).

In exponential coordinates, a vertical plane 𝒫 is a k-dimensional linear subspace of H𝑛 ≡ R2𝑛+1 =
R

2𝑛 × R of the form 𝑉 × R for some (𝑘 − 1)-dimensional subspace 𝑉 ⊂ R2𝑛. A vertical plane is always
a normal subgroup of H𝑛.

3.2. Differential forms and Rumin’s complex

The spaces 𝔥, 𝔥1, ∧𝑘𝔥, ∧𝑘𝔥, ∧𝑘𝔥1, ∧𝑘𝔥1, as well as the spaces I𝑘 and J2𝑛+1−𝑘 introduced in (3.6),
canonically induce several bundles on H𝑛, which we will denote by using the same symbol. The same
convention applies to dual and quotient spaces of such spaces. As is customary, we denote by Ω𝑘 the
space of smooth differential k-forms on H𝑛; that is, the space of smooth sections of ∧𝑘𝔥 (seen as a
bundle on H𝑛).

We now recall some of the spaces of differential forms introduced by M. Rumin in [85, 86]. As
before, we identify the left-invariant 2-form 𝑑𝜃 in H𝑛 with a 2-covector in ∧2𝔥 and we define

I𝑘 :={𝜆 ∧ 𝜃 + 𝜇 ∧ 𝑑𝜃 : 𝜆 ∈ ∧𝑘−1𝔥, 𝜇 ∈ ∧𝑘−2𝔥},

J𝑘 :={𝜆 ∈ ∧𝑘𝔥 : 𝜆 ∧ 𝜃 = 𝜆 ∧ 𝑑𝜃 = 0},
(3.6)

where we adopted the convention that ∧𝑖𝔥 = {0} if 𝑖 < 0. Observe that I0 = {0}. The space I∗ :=⊕2𝑛+1
𝑘=0 I𝑘 is the graded ideal generated by 𝜃, whileJ∗ :=

⊕2𝑛+1
𝑘=0 J𝑘 is the annihilator of I∗. As observed

in [86] (see also [51, page 166]), for 1 ≤ 𝑘 ≤ 𝑛 we have J𝑘 = {0} and I2𝑛+1−𝑘 = ∧2𝑛+1−𝑘𝔥; these
equalities are, in essence, consequences of the fact that the Lefschetz operator6 𝐿 : ∧ℎ𝔥1 → ∧ℎ+2𝔥1
defined by 𝐿(𝜆) := 𝜆 ∧ 𝑑𝜃 is injective for ℎ ≤ 𝑛 − 1 and surjective for ℎ ≥ 𝑛 − 1; see, for instance, the
beautiful proof in [21, Proposition 1.1].

Remark 3.3. Recalling the notation introduced in Remark 3.1, it can be easily proved that 𝜆𝔥1 = 0 for
every 𝜆 ∈ J𝑘 . In particular, there exists a unique 𝜆𝐻 ∈ ∧𝑘−1𝔥1 such that 𝜆 = 𝜆𝐻 ∧ 𝜃; hence,

〈𝜏 | 𝜆〉 = 0 for every 𝜆 ∈ J𝑘 , 𝜏 ∈ ∧𝑘𝔥1.

We also notice that 𝜆𝐻 ∧ 𝑑𝜃 = 0.

Remark 3.4. For 𝑘 ≥ 𝑛 + 1 it is convenient to introduce the (formal) dual space J𝑘 := (J𝑘 )∗. Observe
that every multivector 𝜏 ∈ ∧𝑘𝔥 canonically induces an element [𝜏]J ∈ J𝑘 defined by

〈[𝜏]J | 𝜆〉 := 〈𝜏 | 𝜆〉 for every 𝜆 ∈ J𝑘 .

Equivalently, [𝜏]J is the equivalence class of 𝜏 in the quotient of ∧𝑘𝔥 by its subspace (J𝑘 )⊥.

Let us introduce the spaces Ω𝑘
H

of Heisenberg differential k-forms

Ω𝑘
H

:= 𝐶∞ (
H
𝑛, ∧𝑘𝔥

I𝑘

)
=
{
smooth sections of ∧𝑘𝔥

I𝑘

}
, if 0 ≤ 𝑘 ≤ 𝑛

Ω𝑘
H

:= 𝐶∞(H𝑛,J𝑘 ) =
{
smooth sections of J𝑘

}
, if 𝑛 + 1 ≤ 𝑘 ≤ 2𝑛 + 1.

Clearly, Ω0
H
= 𝐶∞(H𝑛). Denoting exterior differentiation by7 d, we observe that, if 𝑘 ≥ 𝑛 + 1, then

𝑑 (Ω𝑘
H
) ⊂ Ω𝑘+1

H
. If 𝑘 ≤ 𝑛 − 1, we have 𝑑 (I𝑘 ) ⊂ I𝑘+1; hence, d passes to the quotient. All in all, for

6Our operator L actually differs by a sign from the Lefschetz one (wedge product by the standard symplectic form).
7We also use d to denote the distance on H𝑛; of course, no confusion will ever arise.
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𝑘 ∈ {0, . . . , 2𝑛} \ {𝑛} a well-defined operator 𝑑 : Ω𝑘
H

→ Ω𝑘+1
H

is induced by exterior differentiation.
The following fundamental result was proved by M. Rumin [86]; see also [51, Theorem 5.9].

Theorem 3.5. There exists a second-order differential operator 𝐷 : Ω𝑛
H

→ Ω𝑛+1
H

such that the sequence

0 → R→ Ω0
H

𝑑
→ Ω1

H

𝑑
→ . . .

𝑑
→ Ω𝑛

H

𝐷
→ Ω𝑛+1

H

𝑑
→ . . .

𝑑
→ Ω2𝑛+1

H
→ 0

is exact.

The construction of the operator D is crucial for our purposes, and we recall it here. First, as already
mentioned, the Lefschetz operator 𝐿 : ∧𝑛−1

R
2𝑛 → ∧𝑛+1

R
2𝑛 defined by 𝐿(𝜆) = 𝜆 ∧ 𝑑𝜃 is bijective.

Second, observe that

∧𝑛𝔥
I𝑛 =

∧𝑛𝔥1

{𝜇 ∧ 𝑑𝜃 : 𝜇 ∈ ∧𝑛−2𝔥1}
. (3.7)

We are going to define an operator D on smooth sections of ∧𝑛𝔥1 and prove that it passes to the quotient
modulo smooth sections of {𝜇 ∧ 𝑑𝜃 : 𝜇 ∈ ∧𝑛−2𝔥1}. Given a smooth section 𝛼 of ∧𝑛𝔥1, we set

𝐷𝛼 := 𝑑
(
𝛼 − 𝜃 ∧ 𝐿−1 ((𝑑𝛼)𝔥1)

)
,

= 𝑑
(
𝛼 + (−1)𝑛𝐿−1 ((𝑑𝛼)𝔥1) ∧ 𝜃

)
,

where we used the notation in Remark 3.1. We have to prove that 𝐷 (𝛽 ∧ 𝑑𝜃) = 0 for every smooth
section 𝛽 of ∧𝑛−2𝔥1. Inasmuch as

𝐿−1 ((𝑑 (𝛽 ∧ 𝑑𝜃))𝔥1) = 𝐿−1 ((𝑑𝛽 ∧ 𝑑𝜃)𝔥1) = 𝐿−1 ((𝑑𝛽)𝔥1 ∧ 𝑑𝜃) = (𝑑𝛽)𝔥1

𝑑 (𝛽 ∧ 𝑑𝜃) = (−1)𝑛−1𝑑 (𝑑𝛽 ∧ 𝜃),

we deduce that

𝐷 (𝛽 ∧ 𝑑𝜃) = 𝑑 (𝛽 ∧ 𝑑𝜃 + (−1)𝑛 (𝑑𝛽)𝔥1 ∧ 𝜃)

= (−1)𝑛−1𝑑 (𝑑𝛽 ∧ 𝜃 − (𝑑𝛽)𝔥1 ∧ 𝜃)

= (−1)𝑛−1𝑑 ((𝑑𝛽)𝔥1 ∧ 𝜃 − (𝑑𝛽)𝔥1 ∧ 𝜃) = 0,

as wished.
This proves that D is well-defined as a linear operator Ω𝑛

H
→ Ω𝑛+1. We have to check that 𝐷 (Ω𝑛

H
) ⊂

Ω𝑛+1
H

; that is, that 𝐷𝛼∧𝜃 = 𝐷𝛼∧𝑑𝜃 = 0 for every 𝛼 ∈ Ω𝑛
H

. To this aim, let us write (𝑑𝛼)𝔳 := 𝑑𝛼−(𝑑𝛼)𝔥1

to denote the ‘vertical’ part of 𝑑𝛼, which can be written as (𝑑𝛼)𝔳 = 𝜃 ∧ 𝛽𝛼 for a suitable smooth section
𝛽𝛼 of ∧𝑛𝔥1. Then

𝐷𝛼 = 𝑑
(
𝛼 + (−1)𝑛𝐿−1 ((𝑑𝛼)𝔥1) ∧ 𝜃

)
=���(𝑑𝛼)𝔥1 + (𝑑𝛼)𝔳 + (−1)𝑛𝑑 (𝐿−1 ((𝑑𝛼)𝔥1)) ∧ 𝜃 −��������

𝐿−1 ((𝑑𝛼)𝔥1) ∧ 𝑑𝜃

= 𝜃 ∧
(
𝛽𝛼 + 𝑑 (𝐿−1 ((𝑑𝛼)𝔥1))

)
.

(3.8)

This implies that 𝐷𝛼 ∧ 𝜃 = 0 and, as a consequence, 0 = 𝑑 (𝐷𝛼 ∧ 𝜃) = (−1)𝑛+1𝐷𝛼 ∧ 𝑑𝜃, as wished.

Example 3.6. Let us compute the operator 𝐷 : Ω1
H

→ Ω2
H

in the first Heisenberg group H1. Given
𝜔 ∈ Ω1

H
, we choose a smooth section 𝛼 of ∧1𝔥1 that is a representative of 𝜔 in the quotient (3.7). Writing

𝛼 = 𝑓 𝑑𝑥 + 𝑔𝑑𝑦, we have

(𝑑𝛼)𝔥1 = (𝑋𝑔 − 𝑌 𝑓 )𝑑𝑥 ∧ 𝑑𝑦 = −(𝑋𝑔 − 𝑌 𝑓 )𝑑𝜃
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and, clearly, 𝐿−1 ((𝑑𝛼)𝔥1) = 𝑌 𝑓 − 𝑋𝑔. Therefore,

𝐷𝜔 = 𝑑 ( 𝑓 𝑑𝑥 + 𝑔𝑑𝑦 − (𝑌 𝑓 − 𝑋𝑔) 𝜃)

=���������
(−𝑌 𝑓 + 𝑋𝑔)𝑑𝑥 ∧ 𝑑𝑦 − (𝑇 𝑓 )𝑑𝑥 ∧ 𝜃 − (𝑇𝑔)𝑑𝑦 ∧ 𝜃

− (𝑋𝑌 𝑓 − 𝑋𝑋𝑔)𝑑𝑥 ∧ 𝜃 − (𝑌𝑌 𝑓 − 𝑌 𝑋𝑔)𝑑𝑦 ∧ 𝜃 −������(𝑌 𝑓 − 𝑋𝑔)𝑑𝜃

= (−2𝑋𝑌 𝑓 + 𝑌 𝑋 𝑓 + 𝑋𝑋𝑔)𝑑𝑥 ∧ 𝜃 + (2𝑌 𝑋𝑔 − 𝑋𝑌𝑔 − 𝑌𝑌 𝑓 )𝑑𝑦 ∧ 𝜃.

See also [13, Example B.2] and [12, Example 3.11].
We refer to [12, Example 3.12] for the computation of the operator D in H2.

Remark 3.7. It is sometimes convenient to have a unique symbol to denote the differential operators in
Rumin’s complex. Following [54], we then define 𝑑𝐶 : Ω𝑘

H
→ Ω𝑘+1

H
by 𝑑𝐶 = 𝑑, if 𝑘 ≠ 𝑛, and 𝑑𝐶 = 𝐷,

if 𝑘 = 𝑛.

Remark 3.8. For 𝑘 ≤ 𝑛, an interesting interpretation of ∧𝑘𝔥
I𝑘 and J2𝑛+1−𝑘 as spaces of integrable

covectors is provided in [51, Theorem 2.9].

3.3. H-linear maps

We now introduce the notion of H-linear maps in H𝑛, which are among the most simple examples of
contact maps (see, e.g., [64]), and study their behaviour on Heisenberg forms. For a finer study of the
relations between Heisenberg forms and contact maps, see, for example, [24, Chapter 3]. The results in
this section will be applied especially, but not exclusively, to left-translations and dilations in H𝑛 and
their compositions.

Definition 3.9. A map L : H𝑛 → H
𝑛 is H-linear if it is a group homomorphism that is also homoge-

neous; that is, 𝛿𝑟 (L𝑝) = L(𝛿𝑟 𝑝) for any 𝑝 ∈ H𝑛 and any 𝑟 > 0.

It is not difficult to prove that L is H-linear if and only if 𝔩 := exp−1 ◦L ◦ exp : 𝔥 → 𝔥 is a Lie algebra
homomorphism; see, for example, [67, §3.1] and the references therein. In particular,

𝔩(𝔥1) ⊂ 𝔥1 and 𝔩(𝔥2) ⊂ 𝔥2. (3.9)

Moreover, if for every 𝑝 ∈ H𝑛 one canonically identifies 𝑇𝑝H
𝑛 ≡ 𝑇0H

𝑛 = 𝔥 by means of the differential
of the left-translation by 𝑝−1, then the differential 𝑑L of L is constant; that is,

𝑑L𝑝 = 𝑑L0 = 𝔩 ∀ 𝑝 ∈ H𝑛.

This easily follows by computing the differential at p of L(𝑞) = L(𝑝)L(𝑝−1𝑞).
By abuse of notation, we use a unique symbol L∗ to denote any of 𝑑L𝑝 , 𝑑L0 and 𝔩. Similarly,

the symbol L∗ denotes any of the associated pullback actions (𝑑L𝑝)
∗ : 𝑇∗

L(𝑝)
H
𝑛 → 𝑇∗

𝑝H
𝑛, (𝑑L0)

∗ :
𝑇∗

0H
𝑛 → 𝑇∗

0H
𝑛 and 𝔩∗ : ∧1𝔥 → ∧1𝔥. We also use the symbols L∗,L∗ to denote the induced maps

L∗ : ∧∗𝔥 → ∧∗𝔥 and L∗ : ∧∗𝔥 → ∧∗𝔥 defined by

L∗(𝑣1 ∧ · · · ∧ 𝑣𝑘 ) := L∗(𝑣1) ∧ · · · ∧ L∗(𝑣𝑘 ), ∀ 𝑣1, . . . , 𝑣𝑘 ∈ 𝔥,

and

L∗(𝜆1 ∧ · · · ∧ 𝜆𝑘 ) := L∗(𝜆1) ∧ · · · ∧ L∗(𝜆𝑘 ), ∀ 𝜆1, . . . , 𝜆𝑘 ∈ ∧1𝔥.
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Proposition 3.10. Let L : H𝑛 → H𝑛 be a H-linear isomorphism; then the pullbacks of 𝜃 and 𝑑𝜃 satisfy

L∗(𝜃) = 𝑐L𝜃 and L∗(𝑑𝜃) = 𝑐L 𝑑𝜃, (3.10)

where 𝑐L ≠ 0 is defined8 by L∗(𝑇) = 𝑐L𝑇 .
Proof. Since pullback and exterior derivative commute, it is sufficient to prove the first assertion in
(3.10). It is proved in [95, §3.15] that, since 𝜃 is left-invariant, 𝑑L∗(𝜃) is left-invariant as well. By
(3.9), we have L∗(𝜃) = 0 on 𝔥1; hence, L∗(𝜃) is a scalar multiple of 𝜃. The statement follows because
L∗(𝜃) (𝑇) = 𝜃 (L∗(𝑇)) = 𝜃 (𝑐L𝑇) = 𝑐L. �

Proposition 3.11. Let L : H𝑛 → H𝑛 be a H-linear isomorphism; then

(i) if 1 ≤ 𝑘 ≤ 𝑛, L∗ : ∧𝑘𝔥 → ∧𝑘𝔥 passes to the quotient and defines an isomorphism L∗ : ∧𝑘𝔥/I𝑘
→

∧𝑘𝔥/I𝑘
;

(ii) if 𝑛 + 1 ≤ 𝑘 ≤ 2𝑛, L∗(J𝑘 ) = J𝑘 .
Proof. (i) If 1 ≤ 𝑘 ≤ 𝑛, it is enough to show that L∗(I𝑘 ) = I𝑘 . For every 𝜆 ∈ ∧𝑘−1𝔥 and 𝜇 ∈ ∧𝑘−2𝔥,
we have by Proposition 3.10

L∗(𝜆 ∧ 𝜃 + 𝜇 ∧ 𝑑𝜃) = 𝑐L (L∗(𝜆) ∧ 𝜃 + L∗(𝜇) ∧ 𝑑𝜃);

hence, L∗(I𝑘 ) ⊂ I𝑘 . The equality L∗(I𝑘 ) = I𝑘 follows because L∗ is a isomorphism.
(ii) Given 𝜆 ∈ J𝑘 we have

L∗(𝜆) ∧ 𝜃 = 𝑐−1
L L∗(𝜆 ∧ 𝜃) = 0 and L∗(𝜆) ∧ 𝑑𝜃 = 𝑐−1

L L∗(𝜆 ∧ 𝑑𝜃) = 0,

hence L∗(𝜆) ∈ J𝑘 . This proves the inclusion L∗(J𝑘 ) ⊂ J𝑘 , and the equality follows again because L∗

is an isomorphism. �

Proposition 3.11 has the following consequence that we will later use when L is (a composition of)
dilations and left-translations. Compare with [24, Theorem 3.2.1].
Corollary 3.12. Let L : H𝑛 → H𝑛 be a H-linear isomorphism; then the pullback L∗ commutes with the
differential operators in Rumin’s complex; that is, for every 𝑘 ∈ {1, . . . , 2𝑛},

𝑑𝐶 (L∗𝜔) = L∗(𝑑𝐶𝜔) for every 𝜔 ∈ Ω𝑘
H

.

Proof. When 𝑘 ≠ 𝑛, this is a simple consequence of Proposition 3.11 and the fact that L∗ commutes
with exterior differentiation 𝑑 = 𝑑𝐶 .

When 𝑘 = 𝑛, we have 𝑑𝐶 = 𝐷 and some computations are needed. For every 𝜔 ∈ Ω𝑘
H

we fix a
representative 𝛼 ∈ 𝐶∞(H𝑛, ∧𝑛𝔥1) of the equivalence class 𝜔 in the quotient in the right-hand side of
(3.7). By Proposition 3.11, L∗𝛼 is a representative of L∗𝜔 and we can compute

𝐷 (L∗𝜔) = 𝑑
(
L∗𝛼 − 𝜃 ∧ 𝐿−1 ((𝑑L∗𝛼)𝔥1)

)
= 𝑑
(
L∗𝛼 − 𝜃 ∧ 𝐿−1 ((L∗(𝑑𝛼))𝔥1)

)
= 𝑑
(
L∗𝛼 − L∗(𝜃/𝑐L) ∧ 𝐿−1 (L∗((𝑑𝛼)𝔥1))

)
,

where we used Proposition 3.10. The latter also gives

L∗((𝑑𝛼)𝔥1) = L∗(𝐿−1 (𝑑𝛼)𝔥1 ∧ 𝑑𝜃)

= L∗(𝐿−1 (𝑑𝛼)𝔥1) ∧ L∗(𝑑𝜃)

= 𝑐LL∗(𝐿−1 (𝑑𝛼)𝔥1) ∧ 𝑑𝜃

8The number 𝑐L is well-defined because of (3.9); it is not zero because L∗ is an isomorphism.
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so that

𝐿−1 (L∗((𝑑𝛼)𝔥1)) = 𝑐LL∗(𝐿−1 (𝑑𝛼)𝔥1).

Therefore,

𝐷 (L∗𝜔) = 𝑑
(
L∗𝛼 − L∗(𝜃/𝑐L) ∧ 𝑐LL∗(𝐿−1 (𝑑𝛼)𝔥1)

)
= 𝑑
(
L∗(𝛼 − 𝜃 ∧ (𝐿−1 (𝑑𝛼)𝔥1))

)
= L∗ (𝑑 (𝛼 − 𝜃 ∧ (𝐿−1 (𝑑𝛼)𝔥1))

)
= L∗(𝐷𝜔)

and the proof is concluded. �

We recall that the notion of vertical plane was introduced in Definition 3.2. Given natural numbers
𝑎, 𝑏 such that 1 ≤ 𝑎 + 𝑏 ≤ 𝑛, we denote by 𝒫𝑎,𝑏 ⊂ H𝑛 the (2𝑎 + 𝑏 + 1)-dimensional vertical plane

𝒫𝑎,𝑏 := {(𝑥, 𝑦, 𝑡) ∈ H𝑛 : 𝑥𝑖 = 𝑦 𝑗 = 0 for all 𝑎 + 𝑏 + 1 ≤ 𝑖 ≤ 𝑛 and 𝑎 + 1 ≤ 𝑗 ≤ 𝑛}

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{(𝑥1, . . . , 𝑥𝑎+𝑏 , 0, . . . , 0, 𝑦1, . . . , 𝑦𝑎, 0, . . . , 0, 𝑡)} if 𝑎 ≥ 1 and 𝑎 + 𝑏 < 𝑛

{(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑎, 0, . . . , 0, 𝑡)} if 𝑎 ≥ 1 and 𝑎 + 𝑏 = 𝑛

{(𝑥1, . . . , 𝑥𝑏 , 0, . . . , 0, 𝑡)} if 𝑎 = 0.

(3.11)

As shown by the following proposition, the planes 𝒫𝑎,𝑏 can be considered as canonical models for
vertical planes in H𝑛.

Proposition 3.13. Let 𝒫 ⊂ R2𝑛+1 ≡ H𝑛 be a vertical plane; then there exist nonnegative integers 𝑎, 𝑏
and an H-linear isomorphism L : H𝑛 → H𝑛 such that

𝑎 + 𝑏 ≤ 𝑛 and dim𝒫 = 2𝑎 + 𝑏 + 1
L∗(𝜃) = 𝜃, L∗(𝑑𝜃) = 𝑑𝜃 and L(𝒫) = 𝒫𝑎,𝑏 .

Proof. The set 𝑉 := exp−1({(𝑥, 𝑦, 𝑡) ∈ 𝒫 : 𝑡 = 0}) is a vector subspace of 𝔥1. If 𝔩 : 𝔥 → 𝔥 is the Lie
algebra isomorphism provided by the following Lemma 3.14, then L := exp ◦𝔩 ◦ exp−1 is an H-linear
isomorphism, which, by Proposition 3.10, satisfies the statement of the present proposition. �

Lemma 3.14. Let 𝑉 ⊂ 𝔥1 be a linear subspace with dim𝑉 ≥ 1. Then there exist nonnegative integers
𝑎, 𝑏 and a Lie algebra isomorphism 𝔩 : 𝔥 → 𝔥 such that dim𝑉 = 2𝑎 + 𝑏, 𝔩(𝑇) = 𝑇 and

𝔩(𝑉) =

{
span{𝑋1, . . . , 𝑋𝑎+𝑏 , 𝑌1, . . . , 𝑌𝑎} if 𝑎 ≥ 1
span{𝑋1, . . . , 𝑋𝑏} if 𝑎 = 0.

Moreover, 𝑎 = 0 if and only if [𝑉,𝑉] = {0}; that is, if and only if V is an abelian subalgebra of 𝔥.

Proof. We first recall the canonical symplectic structure on 𝔥1, which is provided by the bilinear skew-
symmetric form

𝐵(𝑋,𝑌 ) := 〈[𝑋,𝑌 ], 𝑇〉, 𝑋,𝑌 ∈ 𝔥1.

Notice that 𝑑𝜃 (seen as a 2-covector at 0; that is, as an element of ∧2𝔥) satisfies

〈𝑋 ∧ 𝑌 | 𝑑𝜃〉 = −𝐵(𝑋,𝑌 ), ∀ 𝑋,𝑌 ∈ 𝔥1 ⊂ 𝔥 ≡ 𝑇0H
𝑛,

which can be easily checked by testing 𝑑𝜃 on a basis 𝑋𝑖 ∧ 𝑋 𝑗 , 𝑋𝑖 ∧ 𝑌 𝑗 , 𝑌𝑖 ∧ 𝑌 𝑗 of ∧2𝔥1.
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We borrow some language and notation from [10, Chapter 3]. Let

rad(𝑉) := {𝑋 ∈ 𝑉 : 𝐵(𝑋, 𝑋 ′) = 0 for every 𝑋 ′ ∈ 𝑉} = {𝑋 ∈ 𝑉 : [𝑋,𝑉] = 0}

be the radical of V and let 𝑏 := dim rad(𝑉). Choose a subspace U of V such that 𝑉 =rad (𝑉) ⊕ 𝑈;
U is clearly nonsingular; that is, for every 𝑋 ∈ 𝑈 there exists 𝑋 ′ ∈ 𝑈 such that [𝑋, 𝑋 ′] ≠ 0. By [10,
Theorem 3.7], the dimension of 𝑈 is even and we set dim𝑈 = 2𝑎.

If 𝑎 ≥ 1, by [10, Theorem 3.7] there exists a basis 𝑋1, . . . , 𝑋𝑎, 𝑌1, . . . , 𝑌𝑎 of U such that

𝐵(𝑋𝑖 , 𝑋 𝑗 ) = 0, 𝐵(𝑌𝑖 , 𝑌 𝑗 ) = 0 and 𝐵(𝑋𝑖 , 𝑌 𝑗 ) = 𝛿𝑖 𝑗 , 𝑖, 𝑗 ∈ {1, . . . , 𝑎};

that is,

[𝑋𝑖 , 𝑋 𝑗 ] = 0, [𝑌𝑖 , 𝑌 𝑗 ] = 0 and [𝑋𝑖 , 𝑌 𝑗 ] = 𝛿𝑖 𝑗𝑇, 𝑖, 𝑗 ∈ {1, . . . , 𝑎}.

If 𝑏 ≥ 1, fix a basis 𝑋𝑎+1, . . . , 𝑋𝑎+𝑏 of rad (𝑉).
We can now define 𝔩 ′ : 𝑉 → 𝔥1 by

𝔩 ′(𝑋𝑖) = 𝑋𝑖 and 𝔩 ′(𝑌 𝑗 ) = 𝑌 𝑗

for all integers 1 ≤ 𝑖 ≤ 𝑎 + 𝑏 and 1 ≤ 𝑗 ≤ 𝑏. Notice that 𝔩 ′ is an isometry of V into 𝔥1; that is,

𝐵(𝔩 ′(𝑋), 𝔩 ′(𝑌 )) = 𝐵(𝑋,𝑌 ) for every 𝑋,𝑌 ∈ 𝑉.

By Witt’s theorem (see [10, Theorem 3.9]), 𝔩 ′ can be extended to an isometry 𝔩 ′′ : 𝔥1 → 𝔥1; that is,
a map satisfying [𝔩 ′′(𝑋), 𝔩 ′′(𝑌 )] = [𝑋,𝑌 ] for every 𝑋,𝑌 ∈ 𝔥1. Finally, we extend 𝔩 ′′ to 𝔩 : 𝔥 → 𝔥 by
setting 𝔩 |𝔥1 := 𝔩 ′′ and 𝔩(𝑇) := 𝑇 . The map 𝔩 provides the desired Lie algebra isomorphism. �

Remark 3.15. Under the same assumptions of Lemma 3.14, if [𝑉,𝑉] = 0, then the Lie algebra
isomorphism 𝔩 : 𝔥 → 𝔥 provided by Lemma 3.14 can be chosen in such a way that 𝔩 is an isometry
of 𝔥 when endowed with the scalar product making 𝑋1, . . . , 𝑋𝑛, 𝑌1, . . . , 𝑌𝑛, 𝑇 orthonormal. Observe in
particular that here the term isometry has a different meaning than in the proof of Lemma 3.14.

Let us prove our statement. As in the proof of Lemma 3.14, fix a basis 𝑋1, . . . , 𝑋𝑏 of 𝑉 = rad(𝑉).
Consider the linear isomorphism 𝐽 : 𝔥1 → 𝔥1 defined by

𝐽 (𝑋𝑖) = −𝑌𝑖 and 𝐽 (𝑌𝑖) = 𝑋𝑖 for every 𝑖 = 1, . . . , 𝑛.

We observe that 𝐵(𝑋,𝑌 ) = 〈𝑋, 𝐽𝑌〉 for 𝑋,𝑌 ∈ 𝔥1 and that J is an isometry of 𝔥1. Set 𝑌𝑖 := 𝐽 (𝑋𝑖) and
observe that, since 𝑉 = rad(𝑉) ⊂ (𝐽 (𝑉))⊥, the elements {𝑋𝑖 , 𝑌𝑖 : 𝑖 = 1, . . . , 𝑏} form an orthonormal
basis of 𝑉 ⊕ 𝐽 (𝑉).

Consider 𝑊 := (𝑉 ⊕ 𝐽 (𝑉))⊥; then 𝑊 = 𝑊 ′ ⊕ span{𝑇} where 𝑊 ′ := (𝑉 ⊕ 𝐽 (𝑉))⊥ ∩ 𝔥1. We claim that
𝐽 (𝑊 ′) = 𝑊 ′; by dimensional reasons, it suffices to prove that 𝐽 (𝑊 ′) ⊂ 𝑊 ′, and this follows because,
for every 𝑋 ∈ 𝑊 ′ and 𝑌 ∈ 𝑉 , there holds

〈𝐽𝑋,𝑌〉 = −〈𝑋, 𝐽𝑌〉 = 0
〈𝐽𝑋, 𝐽𝑌〉 = 〈𝑋,𝑌〉 = 0.

We can now exhibit a Lie algebra isomorphism 𝔩 : 𝔥 → 𝔥 that is also an isometry. First, we define
𝔩(𝑇) = 𝑇 and

𝔩(𝑋𝑖) = 𝑋𝑖 and 𝔩(𝑌𝑖) = 𝑌𝑖 for every 𝑖 = 1, . . . , 𝑏.
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If 𝑊 ′ = {0}, the proof is concluded. Otherwise, we fix a unit element 𝑋𝑏+1 ∈ 𝑊 ′ and, defining
𝑌𝑏+1 := 𝐽 (𝑋𝑏+1) ∈ 𝑊 ′, we set

𝔩(𝑋𝑏+1) = 𝑋𝑏+1 and 𝔩(𝑌𝑏+1) = 𝑌𝑏+1.

If 𝑊 ′ = span{𝑋𝑏+1, 𝑌𝑏+1}, the proof is concluded; otherwise, we fix a unit element 𝑋𝑏+2 ∈ 𝑊 ′ ∩
span{𝑋𝑏+1, 𝑌𝑏+1}

⊥ and, defining 𝑌𝑏+2 := 𝐽 (𝑋𝑏+2) ∈ 𝑊 ′ ∩ span{𝑋𝑏+1, 𝑌𝑏+1}
⊥, we set

𝔩(𝑋𝑏+2) = 𝑋𝑏+2 and 𝔩(𝑌𝑏+2) = 𝑌𝑏+2.

It is clear that this construction can be iterated and that it eventually stops providing as a final outcome
the desired isometric Lie algebra isomorphism 𝔩 : 𝔥 → 𝔥.

Remark 3.16. Under the same assumptions of Proposition 3.13, if the vertical plane 𝒫 is an abelian
subgroup of H𝑛 (i.e., if 𝑎 = 0), then the H-linear isomorphism L provided by Proposition 3.13 can
be chosen to be an isometry of H𝑛. This is an easy consequence of Remark 3.15 and the rotational
invariance of the distance d.

In particular, ifV ⊂ exp(𝔥1) is a horizontal (and necessarily abelian) subgroup ofH𝑛, we can consider
the vertical subgroup 𝒫 generated by V and exp(span{𝑇}) and deduce that there exists an isometric
H-linear isomorphism L of H𝑛 such that

L(V) = exp(span{𝑋1, . . . , 𝑋𝑘 }),

where 𝑘 := dimV.

3.4. A basis for Rumin’s spaces

In this section we provide a basis for Rumin’s spaces J𝑛+1, . . . ,J2𝑛; since later in the article we will
denote by k the codimension of the involved objects, we fix k such that 1 ≤ 𝑘 ≤ 𝑛 and study J2𝑛+1−𝑘 .
By Remark 3.3, this space coincides with {𝜆 ∧ 𝜃 : 𝜆 ∈ ∧2𝑛−𝑘𝔥1, 𝜆 ∧ 𝑑𝜃 = 0}; hence, one is led to the
study of the kernel of the Lefschetz operator 𝜆 ↦→ 𝜆 ∧ 𝑑𝜃.

We write ℎ := 2𝑛 − 𝑘 and, identifying 𝔥1 ≡ R2𝑛 = R𝑛𝑥 × R𝑛𝑦 , we denote by L the operator

𝐿(𝜆) := 𝜆 ∧ 𝑑𝜃 = −𝜆 ∧ (𝑑𝑥1 ∧ 𝑑𝑦1 + · · · + 𝑑𝑥𝑛 ∧ 𝑑𝑦𝑛), 𝜆 ∈ ∧∗
R

2𝑛.

Since ℎ ≥ 𝑛, the operator 𝐿 : ∧ℎ
R

2𝑛 → ∧ℎ+2
R

2𝑛 is surjective ([21, Proposition 1.1]).
We need some preliminary notation. For every 𝑖 ∈ {1, . . . , 𝑛} we use the compact notation 𝑑𝑥𝑦𝑖 :=

𝑑𝑥𝑖 ∧ 𝑑𝑦𝑖 , so that 𝑑𝜃 = −(𝑑𝑥𝑦1 + · · · + 𝑑𝑥𝑦𝑛). Moreover, for every 𝐼 ⊂ {1, . . . , 𝑛} we denote by |𝐼 | the
cardinality of I and, if 𝐼 = {𝑖1, 𝑖2, . . . , 𝑖 |𝐼 | } with 𝑖1 < · · · < 𝑖 |𝐼 | , we define

𝑑𝑥𝐼 := 𝑑𝑥𝑖1 ∧ 𝑑𝑥𝑖2 ∧ · · · ∧ 𝑑𝑥𝑖|𝐼 |
∈ ∧|𝐼 |

R
2𝑛

𝑑𝑦𝐼 := 𝑑𝑦𝑖1 ∧ 𝑑𝑦𝑖2 ∧ · · · ∧ 𝑑𝑦𝑖|𝐼 |
∈ ∧|𝐼 |

R
2𝑛

𝑑𝑥𝑦𝐼 := 𝑑𝑥𝑦𝑖1 ∧ 𝑑𝑥𝑦𝑖2 ∧ · · · ∧ 𝑑𝑥𝑦𝑖|𝐼 |
∈ ∧2 |𝐼 |

R
2𝑛.

For 𝐼 = ∅ we agree that 𝑑𝑥∅ = 𝑑𝑦∅ = 𝑑𝑥𝑦∅ = 1. It will also be convenient to set for 𝑖 ∈ {1, . . . , 2𝑛}

𝑑𝑧𝑖 := 𝑑𝑥𝑖 if 𝑖 ≤ 𝑛, 𝑑𝑧𝑖 := 𝑑𝑦𝑖−𝑛 if 𝑖 ≥ 𝑛 + 1
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and, accordingly,

𝑑𝑧𝐼 := 𝑑𝑧𝑖1 ∧ 𝑑𝑧𝑖2 ∧ · · · ∧ 𝑑𝑧𝑖|𝐼 |
(3.12)

whenever 𝐼 = {𝑖1, 𝑖2, . . . , 𝑖 |𝐼 | } with 1 ≤ 𝑖1 < · · · < 𝑖 |𝐼 | ≤ 2𝑛.
A basis of ∧ℎ

R
2𝑛 is given by the family {𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝑑𝑥𝑦𝐾 }(𝐼 ,𝐽 ,𝐾 ) , where (𝐼, 𝐽, 𝐾) range among

all (ordered) triples of pairwise disjoint subsets 𝐼, 𝐽, 𝐾 of {1, . . . , 𝑛} such that |𝐼 | + |𝐽 | + 2|𝐾 | = ℎ. In
particular, one can write

∧ℎ
R

2𝑛 =
⊕
(𝐼 ,𝐽 )

𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ ∧ℎ,𝐼 ,𝐽
R

2𝑛,

where the sum ranges among all ordered pairs (𝐼, 𝐽) of disjoint 𝐼, 𝐽 ⊂ {1, . . . , 𝑛} such that 0 ≤ |𝐼 | + |𝐽 | ≤
ℎ and ∧ℎ,𝐼 ,𝐽

R
2𝑛 is defined by

∧ℎ,𝐼 ,𝐽
R

2𝑛 := span{𝑑𝑥𝑦𝐾 : 𝐾 ⊂ {1, . . . , 𝑛} \ (𝐼 ∪ 𝐽) and |𝐼 | + |𝐽 | + 2|𝐾 | = ℎ}.

The parity of |𝐼 | + |𝐽 | is necessarily the same of h. Observe also that

𝐿(𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ ∧ℎ,𝐼 ,𝐽
R

2𝑛) ⊂ 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ ∧ℎ+2,𝐼 ,𝐽
R

2𝑛;

more precisely, for every 𝛼 ∈ ∧ℎ,𝐼 ,𝐽
R

2𝑛 one has

𝐿(𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼) = −𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼 ∧
∑

𝑖∈{1,...,𝑛}\(𝐼∪𝐽 )

𝑑𝑥𝑖 ∧ 𝑑𝑦𝑖 .

In particular,

ker 𝐿 =
⊕
(𝐼 ,𝐽 )

𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ ker 𝐿ℎ,𝐼 ,𝐽 , (3.13)

where 𝐿ℎ,𝐼 ,𝐽 : ∧ℎ,𝐼 ,𝐽
R

2𝑛 → ∧ℎ+2,𝐼 ,𝐽
R

2𝑛 is defined by

𝐿ℎ,𝐼 ,𝐽 (𝛼) := −𝛼 ∧
∑

𝑖∈{1,...,𝑛}\(𝐼∪𝐽 )

𝑑𝑥𝑖 ∧ 𝑑𝑦𝑖 .

There is a canonical isomorphism 𝜄 : ∧ℎ,𝐼 ,𝐽
R

2𝑛 → ∧2ℓ
𝐷R

2𝑚, where

ℓ := (ℎ − |𝐼 | − |𝐽 |)/2, 𝑚 := 𝑛 − |𝐼 | − |𝐽 |,

∧2ℓ
𝐷 R

2𝑚 := span{𝑑𝑥𝑦𝐾 : 𝐾 ⊂ {1, . . . , 𝑚}, |𝐾 | = ℓ},
(3.14)

according to which 𝜄 ◦ 𝐿ℎ,𝐼 ,𝐽 = 𝐿 ◦ 𝜄. The study of ker 𝐿ℎ,𝐼 ,𝐽 (which, by (3.13), determines ker 𝐿) is
thus equivalent to the study of the kernel of the restriction

𝐿𝐷 := 𝐿%%∧2ℓ
𝐷R

2𝑚 .

Remark 3.17. The objects introduced so far are well-defined unless |𝐼 | + |𝐽 | = 𝑛; that is, if 𝑚 = 0. This
can happen only if ℎ = 𝑛 and gives that also ℓ = 0. In this case, we agree that ∧ℎ,𝐼 ,𝐽

R
2𝑛 = ∧2ℓ

R
2𝑚 = R,

∧ℎ+2,𝐼 ,𝐽
R

2𝑛 = ∧2ℓ+2
R

2𝑚 = {0} and 𝐿𝐷 = 0. It is immediate to check that, for every such 𝐼, 𝐽, one has
𝐿(𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ) = 0.

Observe that 𝐿(∧2ℓ
𝐷R

2𝑚) ⊂ ∧2ℓ+2
𝐷 R

2𝑚; hence, 𝐿𝐷 maps ∧2ℓ
𝐷R

2𝑚 on ∧2ℓ+2
𝐷 R

2𝑚. It is understood that,
when ℓ = 𝑚, ∧2ℓ+2

𝐷 R
2𝑚 = {0} and 𝐿𝐷 = 0. Notice also that the inequality 2ℓ ≥ 𝑚 holds because ℎ ≥ 𝑛.
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Lemma 3.18. The operator 𝐿𝐷 : ∧2ℓ
𝐷R

2𝑚 → ∧2ℓ+2
𝐷 R

2𝑚 is surjective for every integer ℓ such that
𝑚 ≤ 2ℓ ≤ 2𝑚. In particular,

dim ker 𝐿𝐷 = dim ∧2ℓ
𝐷R

2𝑚 − dim ∧2ℓ+2
𝐷 R

2𝑚 =

(
𝑚

ℓ

)
−

(
𝑚

ℓ + 1

)
,

where we agree that
( 𝑚
𝑚+1
)
= 0.

Proof. When 2ℓ = 2𝑚, there is nothing to prove. For the remaining cases, it suffices to prove that, for
every 𝑖 = 1, . . . , 𝑚, the operator

𝐿𝑖𝐷 := 𝐿𝐷 ◦ · · · ◦ 𝐿𝐷︸������������︷︷������������︸
i times

: ∧𝑚−𝑖
𝐷 R

2𝑚 → ∧𝑚+𝑖
𝐷 R

2𝑚

is bijective. Since dim ∧𝑚−𝑖
𝐷 R

2𝑚 = dim ∧𝑚+𝑖
𝐷 R

2𝑚, this is an immediate consequence of the bijectivity of
𝐿𝑖 : ∧𝑚−𝑖

R
2𝑚 → ∧𝑚+𝑖

R
2𝑚; see [21, Proposition 1.1]. �

We now provide a basis of ker 𝐿𝐷 : ∧2ℓ
𝐷R

2𝑚 → ∧2ℓ+2
𝐷 R

2𝑚 for 𝑚 ≤ 2ℓ ≤ 2𝑚. Assume that the
numbers 1, . . . , 𝑚 have been arranged (each number appearing exactly once) in a tableau 𝑅 with two
rows, the first row having ℓ elements 𝑅1

1, . . . , 𝑅1
ℓ and the second having 𝑚 − ℓ elements 𝑅2

1, . . . , 𝑅2
𝑚−ℓ ,

as follows:

𝑅 =
𝑅1

1 𝑅1
2 · · · 𝑅1

𝑚−ℓ 𝑅1
𝑚−ℓ+1 · · · 𝑅1

ℓ

𝑅2
1 𝑅2

2 · · · 𝑅2
𝑚−ℓ

(3.15)

where, clearly, R has to be read as a (2 × ℓ) rectangular matrix when 2ℓ = 𝑚. As is customary, we call
Young tableau such a tableau; see [55]. When 𝑚 = ℓ = 0, we agree that the tableau is empty. When
𝑚 = ℓ ≥ 1, we agree that R has one row only (the second row is empty).

Given such a Young tableau R, consider the covector 𝛼𝑅 ∈ ∧2ℓ
𝐷R

2𝑚 defined by

𝛼𝑅 := (𝑑𝑥𝑦𝑅1
1
− 𝑑𝑥𝑦𝑅2

1
) ∧ (𝑑𝑥𝑦𝑅1

2
− 𝑑𝑥𝑦𝑅2

2
) ∧ · · · ∧ (𝑑𝑥𝑦𝑅1

𝑚−ℓ
− 𝑑𝑥𝑦𝑅2

𝑚−ℓ
) ∧ 𝑑𝑥𝑦𝑅1

𝑚−ℓ+1
∧ · · · ∧ 𝑑𝑥𝑦𝑅1

ℓ
.

(3.16)

When 𝑚 = ℓ = 0, we agree that 𝛼𝑅 := 1, while if 𝑚 = ℓ ≥ 1 we set 𝛼𝑅 := 𝑑𝑥𝑦𝑅1
1
∧ · · · ∧ 𝑑𝑥𝑦𝑅1

𝑚
. Using

the equality (𝑑𝑥𝑦𝑖 −𝑑𝑥𝑦 𝑗 ) ∧ (𝑑𝑥𝑦𝑖 +𝑑𝑥𝑦 𝑗 ) = 0, valid for every 𝑖, 𝑗 = 1, . . . , 𝑚, one can easily check that

𝐿(𝛼𝑅) = 𝛼𝑅 ∧ 𝑑𝜃 = 0. (3.17)

It follows that, for every Young tableau R, 𝛼𝑅 belongs to ker 𝐿𝐷 .
Consider now the set ℛ of standard Young tableaux; that is, of those Young tableaux R such that the

entries in each row and in each column are in increasing order:

𝑅1
1 < 𝑅1

2 < · · · < 𝑅1
𝑚−ℓ < 𝑅1

𝑚−ℓ+1 < · · · < 𝑅1
ℓ

∧ ∧ ∧
𝑅2

1 < 𝑅2
2 < · · · < 𝑅2

𝑚−ℓ .

Notice that a standard Young tableau R always satisfies 𝑅1
1 = 1. The following lemma shows that the

family {𝛼𝑅}𝑅∈ℛ ⊂ ker 𝐿𝐷 is made by linearly independent covectors.

Lemma 3.19. Let 𝑚, ℓ be integers such that 0 ≤ 𝑚 ≤ 2ℓ ≤ 2𝑚 and let ℛ be the set of standard Young
tableaux with two rows of width ℓ and 𝑚 − ℓ, as in (3.15). Then the elements {𝛼𝑅}𝑅∈ℛ defined in (3.16)
are linearly independent.
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Proof. When 𝑚 = 0 also ℓ = 0 and the family {𝛼𝑅}𝑅∈ℛ is made by a unique element 𝛼𝑅 = 1;
there is nothing to prove. When ℓ = 𝑚, the family ℛ is made by the single standard Young tableau
𝑅 = 1 2 · · · 𝑚 . Therefore, {𝛼𝑅}𝑅∈ℛ = {𝑑𝑥𝑦1 ∧ · · · ∧ 𝑑𝑥𝑦𝑚} is made by linearly independent vectors,
as wished.

We therefore assume that 1 ≤ 𝑚 ≤ 2ℓ ≤ 2𝑚 − 2. Let us begin with some preliminary considerations.
Given a Young tableau R, we denote by 𝜎(𝑅) the sum 𝑅1

1 + 𝑅1
2 + · · · + 𝑅1

ℓ of the elements in the first row
of R. Clearly, there exists an integer 𝑀 = 𝑀 (𝑚, ℓ) such that

1 + · · · + ℓ ≤ 𝜎(𝑅) ≤ 𝑀 for every 𝑅 ∈ ℛ;

moreover, there is a unique 𝑅𝑚𝑖𝑛 ∈ ℛ such that 𝜎(𝑅) = 1 + · · · + ℓ, namely,

𝑅𝑚𝑖𝑛 := 1 2 · · · 𝑚 − ℓ 𝑚 − ℓ + 1 · · · ℓ
ℓ + 1 ℓ + 2 · · · m .

Let 𝑅 ∈ ℛ be fixed and let 𝐾 := {𝑅
1
1, 𝑅

1
2, . . . , 𝑅

1
ℓ } be the subset of {1, . . . , 𝑚} containing the ℓ

elements in the first row of 𝑅. We claim that, if

𝑅 ∈ ℛ is such that each column of 𝑅 contains one element of 𝐾 (3.18)

(in particular, by the pigeonhole principle, each column of R contains exactly one element of 𝐾), then

𝜎(𝑅) ≤ 𝜎(𝑅), and equality holds if and only if 𝑅 = 𝑅. (3.19)

Indeed, for every tableau R as in (3.18) there exist a permutation 𝜋 of {1, . . . , ℓ} and a function
𝑢 : {1, . . . , ℓ} → {1, 2} such that

𝑅
𝑢 ( 𝑗)
𝑗 = 𝑅

1
𝜋 ( 𝑗) for all 𝑗 = 1, . . . , ℓ.

Therefore,

𝜎(𝑅) =
ℓ∑
𝑗=1

𝑅1
𝑗 ≤

ℓ∑
𝑗=1

𝑅
𝑢 ( 𝑗)
𝑗 =

ℓ∑
𝑗=1

𝑅
1
𝜋 ( 𝑗) = 𝜎(𝑅); (3.20)

notice that equality holds if and only if 𝑅1
𝑗 = 𝑅

𝑢 ( 𝑗)
𝑗 for every 𝑗 = 1, . . . , ℓ; that is, if and only if

{𝑅1
1, 𝑅1

2, . . . , 𝑅1
ℓ } = {𝑅

1
1, 𝑅

1
2, . . . , 𝑅

1
ℓ }.

Since a standard Young tableau is uniquely determined once one fixes the set of elements of the first
row, equality in (3.20) holds if and only if 𝑅 = 𝑅.

We now prove the lemma. Assume that there are real coefficients (𝑏𝑅)𝑅∈ℛ, such that
∑
𝑅∈ℛ 𝑏𝑅𝛼𝑅 = 0;

we prove that all of the coefficients 𝑏𝑅 are null. We perform this task reasoning by induction on
𝑠 = 1 + · · · + ℓ, . . . , 𝑀 and showing that

𝑏𝑅 = 0 for every 𝑅 such that 𝜎(𝑅) = 𝑠.

Consider first the case 𝑠 = 1 + · · · + ℓ; we need to prove that 𝑏𝑅𝑚𝑖𝑛 = 0. For every 𝑅 ∈ ℛ let us
write 𝛼𝑅 =

∑
𝐾 𝑐𝑅,𝐾 𝑑𝑥𝑦𝐾 , where the sum ranges among all 𝐾 ⊂ {1, . . . , 𝑚} with |𝐾 | = ℓ and 𝑐𝑅,𝐾 are

suitable real numbers. We claim that, defining 𝐾 := {1, 2, . . . , ℓ}, then

𝑐𝑅,𝐾 = 0 for every 𝑅 ∈ ℛ \ {𝑅𝑚𝑖𝑛}. (3.21)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2021.84
Downloaded from https://www.cambridge.org/core. IP address: 94.34.96.60, on 02 Feb 2022 at 13:50:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2021.84
https://www.cambridge.org/core


Forum of Mathematics, Sigma 35

This would be enough to conclude; indeed, one would have

0 =
∑
𝑅∈ℛ

𝑏𝑅𝛼𝑅 =
∑
𝐾

∑
𝑅∈ℛ

𝑏𝑅𝑐𝑅,𝐾 𝑑𝑥𝑦𝐾 = 𝑏𝑅𝑚𝑖𝑛𝑑𝑥𝑦𝐾 +
∑
𝐾≠𝐾

∑
𝑅∈ℛ

𝑏𝑅𝑐𝑅,𝐾 𝑑𝑥𝑦𝐾 ,

which gives 𝑏𝑅𝑚𝑖𝑛 = 0, as desired.
We prove (3.21): by the very definition (3.16) of 𝛼𝑅, we see that for every K one has 𝑐𝑅,𝐾 = 0 unless

each column of R contains (exactly) one element of K (in which case, 𝑐𝑅,𝐾 ∈ {1, −1}). Using this
observation with 𝐾 = 𝐾 , (3.21) follows because, by the implication (3.18) ⇒ (3.19), the only standard
Young tableau such that each of its columns contains one element of 𝐾 is 𝑅𝑚𝑖𝑛 itself, because any other
standard Young tableau R with such a property would satisfy 𝜎(𝑅) < 1 + · · · + ℓ.

Assume now that 𝑏𝑅 = 0 for every 𝑅 ∈ ℛ such that 𝜎(𝑅) ≤ 𝑠 − 1; we prove that 𝑏𝑅 = 0 for every
(fixed) 𝑅 such that 𝜎(𝑅) = 𝑠. Let 𝐾 := {𝑅

1
1, . . . , 𝑅

1
ℓ } be the set formed by the elements in the first row

of 𝑅; we claim that

𝑐𝑅,𝐾 = 0 for every 𝑅 ∈ ℛ \ {𝑅} such that 𝜎(𝑅) ≥ 𝑠. (3.22)

This would be enough to conclude; indeed, one would have

0 =
∑
𝑅∈ℛ

𝑏𝑅𝛼𝑅 =
∑
𝑅∈ℛ

𝜎 (𝑅) ≥𝑠

𝑏𝑅𝛼𝑅 =
∑
𝐾

∑
𝑅∈ℛ

𝜎 (𝑅) ≥𝑠

𝑏𝑅𝑐𝑅,𝐾 𝑑𝑥𝑦𝐾 = 𝑏𝑅𝑑𝑥𝑦𝐾 +
∑
𝐾≠𝐾

∑
𝑅∈ℛ

𝜎 (𝑅) ≥𝑠

𝑏𝑅𝑐𝑅,𝐾 𝑑𝑥𝑦𝐾 ,

which would give 𝑏𝑅 = 0, as desired.
Claim (3.22) can be proved similarly as before: by the definition of 𝛼𝑅, for a standard Young tableau

R one has 𝑐𝑅,𝐾 = 0 unless each column of R contains (exactly) one element of 𝐾; in particular, (3.22)
follows from the implication (3.18) ⇒(3.19). �

The cardinality of ℛ can be computed using the hook length formula, also known as Frame–
Robinson–Thrall formula. We refer to [55, page 53]: such a formula states that the cardinality of ℛ
equals

𝑚!
(ℓ + 1)ℓ(ℓ − 1) · · · (2ℓ − 𝑚 + 2) 1 · (2ℓ − 𝑚) · · · 2 · 1 · (𝑚 − ℓ) (𝑚 − ℓ − 1) · · · 1

=
𝑚!

(ℓ + 1)!(𝑚 − ℓ)!
(2ℓ − 𝑚 + 1) =

𝑚!
(ℓ + 1)!(𝑚 − ℓ)!

(ℓ + 1 − (𝑚 − ℓ))

=

(
𝑚

ℓ

)
−

(
𝑚

ℓ + 1

)
provided ℓ < 𝑚. If ℓ = 𝑚, then the cardinality of ℛ is 1. In both cases, Lemma 3.18 implies that the
cardinality of ℛ is equal to dim ker 𝐿𝐷 . Together with Lemma 3.19, this proves that {𝛼𝑅}𝑅∈ℛ is a basis
of ker 𝐿𝐷 .

We can summarise the discussion above as follows.

Proposition 3.20. Consider integer numbers 𝑛, ℎ such that 𝑛 ≥ 1 and 𝑛 ≤ ℎ ≤ 2𝑛. Then a basis of the
kernel of 𝐿 : ∧ℎ

R
2𝑛 → ∧ℎ+2

R
2𝑛 is given by the elements of the form 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 where

◦ 𝐼, 𝐽 are disjoint subsets of {1, . . . , 𝑛};
◦ 𝛼𝑅 is defined as in (3.16) and R is a standard Young tableau where the elements of

{1, . . . , 𝑛} \ (𝐼 ∪ 𝐽) are arranged in two rows, the first one having (ℎ − |𝐼 | − |𝐽 |)/2 elements and the
second one having (2𝑛 − ℎ − |𝐼 | − |𝐽 |)/2 elements.

Remark 3.21. It follows from (3.17) that, given 𝐼, 𝐽 ⊂ {1, . . . , 𝑛} disjoint and a (nonnecessarily
standard) Young tableau Q containing the elements of {1, . . . , 𝑛} \ (𝐼 ∪ 𝐽), the covector 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑄
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is in the kernel of L. Moreover, by (3.13), 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑄 can be written as a linear combination of
covectors of the form 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 where R ranges among all standard Young tableaux with the same
shape and containing the same elements as Q.

Proposition 3.20 has the following immediate consequence.
Corollary 3.22. Let 𝑛 ≥ 1 and 1 ≤ 𝑘 ≤ 𝑛 be integers. Then a basis of J2𝑛+1−𝑘 is given by the elements
of the form 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 ∧ 𝜃 where 𝐼, 𝐽, 𝑅 are given by Proposition 3.20 with ℎ := 2𝑛 − 𝑘 .
Proof. We observed at the beginning of the section that

J2𝑛+1−𝑘 = {𝜆 ∧ 𝜃 : 𝜆 ∈ ∧2𝑛−𝑘𝔥1 and 𝜆 ∧ 𝑑𝜃 = 0}.

The statement now easily follows from Proposition 3.20. �

Proposition 1.10 is now an easy consequence of Corollary 3.22.
We feel it might be useful to provide some simple examples before continuing our analysis.

Example 3.23. When 𝑛 = 2, the space J𝑛+1 = J3 in H2 is 5-dimensional. The corresponding basis
𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 ∧ 𝜃 provided by Proposition 1.10 is displayed on the left column of the following table,
while on the right column the corresponding triple (𝐼, 𝐽, 𝑅) appears:

𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝜃 ←→ ({1, 2}, ∅, ∅)

𝑑𝑥1 ∧ 𝑑𝑦2 ∧ 𝜃 ←→ ({1}, {2}, ∅)

𝑑𝑥2 ∧ 𝑑𝑦1 ∧ 𝜃 ←→ ({2}, {1}, ∅)

𝑑𝑦1 ∧ 𝑑𝑦2 ∧ 𝜃 ←→ (∅, {1, 2}, ∅)

(𝑑𝑥1 ∧ 𝑑𝑦1 − 𝑑𝑥2 ∧ 𝑑𝑦2) ∧ 𝜃 ←→

(
∅, ∅,

1
2

)
,

where ∅ denotes either the empty set or the empty tableau. See also [12, Example 3.12].
Example 3.24. When 𝑛 = 3, the space J5 in H3 is 14-dimensional; let us write the basis provided by
Proposition 1.10. Observe that here 𝑛 = 3, 𝑘 = 2 and ℎ = 4. We first determine the triples (𝐼, 𝐽, 𝑅): since
|𝐼 | + |𝐽 | is not greater than 𝑘 = 2 and has the same parity as ℎ = 4, either |𝐼 | + |𝐽 | = 0 or |𝐼 | + |𝐽 | = 2.

If |𝐼 | + |𝐽 | = 0, then 𝑚 = 3, ℓ = 2 and all of the indices 1, 2, 3 appear in the tableau R, whose rows
have lengths 2 and 1, respectively. It is immediate to check that R can be only one of the following two
tableaux:

1 2
3

1 3
2

which, respectively, provide the elements

(𝑑𝑥1 ∧ 𝑑𝑦1 − 𝑑𝑥3 ∧ 𝑑𝑦3) ∧ 𝑑𝑥2 ∧ 𝑑𝑦2 ∧ 𝜃, (𝑑𝑥1 ∧ 𝑑𝑦1 − 𝑑𝑥2 ∧ 𝑑𝑦2) ∧ 𝑑𝑥3 ∧ 𝑑𝑦3 ∧ 𝜃 (3.23)

of J5. If |𝐼 | + |𝐽 | = 2, then 𝐼 ∪ 𝐽 = {𝑎, 𝑏} for some 𝑎, 𝑏 ∈ {1, 2, 3} and the tableau R contains the
unique remaining index 𝑐 ∈ {1, 2, 3} \ {𝑎, 𝑏}; in particular, the second row of R is empty (in fact, here
ℓ = 𝑚 = 1) and 𝑅 = 𝑐 . This produces the following elements of J5:

𝑑𝑥𝑎 ∧ 𝑑𝑥𝑏 ∧ 𝑑𝑥𝑐 ∧ 𝑑𝑦𝑐 ∧ 𝜃 provided 𝑎 < 𝑏

𝑑𝑥𝑎 ∧ 𝑑𝑦𝑏 ∧ 𝑑𝑥𝑐 ∧ 𝑑𝑦𝑐 ∧ 𝜃 (3.24)
𝑑𝑦𝑎 ∧ 𝑑𝑦𝑏 ∧ 𝑑𝑥𝑐 ∧ 𝑑𝑦𝑐 ∧ 𝜃 provided 𝑎 < 𝑏

and, as 𝑎, 𝑏, 𝑐 vary in {1, 2, 3}, each of the covectors in (3.24) provides, respectively, three, six and three
elements of J5. All in all, a basis of J5 is provided by the 2+12 elements displayed in (3.23) and (3.24).
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Remark 3.25. The difference between the lengths of the first and second rows of every standard
Young tableau R appearing in Proposition 1.10 (respectively, in Proposition 3.20) is determined by k
(respectively by h) and it is equal to 𝑛 − 𝑘 (respectively to ℎ − 𝑛). In particular, the standard Young
tableaux R appearing in Proposition 1.10 (respectively in Proposition 3.20) are rectangular (the two
rows have the same length) if and only if 𝑘 = 𝑛 (respectively if ℎ = 𝑛).

Remark 3.26. It follows from Remark 3.21 that, given 𝐼, 𝐽 ⊂ {1, . . . , 𝑛} disjoint and a (nonnecessarily
standard) Young tableau Q containing the elements of {1, . . . , 𝑛}\(𝐼∪𝐽), the covector 𝑑𝑥𝐼 ∧𝑑𝑦𝐽∧𝛼𝑄∧𝜃

belongs to J |𝐼 |+ |𝐽 |+2ℓ+1, where ℓ denotes the length of the first row of Q, and it can be written as a linear
combination of the elements 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 ∧ 𝜃 ∈ J |𝐼 |+ |𝐽 |+2ℓ+1 where R ranges among the standard
Young tableaux with the same shape and containing the same elements as Q.

Remark 3.27. It is a good point to state, for future reference, the following property of the basis provided
by Proposition 1.10.

Let 𝑎, 𝑏 be fixed nonnegative integers such that 𝑎 + 𝑏 ≤ 𝑛 and 𝑛 ≤ 2𝑎 + 𝑏 ≤ 2𝑛. Let (𝐼, 𝐽, 𝑅) range
among the triples such that {𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 ∧ 𝜃}(𝐼 ,𝐽 ,𝑅) is the basis of J2𝑎+𝑏+1 provided by Proposition
1.10; that is,

◦ 𝐼, 𝐽 are disjoint subsets of {1, . . . , 𝑛} such that |𝐼 | + |𝐽 | ≤ 2𝑛 − 2𝑎 − 𝑏;
◦ R is a standard Young tableau where the elements of {1, . . . , 𝑛} \ (𝐼 ∪ 𝐽) are arranged in two rows,

the first one having (2𝑎 + 𝑏 − |𝐼 | − |𝐽 |)/2 elements and the second one having
(2𝑛 − 2𝑎 − 𝑏 − |𝐼 | − |𝐽 |)/2 elements.

Then either ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐼 = {𝑎 + 1, . . . , 𝑎 + 𝑏}
𝐽 = ∅

𝑅 =
1 2 · · · 𝑛 − 𝑎 − 𝑏 𝑛 − 𝑎 + 1 · · · 𝑎

𝑎 + 𝑏 + 1 𝑎 + 𝑏 + 2 · · · n

(3.25)

or

〈𝑋1 ∧ · · · ∧ 𝑋𝑎+𝑏 ∧ 𝑌1 ∧ · · · ∧ 𝑌𝑎 ∧ 𝑇 | 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 ∧ 𝜃〉 = 0 (3.26)

where, in (3.25)

◦ 𝐼 = ∅ if 𝑏 = 0,
◦ R is the empty tableau if 𝑎 = 0,
◦ R has to be interpreted as a rectangular 2 × 𝑎 matrix if 𝑛 = 2𝑎 + 𝑏 and 𝑎 ≥ 1.

Let us prove what is claimed. If either 𝐼 ≠ {𝑎 + 1, . . . , 𝑎 + 𝑏} or 𝐽 ≠ ∅, then (3.26) holds. If instead
𝐼 = {𝑎 +1, . . . , 𝑎 + 𝑏} and 𝐽 = ∅, then the shape of R (i.e., the lengths of its rows) is necessarily the same
as the tableau displayed in (3.25) and R contains precisely the elements {1, . . . , 𝑎, 𝑎 + 𝑏 + 1, . . . , 𝑛}. We
have

〈𝑋1 ∧ · · · ∧ 𝑋𝑎+𝑏 ∧ 𝑌1 ∧ · · · ∧ 𝑌𝑎 ∧ 𝑇 | 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 ∧ 𝜃〉

= ±〈𝑋1 ∧ · · · ∧ 𝑋𝑎 ∧ 𝑌1 ∧ · · · ∧ 𝑌𝑎 | 𝛼𝑅〉,
(3.27)

where the sign is determined by a and b. By its definition (3.16), 𝛼𝑅 can be written as a sum∑
𝑆 𝜎(𝑆)𝑑𝑥𝑦𝑆 , where 𝜎(𝑆) ∈ {1, −1} is a proper sign and the sum ranges among all subsets

𝑆 ⊂ {1, . . . , 𝑎, 𝑎 + 𝑏 + 1, . . . , 𝑛} (i.e., S is a subset of the set of the entries of R) of cardinality a
that contain exactly one element from each column of R. It is clear that

if 𝑆 ≠ {1, . . . , 𝑎}, then 〈𝑋1 ∧ · · · ∧ 𝑋𝑎 ∧ 𝑌1 ∧ · · · ∧ 𝑌𝑎 | 𝑑𝑥𝑦𝑆〉 = 0.
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If R is such that at least one of its columns contains no elements of {1, . . . , 𝑎}, then none of the S’s
appearing in the sum 𝛼𝑅 =

∑
𝑆 𝜎(𝑆)𝑑𝑥𝑦𝑆 is {1, . . . , 𝑎}, and by (3.27)

〈𝑋1 ∧ · · · ∧ 𝑋𝑎+𝑏 ∧ 𝑌1 ∧ · · · ∧ 𝑌𝑎 ∧ 𝑇 | 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 ∧ 𝜃〉 = 0.

If all of the a columns of R contain at least one element of {1, . . . , 𝑎}, then each of these columns
contains exactly one such element. Since R is a standard Young tableau, the sum of the elements of the
first row of R is at most 1 + · · · + 𝑎, but this sum is clearly also at least 1 + · · · + 𝑎. It follows that the
first line of R is made by the elements 1, . . . , 𝑎 (in increasing order) and that the remaining elements
𝑎 + 𝑏 + 1, . . . , 𝑛 (not belonging to I, J or the first line of R) have to be placed, in increasing order, in the
second line of R. This proves that R must be the one in (3.25) and concludes the proof.

3.5. Heisenberg currents

For every 𝑘 = 0, . . . , 2𝑛 + 1, we introduce the spaces D𝑘
H

⊂ Ω𝑘
H

of compactly supported smooth
Heisenberg k-forms; that is,

D𝑘
H

:= 𝐶∞
𝑐

(
H
𝑛, ∧𝑘𝔥

I𝑘

)
if 0 ≤ 𝑘 ≤ 𝑛

D𝑘
H

:= 𝐶∞
𝑐 (H𝑛,J𝑘 ) if 𝑛 + 1 ≤ 𝑘 ≤ 2𝑛 + 1,

and we observe that 𝑑𝐶 maps D𝑘
H

to D𝑘+1
H

. We endow the space D𝑘
H

with the natural topology induced
by the topology of the space D𝑘 of compactly supported k-forms on H𝑛.

Definition 3.28. Given 𝑘 ∈ {0, . . . , 2𝑛+1}, we denote byDH,𝑘 the space of continuous linear functionals
on D𝑘

H
. An element of DH,𝑘 is called Heisenberg k-dimensional current or, for shortness, Heisenberg

k-current.

For every 𝑘 ∈ {1, . . . , 2𝑛 + 1} and every Heisenberg k-current T ∈ DH,𝑘 , we denote by 𝜕T the
Heisenberg (𝑘 − 1)-current defined, for every 𝜔 ∈ D𝑘−1

H
, by 𝜕T(𝜔) := T(𝑑𝐶𝜔) (recall Remark 3.7).

Namely,

𝜕T(𝜔) := T(𝑑𝜔) if 𝑘 ≠ 𝑛 + 1
𝜕T(𝜔) := T(𝐷𝜔) if 𝑘 = 𝑛 + 1.

It is not our aim to introduce here the mass of a current (see [51, Definition 5.12] and [22, Defini-
tions 2.5 and 2.6]), which would require introducing a notion of comass ([42, 4.1.7]) on Rumin’s spaces
of covectors. For our purposes, it will be enough to introduce the notion of current with finite mass (see
Definition 3.29), and to this end any choice of (co)mass on covectors is equivalent. We denote by | · |
the standard norm on ∧∗𝔥 (in particular, | · | is defined on J𝑘 for 𝑘 ≥ 𝑛 + 1) and we agree that, for every
1 ≤ 𝑘 ≤ 𝑛 and 𝜆 ∈ ∧𝑘𝔥/I𝑘

,

|𝜆 | := min
{
|𝜈 | : 𝜈 ∈ ∧𝑘𝔥1, [𝜈] = 𝜆

}
(3.28)

where [𝜈] is the equivalence class of 𝜈 in the quotient ∧𝑘𝔥1/{𝜇 ∧ 𝑑𝜃 : 𝜇 ∈ ∧𝑘−2𝔥1} (recall (3.7)). The
quantity | · | is a norm on ∧𝑘𝔥/I𝑘 .

Definition 3.29. Let 𝑘 ∈ {1, . . . , 2𝑛} be fixed. We say that a current T ∈ DH,𝑘 has finite mass if there
exists 𝑀T ∈ R such that

|T(𝜔) | ≤ 𝑀T sup
𝑝∈H𝑛

|𝜔(𝑝) | for every 𝜔 ∈ D𝑘
H

.
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The current T has locally finite mass if, for each compact set 𝐾 ⊂ H𝑛, there exists 𝑀T,𝐾 ∈ R such that

|T(𝜔) | ≤ 𝑀T,𝐾 sup
𝑝∈H𝑛

|𝜔(𝑝) | for every 𝜔 ∈ D𝑘
H

with support in 𝐾.

Finally, T is normal (respectively, locally normal) if both T and 𝜕T have finite mass (respectively locally
finite mass).

Remark 3.30. The reader familiar with the theory of distributions will realise that a Heisenberg k-
current has locally finite mass if and only if it has order 0 in the sense of distributions; equivalently, if it
is a measure taking values in a proper space of k-vectors. More precisely, if T is a k-current with locally
finite mass, then there exist a locally finite (nonnegative) measure 𝜇 and a 𝜇-measurable function 𝜏,
taking values in J𝑘 (if 𝑘 ≥ 𝑛 + 1; recall Remark 3.4) or in the dual space (∧𝑘𝔥/I𝑘 )∗ (if 𝑘 ≤ 𝑛), such
that T = 𝜏𝜇; that is,

T(𝜔) =
∫

〈𝜏 | 𝜔〉 𝑑𝜇 for every 𝜔 ∈ D𝑘
H

.

As done in the Introduction, one can also assume that |𝜏 | = 1 𝜇-a.e. In this case, we denote 𝜏 and 𝜇 by,
respectively, �T and ‖T‖ and write T = �T‖T‖.

As in Subsection 3.4, for the rest of the present section we denote by k the codimension, rather
than the dimension, of a current or submanifold. We focus on the low-codimensional case and we fix
𝑘 ∈ {1, . . . , 𝑛}.

Recall that every 𝐶1-regular oriented submanifold 𝑆 ⊂ H𝑛 of codimension k naturally induces a
(2𝑛 + 1 − 𝑘)-dimensional classical current �𝑆� defined, for every smooth and compactly supported
(2𝑛 + 1 − 𝑘)-form 𝜔 in H𝑛, by

�𝑆�(𝜔) :=
∫
𝑆

𝜔 =
∫
𝑆
〈𝑡𝑆 | 𝜔〉 𝑑vol𝑆 ,

where 𝑡𝑆 is a unit (2𝑛 + 1 − 𝑘)-vector tangent to S and with positive orientation and 𝑑vol𝑆 is the surface
measure on S induced by the left-invariant Riemannian metric onH𝑛 making 𝑋1, . . . , 𝑌𝑛, 𝑇 orthonormal.

Using the notation in Remark 3.1, for every 𝑝 ∈ 𝑆 we can write

𝑡𝑆 (𝑝) = (𝑡𝑆 (𝑝))𝔥1 + 𝜂𝑆 (𝑝) ∧ 𝑇 (3.29)

for a unique 𝜂𝑆 (𝑝) ∈ ∧2𝑛−𝑘𝔥1. Notice that 𝜂𝑆 (𝑝) = 0 if and only if p is a characteristic point of S; that
is, 𝑇𝑝𝑆 ⊂ 𝔥1.

Assume now that 𝑝 ∈ 𝑆 is not a characteristic point; then, the intersection 𝑇𝑝𝑆 ∩ 𝔥1 is a (2𝑛 − 𝑘)-
dimensional plane and it is immediate to check that 𝑇𝑝𝑆 ∩ 𝔥1 = span 𝜂𝑆 (𝑝). Therefore, the unit vector

𝜏H𝑆 (𝑝) :=
𝜂𝑆 (𝑝)

|𝜂𝑆 (𝑝) |
(3.30)

is canonically associated with the linear subspace 𝑇𝑝𝑆 ∩ 𝔥1. We denote by 𝑡H𝑆 := 𝜏H𝑆 ∧𝑇 the (horizontal)
tangent vector to S. Geometrically, 𝑡H𝑆 characterises the blow-up limit of S at p; in fact,

lim
𝑟→+∞

𝛿𝑟 (𝑝−1𝑆) = exp(span 𝑡H𝑆 (𝑝)),

where the limit is taken with respect to local Hausdorff convergence of sets. See, for example, [68].
With this notation, we define the Heisenberg current �𝑆� ∈ DH,2𝑛+1−𝑘 by

�𝑆�(𝜔) :=
∫
𝑆
〈𝑡H𝑆 | 𝜔〉 𝑑𝒮𝑄−𝑘 , 𝜔 ∈ D2𝑛+1−𝑘

H
.
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The definition is well-posed because the Hausdorff measure 𝒮𝑄−𝑘 is locally finite on S (see, e.g., [68])
and the set of characteristic points of S, where in principle 𝑡H𝑆 is not defined, is𝒮𝑄−𝑘 -negligible ([15, 69]).

The next result, though very simple, has to our knowledge never been noticed in the literature. Lemma
3.31 and the subsequent Corollary 3.34 prove Proposition 1.9, which will play a crucial role in the sequel.

Lemma 3.31. Let 𝑛 ≥ 1 and 𝑘 ∈ {1, . . . , 𝑛} be fixed. Then there exists 𝐶𝑛,𝑘 > 0 such that, for every
oriented and 𝐶1-smooth submanifold S of H𝑛 of dimension 2𝑛 + 1 − 𝑘 , one has

�𝑆�(𝜔) = 𝐶𝑛,𝑘�𝑆�(𝜔) for every 𝜔 ∈ D2𝑛+1−𝑘
H

.

Proof. By [68, Theorem 1.2] (see also [71, Theorem 8.1 and Proposition 8.7]), there exists a positive
constant 𝐶𝑛,𝑘 such that

𝒮𝑄−𝑘 𝑆 = 𝐶𝑛,𝑘 |𝜂𝑆 ∧ 𝑇 | vol𝑆 = 𝐶𝑛,𝑘 |𝜂𝑆 | vol𝑆 ,

where 𝜂𝑆 (𝑝) is as in (3.29). We remark that one is allowed to apply [68, Theorem 1.2] because of the
rotational invariance (3.1) of the distance d; see [68, Proposition 4.5]. Therefore,

�𝑆�(𝜔) =
∫
𝑆
〈𝑡H𝑆 | 𝜔〉 𝑑𝒮𝑄−𝑘 =

∫
𝑆

〈
𝜂𝑆
|𝜂𝑆 |

∧ 𝑇

%%%%𝜔〉 𝑑𝒮𝑄−𝑘 = 𝐶𝑛,𝑘

∫
𝑆
〈𝜂𝑆 ∧ 𝑇 | 𝜔〉 𝑑vol𝑆

and by Remark 3.3,

�𝑆�(𝜔) = 𝐶𝑛,𝑘

∫
𝑆
〈(𝑡𝑆)𝔥1 + 𝜂𝑆 ∧ 𝑇 | 𝜔〉 𝑑vol𝑆 = 𝐶𝑛,𝑘

∫
𝑆
〈𝑡𝑆 | 𝜔〉 𝑑vol𝑆 .

This concludes the proof. �

Remark 3.32. The constant 𝐶𝑛,𝑘 provided by Lemma 3.31 actually also depends on the distance d.
However, we omit this dependence.

Remark 3.33. Let S be as in Lemma 3.31. The definition of the Heisenberg current �𝑆� depends on
𝒮𝑄−𝑘 ; that is, on the choice of the rotationally invariant distance d. On the contrary, the classical current
�𝑆� is a purely differential object – there is no metric involved. Therefore, Lemma 3.31 suggests that
𝒮
𝑄−𝑘
∗ := 𝒮𝑄−𝑘/𝐶𝑛,𝑘 , which does not depend on the choice of d, might be the correctly normalised

spherical Hausdorff measure on H𝑛.

The following result is very simple.

Corollary 3.34. Let 𝑛 ≥ 1 and 𝑘 ∈ {1, . . . , 𝑛} be fixed. If S is an oriented 𝐶1-smooth submanifold of
H
𝑛 of codimension k and without boundary, then 𝜕�𝑆� = 0.

Proof. If 𝑘 < 𝑛, by Lemma 3.31 and Stokes’ theorem we have for every 𝜔 ∈ D2𝑛−𝑘
H

𝜕�𝑆�(𝜔) = �𝑆�(𝑑𝜔) = 𝐶𝑛,𝑘�𝑆�(𝑑𝜔) = 0.

Similarly, when 𝑘 = 𝑛 we have for every 𝜔 ∈ D𝑛
H

𝜕�𝑆�(𝜔) = �𝑆�(𝐷𝜔) = 𝐶𝑛,𝑘�𝑆�(𝐷𝜔) = 0

because, by definition of D, the form 𝐷𝜔 is exact. �

3.6. Rank 1 connection and a property of tangent vectors to vertical planes

We conclude the present Section 3 by stating a technical result, Proposition 3.38, which will be of the
utmost relevance in the proof of Rademacher’s Theorem 1.1. Since the proof of Proposition 3.38 is quite
long and involved, for the moment we only state it and postpone its proof to Appendix A.
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Let us start with a preliminary definition.

Definition 3.35. Let V be a real vector space of dimension ℓ and let m be an integer such that 1 ≤ 𝑚 < ℓ.
We say that two m-dimensional vector subspaces 𝒫1,𝒫2 of V are rank 1 connected if dim𝒫1 ∩ 𝒫2 ≥
𝑚 − 1.

The terminology chosen in Definition 3.35 is borrowed from some classical problems in the calculus
of variations; see, for example, [14, 78]. Some motivations are provided by the following Remark 3.36,
which we state for future reference and where we identify linear applications and matrices.

Remark 3.36. Let 𝑊,𝑉 be real vector spaces of dimensions 𝑚 ≥ 1 and ℓ ≥ 1, respectively. Let also
𝐿1, 𝐿2 : 𝑊 → 𝑉 be linear maps and, for 𝑖 = 1, 2, let 𝒫𝑖 := {(𝑤, 𝐿𝑖 (𝑤)) ∈ 𝑊 ×𝑉 : 𝑤 ∈ 𝑊} be the graph
of 𝐿𝑖 . Then the following statements are equivalent:

(a) the vector subspaces 𝒫1,𝒫2 of 𝑊 × 𝑉 are rank 1 connected;
(b) either 𝐿1 = 𝐿2 or rank (𝐿1 − 𝐿2) = 1.

The subsequent Lemma 3.37 motivates the terminology in Definition 3.35: recall, in fact, that simple
multivectors are sometimes called rank 1 multivectors. Before stating Lemma 3.37, let us fix some
standard language. If 𝒫 ⊂ 𝑉 is a m-dimensional vector subspace and 𝑡 ∈ ∧𝑚𝑉 is not null, we say that t
is tangent to 𝒫 if t is simple and it can be written as 𝑡 = 𝑣1 ∧ · · · ∧ 𝑣𝑚 for some basis 𝑣1, . . . , 𝑣𝑚 of 𝒫.
Equivalently, t is tangent to 𝒫 if and only if span 𝑡 := {𝑣 ∈ 𝑉 : 𝑣 ∧ 𝑡 = 0} coincides with 𝒫. Needless
to say, if t and s are both tangent to 𝒫, then t and s are linearly dependent; that is, t is a multiple of s
(and vice versa).

Lemma 3.37. Let V be a real vector space of dimension ℓ and let m be an integer such that 1 ≤ 𝑚 ≤ ℓ;
let also 𝒫1,𝒫2 be fixed m-dimensional vector subspaces of V. Then the following statements are
equivalent:

(a) 𝒫1,𝒫2 are rank 1 connected;
(b) for every couple of simple vectors 𝑡1, 𝑡2 ∈ ∧𝑚𝑉 tangent to 𝒫1,𝒫2 (respectively), the difference

𝑡1 − 𝑡2 is a simple m-vector;
(c) there exists a couple of simple vectors 𝑡1, 𝑡2 ∈ ∧𝑚𝑉 tangent to 𝒫1,𝒫2 (respectively) such that the

difference 𝑡1 − 𝑡2 is a simple m-vector.

The proof of Lemma 3.37 is quite simple; nonetheless, it is provided in Appendix A for the sake of
completeness.

After recalling Definition 3.2 (vertical planes) and the notation [ · ]J introduced in Remark 3.4, we
can eventually state the following result.

Proposition 3.38. Let 𝑘 ∈ {1, . . . , 𝑛} and 𝜁 ∈ J2𝑛+1−𝑘 be fixed with 𝜁 ≠ 0. Then

(i) if 𝑘 < 𝑛, there exists at most one (2𝑛 + 1 − 𝑘)-dimensional vertical plane 𝒫 whose unit tangent
vector 𝑡𝒫 = 𝑡H

𝒫
is such that [𝑡H

𝒫
]J is a multiple of 𝜁;

(ii) if 𝑘 = 𝑛, there exist at most two vertical (𝑛 + 1)-planes 𝒫 whose unit tangent vectors 𝑡𝒫 = 𝑡H
𝒫

are
such that [𝑡H

𝒫
]J is a multiple of 𝜁 . Moreover, if 𝒫1,𝒫2 are two different such planes, then 𝒫1 and

𝒫2 are not rank 1 connected.

As we said, the long proof of Proposition 3.38 is postponed to Appendix A. It is, however, worth
observing that the nonuniqueness phenomenon allowed for by statement (ii) above can indeed occur. In
fact, consider the vertical 3-planes in H2,

𝒫1 := {(𝑥, 𝑦, 𝑡) ∈ H2 : 𝑥2 = 𝑦2 = 0} and 𝒫2 := {(𝑥, 𝑦, 𝑡) ∈ H2 : 𝑥1 = 𝑦1 = 0}.

Unit tangent vectors are provided by

𝑡H𝒫1
= 𝑋1 ∧ 𝑌1 ∧ 𝑇 and 𝑡H𝒫2

= −𝑋2 ∧ 𝑌2 ∧ 𝑇
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and, using, for instance, Example 3.23, one can easily check that [𝑡H
𝒫1

]J = [𝑡H
𝒫2

]J. Observe that 𝒫1 and
𝒫2 are not rank 1 connected, as stated by Proposition 3.38. The latter also guarantees that no vertical
plane 𝒫 ≠ 𝒫1 such that [𝑡H

𝒫
]J = [𝑡H

𝒫1
]J exists other than 𝒫2. See also Remarks A.2 and A.4.

4. Intrinsic Lipschitz graphs in Heisenberg groups

Though already introduced in Section 2, for the reader’s convenience we now recall the notion of
intrinsic Lipschitz graph. Assume that a splitting of H𝑛 is fixed; namely, letW,V be homogeneous (i.e.,
invariant under dilations) and complementary (i.e.,W∩V = {0} andH𝑛 =WV) subgroups ofH𝑛. Each
𝑝 ∈ H𝑛 possesses a unique decomposition 𝑝 = 𝑝W𝑝V as a product of elements 𝑝W ∈ W, 𝑝V ∈ V. For
𝛼 ≥ 0, the homogeneous cone 𝐶𝛼 along V is

𝐶𝛼 := {𝑝 ∈ H : ‖𝑝V‖H ≥ 𝛼‖𝑝W‖H} = {𝑤𝑣 : 𝑤 ∈ W, 𝑣 ∈ V, ‖𝑣‖H ≥ 𝛼‖𝑤‖H} .

The set 𝐶𝛼 is homogeneous (i.e., invariant under dilations) and 0 ∈ 𝐶𝛼; actually, V ⊂ 𝐶𝛼. For 𝑝 ∈ H𝑛

we set 𝐶𝛼 (𝑝) := 𝑝𝐶𝛼. Observe that 𝐶𝛼 coincides with the cone 𝒞1/𝛼 defined in Subsection 2.2: the
reason for this change in notation is that, from now on, we will more frequently deal with the intrinsic
Lipschitz constants of maps rather than with the apertures of the associated cones.

Given 𝐴 ⊂ W and a map 𝜙 :W→ V, the intrinsic graph of 𝜙 is the set

gr𝜙 := {𝑤𝜙(𝑤) : 𝑤 ∈ 𝐴} ⊂ H𝑛.

We hereafter adopt the convention that, whenever a map 𝜙 : 𝐴 → V is introduced, we denote by
Φ : 𝐴 → H𝑛 the associated graph map Φ(𝑤) := 𝑤𝜙(𝑤); in particular, gr𝜙 = Φ(𝐴).

Definition 4.1. Let 𝐴 ⊂ W; we say that a map 𝜙 : 𝐴 → V is intrinsic Lipschitz continuous if there
exists 𝛼 > 0 such that

∀ 𝑝 ∈ gr𝜙 gr𝜙 ∩ 𝐶𝛼 (𝑝) = {𝑝}. (4.1)

We call intrinsic Lipschitz constant of 𝜙 the infimum of those positive 𝛼 for which (4.1) holds.

Intrinsic Lipschitz maps of low dimension ( dimW ≤ 𝑛) are Euclidean Lipschitz continuous and the
Hausdorff dimension of their graphs equals the topological one; that is, dimW. See [50, Remark 3.11],
[53, Proposition 3.7] or [8]. On the contrary, intrinsic Lipschitz maps of low codimension 𝑘 = dimV ≤ 𝑛
are not better than Euclidean 1/2-Hölder continuous; see Remark 4.5. Despite this fractal behaviour
(see also [63]), they enjoy good metric properties: for instance, the Hausdorff dimension of their graphs
is the same, 𝑄 − 𝑘 , as W, and the (𝑄 − 𝑘)-dimensional Hausdorff measure on their graph is even
(𝑄 − 𝑘)-Ahlfors regular; see Remark 4.6 and the references therein.

4.1. Intrinsic Lipschitz graphs of low codimension

We are interested in intrinsic Lipschitz graphs of codimension at most n; we then assume that 𝑘 := dimV
is a positive integer not greater than n. It can be easily checked (see, e.g., [51, Remark 3.12]) that this
forces V to be abelian; by Remark 3.16, up to an isometric group isomorphism of H𝑛, one can always
assume that

V = exp(span{𝑋1, . . . , 𝑋𝑘 }). (4.2)

Moreover, it follows from [53, Proposition 3.1] (alternatively, from Theorem 1.4) that, if W,W′ are
complementary to V and 𝑆 ⊂ H𝑛 is such that 𝑆 = gr𝜙 for some intrinsic Lipschitz 𝜙 : 𝐴 → V with
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𝐴 ⊂ W, then there exists 𝐴′ ⊂ W′ and an intrinsic Lipschitz map 𝜙′ : 𝐴′ → V such that 𝑆 = gr𝜙′ . In
particular, it will not be restrictive (see also Remark 6.1) to assume that

W = exp(span{𝑋𝑘+1, . . . , 𝑋𝑛, 𝑌1, . . . , 𝑌𝑛, 𝑇}) if 1 ≤ 𝑘 ≤ 𝑛 − 1
W = exp(span{𝑌1, . . . , 𝑌𝑛, 𝑇}) if 𝑘 = 𝑛.

(4.3)

Hence, from now on we work with the subgroupsW,V defined in (4.2) and (4.3). In coordinates

V = {(𝑥, 𝑦, 𝑡) ∈ R𝑛 × R𝑛 × R : 𝑦 = 0, 𝑥𝑘+1 = . . . = 𝑥𝑛 = 𝑡 = 0} if 1 ≤ 𝑘 ≤ 𝑛 − 1
V = {(𝑥, 𝑦, 𝑡) ∈ R𝑛 × R𝑛 × R : 𝑦 = 0, 𝑡 = 0} if 𝑘 = 𝑛 (4.4)
W = {(𝑥, 𝑦, 𝑡) ∈ R𝑛 × R𝑛 × R : 𝑥1 = . . . = 𝑥𝑘 = 0}.

For simplicity, we will write 𝑣 ∈ V and 𝑤 ∈ W as

𝑣 = (𝑥1, . . . , 𝑥𝑘 ) ∈ R𝑘

𝑤 = (𝑥𝑘+1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛, 𝑡) ∈ R2𝑛+1−𝑘 if 1 ≤ 𝑘 ≤ 𝑛 − 1 (4.5)
𝑤 = (𝑦1, . . . , 𝑦𝑛, 𝑡) ∈ R𝑛+1 if 𝑘 = 𝑛.

Notice that, if 𝑝 = (𝑥, 𝑦, 𝑡), then 𝑝V = (𝑥1, . . . , 𝑥𝑘 ). Observe also that the measure ℒ2𝑛+1−𝑘 induced on
W by the identificationW ≡ R2𝑛+1−𝑘 in (4.5) is a Haar measure onW that is also (𝑄 − 𝑘)-homogeneous;
that is,

ℒ2𝑛+1−𝑘 (𝐵(𝑤, 𝑟) ∩W) = 𝑟𝑄−𝑘ℒ2𝑛+1−𝑘 (𝐵(0, 1) ∩W) ∀ 𝑤 ∈ W, 𝑟 > 0. (4.6)

In particular, ℒ2𝑛+1−𝑘 coincides, up to multiplicative factors, with the Hausdorff ℋ𝑄−𝑘 and spherical
Hausdorff 𝒮𝑄−𝑘 measures onW.

We now write the intrinsic graph map Φ in coordinates: writing 𝑤 ∈ W ≡ R2𝑛+1−𝑘 and 𝜙(𝑤) ∈ V ≡
R
𝑘 as in (4.5), one gets

Φ(𝑤) = (𝜙(𝑤), 𝑥𝑘+1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛, 𝑡 − 1
2 〈𝜙(𝑤), (𝑦1, . . . , 𝑦𝑘 )〉) if 1 ≤ 𝑘 ≤ 𝑛 − 1

Φ(𝑤) = (𝜙(𝑤), 𝑦1, . . . , 𝑦𝑛, 𝑡 − 1
2 〈𝜙(𝑤), 𝑦〉) if 𝑘 = 𝑛,

(4.7)

where the scalar products appearing in (4.7) are those of R𝑘 . Let us write an equivalent analytic
formulation for (4.1). Clearly, the latter is equivalent to require that

Φ(𝑤′)−1Φ(𝑤) = (−𝜙(𝑤′)) (−𝑤′)𝑤𝜙(𝑤) ∉ 𝐶𝛼 for all 𝑤, 𝑤′ ∈ 𝐴, 𝑤 ≠ 𝑤′. (4.8)

SinceW is a normal subgroup and V is commutative, we have

(−𝜙(𝑤′)) (−𝑤′)𝑤𝜙(𝑤) = (−𝜙(𝑤′)) (−𝑤′)𝑤𝜙(𝑤′)︸�������������������������︷︷�������������������������︸
∈W

(𝜙(𝑤) − 𝜙(𝑤′))︸��������������︷︷��������������︸
∈V≡R𝑘

and (4.8) is equivalent to

‖𝜙(𝑤) − 𝜙(𝑤′)‖H < 𝛼‖(−𝜙(𝑤′)) (−𝑤′)𝑤𝜙(𝑤′)‖H for all 𝑤, 𝑤′ ∈ 𝐴, 𝑤 ≠ 𝑤′.
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After a boring computation (which we omit) and writing 𝑤 = (𝑥𝑘+1, . . . , 𝑦𝑛, 𝑡) and 𝑤′ =
(𝑥 ′
𝑘+1, . . . , 𝑦′

𝑛, 𝑡 ′), when 𝑘 < 𝑛 we obtain that (4.1) is equivalent to

|𝜙(𝑤) − 𝜙(𝑤′) |

< 𝛼

......���𝑥𝑘+1 − 𝑥 ′
𝑘+1, . . . , 𝑦𝑛 − 𝑦′

𝑛, 𝑡 − 𝑡 ′ −
𝑘∑
𝑗=1

𝜙 𝑗 (𝑤
′) (𝑦 𝑗 − 𝑦′

𝑗 ) +
1
2

𝑛∑
𝑗=𝑘+1

(𝑥 𝑗 𝑦
′
𝑗 − 𝑥 ′

𝑗 𝑦 𝑗 )
	
�
......
H

(4.9)

for all points 𝑤 = (𝑥𝑘+1, . . . , 𝑦𝑛, 𝑡), 𝑤′ = (𝑥 ′
𝑘+1, . . . , 𝑦′

𝑛, 𝑡 ′) ∈ 𝐴 with 𝑤 ≠ 𝑤′. If 𝑘 = 𝑛, the formula
above reads as

|𝜙(𝑤) − 𝜙(𝑤′) | < 𝛼

......���𝑦1 − 𝑦′
1, . . . , 𝑦𝑛 − 𝑦′

𝑛, 𝑡 − 𝑡 ′ −
𝑘∑
𝑗=1

𝜙 𝑗 (𝑤
′) (𝑦 𝑗 − 𝑦′

𝑗 )
	
�
......
H

(4.10)

for all 𝑤 = (𝑦1, . . . , 𝑦𝑛, 𝑡), 𝑤′ = (𝑦′
1, . . . , 𝑦′

𝑛, 𝑡 ′) ∈ 𝐴, 𝑤 ≠ 𝑤′.
It is convenient to point out some basic facts about intrinsic Lipschitz functions.

Remark 4.2. Let 𝜙 : 𝐴 ⊂ W → V be intrinsic Lipschitz with intrinsic Lipschitz constant not greater
than 𝛼 and assume that 𝜙(0) = 0; then, |𝜙(𝑤) | ≤ 𝛼‖𝑤‖H for every 𝑤 ∈ W. In order to prove this
statement, it is enough to plug 𝑤′ = 0 in (4.9) and (4.10).

Remark 4.3. Assume that H𝑛 is endowed with the distance 𝑑∞ defined in (3.2) and let 𝛼 ≤ 1/2 be
fixed. Then, for every intrinsic Lipschitz 𝜙 : W→ V with intrinsic Lipschitz constant not greater than
𝛼 there holds

|𝑝V − 𝑞V | ≤ 2𝛼𝑑∞(𝑝, 𝑞) for every 𝑝, 𝑞 ∈ gr𝜙 . (4.11)

We can assume without loss of generality that 𝑞 = 0; using Remark 4.2,

|𝑝V | = |𝜙(𝑝W) | ≤ 𝛼𝑑∞(0, 𝑝W)

≤ 𝛼(𝑑∞(0, 𝑝) + 𝑑∞(𝑝, 𝑝W)) ≤ 𝛼𝑑∞(0, 𝑝) + 1
2 𝑑∞(𝑝V, 0) = 𝛼𝑑∞(0, 𝑝) + 1

2 |𝑝V |,

which is (4.11).

Remark 4.4. Assume that H𝑛 is endowed with the distance 𝑑∞ defined in (3.2). Then, for every
𝜀 > 0 there exists �̄� = �̄�(𝜀, 𝑛, 𝑘) > 0 such that the following holds: for every intrinsic Lipschitz map
𝜙 :W→ V with intrinsic Lipschitz constant not greater than �̄�,

(1 − 𝜀) |𝑝V − 𝜙(𝑝W) | ≤ 𝑑∞(𝑝, gr𝜙) ≤ |𝑝V − 𝜙(𝑝W) | ∀ 𝑝 ∈ H𝑛. (4.12)

The second equality in (4.12) is trivial (and, actually, it holds for every 𝜙 :W→ V) because

𝑑∞(𝑝, gr𝜙) ≤ 𝑑∞(𝑝,Φ(𝑝W)) = 𝑑∞(𝑝W𝑝V, 𝑝W𝜙(𝑝W)) = 𝑑∞(0, (𝑝V)
−1𝜙(𝑝W)) = |𝑝V − 𝜙(𝑝W) |.

In order to prove the first inequality in (4.12), we argue by contradiction. Assume that there exists 𝜀 > 0
such that, for every 𝑖 ∈ N, there exist 𝑝𝑖 ∈ H𝑛 and 𝜙𝑖 : W→ V such that 𝜙𝑖 is intrinsic Lipschitz with
intrinsic Lipschitz constant not greater than 1/𝑖 and

for every 𝑖 𝑑∞(𝑝𝑖 , gr𝜙𝑖
) < (1 − 𝜀) |(𝑝𝑖)V − 𝜙𝑖 ((𝑝𝑖)W) |. (4.13)

Up to a left translation we can assume that (𝑝𝑖)W = 0 and 𝜙𝑖 (0) = 0 for all i; in particular, 𝑝𝑖 ∈ V for
all i and, up to a dilation, we can also assume that 𝑑∞(𝑝𝑖 , 0) = 1, so that (4.13) becomes

for every 𝑖 𝑑∞(𝑝𝑖 , 𝑝𝑖) = 𝑑∞(𝑝𝑖 , gr𝜙𝑖
) < 1 − 𝜀, (4.14)
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where the points 𝑝𝑖 ∈ gr𝜙𝑖
are chosen so that 𝑑∞(𝑝𝑖 , 𝑝𝑖) = 𝑑∞(𝑝𝑖 , gr𝜙𝑖

). Observe that 𝑑∞(0, 𝑝𝑖) ≤
𝑑∞(0, 𝑝𝑖) + 𝑑∞(𝑝𝑖 , 𝑝𝑖) < 2; in particular, up to extracting a subsequence there exist 𝑝 ∈ V and
𝑝 ∈ 𝐵(0, 2) such that 𝑝𝑖 → 𝑝 ∈ V and 𝑝𝑖 → 𝑝 as 𝑖 → +∞; clearly, 𝑑∞(𝑝, 0) = 1. By Remark 4.2 we
have that 𝜙𝑖 → 0 uniformly on compact sets of W (equivalently, gr𝜙𝑖

→ W with respect to the local
Hausdorff convergence of closed sets in H𝑛), in particular, 𝑝 ∈ W. Letting 𝑖 → +∞ in (4.14) provides

𝑑∞(𝑝, 𝑝) ≤ 1 − 𝜀.

However, writing 𝑝 = (𝑝1, . . . , 𝑝𝑘 , 0, . . . , 0) and 𝑝 = (0, . . . , 0, 𝑝𝑘+1, . . . , 𝑝2𝑛+1), we notice that

𝑑∞(𝑝, 𝑝) ≥ |(𝑝1, . . . , 𝑝𝑘 ) | = 𝑑∞(0, 𝑝) = 1,

a contradiction.

Remark 4.5. It follows from (4.9)–(4.10) that, if 𝐾 ⊂ W is compact and 𝜙 : W → V is intrinsic
Lipschitz with intrinsic Lipschitz constant 𝛼, then there exists 𝑀 = 𝑀 (𝛼, 𝜙(0), 𝐾) such that |𝜙| ≤ 𝑀
on K.

In particular, one can apply [52, Proposition 4.8] to get the following: for every 𝛼 > 0 and every
compact set 𝐾 ⊂ W there exists 𝐶 = 𝐶 (𝛼, 𝐾) > 0 such that, for every 𝑤, 𝑤′ ∈ 𝐾 and every intrinsic
Lipschitz 𝜙 :W→ V with 𝜙(0) = 0 and intrinsic Lipschitz constant not greater than 𝛼, the 1/2-Hölder
estimate

|𝜙(𝑤) − 𝜙(𝑤′) | ≤ 𝐶 |𝑤 − 𝑤′ |1/2

holds, where | · | denotes the Euclidean norm inW ≡ R2𝑛+1−𝑘 .

Remark 4.6. It was proved in [53, Theorem 3.9] that the (𝑄 − 𝑘)-dimensional Hausdorff measure on
intrinsic Lipschitz graphs graphs is (𝑄−𝑘)-Ahlfors regular; in particular, intrinsic Lipschitz graphs have
the same Hausdorff dimension 𝑄 − 𝑘 of the domainW. Actually, the statement of [53, Theorem 3.9] is
more quantitative; in fact, it states that for every 𝛼 > 0 there exists 𝐶1 = 𝐶1 (𝛼) > 0 such that, for every
intrinsic Lipschitz function 𝜙 :W→ Vwhose intrinsic Lipschitz constant is not greater than 𝛼, one has

𝐶1
−1𝑟𝑄−𝑘 ≤ 𝒮𝑄−𝑘 (gr𝜙 ∩ 𝐵(𝑝, 𝑟)) ≤ 𝐶1𝑟𝑄−𝑘 ∀ 𝑝 ∈ gr𝜙 , 𝑟 > 0. (4.15)

Let us point out for future reference one further consequence that is implicitly proved in [53, Theorem
3.9]. Denote by 𝜋W : H𝑛 →W the projection 𝜋W (𝑝) := 𝑝W; by [53, formula (44)] there exists a constant
𝐶2 = 𝐶2 (𝛼) ∈ (0, 1) such that, for every 𝜙 as above,

𝜋W (𝐵(𝑝, 𝐶2𝑟)) ⊂ 𝜋W (gr𝜙 ∩ 𝐵(𝑝, 𝑟)) ⊂ 𝜋W(𝐵(𝑝, 𝑟)) ∀ 𝑝 ∈ gr𝜙 , 𝑟 > 0.

By [53, Lemma 2.20], which states that there exists 𝐶3 > 0 such that

ℒ2𝑛+1−𝑘 (𝜋W (𝐵(𝑝, 𝑟)) = 𝐶3𝑟𝑄−𝑘 ∀ 𝑝 ∈ H𝑛, 𝑟 > 0,

we deduce that

𝐶4
−1𝒮𝑄−𝑘 gr𝜙 ≤ Φ#(ℒ2𝑛+1−𝑘

W) ≤ 𝐶4𝒮
𝑄−𝑘 gr𝜙

for a suitable 𝐶4 = 𝐶4 (𝛼) > 0, where Φ# denotes push-forward of measures. Since 𝒮𝑄−𝑘 gr𝜙 is a
doubling measure, one can differentiate the measureΦ#(ℒ2𝑛+1−𝑘

W) with respect to𝒮𝑄−𝑘 gr𝜙 (see,
e.g., [83]) to get the existence of 𝑔 : gr𝜙 → [𝐶4

−1, 𝐶4] such that Φ#(ℒ2𝑛+1−𝑘
W) = 𝑔𝒮𝑄−𝑘 gr𝜙 .

Equivalently, there exists a measurable function 𝐽𝜙 :W→ [𝐶4
−1, 𝐶4] such that

𝒮𝑄−𝑘 gr𝜙 = Φ#(𝐽𝜙 ℒ
2𝑛+1−𝑘

W).
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Theorem 1.3 (proved later in Section 7) will show that 𝐽𝜙 coincides with the intrinsic Jacobian de-
terminant 𝐽𝜙𝜙 of 𝜙 (see Definition 4.9) up to a multiplicative constant. We will, of course, need to
consider 𝐽𝜙 and 𝐽𝜙𝜙 as separate notions until Theorem 1.3 is proved, and we therefore ask the reader
to remember that the two objects are distinguished even though quite similar in notation.

4.2. Intrinsic differentiability and blow-ups of intrinsic Lipschitz maps

Left-translations of intrinsic Lipschitz graphs are also intrinsic Lipschitz graphs. When 𝐴 ⊂ W, �̄� ∈ 𝐴
and an intrinsic Lipschitz map 𝜙 : 𝐴 → V are fixed and one sets 𝑝 := �̄�𝜙(�̄�); then (see [9, Proposition
3.6] or [53, Proposition 2.21]) 𝑝−1gr𝜙 is the intrinsic Lipschitz graph of the map 𝜙�̄� : 𝑝−1 𝐴𝜙(�̄�) → V
defined by

𝜙�̄� (𝑤) := 𝜙(�̄�)−1𝜙(𝑝𝑤𝜙(�̄�)−1).

We observe that the domain 𝑝−1 𝐴𝜙(�̄�) = 𝜙(�̄�)−1�̄�−1 𝐴𝜙(�̄�) of 𝜙�̄� is a subset of W because W is a
normal subgroup; moreover, 𝜙�̄� (0) = 0 by construction. Clearly, 𝜙�̄� has the same intrinsic Lipschitz
constant as 𝜙.

Dilations of intrinsic Lipschitz graphs are intrinsic Lipschitz graphs too: if A and 𝜙 are as above, 𝑟 > 0
and 𝜙(0) = 0, then 𝛿𝑟 (gr𝜙) is the intrinsic Lipschitz graph of the function 𝜙𝑟 : 𝛿𝑟 𝐴 → V defined by

𝜙𝑟 (𝑤) := 𝛿𝑟𝜙(𝛿1/𝑟𝑤) = 𝑟𝜙(𝛿1/𝑟𝑤).

The intrinsic Lipschitz constant of 𝜙𝑟 equals the one of 𝜙.

Definition 4.7. Let 𝜙 : 𝐴 → V be a map defined on a (relatively) open subset 𝐴 ⊂ W. We say that
𝜙 :W→ V is a blow-up of 𝜙 at �̄� ∈ 𝐴 if there exists a sequence (𝑟 𝑗 ) 𝑗 such that 𝑟 𝑗 → +∞ as 𝑗 → +∞ and

lim
𝑗→∞

(𝜙�̄� )𝑟 𝑗 = 𝜙 locally uniformly onW.

Remark 4.8. Clearly, every blow-up 𝜙 of 𝜙 is such that 𝜙(0) = 0. Blow-ups of 𝜙 at �̄� are in general not
unique. The functions (𝜙�̄� )𝑟 , 𝑟 > 0, have the same intrinsic Lipschitz constant as 𝜙; in particular, every
blow-up of 𝜙 is intrinsic Lipschitz continuous with intrinsic Lipschitz constant not greater than the one
of 𝜙.

We say that 𝜓 : W → V is intrinsic linear if its graph gr𝜓 is a homogeneous subgroup of H𝑛; in
coordinates, this is equivalent to requiring that gr𝜓 is a vertical plane (recall Definition 3.2) of dimension
2𝑛 + 1 − 𝑘 . Another characterisation can be given as follows. For every 𝑤 ∈ W define 𝑤𝐻 ∈ R2𝑛+1−𝑘 as

𝑤𝐻 := (𝑥𝑘+1, . . . , 𝑦𝑛) if 𝑘 < 𝑛 and 𝑤 = (𝑥𝑘+1, . . . , 𝑦𝑛, 𝑡)
𝑤𝐻 := (𝑦1, . . . , 𝑦𝑛) if 𝑘 = 𝑛 and 𝑤 = (𝑦1, . . . , 𝑦𝑛, 𝑡). (4.16)

Then, 𝜓 is intrinsic linear if and only if there exists a 𝑘 × (2𝑛− 𝑘) matrix M (here identified with a linear
map 𝑀 : R2𝑛−𝑘 → R𝑘 ≡ V) such that, for every 𝑤 ∈ W, 𝜓(𝑤) = 𝑀 𝑤𝐻 .

We can now state the following definition.

Definition 4.9. Let 𝐴 ⊂ W be open and 𝜙 : 𝐴 → V be given; we say that 𝜙 is intrinsically differentiable
at �̄� ∈ 𝐴 if there exists an intrinsic linear map 𝑑𝜙�̄� :W→ V such that

lim
𝑠→0

(
sup
{

𝑑 (𝜙�̄� (𝑤), 𝑑𝜙�̄� (𝑤))

𝑑 (0, 𝑤)
: 𝑤 ∈ W ∩ 𝐵(0, 𝑠)

})
= 0.

The map 𝑑𝜙�̄� is called intrinsic differential of 𝜙 at �̄�; the intrinsic graph of 𝑑𝜙�̄� is called tangent plane
to gr𝜙 at Φ(�̄�) and is denoted by TanHgr𝜙 (Φ(�̄�)).
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The intrinsic gradient ∇𝜙𝜙(�̄�) is the unique 𝑘 × (2𝑛 − 𝑘) matrix such that 𝑑𝜙�̄� (𝑤) = ∇𝜙𝜙(�̄�) 𝑤𝐻

for every 𝑤 ∈ W. We also define the intrinsic Jacobian determinant 𝐽𝜙𝜙(�̄�) of 𝜙 at �̄� as

𝐽𝜙𝜙(�̄�) :=

(
1 +
∑
𝑀

(det 𝑀)2

)1/2

,

where the sum ranges on all minors (of any size) of the matrix ∇𝜙𝜙.
Remark 4.10. The notions introduced in Definition 4.9 (and, in particular, that of intrinsic Jacobian
needed in Theorem 1.3) make sense also when the subgroupsW,V are orthogonal; that is, when they are
orthogonal as linear subspaces of H𝑛 ≡ R2𝑛+1. In fact, as Remark 3.16 (see also [33, §2.4]) in this case
there exists an isometricH-linear isomorphism sendingW,V to the subgroups defined in (4.3) and (4.2).
Remark 4.11. It will be convenient to denote the components (∇𝜙𝜙)𝑖 𝑗 of the intrinsic gradient using
indices that vary in the ranges 𝑖 = 1, . . . , 𝑘 and 𝑗 = 𝑘 + 1, . . . , 2𝑛. This choice might seem a bit unusual
for what concerns the index j, but it is somehow suggested by the definition of 𝑤𝐻 . Further justification
is provided in Subsection 4.5.

In the following Proposition 4.12 we collect several statements that are equivalent to intrinsic
differentiability: the equivalences among (a), (b) and (c) are straightforward, while for the equivalence
with (d) we refer to [52, Theorem 4.15].
Proposition 4.12. Consider an open set 𝐴 ⊂ W, a map 𝜙 : W → V and a point �̄� ∈ 𝐴. Then the
following statements are equivalent:
(a) 𝜙 is intrinsically differentiable at �̄�;
(b) there exists an intrinsic linear map 𝜓 : W → V such that (𝜙�̄� )𝑟 → 𝜓 locally uniformly on W as

𝑟 → +∞;
(c) the blow-up of 𝜙 at �̄� is unique and it is an intrinsic linear map;
(d) there exists a (2𝑛 + 1 − 𝑘)-dimensional vertical plane 𝒫 that is complementary to V and such that,

as 𝑟 → +∞, the sets 𝛿𝑟 (Φ(�̄�)−1gr𝜙) converge to 𝒫 with respect to the local Hausdorff convergence
of sets; that is,

lim
𝑠→0+

(
sup
{

𝑑 (Φ(�̄�)−1 𝑝,𝒫)

𝑑 (Φ(�̄�), 𝑝)
: 𝑝 ∈ gr𝜙 ∩ 𝐵(Φ(�̄�), 𝑠)

})
= 0. (4.17)

Moreover, the plane 𝒫 in (d) coincides with TanHgr𝜙 (Φ(�̄�)).

It is worth observing that intrinsic graphs parametrising H-regular submanifolds are intrinsically
differentiable; see Remark 4.18 for a precise statement.

As one can easily guess, intrinsic Lipschitz functions with small Lipschitz constant have small
intrinsic gradient at differentiability points; the following lemma provides a quantitative version of this
statement.
Lemma 4.13. Assume that H𝑛 is endowed with the distance 𝑑 = 𝑑∞ introduced in (3.2). Let 𝜙 : 𝐴 → V
be an intrinsic Lipschitz function defined on an open set A of W and let 𝛼 be the intrinsic Lipschitz
constant of 𝜙. Then for every point 𝑤 ∈ 𝐴 where 𝜙 is intrinsically differentiable, we have

| (∇𝜙𝜙(𝑤))𝑖 𝑗 | ≤ 𝛼 ∀ 𝑖 = 1, . . . , 𝑘, ∀ 𝑗 = 𝑘 + 1, . . . , 2𝑛. (4.18)

Proof. By Remark 4.8, the intrinsic differential 𝑑𝜙𝑤 is intrinsic Lipschitz with Lipschitz constant not
greater than 𝛼. Let 𝑖, 𝑗 be as in (4.18); then, by Remark 4.2, we have

| (∇𝜙𝜙(𝑤))𝑖 𝑗 | = | (𝑑𝜙𝑤 (exp(𝑊 𝑗 )))𝑖 | ≤ 𝛼‖ exp(𝑊 𝑗 )‖H = 𝛼 𝑑∞(0, exp(𝑊 𝑗 )) = 𝛼,

where (𝑑𝜙𝑤 (exp(𝑊 𝑗 )))𝑖 is the i-component of 𝑑𝜙𝑤 (exp(𝑊 𝑗 )) ∈ V ≡ R𝑘 . �
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4.3. Blow-ups of intrinsic Lipschitz maps are almost always t-invariant

The aim of this section is the proof of the following Lemma 4.16, a very first step towards Theorem 1.1.
Given ℎ ∈ R, we write �ℎ := exp(ℎ𝑇) and we observe that, in coordinates, (𝑥, 𝑦, 𝑡)�ℎ = (𝑥, 𝑦, 𝑡 + ℎ).

We say that 𝜙 :W→ V is t-invariant if

𝜙(𝑤�ℎ) = 𝜙(𝑤) for every 𝑤 ∈ W, ℎ ∈ R.

With the notation introduced in (4.16), 𝜙 :W→ V is t-invariant if and only if there exists 𝑓𝜙 : R2𝑛−𝑘 →
R
𝑘 ≡ V such that

𝜙(𝑤) = 𝑓𝜙 (𝑤𝐻 ) for every 𝑤 ∈ W. (4.19)

Clearly, every intrinsic linear map 𝜓 : W → V is t-invariant; a simple consequence of this fact is
contained in the following observation.

Remark 4.14. If 𝜙 is intrinsically differentiable at �̄�, then

|𝜙(�̄��ℎ) − 𝜙(�̄�) | = 𝑜(|ℎ|1/2) as ℎ → 0.

This is a simple consequence of the fact that, as 𝑟 → +∞, (𝜙�̄� )𝑟 converges to an intrinsic linear (and
then t-invariant) map.

Let us collect some basic facts about intrinsic Lipschitz maps that are also t-invariant. Though very
simple, they will be useful in the sequel.

Lemma 4.15. Let 𝜙 : W → V be intrinsic Lipschitz continuous and t-invariant and let 𝑓𝜙 be as in
(4.19). Then

(i) 𝑓𝜙 : R2𝑛−𝑘 → R𝑘 and 𝜙 :W ≡ R2𝑛−𝑘 → V ≡ R𝑘 are Euclidean Lipschitz continuous;
(ii) the intrinsic graph gr𝜙 coincides with

{( 𝑓𝜙 (𝑤), 𝑤, 𝑡) ∈ R𝑘 × R2𝑛−𝑘 × R ≡ H𝑛 : 𝑤 ∈ R2𝑛−𝑘 , 𝑡 ∈ R};

(iii) 𝜙 is Euclidean differentiable at �̄� if and only if 𝑓𝜙 is Euclidean differentiable at �̄�𝐻 ;
(iv) 𝜙 is intrinsically differentiable at �̄� if and only if it is Euclidean differentiable at �̄�. In this case,

∇𝜙𝜙(�̄�) = ∇ 𝑓𝜙 (�̄�𝐻 ).

Proof. The second part of statement (i) is a direct consequence of the first one, which we now prove
only in case 𝑘 < 𝑛 as the case 𝑘 = 𝑛 requires only minor adjustment in the notation. For every
𝑢 = (𝑥𝑘+1, . . . , 𝑦𝑛) ∈ R2𝑛−𝑘 and 𝑢′ = (𝑥 ′

𝑘+1, . . . , 𝑦′
𝑛) ∈ R2𝑛−𝑘 , consider 𝑤 := (𝑥𝑘+1, . . . , 𝑦𝑛, 0) ∈ W and

𝑤′ := (𝑥 ′
𝑘+1, . . . , 𝑦′

𝑛, 𝑡 ′) ∈ W, where 𝑡 ′ = 𝑡 ′(𝑢, 𝑢′) is defined by

𝑡 ′ :=
1
2

𝑛∑
𝑗=𝑘+1

(𝑥 𝑗 𝑦
′
𝑗 − 𝑥 ′

𝑗 𝑦 𝑗 ) −
𝑘∑
𝑗=1

( 𝑓𝜙 (𝑢′)) 𝑗 (𝑦 𝑗 − 𝑦′
𝑗 ).

From (4.9) we deduce that for a suitable 𝛼 > 0 and a positive C depending on the distance d,

| 𝑓𝜙 (𝑢) − 𝑓𝜙 (𝑢′) | = |𝜙(𝑤) − 𝜙(𝑤′) |

≤ 𝛼‖(𝑥𝑘+1 − 𝑥 ′
𝑘+1, . . . , 𝑦𝑛 − 𝑦′

𝑛, 0)‖H

≤ 𝐶𝛼𝑑∞(0, (𝑥𝑘+1 − 𝑥 ′
𝑘+1, . . . , 𝑦𝑛 − 𝑦′

𝑛, 0))

= 𝐶𝛼‖𝑢 − 𝑢′‖R2𝑛−𝑘 .

This proves (i).
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Statements (ii) and (iii) are trivial. Concerning (iv), if 𝑓𝜙 is Euclidean differentiable at �̄� ∈ W, one
has

𝜙�̄� (𝑤) = 𝜙(�̄�)−1𝜙(�̄�𝜙(�̄�)𝑤𝜙(�̄�)−1) = 𝑓𝜙 ((�̄�𝜙(�̄�)𝑤𝜙(�̄�)−1)𝐻 ) − 𝑓𝜙 (�̄�𝐻 )

= 𝑓𝜙 (�̄�𝐻 + 𝑤𝐻 ) − 𝑓𝜙 (�̄�𝐻 ) = ∇ 𝑓𝜙 (�̄�)𝑤𝐻 + 𝑜(|𝑤𝐻 |)
(4.20)

and the intrinsic differentiability of 𝜙 at �̄� follows because |𝑤𝐻 | ≤ 𝑑∞(0, 𝑤) ≤ 𝐶𝑑 (0, 𝑤) for a suitable
𝐶 > 0. Conversely, assume that 𝜙 is intrinsically differentiable at �̄�; for every 𝑢 ∈ R2𝑛−𝑘 we define
𝑤 = (𝑢, 0) ∈ W and, as in (4.20), we obtain

𝑓𝜙 (�̄�𝐻 + 𝑢) − 𝑓𝜙 (�̄�𝐻 ) = 𝑓𝜙 (�̄�𝐻 + 𝑤𝐻 ) − 𝑓𝜙 (�̄�𝐻 )

= 𝜙�̄� (𝑤) = 𝑑𝜙�̄� (𝑤) + 𝑜(𝑑∞(0, 𝑤)) = ∇𝜙𝜙(�̄�)𝑤𝐻 + 𝑜(|𝑢 |).

This proves that 𝑓𝜙 is Euclidean differentiable at �̄�𝐻 and, by (iii), that 𝜙 is Euclidean differentiable at
𝑤 ∈ W. �

We now state and prove the following result, which will play a distinguished role in the proof of
Theorem 1.1.

Lemma 4.16. Let 𝜙 :W→ V be intrinsic Lipschitz. Then there exists a ℒ2𝑛+1−𝑘 -negligible set 𝐸 ⊂ W
such that, for every �̄� ∈ W \ 𝐸 and every blow-up 𝜙 :W→ V of 𝜙 at �̄�, 𝜙 is t-invariant.

Proof. We prove the statement assuming 𝑘 < 𝑛, the case 𝑘 = 𝑛 requiring only straightforward modifi-
cations in the notation.

We claim that

for a.e. �̄� ∈ W |𝜙(�̄��ℎ) − 𝜙(�̄�) | = 𝑜(|ℎ|1/2) as ℎ → 0. (4.21)

To prove this, we write 𝜙 = (𝜙1, . . . , 𝜙𝑘 ) ∈ V ≡ R𝑘 and, for every fixed 𝑖 ∈ {1, . . . , 𝑘} and every fixed
(𝑥𝑘+1, . . . , 𝑥𝑛, �̄�1, . . . , �̄�𝑖−1, �̄�𝑖+1, . . . �̄�𝑛) ∈ R2𝑛−𝑘−1, we consider the map 𝜓𝑖 : R2 → R defined by

𝜓𝑖 (𝑦, 𝑡) := 𝜙𝑖 (𝑥𝑘+1, . . . , 𝑥𝑛, �̄�1, . . . , �̄�𝑖−1, 𝑦, �̄�𝑖+1, . . . �̄�𝑛, 𝑡).

Using (4.9) we obtain that for every 𝑦, 𝑦′, 𝑡, 𝑡 ′ ∈ R,

|𝜓𝑖 (𝑦, 𝑡) − 𝜓𝑖 (𝑦
′, 𝑡 ′) | ≤ 𝛼 ‖(0, . . . , 0, 𝑦 − 𝑦′, 0, . . . , 0, 𝑡 − 𝑡 ′ − 𝜓𝑖 (𝑦

′, 𝑡 ′) (𝑦 − 𝑦′)‖H ,

where 𝛼 is the intrinsic Lipschitz constant of 𝜙. This ensures that 𝜓𝑖 is intrinsic Lipschitz in H1; that is,
when seen as a map 𝜓𝑖 : W′ → V

′ where W′ := {(0, 𝑦, 𝑡) : 𝑦, 𝑡 ∈ R} and V′ := {(𝑥, 0, 0) : 𝑥 ∈ R}.
By Rademacher’s theorem for intrinsic Lipschitz graph of codimension 1 [52], 𝜓𝑖 is intrinsically
differentiable at ℒ2-a.e. (𝑦, 𝑡) ∈ W′ and, by Remark 4.14, for every such (𝑦, 𝑡) one has

|𝜓𝑖 (𝑦, 𝑡 + ℎ) − 𝜓𝑖 (𝑦, 𝑡) | = 𝑜(|ℎ|1/2) as ℎ → 0.

The claim (4.21) easily follows.
In order to prove the statement of the lemma, it suffices to prove that, for every fixed 𝜀 > 0, there

exists 𝐸𝜀 ⊂ W such that

(a) ℒ2𝑛+1−𝑘 (𝐸𝜀) < 𝜀 and
(b) for every �̄� ∈ W \ 𝐸𝜀 and every blow-up 𝜙 :W→ V of 𝜙 at �̄�, 𝜙 is t-invariant.
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By (4.21) and the Severini–Egorov theorem, for every 𝜀 > 0 there exists 𝐸𝜀 ⊂ W such that

1. ℒ2𝑛+1−𝑘 (𝐸𝜀) < 𝜀 and
2. there exists a sequence (𝛿𝑖)𝑖 such that

|𝜙(�̄��ℎ) − 𝜙(�̄�) | <
|ℎ|1/2

𝑖
for every �̄� ∈ W \ 𝐸𝜀 , 𝑖 ∈ N and ℎ ∈ (−𝛿𝑖 , 𝛿𝑖).

By (4.6), the Lebesgue measure ℒ2𝑛+1−𝑘 is doubling and the Lebesgue theorem holds in the metric
measure space (W, 𝑑,ℒ2𝑛+1−𝑘 ) (see, e.g., [91, Chapter 1]). Therefore, up to modifying 𝐸𝜀 on a
negligible set, we can also assume that

(3) for every �̄� ∈ W \ 𝐸𝜀

lim
𝑠→0

ℒ2𝑛+1−𝑘 (𝐵(�̄�, 𝑠) ∩W \ 𝐸𝜀)

ℒ2𝑛+1−𝑘 (𝐵(�̄�, 𝑠) ∩W)
= 1.

By construction, 𝐸𝜀 satisfies (a) above; we are going to prove it also satisfies (b), thus completing the
proof.

Let then �̄� ∈ W \ 𝐸𝜀 and a blow-up 𝜙 : W→ V of 𝜙 at �̄� be fixed; up to a left-translation, we can
assume without loss of generality that �̄� = 0. Let 𝑟 𝑗 → +∞ be a sequence such that

lim
𝑗→+∞

𝜙𝑟 𝑗 = 𝜙 in 𝐿∞
𝑙𝑜𝑐 (W).

Let 𝑅 > 0 be fixed; we prove that

𝜙(𝑥𝑘+1, . . . , 𝑦𝑛, 𝑡) = 𝜙(𝑥𝑘+1, . . . , 𝑦𝑛, 0) ∀ (𝑥𝑘+1, . . . , 𝑦𝑛, 𝑡) ∈ [−𝑅, 𝑅]2𝑛+1−𝑘 ⊂ W ≡ R2𝑛+1−𝑘 ,

which would immediately give (b). In turn, it is enough to prove that for every 𝜂 > 0 there exists 𝚥 ∈ N
such that

|𝜙𝑟 𝑗 (𝑥𝑘+1, . . . , 𝑦𝑛, 𝑡) − 𝜙𝑟 𝑗 (𝑥𝑘+1, . . . , 𝑦𝑛, 0) | < 𝜂 ∀ 𝑗 ≥ 𝚥, ∀ (𝑥𝑘+1, . . . , 𝑦𝑛, 𝑡) ∈ [−𝑅, 𝑅]2𝑛+1−𝑘 .
(4.22)

Observe that, by property (3), for j large enough the set 𝛿𝑟 𝑗 (W\𝐸𝜀) is 𝜂-dense in the box [−𝑅, 𝑅]2𝑛+1−𝑘 ;
namely, for every 𝑤 = (𝑥𝑘+1, . . . , 𝑦𝑛, 𝑡) ∈ [−𝑅, 𝑅]2𝑛+1−𝑘 there exists 𝑤′ ∈ 𝛿𝑟 𝑗 (W\ 𝐸𝜀) ∩ [−𝑅, 𝑅]2𝑛+1−𝑘

such that |𝑤 − 𝑤′ | < 𝜂. We write 𝑤′ = (𝑥 ′
𝑘+1, . . . , 𝑦′

𝑛, 𝑡 ′); setting 𝑖 := "𝑅1/2/𝜂# + 1, for large enough j
(and, namely, for 𝑟2

𝑗 > 𝑅/𝛿𝑖) we have

|𝜙𝑟 𝑗 (𝑥 ′
𝑘+1, . . . , 𝑦′

𝑛, 𝑡 ′) − 𝜙𝑟 𝑗 (𝑥 ′
𝑘+1, . . . , 𝑦′

𝑛, 0) |

= 𝑟 𝑗

%%%%𝜙(
𝑥′
𝑘+1
𝑟 𝑗

, . . . ,
𝑦′
𝑛

𝑟 𝑗
, 𝑡′

𝑟2
𝑗

) − 𝜙(
𝑥′
𝑘+1
𝑟 𝑗

, . . . ,
𝑦′
𝑛

𝑟 𝑗
, 0)

%%%% ≤ 𝑟 𝑗
|𝑡 ′ |1/2

𝑖 𝑟 𝑗
≤

𝑅1/2

𝑖
< 𝜂,

where we used | 𝑡
′

𝑟2
𝑗

| ≤ 𝑅
𝑟2
𝑗

< 𝛿𝑖 and the fact that (
𝑥′
𝑘+1
𝑟 𝑗

, . . . ,
𝑦′
𝑛

𝑟 𝑗
, 𝑡′

𝑟2
𝑗

) = 𝛿1/𝑟 𝑗 (𝑤
′) ∈ W \ 𝐸𝜀 satisfies (2).

By Remark 4.5 there exists 𝐶 > 0 (depending only on R and the Lipschitz constant of 𝜙𝑟 𝑗 , which is
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the same as the Lipschitz constant of 𝜙 and is thus independent of j) and we finally obtain for large
enough j

|𝜙𝑟 𝑗 (𝑥𝑘+1, . . . , 𝑦𝑛, 𝑡) − 𝜙𝑟 𝑗 (𝑥𝑘+1, . . . , 𝑦𝑛, 0) | ≤ |𝜙𝑟 𝑗 (𝑥𝑘+1, . . . , 𝑦𝑛, 𝑡) − 𝜙𝑟 𝑗 (𝑥 ′
𝑘+1, . . . , 𝑦′

𝑛, 𝑡 ′) |

+ |𝜙𝑟 𝑗 (𝑥 ′
𝑘+1, . . . , 𝑦′

𝑛, 𝑡 ′) − 𝜙𝑟 𝑗 (𝑥 ′
𝑘+1, . . . , 𝑦′

𝑛, 0) |

+ |𝜙𝑟 𝑗 (𝑥 ′
𝑘+1, . . . , 𝑦′

𝑛, 0) − 𝜙𝑟 𝑗 (𝑥𝑘+1, . . . , 𝑦𝑛, 0) |

≤ 2𝐶 |𝑤 − 𝑤′ |1/2 + 𝜂

≤ 2𝐶𝜂1/2 + 𝜂.

Since the requirements made on j depend on 𝜂 and R but not on (𝑥𝑘+1, . . . , 𝑦𝑛, 𝑡) ∈ [−𝑅, 𝑅]2𝑛+1−𝑘 , we
have proved the existence of 𝚥 such that (4.22) holds. This concludes the proof. �

4.4. H-regular submanifolds and H-rectifiable sets

In this section we briefly introduce submanifolds with intrinsic 𝐶1 regularity in Heisenberg groups
together with the notion of H-rectifiability. We refer to [51] for a more comprehensive presentation.

Given an open set 𝑈 ⊂ H𝑛, we say that 𝑓 : 𝑈 → R is of class 𝐶1
H

if f is continuous and its horizontal
derivatives

∇H 𝑓 := (𝑋1 𝑓 , . . . , 𝑋𝑛 𝑓 , 𝑌1 𝑓 , . . . , 𝑌𝑛 𝑓 )

are represented by continuous functions on U. In this case, we write 𝑓 ∈ 𝐶1
H
(𝑈). We agree that, for

every 𝑝 ∈ 𝑈, ∇H 𝑓 (𝑝) ∈ R2𝑘 is identified with the horizontal vector

∇H 𝑓 (𝑝) := 𝑋1 𝑓 (𝑝)𝑋1 + · · · + 𝑌𝑛 𝑓 (𝑝)𝑌𝑛 ∈ 𝔥1.

Definition 4.17. Let 𝑘 ∈ {1, . . . , 𝑛} be fixed. We say that 𝑆 ⊂ H𝑛 is an H-regular submanifold (or a
𝐶1
H

-submanifold) of codimension k if, for every 𝑝 ∈ 𝑆, there exist an open neighbourhood 𝑈 ⊂ H𝑛 of p
and 𝑓 ∈ 𝐶1

H
(𝑈,R𝑘 ) such that

𝑆 ∩ 𝑈 = {𝑞 ∈ 𝑈 : 𝑓 (𝑞) = 0} and ∇H 𝑓 (𝑞) has rank k for all 𝑞 ∈ 𝑈.

We also define the horizontal normal 𝑛H𝑆 (𝑝) to S at p as the horizontal k-vector

𝑛H𝑆 (𝑝) :=
∇H 𝑓1(𝑝) ∧ · · · ∧ ∇H 𝑓𝑘 (𝑝)

|∇H 𝑓1(𝑝) ∧ · · · ∧ ∇H 𝑓𝑘 (𝑝) |
∈ ∧𝑘𝔥1

and the (horizontal) tangent 𝑡H𝑆 (𝑝) := ∗𝑛H𝑆 (𝑝) ∈ ∧2𝑛+1−𝑘𝔥.

In the definition of the tangent multivector 𝑡H𝑆 , the symbol ∗ denotes the Hodge operator. The
latter, recalling the notation introduced in (3.4) and (3.5), can be defined as the linear isomorphism
∗ : ∧𝑘𝔥 → ∧2𝑛+1−𝑘𝔥 such that

∗𝑊𝐼 := (−1)𝜎 (𝐼 )𝑊𝐼 ∗ for every 𝐼 ⊂ {1, . . . , 2𝑛 + 1} such that |𝐼 | = 𝑘,

where 𝐼∗ := {1, . . . , 2𝑛 + 1} \ 𝐼 and 𝜎(𝐼) denotes the number of couples (𝑖, 𝑖∗) ∈ 𝐼 × 𝐼∗ such that 𝑖 > 𝑖∗.
Equivalently, the sign (−1)𝜎 (𝐼 ) can be defined by requiring that 𝑊𝐼 ∧ 𝑊𝐼 ∗ = (−1)𝜎 (𝐼 )𝑊{1,...,2𝑛+1} and,
all in all, this amounts to requiring that

𝑣 ∧ ∗𝑣 = |𝑣 |2𝑋1 ∧ · · · ∧ 𝑌𝑛 ∧ 𝑇 ∀ 𝑣 ∈ ∧∗𝔥
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where the norm | · | is the one associated with the canonical scalar product on multivectors making
the basis 𝑊𝐼 orthonormal. Notice that, if 𝑣 = 𝑣1 ∧ · · · ∧ 𝑣𝑘 ∈ ∧𝑘𝔥1 is a simple horizontal k-vector,
then ∗𝑣 = 𝑤 ∧ 𝑇 for some 𝑤 ∈ ∧2𝑛−𝑘𝔥1. In particular, the horizontal tangent 𝑡H𝑆 (𝑝) is in fact a vertical
multivector; that is, it can be written as 𝑡H𝑆 (𝑝) = 𝜏H𝑆 (𝑝) ∧𝑇 for a unique unit vector in 𝜏H𝑆 (𝑝) ∈ ∧2𝑛−𝑘𝔥1.
Observe that, when S is of class 𝐶1, the definition of 𝜏H𝑆 is consistent with (3.30).

Both 𝑛H𝑆 and 𝑡H𝑆 are unit simple vectors. Observe that they are well-defined (even though only up to a
sign); that is, independent from the choice of the defining function f. One way of proving this fact is by
considering the blow-up of S at p; indeed, one has

lim
𝑟→0+

𝛿1/𝑟 (𝑝−1𝑆) = TanH𝑆 (𝑝), (4.23)

where the limit is taken with respect to the local Hausdorff convergence and TanH𝑆 (𝑝) := exp(span 𝑡H𝑆 (𝑝)).
See, for example, [51]. The (2𝑛 + 1 − 𝑘)-plane TanH𝑆 (𝑝) is a vertical plane according to Definition 3.2
and it is called tangent plane to S at p. As a consequence of Theorem 4.19 (see also [61, Lemma 3.4]),
we have the weak convergence of measures

𝒮𝑄−𝑘 𝛿1/𝑟 (𝑝−1𝑆) ⇀ 𝒮𝑄−𝑘 TanH𝑆 (𝑝). (4.24)

Also, the vector 𝜏H𝑆 is defined only up to a sign; its geometric meaning is provided by the equality

exp(span 𝜏H𝑆 (𝑝)) = TanH𝑆 (𝑝) ∩ exp(𝔥1).

Remark 4.18. Proposition 4.12 implies that the notation TanH𝑆 introduced in (4.23) is consistent with
the notation TanHgr𝜙 of Definition 4.9. As a consequence, if 𝐴 ⊂ W is open and the function 𝜙 : 𝐴 → V

parametrises an H-regular submanifold 𝑆 = gr𝜙 such that TanH𝑆 (𝑝) is complementary to V for every
𝑝 ∈ 𝑆, then 𝜙 is intrinsically differentiable at every point of A.

It is well-known thatH-regular submanifolds are locally intrinsic Lipschitz graphs and that an integral
formula can be provided for their spherical Hausdorff measure𝒮𝑄−𝑘 . We resume these facts in the follow-
ing statement, which summarises several results available in the (quite vast) literature and, in particular,
[9, Theorem 4.2], [51, Theorem 4.1] and [33, formula (43)]; see also [4, 17, 18, 29, 32, 36, 35, 61, 70, 76].
It is worth recalling that the intrinsic Jacobian determinant 𝐽𝜙𝜙 was introduced in Definition 4.9.

Theorem 4.19. Let 𝑆 ⊂ H𝑛 be an H-regular submanifold of codimension 𝑘 ≤ 𝑛. Then for every 𝑝 ∈ 𝑆
there exist an open neighbourhood U of p, an open set 𝐴 ⊂ W and an intrinsic Lipschitz 𝜙 : 𝐴 → V

such that, up to an isometric H-linear isomorphism of H𝑛,

𝑆 ∩ 𝑈 = gr𝜙
𝜙 is intrinsically differentiable on 𝐴

∇𝜙𝜙 is continuous.

Moreover,

𝒮𝑄−𝑘 (𝐸) = 𝐶𝑛,𝑘

∫
Φ−1 (𝐸)

𝐽𝜙𝜙 𝑑ℒ2𝑛+1−𝑘 for every Borel set 𝐸 ⊂ 𝑆 ∩ 𝑈, (4.25)

where Φ(𝑤) := 𝑤𝜙(𝑤) and 𝐶𝑛,𝑘 > 0 is the same constant as in Proposition 1.9.

Remark 4.20. As pointed out in [33], the area formula (4.25) holds more generally when W,V are
orthogonal (recall Remark 4.10).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2021.84
Downloaded from https://www.cambridge.org/core. IP address: 94.34.96.60, on 02 Feb 2022 at 13:50:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2021.84
https://www.cambridge.org/core


Forum of Mathematics, Sigma 53

Remark 4.21. As explained in [71] and [33], the exact value of the constant 𝐶𝑛,𝑘 (which, from the
philological point of view, in the present article is introduced for the first time in Lemma 3.31) in
Proposition 1.9 and Theorem 4.19 is

𝐶𝑛,𝑘 =
(

sup
{
ℒ2𝑛+1−𝑘 (W ∩ 𝐵(𝑝, 1)) : 𝑝 ∈ 𝐵(0, 1)

})−1
.

The rotational invariance of the distance d plays an important role; see [33, Theorem 2.12].

We now introduce intrinsic rectifiable sets in Heisenberg groups.

Definition 4.22. Let 𝑘 ∈ {1, . . . , 𝑛}; we say that 𝑅 ⊂ H𝑛 is a H-rectifiable set of codimension k
if 𝒮𝑄−𝑘 (𝑅) < ∞ and there exists a finite or countable family (𝑆 𝑗 ) 𝑗 of H-regular submanifolds of
codimension k such that

𝒮𝑄−𝑘

(
𝑅 \
⋃
𝑗

𝑆 𝑗

)
= 0.

We say that 𝑅 ⊂ H𝑛 is a locally H-rectifiable set of codimension k if 𝑅 ∩ 𝐵(0, 𝑟) is H-rectifiable of
codimension k for every 𝑟 > 0.

Later we will use the well-known fact that sets that are rectifiable (see, e.g., [42]) in the Euclidean
sense are also H-rectifiable. As a matter of terminology, we say that a set 𝑅 ⊂ H𝑛 ≡ R2𝑛+1 is locally
Euclidean rectifiable of codimension k if𝒮| · |

2𝑛+1−𝑘 𝑅 is a locally finite measure and there exists a finite
or countable family (𝑆 𝑗 ) 𝑗 of Euclidean Lipschitz submanifolds of codimension k such that

𝒮| · |
2𝑛+1−𝑘 (𝑅 \

⋃
𝑗

𝑆 𝑗 ) = 0,

where 𝒮| · |
2𝑛+1−𝑘 denotes the spherical Hausdorff measure with respect to the Euclidean distance on

H
𝑛 ≡ R2𝑛+1. If 𝒮| · |

2𝑛+1−𝑘 (𝑅) < ∞, we say that R is Euclidean rectifiable.

Proposition 4.23. Let 𝑅 ⊂ H2𝑛+1 be locally Euclidean rectifiable of codimension k, 1 ≤ 𝑘 ≤ 𝑛. Then R
is also locally H-rectifiable of codimension k.

A proof of Proposition 4.23 can be found, for instance, in [51, Proposition 5.4].
We also recall that classical rectifiable sets of dimension m in R𝑛 can be equivalently defined as

those sets with finite 𝒮𝑚
| · |

-measure that can be covered, up to 𝒮𝑚
| · |

-negligible sets, by a countable family
of (possibly rotated or translated) graphs of Lipschitz maps R𝑚 → R

𝑛−𝑚. As we will prove later in
Corollary 7.4, a similar statement holds in Heisenberg groups; namely, 𝑅 ⊂ H𝑛 is H-rectifiable of
codimension 𝑘 ∈ {1, . . . , 𝑛} if and only if 𝒮𝑄−𝑘 (𝑅) < ∞ and there exists a countable family (𝜙 𝑗 ) 𝑗
of intrinsic Lipschitz maps 𝜙 𝑗 :W 𝑗 → V 𝑗 , whereW 𝑗 ,V 𝑗 are homogeneous complementary subgroups
of H𝑛 with dimV 𝑗 = 𝑘 , such that

𝒮𝑄−𝑘

(
𝑅 \
⋃
𝑗

gr𝜙 𝑗

)
= 0.

Definition 4.24. If 𝑅 ⊂ H𝑛 is locally H-rectifiable and (𝑆 𝑗 ) 𝑗 is a family of H-regular submanifolds as
in Definition 4.22, we define the horizontal normal 𝑛H𝑅 (𝑝) ∈ ∧𝑘𝔥1 at 𝑝 ∈ 𝑅 by

𝑛H𝑅 (𝑝) := 𝑛H𝑆 𝑗
(𝑝) if 𝑝 ∈ 𝑅 ∩ 𝑆 𝑗 .

Accordingly, we set 𝑡H𝑅 (𝑝) := ∗𝑛H𝑅 (𝑝) ∈ ∧2𝑛+1−𝑘𝔥 and TanH𝑅 (𝑝) := exp(span(𝑡H𝑅 (𝑝)). Eventually, we
define 𝜏H𝑅 (𝑝) ∈ ∧2𝑛−𝑘𝔥1 by requiring that 𝑡H𝑅 (𝑝) = 𝜏H𝑅 (𝑝) ∧ 𝑇 .
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The objects introduced in Definition 4.24 are well-defined 𝒮𝑄−𝑘 -a.e. on R (as usual, up to a sign)
because of the following well-known lemma, whose proof we sketch for the sake of completeness.

Lemma 4.25. Let 𝑆1, 𝑆2 ⊂ H𝑛 be H-regular submanifolds of codimension 𝑘 ∈ {1, . . . , 𝑛}; then

𝒮𝑄−𝑘 ({𝑝 ∈ 𝑆1 ∩ 𝑆2 : 𝑛H𝑆1
(𝑝) ∉ {±𝑛H𝑆2

(𝑝)}}) = 0.

Proof. Let 𝐸 := {𝑝 ∈ 𝑆1 ∩ 𝑆2 : 𝑛H𝑆1
(𝑝) ∉ {±𝑛H𝑆2

(𝑝)}}. For every 𝑝 ∈ 𝐸 , we have

lim sup
𝑟→0+

𝛿1/𝑟 (𝑝−1𝐸) ⊂ lim sup
𝑟→0+

𝛿1/𝑟 (𝑝−1 (𝑆1 ∩ 𝑆2)) ⊂ TanH𝑆1
(𝑝) ∩ TanH𝑆2

(𝑝),

where the lim sup are taken with respect to the local Hausdorff topology. Since the right-hand side is a
vertical plane of dimension at most 2𝑛 − 𝑘 , the statement now follows from [77, Lemma B.3]. �

4.5. Currents induced by 𝐶1 intrinsic graphs

We now want to study currents induced by 𝐶1 regular intrinsic graphs of codimension k in H𝑛 with
1 ≤ 𝑘 ≤ 𝑛. Assume that a 𝐶1 map 𝜙 : W→ V is fixed; we introduce the family ∇𝜙 = (∇

𝜙
𝑘+1, . . . , ∇

𝜙
2𝑛)

of vector fields onW defined by

∇
𝜙
𝑖 :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑋𝑖 if 𝑘 + 1 ≤ 𝑖 ≤ 𝑛

𝑌𝑖−𝑛 + 𝜙𝑖−𝑛𝑇 = 𝜕𝑦𝑖−𝑛 + 𝜙𝑖−𝑛𝜕𝑡 if 𝑛 + 1 ≤ 𝑖 ≤ 𝑛 + 𝑘

𝑌𝑖−𝑛 if 𝑛 + 𝑘 + 1 ≤ 𝑖 ≤ 2𝑛.

(4.26)

The vectors ∇
𝜙
𝑖 are tangent toW because so are 𝑋𝑘+1, . . . , 𝑌𝑛, 𝑇 . The family ∇𝜙 was introduced in [4]

in the case of codimension 1 and in [32, 88] for codimension 𝑘 ≤ 𝑛.

Remark 4.26. The notation introduced in (4.26) is consistent with the one in Definition 4.9; in fact (see,
e.g., [32, Proposition 3.7]), when 𝜙 is of class 𝐶1, the components of the matrix ∇𝜙𝜙(𝑤) associated
with the intrinsic differential 𝑑𝜙𝑤 are precisely the derivatives ∇

𝜙
𝑖 𝜙 𝑗 (𝑤) of 𝜙 = (𝜙1, . . . , 𝜙𝑘 ) along the

directions ∇
𝜙
𝑖 .

Recalling the notation 𝑊𝑖 and Φ introduced in (3.4) and (4.7), one can differentiate the graph map Φ
along the directions ∇

𝜙
𝑖 to obtain that, for every 𝑤 ∈ W, the vectors

∇
𝜙
𝑖 Φ(𝑤) =

(
𝑊𝑖 +

𝑘∑
ℎ=1

∇
𝜙
𝑖 𝜙ℎ (𝑤)𝑋ℎ

)
(Φ(𝑤)), 𝑖 = 𝑘 + 1, . . . , 2𝑛 (4.27)

(which should be thought of as vectors in Φ(𝑤) that are continuous with respect to w) are horizontal
and tangent to the submanifold 𝑆 := gr𝜙 at the point Φ(𝑤). The equality in (4.27) comes from a boring
computation that we omit. Since the vectors ∇

𝜙
𝑖 Φ(𝑤), 𝑖 = 𝑘 + 1, . . . , 2𝑛, are also linearly independent,

they generate the (2𝑛 − 𝑘)-dimensional subspace 𝑇Φ(𝑤)𝑆 ∩ 𝔥1; hence, the multivector

∇𝜙Φ(𝑤) := ∇
𝜙
𝑘+1Φ(𝑤) ∧ · · · ∧ ∇

𝜙
2𝑛Φ(𝑤) ∈ ∧2𝑛−𝑘𝔥1 (4.28)

is a multiple of the unit multivector 𝜏H𝑆 (Φ(𝑤)) defined in Subsection 3.5.

Remark 4.27. It is worth noticing that the intrinsic Jacobian determinant 𝐽𝜙𝜙(𝑤) equals the norm
|∇𝜙Φ(𝑤) | of the multivector ∇𝜙Φ(𝑤). As usual, the norm on multivectors is the one induced by the
left-invariant scalar product making 𝑋1, . . . , 𝑌𝑛, 𝑇 orthonormal.

We state for future reference the following result, which is essentially a restatement of Theorem 1.6.
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Proposition 4.28. Let 𝐴 ⊂ W and 𝜙 : 𝐴 → V be intrinsic Lipschitz. Then there exists a sequence
(𝜙𝑖)𝑖∈N of 𝐶∞ smooth and uniformly intrinsic Lipschitz maps 𝜙𝑖 :W→ V such that

𝜙𝑖 → 𝜙 uniformly in 𝐴 as 𝑖 → ∞ .

Moreover, there exists 𝐶 > 0, depending only on the intrinsic Lipschitz constant of 𝜙 and the distance
d, such that

|∇𝜙𝑖Φ𝑖 (𝑤) | ≤ 𝐶 for every 𝑖 ∈ N and 𝑤 ∈ W,

where Φ𝑖 is the graph mapW � 𝑤 ↦→ 𝑤𝜙𝑖 (𝑤) ∈ H𝑛.

Proof. The first part of the statement is Theorem 1.6, while the second one is a consequence of Lemma
4.13, Remark 4.26 and (4.27). �

Similar to (4.27), one gets

𝑇Φ(𝑤) =

(
𝑇 +

𝑘∑
ℎ=1

𝑇𝜙ℎ (𝑤)𝑋ℎ

)
(Φ(𝑤)). (4.29)

The vector fields in (4.27) and (4.29) generate the tangent space to S at Φ(𝑤). We then fix the orientation
of S is such a way that

𝑡𝑆 (Φ(𝑤)) :=
∇𝜙Φ ∧ 𝑇Φ
|∇𝜙Φ ∧ 𝑇Φ|

is positively oriented for every 𝑤 ∈ W. (4.30)

Observe that 〈𝑡𝑆 , 𝑊𝑘+1∧· · ·∧𝑊2𝑛∧𝑇〉 ≠ 0 on S. Actually, our choice of the orientation for S corresponds
to declaring that a unit tangent vector 𝑡𝑆 is positively oriented if and only if 〈𝑡𝑆 , 𝑊𝑘+1∧· · ·∧𝑊2𝑛∧𝑇〉 > 0
on S.

Recalling the notation introduced in (3.29), we deduce from (4.27), (4.29) and (4.30) that

𝜂𝑆 (Φ(𝑤)) =
∇𝜙Φ(𝑤)

|∇𝜙Φ(𝑤) ∧ 𝑇Φ(𝑤) |
,

which implies 𝜏H𝑆 (Φ(𝑤)) = ∇𝜙Φ(𝑤)/|∇𝜙Φ(𝑤) | and, eventually,

𝑡H𝑆 (Φ(𝑤)) =
∇𝜙Φ(𝑤)

|∇𝜙Φ(𝑤) |
∧ 𝑇. (4.31)

The multivector ∇𝜙Φ also allows characterising the Heisenberg current associated with a 𝐶1 intrinsic
graph. The following lemma is an important tool used in the proof of Theorem 1.1.

Lemma 4.29. Let 𝜙 :W→ V be a 𝐶1 map and let the graph 𝑆 := gr𝜙 be oriented as in (4.30). Then

�𝑆�(𝜔) = 𝐶𝑛,𝑘

∫
W

〈∇𝜙Φ(𝑤) ∧ 𝑇 | 𝜔(Φ(𝑤))〉 𝑑ℒ2𝑛+1−𝑘 (𝑤) for every 𝜔 ∈ D2𝑛+1−𝑘
H

,

where the constant 𝐶𝑛,𝑘 > 0 is the one provided by Proposition 1.9.
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Proof. We have for every 𝜔 ∈ D2𝑛+1−𝑘
H

,

�𝑆�(𝜔) = 𝐶𝑛,𝑘

∫
𝑆
〈[𝑡H𝑆 (𝑝)]J | 𝜔(𝑝)〉 𝑑𝒮𝑄−𝑘 (𝑝)

= 𝐶𝑛,𝑘

∫
W

〈𝑡H𝑆 (Φ(𝑤)) | 𝜔(Φ(𝑤))〉 𝐽𝜙𝜙(𝑤) 𝑑ℒ2𝑛+1−𝑘 (𝑤)

= 𝐶𝑛,𝑘

∫
W

〈
∇𝜙Φ(𝑤)

|∇𝜙Φ(𝑤) |
∧ 𝑇

%%%%𝜔(Φ(𝑤))

〉
𝐽𝜙𝜙(𝑤) 𝑑ℒ2𝑛+1−𝑘 (𝑤)

= 𝐶𝑛,𝑘

∫
W

〈∇𝜙Φ(𝑤) ∧ 𝑇 | 𝜔(Φ(𝑤))〉 𝑑ℒ2𝑛+1−𝑘 (𝑤),

where the first equality comes from Theorem 4.19 and a change of variable; the second one is justified
by (4.31) and the last one by Remark 4.27. �

5. The constancy theorem for Heisenberg currents

The classical constancy theorem (see, e.g., [42, 4.1.7] or [90, Theorem 26.27]) states that, if T is an
n-dimensional current in a connected open set 𝑈 ⊂ R𝑛 such that 𝜕T = 0, then T is constant; that is,
there exists 𝑐 ∈ R such that T(𝜔) = 𝑐

∫
𝑈

𝜔 for every smooth n-form 𝜔 with compact support in U. The
constancy theorem can be generalised (see, e.g., [65, Proposition 7.3.5]) to currents supported on an
m-dimensional plane 𝒫 ⊂ R𝑛: if T is an m-current with support in 𝒫 and such that 𝜕T = 0, then there
exists 𝑐 ∈ R such that T(𝜔) = 𝑐

∫
𝒫

𝜔 for every smooth m-form 𝜔 with compact support.
As mentioned in the Introduction, the version for planes of the constancy theorem implies the

following fact (see [89, Theorem 4.2]): if 𝑅 ⊂ R𝑛 is an m-rectifiable set and T = 𝜏𝜇 is a normal m-
current, where 𝜇 is a Radon measure and 𝜏 is a locally 𝜇-integrable m-vectorfield with 𝜏 ≠ 0 𝜇-a.e., then

(i) 𝜇 𝑅 is absolutely continuous with respect to the Hausdorff measure ℋ𝑚 𝑅, and
(ii) 𝜏 is tangent to R at 𝜇-almost every point of R.

See also [42, 4.1.31] and [57, Example 10 at page 146] for simpler cases and [1, §5] and [2] for similar-
in-spirit results.

A similar program is developed in the present section for currents in Heisenberg groups. First, in
Subsection 5.1 we prove Proposition 5.3, where a partial version of the Constancy Theorem 1.7 is proved.
Proposition 5.3 can also be seen as a particular case of Theorem 1.8, but actually the proof of Theorem
1.8 follows from Proposition 5.3 by a blow-up argument. The proof of Theorem 1.8 is developed in
Subsection 5.2: observe that we are not able to prove any ‘absolute continuity’ statement analogous to
(i) above but only a ‘tangency’ statement corresponding to (ii). As we said in the Introduction, this is
due to the absence of a good notion of projection on planes. The proof of the Constancy Theorem 1.7
for Heisenberg currents without boundary and supported on vertical planes is contained in Subsection
5.3. Observe that here we are able to prove not only the ‘tangency’ property (ii) but also the ‘absolute
continuity’ one (i); in fact, by using group convolutions on vertical planes one can reduce to the case in
which ‖T‖ is already absolutely continuous.

5.1. A partial version of Theorem 1.7

For the reader’s convenience, we recall some preliminary notation. First, given a Radon measure 𝜇 on
H
𝑛 and a locally 𝜇-integrable function 𝜏 : H𝑛 → J2𝑛+1−𝑘 , we denote by 𝜏𝜇 the Heisenberg (2𝑛+1− 𝑘)-

current defined by

𝜏𝜇(𝜔) :=
∫
H𝑛

〈𝜏(𝑝) | 𝜔(𝑝)〉 𝑑𝜇(𝑝), 𝜔 ∈ D2𝑛+1−𝑘
H

.
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Given natural numbers 𝑎, 𝑏 such that 1 ≤ 𝑎 + 𝑏 ≤ 𝑛, the (2𝑎 + 𝑏 + 1)-dimensional vertical plane
𝒫𝑎,𝑏 was introduced in (3.11) as

𝒫𝑎,𝑏 := {(𝑥, 𝑦, 𝑡) ∈ H𝑛 : 𝑥𝑖 = 𝑦 𝑗 = 0 for all 𝑎 + 𝑏 + 1 ≤ 𝑖 ≤ 𝑛 and 𝑎 + 1 ≤ 𝑗 ≤ 𝑛}

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{(𝑥1, . . . , 𝑥𝑎+𝑏 , 0, . . . , 0, 𝑦1, . . . , 𝑦𝑎, 0, . . . , 0, 𝑡)} if 𝑎 ≥ 1 and 𝑎 + 𝑏 < 𝑛

{(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑎, 0, . . . , 0, 𝑡)} if 𝑎 ≥ 1 and 𝑎 + 𝑏 = 𝑛

{(𝑥1, . . . , 𝑥𝑏 , 0, . . . , 0, 𝑡)} if 𝑎 = 0.

(5.1)

We are interested in the case in which the codimension 2𝑛−2𝑎−𝑏 of𝒫𝑎,𝑏 equals a given 𝑘 ∈ {1, . . . , 𝑛};
hence, we also assume that 𝑛 ≤ 2𝑎 + 𝑏 ≤ 2𝑛 − 1. Observe that, if 𝑎 = 0, then necessarily 𝑏 = 𝑛. A unit
tangent vector to 𝒫𝑎,𝑏 is

𝑡H𝒫𝑎,𝑏
= 𝑋1 ∧ · · · ∧ 𝑋𝑎+𝑏 ∧ 𝑌1 ∧ · · · ∧ 𝑌𝑎 ∧ 𝑇,

and we agree that, when 𝑎 = 0, this expression has to be read as 𝑋1 ∧ · · · ∧ 𝑋𝑛 ∧ 𝑇 . We also notice that
(5.1) induces a natural identification between the subgroup 𝒫𝑎,𝑏 and R2𝑎+𝑏+1 according to which the
measures𝒮2𝑎+𝑏+2 andℒ2𝑎+𝑏+1, being Haar measures9 on𝒫𝑎,𝑏 , coincide up to a multiplicative constant.

Lemma 5.1 is stated in the setting of maximal codimension 𝑘 = 𝑛; however, it holds also for
1 ≤ 𝑘 ≤ 𝑛 − 1, as shown later in Lemma 5.2. We use the following notation: given 𝑖, 𝑗 ∈ {1, . . . , 𝑛},
by 𝑂 (𝑥𝑖), 𝑂 (𝑥2

𝑖 ), 𝑂 (𝑥𝑖𝑥 𝑗 ) we denote smooth differential forms that can be written, respectively, as
𝑥𝑖𝛼, 𝑥2

𝑖 𝛽, 𝑥𝑖𝑥 𝑗𝛾 for suitable smooth differential forms 𝛼, 𝛽, 𝛾. When applying exterior differentiation
we will freely use straightforward formulae like 𝑑 (𝑂 (𝑥2

𝑖 )) = 𝑂 (𝑥𝑖), 𝑑 (𝑂 (𝑥𝑖𝑥 𝑗 )) = 𝑂 (𝑥𝑖) + 𝑂 (𝑥 𝑗 ) and
similar ones. Eventually, the equivalence class [ · ]J is as in Remark 3.4.

Lemma 5.1. Let 𝑎, 𝑏 be natural numbers such that 2𝑎 + 𝑏 = 𝑛 and let 𝒫𝑎,𝑏 be the (𝑛 + 1)-plane defined
in (5.1). Assume there exists 𝜏 ∈ J𝑛+1 such that the Heisenberg (𝑛 + 1)-current T := 𝜏𝒮𝑛+2 𝒫𝑎,𝑏 is
such that 𝜕T = 0. Then there exists 𝜂 ∈ R such that

𝜏 = 𝜂 [𝑋1 ∧ · · · ∧ 𝑋𝑎+𝑏 ∧ 𝑌1 ∧ · · · ∧ 𝑌𝑎 ∧ 𝑇]J.

In particular, 𝜏 is a multiple of [𝑡H
𝒫𝑎,𝑏

]J.

Proof. We assume that 𝑎 ≥ 1; the case 𝑎 = 0 requires only simple modifications at the level of notation.
We have to prove that there exists 𝜂 ∈ R such that, for every 𝜆 ∈ J𝑛+1,

〈𝜏 | 𝜆〉 = 𝜂 〈𝑋1 ∧ · · · ∧ 𝑋𝑎+𝑏 ∧ 𝑌1 ∧ · · · ∧ 𝑌𝑎 ∧ 𝑇 | 𝜆〉. (5.2)

Clearly, it is enough to check (5.2) for 𝜆 ranging in the basis of J𝑛+1 provided by Proposition 1.10 (with
𝑘 := 𝑛). Fix 𝐼, 𝐽 ⊂ {1, . . . , 𝑛} and a standard Young tableau R such that

◦ 𝐼 ∩ 𝐽 = ∅ and |𝐼 | + |𝐽 | ≤ 𝑛 and
◦ R is a (2 × 𝑛−|𝐼 |− |𝐽 |

2 )-rectangular (recall Remark 3.25) tableau that contains the integers in the set
{1, . . . , 𝑛} \ (𝐼 ∪ 𝐽).

Testing 𝑋1 ∧ · · · ∧ 𝑋𝑎+𝑏 ∧𝑌1 ∧ · · · ∧𝑌𝑎 ∧𝑇 against 𝜆 = 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 ∧ 𝜃, one realises that it is enough
to show that

either 𝐼 = {𝑎 + 1, . . . , 𝑎 + 𝑏}, 𝐽 = ∅ and 𝑅 =
1 2 · · · a

𝑎 + 𝑏 + 1 𝑎 + 𝑏 + 2 · · · n
or 〈𝜏 | 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 ∧ 𝜃〉 = 0.

(5.3)

9The measure ℒ2𝑎+𝑏+1 is a Haar one because 𝒫𝑎,𝑏 is canonically isomorphic to H𝑎 × R𝑏 .
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We are going to prove (5.3) first under some additional assumptions on 𝐼, 𝐽 or R; see the following
Claims 1, 2 and 3. We fix an auxiliary function 𝜓 ∈ 𝐶∞

𝑐 (H𝑛) such that∫
𝒫𝑎,𝑏

𝜓 𝑑𝒮𝑛+2 = 1.

Claim 1: If 𝐼 ∩ {𝑎 + 𝑏 + 1, . . . , 𝑛} ≠ ∅, then 〈𝜏 | 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 ∧ 𝜃〉 = 0.
Fix 𝚤 ∈ 𝐼 ∩ {𝑎 + 𝑏 + 1, . . . , 𝑛} and define

𝜔(𝑥, 𝑦, 𝑡) := 𝑥2
𝚤 𝜓(𝑥, 𝑦, 𝑡) 𝑑𝑥𝐼\{𝚤 } ∧ 𝑑𝑦𝐽∪{𝚤 } ∧ 𝛼𝑅 .

By identifying 𝜔 ∈ 𝐶∞
𝑐 (H𝑛, ∧𝑛𝔥1) with its equivalence class [𝜔] according to the quotient in the right-

hand side of (3.7), we have 𝜔 ∈ D𝑛
H

. One easily computes

𝑑𝜔 = ±2𝑥𝚤 𝜓(𝑥, 𝑦, 𝑡) 𝑑𝑥𝑦𝚤 ∧ 𝑑𝑥𝐼\{𝚤 } ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 + 𝑂 (𝑥2
𝚤 )

where the sign ± depends only on 𝚤 and I and, in the sequel, it can change from line to line. We obtain

𝐿−1 ((𝑑𝜔)𝔥1) = ±2𝑥𝚤 𝜓(𝑥, 𝑦, 𝑡) 𝑑𝑥𝐼\{𝚤 } ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 + 𝑂 (𝑥2
𝚤 )

and, in turn,

𝐷𝜔 = 𝑑
(
𝜔 + (−1)𝑛𝐿−1 ((𝑑𝜔)𝔥1) ∧ 𝜃

)
= ±2 𝜓(𝑥, 𝑦, 𝑡)𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 ∧ 𝜃 + 𝑂 (𝑥𝚤).

Since 𝑂 (𝑥𝚤) = 0 on 𝒫𝑎,𝑏 , we obtain

0 = 𝜕T(𝜔) = T(𝐷𝜔) =
∫
𝒫𝑎,𝑏

〈𝜏 | 𝐷𝜔〉𝑑𝒮𝑛+2

= ±2
∫
𝒫𝑎,𝑏

𝜓〈𝜏 | 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 ∧ 𝜃〉𝑑𝒮𝑛+2

= ±2〈𝜏 | 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 ∧ 𝜃〉

and Claim 1 follows.

Claim 2: If 𝐽 ∩ {𝑎 + 1, . . . , 𝑛} ≠ ∅, then 〈𝜏 | 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 ∧ 𝜃〉 = 0.
The proof is analogous to that of Claim 1. Fix 𝚥 ∈ 𝐽 ∩ {𝑎 + 1, . . . , 𝑛} and define 𝜔 ∈ D𝑛

H
by

𝜔(𝑥, 𝑦, 𝑡) := 𝑦2
𝚥 𝜓(𝑥, 𝑦, 𝑡) 𝑑𝑥𝐼∪{ 𝚥 } ∧ 𝑑𝑦𝐽\{ 𝚥 } ∧ 𝛼𝑅 .

A computation similar to the one in Claim 1 gives

𝐷𝜔 = ±2 𝜓(𝑥, 𝑦, 𝑡)𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 ∧ 𝜃 + 𝑂 (𝑦 𝚥)

and, again,

0 = 𝜕T(𝜔) =
∫
𝒫𝑎,𝑏

〈𝜏 | 𝐷𝜔〉𝑑𝒮𝑛+2 = ±2〈𝜏 | 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 ∧ 𝜃〉

allows us to conclude.

Claim 3: If the first row of R contains an element 𝚤 such that 𝚤 ≥ 𝑎+1, then 〈𝜏 | 𝑑𝑥𝐼 ∧𝑑𝑦𝐽∧𝛼𝑅∧𝜃〉 = 0.
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We observe that, since R is a standard Young tableau, the assumption of Claim 3 is equivalent to R
containing a column made by two elements 𝚤, 𝚥 such that 𝑎 + 1 ≤ 𝚤 < 𝚥 ≤ 𝑛. Define 𝜔 ∈ D𝑛

H
by

𝜔(𝑥, 𝑦, 𝑡) := 𝑦𝚤𝑦 𝚥 𝜓(𝑥, 𝑦, 𝑡) 𝑑𝑥𝐼∪{𝚤, 𝚥 } ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑄,

where Q is the standard Young tableau obtained by removing from R the column containing 𝚤, 𝚥 (for
instance, Q is the empty tableau if R consists of the column 𝚤, 𝚥 only). One has

𝑑𝜔 = 𝜓(𝑥, 𝑦, 𝑡) (𝑦 𝚥 𝑑𝑦𝚤 + 𝑦𝚤 𝑑𝑦 𝚥) ∧ 𝑑𝑥𝐼∪{𝚤, 𝚥 } ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑄 + 𝑂 (𝑦𝚤𝑦 𝚥)

= 𝜓(𝑥, 𝑦, 𝑡)
[
(−1)𝑐+1𝑦 𝚥 𝑑𝑥𝑦𝚤 ∧ 𝑑𝑥𝐼∪{ 𝚥 } + (−1)𝑑+2𝑦𝚤 𝑑𝑥𝑦 𝚥 ∧ 𝑑𝑥𝐼∪{𝚤 }

]
∧ 𝑑𝑦𝐽 ∧ 𝛼𝑄 + 𝑂 (𝑦𝚤𝑦 𝚥)

where

𝑐 := |{𝑖 ∈ 𝐼 : 𝑖 < 𝚤}|

𝑑 := |{𝑖 ∈ 𝐼 : 𝑖 < 𝚥}| = |{𝑖 ∈ 𝐼 ∪ {𝚤} : 𝑖 < 𝚥}| − 1.

Then

𝐿−1 ((𝑑𝜔)𝔥1) = −𝜓(𝑥, 𝑦, 𝑡)
[
(−1)𝑐+1𝑦 𝚥 𝑑𝑥𝐼∪{ 𝚥 } + (−1)𝑑𝑦𝚤 𝑑𝑥𝐼∪{𝚤 }

]
∧ 𝑑𝑦𝐽 ∧ 𝛼𝑄 + 𝑂 (𝑦𝚤𝑦 𝚥)

and, in turn,

𝐷𝜔 = 𝑑
(
𝜔 + (−1)𝑛𝐿−1 ((𝑑𝜔)𝔥1) ∧ 𝜃

)
= (−1)𝑛+1 𝜓(𝑥, 𝑦, 𝑡)

[
(−1)𝑐+1𝑑𝑦 𝚥 ∧ 𝑑𝑥𝐼∪{ 𝚥 } + (−1)𝑑𝑑𝑦𝚤 ∧ 𝑑𝑥𝐼∪{𝚤 }

]
∧ 𝑑𝑦𝐽 ∧ 𝛼𝑄 ∧ 𝜃

+ 𝑂 (𝑦𝚤) + 𝑂 (𝑦 𝚥)

= (−1)𝑛+1 𝜓(𝑥, 𝑦, 𝑡)
[
(−1)𝑐+𝑑+2𝑑𝑥𝑦 𝚥 ∧ 𝑑𝑥𝐼 + (−1)𝑐+𝑑+1𝑑𝑥𝑦𝚤 ∧ 𝑑𝑥𝐼

]
∧ 𝑑𝑦𝐽 ∧ 𝛼𝑄 ∧ 𝜃

+ 𝑂 (𝑦𝚤) + 𝑂 (𝑦 𝚥)

= ± 𝜓(𝑥, 𝑦, 𝑡) (𝑑𝑥𝑦 𝚥 − 𝑑𝑥𝑦𝚤) ∧ 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑄 ∧ 𝜃 + 𝑂 (𝑦𝚤) + 𝑂 (𝑦 𝚥)

= ∓ 𝜓(𝑥, 𝑦, 𝑡)𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 ∧ 𝜃 + 𝑂 (𝑥𝚤) + 𝑂 (𝑥 𝚥).

As before, we obtain

0 = 𝜕T(𝜔) =
∫
𝒫𝑎,𝑏

〈𝜏 | 𝐷𝜔〉𝑑𝒮𝑛+2 = ∓〈𝜏 | 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 ∧ 𝜃〉

and the claim is proved.

Claim 4: (5.3) holds.
We already know that (5.3) holds in case 𝐼, 𝐽, 𝑅 satisfy any one of the assumptions in Claims 1, 2

and 3. We then assume that none of such assumptions hold; that is, that

𝐼 ⊂ {1, . . . , 𝑎 + 𝑏}

and 𝐽 ⊂ {1, . . . , 𝑎}

and the elements in the first row of 𝑅 are not greater than a,

(5.4)

and we prove that necessarily

𝐼 = {𝑎 + 1, . . . , 𝑎 + 𝑏}, 𝐽 = ∅ and 𝑅 =
1 2 · · · a

𝑎 + 𝑏 + 1 𝑎 + 𝑏 + 2 · · · n . (5.5)

This would be enough to conclude.
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The first two conditions in (5.4) imply that all of the 𝑛 − 𝑎 − 𝑏 = 𝑎 integers 𝑎 + 𝑏 + 1, . . . , 𝑛 appear in
R. They all belong to the second row of R by the third condition in (5.4); hence, R has at least a columns.
Therefore, the first row of R contains at least a elements, all of them not greater than a. It follows that
the first row of R contains precisely 1, . . . , 𝑎 (displayed in this order) and that, in turn, the second row
of R contains precisely 𝑎 + 𝑏 + 1, . . . , 𝑛 (displayed in this order). In particular, R is the one displayed in
(5.5). The remaining integers 𝑎 + 1, . . . , 𝑎 + 𝑏, not appearing in R, have to belong to either I or J; the
second condition in (5.4) implies that they all belong to I, and the proof is concluded. �

Lemma 5.1 also holds for nonmaximal codimension 𝑘 < 𝑛, as we now prove. The reader will easily
notice the similarity between the two proofs, the main difference lying in the use of the standard exterior
differentiation d in place of Rumin’s operator D.

Lemma 5.2. Let 𝑎, 𝑏 be natural numbers such that 1 ≤ 𝑎 + 𝑏 ≤ 𝑛 and 𝑛 + 1 ≤ 2𝑎 + 𝑏 ≤ 2𝑛; let 𝒫𝑎,𝑏 be
the plane defined in (5.1). Assume there exists 𝜏 ∈ J2𝑎+𝑏+1 such that the Heisenberg (2𝑎 +𝑏 +1)-current
T := 𝜏𝒮2𝑎+𝑏+2 𝒫𝑎,𝑏 is such that 𝜕T = 0. Then there exists 𝜂 ∈ R such that

𝜏 = 𝜂 [𝑋1 ∧ · · · ∧ 𝑋𝑎+𝑏 ∧ 𝑌1 ∧ · · · ∧ 𝑌𝑎 ∧ 𝑇]J.

In particular, 𝜏 is a multiple of [𝑡H
𝒫𝑎,𝑏

]J.

Proof. Observe that necessarily 𝑎 ≥ 1. We assume also that 𝑏 ≥ 1 and omit the simple modifications
one has to perform in order to treat the case 𝑏 = 0.

As in Lemma 5.1, we have to prove that (5.2) holds for every 𝜆 in the basis of J2𝑎+𝑏+1 provided by
Proposition 1.10 (with 𝑘 := 2𝑛−2𝑎 −𝑏). To this aim, fix 𝐼, 𝐽 ⊂ {1, . . . , 𝑛} and a standard Young tableau
R such that

◦ 𝐼 ∩ 𝐽 = ∅ and |𝐼 | + |𝐽 | ≤ 2𝑛 − 2𝑎 − 𝑏;
◦ R contains the integers in the set {1, . . . , 𝑛} \ (𝐼 ∪ 𝐽);
◦ the first row of R has length ℓ := (2𝑎 + 𝑏 − |𝐼 | − |𝐽 |)/2 and the second one has length

(2𝑛 − 2𝑎 − 𝑏 − |𝐼 | − |𝐽 |)/2.

Let us observe that the lengths of the two rows of R are never equal; actually, the difference between
these lengths is fixed and equal to 2𝑎 + 𝑏 − 𝑛 ≥ 1; see also Remark 3.25. In particular, the rightmost
element in the first row of R belongs to a column of height 1 (there is no element in the second row
‘below it’).

The proof will be accomplished if we prove that

either

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝐼 = {𝑎 + 1, . . . , 𝑎 + 𝑏}

𝐽 = ∅

𝑅 =
1 2 · · · 𝑛 − 𝑎 − 𝑏 𝑛 − 𝑎 − 𝑏 + 1 · · · a

𝑎 + 𝑏 + 1 𝑎 + 𝑏 + 2 · · · n

(5.6)

or 〈𝜏 | 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 ∧ 𝜃〉 = 0. (5.7)

In the following Claims 1, 2 and 3 we prove that (5.7) holds under some additional assumptions on 𝐼, 𝐽
or R; the argument will be completed later in Claim 4. We again fix an auxiliary function 𝜓 ∈ 𝐶∞

𝑐 (H𝑛)
such that ∫

𝒫𝑎,𝑏

𝜓 𝑑𝒮2𝑎+𝑏+2 = 1.

Claim 1: If 𝐼 ∩ {𝑎 + 𝑏 + 1, . . . , 𝑛} ≠ ∅, then (5.7) holds.
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Fix 𝚤 ∈ 𝐼 ∩ {𝑎 + 𝑏 + 1, . . . , 𝑛} and define 𝜔 ∈ D2𝑎+𝑏
H

by

𝜔(𝑥, 𝑦, 𝑡) := 𝑥𝚤 𝜓(𝑥, 𝑦, 𝑡) 𝑑𝑥𝐼 \{𝚤 } ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑄 ∧ 𝜃,

where Q is the Young tableau whose first row is equal to that of R and whose second row is made by
the second row of R with the addition of the extra element 𝚤 in the rightmost position. Namely, denoting
by ℓ and r, with ℓ > 𝑟 , the lengths of the first and second rows of R, respectively, we have

𝑄 =
𝑅1

1 · · · 𝑅1
𝑟 𝑅1

𝑟+1 · · · 𝑅1
ℓ

𝑅2
1 · · · 𝑅2

𝑟 𝚤
.

The Young tableau Q is not necessarily a standard one; nonetheless, 𝜔 ∈ D2𝑎+𝑏
H

by Remark 3.26. One
can compute

𝑑𝜔 = ± 𝜓(𝑥, 𝑦, 𝑡) 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑄 ∧ 𝜃 + 𝑂 (𝑥𝚤)

= ± 𝜓(𝑥, 𝑦, 𝑡) 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 ∧ 𝜃 + 𝑂 (𝑥𝚤),

where the second equality is justified by the fact that 𝑑𝑥𝐼 ∧ 𝛼𝑄 contains a factor 𝑑𝑥𝚤 ∧ (𝑑𝑥𝑦ℎ − 𝑑𝑥𝑦𝚤) =
𝑑𝑥𝚤 ∧ 𝑑𝑥𝑦ℎ for a suitable h (namely, ℎ = 𝑅1

𝑟+1) appearing in the first row of R. Since 𝑂 (𝑥𝚤) = 0 on 𝒫𝑎,𝑏 ,
one gets

0 = 𝜕T(𝜔) = T(𝑑𝜔) =
∫
𝒫𝑎,𝑏

〈𝜏 | 𝑑𝜔〉𝑑𝒮2𝑎+𝑏+2 = ±〈𝜏 | 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 ∧ 𝜃〉

and Claim 1 follows.

Claim 2: If 𝐽 ∩ {𝑎 + 1, . . . , 𝑛} ≠ ∅, then (5.7) holds.
The proof is similar to that of Claim 1. Fix 𝚥 ∈ 𝐽 ∩ {𝑎 + 1, . . . , 𝑛} and define 𝜔 ∈ D2𝑎+𝑏

H
as

𝜔(𝑥, 𝑦, 𝑡) := 𝑦 𝚥 𝜓(𝑥, 𝑦, 𝑡) 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽\{ 𝚥 } ∧ 𝛼𝑄 ∧ 𝜃,

where Q is the Young tableau whose first row is equal to that of R and whose second row is made by the
second row of R with the addition of the extra element 𝚥 in the rightmost position. Again, 𝜔 ∈ D2𝑎+𝑏

H

because of Remark 3.26. One can compute

𝑑𝜔 = ± 𝜓(𝑥, 𝑦, 𝑡) 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑄 ∧ 𝜃 + 𝑂 (𝑦 𝚥)

= ± 𝜓(𝑥, 𝑦, 𝑡) 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 ∧ 𝜃 + 𝑂 (𝑦 𝚥),

where, as before, the second equality is justified by the fact that 𝑑𝑦𝐽 ∧𝛼𝑄 contains a factor 𝑑𝑦 𝚥∧ (𝑑𝑥𝑦ℎ−
𝑑𝑥𝑦 𝚥) = 𝑑𝑦 𝚥 ∧ 𝑑𝑥𝑦ℎ for a suitable h appearing in the first row of R. We deduce that

0 = 𝜕T(𝜔) = T(𝑑𝜔) =
∫
𝒫𝑎,𝑏

〈𝜏 | 𝑑𝜔〉𝑑𝒮2𝑎+𝑏+2 = ±〈𝜏 | 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 ∧ 𝜃〉

and Claim 2 follows.

Claim 3: If the first row of R contains an element 𝚥 such that 𝚥 ≥ 𝑎 + 1, then (5.7) holds.
Since R is a standard Young tableau, the rightmost element in the first row of R is not smaller than

𝑎 + 1; we can then assume that 𝚥 is precisely this element. As already noticed, there is no element in the
second row of R ‘below’ 𝚥. Consider the form 𝜔 ∈ D2𝑎+𝑏

H
defined by

𝜔(𝑥, 𝑦, 𝑡) := 𝑦 𝚥 𝜓(𝑥, 𝑦, 𝑡) 𝑑𝑥𝐼∪{ 𝚥 } ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑄 ∧ 𝜃,
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where Q is the (possibly empty) tableau obtained from R by removing the rightmost entry (i.e., 𝚥) of
the first row. Since Q is a (possibly empty) standard Young tableau containing the same elements of R
except for 𝚥, we have 𝜔 ∧ 𝑑𝜃 = 0 and, in particular, 𝜔 ∈ D2𝑎+𝑏

H
. Since

𝑑𝜔 = 𝜓(𝑥, 𝑦, 𝑡)𝑑𝑦 𝚥 ∧ 𝑑𝑥𝐼∪{ 𝚥 } ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑄 ∧ 𝜃 + 𝑂 (𝑦 𝚥)

= ± 𝜓(𝑥, 𝑦, 𝑡) 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑄 ∧ 𝑑𝑥𝑦 𝚥 ∧ 𝜃 + 𝑂 (𝑦 𝚥)

= ± 𝜓(𝑥, 𝑦, 𝑡) 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 ∧ 𝜃 + 𝑂 (𝑦 𝚥),

we deduce as before that

0 = 𝜕T(𝜔) = T(𝑑𝜔) =
∫
𝒫𝑎,𝑏

〈𝜏 | 𝑑𝜔〉𝑑𝒮2𝑎+𝑏+2 = ±〈𝜏 | 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 ∧ 𝜃〉

and Claim 3 follows.

Claim 4: At least one between (5.6) and (5.7) holds.
We know that (5.7) holds if 𝐼, 𝐽, 𝑅 satisfy any one of the assumptions of Claims 1, 2 and 3. We then

assume that none of such assumptions holds; that is, that

𝐼 ⊂ {1, . . . , 𝑎 + 𝑏}

and 𝐽 ⊂ {1, . . . , 𝑎}

and the elements in the first row of 𝑅 are not greater than a,
(5.8)

and we prove that (5.6) holds.
By (5.8), all of the integers 𝑎 + 𝑏 + 1, . . . , 𝑛 appear in the second row of R. The length of such a row

is then at least 𝑛 − 𝑎 − 𝑏. Since the difference between the lengths of the rows of R is equal to 2𝑎 + 𝑏 − 𝑛,
the length of the first row of R is at least a. By the third condition in (5.8), the first row of R contains at
most a elements; hence, it contains precisely the a elements 1, . . . , 𝑎 (in this order). In turn, the second
row contains 𝑛 − 𝑎 − 𝑏 elements, which are forced to be the numbers 𝑎 + 𝑏 + 1, . . . , 𝑛 (in this order). In
particular, R is the one displayed in (5.6). The remaining integers 𝑎 + 1, . . . , 𝑎 + 𝑏, not appearing in R,
have to belong to either I or J; the second condition in (5.8) implies that they all belong to I, and the
proof is concluded. �

Proposition 3.13 allows extending Lemmata 5.1 and 5.2 to general vertical planes (Definition 3.2).

Proposition 5.3. Let 𝑘 ∈ {1, . . . , 𝑛}, 𝜏 ∈ J2𝑛+1−𝑘 and a vertical (2𝑛 + 1 − 𝑘)-plane 𝒫 ⊂ H𝑛 be fixed;
assume that the current T := 𝜏𝒮𝑄−𝑘 𝒫 is such that 𝜕T = 0. Then there exists 𝜂 ∈ R such that

𝜏 = 𝜂 [𝑡H𝒫]J.

Proof. By Proposition 3.13 there exists anH-linear isomorphism L : H𝑛 → H𝑛 such that L(𝒫) = 𝒫𝑎,𝑏

and L∗(𝑑𝜃) = 𝑑𝜃. Consider the push-forward L#T of T; that is, the Heisenberg (2𝑛 + 1 − 𝑘)-current
defined by

L#T(𝜔) := T(L∗(𝜔)), 𝜔 ∈ D2𝑛+1−𝑘
H

.

Also, L#T has zero boundary by Corollary 3.12. The push-forward L#(𝒮𝑄−𝑘 𝒫) of the measure
𝒮𝑄−𝑘 𝒫, defined by

L#(𝒮𝑄−𝑘 𝒫) (𝐸) := 𝒮𝑄−𝑘 (L−1(𝐸) ∩ 𝒫), 𝐸 ⊂ H𝑛,

is a Haar measure on 𝒫𝑎,𝑏 and, in particular,

L#(𝒮𝑄−𝑘 𝒫) = 𝛾𝒮𝑄−𝑘 𝒫𝑎,𝑏
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for a suitable 𝛾 > 0. It follows that for every 𝜔 ∈ D2𝑛+1−𝑘
H

,

L#T(𝜔) =
∫
𝒫

〈𝜏 | L∗(𝜔)〉 𝑑𝒮𝑄−𝑘 =
∫
𝒫𝑎,𝑏

〈𝛾L∗(𝜏) | 𝜔〉 𝑑𝒮𝑄−𝑘

where L∗ : J2𝑛+1−𝑘 → J2𝑛+1−𝑘 is the isomorphism defined by

〈L∗(𝜏) | 𝜆〉 := 〈𝜏 | L∗(𝜆)〉 ∀ 𝜆 ∈ J2𝑛+1−𝑘 . (5.9)

Observe that we are implicitly using Proposition 3.11. By Corollary 3.12, the current L#T =
𝛾L∗(𝜏)𝒮𝑄−𝑘 𝒫𝑎,𝑏 has zero boundary; therefore, Lemma 5.1 (if 𝑘 = 𝑛) or Lemma 5.2 (if 1 ≤ 𝑘 < 𝑛)
implies that there exists 𝜂 ∈ R such that

𝛾 L∗(𝜏) = 𝜂[𝑡H𝒫𝑎,𝑏
]J = 𝜂 𝐶 [L∗(𝑡

H

𝒫)]J = 𝜂 𝐶 L∗ [𝑡
H

𝒫]J

for a suitable 𝐶 ≠ 0 depending on L and 𝒫. Since L∗ : J2𝑛+1−𝑘 → J2𝑛+1−𝑘 is an isomorphism, we
obtain that 𝜏 = 𝜂 𝐶 𝛾−1 [𝑡H

𝒫
]J and the proof is concluded. �

5.2. Proof of Theorem 1.8

We now prove Theorem 1.8. Recall once again that, for 𝑘 ∈ {1, . . . , 𝑛}, the spaceJ2𝑛+1−𝑘 was introduced
as the dual space to J2𝑛+1−𝑘 . However, we need to also introduce the dual space to Rumin’s space
∧𝑛𝔥/I𝑛 and, for convenience of notation, we will denote such dual space by J𝑛. The spaces J𝑛 and
J𝑛+1, . . . ,J2𝑛 are endowed, respectively, with the operator norm | · | arising from either the norm on
∧𝑛𝔥/I𝑛 introduced in (3.28) or the standard norm on J2𝑛+1−𝑘 ⊂ ∧2𝑛+1−𝑘𝔥, 𝑘 = 1, . . . , 𝑛.

Proof of Theorem 1.8. Without loss of generality, we can assume that R is a H-regular submanifold S.
We have to prove that there exists 𝜁 : 𝑆 → R such that

�T(𝑝) = 𝜁 (𝑝) [𝑡H𝑆 (𝑝)]J for ‖T‖𝑎-a.e. 𝑝 ∈ 𝑆. (5.10)

Since 𝒮𝑄−𝑘 𝑆 is locally (𝑄 − 𝑘)-Ahlfors regular, we can differentiate the measure ‖T‖ with respect
to 𝒮𝑄−𝑘 𝑆; see, for example, [90, Theorem 4.7 and Remark 4.5]. In particular, we can write ‖T‖𝑎 =
𝑓𝒮𝑄−𝑘 𝑆 for a suitable 𝑓 ∈ 𝐿1

loc (𝒮
𝑄−𝑘 𝑆) and, for 𝒮𝑄−𝑘 -a.e. 𝑝 ∈ 𝑆, one has∫

𝑆∩𝐵 (𝑝,𝑟 )
| 𝑓 �T − 𝑓 (𝑝)�T(𝑝) | 𝑑𝒮𝑄−𝑘 = 𝑜

(
𝒮𝑄−𝑘 (𝑆 ∩ 𝐵(𝑝, 𝑟))

)
= 𝑜(𝑟𝑄−𝑘 ) (5.11)

and

‖T‖𝑠 (𝐵(𝑝, 𝑟)) = 𝑜(𝑟𝑄−𝑘 ). (5.12)

Statement (5.10) (and then Theorem 1.8) reduces to proving that there exists 𝜂 : 𝑆 → R such that

𝑓 (𝑝)�T(𝑝) = 𝜂(𝑝) [𝑡H𝑆 (𝑝)]J for 𝒮𝑄−𝑘 -a.e. 𝑝 ∈ 𝑆. (5.13)

Since 𝜕T also has locally finite mass, by Riesz’s theorem (recall also Remark 3.30) there exist a Radon
measure 𝜈 and a locally 𝜈-integrable function 𝜎 : H𝑛 → J2𝑛−𝑘 such that |𝜎 | = 1 𝜈-a.e. and 𝜕T = 𝜎𝜈;
that is,

𝜕T(𝜔) =
∫

〈𝜎 | 𝜔〉 𝑑𝜈, 𝜔 ∈ D2𝑛−𝑘
H

.
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Differentiating 𝜈 with respect to 𝒮𝑄−𝑘 𝑆, we obtain that for 𝒮𝑄−𝑘 -a.e. 𝑝 ∈ 𝑆,

𝜈(𝐵(𝑝, 𝑟)) = 𝑂
(
𝒮𝑄−𝑘 (𝑆 ∩ 𝐵(𝑝, 𝑟))

)
= 𝑂 (𝑟𝑄−𝑘 ). (5.14)

We claim that (5.13) holds for those 𝑝 ∈ 𝑆 for which (5.11), (5.12) and (5.14) hold. This would be
enough to conclude.

Let such a p be fixed. For 𝑟 > 0, consider the mapL𝑝,𝑟 : H𝑛 → H𝑛 defined byL𝑝,𝑟 (𝑞) := 𝛿1/𝑟 (𝑝−1𝑞)
and the push-forward T𝑝,𝑟 := L𝑝,𝑟 #T; that is, the current

T𝑝,𝑟 (𝜔) := T(L∗
𝑝,𝑟𝜔), 𝜔 ∈ D2𝑛+1−𝑘

H
.

Observe that, by homogeneity and left-invariance, the equality L∗
𝑝,𝑟𝜔 = 𝑟−(𝑄−𝑘) (𝜔 ◦ L𝑝,𝑟 ) holds for

every 𝜔 ∈ D2𝑛+1−𝑘
H

. If 𝑟 > 0 is such that spt 𝜔 ⊂ 𝐵(0, 𝑟), one gets

lim
𝑟→0+

T𝑝,𝑟 (𝜔) = lim
𝑟→0+

1
𝑟𝑄−𝑘

∫
𝐵 (𝑝,𝑟𝑟 )

〈�T | 𝜔 ◦ L𝑝,𝑟 〉 𝑑‖T‖

(5.12)
= lim

𝑟→0+

1
𝑟𝑄−𝑘

∫
𝑆∩𝐵 (𝑝,𝑟𝑟 )

〈 𝑓 �T | 𝜔 ◦ L𝑝,𝑟 〉 𝑑𝒮𝑄−𝑘

(5.11)
= lim

𝑟→0+

1
𝑟𝑄−𝑘

∫
𝑆∩𝐵 (𝑝,𝑟𝑟 )

〈 𝑓 (𝑝)�T(𝑝) | 𝜔 ◦ L𝑝,𝑟 〉 𝑑𝒮𝑄−𝑘

and a change of variables gives

lim
𝑟→0+

T𝑝,𝑟 (𝜔) = lim
𝑟→0+

∫
𝛿1/𝑟 (𝑝−1𝑆)∩𝐵 (0,𝑟 )

〈 𝑓 (𝑝)�T(𝑝) | 𝜔〉 𝑑𝒮𝑄−𝑘

= lim
𝑟→0+

∫
𝛿1/𝑟 (𝑝−1𝑆)

〈 𝑓 (𝑝)�T(𝑝) | 𝜔〉 𝑑𝒮𝑄−𝑘 .

By (4.24) we can define the limit current T∞ as

T∞(𝜔) := lim
𝑟→0+

T𝑝,𝑟 (𝜔) =
∫

TanH𝑆 (𝑝)
〈 𝑓 (𝑝)�T(𝑝) | 𝜔〉 𝑑𝒮𝑄−𝑘 , 𝜔 ∈ D2𝑛+1−𝑘

H
.

The current T∞ is supported on the plane TanH𝑆 (𝑝). We now study its boundary and observe that for
every 𝜔 ∈ D2𝑛−𝑘

H
,

𝜕T∞(𝜔) = T∞(𝑑𝐶𝜔) = lim
𝑟→0+

T𝑝,𝑟 (𝑑𝐶𝜔) = lim
𝑟→0+

T(L∗
𝑝,𝑟 𝑑𝐶𝜔)

and by Corollary 3.12

, 𝜕T∞(𝜔) = lim
𝑟→0+

T(𝑑𝐶L∗
𝑝,𝑟𝜔) = lim

𝑟→0+
𝜕T(L∗

𝑝,𝑟𝜔) =
∫
H𝑛

〈𝜎 | L∗
𝑝,𝑟𝜔〉 𝑑𝜈.

By homogeneity, we have L∗
𝑝,𝑟𝜔 = 𝑟−Δ (𝜔 ◦ L𝑝,𝑟 ), where Δ is the homogeneity degree of 𝜔 and

Δ = 𝑄 − 𝑘 − 2 = 𝑛 if 𝑘 = 𝑛

Δ = 𝑄 − 𝑘 − 1 if 1 ≤ 𝑘 ≤ 𝑛 − 1.
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We then obtain

|𝜕T∞(𝜔) | = lim
𝑟→0+

𝑟−Δ

%%%%∫
H𝑛

〈𝜎 | 𝜔 ◦ L𝑝,𝑟 〉 𝑑𝜈

%%%%
≤ lim

𝑟→0+
𝑟−Δ+𝑄−𝑘 𝜈(𝐵(𝑝, 𝑟𝑟))

𝑟𝑄−𝑘
sup |𝜔| = 0,

the last equality following from (5.14) and the inequality Δ < 𝑄 − 𝑘 .
The current T∞ = 𝑓 (𝑝)�T(𝑝)𝒮𝑄−𝑘 TanH𝑆 (𝑝) is such that 𝜕T∞ = 0. By Proposition 5.3 there exists

𝜂 = 𝜂(𝑝) ∈ R such that

𝑓 (𝑝)�T(𝑝) = 𝜂[𝑡HTanH𝑆 (𝑝)
]J = 𝜂[𝑡H𝑆 (𝑝)]J

and the proof is accomplished. �

5.3. The constancy theorem in Heisenberg groups

In this section we prove Theorem 1.7. We start by establishing some standard facts inspired by classical
results about mollification of distributions. Given 𝑘 ∈ {1, . . . , 𝑛}, let 𝑎, 𝑏 be fixed nonnegative integers
such that 1 ≤ 𝑎 + 𝑏 ≤ 𝑛 and 2𝑎 + 𝑏 = 2𝑛 − 𝑘 . Consider the vertical plane 𝒫𝑎,𝑏 defined in (5.1); let us
fix a mollification kernel 𝜑 ∈ 𝐶∞

𝑐 (𝒫𝑎,𝑏) such that∫
𝒫𝑎,𝑏

𝜑 𝑑𝒮𝑄−𝑘 = 1 and spt 𝜑 ⊂ 𝐵(0, 1) ∩ 𝒫𝑎,𝑏 .

As usual, for every 𝜀 > 0 we define the rescaled kernels 𝜑𝜀 := 𝜀𝑘−𝑄 (𝜑 ◦ 𝛿1/𝜀) and, given a Heisenberg
(2𝑛 + 1 − 𝑘)-current T with support in 𝒫𝑎,𝑏 , we define the Heisenberg (2𝑛 + 1 − 𝑘)-current T𝜀 as

T𝜀 (𝜔) :=
∫
𝒫𝑎,𝑏

𝜑𝜀 (𝑝)T(L∗
𝑝𝜔) 𝑑𝒮𝑄−𝑘 (𝑝), 𝜔 ∈ D2𝑛+1−𝑘

H
(5.15)

where L𝑝 (𝑞) := 𝑝𝑞 denotes left-translation by 𝑝 ∈ 𝒫𝑎,𝑏 .

Lemma 5.4. Let T be a Heisenberg (2𝑛 + 1 − 𝑘)-current with support in 𝒫𝑎,𝑏 and with locally finite
mass; for 𝜀 > 0, consider T𝜀 as in (5.15). Then the following statements hold:

(i) T𝜀 has support in 𝒫𝑎,𝑏;
(ii) T𝜀 ⇀ T as 𝜀 → 0+; that is, T𝜀 (𝜔) → T(𝜔) for every 𝜔 ∈ D2𝑛+1−𝑘

H
;

(iii) there exists a 𝐶∞-smooth map 𝜏𝜀 : 𝒫𝑎,𝑏 → J2𝑛+1−𝑘 such that T𝜀 = 𝜏𝜀𝒮
𝑄−𝑘 𝒫𝑎,𝑏;

(iv) if 𝜕T = 0, then 𝜕T𝜀 = 0.

Proof. The statement in (i) is clear: in fact, if 𝜔 ∈ D2𝑛+1−𝑘
H

is such that spt 𝜔 ∩ 𝒫𝑎,𝑏 = ∅, then
spt L∗

𝑝𝜔 ∩ 𝒫𝑎,𝑏 = ∅ for every 𝑝 ∈ 𝒫𝑎,𝑏 and T𝜀 (𝜔) = 0.
Concerning (ii), let 𝜔 ∈ D2𝑛+1−𝑘

H
be fixed and let 𝑅 > 0 be such that spt 𝜔 ⊂ 𝐵(0, 𝑅). Writing

T = �T‖T‖ as in Remark 3.30, we estimate

|T𝜀 (𝜔) − T(𝜔) | =

%%%%%∫𝒫𝑎,𝑏

𝜑𝜀 (𝑝) T(L∗
𝑝𝜔 − 𝜔) 𝑑𝒮𝑄−𝑘 (𝑝)

%%%%%
≤ sup

𝑝∈𝒫𝑎,𝑏∩𝐵 (0, 𝜀)
‖L∗

𝑝𝜔 − 𝜔‖𝐶0 (𝐵 (0,𝑅+𝜀)) ‖T‖(𝐵(0, 𝑅 + 𝜀))

and, in particular, T𝜀 (𝜔) → T(𝜔) as 𝜀 → 0+.
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Since L∗
𝑝𝜔(𝑞) = 𝜔(𝑝𝑞), statement (iii) follows from

T𝜀 (𝜔) =
∫
𝒫𝑎,𝑏

∫
𝒫𝑎,𝑏

𝜑𝜀 (𝑝) 〈�T(𝑞) | 𝜔(𝑝𝑞)〉 𝑑‖T‖(𝑞) 𝑑𝒮𝑄−𝑘 (𝑝)

=
∫
𝒫𝑎,𝑏

〈 ∫
𝒫𝑎,𝑏

𝜑𝜀 (𝑝𝑞−1)�T(𝑞) 𝑑‖T‖(𝑞)
%%% 𝜔(𝑝)
〉

𝑑𝒮𝑄−𝑘 (𝑝).

Eventually, if 𝜕T = 0 one has

𝜕T𝜀 (𝜔) = T𝜀 (𝑑𝐶𝜔) =
∫
𝒫𝑎,𝑏

𝜑𝜀 (𝑝)T(𝑑𝐶 (L∗
𝑝𝜔)) 𝑑𝒮𝑄−𝑘 (𝑝) = 0, (5.16)

where we used Corollary 3.12. �

Remark 5.5. One can more generally observe that, as in (5.16),

𝜕T𝜀 (𝜔) =
∫
𝒫𝑎,𝑏

𝜑𝜀 (𝑝) 𝜕T(L∗
𝑝𝜔) 𝑑𝒮𝑄−𝑘 (𝑝);

that is, 𝜕T𝜀 = (𝜕T)𝜀 .

For the reader’s convenience, we separate the proof of Theorem 1.7 in the cases 𝑘 = 𝑛 and 1 ≤
𝑘 ≤ 𝑛 − 1; as one can expect, the former is computationally more demanding because of the use of the
second-order operator D.

It is convenient to fix some notation. If R is a Young tableau and the elements displayed in R are all
different, by abuse of notation we write

∑
𝑘∈𝑅 to denote summation on all of the elements k displayed

in R. Moreover, if R is rectangular and k is an element displayed in R, we denote by [𝑅\𝑘] the (possibly
empty) Young tableau obtained from R by removing the column containing k. For instance, if

𝑅 =
1 2 3
0 9 5

then ∑
𝑘∈𝑅

𝑓 (𝑘) = 𝑓 (0) + 𝑓 (1) + 𝑓 (2) + 𝑓 (3) + 𝑓 (5) + 𝑓 (9) and [𝑅\9] =
1 3
0 5 .

Proof of Theorem 1.7, case 𝑘 = 𝑛. Reasoning as in Proposition 5.3, by Proposition 3.13 one can assume
without loss of generality that 𝒫 = 𝒫𝑎,𝑏 for some nonnegative integers 𝑎, 𝑏 such that 2𝑎 + 𝑏 = 𝑛.
Moreover, by Lemma 5.4 it is not restrictive to assume that T = 𝜏𝒮𝑛+2 𝒫𝑎,𝑏 for a suitable 𝐶∞-smooth
𝜏 : 𝒫𝑎,𝑏 → J𝑛+1. By Theorem 1.8, 𝜏 can be written as 𝜏 = 𝜑𝜏 [𝑡

H

𝒫𝑎,𝑏
]J for some 𝜑𝜏 ∈ 𝐶∞(𝒫𝑎,𝑏); let

us prove that 𝜑𝜏 is constant on 𝒫𝑎,𝑏 .
We are going to utilise test n-forms 𝜔 = 𝑓 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧𝛼𝑅, where 𝑓 ∈ 𝐶∞

𝑐 (H𝑛) and the triple (𝐼, 𝐽, 𝑅)
is as in Proposition 1.10 (with 𝑘 = 𝑛); in particular, R is rectangular. As usual, 𝜔 is a smooth section of
∧𝑛𝔥1, but we identify 𝜔 with an element in D𝑛

H
as in (3.7). By (3.8) we have

𝐷𝜔 = (𝑑𝜔)𝔳 + 𝜃 ∧ 𝑑 (𝐿−1 ((𝑑𝜔)𝔥1)). (5.17)
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Taking into account that

𝑑𝜔 =
∑
𝑖∈𝐼

(𝑌𝑖 𝑓 )𝑑𝑦𝑖 ∧ 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 +
∑
𝑗∈𝐽

(𝑋 𝑗 𝑓 )𝑑𝑥 𝑗 ∧ 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅

+
∑
𝑘∈𝑅

((𝑋𝑘 𝑓 )𝑑𝑥𝑘 + (𝑌𝑘 𝑓 )𝑑𝑦𝑘 ) ∧ 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 + (𝑇 𝑓 )𝜃 ∧ 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅,

we obtain

(𝑑𝜔)𝔳 = (𝑇 𝑓 )𝜃 ∧ 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 (5.18)

and

𝐿−1 ((𝑑𝜔)𝔥1) =
∑
𝑖∈𝐼

±(𝑌𝑖 𝑓 )𝑑𝑥𝐼\{𝑖 } ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 +
∑
𝑗∈𝐽

±(𝑋 𝑗 𝑓 )𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽\{ 𝑗 } ∧ 𝛼𝑅

+
∑
𝑘∈𝑅

(
±(𝑋𝑘 𝑓 )𝑑𝑥𝐼∪{𝑘 } ∧ 𝑑𝑦𝐽 ± (𝑌𝑘 𝑓 )𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽∪{𝑘 }

)
∧ 𝛼[𝑅\𝑘 ] .

(5.19)

The signs ± appearing in (5.19) could be easily specified, but they are in fact irrelevant for our purposes.
Let us fix

𝐼 := {𝑎 + 1, . . . , 𝑎 + 𝑏}, 𝐽 := ∅ and 𝑅 := 1 2 · · · a
𝑎 + 𝑏 + 1 𝑎 + 𝑏 + 2 · · · n .

If 𝑎 = 0, then 𝑏 = 𝑛, 𝐼 = {1, . . . , 𝑛} and 𝑅 is the empty tableau. If 𝑏 = 0, then 𝑎 = 𝑛/2 and 𝐼 = ∅.
Assume 𝑎 ≥ 1, fix a column of 𝑅 and let 𝛼, 𝛾 be its elements, with 𝛼 < 𝛾; in particular, 𝛾 = 𝛼+𝑛−𝑎.

On choosing

𝐼 := 𝐼 ∪ {𝛼}, 𝐽 := {𝛾} and 𝑅 := [𝑅\𝛼]

𝑓 (𝑥, 𝑦, 𝑡) := 𝑥𝛾 𝑔(𝑥, 𝑦, 𝑡) for an arbitrary 𝑔 ∈ 𝐶∞
𝑐 (H𝑛)

one gets from (5.18) and (5.19)

(𝑑𝜔)𝔳 = 𝑂 (𝑥𝛾) = 0 on 𝒫𝑎,𝑏 ,

where we used the notation introduced before Lemma 5.1, and

𝜃 ∧ 𝑑 (𝐿−1 ((𝑑𝜔)𝔥1)) = ±(𝑌𝛼𝑋𝛾 𝑓 )𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 ∧ 𝑑𝑥𝑦𝛼 ∧ 𝜃 + 𝑂 (𝑥𝛾) + 𝜎

= ±(𝑌𝛼𝑔)𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 ∧ 𝜃 + 𝑂 (𝑥𝛾) + 𝜎

where, here and in the following, 𝜎 denotes a form (which may vary from line to line) in the annihilator
of [𝑡H

𝒫𝑎,𝑏
]J; equivalently, 〈𝑋1 ∧ · · · ∧ 𝑋𝑎+𝑏 ∧ 𝑌1 ∧ · · · ∧ 𝑌𝑎 ∧ 𝑇 | 𝜎〉 = 0. In particular, 〈𝜏 | 𝜎〉 = 0 and

from (5.17) we obtain

0 = T(𝐷𝜔) = ±

∫
𝒫𝑎,𝑏

𝜑𝜏 (𝑌𝛼𝑔) 𝑑ℒ𝑛+1 for every 𝑔 ∈ 𝐶∞
𝑐 (H𝑛). (5.20)

In a similar way, on choosing

𝐼 := 𝐼 ∪ {𝛾}, 𝐽 := {𝛼} and 𝑅 := [𝑅\𝛼]

𝑓 (𝑥, 𝑦, 𝑡) := 𝑦𝛾 𝑔(𝑥, 𝑦, 𝑡) for an arbitrary 𝑔 ∈ 𝐶∞
𝑐 (H𝑛)
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one again gets (𝑑𝜔)𝔳 = 𝑂 (𝑦𝛾) = 0 on 𝒫𝑎,𝑏 and

𝜃 ∧ 𝑑 (𝐿−1 ((𝑑𝜔)𝔥1)) = ±(𝑋𝛼𝑌𝛾 𝑓 )𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 ∧ 𝑑𝑥𝑦𝛼 ∧ 𝜃 + 𝑂 (𝑦𝛾) + 𝜎

= ±(𝑋𝛼𝑔)𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 ∧ 𝜃 + 𝑂 (𝑦𝛾) + 𝜎

where 𝜎 again denotes a form in the annihilator of [𝑡H
𝒫𝑎,𝑏

]J. From (5.17) we obtain

0 = T(𝐷𝜔) = ±

∫
𝒫𝑎,𝑏

𝜑𝜏 (𝑋𝛼𝑔) 𝑑ℒ𝑛+1 for every 𝑔 ∈ 𝐶∞
𝑐 (H𝑛),

which, together with (5.20), gives

𝑋𝛼𝜑𝜏 = 𝑌𝛼𝜑𝜏 = 0 for every 𝛼 = 1, . . . , 𝑎

𝑇𝜑𝜏 = 𝑋1𝑌1𝜑𝜏 − 𝑌1𝑋1𝜑𝜏 = 0.
(5.21)

We recall once again that the equalities in (5.21) are proved only under the assumption 𝑎 ≥ 1.
If 𝑏 ≥ 1, we fix 𝛽 ∈ 𝐼 and choose

𝐼 := 𝐼 ∪ {𝑎 + 𝑏 + 1} \ {𝛽}, 𝐽 := ∅ and 𝑅 := 1 2 · · · a
𝛽 𝑎 + 𝑏 + 2 · · · n

𝑓 (𝑥, 𝑦, 𝑡) := 𝑦𝑎+𝑏+1 𝑔(𝑥, 𝑦, 𝑡) for an arbitrary 𝑔 ∈ 𝐶∞
𝑐 (H𝑛).

The tableau R is obtained from 𝑅 on replacing the entry 𝑎 + 𝑏 + 1 with 𝛽. Then

(𝑑𝜔)𝔳 = 𝑂 (𝑦𝑎+𝑏+1) = 0 on 𝒫𝑎,𝑏

and

𝜃 ∧ 𝑑 (𝐿−1 ((𝑑𝜔)𝔥1)) = ±(𝑋𝛽𝑌𝑎+𝑏+1 𝑓 )𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 ∧ 𝜃 + 𝑂 (𝑦𝑎+𝑏+1) + 𝜎

= ±(𝑋𝛽𝑔)𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 ∧ 𝜃 + 𝑂 (𝑦𝑎+𝑏+1) + 𝜎

where 𝜎 again denotes a form annihilating [𝑡H
𝒫𝑎,𝑏

]J and we used the fact that 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ (𝛼𝑅 − 𝛼𝑅)

annihilates [𝑡H
𝒫𝑎,𝑏

]J. From (5.17) we obtain

0 = T(𝐷𝜔) = ±

∫
𝒫𝑎,𝑏

𝜑𝜏 (𝑋𝛽𝑔) 𝑑ℒ𝑛+1 for every 𝑔 ∈ 𝐶∞
𝑐 (H𝑛)

so that

𝑋𝛽𝜑𝜏 = 0 for every 𝛽 = 𝑎 + 1, . . . , 𝑎 + 𝑏. (5.22)

If 𝑎 ≥ 1, (5.21) and (5.22) are enough to conclude that 𝜑𝜏 is constant on 𝒫𝑎,𝑏 . If 𝑎 = 0, (5.22) still
holds and we have only to prove that

𝑇𝜑𝜏 = 0 on 𝒫𝑎,𝑏 . (5.23)
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We then choose 𝐼 = 𝐼 = {1, . . . , 𝑛}, 𝐽 = 𝐽 = ∅, 𝑅 = 𝑅 (in this case, the empty tableau) and we fix an
arbitrary 𝑓 ∈ 𝐶∞

𝑐 (H𝑛). By (5.17), (5.18) and (5.19),

𝐷𝜔 = 𝜃 ∧

(
(𝑇 𝑓 )𝑑𝑥 {1,...,𝑛} + 𝑑

( 𝑛∑
𝑖=1

±(𝑌𝑖 𝑓 ) 𝑑𝑥 {1,...,𝑛}\{𝑖 }

))
=

(
𝑇 𝑓 +

𝑛∑
𝑖=1

±𝑋𝑖𝑌𝑖 𝑓

)
𝜃 ∧ 𝑑𝑥 {1,...,𝑛} + 𝜎

for a suitable 𝜎 in the annihilator of [𝑡H
𝒫𝑎,𝑏

]J. This gives

0 = T(𝐷𝜔) =
∫
𝒫𝑎,𝑏

(
𝑇 𝑓 +

𝑛∑
𝑖=1

±𝑋𝑖𝑌𝑖 𝑓

)
𝜑𝜏 𝑑ℒ𝑛+1 (5.22)

=
∫
𝒫𝑎,𝑏

(𝑇 𝑓 )𝜑𝜏 𝑑ℒ𝑛+1

and (5.23) follows from the arbitrariness of f. This concludes the proof. �

Proof of Theorem 1.7, case 1 ≤ 𝑘 ≤ 𝑛 − 1. Reasoning as in Proposition 5.3, by Proposition 3.13 one
can assume without loss of generality that 𝒫 = 𝒫𝑎,𝑏 for some nonnegative integers 𝑎, 𝑏 such that
1 ≤ 𝑎 + 𝑏 ≤ 𝑛 and 2𝑎 + 𝑏 = 2𝑛− 𝑘 . Observe that 𝑎 ≥ 1. By Lemma 5.4 it is not restrictive to assume that
T = 𝜏𝒮𝑄−𝑘 𝒫𝑎,𝑏 for a suitable 𝐶∞-smooth 𝜏 : 𝒫𝑎,𝑏 → J2𝑛+1−𝑘 . By Theorem 1.8, 𝜏 can be written
as 𝜏 = 𝜑𝜏 [𝑡H

𝒫𝑎,𝑏
]J for some 𝜑𝜏 ∈ 𝐶∞(𝒫𝑎,𝑏); let us prove that 𝜑𝜏 is constant on 𝒫𝑎,𝑏 .

We are going to consider the Heisenberg (2𝑛 − 𝑘)-form 𝜔 = 𝑓 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 ∧ 𝜃, where

◦ 𝑓 ∈ 𝐶∞
𝑐 (H𝑛);

◦ 𝐼 ⊂ {1, . . . , 𝑛}, 𝐽 ⊂ {1, . . . , 𝑛}, |𝐼 | + |𝐽 | ≤ 𝑘 + 1 and 𝐼 ∩ 𝐽 = ∅;
◦ R is a (nonnecessarily standard) Young tableau that contains the elements of {1, . . . , 𝑛} \ (𝐼 ∪ 𝐽)

arranged in two rows of length, respectively, (2𝑛 − 𝑘 − 1 − |𝐼 | − |𝐽 |)/2 and (𝑘 + 1 − |𝐼 | − |𝐽 |)/2.

Observe that 𝜔 ∈ D2𝑛−𝑘
H

because of Remark 3.26. Then

𝑑𝜔 =
∑
𝑖∈𝐼

±(𝑌𝑖 𝑓 )𝑑𝑥𝐼\{𝑖 } ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 ∧ 𝑑𝑥𝑦𝑖 ∧ 𝜃

+
∑
𝑗∈𝐽

±(𝑋 𝑗 𝑓 )𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽\{ 𝑗 } ∧ 𝛼𝑅 ∧ 𝑑𝑥𝑦 𝑗 ∧ 𝜃

+
∑
𝑘∈𝑅

(
± (𝑋𝑘 𝑓 )𝑑𝑥𝐼∪{𝑘 } ∧ 𝑑𝑦𝐽 ± (𝑌𝑘 𝑓 )𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽∪{𝑘 }

)
∧ 𝛼𝑅 ∧ 𝜃

(5.24)

where, again, the signs ± will play no role.
We set

𝐼 := {𝑎 + 1, . . . , 𝑎 + 𝑏}, 𝐽 := ∅

𝑅 := 1 2 · · · 𝑛 − 𝑎 − 𝑏 𝑛 − 𝑎 − 𝑏 + 1 · · · a
𝑎 + 𝑏 + 1 𝑎 + 𝑏 + 2 · · · n

and fix 𝛼 ∈ {1, . . . , 𝑎}. Observe that 𝑅 is never rectangular, a fact that plays a role in the following
construction. If 𝛼 ≥ 𝑛 − 𝑎 − 𝑏 + 1, we define R by removing 𝛼 from 𝑅; that is,

𝑅 := 1 · · · 𝑛 − 𝑎 − 𝑏 · · · 𝛼 − 1 𝛼 + 1 · · · a
𝑎 + 𝑏 + 1 · · · n ;
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otherwise, if 𝛼 ≤ 𝑛 − 𝑎 − 𝑏, we define a tableau R by removing from 𝑅 the column containing 𝛼 and
𝛼 + 𝑎 + 𝑏 and placing 𝛼 + 𝑎 + 𝑏 as the rightmost element in the second row; that is,

𝑅 := 1 · · · 𝛼 − 1 𝛼 + 1 · · · 𝑛 − 𝑎 − 𝑏 𝑛 − 𝑎 − 𝑏 + 1 · · · a
𝑎 + 𝑏 + 1 · · · 𝛼 − 1 + 𝑎 + 𝑏 𝛼 + 1 + 𝑎 + 𝑏 · · · n 𝛼 + 𝑎 + 𝑏

With this choice of R, we consider the Heisenberg form 𝜔 = 𝑓 𝑑𝑥𝐼 ∧𝑑𝑦𝐽 ∧𝛼𝑅∧𝜃 ∈ D2𝑛−𝑘
H

associated
with 𝐼 := 𝐼 and 𝐽 := {𝛼}; by (5.24),

𝑑𝜔 = ±(𝑋𝛼 𝑓 ) 𝑑𝑥𝐼 ∧ 𝛼𝑅 ∧ 𝑑𝑥𝑦𝛼 ∧ 𝜃 + 𝜎

= ±(𝑋𝛼 𝑓 ) 𝑑𝑥𝐼 ∧ 𝛼𝑅 ∧ 𝜃 + 𝜎,

where 𝜎 is again a form annihilating 𝑡H
𝒫𝑎,𝑏

that can vary from line to line. This gives

0 = T(𝑑𝜔) = ±

∫
𝒫𝑎,𝑏

(𝑋𝛼 𝑓 )𝜑𝜏 𝑑ℒ2𝑎+𝑏+1 for every 𝑓 ∈ 𝐶∞
𝑐 (H𝑛)

and, in turn,

for every 𝛼 = 1, . . . , 𝑎, 𝑋𝛼𝜑𝜏 = 0 on 𝒫𝑎,𝑏 . (5.25)

Using the same tableau R, but choosing 𝐼 := 𝐼∪{𝛼} and 𝐽 := ∅, one gets for 𝜔 := 𝑓 𝑑𝑥𝐼∧𝑑𝑦𝐽∧𝛼𝑅∧𝜃 ∈
D2𝑛−𝑘
H

that

𝑑𝜔 = ±(𝑌𝛼 𝑓 ) 𝑑𝑥𝐼 ∧ 𝛼𝑅 ∧ 𝑑𝑥𝑦𝛼 ∧ 𝜃 + 𝜎

= ±(𝑌𝛼 𝑓 ) 𝑑𝑥𝐼 ∧ 𝛼𝑅 ∧ 𝜃 + 𝜎,

for 𝜎 annihilating 𝑡H
𝒫𝑎,𝑏

. Similar to before, we deduce that

for every 𝛼 = 1, . . . , 𝑎, 𝑌𝛼𝜑𝜏 = 0 on 𝒫𝑎,𝑏 , (5.26)

which, together with (5.25) and the inequality 𝑎 ≥ 1, implies

𝑇𝜑𝜏 = 0 on 𝒫𝑎,𝑏 . (5.27)

If 𝑏 = 0, (5.25), (5.26) and (5.27) imply that 𝜑𝜏 is constant on 𝒫𝑎,𝑏 . If 𝑏 ≥ 1, we have only to show
that

for every 𝛽 = 𝑎 + 1, . . . , 𝑎 + 𝑏, 𝑋𝛽𝜑𝜏 = 0 on 𝒫𝑎,𝑏 . (5.28)

Let 𝛽 ∈ {𝑎 + 1, . . . , 𝑎 + 𝑏} be fixed. We consider the test form 𝜔 = 𝑓 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅 ∧ 𝜃 ∈ D2𝑛−𝑘
H

where
𝐼 := 𝐼 \ {𝛽}, 𝐽 := ∅ and R is the tableau obtained from R on placing an extra entry equal to 𝛽 as the
rightmost element in the second row, namely,

𝑅 := 1 2 · · · 𝑛 − 𝑎 − 𝑏 𝑛 − 𝑎 − 𝑏 + 1 · · · a
𝑎 + 𝑏 + 1 𝑎 + 𝑏 + 2 · · · n 𝛽

.

Then

𝑑𝜔 = ±(𝑋𝛽 𝑓 )𝑑𝑥𝐼∪{𝛽 } ∧ 𝛼𝑅 ∧ 𝜃 + 𝜎

= ±(𝑋𝛽 𝑓 )𝑑𝑥𝐼 ∧ 𝛼𝑅 ∧ 𝜃 + 𝜎

and, as before, the arbitrariness of f implies (5.28), as desired. �
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6. Proof of Rademacher’s Theorem 1.1

This section is devoted to the proof of our main result. We start with a boring (but necessary) preliminary
observation.

Remark 6.1. Let W,V be homogeneous complementary subgroups of H𝑛 and let 𝜙 : 𝐴 ⊂ W → V

be fixed. By Remark 3.16 there exists an isometric H-linear isomorphism L : H𝑛 → H
𝑛 such that

L(V) = V0 := exp(span{𝑋1, . . . , 𝑋𝑘 }). Let us writeW1 := L(W) and 𝐴1 := L(𝐴); then L(gr𝜙) = gr𝜙1

for 𝜙1 := L ◦ 𝜙 ◦ L−1 : 𝐴1 → V0. Since alsoW0 := exp(span{𝑋𝑘+1, . . . , 𝑌𝑛, 𝑇}) is complementary to
V0, it follows from [53, Proposition 3.1] (or, alternatively, from Theorem 1.4 of the present article) that
gr𝜙1

= gr𝜙0
for some map 𝜙0 : 𝐴0 → V0 defined on a suitable 𝐴0 ⊂ W0.

Let us check that, if 𝜙 is intrinsic Lipschitz, so is 𝜙0. Since L is an isometry, 𝜙1 is also intrinsic
Lipschitz. Moreover, W1 is complementary to V0; hence, W1 = gr𝐿 for an intrinsic linear map 𝐿 :
W0 → V0; let 𝐶 > 0 be such that ‖𝐿(𝑤0)‖H ≤ 𝐶‖𝑤0‖H for every 𝑤0 ∈ W0. We prove that, for every
𝛼 > 0, the inclusion

{𝑤0𝑣0 : 𝑤0 ∈ W0, 𝑣0 ∈ V0, ‖𝑣0‖H ≥ (𝛼𝐶 + 𝛼 + 𝐶)‖𝑤0‖H}

⊂ {𝑤1𝑣′
0 : 𝑤1 ∈ W1, 𝑣′

0 ∈ V0, ‖𝑣′
0‖H ≥ 𝛼‖𝑤1‖H}

holds. The intrinsic Lipschitz continuity of 𝜙0 will then easily follow from the intrinsic Lipschitz
continuity of 𝜙1. Let 𝑤0 ∈ W0 and 𝑣0 ∈ V0 be such that ‖𝑣0‖H ≥ (𝛼𝐶 + 𝛼 + 𝐶)‖𝑤0‖H; then

𝑤0𝑣0 = 𝑤1𝑣′
0 for 𝑤1 := 𝑤0𝐿(𝑤0) ∈ W1 and 𝑣′

0 := 𝐿(𝑤0)
−1𝑣0 ∈ V0

and

𝛼‖𝑤1‖H ≤ 𝛼(1 + 𝐶)‖𝑤0‖H ≤ ‖𝑣0‖H − 𝐶‖𝑤0‖H ≤ ‖𝑣0‖H − ‖𝐿(𝑤0)‖H ≤ ‖𝑣′
0‖H,

as claimed.
Eventually, let us observe that 𝜙0 is intrinsically differentiable a.e. if and only if 𝜙 is intrinsically

differentiable a.e. This follows from the geometric characterisation of intrinsic differentiability provided
by Proposition 4.12 (d) and by Remark 4.6, which imply that

𝜙0 is intrinsically differentiable a.e. onW0

⇐⇒ the blow-up of gr𝜙0
is a vertical plane at 𝒮𝑄−𝑘 -almost every point of gr𝜙0

⇐⇒ the blow-up of gr𝜙 is a vertical plane at 𝒮𝑄−𝑘 -almost every point of gr𝜙
⇐⇒ 𝜙 is intrinsically differentiable a.e. onW.

This discussion shows that, in order to prove Theorem 1.1 for intrinsic Lipschitz graphs of codimen-
sion at most n, it is not restrictive to assume that V andW are those defined in (4.2) and (4.3).

We can now prove our main result. For the reader’s convenience, the proof is divided into several
steps.

Proof of Theorem 1.1. As mentioned in the Introduction, thanks to [8] we have to deal only with the
case of intrinsic Lipschitz graphs of low codimension; in particular,V is an abelian horizontal subgroup
of H𝑛 and 𝑘 := dimV is at most n. By Remark 6.1, we can, without loss of generality, assume that
V = exp(span{𝑋1, . . . , 𝑋𝑘 }) andW = exp(span{𝑋𝑘+1, . . . , 𝑌𝑛, 𝑇}). By Theorem 1.5 we can also assume
that 𝜙 is defined on the wholeW.

Step 1: Definition of a current T supported on gr𝜙 . By Proposition 4.28 we can consider a sequence
of smooth functions 𝜙𝑖 :W→ V such that
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◦ 𝜙𝑖 → 𝜙 uniformly onW and
◦ there exists 𝐶 > 0 such that |∇𝜙𝑖Φ𝑖 (𝑤) | ≤ 𝐶 for all 𝑤 ∈ W and all 𝑖 ∈ N,

where Φ𝑖 is the graph map Φ𝑖 (𝑤) := 𝑤𝜙𝑖 (𝑤) and ∇𝜙𝑖Φ𝑖 : W → ∧2𝑛−𝑘𝔥1 is defined as in (4.28). By
Lemma 4.29, the Heisenberg (2𝑛 + 1 − 𝑘)-current �𝑆𝑖� associated with the intrinsic graph 𝑆𝑖 := gr𝜙𝑖

can be written as

�𝑆𝑖�(𝜔) = 𝐶𝑛,𝑘

∫
W

〈[∇𝜙𝑖Φ𝑖 (𝑤) ∧ 𝑇]J | 𝜔(Φ𝑖 (𝑤))〉 𝑑ℒ2𝑛+1−𝑘 (𝑤) for every 𝜔 ∈ D2𝑛+1−𝑘
H

.

Possibly passing to a subsequence, we can assume that there exists 𝜁 ∈ 𝐿∞(W,J2𝑛+1−𝑘 ) =
(𝐿1 (W,J2𝑛+1−𝑘 ))∗ such that

[∇𝜙𝑖Φ𝑖 ∧ 𝑇]J
∗

⇀ 𝜁 weakly- ∗ in 𝐿∞(W,J2𝑛+1−𝑘 ).

The uniform convergence Φ𝑖 → Φ implies that for every 𝜔 ∈ D2𝑛+1−𝑘
H

,

T(𝜔) := lim
𝑖→∞

�𝑆𝑖�(𝜔) = 𝐶𝑛,𝑘

∫
W

〈𝜁 (𝑤) | 𝜔(Φ(𝑤))〉 𝑑ℒ2𝑛+1−𝑘 (𝑤). (6.1)

The Heisenberg current T is clearly supported on gr𝜙 . The boundary 𝜕T of T is the null current; in fact,

𝜕T(𝜔) = T(𝑑𝐶𝜔) = lim
𝑖→∞

�𝑆𝑖�(𝑑𝐶𝜔) = 0 for every 𝜔 ∈ D2𝑛−𝑘
H

,

where 𝑑𝐶 is as in Remark 3.7 and the last equality is due to Corollary 3.34. The equality 𝜕T = 0 is the
key geometric information we will exploit.

Let us prove that

𝜁 (𝑤) ≠ 0 for ℒ2𝑛+1−𝑘 -a.e. 𝑤 ∈ W. (6.2)

Let 𝛽 ∈ J2𝑛+1−𝑘 be defined by

𝛽 := 𝑑𝑥𝑘+1 ∧ · · · ∧ 𝑑𝑥𝑛 ∧ 𝑑𝑦1 ∧ · · · ∧ 𝑑𝑦𝑛 ∧ 𝜃 if 𝑘 < 𝑛

𝛽 := 𝑑𝑦1 ∧ · · · ∧ 𝑑𝑦𝑛 ∧ 𝜃 if 𝑘 = 𝑛.

Then, for every 𝜒 ∈ 𝐶∞
𝑐 (W) we have∫

W

𝜒(𝑤)〈𝜁 (𝑤) | 𝛽〉 𝑑ℒ2𝑛+1−𝑘 (𝑤) = lim
𝑖→∞

∫
W

𝜒(𝑤) 〈∇𝜙𝑖Φ𝑖 (𝑤) ∧ 𝑇 | 𝛽〉︸��������������������︷︷��������������������︸
≡1

𝑑ℒ2𝑛+1−𝑘 (𝑤)

=
∫
W

𝜒(𝑤) 𝑑ℒ2𝑛+1−𝑘 (𝑤).

This implies that 〈𝜁 (𝑤) | 𝛽〉 = 1 for ℒ2𝑛+1−𝑘 -a.e. 𝑤 ∈ W and (6.2) follows.
Step 2: Statement of sufficient conditions for differentiability. Since 𝒮𝑄−𝑘 gr𝜙 is (𝑄 − 𝑘)-Ahlfors

regular (Remark 4.6), the Lebesgue differentiation theorem applies (see, e.g., [59, Theorem 1.8]) and
we obtain for 𝒮𝑄−𝑘 -a.e. 𝑝 ∈ gr𝜙 ,∫

gr𝜙∩𝐵 ( �̄�,𝑟 )

%%𝜁 (Φ−1 (𝑝)) − 𝜁 (Φ−1 (𝑝))
%% 𝑑𝒮𝑄−𝑘 (𝑝) = 𝑜

(
𝒮𝑄−𝑘 (gr𝜙 ∩ 𝐵(𝑝, 𝑟))

)
= 𝑜(𝑟𝑄−𝑘 ) as 𝑟 → 0+.

(6.3)
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By (6.2), (6.7) and Lemma 4.16, the following three properties

the condition (6.3) holds for 𝑝 := Φ(�̄�) ∈ gr𝜙 (6.4)

every blow-up of 𝜙 at �̄� is t-invariant (6.5)

𝜁 (�̄�) ≠ 0 (6.6)

hold for ℒ2𝑛+1−𝑘 -a.e. �̄� ∈ W. We claim that 𝜙 is intrinsically differentiable at every �̄� ∈ W such that
(6.4), (6.5) and (6.6) hold. This will be enough to conclude. Let such a �̄� be fixed.

Step 3: Blow-up at �̄�. Let 𝜙∞ be one of the (possibly many) blow-ups of 𝜙 at �̄�. Namely, there exists
a sequence (𝑟 𝑗 ) 𝑗 of positive numbers such that 𝑟 𝑗 → +∞ as 𝑗 → +∞ and

lim
𝑗→∞

(𝜙�̄� )𝑟 𝑗 = 𝜙∞ locally uniformly onW,

where (𝜙�̄� )𝑟 𝑗 (𝑤) = 𝛿𝑟 𝑗
(
𝜙(�̄�)−1𝜙(�̄�𝜙(�̄�) (𝛿1/𝑟 𝑗 𝑤)𝜙(�̄�)−1)

)
is as in Subsection 4.2. For 𝑟 > 0 let us

introduce the maps L�̄� ,𝑟 : H𝑛 → H𝑛 defined by

L�̄� ,𝑟 (𝑞) := 𝛿𝑟 (Φ(�̄�)−1𝑞), 𝑟 > 0, 𝑞 ∈ H𝑛;

L�̄� ,𝑟 is defined in such a way that gr(𝜙�̄� )𝑟 𝑗 = 𝛿𝑟 𝑗 (Φ(�̄�)−1gr𝜙) = L�̄� ,𝑟 𝑗 (gr𝜙). Consider the push-forward
T 𝑗 := (L�̄� ,𝑟 𝑗 )#T; that is, the Heisenberg current defined by

T 𝑗 (𝜔) := T(L∗
�̄� ,𝑟 𝑗

𝜔) = T(𝑟𝑄−𝑘
𝑗 𝜔 ◦ L�̄� ,𝑟 𝑗 ), 𝜔 ∈ D2𝑛+1−𝑘

H

whereL∗
�̄� ,𝑟 𝑗

denotes pullback of forms and the last equality comes from left-invariance and homogeneity.
Observe that 𝜕𝑇𝑗 = 0 for every j because

T 𝑗 (𝑑𝐶𝜔) = T(L∗
�̄� ,𝑟 𝑗

(𝑑𝐶𝜔)) = T(𝑑𝐶 (L∗
�̄� ,𝑟 𝑗

𝜔)) = 𝜕T(L∗
�̄� ,𝑟 𝑗

𝜔) = 0.

By Remark 4.6 there exist a constant 𝐶 ≥ 1, depending only on the intrinsic Lipschitz constant of 𝜙,
and a measurable function 𝐽𝜙 :W→ R such that

𝐶−1 ≤ 𝐽𝜙 ≤ 𝐶 and 𝒮𝑄−𝑘 gr𝜙 = Φ#(𝐽𝜙 ℒ
2𝑛+1−𝑘 ), (6.7)

where Φ# denotes push-forward of measures. Using (6.1) and (6.7),

T 𝑗 (𝜔) = 𝐶𝑛,𝑘 𝑟𝑄−𝑘
𝑗

∫
W

〈
𝜁 (𝑤)

%%%%% 𝜔(𝛿𝑟 𝑗 (Φ(�̄�)−1Φ(𝑤)))

𝐽𝜙 (𝑤)

〉
𝐽𝜙 (𝑤) 𝑑ℒ2𝑛+1−𝑘 (𝑤)

= 𝐶𝑛,𝑘 𝑟𝑄−𝑘
𝑗

∫
gr𝜙

〈
𝜁 (Φ−1 (𝑝))

%%%%% 𝜔(𝛿𝑟 𝑗 (Φ(�̄�)−1 𝑝))

𝐽𝜙 (Φ−1(𝑝))

〉
𝑑𝒮𝑄−𝑘 (𝑝)

= 𝐶𝑛,𝑘 𝑟𝑄−𝑘
𝑗

∫
gr𝜙

[〈
𝜁 (�̄�)

%%%%% 𝜔(𝛿𝑟 𝑗 (Φ(�̄�)−1 𝑝))

𝐽𝜙 (Φ−1(𝑝))

〉
𝑑𝒮𝑄−𝑘 (𝑝) + 𝑜

(
𝑟−(𝑄−𝑘)
𝑗

) ]
= 𝐶𝑛,𝑘 𝑟𝑄−𝑘

𝑗

∫
W

[〈
𝜁 (�̄�) | 𝜔(𝛿𝑟 𝑗 (Φ(�̄�)−1Φ(𝑤)))

〉
𝑑ℒ2𝑛+1−𝑘 (𝑤) + 𝑜

(
𝑟−(𝑄−𝑘)
𝑗

) ]
,
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where, in the third equality, we used (6.4) and the fact that, if 𝜔 is supported in 𝐵(0, 𝑟), then 𝑝 ↦→
𝜔(𝛿𝑟 𝑗 (Φ(�̄�)−1 𝑝))/𝐽𝜙 (Φ−1(𝑝)) is supported in 𝐵(Φ(�̄�), 𝑟/𝑟 𝑗 ). Therefore,

lim
𝑗→∞

T 𝑗 (𝜔) = 𝐶𝑛,𝑘 lim
𝑗→∞

𝑟𝑄−𝑘
𝑗

∫
W

〈
𝜁 (�̄�) | 𝜔(𝛿𝑟 𝑗 (Φ(�̄�)−1Φ(𝑤)))

〉
𝑑ℒ2𝑛+1−𝑘 (𝑤)

provided the limit in the right-hand side exists. We now perform the change of variable 𝑤 =
�̄�𝜙(�̄�) (𝛿1/𝑟 𝑗𝑢)𝜙(�̄�)−1, 𝑢 ∈ W, according to which

𝛿𝑟 𝑗 (Φ(�̄�)−1Φ(𝑤)) = Φ
𝑟 𝑗
�̄� (𝑢), where Φ

𝑟 𝑗
�̄� (𝑢) := 𝑢 (𝜙�̄� )𝑟 𝑗 (𝑢).

Therefore,

lim
𝑗→∞

T 𝑗 (𝜔) = 𝐶𝑛,𝑘 lim
𝑗→∞

∫
W

〈
𝜁 (�̄�) | 𝜔(Φ

𝑟 𝑗
�̄� (𝑢))
〉

𝑑ℒ2𝑛+1−𝑘 (𝑢)

= 𝐶𝑛,𝑘

∫
W

〈𝜁 (�̄�) | 𝜔(Φ∞(𝑢))〉 𝑑ℒ2𝑛+1−𝑘 (𝑢)

due to the uniform convergence of Φ𝑟 𝑗
�̄� (𝑢) = 𝑢((𝜙�̄� )𝑟 𝑗 (𝑢)) to the graph map Φ∞(𝑢) := 𝑢𝜙∞(𝑢).

We obtained that the Heisenberg (2𝑛 + 1 − 𝑘)-current T∞ defined by

T∞(𝜔) := lim
𝑗→∞

T 𝑗 (𝜔) = 𝐶𝑛,𝑘

∫
W

〈𝜁 (�̄�) | 𝜔 ◦ Φ∞〉 𝑑ℒ2𝑛+1−𝑘 , 𝜔 ∈ D2𝑛+1−𝑘
H

is supported on gr𝜙∞
. Since 𝜕T 𝑗 = 0 for every j, then also 𝜕T∞ = 0. Moreover, 𝜙∞ is a uniform limit of

uniformly intrinsic Lipschitz maps; hence, it is intrinsic Lipschitz and there exists a measurable function
𝐽𝜙∞ :W→ R such that

𝐶−1 ≤ 𝐽𝜙∞ ≤ 𝐶 and 𝒮𝑄−𝑘 gr𝜙∞
= Φ∞#(𝐽𝜙∞ℒ

2𝑛+1−𝑘 ).

In particular,

T∞(𝜔) = 𝐶𝑛,𝑘

∫
gr𝜙∞

〈
𝜁 (�̄�)

𝐽𝜙∞ (Φ∞
−1(𝑝))

%%%%% 𝜔(𝑝)

〉
𝑑𝒮𝑄−𝑘 (𝑝), 𝜔 ∈ D2𝑛+1−𝑘

H
;

that is,

T∞ =
𝜁 (�̄�)

𝐽𝜙∞ ◦ Φ−1
∞

𝒮𝑄−𝑘 gr𝜙∞
.

By (6.5), the intrinsic Lipschitz map 𝜙∞ is t-invariant: by Lemma 4.15 and Proposition 4.23, 𝜙∞ is
Euclidean Lipschitz and gr𝜙∞

is locally H-rectifiable of codimension k. By Theorem 1.8 and (6.6) we
deduce that there exists 𝜂 : gr𝜙∞

→ R \ {0} such that

𝜁 (�̄�) = 𝜂(𝑝) [𝑡Hgr𝜙∞
(𝑝)]J for 𝒮𝑄−𝑘 -a.e. 𝑝 ∈ gr𝜙∞

. (6.8)

Step 4: Every blow-up is linear. We claim that 𝜙∞ is intrinsic linear. Let 𝑓𝜙∞ : R2𝑛−𝑘 → R
𝑘 be

defined by 𝜙∞(𝑤) = 𝑓𝜙∞ (𝑤𝐻 ) for every 𝑤 ∈ W, where the notation 𝑤𝐻 is the one introduced in (4.16);
𝑓𝜙∞ is Euclidean Lipschitz continuous by Lemma 4.15 (i). By Lemma 4.15 (iv), the gradient ∇ 𝑓𝜙∞ (𝑤𝐻 )
is defined for a.e. 𝑤 ∈ W and it uniquely determines TanHgr𝜙∞

(Φ∞(𝑤)); since 𝜙∞ is intrinsic linear if
and only if 𝑓𝜙∞ is linear, 𝜙∞ is intrinsic linear if and only if TanHgr𝜙∞

is constant on gr𝜙∞
. Assume that
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TanHgr𝜙∞
is not constant; then, by (6.8) and Proposition 3.38, there exist two vertical planes 𝒫1,𝒫2 that

are not rank 1 connected and such that

TanHgr𝜙∞
(𝑝) ∈ {𝒫1,𝒫2} for 𝒮𝑄−𝑘 -a.e. 𝑝 ∈ gr𝜙∞

.

In particular, there exist two 𝑘 × (2𝑛 − 𝑘) matrices 𝑀1, 𝑀2 such that ∇ 𝑓𝜙∞ ∈ {𝑀1, 𝑀2}. By Lemma
4.15 (ii) and Remark 3.36, the rank of the matrix 𝑀1 − 𝑀2 is at least 2. However, a well-known result
proved in [14, Proposition 1] (see also [78, Proposition 2.1]) states that, if a Lipschitz map has only
two possible gradients 𝑀1, 𝑀2 and rank (𝑀1 − 𝑀2) ≥ 2, then the map is affine. This proves that 𝑓𝜙∞ is
linear and, actually, that

either 𝑓𝜙∞ ≡ 𝑀1 or 𝑓𝜙∞ ≡ 𝑀2. (6.9)

Step 5: Uniqueness of blow-ups. We have proved that every blow-up 𝜙∞ is intrinsic linear. We now
prove that the blow-up of 𝜙 at �̄� is unique: by Proposition 4.12 (c), this is equivalent to the intrinsic
differentiability of 𝜙 at �̄�. Assume, on the contrary, that there exist two different blow-ups 𝜙1

∞, 𝜙2
∞ of

𝜙 at �̄�; observing that the matrices 𝑀1, 𝑀2 introduced in Step 4 are uniquely determined by 𝜁 (�̄�) (via
the vertical planes 𝒫1,𝒫2 provided by Proposition 3.38), we deduce from (6.9) that, possibly renaming
𝑀1 and 𝑀2,

𝜙1
∞(𝑤) = 𝑀1𝑤𝐻 and 𝜙2

∞(𝑤) = 𝑀2𝑤𝐻 ∀ 𝑤 ∈ W.

Let 𝑤 ∈ W be such that 𝜙1
∞(𝑤) ≠ 𝜙2

∞(𝑤); that is, 𝑀1𝑤𝐻 ≠ 𝑀2𝑤𝐻 . By definition of blow-up, there
exist two diverging sequences (𝑟1

𝑗 ) 𝑗 , (𝑟2
𝑗 ) 𝑗 such that

(𝜙�̄� )𝑟
1
𝑗 → 𝜙1

∞ and (𝜙�̄� )𝑟
2
𝑗 → 𝜙2

∞

and, up to passing to suitable subsequences, we can assume without loss of generality that 𝑟1
𝑗 < 𝑟2

𝑗 < 𝑟1
𝑗+1

for every j. Let 𝛿 := 𝑑 (𝜙1
∞(𝑤), 𝜙2

∞(𝑤)) > 0; since the map 𝑟 ↦→ (𝜙�̄� )𝑟 (𝑤) is continuous and bounded
(see Remark 4.5), for every large enough j we can find 𝑟3

𝑗 ∈ (𝑟1
𝑗 , 𝑟

2
𝑗 ) such that 𝑑 ((𝜙�̄� )𝑟

3
𝑗 (𝑤), 𝜙1

∞(𝑤)) ≥

𝛿/3 and 𝑑 ((𝜙�̄� )𝑟
3
𝑗 (𝑤), 𝜙2

∞(𝑤)) ≥ 𝛿/3. By Remark 4.5 and Ascoli–Arzelà’s theorem, up to passing to
a subsequence we have that (𝜙�̄� )𝑟

3
𝑗 → 𝜓 locally uniformly on W for some 𝜓 : W → V. Observe that

𝑑 (𝜓(𝑤), 𝜙1
∞(𝑤)) ≥ 𝛿/3 and 𝑑 (𝜓(𝑤), 𝜙2

∞(𝑤)) ≥ 𝛿/3; thus, 𝜓 is a blow-up of 𝜙 at �̄� (in particular, it is
t-invariant) that is different from both 𝜙1

∞ and 𝜙2
∞. This contradicts (6.9), and the proof is concluded. �

We conclude this section with an observation. Let 𝜙 : 𝐴 ⊂ W → V be intrinsic Lipschitz. The-
orem 1.1, together with Remark 4.6, implies that a tangent10 plane TanHgr𝜙 to gr𝜙 exists 𝒮𝑄−𝑘 -a.e. on
gr𝜙: let us denote by 𝑡Hgr𝜙 (𝑝) ∈ ∧2𝑛+1−𝑘𝔥 the unit tangent vector associated with TanHgr𝜙 (𝑝) at 𝑝 ∈ gr𝜙 .
Again, 𝑡Hgr𝜙 (𝑝) is defined only up to a sign; hence, 𝑝 ↦→ 𝑡Hgr𝜙 (𝑝) could be not even measurable with
respect to 𝒮𝑄−𝑘 gr𝜙. As one can expect, there are, however, two canonical choices for the orienta-
tion: we present below one of the two, the other being of course the opposite one. See also [23] for
some related issues. With this consistent choice of orientation for gr𝜙 , one will be allowed to define the
(2𝑛 + 1 − 𝑘)-Heisenberg current �gr𝜙� canonically associated with gr𝜙 by

�gr𝜙�(𝜔) :=
∫

gr𝜙
〈𝑡Hgr𝜙 | 𝜔〉 𝑑𝒮𝑄−𝑘 , 𝜔 ∈ D2𝑛+1−𝑘

H
. (6.10)

As a further property, we will prove in Proposition 7.5 that for entire graphs (𝐴 = W) the equality
𝜕�gr𝜙� = 0 holds.

10In the sense of blow-up limits as in Proposition 4.12 (d).
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Let us fix our choice of 𝑡Hgr𝜙 . As in Remark 6.1, up to an H-linear map L we can assume that W,V

are as in (4.2) and (4.3). In this case, our choice for the orientation of gr𝜙 is (compare with (4.31))

𝑡Hgr𝜙 (𝑝) :=
∇𝜙Φ(Φ−1(𝑝))

|∇𝜙Φ(Φ−1(𝑝)) |
∧ 𝑇

where, remembering (4.27) and (4.28), we set

∇𝜙Φ(𝑤) := ∇
𝜙
𝑘+1Φ(𝑤) ∧ · · · ∧ ∇

𝜙
2𝑛Φ(𝑤) ∈ ∧2𝑛−𝑘𝔥1

and

∇
𝜙
𝑖 Φ(𝑤) :=

(
𝑊𝑖 +

𝑘∑
ℎ=1

(∇𝜙𝜙(𝑤))ℎ𝑖𝑋ℎ

)
(Φ(𝑤)), 𝑖 = 𝑘 + 1, . . . , 2𝑛.

For general subgroupsW,V, our choice corresponds to fixing a unit tangent vector 𝑡H
W

and declaring that
〈𝑡Hgr𝜙 (𝑝), 𝑡H

W
〉 > 0 for 𝒮𝑄−𝑘 -a.e. 𝑝 ∈ gr𝜙 , where 〈·, ·〉 is the canonical scalar product on multivectors.

Let us point out that, whenW,V are those in (4.2) and (4.3), as in Remark 4.27 we have 𝐽𝜙𝜙 = |∇𝜙Φ|;
this equality and Theorem 1.3, which we will prove in Section 7, provide the alternative representation

�gr𝜙�(𝜔) = 𝐶𝑛,𝑘

∫
W

〈∇𝜙Φ ∧ 𝑇 | 𝜔 ◦ Φ〉 𝑑ℒ2𝑛+1−𝑘 , 𝜔 ∈ D2𝑛+1−𝑘
H

. (6.11)

7. Applications

In this section we provide some consequences of Theorem 1.1. For computational reasons it is useful to
fix a convenient distance on H𝑛; therefore, in the present section d denotes the distance 𝑑∞ introduced
in (3.2).

We need to fix some notation. When M is a matrix, we denote by |𝑀 | its Hilbert–Schmidt norm. When
𝑀1, 𝑀2 are square matrices, inequalities of the form 𝑀1 ≥ 𝑀2 are understood in the sense of bilinear
forms; I denotes the identity matrix. Recall also the notation 𝑊1, . . . , 𝑊2𝑛 introduced in (3.4) to denote
horizontal left-invariant vector fields. Eventually, if A and B are given sets, 𝐴Δ𝐵 := (𝐴 \ 𝐵) ∪ (𝐵 \ 𝐴)
denotes their symmetric difference.

The proof of the following lemma closely follows the one of the classical Whitney’s extension
theorem; see, for example, [40, Theorem 6.10]. A version of Whitney’s extension theorem in H𝑛 has
been proved in [48, Theorem 6.8]; see also [92, Theorem 3.2.3].

Lemma 7.1. For all integers 𝑛 ≥ 1 and 1 ≤ 𝑘 ≤ 𝑛 there exist positive constants 𝛼0 = 𝛼0(𝑛, 𝑘) and
𝑐0 = 𝑐0 (𝑛, 𝑘) with the following property. For every 𝛿 > 0 and every intrinsic Lipschitz map 𝜙 :W→ V
whose intrinsic Lipschitz constant 𝛼 is not greater than 𝛼0, there exists 𝑓 ∈ 𝐶1

H
(H𝑛,R𝑘 ) such that

|𝑊𝑖 𝑓 (𝑝) | ≤ 𝑐0𝛼 for every 𝑝 ∈ H𝑛 and 𝑖 = 𝑘 + 1, . . . , 2𝑛 (7.1)%%col
[
𝑋1 𝑓 (𝑝) | . . . |𝑋𝑘 𝑓 (𝑝)

]
− 𝐼
%% ≤ 𝑐0𝛼 for every 𝑝 ∈ H𝑛 (7.2)

the level set 𝑆 := {𝑝 ∈ H𝑛 : 𝑓 (𝑝) = 0} is a H-regular submanifold (7.3)

𝑆 = gr𝜓 for an intrinsic Lipschitz 𝜓 :W→ V with Lipschitz constant at most 𝑐0𝛼 (7.4)

𝒮𝑄−𝑘 ((gr𝜙 Δ 𝑆) ∪ {𝑝 ∈ gr𝜙 ∩ 𝑆 : TanHgr𝜙 (𝑝) ≠ TanH𝑆 (𝑝)}) < 𝛿 (7.5)

ℒ2𝑛+1−𝑘 (W \ {𝜙 = 𝜓 and ∇𝜙𝜙 = ∇𝜓𝜓}) < 𝛿. (7.6)
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Proof. As in Remark 6.1, it is not restrictive to assume thatW and V are the subgroups defined in (4.2)
and (4.3). Fix 𝛿 > 0 and an intrinsic Lipschitz function 𝜙 : W→ V whose intrinsic Lipschitz constant
𝛼 is not greater than 𝛼0; the number 𝛼0 > 0 will be chosen later. We organise the proof in several steps.

Step 0. We establish some notation and preliminary facts. By Theorem 1.1 there exists a measurable
set 𝐴 ⊂ W such that ℒ2𝑛+1−𝑘 (W \ 𝐴) = 0 and 𝜙 is intrinsically differentiable at every point of A. For
every 𝑤 ∈ 𝐴, let us introduce the homogeneous homomorphism 𝐿𝑤 : H𝑛 → R𝑘 ,

𝐿𝑤 (𝑝) := (𝑝1, . . . , 𝑝𝑘 ) − ∇𝜙𝜙(𝑤) (𝑝𝑘+1, . . . , 𝑝2𝑛), 𝑝 = (𝑝1, . . . , 𝑝2𝑛+1) ∈ H𝑛, (7.7)

where ∇𝜙𝜙(𝑤) is the intrinsic gradient (identified with a 𝑘 × (2𝑛 − 𝑘) matrix) introduced in Definition
4.9. Notice that 𝐿𝑤 is constructed in such a way that

TanHgr𝜙 (Φ(𝑤)) = ker 𝐿𝑤 . (7.8)

Moreover, for every 𝑤 ∈ 𝐴,

col[𝑋1𝐿𝑤 | . . . |𝑋𝑘𝐿𝑤 ] = 𝐼

|𝑊 𝑗 (𝐿𝑤 )𝑖 | = | (∇𝜙𝜙(𝑤))𝑖 𝑗 | ≤ 𝛼 ∀ 𝑖 = 1, . . . , 𝑘, ∀ 𝑗 = 𝑘 + 1, . . . , 2𝑛
(7.9)

where, as usual, Φ(𝑤) := 𝑤𝜙(𝑤) is the graph map and, in the last formula, we used Lemma 4.13. By
abuse of notation, in the sequel we will identify each 𝐿𝑤 with the 𝑘×2𝑛 matrix ∇H𝐿𝑤 = [ 𝐼 | −∇𝜙𝜙(𝑤) ],
I being the 𝑘 × 𝑘 identity matrix. We also introduce the homogeneous homomorphism 𝐿 : H𝑛 → R

𝑘

defined by

𝐿(𝑝) = (𝑝1, . . . , 𝑝𝑘 ), 𝑝 = (𝑝1, . . . , 𝑝2𝑛+1) ∈ H𝑛

and we identify 𝐿 and the 𝑘 ×2𝑛 matrix [ 𝐼 | 0 ]. We can estimate the Hilbert–Schmidt norm of 𝐿𝑤 −𝐿 by

|𝐿𝑤 − 𝐿 | ≤
√

𝑘 (2𝑛 − 𝑘) 𝛼 for every 𝑤 ∈ 𝐴. (7.10)

Let us observe that (7.8), the Lipschitz continuity of 𝐿𝑤 and Proposition 4.12 (and, in particular, (4.17))
imply that for every 𝑤 ∈ 𝐴,

lim
𝑟→0+

(
sup
{

𝐿𝑤 (Φ(𝑤)−1 𝑝)

𝑑 (Φ(𝑤), 𝑝)
: 𝑝 ∈ gr𝜙 ∩ 𝐵(Φ(𝑤), 𝑟)

})
= 0. (7.11)

By Lusin’s theorem there exists a closed set 𝐵 ⊂ 𝐴 such that ℒ2𝑛+1−𝑘 (W \ 𝐵) < 𝜂 and ∇𝜙𝜙|𝐵 is
continuous; the number 𝜂 will be chosen later in Step 8 depending on 𝛿, 𝑛 and k. By the Severini–Egorov
theorem, there exists a closed set 𝐶 ⊂ 𝐵 such that ℒ2𝑛+1−𝑘 (W \ 𝐶) < 𝜂 and the convergence in (7.11)
is uniform on compact subsets of C.

Step 1. Define the closed set 𝐹 := Φ(𝐶) and let U be the open set 𝑈 := H𝑛\𝐹; for every 𝑝 ∈ H𝑛 we set

𝑟𝑝 :=
1

20
𝑑 (𝑝, 𝐹) =

1
20

inf{𝑑 (𝑝, 𝑞) : 𝑞 ∈ 𝐹}.

We are going to use a variant of the classical 5𝑟-covering argument (see, e.g., [59, Theorem 1.2]), which
cannot be utilised here since the radii of the balls we use are not uniformly bounded. By Zorn’s lemma,
there exists a maximal set 𝒞 ⊂ 𝑈 such that the family of balls {𝐵(𝑝, 𝑟𝑝) : 𝑝 ∈ 𝒞} is pairwise disjoint;
we claim that

𝑈 =
⋃
𝑝∈𝒞

𝐵(𝑝, 5𝑟𝑝).
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The inclusion ⊃ in the formula above is clear by the definition of 𝑟𝑝; assume that the reverse inclusion
does not hold; that is, that there exists 𝑞 ∈ 𝑈 \

⋃
𝑝∈𝒞 𝐵(𝑝, 5𝑟𝑝). By maximality of 𝒞, there exists 𝑝 ∈ 𝒞

and 𝑝′ ∈ 𝑈 such that 𝑝′ ∈ 𝐵(𝑝, 𝑟𝑝) ∩ 𝐵(𝑞, 𝑟𝑞) and, in particular,

20𝑟𝑞 = 𝑑 (𝑞, 𝐹) ≤ 𝑑 (𝑞, 𝑝′) + 𝑑 (𝑝′, 𝑝) + 𝑑 (𝑝, 𝐹) ≤ 𝑟𝑞 + 21𝑟𝑝 .

It follows that 𝑟𝑞 ≤ 21
19𝑟𝑝 and, in turn,

𝑞 ∈ 𝐵(𝑞, 𝑟𝑞) ⊂ 𝐵(𝑝, 𝑟𝑝 + 𝑟𝑞) ⊂ 𝐵(𝑝, 40
19𝑟𝑝) ⊂ 𝐵(𝑝, 5𝑟𝑝),

a contradiction.
Step 2. For every 𝑞 ∈ 𝑈 we define

𝒞𝑞 := {𝑝 ∈ 𝒞 : 𝐵(𝑞, 10𝑟𝑞) ∩ 𝐵(𝑝, 10𝑟𝑝) ≠ ∅}.

We claim that #𝒞𝑞 ≤ 129𝑄 and 1/3 ≤ 𝑟𝑞/𝑟𝑝 ≤ 3 for every 𝑝 ∈ 𝒞𝑞 . In fact, if 𝑝 ∈ 𝒞𝑞 , one has

|𝑟𝑝 − 𝑟𝑞 | ≤
1

20
𝑑 (𝑝, 𝑞) ≤

1
20

(10𝑟𝑝 + 10𝑟𝑞) =
1
2

(𝑟𝑝 + 𝑟𝑞).

This implies that 𝑟𝑝 ≤ 3𝑟𝑞 and 𝑟𝑞 ≤ 3𝑟𝑝 , and the bounds on 𝑟𝑞/𝑟𝑝 follow.
In addition, for every 𝑝 ∈ 𝒞𝑞 we have

𝑑 (𝑝, 𝑞) + 𝑟𝑝 ≤ 10(𝑟𝑝 + 𝑟𝑞) + 𝑟𝑝 ≤ 43𝑟𝑞

and, in particular, 𝐵(𝑝, 𝑟𝑞/3) ⊂ 𝐵(𝑝, 𝑟𝑝) ⊂ 𝐵(𝑞, 43𝑟𝑞). The balls {𝐵(𝑝, 𝑟𝑞/3) : 𝑝 ∈ 𝒞𝑞} are then
pairwise disjoint and contained in 𝐵(𝑞, 43𝑟𝑞); therefore,

#𝒞𝑞 ≤
ℒ2𝑛+1 (𝐵(𝑞, 43𝑟𝑞))

ℒ2𝑛+1(𝐵(0, 𝑟𝑞/3))
= 129𝑄,

as claimed.
Step 3. Now let 𝜇 : R→ R be a smooth nonincreasing function such that

0 ≤ 𝜇 ≤ 1, 𝜇(𝑡) = 1 for 𝑡 ≤ 21/4, 𝜇(𝑡) = 0 for 𝑡 ≥ 2.

For every 𝑝 ∈ 𝒞 define

𝑔𝑝 (𝑞) := 𝜇

(
𝑑𝐾 (𝑝, 𝑞)

5𝑟𝑝

)
,

where, as in (3.3), 𝑑𝐾 is the homogeneous Korányi (or Cygan–Korányi) distance. Observe that 𝑑𝐾 (𝑝, ·)
is smooth on H𝑛 \ {𝑝}. Being a homogeneous distance (see [34]), 𝑑𝐾 is globally equivalent to d and,
more precisely,

𝑑 (𝑝′, 𝑝′′) ≤ 𝑑𝐾 (𝑝′, 𝑝′′) ≤ 21/4𝑑 (𝑝′, 𝑝′′) ∀ 𝑝′, 𝑝′′ ∈ H𝑛.

It follows that 𝑔𝑝 ∈ 𝐶∞
𝑐 (H𝑛), 0 ≤ 𝑔𝑝 ≤ 1 and

𝑔𝑝 ≡ 1 on 𝐵(𝑝, 5𝑟𝑝)

𝑔𝑝 ≡ 0 on H𝑛 \ 𝐵(𝑝, 10𝑟𝑝). (7.12)
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Moreover, there is a constant 𝑀 = 𝑀 (𝑛) > 0 such that |∇H𝑔𝑝 | ≤ 𝑀/𝑟𝑝; by Step 2, |∇H𝑔𝑝 (𝑞) | ≤ 3𝑀/𝑟𝑞
whenever 𝑝 ∈ 𝒞𝑞 . Thanks to (7.12), one has 𝑔𝑝 (𝑞) = 0 if 𝑝 ∈ 𝒞 \ 𝒞𝑞; hence,

|∇H𝑔𝑝 (𝑞) | ≤ 3𝑀/𝑟𝑞 for all 𝑞 ∈ H𝑛 and 𝑝 ∈ 𝒞. (7.13)

Define 𝜎(𝑞) :=
∑
𝑝∈𝒞 𝑔𝑝 (𝑞) for every 𝑞 ∈ H𝑛. By (7.12) again, one obtains that 𝑔𝑝 ≡ 0 on 𝐵(𝑞, 10𝑟𝑞)

whenever 𝑝 ∉ 𝒞𝑞 , so

𝜎(𝑞′) =
∑
𝑝∈𝒞𝑞

𝑔𝑝 (𝑞′) for every 𝑞 ∈ 𝑈 and 𝑞′ ∈ 𝐵(𝑞, 10𝑟𝑞).

Observe that 𝜎 ≥ 1 on U; in fact, for every 𝑞 ∈ 𝑈 there exists 𝑝 such that 𝑞 ∈ 𝐵(𝑝, 5𝑟 �̃�) and, in particular,
𝜎(𝑞) ≥ 𝑔 �̃� (𝑞) = 1. Using (7.13) and the inequality #𝒞𝑞 < 129𝑄, we deduce that 𝜎 ∈ 𝐶∞(𝑈) and there
is a constant 𝑀 ′ = 𝑀 ′(𝑛) > 0 such that

|∇H𝜎(𝑞) | ≤
𝑀 ′

𝑟𝑞
for all 𝑞 ∈ 𝑈.

Now we define a partition of the unity {𝑣𝑝}𝑝∈𝒞 on U subordinate to the covering {𝐵(𝑝, 10𝑟𝑝) : 𝑝 ∈ 𝒞)}
by setting

𝑣𝑝 (𝑞) :=
𝑔𝑝 (𝑞)

𝜎(𝑞)
.

Notice that 𝑣𝑝 ∈ 𝐶∞
𝑐 (𝑈) and ∇H𝑣𝑝 =

∇H𝑔𝑝

𝜎 −
𝑔𝑝 ∇H𝜎

𝜎2 ; eventually, we deduce that for a suitable
𝑀 ′′ = 𝑀 ′′(𝑛) > 0,∑

𝑝∈𝒞

𝑣𝑝 (𝑞) = 1,
∑
𝑝∈𝒞

∇H𝑣𝑝 (𝑞) = 0 and |∇H𝑣𝑝 (𝑞) | ≤
𝑀 ′′

𝑟𝑞
(7.14)

for every 𝑞 ∈ 𝑈 and every 𝑝 ∈ 𝒞.
Step 4. For every 𝑝 ∈ 𝒞, choose 𝑞𝑝 ∈ 𝐹 such that 𝑑 (𝑝, 𝑞𝑝) = 𝑑 (𝑝, 𝐹); we then define 𝑓 : H𝑛 → R as

𝑓 (𝑞) :=
⎧⎪⎪⎨⎪⎪⎩

0 if 𝑞 ∈ 𝐹∑
𝑝∈𝒞

𝑣𝑝 (𝑞)𝐿Φ−1 (�̄�𝑝) (𝑞𝑝
−1𝑞) =
∑
𝑝∈𝒞𝑞

𝑣𝑝 (𝑞)𝐿Φ−1 (�̄�𝑝) (𝑞𝑝
−1𝑞) if 𝑞 ∈ 𝑈.

Notice that 𝑓 ∈ 𝐶∞(𝑈) and

∇H 𝑓 (𝑞) =
∑
𝑝∈𝒞𝑞

[
𝐿Φ−1 (�̄�𝑝) (𝑞𝑝

−1𝑞) ⊗ ∇H𝑣𝑝 (𝑞) + 𝑣𝑝 (𝑞)𝐿Φ−1 (�̄�𝑝)

]
on 𝑈, (7.15)

where we recall the identification between homogeneous homomorphisms 𝐿𝑤 and 𝑘 × 2𝑛 matrices.
Step 5. We claim that ∇H 𝑓 (𝑞) = 𝐿Φ−1 (𝑞) for every 𝑞 ∈ 𝐹. For every such q we define the compact

set 𝐻 := 𝐹 ∩ 𝐵(𝑞, 1) and, for 𝜂 > 0,

𝜐(𝜂) := sup

{%%%%%𝐿Φ−1 (𝑝) (𝑝−1 𝑝′)

𝑑 (𝑝, 𝑝′)

%%%%% : 𝑝, 𝑝′ ∈ 𝐻, 0 < 𝑑 (𝑝, 𝑝′) ≤ 𝜂

}
+ sup
{
|𝐿Φ−1 (𝑝) − 𝐿Φ−1 (𝑝′) | : 𝑝, 𝑝′ ∈ 𝐻, 𝑑 (𝑝, 𝑝′) ≤ 𝜂

}
.

The map 𝑝 ↦→ 𝐿Φ−1 (𝑝) is uniformly continuous on H; in fact,Φ−1 : 𝐻 → 𝐶 is uniformly continuous and,
since ∇𝜙𝜙 is continuous on C, 𝑤 ↦→ 𝐿𝑤 is also uniformly continuous on the compact set Φ−1(𝐻). This,
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together with the fact that the convergence in (7.11) is uniform on compact subsets of C, implies that

lim
𝜂→0+

𝜐(𝜂) = 0. (7.16)

For every 𝑞′ ∈ 𝐻, one has%% 𝑓 (𝑞′) − 𝑓 (𝑞) − 𝐿Φ−1 (𝑞) (𝑞
−1𝑞′)
%% = %%𝐿Φ−1 (𝑞) (𝑞

−1𝑞′)
%% ≤ 𝜐(𝑑 (𝑞, 𝑞′)) 𝑑 (𝑞, 𝑞′). (7.17)

Instead, for every 𝑞′ ∈ 𝑈, one has%% 𝑓 (𝑞′) − 𝑓 (𝑞) − 𝐿Φ−1 (𝑞) (𝑞
−1𝑞′)
%%

=
%% 𝑓 (𝑞′) − 𝐿Φ−1 (𝑞) (𝑞

−1𝑞′)
%%

≤
∑
𝑝∈𝒞𝑞′

𝑣𝑝 (𝑞′) |𝐿Φ−1 (�̄�𝑝) (𝑞𝑝
−1𝑞′) − 𝐿Φ−1 (𝑞) (𝑞

−1𝑞′) |

≤
∑
𝑝∈𝒞𝑞′

𝑣𝑝 (𝑞′)
[
|𝐿Φ−1 (�̄�𝑝) (𝑞𝑝

−1𝑞′) − 𝐿Φ−1 (�̄�𝑝) (𝑞
−1𝑞′) | + |(𝐿Φ−1 (�̄�𝑝) − 𝐿Φ−1 (𝑞) ) (𝑞

−1𝑞′) |
]

≤
∑
𝑝∈𝒞𝑞′

𝑣𝑝 (𝑞′)
[
|𝐿Φ−1 (�̄�𝑝) (𝑞𝑝

−1𝑞) | + |𝐿Φ−1 (�̄�𝑝) − 𝐿Φ−1 (𝑞) |𝑑 (𝑞, 𝑞′)
]
.

(7.18)

Since 20 𝑟𝑞′ ≤ 𝑑 (𝑞, 𝑞′), for every 𝑝 ∈ 𝒞𝑞′ we obtain

𝑑 (𝑞, 𝑞𝑝) ≤ 𝑑 (𝑞, 𝑝) + 𝑑 (𝑝, 𝑞𝑝) ≤ 2𝑑 (𝑞, 𝑝) ≤ 2(𝑑 (𝑞, 𝑞′) + 𝑑 (𝑞′, 𝑝))

≤ 2(𝑑 (𝑞, 𝑞′) + 10(𝑟𝑞′ + 𝑟𝑝)) ≤ 2(𝑑 (𝑞, 𝑞′) + 40𝑟𝑞′ ) ≤ 6 𝑑 (𝑞, 𝑞′).
(7.19)

Therefore, when 𝑑 (𝑞, 𝑞′) ≤ 1/6, we have 𝑞𝑝 ∈ 𝐻 for every 𝑝 ∈ 𝒞𝑞′ ; using (7.18) and Step 2 we then
obtain %% 𝑓 (𝑞′) − 𝑓 (𝑞) − 𝐿Φ−1 (𝑞) (𝑞

−1𝑞′)
%% ≤ 7 𝜐(6 𝑑 (𝑞, 𝑞′)) 𝑑 (𝑞, 𝑞′).

Recalling (7.16), this inequality and (7.17) eventually give%% 𝑓 (𝑞′) − 𝑓 (𝑞) − 𝐿Φ−1 (𝑞) (𝑞
−1𝑞′)
%% = 𝑜(𝑑 (𝑞, 𝑞′)) as 𝑞′ → 𝑞

and the claim follows.
Step 6. Let us prove that 𝑓 ∈ 𝐶1

H
(H𝑛); since 𝑓 ∈ 𝐶∞(𝑈), it suffices to prove that ∇H 𝑓 is continuous

on F. We fix 𝑞 ∈ 𝐹 and 𝑞′ ∈ H𝑛 with 𝑑 (𝑞, 𝑞′) ≤ 1/6 and we define H and 𝜐 as in Step 5. If 𝑞′ ∈ 𝐹, we
have by Step 5

|∇H 𝑓 (𝑞′) − ∇H 𝑓 (𝑞) | = |𝐿Φ−1 (𝑝) − 𝐿Φ−1 (𝑝′) | ≤ 𝜐(𝑑 (𝑞, 𝑞′)).

If 𝑞′ ∈ 𝑈 we choose 𝑞 ∈ 𝐹 such that 𝑑 (𝑞′, 𝑞) = 𝑑 (𝑞′, 𝐹) = 20𝑟𝑞′ to get

|∇H 𝑓 (𝑞′) − ∇H 𝑓 (𝑞) | ≤ |∇H 𝑓 (𝑞′) − 𝐿Φ−1 (�̄�) | + |𝐿Φ−1 (�̄�) − 𝐿Φ−1 (𝑞) |

≤ |∇H 𝑓 (𝑞′) − 𝐿Φ−1 (�̄�) | + 𝜐(2𝑑 (𝑞, 𝑞′)),
(7.20)

where in the last inequality we used the estimate

𝑑 (𝑞, 𝑞) ≤ 𝑑 (𝑞, 𝑞′) + 𝑑 (𝑞′, 𝑞) ≤ 2𝑑 (𝑞, 𝑞′)
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and, in particular, the fact that 𝑞 ∈ 𝐻. Using (7.14) and (7.15), we estimate

|∇H 𝑓 (𝑞′) − 𝐿Φ−1 (�̄�) |

=

%%%% ∑
𝑝∈𝒞𝑞′

[
𝐿Φ−1 (�̄�𝑝) (𝑞𝑝

−1𝑞′) ⊗ ∇H𝑣𝑝 (𝑞′) + 𝑣𝑝 (𝑞′)𝐿Φ−1 (�̄�𝑝)

]
−
∑
𝑝∈𝒞𝑞′

𝑣𝑝 (𝑞′)𝐿Φ−1 (�̄�)

%%%%
≤
∑
𝑝∈𝒞𝑞′

%%𝐿Φ−1 (�̄�𝑝) (𝑞𝑝
−1𝑞) ⊗ ∇H𝑣𝑝 (𝑞′)

%% + ∑
𝑝∈𝒞𝑞′

%% (𝐿Φ−1 (�̄�𝑝) − 𝐿Φ−1 (�̄�)

)
(𝑞 −1𝑞′) ⊗ ∇H𝑣𝑝 (𝑞′)

%%
+
∑
𝑝∈𝒞𝑞′

𝑣𝑝 (𝑞′) |𝐿Φ−1 (�̄�𝑝) − 𝐿Φ−1 (�̄�) |

≤
𝑀 ′′

𝑟𝑞′

∑
𝑝∈𝒞𝑞′

𝜐(𝑑 (𝑞, 𝑞𝑝))𝑑 (𝑞, 𝑞𝑝) +
𝑀 ′′

𝑟𝑞′

∑
𝑝∈𝒞𝑞′

𝜐(𝑑 (𝑞, 𝑞𝑝))𝑑 (𝑞′, 𝑞) +
∑
𝑝∈𝒞𝑞′

𝜐(𝑑 (𝑞, 𝑞𝑝))

(7.21)

where, in the last inequality, we used the fact that, as in (7.19), 𝑞𝑝 ∈ 𝐻. Recall that 𝑟𝑝 ≤ 3𝑟𝑞′ for all
𝑝 ∈ 𝒞𝑞′ ; therefore, for every such p one can estimate

𝑑 (𝑞, 𝑞𝑝) ≤ 𝑑 (𝑞, 𝑞′) + 𝑑 (𝑞′, 𝑝) + 𝑑 (𝑝, 𝑞𝑝) ≤ 20𝑟𝑞′ + 10(𝑟𝑞′ + 𝑟𝑝) + 20𝑟𝑝 ≤ 120𝑟𝑞′ (7.22)

and, in particular,

𝑑 (𝑞, 𝑞𝑝) ≤ 6𝑑 (𝑞′, 𝑞) ≤ 6𝑑 (𝑞′, 𝑞) (7.23)

for every 𝑝 ∈ 𝒞𝑞′ . Combining (7.21), (7.22) and (7.23) one finds

|∇H 𝑓 (𝑞′) − 𝐿Φ−1 (�̄�) | ≤ (120 𝑀 ′′ + 20𝑀 ′′ + 1)
∑
𝑝∈𝒞𝑞′

𝜐(𝑑 (𝑞, 𝑞𝑝)) ≤ (140 𝑀 ′′ + 1) (129)𝑄𝜐(6𝑑 (𝑞′, 𝑞)),

which, together with (7.20), gives

|∇H 𝑓 (𝑞′) − ∇H 𝑓 (𝑞) | → 0 as 𝑞′ → 𝑞,

as claimed.
Step 7. Let 𝛼1 := min{1/2, �̄�(1/2, 𝑛, 𝑘)}, where �̄�(1/2, 𝑛, 𝑘) is the number provided by Remark 4.4.

We claim that there exists 𝑐1 = 𝑐1 (𝑛, 𝑘) > 0 such that, if 𝛼 ≤ 𝛼1, then

|∇H 𝑓 (𝑞) − 𝐿 | ≤ 𝑐1 𝛼 for every 𝑞 ∈ H𝑛. (7.24)

We will later choose 𝛼0 and 𝑐0 in such a way that 𝛼0 ≤ 𝛼1 and 𝑐0 ≥ 𝑐1; in this way, statements (7.1)
and (7.2) are immediate consequences of (7.24).

If 𝑞 ∈ 𝐹, (7.24) follows from Step 5 and (7.10); hence, we can assume 𝑞 ∈ 𝑈. By (7.15) and (7.14),

∇H 𝑓 (𝑞) − 𝐿 =
∑
𝑝∈𝒞𝑞

𝐿Φ−1 (�̄�𝑝) (𝑞𝑝
−1𝑞) ⊗ ∇H𝑣𝑝 (𝑞) +

∑
𝑝∈𝒞𝑞

𝑣𝑝 (𝑞) (𝐿Φ−1 (�̄�𝑝) − 𝐿)

=
∑
𝑝∈𝒞𝑞

(
𝐿Φ−1 (�̄�𝑝) (𝑞𝑝

−1𝑞) − (𝑞V − 𝜙(𝑞W))
)

⊗ ∇H𝑣𝑝 (𝑞)

+
∑
𝑝∈𝒞𝑞

𝑣𝑝 (𝑞) (𝐿Φ−1 (�̄�𝑝) − 𝐿),

(7.25)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2021.84
Downloaded from https://www.cambridge.org/core. IP address: 94.34.96.60, on 02 Feb 2022 at 13:50:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2021.84
https://www.cambridge.org/core


82 Davide Vittone

where we recall that, for every 𝑝 ∈ H𝑛, we write 𝑝 = 𝑝W𝑝V for suitable (unique) 𝑝W ∈ W and 𝑝V ∈ V.
From (7.10) we obtain %%%% ∑

𝑝∈𝒞𝑞

𝑣𝑝 (𝑞) (𝐿Φ−1 (�̄�𝑝) − 𝐿)

%%%% ≤ √𝑘 (2𝑛 − 𝑘) 𝛼. (7.26)

We now estimate the first addend in the rightmost side of (7.25). First, we notice that for every 𝑝 ∈ 𝒞𝑞 ,

|𝐿Φ−1 (�̄�𝑝) (𝑞𝑝
−1𝑞) − 𝐿(𝑞𝑝

−1𝑞) | ≤ |𝐿Φ−1 (�̄�𝑝) − 𝐿 | 𝑑 (𝑞, 𝑞𝑝)

≤
√

𝑘 (2𝑛 − 𝑘) 𝛼 (𝑑 (𝑞, 𝑝) + 𝑑 (𝑝, 𝑞𝑝))

≤
√

𝑘 (2𝑛 − 𝑘) 𝛼 (10(𝑟𝑝 + 𝑟𝑞) + 20𝑟𝑝)

≤ 100
√

𝑘 (2𝑛 − 𝑘) 𝛼 𝑟𝑞 .

(7.27)

Noticing that 𝐿(𝑞𝑝
−1𝑞) = (𝑞𝑝

−1𝑞)
V

, we deduce that

|𝐿 (𝑞𝑝
−1𝑞) − (𝑞V − 𝜙(𝑞W)) | = |𝑞V − (𝑞𝑝)V + 𝜙(𝑞W) − 𝑞V | = |𝜙(𝑞W) − (𝑞𝑝)V | = |𝜙(𝑞W) − 𝜙((𝑞𝑝)W) |

and by Remark 4.3,

|𝐿 (𝑞𝑝
−1𝑞) − (𝑞V − 𝜙(𝑞W)) | ≤ 2𝛼𝑑 (𝑞𝑝 ,Φ(𝑞W))

≤ 2𝛼(𝑑 (𝑞𝑝 , 𝑝) + 𝑑 (𝑝, 𝑞) + 𝑑 (𝑞,Φ(𝑞W)))

= 2𝛼(𝑑 (𝑞𝑝 , 𝑝) + 𝑑 (𝑝, 𝑞) + |𝑞V − 𝜙(𝑞W) |)

≤ 2𝛼(20𝑟𝑝 + 10(𝑟𝑝 + 𝑟𝑞) + 2𝑑 (𝑞, gr𝜙)),

where in the last inequality we used Remark 4.4 with 𝜀 = 1/2. Recalling that 𝑟𝑝 ≤ 3𝑟𝑞 for every 𝑝 ∈ 𝒞𝑞 ,
we deduce

|𝐿 (𝑞𝑝
−1𝑞) − (𝑞V − 𝜙(𝑞W)) | ≤ 280 𝛼 𝑟𝑞 (7.28)

and the claim (7.24) is now a consequence of (7.25), (7.26), (7.27), (7.28) and the last statement in (7.14).
Step 8. Denote by 𝐾 > 0 a constant with the property (see, e.g., [56]) that

|𝑔(𝑝) − 𝑔(𝑞) | ≤ 𝐾
(

sup
H𝑛

|∇H𝑔 |
)
𝑑 (𝑝, 𝑞) for every 𝑔 ∈ 𝐶1

H
(H𝑛,R𝑘 ) and 𝑝, 𝑞 ∈ H𝑛.

We now fix 𝑐0 := max{𝑐1, 2𝐾𝑐1} and 𝛼0 := min{𝛼1, (2𝑐1)
−1}. The inequality (7.24) now implies

that, if 𝛼 ≤ 𝛼0, then col [𝑋1 𝑓 (𝑝) | . . . |𝑋𝑘 𝑓 (𝑝)] ≥ 1
2 𝐼; hence, ∇H 𝑓 (𝑝) has rank k for every 𝑝 ∈ H𝑛. In

particular, the level set 𝑆 = {𝑝 ∈ H𝑛 : 𝑓 (𝑝) = 0} is aH-regular submanifold and statement (7.3) follows.
Theorem 1.4 ensures that 𝑆 = gr𝜓 for an intrinsic Lipschitz 𝜓 : W → V. We claim that the

intrinsic Lipschitz constant of 𝜓 is at most 2𝐾𝑐1𝛼. To this aim, fix 𝑤 ∈ W and 𝑣 ∈ V \ {0} such
that ‖𝑤‖H < ‖𝑣‖H/(2𝐾𝑐1𝛼), so that 𝑤𝑣 ∈ 𝐶𝛽 for some 𝛽 > 2𝐾𝑐1𝛼. For every 𝑞 ∈ H𝑛 we have
𝐿(𝑞𝑤) = 𝐿(𝑞) and, in particular,

| 𝑓 (𝑞𝑤) − 𝑓 (𝑞) | = | ( 𝑓 − 𝐿) (𝑞𝑤) − ( 𝑓 − 𝐿) (𝑞) | ≤ 𝐾
(

sup
H𝑛

|∇H 𝑓 − 𝐿 |
)
‖𝑤‖H < ‖𝑣‖H/2,
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the last inequality following from (7.24). Now, for every 𝑝 ∈ 𝑆 = gr𝜓 we have 𝑓 (𝑝) = 0; hence,

| 𝑓 (𝑝𝑤𝑣) | = | 𝑓 (𝑝𝑤𝑣) − 𝑓 (𝑝) |

≥ | 𝑓 (𝑝𝑤𝑣) − 𝑓 (𝑝𝑤) | − | 𝑓 (𝑝𝑤) − 𝑓 (𝑝) |

>

〈
𝑓 (𝑝𝑤𝑣) − 𝑓 (𝑝𝑤),

𝑣

|𝑣 |

〉
−

‖𝑣‖H
2

≥ 0,

where we used Remark 2.7. This proves that 𝑓 (𝑝𝑤𝑣) ≠ 0; hence, gr𝜓∩𝑝𝐶𝛽 = {𝑝} for every 𝑝 ∈ gr𝜓 and
all 𝛽 > 2𝐾𝑐1𝛼. This implies that the intrinsic Lipschitz constant of 𝜓 is at most 2𝐾𝑐1𝛼 and statement
(7.4) follows because 𝑐0 ≥ 2𝐾𝑐1.

Step 9. By construction, for every 𝑤 ∈ 𝐶 we have Φ(𝑤) ∈ 𝐹 ⊂ { 𝑓 = 0}; hence, 𝜙(𝑤) = 𝜓(𝑤) and

TanH𝑆 (Φ(𝑤)) = ker ∇H 𝑓 (Φ(𝑤)) = ker 𝐿𝑤
(7.8)
= TanHgr𝜙 (Φ(𝑤)).

In particular, the inclusion

𝐶 ⊂ {𝑤 ∈ W : 𝜙(𝑤) = 𝜓(𝑤) and ∇𝜙𝜙(𝑤) = ∇𝜓𝜓(𝑤)}

holds, and (7.6) follows provided 𝜂 < 𝛿. The inclusion above also guarantees that

(gr𝜙 Δ 𝑆) ∪ {𝑝 ∈ gr𝜙 ∩ 𝑆 : TanHgr𝜙 (𝑝) ≠ TanH𝑆 (𝑝)} ⊂ Φ(W \ 𝐶) ∪ Ψ(W \ 𝐶), (7.29)

whereΨ is the graph mapΨ(𝑤) := 𝑤𝜓(𝑤). The intrinsic Lipschitz constants of 𝜙 and 𝜓 are both bounded
by max{𝛼0, 𝑐0𝛼0}, which depends only on n and k; then, by Remark 4.6, there exists 𝜅 = 𝜅(𝑘, 𝑛) > 0
such that

𝒮𝑄−𝑘 gr𝜙 ≤ 𝜅 Φ#(ℒ2𝑛+1−𝑘
W) and 𝒮𝑄−𝑘 gr𝜓 ≤ 𝜅 Ψ#(ℒ2𝑛+1−𝑘

W). (7.30)

Statements (7.29) and (7.30) imply that

𝒮𝑄−𝑘 ((gr𝜙 Δ 𝑆) ∪ {𝑝 ∈ gr𝜙 ∩ 𝑆 : TanHgr𝜙 (𝑝) ≠ TanH𝑆 (𝑝)}) ≤ 2𝜅𝜂,

and (7.5) follows provided we also impose 𝜂 < (2𝜅)−1𝛿. This concludes the proof. �

Theorem 7.2 is one of the main results of this section; recall that it implies Theorem 1.2.

Theorem 7.2. Let 𝐴 ⊂ W be an open set and 𝜙 : 𝐴 → V an intrinsic Lipschitz function. Then, for every
𝜀 > 0 there exists an intrinsic Lipschitz function 𝜓 : 𝐴 → V such that gr𝜓 is an H-regular submanifold
and

𝒮𝑄−𝑘 ((gr𝜙 Δ gr𝜓) ∪ {𝑝 ∈ gr𝜙 ∩ gr𝜓 : TanHgr𝜙 (𝑝) ≠ TanHgr𝜓 (𝑝)}) < 𝜀 (7.31)

ℒ2𝑛+1−𝑘 (𝐴 \ {𝑤 ∈ 𝐴 : 𝜙(𝑤) = 𝜓(𝑤) and ∇𝜙𝜙(𝑤) = ∇𝜓𝜓(𝑤)}) < 𝜀. (7.32)

Proof. As in Remark 6.1, it is not restrictive to assume thatW and V are the subgroups defined in (4.2)
and (4.3). By Theorem 1.5, without loss of generality, we can assume that 𝐴 = W. Let 𝛼0, 𝑐0 be the
constants provided by Lemma 7.1; up to reducing 𝛼0, we can assume that 𝛼0𝑐0 ≤ 1/2.

Let 𝛼 be the intrinsic Lipschitz constant of 𝜙; if 𝛼 ≤ 𝛼0, the statement directly follows from Lemma
7.1. We then assume 𝛼 > 𝛼0 and define 𝜆 := 𝛼0/𝛼 < 1. Let us consider the H-linear isomorphism
L : H𝑛 → H𝑛 defined (if 𝑘 < 𝑛) by

L(𝑥 ′, 𝑥 ′′, 𝑦′, 𝑦′′, 𝑡) :=
(
𝜆𝑥 ′, 𝑥 ′′,

𝑦′

𝜆
, 𝑦′′, 𝑡
)
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for every (𝑥 ′, 𝑥 ′′, 𝑦′, 𝑦′′, 𝑡) ∈ R𝑘×R𝑛−𝑘×R𝑘×R𝑛−𝑘×R ≡ H𝑛, and (if 𝑘 = 𝑛) by L(𝑥, 𝑦, 𝑡) := (𝜆𝑥, 𝑦/𝜆, 𝑡)
for every (𝑥, 𝑦, 𝑡) ∈ R𝑛 ×R𝑛 ×R ≡ H𝑛. We discuss only the case 𝑘 < 𝑛, as the case 𝑘 = 𝑛 can be treated
with some modification in the notation only.

We claim that 𝐶𝛼0 ⊂ L(𝐶𝛼). To this aim, fix 𝑤 = (0, 𝑥 ′′, 𝑦′, 𝑦′′, 𝑡) ∈ W and 𝑣 = (𝑥 ′, 0, 0, 0, 0) ∈ V
such that 𝑤𝑣 ∈ 𝐶𝛼0 ; that is, ‖𝑤‖H ≤ ‖𝑣‖H/𝛼0. Then

‖L−1 (𝑤)‖H =
...(0, 𝑥 ′′, 𝜆𝑦′, 𝑦′′, 𝑡

)...
H

≤ ‖(0, 𝑥 ′′, 𝑦′, 𝑦′′, 𝑡)‖H = ‖𝑤‖H

≤
1
𝛼0

‖𝑣‖H =
1
𝛼0

‖(𝑥 ′, 0, 0, 0, 0)‖H =
𝜆

𝛼0

...( 𝑥 ′

𝜆
, 0, 0, 0, 0

)...
H

=
1
𝛼

‖L−1(𝑣)‖H.

This proves that 𝑤𝑣 ∈ L(𝐶𝛼), as claimed.
For every 𝑝 ∈ L(gr𝜙) we have

L(gr𝜙) ∩ 𝑝𝐶𝛼0 ⊂ L(gr𝜙) ∩ 𝑝L(𝐶𝛼) = L(gr𝜙 ∩ L−1(𝑝)𝐶𝛼) = L(L−1(𝑝)) = 𝑝;

hence (see Remark 2.3), the set L(gr𝜙) is the intrinsic Lipschitz graph of some function 𝜙0 : W → V

with intrinsic Lipschitz constant at most 𝛼0. By Lemma 7.1, there exists 𝑓0 ∈ 𝐶1
H
(H𝑛,R𝑘 ) such that

|𝑊𝑖 𝑓0(𝑝) | ≤ 1/2 for every 𝑝 ∈ H𝑛 and 𝑖 = 𝑘 + 1, . . . , 2𝑛 (7.33)

col
[
𝑋1 𝑓0(𝑝) | . . . |𝑋𝑘 𝑓0(𝑝)

]
≥

1
2

𝐼 for every 𝑝 ∈ H𝑛 (7.34)

the level set 𝑆0 := {𝑝 ∈ H𝑛 : 𝑓0(𝑝) = 0} is a H-regular submanifold
𝑆0 = gr𝜓0

for an intrinsic Lipschitz 𝜓0 :W→ V

𝒮𝑄−𝑘 ((gr𝜙0
Δ 𝑆0) ∪ {𝑝 ∈ gr𝜙0

∩ 𝑆0 : TanHgr𝜙0
(𝑝) ≠ TanH𝑆0

(𝑝)}) < 𝜀/𝑀𝑄−𝑘 (7.35)

ℒ2𝑛+1−𝑘 (W \ {𝑤 ∈ W : 𝜙0 (𝑤) = 𝜓0(𝑤) and ∇𝜙0 𝜙0(𝑤) = ∇𝜓0𝜓0(𝑤)}) < 𝜀/𝑀𝑄−𝑘 , (7.36)

where 𝑀 > 0 denotes the Lipschitz constant of L−1 : H𝑛 → H
𝑛. The function 𝑓 := 𝑓0 ◦ L is of class

𝐶1
H
(H𝑛,R𝑘 ) and

𝑋𝑖 𝑓 (𝑝) = 𝜆(𝑋𝑖 𝑓0) (L(𝑝)) for every 𝑖 = 1, . . . , 𝑘

𝑌𝑖 𝑓 (𝑝) =
1
𝜆

(𝑌𝑖 𝑓0) (L(𝑝)) for every 𝑖 = 1, . . . , 𝑘

𝑊𝑖 𝑓 (𝑝) = (𝑊𝑖 𝑓0) (L(𝑝)) whenever 𝑘 + 1 ≤ 𝑖 ≤ 𝑛 or 𝑛 + 𝑘 + 1 ≤ 𝑖 ≤ 2𝑛

so that, by (7.33) and (7.34),

|𝑊𝑖 𝑓 (𝑝) | ≤
1

2𝜆
for every 𝑝 ∈ H𝑛 and 𝑖 = 𝑘 + 1, . . . , 2𝑛

col
[
𝑋1 𝑓 (𝑝) | . . . |𝑋𝑘 𝑓 (𝑝)

]
≥

𝜆

2
𝐼 for every 𝑝 ∈ H𝑛.

By Theorem 1.4 and Remarks 2.7 and 2.8, the level set { 𝑓 = 0}, which is an H-regular submanifold,
is the intrinsic graph of an intrinsic Lipschitz function 𝜓 : W → V whose Lipschitz constant can be
estimated in terms of 𝜆 (i.e., of 𝛼) only; see Remark 2.9. Moreover, the equalities

(gr𝜙 Δ gr𝜓) ∪ {𝑝 ∈ gr𝜙 ∩ gr𝜓 : TanHgr𝜙 (𝑝) ≠ TanHgr𝜓 (𝑝)}

= L−1 ((gr𝜙0
Δ gr𝜓0

) ∪ {𝑝 ∈ gr𝜙0
∩ gr𝜓0

: TanHgr𝜙0
(𝑝) ≠ TanHgr𝜓0

(𝑝)}
)
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and

{𝜙 = 𝜓 and ∇𝜙𝜙 = ∇𝜓𝜓} = L−1 ({𝜙0 = 𝜓0 and ∇𝜙0 𝜙0 = ∇𝜓0𝜓0}
)

hold. Statements (7.31) and (7.32) now follow from (7.35) and (7.36), and the proof is accomplished. �

Remark 7.3. Taking (7.4) into account, a further outcome of the proof of Theorem 7.2 is the existence
of a function 𝑢 : (0, +∞) → (0, +∞) such that, if A, 𝜙 and 𝜀 are as in the statement of Theorem 7.2 and
the intrinsic Lipschitz constant of 𝜙 is 𝛼 > 0, then the function 𝜓 provided by Theorem 7.2 has intrinsic
Lipschitz constant at most 𝑢(𝛼).

A first consequence of Theorem 7.2 is the equivalence between the two possible notions of H-
rectifiability; this was already stated in Subsection 4.4.

Corollary 7.4. Let 𝜙 : 𝐴 → V be an intrinsic Lipschitz map defined on some subset 𝐴 ⊂ W; then gr𝜙
is H-rectifiable.

In particular, a set 𝑅 ⊂ H𝑛 is H-rectifiable of codimension k, 𝑘 ∈ {1, . . . , 𝑛}, if and only if
𝒮𝑄−𝑘 (𝑅) < ∞ and there exists a countable family (𝜙 𝑗 ) 𝑗 of intrinsic Lipschitz maps 𝜙 𝑗 : W 𝑗 → V 𝑗

whereW 𝑗 ,V 𝑗 are homogeneous complementary subgroups of H𝑛 with dimV 𝑗 = 𝑘 and

𝒮𝑄−𝑘

(
𝑅 \
⋃
𝑗

gr𝜙 𝑗

)
= 0.

Proof. We can assume 𝐴 = W because of Theorem 1.5. By Theorem 7.2, for every 𝑗 ∈ N there exists
𝜙 𝑗 :W→ V such that gr𝜙 𝑗

is H-regular and

𝒮𝑄−𝑘 (gr𝜙 \ gr𝜙 𝑗
) < 1/ 𝑗 .

The first part of the statement follows as well as one implication of the second part of the statement.
The other implication is a simple consequence of the fact that (Theorem 4.19) H-regular submanifolds
are locally intrinsic Lipschitz graphs. �

A second consequence of Theorem 7.2 is the area formula of Theorem 1.3, which we now prove.
Recall that the intrinsic Jacobian determinant 𝐽𝜙𝜙 was introduced in Definition 4.9.

Proof of Theorem 1.3. Recalling Remark 4.10, it is not restrictive to assume thatW,V are the subgroups
in (4.3) and (4.2). By Theorem 1.5, one can assume that 𝐴 =W. Since every Borel nonnegative function
h can be written as a series of characteristic functions of Borel subsets of gr𝜙 , we can, without loss of
generality, assume that ℎ = 𝜒𝐸 for some Borel subset 𝐸 ⊂ gr𝜙 , and we must prove that

𝒮𝑄−𝑘 (𝐸) = 𝐶𝑛,𝑘

∫
Φ−1 (𝐸)

𝐽𝜙𝜙 𝑑ℒ2𝑛+1−𝑘 .

Let 𝜀 > 0 be fixed; by Theorem 7.2 we can find an intrinsic Lipschitz map 𝜓 : W → V such that gr𝜓
is an H-regular submanifold and, defining the graph map Ψ(𝑤) := 𝑤𝜓(𝑤) and 𝐷 := {𝑤 ∈ W : 𝜙(𝑤) =
𝜓(𝑤) and ∇𝜙𝜙(𝑤) = ∇𝜓𝜓(𝑤)}, one has

ℒ2𝑛+1−𝑘 (W \ 𝐷) < 𝜀 and 𝒮𝑄−𝑘 (𝐸 \ Ψ(𝐷)) < 𝜀. (7.37)
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Using Theorem 4.19,

𝒮𝑄−𝑘 (𝐸) = 𝒮𝑄−𝑘 (𝐸 ∩ Ψ(𝐷)) +𝒮𝑄−𝑘 (𝐸 \ Ψ(𝐷))

= 𝐶𝑛,𝑘

∫
Ψ−1 (𝐸∩Ψ(𝐷))

𝐽𝜓𝜓 𝑑ℒ2𝑛+1−𝑘 +𝒮𝑄−𝑘 (𝐸 \ Ψ(𝐷))

= 𝐶𝑛,𝑘

∫
Φ−1 (𝐸)∩𝐷

𝐽𝜙𝜙 𝑑ℒ2𝑛+1−𝑘 +𝒮𝑄−𝑘 (𝐸 \ Ψ(𝐷))

= 𝐶𝑛,𝑘

∫
Φ−1 (𝐸)

𝐽𝜙𝜙 𝑑ℒ2𝑛+1−𝑘 − 𝐶𝑛,𝑘

∫
Φ−1 (𝐸)\𝐷

𝐽𝜙𝜙 𝑑ℒ2𝑛+1−𝑘 +𝒮𝑄−𝑘 (𝐸 \ Ψ(𝐷))

so that%%%%𝒮𝑄−𝑘 (𝐸) − 𝐶𝑛,𝑘

∫
Φ−1 (𝐸)

𝐽𝜙𝜙 𝑑ℒ2𝑛+1−𝑘

%%%% ≤ 𝐶𝑛,𝑘

∫
W\𝐷

𝐽𝜙𝜙 𝑑ℒ2𝑛+1−𝑘 +𝒮𝑄−𝑘 (𝐸 \ Ψ(𝐷))

≤ (𝐶𝑛,𝑘𝐶 + 1)𝜀,

where, in the last inequality, we used (7.37) and the fact that, by Lemma 4.13, 𝐽𝜙𝜙 ≤ 𝐶 for some positive
C depending only on the intrinsic Lipschitz constant of 𝜙. The arbitrariness of 𝜀 concludes the proof. �

Eventually, as a further consequence of Theorem 7.2 we prove the fact that, as anticipated in Section 6,
the canonical current associated with an entire intrinsic Lipschitz graph has zero boundary. We will use
(6.11), whose validity is now guaranteed by Theorem 1.3.

Proposition 7.5. Let 𝜙 :W→ V be intrinsic Lipschitz. Then the (2𝑛+1− 𝑘)-Heisenberg current �gr𝜙�
introduced in (6.10) is such that 𝜕�gr𝜙� = 0.

Proof. As in Remark 6.1 we can assume without loss of generality that the subgroups W,V are those
defined in (4.3) and (4.2). Let 𝜀 > 0 be fixed and let 𝜓 :W→ V be the map provided by Theorem 7.2.
It was shown in the proof of Theorem 7.2 that there exists 𝑓 ∈ 𝐶1

H
(H𝑛,R𝑘 ) such that gr𝜓 = { 𝑓 = 0};

moreover, the construction performed in Lemma 7.1 ensures that 𝑓 ∈ 𝐶∞(H𝑛 \ gr𝜓). As in the proof of
Theorem 1.6, for every positive integer i there exists 𝜓𝑖 ∈ 𝐶∞(W,V) such that

gr𝜓𝑖
= { 𝑓 = (1/𝑖, 0, . . . , 0)}.

Moreover, defining the graph maps Ψ(𝑤) := 𝑤𝜓(𝑤) and Ψ𝑖 (𝑤) := 𝑤𝜓𝑖 (𝑤), as 𝑖 → +∞, one has

𝜓𝑖 → 𝜓, Ψ𝑖 → Ψ and ∇𝜓𝑖𝜓𝑖 → ∇𝜓𝜓 locally uniformly onW. (7.38)

The last convergence stated in (7.38) follows from the local uniform (with respect to 𝑤 ∈ W) convergence

TanHgr𝜓𝑖
(Ψ𝑖 (𝑤)) = ker ∇H 𝑓 (Ψ𝑖 (𝑤)) → ker ∇H 𝑓 (Ψ(𝑤)) = TanHgr𝜓 (Ψ(𝑤)).

Using Proposition 1.9, Lemma 4.29 and formulae (7.38) and (6.11) we deduce that for every 𝜔 ∈ D2𝑛−𝑘
H

,

0 = lim
𝑖→∞

�gr𝜓𝑖
�(𝑑𝐶𝜔)

= lim
𝑖→∞

𝐶𝑛,𝑘

∫
W

〈∇𝜓𝑖Ψ𝑖 ∧ 𝑇 | (𝑑𝐶𝜔) ◦ Ψ𝑖〉 𝑑ℒ2𝑛+1−𝑘

= 𝐶𝑛,𝑘

∫
W

〈∇𝜓Ψ ∧ 𝑇 | (𝑑𝐶𝜔) ◦ Ψ〉 𝑑ℒ2𝑛+1−𝑘

= �gr𝜓�(𝑑𝐶𝜔).
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In particular,

|𝜕�gr𝜙�(𝜔) | = |�gr𝜙�(𝑑𝐶𝜔) − �gr𝜓�(𝑑𝐶𝜔) |

=

%%%%%∫gr𝜙
〈𝑡Hgr𝜙 | 𝑑𝐶𝜔〉 𝑑𝒮𝑄−𝑘 −

∫
gr𝜓

〈𝑡Hgr𝜓 | 𝑑𝐶𝜔〉 𝑑𝒮𝑄−𝑘

%%%%%
≤ 𝒮𝑄−𝑘 ((gr𝜙 Δ gr𝜓) ∪ {𝑝 ∈ gr𝜙 ∩ gr𝜓 : TanHgr𝜙 (𝑝) ≠ TanHgr𝜓 (𝑝)}) sup

H𝑛
|𝑑𝐶𝜔|

≤ 𝜀 sup
H𝑛

|𝑑𝐶𝜔|.

The arbitrariness of 𝜀 implies that 𝜕�gr𝜙�(𝜔) = 0 for every 𝜔 ∈ D2𝑛−𝑘
H

, as desired. �

A. Proof of Proposition 3.38

We provide here the proofs of Lemma 3.37 and Proposition 3.38 that were only stated in Subsection
3.6. The proof of Lemma 3.37 is quite simple.

Proof of Lemma 3.37. Assume that (a) holds; then either dim𝒫1 ∩ 𝒫2 = 𝑚, in which case 𝒫1 = 𝒫2
and (b) trivially holds or dim𝒫1 ∩ 𝒫2 = 𝑚 − 1. Let 𝑣1, . . . , 𝑣𝑚−1 be a basis of 𝒫1 ∩ 𝒫2 and choose
𝑤1 ∈ 𝒫1 \ 𝒫2 and 𝑤2 ∈ 𝒫2 \ 𝒫1; then, for every 𝑡1, 𝑡2 as in statement (b) there exist 𝑐1, 𝑐2 ∈ R \ {0}
such that

𝑡1 = 𝑐1𝑤1 ∧ 𝑣1 ∧ · · · ∧ 𝑣𝑚−1

𝑡2 = 𝑐2𝑤2 ∧ 𝑣1 ∧ · · · ∧ 𝑣𝑚−1.

The difference 𝑡1 − 𝑡2 is clearly a simple vector and (b) follows.
Statement (b) implies (c); hence, we have only to show that (c) implies (a). Assume there exist 𝑡1, 𝑡2 as

in (c). Let ℎ := dim𝒫1 ∩𝒫2; we assume ℎ ≥ 1, but the following argument can be easily adapted to the
case ℎ = 0. By assumption, 𝑡 := 𝑡1 − 𝑡2 is simple; moreover, we have 𝒫1 ∩𝒫2 ⊂ span 𝑡, because for every
𝑣 ∈ 𝒫1 ∩𝒫2 we have 𝑣∧ 𝑡 = 𝑣∧(𝑡1 − 𝑡2) = 0. In particular, after fixing a basis 𝑣1, . . . , 𝑣ℎ of 𝒫1 ∩𝒫2, we
can find 𝑣ℎ+1, . . . , 𝑣𝑚 ∈ span 𝑡, 𝑒1, . . . , 𝑒𝑚−ℎ ∈ 𝒫1 \ 𝒫2 and 𝑒𝑚−ℎ+1, . . . , 𝑒2(𝑚−ℎ) ∈ 𝒫2 \ 𝒫1 such that

𝑡 = 𝑣1 ∧ · · · ∧ 𝑣ℎ ∧ 𝑣ℎ+1 ∧ · · · ∧ 𝑣𝑚

𝑡1 = 𝑣1 ∧ · · · ∧ 𝑣ℎ ∧ 𝑒1 ∧ · · · ∧ 𝑒𝑚−ℎ

𝑡2 = 𝑣1 ∧ · · · ∧ 𝑣ℎ ∧ 𝑒𝑚−ℎ+1 ∧ · · · ∧ 𝑒2(𝑚−ℎ) .

Then, on the one side, 𝑡 ′ := 𝑒1∧· · ·∧𝑒𝑚−ℎ−𝑒𝑚−ℎ+1∧· · ·∧𝑒2(𝑚−ℎ) equals the simple vector 𝑣ℎ+1∧· · ·∧𝑣𝑚;
hence, dim span 𝑡 ′ = 𝑚 − ℎ. On the other side, 𝑒1, . . . , 𝑒2(𝑚−ℎ) are linearly independent and one can
easily check that, in case 𝑚 − ℎ ≥ 2, one would have

span 𝑡 ′ = {𝑣 ∈ 𝑉 : 𝑣 ∧ 𝑡 ′ = 0} = {𝑣 ∈ span{𝑒1, . . . , 𝑒2(𝑚−ℎ) } : 𝑣 ∧ 𝑡 ′ = 0} = {0}.

This implies that ℎ ≥ 𝑚 − 1, which is statement (a). �

On the contrary, the proof of Proposition 3.38 is long and technical: there might well be a simpler
one but the author was not able to find it. The proof provided here is based on Lemmata A.1 and A.3,
where one essentially studies the model cases of the planes 𝒫𝑎,𝑏 introduced in (3.11). Proposition 3.38
will then follow by a quite standard use of Proposition 3.13.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2021.84
Downloaded from https://www.cambridge.org/core. IP address: 94.34.96.60, on 02 Feb 2022 at 13:50:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2021.84
https://www.cambridge.org/core


88 Davide Vittone

Remark 3.27 will be utilised several times.

Lemma A.1. Let 𝑎 ≥ 1 be an integer such that 𝑛 ≤ 2𝑎 ≤ 2𝑛 − 1; assume that 𝜏 ∈ ∧2𝑎𝔥1 is a simple
2𝑎-vector such that

[𝜏 ∧ 𝑇]J = [𝑋1 ∧ · · · ∧ 𝑋𝑎 ∧ 𝑌1 ∧ · · · ∧ 𝑌𝑎 ∧ 𝑇]J.

Then the following statements hold:

(i) if 2𝑎 > 𝑛, then 𝜏 = 𝑋1 ∧ · · · ∧ 𝑋𝑎 ∧ 𝑌1 ∧ · · · ∧ 𝑌𝑎;
(ii) if 2𝑎 = 𝑛, then either

𝜏 = 𝑋1 ∧ · · · ∧ 𝑋𝑎 ∧ 𝑌1 ∧ · · · ∧ 𝑌𝑎

or

𝜏 = (−1)𝑎 𝑋𝑎+1 ∧ · · · ∧ 𝑋2𝑎 ∧ 𝑌𝑎+1 ∧ · · · ∧ 𝑌2𝑎 .

Remark A.2. When 2𝑎 = 𝑛 one can use computations analogous to those in Remark 3.27 to check
the action of (−1)𝑎 𝑋𝑎+1 ∧ · · · ∧ 𝑋2𝑎 ∧ 𝑌𝑎+1 ∧ · · · ∧ 𝑌2𝑎 ∧ 𝑇 in duality with elements of the basis of
J2𝑎+1 = J𝑛+1 provided by Proposition 1.10. As a matter of fact, the equality

[𝑋1 ∧ · · · ∧ 𝑋𝑎 ∧ 𝑌1 ∧ · · · ∧ 𝑌𝑎 ∧ 𝑇]J = [(−1)𝑎 𝑋𝑎+1 ∧ · · · ∧ 𝑋2𝑎 ∧ 𝑌𝑎+1 ∧ · · · ∧ 𝑌2𝑎 ∧ 𝑇]J

does hold.
For instance, recalling Example 3.23. it can be easily checked that in H2.

〈𝑋1 ∧ 𝑌1 ∧ 𝑇 | 𝜆〉 = −〈𝑋2 ∧ 𝑌2 ∧ 𝑇 | 𝜆〉 for every 𝜆 ∈ J3.

Proof of Lemma A.1. Let us write 𝜏 = 𝜏1 ∧ · · · ∧ 𝜏2𝑎 for suitable horizontal vectors 𝜏𝑖 ∈ 𝔥1. Writing

𝜏𝑖 = 𝜏𝑖1𝑋1 + · · · + 𝜏𝑖2𝑛𝑌𝑛, 𝑖 = 1, . . . , 2𝑎

we introduce the matrix

𝑀 := col
[

𝜏1 | · · · | 𝜏2𝑎 ] = ⎡⎢⎢⎢⎢⎢⎣
𝜏1

1 . . . 𝜏2𝑎
1

...
...

𝜏1
2𝑛 . . . 𝜏2𝑎

2𝑛

⎤⎥⎥⎥⎥⎥⎦ = row

⎡⎢⎢⎢⎢⎢⎣
𝑀1
...

𝑀2𝑛

⎤⎥⎥⎥⎥⎥⎦ ,
where for every 𝑖 = 1, . . . , 2𝑛 we denoted by 𝑀𝑖 = (𝜏1

𝑖 , . . . , 𝜏2𝑎
𝑖 ) ∈ R2𝑎 the ith row of M. It is worth

noticing that for every 𝐼 ⊂ {1, . . . , 2𝑛} with |𝐼 | = 2𝑎 the equality

〈𝜏 | 𝑑𝑧𝐼 〉 = det[𝑀𝑖]𝑖∈𝐼

holds, where we used notation (3.12) and denoted by [𝑀𝑖]𝑖∈𝐼 the 2𝑎 × 2𝑎 matrix formed by the rows
𝑀𝑖 , 𝑖 ∈ 𝐼, arranged in the natural order.

We now fix a subset 𝐼 ⊂ {1, . . . , 2𝑛} of indices having maximal cardinality among all subsets
ℐ ⊂ {1, . . . , 2𝑛} satisfying the two properties

∀ 𝑖, 𝑗 ∈ ℐ 𝑖 � 𝑗mod 𝑛

(𝑀𝑖)𝑖∈ℐ are linearly independent.
(A.1)
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We also define

𝐽 := { 𝑗 ∈ {1, . . . , 2𝑛} : ∃ 𝑖 ∈ 𝐼 such that 𝑗 ≡ 𝑖 mod 𝑛} \ 𝐼

𝐾 := {1, . . . , 2𝑛} \ (𝐼 ∪ 𝐽).

Clearly, 𝐼 ∩ 𝐽 = ∅.

Claim 1: 𝑎 ≤ |𝐼 | ≤ 𝑛 and |𝐽 | = |𝐼 |.
Let us prove the first claimed inequality. We have 𝜏 ≠ 0, for otherwise we would obtain the

contradiction

0 =〈𝜏 ∧ 𝑇 | 𝛼𝑅 ∧ 𝜃〉 = 〈𝑋1 ∧ · · · ∧ 𝑋𝑎 ∧ 𝑌1 ∧ · · · ∧ 𝑌𝑎 ∧ 𝑇 | 𝛼𝑅 ∧ 𝜃〉 = 1

where

𝑅 := 1 2 · · · 𝑛 − 𝑎 𝑛 − 𝑎 + 1 · · · 𝑎
𝑎 + 1 𝑎 + 2 · · · n if 2𝑎 > 𝑛

𝑅 := 1 2 · · · a
𝑎 + 1 𝑎 + 2 · · · n if 2𝑎 = 𝑛.

(A.2)

In particular, the rank of M is 2𝑎 and we can find distinct numbers 𝑖1, . . . , 𝑖2𝑎 in {1, . . . , 2𝑛} such that
𝑀𝑖1 , . . . , 𝑀𝑖2𝑎 are linearly independent. It is then obvious that we can find a subset of {𝑖1, . . . , 𝑖2𝑎} made
by at least a elements that are never congruent modulo n; this proves that |𝐼 | ≥ 𝑎.

The remaining part of the claim (|𝐼 | ≤ 𝑛 and |𝐽 | = |𝐼 |) is clear from the definitions of I and J.

Claim 2: For every 𝑘 ∈ 𝐾 , 𝑀𝑘 ∈ span{𝑀𝑖 : 𝑖 ∈ 𝐼}.
Assume, on the contrary, that there exists 𝑘 ∈ 𝐾 such that (𝑀𝑖)𝑖∈𝐼∪{𝑘 } are linearly independent; then

ℐ := 𝐼 ∪ {𝑘} would satisfy the two properties in (A.1) and this would contradict the maximality of I.

Claim 3: There exists 𝐽 ′ ⊂ 𝐽 such that |𝐽 ′ | = 2𝑎 − |𝐼 |and (𝑀𝑖)𝑖∈𝐼∪𝐽 ′ are linearly independent. In
particular, (𝑀𝑖)𝑖∈𝐼∪𝐽 ′ form a basis of R2𝑎.

We are going to implicitly use the facts that 𝐼 ∩ 𝐽 = ∅ and |𝐼 | = |𝐽 |. Let 𝑗1, 𝑗2, . . . , 𝑗 |𝐼 | be an
enumeration of all of the elements of J; for ℓ = 0, 1, . . . , |𝐼 | we inductively define 𝐽 ′

ℓ by 𝐽 ′
0 := ∅ and

if 𝑀 𝑗ℓ ∉ span{𝑀𝑖 : 𝑖 ∈ 𝐼 ∪ 𝐽 ′
ℓ−1}, then 𝐽 ′

ℓ := 𝐽 ′
ℓ−1 ∪ { 𝑗ℓ }

if 𝑀 𝑗ℓ ∈ span{𝑀𝑖 : 𝑖 ∈ 𝐼 ∪ 𝐽 ′
ℓ−1}, then 𝐽 ′

ℓ := 𝐽 ′
ℓ−1.

Setting 𝐽 ′ := 𝐽 ′
|𝐼 |

, the elements (𝑀𝑖)𝑖∈𝐽∪𝐽 ′ are linearly independent by construction; let us prove that
they span the whole R2𝑎, which will also imply the equality |𝐽 ′ | = 2𝑎 − |𝐼 |. Assume, on the contrary,
that the dimension of

ℳ := span{𝑀𝑖 : 𝑖 ∈ 𝐼 ∪ 𝐽 ′} = span{𝑀𝑖 : 𝑖 ∈ 𝐼 ∪ 𝐽}

(the second equality holding by construction) is less than 2𝑎; recalling Claim 2 and the fact that
𝐼 ∪ 𝐽 ∪ 𝐾 = {1, . . . , 2𝑛}, this would imply that

∀ 𝑖 ∈ {1, . . . , 2𝑛} 𝑀𝑖 ∈ ℳ,

and the rank of M would not be 2𝑎. This is a contradiction, and Claim 3 is proved.
We now introduce

𝐴 := {𝑖 ∈ {1, . . . , 𝑛} : {𝑖, 𝑖 + 𝑛} ⊂ 𝐼 ∪ 𝐽 ′}

𝐵 := (𝐼 ∪ 𝐽 ′) \ (𝐴 ∪ (𝑛 + 𝐴)) = 𝐼 \ (𝐴 ∪ (𝑛 + 𝐴))

𝐶 := 𝐾 ∩ {1, . . . , 𝑛},
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where for 𝐸 ⊂ {1, . . . , 𝑛} we write 𝑛 + 𝐸 for {𝑖 ∈ {𝑛 + 1, . . . , 2𝑛} : 𝑖 − 𝑛 ∈ 𝐸}. We notice the following
properties:

(i) if 𝑖 ∈ 𝐴, then either (𝑖 ∈ 𝐼 and 𝑖 + 𝑛 ∈ 𝐽 ′), or (𝑖 ∈ 𝐽 ′ and 𝑖 + 𝑛 ∈ 𝐼);
(ii) |𝐼 | = |𝐽 | = |𝐴| + |𝐵 | and 2|𝐴| + |𝐵 | = |𝐼 | + |𝐽 ′ | = 2𝑎;

(iii) 𝐾 = 𝐶 ∪ (𝑛 + 𝐶).

In particular,

|𝐴| − |𝐶 | = |𝐴| − 1
2 |𝐾 | = |𝐴| − 1

2 (2𝑛 − |𝐼 | − |𝐽 |) = 2|𝐴| + |𝐵 | − 𝑛 = 2𝑎 − 𝑛 ≥ 0

and we can define the (nonnecessarily standard) Young tableau

𝑅 := 𝑎1 𝑎2 · · · · · · · · · 𝑎 |𝐴 |

𝑐1 𝑐2 · · · 𝑐 |𝐶 |

where 𝑎1, . . . , 𝑎 |𝐴 | is the increasing enumeration of the elements of A and 𝑐1, . . . , 𝑐 |𝐶 | is the increasing
enumeration of the elements of C; of course, when |𝐴| = |𝐶 | (or, which is the same, 2𝑎 = 𝑛) the tableau
R is a 2 × |𝐴| matrix.

We now consider the covector 𝜆 := 𝑑𝑧𝐵 ∧ 𝛼𝑅; it can be easily checked that 𝜆 ∧ 𝜃 ∈ J2𝑎+1.

Claim 4: 〈𝜏 | 𝜆〉 ≠ 0.
It is enough to check that

〈𝜏 | 𝜆〉 = 〈𝜏 | 𝑑𝑧𝐵 ∧ 𝑑𝑥𝑦𝐴〉; (A.3)

in fact, if (A.3) were true one would get

〈𝜏 | 𝜆〉 = 〈𝜏 | 𝑑𝑧𝐵 ∧ 𝑑𝑥𝑦𝐴〉 = ± det[𝑀𝑖]𝑖∈𝐴∪(𝑛+𝐴)∪𝐵 = ± det[𝑀𝑖]𝑖∈𝐼∪𝐽 ′ ≠ 0, (A.4)

as claimed. The signs ± in (A.4) are not relevant and depend on A and B only.
Let us prove (A.3). By definition of 𝛼𝑅, the covector 𝜆 can be written as

𝜆 = 𝑑𝑧𝐵 ∧ 𝛼𝑅 = 𝑑𝑧𝐵 ∧ 𝑑𝑥𝑦𝐴 + �̃�

where �̃� is a sum of covectors of the form ±𝑑𝑧𝐵 ∧ 𝑑𝑥𝑦𝐴′∪𝐶′ , where 𝐴′ ⊂ 𝐴 and 𝐶 ′ ⊂ 𝐶 satisfy

|𝐴′ | + |𝐶 ′ | = |𝐴| and |𝐶 ′ | ≥ 1

(in particular, |𝐴′ | < |𝐴|). We have

〈𝜏 | 𝑑𝑧𝐵 ∧ 𝑑𝑥𝑦𝐴′∪𝐶′ 〉 = ± det[𝑀𝑖]𝑖∈𝐵∪𝐴′∪𝐶′∪(𝑛+𝐴′)∪(𝑛+𝐶′) (A.5)

and we claim that this determinant vanishes. Choose indeed �̄� ∈ 𝐴 \ 𝐴′ and let 𝚥 ∈ 𝐽 ′ be such that 𝚥 ≡ �̄�
mod n (recall property (i) above); by Claim 2 we obtain

span(𝑀𝑖)𝑖∈𝐵∪𝐴′∪𝐶′∪(𝑛+𝐴′)∪(𝑛+𝐶′) ⊂ span(𝑀𝑖)𝑖∈𝐵∪𝐴′∪(𝑛+𝐴′) + span(𝑀𝑖)𝑖∈𝐶′∪(𝑛+𝐶′)

⊂ span(𝑀𝑖)𝑖∈𝐵∪𝐴′∪(𝑛+𝐴′) + span(𝑀𝑖)𝑖∈𝐼

⊂ span(𝑀𝑖)𝑖∈𝐼∪𝐽 ′\{ 𝚥 } .

In particular, span(𝑀𝑖)𝑖∈𝐵∪𝐴′∪𝐶′∪(𝑛+𝐴′)∪(𝑛+𝐶′) cannot be of maximal dimension 2𝑎. This implies that
the determinant in (A.5) is null, as claimed. The equality 〈𝜏 | �̃�〉 = 0 then immediately follows and,
since 〈𝜏 | 𝜆〉 = 〈𝜏 | 𝑑𝑧𝐵 ∧ 𝑑𝑥𝑦𝐴 + �̃�〉, equality (A.3) follows.
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Claim 5: 𝐵 = ∅.
By Remark 3.21, the covector 𝛼𝑅 can be written as a finite linear combination 𝛼𝑅 =

∑
ℓ 𝑐ℓ𝛼𝑆ℓ , 𝑐ℓ ∈ R,

of covectors 𝛼𝑆ℓ associated to standard Young tableaux 𝑆ℓ containing the elements of 𝐴∪𝐶. In particular,
if 𝐵 ≠ ∅, one would have

〈𝜏 | 𝜆〉 =
∑
ℓ

𝑐ℓ 〈𝜏 | 𝑑𝑧𝐵 ∧ 𝛼𝑆ℓ 〉 =
∑
ℓ

𝑐ℓ 〈𝑋1 ∧ · · · ∧ 𝑋𝑎 ∧ 𝑌1 ∧ · · · ∧ 𝑌𝑎 | 𝑑𝑧𝐵 ∧ 𝛼𝑆ℓ 〉 = 0,

the last equality due to Remark 3.27 (with 𝑏 := 0) and the fact that 𝑑𝑧𝐵 contains no factors of the form
𝑑𝑥𝑖 . This would contradict Claim 4; hence, 𝐵 = ∅ as claimed.

Claim 5 implies that |𝐴| = 𝑎 and

𝐼 ∪ 𝐽 ′ = 𝐴 ∪ (𝑛 + 𝐴) = 𝐼 ∪ 𝐽 and 𝐶 = {1, . . . , 𝑛} \ 𝐴.

Without loss of generality, we can assume that 𝐼 = 𝐴 and 𝐽 = 𝐽 ′ = 𝑛 + 𝐴.

Claim 6: 𝑀𝑘 = 0 for every 𝑘 ∉ 𝐴 ∪ (𝑛 + 𝐴).
Assume that, on the contrary, there exists 𝑘 ∉ 𝐴 ∪ (𝑛 + 𝐴) (i.e., 𝑘 ∈ 𝐾 = 𝐶 ∪ (𝑛 + 𝐶)) such that

𝑀𝑘 ≠ 0. By Claim 3, (𝑀𝑖)𝑖∈𝐴∪(𝑛+𝐴) form a basis of R2𝑎; hence,

span{𝑀𝑖 : 𝑖 ∈ 𝐴} ∩ span{𝑀𝑖 : 𝑖 ∈ 𝑛 + 𝐴} = {0},

which gives that

either 𝑀𝑘 ∉ span{𝑀𝑖 : 𝑖 ∈ 𝐴} or 𝑀𝑘 ∉ span{𝑀𝑖 : 𝑖 ∈ 𝑛 + 𝐴}.

This would contradict the choice of I, because ℐ := 𝐴 ∪ {𝑘} (in the first case) or ℐ := (𝑛 + 𝐴) ∪ {𝑘}
(in the second one) would satisfy both conditions in (A.1), but |ℐ | > |𝐼 |.

Claim 7: 〈𝜏 | 𝑑𝑥𝑦𝐷〉 = 0 for every 𝐷 ⊂ {1, . . . , 𝑛} such that |𝐷 | = |𝐴| and 𝐷 ≠ 𝐴.
This is an immediate consequence of the equality 〈𝜏 | 𝑑𝑥𝑦𝐷〉 = ± det[𝑀𝑖]𝑖∈𝐷∪(𝑛+𝐷) together with

Claim 6.

Claim 8: {𝑛 − 𝑎 + 1, 𝑛 − 𝑎 + 2, . . . , 𝑎} ⊂ 𝐴.
Here we are understanding that the claim is empty when 𝑛 = 2𝑎. Denoting by 𝑅 the Young tableau

defined in (A.2), one can easily check that the covector 𝛼𝑅 can be written as a sum of elements of
the form ±𝑑𝑥𝑦𝐷 where the subsets 𝐷 ⊂ {1, . . . , 𝑛} have cardinality |𝐷 | = |𝐴| = 𝑎 and all contain
{𝑛 − 𝑎 + 1, . . . , 𝑎}. If one had {𝑛 − 𝑎 + 1, . . . , 𝑎} ⊄ 𝐴, then one would get the contradiction

1 = 〈𝑋1 ∧ · · · ∧ 𝑋𝑎 ∧ 𝑌1 ∧ · · · ∧ 𝑌𝑎 | 𝛼𝑅〉 = 〈𝜏 | 𝛼𝑅〉 = 0,

the last equality following from Claim 7.

Claim 9: If 2𝑎 > 𝑛, then 𝐴 = {1, . . . , 𝑎}.
The condition 2𝑎 > 𝑛 implies that |𝐶 | = 𝑛 − |𝐴| = 𝑛 − 𝑎 < 𝑎 = |𝐴|. Let 𝑎1 < 𝑎2 < · · · < 𝑎 |𝐴 | be the

elements of A and 𝑐1 < · · · < 𝑐 |𝐶 | those of C and define

𝑅1 := 𝑎1 𝑎2 · · · 𝑎 |𝐶 | 𝑎 |𝐶 |+1 · · · 𝑎 |𝐴 |

𝑐1 𝑐2 · · · 𝑐 |𝐶 |

The Young tableau 𝑅1 is not necessarily a standard one, as it might happen that 𝑎𝑖 > 𝑐𝑖 for some i;
however, it can be easily seen that the tableau

𝑅2 := 𝑚1 𝑚2 · · · 𝑚 |𝐶 | 𝑎 |𝐶 |+1 · · · 𝑎 |𝐴 |

𝜇1 𝜇2 · · · 𝜇 |𝐶 |
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defined by setting 𝑚𝑖 := min{𝑎𝑖 , 𝑐𝑖}, 𝜇𝑖 := max{𝑎𝑖 , 𝑐𝑖} (or, equivalently, by switching the positions of
𝑎𝑖 , 𝑐𝑖 in case 𝑎𝑖 > 𝑐𝑖) is a standard one. Notice that, since the ith column of 𝑅1 and the ith column of
𝑅2 contain the same elements 𝑎𝑖 , 𝑐𝑖 , we have 𝛼𝑅2 = ±𝛼𝑅1 . Using Claim 7 we obtain

〈𝑋1 ∧ · · · ∧ 𝑋𝑎 ∧ 𝑌1 ∧ · · · ∧ 𝑌𝑎 | 𝛼𝑅2〉 =〈𝜏 | 𝛼𝑅2〉 = ±〈𝜏 | 𝛼𝑅1〉

= ± 〈𝜏 | 𝑑𝑥𝑦𝐴〉 = ± det[𝑀𝑖]𝑖∈𝐴∪(𝑛+𝐴) ≠ 0,
(A.6)

which, by Remark 3.27, implies that 𝑅2 = 𝑅. Therefore, the rightmost entry in the first row of 𝑅2 must
be a, but this coincides with the rightmost entry in the first row of 𝑅1; that is, with max 𝐴. Therefore,
𝐴 ⊂ {1, . . . , 𝑛} is such that |𝐴| = 𝑎 and max 𝐴 = 𝑎, and the claim 𝐴 = {1, . . . , 𝑎} follows.

Claim 10: If 2𝑎 = 𝑛, then either 𝐴 = {1, . . . , 𝑎} or 𝐴 = {𝑎 + 1, . . . , 2𝑎}.
The proof is similar to that of Claim 9. Notice that now |𝐶 | = |𝐴| = 𝑎; let 𝑎1 < 𝑎2 < · · · < 𝑎 |𝐴 | be

the elements of A and 𝑐1 < · · · < 𝑐 |𝐴 | those of C and define

𝑅1 := 𝑎1 𝑎2 · · · 𝑎 |𝐴 |

𝑐1 𝑐2 · · · 𝑐 |𝐴 |

as before. Again, let

𝑅2 := 𝑚1 𝑚2 · · · 𝑚 |𝐴 |

𝜇1 𝜇2 · · · 𝜇 |𝐴 |

be defined by 𝑚𝑖 := min{𝑎𝑖 , 𝑐𝑖}, 𝜇𝑖 := max{𝑎𝑖 , 𝑐𝑖}; 𝑅2 is a standard Young tableau, 𝛼𝑅2 = ±𝛼𝑅1 , and
as in (A.6), we can conclude that 𝑅2 = 𝑅. We now distinguish two cases:

◦ if 1 ∈ 𝐴, then 𝑎1 = 𝑚1 = 1 and, since 𝑅2 = 𝑅, we have 𝜇1 = 𝑐1 = 𝑎 + 1. In particular,
𝐶 ⊂ {1, . . . , 𝑛} = {1, . . . , 2𝑎} is such that |𝐶 | = 𝑎 and min 𝐶 = 𝑎 + 1. This implies
𝐶 = {𝑎 + 1, . . . , 𝑛} and in turn 𝐴 = {1, . . . , 𝑎};

◦ if 1 ∉ 𝐴, then 1 = 𝑚1 = 𝑐1 and 𝑎 + 1 = 𝜇1 = 𝑎1. In particular, 𝐴 ⊂ {1, . . . , 𝑛} = {1, . . . , 2𝑎} is such
that |𝐴| = 𝑎 and min 𝐴 = 𝑎 + 1, which implies 𝐴 = {𝑎 + 1, . . . , 𝑛}.

The conclusion of the proof now follows easily. If 2𝑎 > 𝑛, by Claims 6 and 9 we have that 𝑀𝑖 = 0
for every 𝑖 ∈ {𝑎 + 1, . . . , 𝑛, 𝑛 + 𝑎 + 1, . . . , 2𝑛}. This implies that 𝜏 = 𝑡𝑋1 ∧ · · · ∧ 𝑋𝑎 ∧ 𝑌1 ∧ · · · ∧ 𝑌𝑎 for
some 𝑡 ∈ R, and t is forced to be 1 because 〈𝑋1 ∧ · · · ∧ 𝑋𝑎 ∧ 𝑌1 ∧ · · · ∧ 𝑌𝑎 | 𝛼𝑅2〉 ≠ 0 and

〈𝑋1 ∧ · · · ∧ 𝑋𝑎 ∧ 𝑌1 ∧ · · · ∧ 𝑌𝑎 | 𝛼𝑅〉 = 〈𝜏 | 𝛼𝑅〉 = 𝑡〈𝑋1 ∧ · · · ∧ 𝑋𝑎 ∧ 𝑌1 ∧ · · · ∧ 𝑌𝑎 | 𝛼𝑅〉.

This concludes the proof in case 𝑛 > 2𝑎. The case 𝑛 = 2𝑎 follows analogously on considering Claims 6
and 10. �

We now use Lemma A.1 to prove the following, more general, result, of which Lemma A.1 represents
the case 𝑏 = 0.

Lemma A.3. Let 𝑎 ≥ 0 and 𝑏 ≥ 1 be integers such that 𝑛 ≤ 2𝑎 + 𝑏 ≤ 2𝑛 − 1; assume that 𝜏 ∈ ∧2𝑎+𝑏𝔥1
is a simple (2𝑎 + 𝑏)-vector such that

[𝜏 ∧ 𝑇]J = [𝑋1 ∧ · · · ∧ 𝑋𝑎+𝑏 ∧ 𝑌1 ∧ · · · ∧ 𝑌𝑎 ∧ 𝑇]J. (A.7)

Then, the following statements hold:

(i) if 2𝑎 + 𝑏 > 𝑛, then 𝜏 = 𝑋1 ∧ · · · ∧ 𝑋𝑎+𝑏 ∧ 𝑌1 ∧ · · · ∧ 𝑌𝑎;
(ii) if 2𝑎 + 𝑏 = 𝑛, then either

𝜏 = 𝑋1 ∧ · · · ∧ 𝑋𝑎+𝑏 ∧ 𝑌1 ∧ · · · ∧ 𝑌𝑎
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or

𝜏 = (−1)𝑎 (𝑏+1) 𝑋𝑎+1 ∧ · · · ∧ 𝑋𝑛 ∧ 𝑌𝑎+𝑏+1 ∧ · · · ∧ 𝑌𝑛.

Remark A.4. As a matter of fact, if 2𝑎 + 𝑏 = 𝑛, the equality

[𝑋1 ∧ · · · ∧ 𝑋𝑎+𝑏 ∧ 𝑌1 ∧ · · · ∧ 𝑌𝑎 ∧ 𝑇]J = [(−1)𝑎 (𝑏+1) 𝑋𝑎+1 ∧ · · · ∧ 𝑋𝑛 ∧ 𝑌𝑎+𝑏+1 ∧ · · · ∧ 𝑌𝑛 ∧ 𝑇]J

holds. This can be proved by using Remark 3.27 and checking the action of 𝑋𝑎+1 ∧ · · · ∧ 𝑋𝑛 ∧𝑌𝑎+𝑏+1 ∧
· · · ∧ 𝑌𝑛 ∧ 𝑇 in duality with elements of the basis of J2𝑎+𝑏+1 = J𝑛+1 provided by Proposition 1.10.

For instance, in H3 one has the equality [𝑋1 ∧ 𝑋2 ∧ 𝑌1 ∧ 𝑇]J = [𝑋2 ∧ 𝑋3 ∧ 𝑌3 ∧ 𝑇]J.

Proof of Lemma A.3. Let us write 𝜏 = 𝜏1 ∧ · · · ∧ 𝜏2𝑎+𝑏 for suitable horizontal vectors 𝜏𝑖 ∈ 𝔥1; writing

𝜏𝑖 = 𝜏𝑖1𝑋1 + · · · + 𝜏𝑖2𝑛𝑌𝑛, 𝑖 = 1, . . . , 2𝑎 + 𝑏

we introduce the matrix

𝑀 := col
[

𝜏1 | · · · | 𝜏2𝑎+𝑏
]
=

⎡⎢⎢⎢⎢⎢⎣
𝜏1

1 . . . 𝜏2𝑎+𝑏
1

...
...

𝜏1
2𝑛 . . . 𝜏2𝑎+𝑏

2𝑛

⎤⎥⎥⎥⎥⎥⎦ = row

⎡⎢⎢⎢⎢⎢⎣
𝑀1
...

𝑀2𝑛

⎤⎥⎥⎥⎥⎥⎦ ,
where for every 𝑖 = 1, . . . , 2𝑛 we denoted by 𝑀𝑖 = (𝜏1

𝑖 , . . . , 𝜏2𝑎+𝑏
𝑖 ) ∈ R2𝑎+𝑏 the ith row of M. Again, for

every 𝐼 ⊂ {1, . . . , 2𝑛} with |𝐼 | = 2𝑎 + 𝑏 the equality

〈𝜏 | 𝑑𝑧𝐼 〉 = det[𝑀𝑖]𝑖∈𝐼

holds, where we used notation (3.12).

Claim 1: 𝑀𝑎+1, . . . , 𝑀𝑎+𝑏 are linearly independent.
Assume not: then, for every 𝐼 ⊂ {1, . . . , 2𝑛} with |𝐼 | = 2𝑎 we would get

〈𝜏 | 𝑑𝑥 {𝑎+1,...,𝑎+𝑏} ∧ 𝑑𝑧𝐼 〉 = 0.

In particular,

〈𝜏 | 𝑑𝑥 {𝑎+1,...,𝑎+𝑏} ∧ 𝛼𝑅〉 = 0 for 𝑅 := 1 2 · · · 𝑛 − 𝑎 − 𝑏 · · · a
𝑎 + 𝑏 + 1 𝑎 + 𝑏 + 2 · · · n

which would provide a contradiction since

〈𝜏 | 𝑑𝑥 {𝑎+1,...,𝑎+𝑏} ∧ 𝛼𝑅〉 = 〈𝑋1 ∧ · · · ∧ 𝑋𝑎+𝑏 ∧ 𝑌1 ∧ · · · ∧ 𝑌𝑎 | 𝑑𝑥𝑎+1,...,𝑎+𝑏 ∧ 𝛼𝑅〉 = ±1

by assumption.

Claim 2: Up to a proper choice of 𝜏1, . . . , 𝜏2𝑎+𝑏 , the 𝑏 × (2𝑎 + 𝑏) subblock 𝑀 of M determined by
the rows 𝑀𝑎+1, . . . , 𝑀𝑎+𝑏 satisfies

𝑀 =

⎡⎢⎢⎢⎢⎢⎣
𝑀𝑎+1

...
𝑀𝑎+𝑏

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣ 0𝑏×2𝑎 𝐼𝑏

⎤⎥⎥⎥⎥⎦
where 0𝑏×2𝑎 denotes a 𝑏 × 2𝑎 block with null entries and 𝐼𝑏 is the 𝑏 × 𝑏 identity matrix.

By Claim 1, the matrix 𝑀 has rank b; up to a permutation of 𝜏1, . . . , 𝜏2𝑎+𝑏 , we can assume that the
rightmost 𝑏 × 𝑏 minor of 𝑀 has nonzero determinant. Namely, calling 𝑀 𝑗 = (𝜏

𝑗
𝑎+1, . . . , 𝜏

𝑗
𝑎+𝑏)

𝑇 the jth
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column of �̃� (the superscript 𝑇 denoting transposition), the rightmost minor 𝑀 := [𝑀2𝑎+1 | . . . |𝑀2𝑎+𝑏]
of 𝑀 satisfies det 𝑀 ≠ 0. For 𝑖 = 2𝑎 + 1, . . . , 2𝑎 + 𝑏 we define

𝜎𝑖 :=
𝑏∑
𝑗=1

(𝑀
−1

)
𝑗
𝑖 𝜏2𝑎+ 𝑗

and we notice that span{𝜏1, . . . , 𝜏2𝑎+𝑏} = span{𝜏1, . . . , 𝜏2𝑎, 𝜎2𝑎+1, . . . , 𝜎2𝑎+𝑏}, because of the equality
span{𝜏2𝑎+1, . . . , 𝜏2𝑎+𝑏} = span{𝜎2𝑎+1, . . . , 𝜎2𝑎+𝑏}. Notice that

𝜎2𝑎+𝑖
𝑎+ 𝑗 = 𝛿𝑖𝑗 for all 𝑖, 𝑗 ∈ {1, . . . , 𝑏}; (A.8)

in particular, when in the matrix M the rightmost b columns 𝜏2𝑎+1, . . . , 𝜏2𝑎+𝑏 are replaced by
𝜎2𝑎+1, . . . , 𝜎2𝑎+𝑏 , the block 𝑀 is replaced by a block of the form⎡⎢⎢⎢⎢⎣ ∗𝑏×2𝑎 𝐼𝑏

⎤⎥⎥⎥⎥⎦
where ∗𝑏×2𝑎 denotes a 𝑏 × 2𝑎 matrix. Define

𝜎𝑖 := 𝜏𝑖 −
𝑏∑
𝑗=1

𝜏𝑖𝑎+ 𝑗𝜎
2𝑎+ 𝑗 , 𝑖 = 1, . . . , 2𝑎

so that

𝜎𝑖
𝑗 = 0 for all 𝑖 = 1, . . . , 2𝑎, 𝑗 = 𝑎 + 1, . . . , 𝑎 + 𝑏. (A.9)

It is easily seen that span{𝜏1, . . . , 𝜏2𝑎+𝑏} = span{𝜎1, . . . , 𝜎2𝑎+𝑏}; in particular, 𝜎 := 𝜎1 ∧ · · · ∧ 𝜎2𝑎+𝑏

is a nonzero multiple of 𝜏. Upon multiplying 𝜎1 by a nonzero factor, we can assume that 𝜎 = 𝜏. In this
way, if one replaces 𝜏1, . . . , 𝜏2𝑎+𝑏 by 𝜎1, . . . , 𝜎2𝑎+𝑏 , then the new matrix M is such that the block 𝑀
has the form ⎡⎢⎢⎢⎢⎣ 0𝑏×2𝑎 𝐼𝑏

⎤⎥⎥⎥⎥⎦
as wished.

In the following, we will keep on using the notation 𝜏1, . . . , 𝜏2𝑎+𝑏 for the new family 𝜎1, . . . , 𝜎2𝑎+𝑏 .

Claim 3a: If 𝑛 > 2𝑎 + 𝑏, then up to a proper choice of 𝜏1, . . . , 𝜏2𝑎+𝑏 , we can assume that the matrix
M is of the form

𝑀 = (−1)𝑎𝑏

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐼𝑎 0 𝐴1
0 0 𝐼𝑏
0 0 𝐷1
0 𝐼𝑎 𝐴2
𝐵1 𝐵2 𝐶
0 0 𝐷2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.10)

where

(i) the 2𝑎 + 𝑏 columns of M have been arranged into three blocks of size, respectively, a, a and b;
(ii) the 2𝑛 rows of M have been arranged into six blocks of size, respectively, a, b, 𝑛 − 𝑎 − 𝑏, a, b and

𝑛 − 𝑎 − 𝑏;
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(iii) 0 denotes null matrices of the proper size;
(iv) 𝐼𝑎, 𝐼𝑏 denote identity matrices of size 𝑎, 𝑏;
(v) 𝐴1, 𝐴2, 𝐵, 𝐶1, 𝐶2, 𝐷1, 𝐷2 denote generic matrices of the proper size.

Claim 3b: If 𝑛 = 2𝑎 + 𝑏, then up to a proper choice of 𝜏1, . . . , 𝜏2𝑎+𝑏 , we can assume that

either 𝑀 = (−1)𝑎𝑏

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐼𝑎 0 𝐴1
0 0 𝐼𝑏
0 0 𝐷1
0 𝐼𝑎 𝐴2
𝐵1 𝐵2 𝐶
0 0 𝐷2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
or 𝑀 = (−1)𝑎 (𝑏+1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 𝐷1
0 0 𝐼𝑏
𝐼𝑎 0 𝐴1
0 0 𝐷2
𝐵1 𝐵2 𝐶
0 𝐼𝑎 𝐴2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.11)

where the notation is similar to Claim 3a, (i)–(v).
We prove Claims 3a and 3b simultaneously; notice that there is nothing to prove in case 𝑎 = 0. Using

the block subdivision of M as in (A.10) and (A.11), we already know by Claim 2 that the second block
of rows is of the form [0|0|𝐼𝑏]. Let us prove that we can choose 𝜏1, . . . , 𝜏2𝑎+𝑏 so that null and identity
blocks 0 and 𝐼𝑎 appear where claimed in (A.10) and (A.11).

We consider now a (𝑛−𝑏)th Heisenberg group and we agree that all objects associated with it will be
overlined; in particular, we denote by 𝑋1, . . . , 𝑋𝑛−𝑏 , 𝑌1, . . . , 𝑌𝑛−𝑏 , 𝑇 the standard basis of left-invariant
vector fields in H𝑛−𝑏 . Define

𝜏𝑖 :=
𝑎∑
𝑗=1

(𝜏𝑖𝑗𝑋 𝑗 + 𝜏𝑖𝑛+ 𝑗𝑌 𝑗 ) +
𝑛−𝑏∑
𝑗=𝑎+1

(𝜏𝑖𝑏+ 𝑗𝑋 𝑗 + 𝜏𝑖𝑛+𝑏+ 𝑗𝑌 𝑗 ), 𝑖 = 1, . . . , 2𝑎.

Consider 𝜏 := 𝜏1 ∧ · · · ∧ 𝜏2𝑎; we prove that

〈𝜏 ∧ 𝑇 | 𝜆〉 = (−1)𝑎𝑏 〈𝑋1 ∧ · · · ∧ 𝑋𝑎 ∧ 𝑌1 ∧ · · · ∧ 𝑌 𝑎 ∧ 𝑇 | 𝜆〉 for all 𝜆 ∈ J2𝑎+1
, (A.12)

where the symbol J2𝑎+1
stands for Rumin’s space of (2𝑎 + 1)-covectors in H𝑛−𝑏 . Lemma A.1 then

implies 𝜏 = 𝑋1 ∧ · · · ∧ 𝑋𝑎 ∧𝑌1 ∧ · · · ∧𝑌 𝑎 (unless 2𝑎 + 𝑏 = 𝑛, in which case we also have the possibility
𝜏 = (−1)𝑎𝑋𝑎+1 ∧ · · · ∧ 𝑋𝑛−𝑏 ∧ 𝑌 𝑎+1 ∧ · · · ∧ 𝑌𝑛−𝑏) and this implies Claims 3a–3b up to some tedious
arguments.

Consider 𝐼 ⊂ {1, . . . , 2(𝑛−𝑏)} such that |𝐼 | = 2𝑎; calling 𝑀 the (2𝑛−2𝑏)×2𝑎 matrix whose columns
are 𝜏1, . . . , 𝜏2𝑎 and using for forms in H𝑛−𝑏 the notation 𝑑𝑧𝐼 analogous to that in (3.12), we have

〈𝜏 | 𝑑𝑧𝐼 〉 = det[𝑀 𝑖]𝑖∈𝐼 ,

where, of course, 𝑀 𝑖 is the ith row of 𝑀 . Since 𝑀 is obtained from M by cancelling the third block of
columns and the second and fifth blocks of rows (according to the arrangement in (A.10) and (A.11))
and since the second block of rows of M is [0|0|𝐼𝑏], it is clear that

〈𝜏 | 𝑑𝑧𝐼 〉 = det[𝑀 𝑖]𝑖∈𝐼 = (−1)𝑎𝑏 det[𝑀𝑖] 𝜄 (𝐼 )∪{𝑎+1,...,𝑎+𝑏}

=(−1)𝑎𝑏 〈𝜏 | 𝑑𝑧 𝜄 (𝐼 )∪{𝑎+1,...,𝑎+𝑏}〉,

where 𝜄 : {1, . . . , 2(𝑛 − 𝑏)} → {1, . . . , 2𝑛} is defined by

𝜄(𝑖) :=
⎧⎪⎪⎨⎪⎪⎩

𝑖 if 1 ≤ 𝑖 ≤ 𝑎
𝑖 + 𝑏 if 𝑎 + 1 ≤ 𝑖 ≤ 𝑛 − 𝑏 + 𝑎
𝑖 + 2𝑏 if 𝑛 − 𝑏 + 𝑎 + 1 ≤ 𝑖 ≤ 2𝑛 − 2𝑏.
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This implies that, for every disjoint subsets 𝐼, 𝐽 ⊂ {1, . . . , 𝑛 − 𝑏} and every standard Young tableau 𝑅,
with rows of the proper lengths 1

2 (2𝑎 − |𝐼 | − |𝐽 |) and 𝑛 − 𝑏 − 1
2 (2𝑎 + |𝐼 | + |𝐽 |) and whose entries are

precisely the numbers in {1, . . . , 𝑛 − 𝑏} \ (𝐼 ∪ 𝐽), we have

〈𝜏 | 𝑑𝑥𝐼 ∧ 𝑑𝑦𝐽 ∧ 𝛼𝑅〉 = (−1)𝑎𝑏 〈𝜏 | 𝑑𝑥 𝜄 (𝐼 )∪{𝑎+1,...,𝑎+𝑏} ∧ 𝑑𝑦𝐽 ∧ 𝛼 𝜄 (𝑅) 〉, (A.13)

where 𝜄(𝑅) denotes the tableau of the same form of R, obtained on replacing each entry, say i, of 𝑅 with
𝜄(𝑖). Observe that 𝜄(𝑅) is also a standard Young tableau because 𝜄 is increasing. Taking Remark 3.27
and assumption (A.7) into account, equality (A.13) now implies (A.12).

From now on we assume that, if 𝑛 = 2𝑎 + 𝑏, we are in the first case between the two displayed in
(A.11); indeed, the following arguments can be easily11 generalised to the other possible case.

Claim 4: Up to a proper choice of 𝜏1, . . . , 𝜏2𝑎+𝑏 , we can assume that the blocks 𝐴1, 𝐴2 in (A.10)–
(A.11) are 0.

It is enough to replace 𝜏𝑖 , for 𝑖 = 2𝑎 + 1, . . . , 2𝑎 + 𝑏, with

𝜏𝑖 −
𝑎∑
𝑗=1

(𝜏𝑖𝑗𝜏
𝑗 + 𝜏𝑖𝑛+ 𝑗𝜏

𝑎+ 𝑗 ).

We are using in a key way the two blocks of the form 𝐼𝑎 appearing in (A.10)–(A.11).
From now on the vectors 𝜏 are fixed; we are going to prove that the remaining blocks 𝐵, 𝐶1, 𝐶2, 𝐷1, 𝐷2

in (A.10)–(A.11) are 0.

Claim 5: The blocks 𝐵1 and 𝐵2 in (A.10)–(A.11) are 0.
We need to prove that

𝜏𝑖𝑛+𝑎+ 𝑗 = 0 for all 𝑖 = 1, . . . , 2𝑎, 𝑗 = 1, . . . , 𝑏.

Fix then such i and j. Let 𝑅 be the standard Young tableau

𝑅 := 1 2 · · · 𝑛 − 𝑎 − 𝑏 · · · a
𝑎 + 𝑏 + 1 𝑎 + 𝑏 + 2 · · · n if 𝑛 < 2𝑎 + 𝑏

𝑅 := 1 2 · · · a
𝑎 + 𝑏 + 1 𝑎 + 𝑏 + 2 · · · n if 𝑛 = 2𝑎 + 𝑏.

(A.14)

We define a new tableau Q in the following way:

◦ if 1 ≤ 𝑖 ≤ 𝑎, Q is the tableau obtained from 𝑅 on replacing, in the first row, the entry i with 𝑎 + 𝑗 ;
◦ if 𝑎 + 1 ≤ 𝑖 ≤ 2𝑎, Q is the tableau obtained from 𝑅 on replacing, in the first row, the entry 𝑖 − 𝑎 with

𝑎 + 𝑗 .

Consider

𝜆 := 𝑑𝑥 {𝑎+1,...,𝑎+𝑏}\{𝑎+ 𝑗 } ∧ 𝑑𝑦𝑖 ∧ 𝛼𝑄 if 1 ≤ 𝑖 ≤ 𝑎

𝜆 := 𝑑𝑥 {𝑖−𝑎}∪{𝑎+1,...,𝑎+𝑏}\{𝑎+ 𝑗 } ∧ 𝛼𝑄 if 𝑎 + 1 ≤ 𝑖 ≤ 2𝑎.

The tableau Q is not a standard Young one; nonetheless, 𝜆 ∧ 𝜃 ∈ J2𝑎+𝑏+1 and, using Remark 3.21 and
the assumption (A.7), we have

〈𝜏 | 𝜆〉 = 0. (A.15)

11One elegant way is to apply the H-linear isomorphism associated with the Lie algebra isomorphism L∗ (𝑋𝑖) =
𝑋𝑎+𝑏+𝑖 , L∗ (𝑌𝑖) = 𝑌𝑎+𝑏+𝑖 if 1 ≤ 𝑖 ≤ 𝑎, L∗ (𝑋𝑖) = 𝑋𝑖 , L∗ (𝑌𝑖) = 𝑌𝑖 if 𝑎 +1 ≤ 𝑖 ≤ 𝑎 +𝑏, L∗ (𝑋𝑖) = 𝑋𝑖−𝑎−𝑏 , L∗ (𝑌𝑖) = 𝑌𝑖−𝑎−𝑏
if 𝑎 + 𝑏 + 1 ≤ 𝑖 ≤ 𝑛 = 2𝑎 + 𝑏.
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Assume that 1 ≤ 𝑖 ≤ 𝑎; we can write

𝜆 = 𝑑𝑥 {𝑎+1,...,𝑎+𝑏}\{𝑎+ 𝑗 } ∧ 𝑑𝑦𝑖 ∧
∑
𝑆

𝜎(𝑆) 𝑑𝑥𝑦𝑆 (A.16)

where 𝜎(𝑆) ∈ {1, −1} is a suitable sign and the sum varies among the 2𝑛−𝑎−𝑏 subsets 𝑆 ⊂ {1, . . . , 𝑎, 𝑎 +
𝑗 , 𝑎 + 𝑏 + 1, . . . , 𝑛} \ {𝑖} (i.e., S is a subset of the entries of Q) of cardinality a and containing exactly
one element from each column of Q. For any such S we have

〈𝜏 | 𝑑𝑥 {𝑎+1,...,𝑎+𝑏}\{𝑎+ 𝑗 } ∧ 𝑑𝑦𝑖 ∧ 𝑑𝑥𝑦𝑆〉 = det[𝑀ℓ ]ℓ∈( {𝑎+1,...,𝑎+𝑏}\{𝑎+ 𝑗 })∪{𝑛+𝑖 }∪𝑆∪(𝑛+𝑆)

= ± det[𝑁ℓ]ℓ∈𝑆∪(𝑛+𝑆)∪{𝑛+𝑖 },
(A.17)

where

◦ the sign ± depends only on 𝑆, 𝑖, 𝑗 ,
◦ 𝑁ℓ := (𝜏1

ℓ , . . . , 𝜏2𝑎
ℓ , 𝜏

2𝑎+ 𝑗
ℓ ) is obtained from the ℓth row 𝑀ℓ of M on cancelling the last b

components except for the (2𝑎 + 𝑗)th one,
◦ we used that the second block of rows in (A.10)-(A.11) is [0|0|𝐼𝑏].

Using Claim 4, one finds

if 𝑆 = {1, . . . , 𝑎, 𝑎 + 𝑗} \ {𝑖}, then 〈𝜏 | 𝑑𝑥 {𝑎+1,...,𝑎+𝑏}\{𝑎+ 𝑗 } ∧ 𝑑𝑦𝑖 ∧ 𝑑𝑥𝑦𝑆〉 = ±𝜏𝑖𝑛+𝑎+ 𝑗 . (A.18)

Notice that the case 𝑆 = {1, . . . , 𝑎, 𝑎 + 𝑗} \ {𝑖} correspods to S containing the elements in the first row
of Q. Instead, if 𝑆 ≠ {1, . . . , 𝑎, 𝑎 + 𝑗} \ {𝑖}, then there exists an element ℓ̄ ∈ 𝑆 belonging to the second
row of Q; that is, ℓ̄ ∈ 𝑆 ∩ {𝑎 + 𝑏 + 1, . . . , 𝑛}. In this case, 𝑁ℓ̄ and 𝑁𝑛+ℓ̄ are linearly dependent, because
by Claim 3 all of their entries are null except (possibly) for the last one; in particular,

if 𝑆 ≠ {1, . . . , 𝑎, 𝑎 + 𝑗} \ {𝑖}, then 〈𝜏 | 𝑑𝑥 {𝑎+1,...,𝑎+𝑏}\{𝑎+𝑖 } ∧ 𝑑𝑦𝑎+𝑖 ∧ 𝑑𝑥𝑦𝑆〉 = 0. (A.19)

By (A.15), (A.16), (A.18) and (A.19) we obtain

0 = 〈𝜏 | 𝜆〉 = ±𝜏𝑖𝑛+𝑎+ 𝑗 (A.20)

and the claim is proved in case 1 ≤ 𝑖 ≤ 𝑎. If 𝑎 + 1 ≤ 𝑖 ≤ 2𝑎, (A.20) can be proved by a completely
analogous argument that we omit. The claim is proved.

Claim 6: The block C in (A.10)–(A.11) is 0.
The block C is a square one, with size 𝑏 × 𝑏; we start by proving that the elements on the diagonal

of C are all null; that is, that

𝜏2𝑎+𝑖
𝑛+𝑎+𝑖 = 0 for any 𝑖 = 1, . . . , 𝑏. (A.21)

Let then 𝑖 ∈ {1, . . . , 𝑏} be fixed; consider

𝜆 := 𝑑𝑥 {𝑎+1,...,𝑎+𝑏}\{𝑎+𝑖 } ∧ 𝑑𝑦𝑎+𝑖 ∧ 𝛼𝑅,

where 𝑅 is as in (A.14). We can write

𝜆 = 𝑑𝑥 {𝑎+1,...,𝑎+𝑏}\{𝑎+𝑖 } ∧ 𝑑𝑦𝑎+𝑖 ∧
∑
𝑆

𝜎(𝑆) 𝑑𝑥𝑦𝑆 (A.22)
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where 𝜎(𝑆) ∈ {1, −1} is a suitable sign and the sum varies among the 2𝑛−𝑎−𝑏 subsets 𝑆 ⊂ {1, . . . , 𝑎, 𝑎 +
𝑏 + 1, . . . , 𝑛} of cardinality a and containing exactly one element from each column of 𝑅. For any such
S we have

〈𝜏 | 𝑑𝑥 {𝑎+1,...,𝑎+𝑏}\{𝑎+𝑖 } ∧ 𝑑𝑦𝑎+𝑖 ∧ 𝑑𝑥𝑦𝑆〉 = det[𝑀 𝑗 ] 𝑗∈( {𝑎+1,...,𝑎+𝑏}\{𝑎+𝑖 })∪{𝑛+𝑎+𝑖 }∪𝑆∪(𝑛+𝑆)

= ± det[𝑁 𝑗 ] 𝑗∈𝑆∪(𝑛+𝑆)∪{𝑛+𝑎+𝑖 },
(A.23)

where

◦ the sign ± depends only on S and i,
◦ 𝑁 𝑗 := (𝜏1

𝑗 , . . . , 𝜏2𝑎
𝑗 , 𝜏2𝑎+𝑖

𝑗 ) is obtained from the jth row 𝑀 𝑗 of M on cancelling the last b components
except for the (2𝑎 + 𝑖)th one,

◦ we used that the second block of rows in (A.10)–(A.11) is [0|0|𝐼𝑏].

Using Claims 4 and 5, one finds

if 𝑆 = {1, . . . , 𝑎}, then 〈𝜏 | 𝑑𝑥 {𝑎+1,...,𝑎+𝑏}\{𝑎+𝑖 } ∧ 𝑑𝑦𝑎+𝑖 ∧ 𝑑𝑥𝑦𝑆〉 = ±𝜏2𝑎+𝑖
𝑛+𝑎+𝑖 . (A.24)

On the contrary, if 𝑆 ≠ {1, . . . , 𝑎}, then there exists an element ℓ̄ ∈ 𝑆 belonging to the second row of 𝑅;
that is, ℓ̄ ∈ 𝑆 ∩ {𝑎 + 𝑏 + 1, . . . , 𝑛}. In this case, 𝑁ℓ̄ and 𝑁𝑛+ℓ̄ are linearly dependent, because by Claim 3
all of their entries are null except (possibly) for the last one; in particular, (A.23) gives

if 𝑆 ≠ {1, . . . , 𝑎}, then 〈𝜏 | 𝑑𝑥 {𝑎+1,...,𝑎+𝑏}\{𝑎+𝑖 } ∧ 𝑑𝑦𝑎+𝑖 ∧ 𝑑𝑥𝑦𝑆〉 = 0. (A.25)

By (A.22), (A.24) and (A.25) we obtain

0 = 〈𝑋1 ∧ · · · ∧ 𝑋𝑎+𝑏 ∧ 𝑌1 ∧ · · · ∧ 𝑌𝑎 | 𝜆〉 = 〈𝜏 | 𝜆〉 = ±𝜏2𝑎+𝑖
𝑛+𝑎+𝑖 ,

and (A.21) is proved.
We now prove that the off-diagonal entries of C are null as well. We then fix 𝑖, 𝑗 ∈ {1, . . . , 𝑏} with

𝑗 < 𝑖 and prove that

𝜏2𝑎+𝑖
𝑛+𝑎+ 𝑗 = 𝜏

2𝑎+ 𝑗
𝑛+𝑎+𝑖 = 0. (A.26)

Let us consider

𝜆1 := 𝑑𝑥 {𝑎+1,...,𝑎+𝑏}\{𝑎+ 𝑗 ,𝑎+𝑖 } ∧ 𝑑𝑦 {𝑛+𝑎+ 𝑗 ,𝑛+𝑎+𝑖 } ∧ 𝛼𝑅
𝜆2 := 𝑑𝑥 {𝑎+1,...,𝑎+𝑏}\{𝑎+ 𝑗 ,𝑎+𝑖 } ∧ 𝛼𝑄

where 𝑅 is as in (A.14) and Q is the tableau obtained by adding a column (𝑎 + 𝑗 , 𝑎 + 𝑖) on the left of 𝑅;
that is,

𝑄 := 𝑎 + 𝑗 1 · · · 𝑛 − 𝑎 − 𝑏 𝑛 − 𝑎 − 𝑏 + 1 · · · a
𝑎 + 𝑖 𝑎 + 𝑏 + 1 · · · n if 𝑛 < 2𝑎 + 𝑏

𝑄 := 𝑎 + 𝑗 1 · · · a
𝑎 + 𝑖 𝑎 + 𝑏 + 1 · · · n if 𝑛 = 2𝑎 + 𝑏.

Notice that Q is not a standard Young tableau; however, 𝜆1 ∧ 𝜃 and 𝜆2 ∧ 𝜃 belong to J2𝑎+𝑏+1 and, using
Remark 3.21 and the assumption (A.7), one obtains

〈𝜏 | 𝜆1〉 = 〈𝑋1 ∧ · · · ∧ 𝑋𝑎+𝑏 ∧ 𝑌1 ∧ · · · ∧ 𝑌𝑎 | 𝜆1〉 = 0
〈𝜏 | 𝜆2〉 = 〈𝑋1 ∧ · · · ∧ 𝑋𝑎+𝑏 ∧ 𝑌1 ∧ · · · ∧ 𝑌𝑎 | 𝜆2〉 = 0.

(A.27)
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The argument that follows is pretty much similar to the previous one as well as to that of Claim 5. We
write

𝜆1 = 𝑑𝑥 {𝑎+1,...,𝑎+𝑏}\{𝑎+ 𝑗 ,𝑎+𝑖 } ∧ 𝑑𝑦 {𝑛+𝑎+ 𝑗 ,𝑛+𝑎+𝑖 } ∧
∑
𝑆

𝜎(𝑆) 𝑑𝑥𝑦𝑆

𝜆2 = 𝑑𝑥 {𝑎+1,...,𝑎+𝑏}\{𝑎+ 𝑗 ,𝑎+𝑖 } ∧
∑
𝑇

𝜎(𝑇) 𝑑𝑥𝑦𝑇
(A.28)

where 𝜎(𝑆), 𝜎(𝑇) ∈ {1, −1} are suitable signs and the sums vary among the subsets 𝑆, 𝑇 of the sets of
entries of 𝑅, 𝑄 (respectively) with cardinality (respectively) 𝑎, 𝑎 + 1 and containing exactly one element
from each column of (respectively) 𝑅, 𝑄. For any such 𝑆, 𝑇 we have

〈𝜏 | 𝑑𝑥 {𝑎+1,...,𝑎+𝑏}\{𝑎+ 𝑗 ,𝑎+𝑖 } ∧ 𝑑𝑦 {𝑛+𝑎+ 𝑗 ,𝑛+𝑎+𝑖 } ∧ 𝑑𝑥𝑦𝑆〉

= det[𝑀ℓ ]ℓ∈( {𝑎+1,...,𝑎+𝑏}\{𝑎+ 𝑗 ,𝑎+𝑖 })∪{𝑛+𝑎+ 𝑗 ,𝑛+𝑎+𝑖 }∪𝑆∪(𝑛+𝑆)

= ± det[𝑂ℓ]ℓ∈𝑆∪(𝑛+𝑆)∪{𝑛+𝑎+ 𝑗 ,𝑛+𝑎+𝑖 },

(A.29)

and

〈𝜏 | 𝑑𝑥 {𝑎+1,...,𝑎+𝑏}\{𝑎+ 𝑗 ,𝑎+𝑖 } ∧ 𝑑𝑥𝑦𝑇 〉 = det[𝑀ℓ ]ℓ∈( {𝑎+1,...,𝑎+𝑏}\{𝑎+ 𝑗 ,𝑎+𝑖 })∪𝑇∪(𝑛+𝑇 )

= ± det[𝑂ℓ]ℓ∈𝑇∪(𝑛+𝑇 ) ,
(A.30)

where

◦ the signs ± depend only on 𝑆, 𝑇, 𝑖 and j,
◦ 𝑂ℓ := (𝜏1

ℓ , . . . , 𝜏2𝑎
ℓ , 𝜏

2𝑎+ 𝑗
ℓ , 𝜏2𝑎+𝑖

ℓ ) is obtained from the ℓth row 𝑀ℓ of M on cancelling the last b
components except for the (2𝑎 + 𝑗)th and (2𝑎 + 𝑖)th ones,

◦ we used that the second block of rows in (A.10)–(A.11) is [0|0|𝐼𝑏].

Using Claims 4 and 5 and the fact that the diagonal of C is null, one finds that

(i) if 𝑆 = {1, . . . , 𝑎}, then

〈𝜏 | 𝑑𝑥 {𝑎+1,...,𝑎+𝑏}\{𝑎+ 𝑗 ,𝑎+𝑖 } ∧ 𝑑𝑦𝑛+𝑎+ 𝑗 ,𝑛+𝑎+𝑖 ∧ 𝑑𝑥𝑦𝑆〉

= ± det

(
𝜏

2𝑎+ 𝑗
𝑛+𝑎+ 𝑗 𝜏2𝑎+𝑖

𝑛+𝑎+ 𝑗

𝜏
2𝑎+ 𝑗
𝑛+𝑎+𝑖 𝜏2𝑎+𝑖

𝑛+𝑎+𝑖

)
= ± det

(
0 𝜏2𝑎+𝑖

𝑛+𝑎+ 𝑗

𝜏
2𝑎+ 𝑗
𝑛+𝑎+𝑖 0

)
= ±𝜏

2𝑎+ 𝑗
𝑛+𝑎+𝑖𝜏

2𝑎+𝑖
𝑛+𝑎+ 𝑗 ;

(ii) if 𝑇 = {1, . . . , 𝑎, 𝑎 + 𝑗}, then

〈𝜏 | 𝑑𝑥 {𝑎+1,...,𝑎+𝑏}\{𝑎+ 𝑗 ,𝑎+𝑖 } ∧ 𝑑𝑥𝑦𝑇 〉

= ± det

(
𝜏

2𝑎+ 𝑗
𝑎+ 𝑗 𝜏2𝑎+𝑖

𝑎+ 𝑗

𝜏
2𝑎+ 𝑗
𝑛+𝑎+ 𝑗 𝜏2𝑎+𝑖

𝑛+𝑎+ 𝑗

)
= ± det
(

1 0
0 𝜏2𝑎+𝑖

𝑛+𝑎+ 𝑗

)
= ±𝜏2𝑎+𝑖

𝑛+𝑎+ 𝑗 ;

(iii) if 𝑇 = {1, . . . , 𝑎, 𝑎 + 𝑖}, then

〈𝜏 | 𝑑𝑥 {𝑎+1,...,𝑎+𝑏}\{𝑎+ 𝑗 ,𝑎+𝑖 } ∧ 𝑑𝑥𝑦𝑇 〉

= ± det

(
𝜏

2𝑎+ 𝑗
𝑎+𝑖 𝜏2𝑎+𝑖

𝑎+𝑖

𝜏
2𝑎+ 𝑗
𝑛+𝑎+𝑖 𝜏2𝑎+𝑖

𝑛+𝑎+𝑖

)
= ± det
(

0 1
𝜏

2𝑎+ 𝑗
𝑛+𝑎+𝑖 0

)
= ±𝜏

2𝑎+ 𝑗
𝑛+𝑎+𝑖 ,

where the ± signs will be irrelevant. If 𝑆 ≠ {1, . . . , 𝑎}, then there exists an element ℓ̄ ∈ 𝑆 ∩ {𝑎 + 𝑏 +
1, . . . , 𝑛}; it follows that 𝑂 ℓ̄ , 𝑂𝑛+ℓ̄ , 𝑂𝑛+𝑎+ 𝑗 , 𝑂𝑛+𝑎+𝑖 are linearly dependent, because by Claims 3 and 5
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all of their entries are null except (possibly) for the last two ones. In particular, (A.29) gives

if 𝑆 ≠ {1, . . . , 𝑎},

then 〈𝜏 | 𝑑𝑥 {𝑎+1,...,𝑎+𝑏}\{𝑎+ 𝑗 ,𝑎+𝑖 } ∧ 𝑑𝑦𝑛+𝑎+ 𝑗 ,𝑛+𝑎+𝑖 ∧ 𝑑𝑥𝑦𝑆〉 = 0.
(A.31)

If 𝑇 ≠ {1, . . . , 𝑎, 𝑎 + 𝑗} and 𝑇 ≠ {1, . . . , 𝑎, 𝑎 + 𝑖}, then there exists an element ℓ̄ ∈ 𝑇 ∩{𝑎 + 𝑏 +1, . . . , 𝑛};
notice also that either 𝑎 + 𝑗 ∈ 𝑇 or 𝑎 + 𝑖 ∈ 𝑇 . If 𝑎 + 𝑗 ∈ 𝑇 , then 𝑂 ℓ̄ , 𝑂𝑛+ℓ̄ , 𝑂𝑎+ 𝑗 , 𝑂𝑛+𝑎+ 𝑗 are linearly
dependent, again because by Claims 3 and 5 all of their entries are null except (possibly) for the last
two. Similarly, when 𝑎 + 𝑖 ∈ 𝑇 one has that 𝑂 ℓ̄ , 𝑂𝑛+ℓ̄ , 𝑂𝑎+𝑖 , 𝑂𝑛+𝑎+𝑖 are linearly dependent. We deduce
by (A.30) that

if 𝑇 ≠ {1, . . . , 𝑎, 𝑎 + 𝑗} and 𝑇 ≠ {1, . . . , 𝑎, 𝑎 + 𝑖},

then 〈𝜏 | 𝑑𝑥 {𝑎+1,...,𝑎+𝑏}\{𝑎+ 𝑗 ,𝑎+𝑖 } ∧ 𝑑𝑥𝑦𝑇 〉 = 0.
(A.32)

By (A.27), (A.28), (A.31) and (i)–(ii)–(iii) above we finally achieve

𝜏
2𝑎+ 𝑗
𝑛+𝑎+𝑖𝜏

2𝑎+𝑖
𝑛+𝑎+ 𝑗 = 0 and ± 𝜏

2𝑎+ 𝑗
𝑛+𝑎+𝑖 ± 𝜏2𝑎+𝑖

𝑛+𝑎+ 𝑗 = 0,

and (A.26) is proved.

Claim 7: The blocks 𝐷1 and 𝐷2 in (A.10)–(A.11) are 0.
The claim amounts to showing that

𝜏2𝑎+𝑖
𝑗 = 0 = 𝜏2𝑎+𝑖

𝑛+ 𝑗 for any 1 ≤ 𝑖 ≤ 𝑏 and 𝑎 + 𝑏 + 1 ≤ 𝑗 ≤ 𝑛. (A.33)

Fix 𝑖, 𝑗 as in (A.33) and consider the Young tableau Q obtained from 𝑅 on replacing, in the second row,
the entry j with 𝑎 + 𝑖. Set

𝜆 := 𝑑𝑥 { 𝑗 }∪{𝑎+1,...,𝑎+𝑏}\{𝑎+𝑖 } ∧ 𝛼𝑄

and write

𝜆 = 𝑑𝑥 { 𝑗 }∪{𝑎+1,...,𝑎+𝑏}\{𝑎+𝑖 } ∧
∑
𝑆

𝜎(𝑆) 𝑑𝑥𝑦𝑆 (A.34)

where 𝜎(𝑆) ∈ {1, −1} is a suitable sign and the sum varies among the 2𝑛−𝑎−𝑏 subsets 𝑆 ⊂ {𝑎 + 𝑖} ∪
{1, . . . , 𝑎, 𝑎 + 𝑏 + 1, . . . , 𝑛} \ { 𝑗} (i.e., S is a subset of the set of entries of Q) with cardinality a and
containing exactly one element from each column of Q. For any such S we have

〈𝜏 | 𝑑𝑥 { 𝑗 }∪{𝑎+1,...,𝑎+𝑏}\{𝑎+𝑖 } ∧ 𝑑𝑥𝑦𝑆〉 = det[𝑀ℓ ]ℓ∈( { 𝑗 }∪{𝑎+1,...,𝑎+𝑏}\{𝑎+𝑖 })∪𝑆∪(𝑛+𝑆)

= ± det[𝑁ℓ]ℓ∈{ 𝑗 }∪𝑆∪(𝑛+𝑆) ,
(A.35)

where

◦ the sign ± depends only on 𝑆, 𝑗 and i,
◦ 𝑁ℓ := (𝜏1

ℓ , . . . , 𝜏2𝑎
ℓ , 𝜏2𝑎+𝑖

ℓ ) is obtained from the ℓth row 𝑀ℓ of M on canceling the last b components
except for the (2𝑎 + 𝑖)th one,

◦ we used that the second block of rows in (A.10)–(A.11) is [0|0|𝐼𝑏].

Using the previous claims, we obtain

if 𝑆 = {1, . . . , 𝑎}, then 〈𝜏 | 𝑑𝑥 { 𝑗 }∪{𝑎+1,...,𝑎+𝑏}\{𝑎+𝑖 } ∧ 𝑑𝑥𝑦𝑆〉 = ±𝜏2𝑎+𝑖
𝑗 . (A.36)

If 𝑆 ≠ {1, . . . , 𝑎}, then there exists an element ℓ̄ ∈ 𝑆 belonging to the second row of Q; that is,
ℓ̄ ∈ 𝑆 ∩ ({𝑎 + 𝑖} ∪ {𝑎 + 𝑏 + 1, . . . , 𝑛} \ { 𝑗}). In this case, 𝑁ℓ̄ and 𝑁𝑛+ℓ̄ are linearly dependent, because by
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Claims 3, 4 and 5 all of their entries are null except (possibly) for the last one; in particular, (A.35) gives

if 𝑆 ≠ {1, . . . , 𝑎}, then 〈𝜏 | 𝑑𝑥 {𝑎+1,...,𝑎+𝑏}\{𝑎+𝑖 } ∧ 𝑑𝑦𝑎+𝑖 ∧ 𝑑𝑥𝑦𝑆〉 = 0. (A.37)

By (A.34), (A.36), (A.37) and Remark 3.21 we obtain

0 = 〈𝑋1 ∧ · · · ∧ 𝑋𝑎+𝑏 ∧ 𝑌1 ∧ · · · ∧ 𝑌𝑎 | 𝜆〉 = 〈𝜏 | 𝜆〉 = ±𝜏2𝑎+𝑖
𝑗

and the first equality in (A.33) is proved.
We are left to show that also ±𝜏2𝑎+𝑖

𝑛+ 𝑗 = 0 for any 𝑖, 𝑗 as in (A.33); this can be done by considering (for
the same Q above)

𝜆 = 𝑑𝑥 {𝑎+1,...,𝑎+𝑏}\{𝑎+𝑖 } ∧ 𝑑𝑦 𝑗 ∧ 𝛼𝑄

and following a similar argument, which we omit. The proof of Claim 7 is then complete.
The proof of Lemma A.3 now follows from the equality 𝜏 = 𝜏1 ∧ · · · ∧ 𝜏2𝑎+𝑏; the fact that the blocks

𝐴1, 𝐴2, 𝐵1, 𝐵2, 𝐶, 𝐷1, 𝐷2 in (A.10)–(A.11) are all null; and the equality

𝑋1 ∧ · · · ∧ 𝑋𝑎+𝑏 ∧ 𝑌1 ∧ · · · ∧ 𝑌𝑎

=(−1)𝑎𝑏𝑋1 ∧ · · · ∧ 𝑋𝑎 ∧ 𝑌1 ∧ · · · ∧ 𝑌𝑎 ∧ 𝑋𝑎+1 ∧ · · · ∧ 𝑋𝑎+𝑏 . �

Proof of Proposition 3.38. Assume that there exists a (2𝑛+1− 𝑘)-dimensional vertical plane 𝒫1 whose
unit tangent vector 𝑡H

𝒫1
is such that [𝑡H

𝒫1
]J is a multiple of 𝜁 . By Proposition 3.13 there exist nonnegative

integers a and b and an H-linear isomorphim L : H𝑛 → H𝑛 such that 𝑎 + 𝑏 ≤ 𝑛, dim𝒫1 = 2𝑎 + 𝑏 + 1,
L∗(𝜃) = 𝜃, L∗(𝑑𝜃) = 𝑑𝜃 and

L(𝒫1) = 𝒫𝑎,𝑏 ,

where 𝒫𝑎,𝑏 is defined as in (3.11). Let us denote by L∗ : J2𝑛+1−𝑘 → J2𝑛+1−𝑘 the isomorphism defined
in (5.9). Clearly, L∗([𝑡

H

𝒫1
]J) = [L∗(𝑡

H

𝒫1
)]J is a multiple of

[𝑡H𝒫𝑎,𝑏
]J = [𝑋1 ∧ · · · ∧ 𝑋𝑎+𝑏 ∧ 𝑌1 ∧ · · · ∧ 𝑌𝑎 ∧ 𝑇]J;

hence, L∗𝜁 is a multiple of [𝑋1 ∧ · · · ∧ 𝑋𝑎+𝑏 ∧ 𝑌1 ∧ · · · ∧ 𝑌𝑎 ∧ 𝑇]J.
Assume that 𝒫2 is another vertical (2𝑛 + 1 − 𝑘)-plane in H𝑛 such that [𝑡H

𝒫2
]J is a multiple of 𝜁 . The

vertical plane 𝒫3 := L(𝒫2) is such that 𝑡H
𝒫3

is a multiple of L∗(𝑡
H

𝒫2
); hence, [𝑡H

𝒫3
]J is a multiple of

L∗([𝑡
H

𝒫2
]J); that is, of L∗𝜁 and eventually of [𝑋1 ∧ · · · ∧ 𝑋𝑎+𝑏 ∧ 𝑌1 ∧ · · · ∧ 𝑌𝑎 ∧ 𝑇]J. If 𝑘 < 𝑛, Lemma

A.3 implies that 𝒫3 = 𝒫𝑎,𝑏; hence, 𝒫2 = 𝒫1. This proves part (i) of the statement.
If instead 𝑘 = 𝑛, Lemma A.3 implies that either 𝒫3 = 𝒫𝑎,𝑏 or

𝒫3 = exp(span{𝑋𝑎+1, . . . , 𝑋𝑛, 𝑌𝑎+𝑏+1, . . . , 𝑌𝑛, 𝑇}).

Observe that, if 𝑎 = 0, then 𝒫3 = 𝒫𝑎,𝑏 . On the contrary, if 𝑎 ≥ 1, then either 𝒫3 = 𝒫𝑎,𝑏 or 𝒫3 and
𝒫𝑎,𝑏 are not rank 1 connected, because

dim𝒫3 ∩ 𝒫𝑎,𝑏 = 𝑏 + 1 ≤ (2𝑎 + 𝑏 + 1) − 2 = dim𝒫3 − 2.

All in all, we deduce that either 𝒫2 = 𝒫1, or

𝒫2 = L−1(exp(span{𝑋𝑎+1, . . . , 𝑋𝑛, 𝑌𝑎+𝑏+1, . . . , 𝑌𝑛, 𝑇}))

and 𝒫1, 𝒫2 are not rank 1 connected. This concludes the proof. �
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