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For the time optimal problem of an invariant system on SU(2), with two independent
controls and a bound on the norm of the control, the extremals of the Pontryagin
maximum principle are explicit functions of time. We use this fact here to perform the
optimal synthesis for these systems, i.e., to find all time optimal trajectories. Although
the Lie group SU(2) is three dimensional, time optimal trajectories can be described
in the unit disk of the complex plane. We find that a circular trajectory separates
optimal trajectories that reach the boundary of the unit disk from the others. Inside this
separatrix circle, another trajectory (the critical trajectory) plays an important role in
that all optimal trajectories end at an intersection with this curve. The results allow us
to find the minimum time needed to achieve a given evolution of a two level quantum
system. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4906137]

I. INTRODUCTION

The control of quantum mechanical systems has offered further motivation to the study of con-
trol systems on Lie groups, and, in particular, on SU(n) and its Lie subgroups, as the evolution of
a closed quantum system can be often modeled as a right invariant system varying on one of such
Lie groups (see, e.g., Refs. 1 and 7, and references therein). Among these models, systems on SU(2)
arguably represent the simplest non-trivial case, still a very rich one from a mathematical point of
view. These two-level quantum systems are of fundamental interest in quantum physics and in quan-
tum information, since they are the basic building block in the circuit based implementation of quan-
tum information processing.21 A natural requirement in these implementations is to perform quantum
operations (evolutions) in minimum time, both to shorten the overall time of computation and to avoid
the detrimental effects of the interaction with the environment (de-coherence). For these reasons, these
systems have been studied in many aspects and their (time) optimal control has been the subject of
many papers (see, e.g., Refs. 4, 5, and 13–15, and references therein, see also 9, 10, 17, and 23 for the
general optimal control problem for quantum mechanical systems and systems on Lie groups). Here,
we add to this literature providing an explicit description of all time optimal trajectories for a system
with two orthogonal controls ux and uy (cf. model (1) below) which are bounded as u2

x + u2
y ≤ γ2 at

every time, with |γ| ≤ 1. In particular, the model we consider is given by

Ẋ = σ̃zX + uxσ̃xX + uyσ̃yX, X(0) = 1, (1)

where X ∈ SU(2) and σ̃x, y,z are proportional to the Pauli matrices, σx, y,z, and form a basis of the
Lie algebra su(2). They are defined as

σ̃x B
i
2
σx =

1
2
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The Lie algebra su(2) is equipped with an inner product between matrices, ⟨·, ·⟩, defined as ⟨A,B⟩ B
Tr(AB†), so that the associated norm is ∥A∥ B ⟨A, A⟩. With these definitions, the norm of each of
the matrices σ̃x, y,z is 1√

2
.

We want to find, for every final condition X f ∈ SU(2), the controls ux,uy, that steer the state
of system (1) from the identity, 1, to X f in minimum time, with the requirement that u2

x + u2
y ≤ γ2,

γ2 ≤ 1.
From a geometric point of view, model (1) represents a system on SU(2) where one vector field

is constant and an orthogonal vector field is allowed to vary with time but has a bounded norm.
This model is of fundamental interest in quantum physics as it represents the control of a two level
quantum systems, such as in NMR11,19 or quantum dots applications.8 In this respect, we remark
that since quantum mechanical states are defined up to a phase factor driving to +X f and driving
to −X f is equivalent from a physical point of view. However, since we will describe a method to
obtain the minimum time control for any final condition, for a given desired transformation ±X f ,
we can compare the minimum time for X f and the minimum time for −X f and choose the smallest
one of the two and the corresponding optimal control. The minimum time above described is also
of interest in the general theory of Lie groups given the role of su(2) as the basic building block
in Lie algebra theory. For example, one could devise suboptimal strategies for SU(n) after a Cartan
decomposition16 of the target element in factors which are in SU(2).

Remark 1.1. The more general time optimal control problem for the system

U̇ = ±ω0σ̃zU + vxσ̃xU + vyσ̃yU, U(0) = 1, (3)

with ω0 > 0, and v2
x + v

2
y ≤ ω2

0γ
2 can be reduced to the problem for system (1). Define X(τ) B

U( τ
ω0
), and new controls ux, y(τ) B 1

ω0
vx, y

(
τ
ω0

)
, then X(τ) solves

Ẋ = ±σ̃zX + uxσ̃xX + uyσ̃yX, U(0) = 1. (4)

Thus, once the minimum time problem for (4) is solved with controls ux and uy and minimum time
T , and u2

x + u2
y ≤ γ2, the original optimal control for (3) is solved with vx, y(τ) = ω0ux, y(ω0τ), in

time T
ω0

to drive to the same final condition. The optimal control problem for system (4) is the same
as the one we have stated in the case +. In the case − it can be reduced to it. Assume we have
solved the minimum time problem for system (1) for the final condition X−1

f and with controls ux

and uy over an interval [0,T]. Then, it is easily verified that the control −ux(T − τ), −uy(T − τ) over
the same interval [0,T] solves the problem of driving the state X of system (4) with the − from the
identity to X f , in minimum time.

The paper is organized as follows. In Sec. II, we will describe methods to parametrize elements
in SU(2), and prove a simple property of the control system (1) which will allow us to consider only
two parameters for the elements of SU(2) rather than three when studying time optimal trajectories.
In view of these facts, we will be able to perform the whole geometric analysis in the unit disk of
the complex plane. In this section, we also recall how to apply the Pontryagin maximum principle
of optimal control in this case and the form of the candidate time optimal controls and trajectories.
In Sec. III, we solve the time optimal control problem for diagonal operators. As a limit of these
trajectories, we identify a particular optimal trajectory which is a circle and plays a fundamental role
for the whole analysis. All optimal trajectories leading to diagonal operators are outside this circle
while all others are inside. Therefore, we call this curve the separatrix.24 For the special case γ = 1,
the separatrix curve coincides with the trajectory corresponding to the SWAP operator. The optimal
trajectories for points inside the separatrix are described in Sec. IV. Here, we give the general picture as
a conjecture which is supported by theoretical results and simulations. In order to complete the proof
though, we use the additional assumption γ ≥ 1√

3
, which allows us a better control of the geometry

of the trajectories and to obtain useful bounds. In Sec. V, we provide a discussion of the results and
show how these lead to a simple method to find the optimal control once the final condition is chosen.
In particular, we discuss the application to the optimal control of two level quantum systems. In this
section, we also compare our results with other work on the control of systems on SU(2) and two level
quantum systems and in particular the recent papers (Refs. 13 and 14).
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II. PARAMETRIZATION OF SU (2) AND GENERAL PROPERTIES OF THE MODEL

A. Parametrization of the final conditions in the optimal control problem

It is well known that the Lie group SU(2) is diffeomorphic to the sphere S3 ⊆ RI 4 and it is Lie-
homeomorphic to the Lie group of unit quaternions, SH , x+y i⃗+c j⃗+dk⃗, with x2+y2+c2+d2 = 1, the
homeomorphism � being given by


x + y i⃗ + c j⃗ + dk⃗ ∈ SH


�


*
,

x + yi −(c + id)
(c − id) x − iy

+
-
∈ SU(2)


. (5)

By writing−(c + id) = eiφM and x + iy = eiψ
√

1 − M2, with 0 ≤ M ≤ 1,ψ,φ ∈ [0,2π), we can write
any matrix X f ∈ SU(2) using the three parameters ψ,φ, and M , as

X f B *
,

eiψ
√

1 − M2 eiφM

−e−iφM e−iψ
√

1 − M2
+
-
. (6)

We shall sometimes normalize the parameter ψ and use instead the parameter xψ, defined as xψ
B ψ−π

π
, with xψ ∈ [−1,1). The parameter φ of the final condition X f in (6) does not affect the time

optimal control problem, in the sense that matrices that differ only by the parameter φ can be reached
in the same minimum time. This is a consequence of the following proposition.25

Proposition 2.1. The minimum time to reach X f ∈ SU(2) is the same as the minimum time to
reach eσ̃zαX f e−σ̃zα, for any α ∈ RI .

Proof. Let ux and uy be optimal controls steering the state X of (1) from the identity to X f , in
time Topt and let Xo B Xo(τ) be the corresponding trajectory. Define, for j = x, y , the constants β jk

such that

eσ̃zασ je−σ̃zα =

k=x, y

β j,kσ̃k . (7)

Define new controls vx, vy, for k = x, y , as vk B


j=x, y β j,ku j. Moreover, notice that v2
x + v

2
y = u2

x

+ u2
y so that, if ux, uy is an admissible control so is vx, vy. With the control vx, vy, the trajectory solution

of (1) is U(τ) = eσ̃zαXo(τ)e−σ̃zα. In fact, differentiating U(τ) and using (1) for Xo and (7), we obtain

U̇ B eσ̃zα Ẋ e−σ̃zα = σ̃zU + (

j=x, y

u j(

k=x, y

β j,kσ̃k))U =

σ̃zU + (

k=x, y

(

j=x, y

β j,ku j)σ̃k)U = σ̃zU + (

k=x, y

vkσ̃k)U.

This shows that the optimal time to reach eσ̃zαX f e−σ̃zα is not greater than the one to reach X f . By
exchanging the roles of X f and eσ̃zαX f e−σ̃zα, the opposite is seen to be true. Therefore, the minimum
time is the same in the two cases as stated. �

Remark 2.2. The proof can be generalized with only formal modifications to more general sys-
tems on (Lie subgroups of) SU(n) of the form Ẋ = AX +

m
j=1 u jBjX . We can replace eσ̃zα with any

matrix K in (a Lie subgroup of) SU(n), which commutes with A and it is such that span{K B1K†, . . . ,
K BmK†} = span{B1, . . . ,Bm}.

In view of Proposition 2.1, the only element that is relevant to determine the minimum time to
reach X f in (6) is the element X1,1 in the matrix X f . This will be parametrized by phase ψ (or xψ) and
magnitude M or, more often, by its real and imaginary parts, i.e., as a point x + iy in the unit disk of
the complex plane. To every (optimal) trajectory in SU(2), there corresponds a curve starting from
(1,0) in the unit disk. Points in the unit disk correspond to classes of matrices in SU(2) which can be
reached in the same minimum time, and differ only by the phase of the element X1,2.
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B. The Pontryagin maximum principle and the expression of optimal candidates

Consider the problem of driving the state X of (1) from the identity, 1, to a final condition X f ,
with bound u2

x + u2
y ≤ γ2, in minimum time. The Pontryagin maximum principle states that, if ux, uy

is optimal, and Xo is the optimal trajectory, then there exists a nonzero matrix M̃ ∈ su(2), such that,
for almost every time τ, ux(τ), uy(τ), are the values of vx and vy, that maximize the Hamiltonian
function

H(M̃ ,Xo, vx, vy) B ⟨M̃ ,Xo
†σ̃zXo⟩ + vx⟨M̃ ,Xo

†σ̃xXo⟩ + vy⟨M̃ ,Xo
†σ̃yXo⟩. (8)

Furthermore, H(M̃ ,Xo(τ),ux(τ), uy(τ)) is constant for almost every τ.26 Define, bx, y,z B ⟨M̃ ,
Xo
†σ̃x, y,zXo⟩. The maximization condition implies that

ux, y = γ
bx, y
b2
x + b2

y

(9)

unless bx and by are both zero, in which case the corresponding arc is called singular. Differentiating
bx, y,z with respect to time, using (1), and the standard commutation relations for the matrices σ̃x, y,z

in (2),27 we arrive at the following system of differential equations for bx, by, and bz:

ḃx = bzuy − by, (10)

ḃy = bx − bzux, (11)

ḃz = byux − bxuy. (12)

On a nonsingular arc, given the expression of the controls ux and uy in (9), we have that bz is constant.

This together with the fact that the Hamiltonian (8), which takes the form H = bz + γ


b2
x + b2

y, is
also constant, implies that the controls ux and uy (for nonsingular extremals) can be written as (cf.,
the solutions of (10) and (11))

ux = γ sin(ωτ + φ̃), uy = −γ cos(ωτ + φ̃), (13)

for some frequency ω ∈ RI and phase φ̃ ∈ RI .28 For singular arcs where bx ≡ by ≡ 0, from (12) bz

= const , 0 which29 therefore gives from (10), (11), ux ≡ 0, uy ≡ 0. Therefore, singular arcs starting
from a point X1 have the form eσ̃zτX1, for τ ∈ [0, τ1] for some τ1 > 0. In general, the optimal trajectory
may be an alternation of singular and nonsingular arcs. We shall see, however, in Theorem 1 and its
proof that singular arcs are never optimal.30

Focusing on nonsingular arcs, using the controls (13) in (1), the resulting differential equation
can be explicitly integrated (see, e.g., Ref. 6, p. 446). Direct verification shows that the solution is
given by

X(τ,ω, φ̃) B *.
,

eiωt(cos(at) + i b
a

sin(at)) ei(ωt+φ̃) γ
a

sin(at)
−e−i(ωt+φ̃) γ

a
sin(at) e−iωt(cos(at) − i b

a
sin(at))

+/
-
, (14)

for t;= τ
2 , b B 1 − ω, a B


γ2 + b2. For given ω and φ̃, the time T is the minimum time to reach X f

if X f B X(T,ω, φ̃) and there is no smaller T1 and pair ω1 and φ̃1 such that X f B X(T1,ω1, φ̃1).
In the expression (14), the phase of the element (1,2) does not affect the (minimum) time to reach

a given target, in the sense that we can always “tune” φ̃ to give an arbitrary phase to the (1,2) element
of the final condition.31

In the following, when we shall refer to “time” we shall refer to t : τ
2 . Curves that satisfy the

Pontryagin maximum principle are called extremal curves.

C. Properties of extremal curves

Any optimal candidate is represented by a parametric curve in the complex plane, and in particular
inside the unit disk, which starts from the point (1,0) and represents the X1,1 element of the trajectory
of (1). If they do not contain singular arcs, these curves can be parametrized by the frequency ω of
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the optimal control candidates while the phase does not play any role, as it only affects the phase of
the X1,2 element and can be arbitrarily tuned. From (14), the nonsingular trajectories are explicitly
given by

x(t) B xω(t) = cos(ωt) cos(at) − b
a

sin(ωt) sin(at), (15)

y(t) B yω(t) = sin(ωt) cos(at) + b
a

cos(ωt) sin(at), (16)

with b B 1 − ω,a =


b2 + γ2.
We also have (cf. (14)) for the distance, r , of the point from the origin,

1 − M2(t) B r2(t) B x2
ω(t) + y2

ω(t) = 1 − γ
2

a2 sin2(at). (17)

The phase ψ(t) is given (cf. (14)) for 0 ≤ t < π
2a by

ψ(t) = ωt + arctan
(

b
a

tan(at)
)
, (18)

and for π
2a < t ≤ π

a
,

ψ(t) = ωt + π + arctan
(

b
a

tan(at)
)
. (19)

There will be some values of the frequency ω which play an important role in the analysis that
follows. We define them at the outset. In particular, we defineω∗ B 1+γ2

2 ,ωc B 2ω∗ = 1 + γ2. Corre-

spondingly, we define b∗ B 1 − ω∗, bc B 1 − ωc, a∗B

γ2 + (b∗)2= 1+γ2

2 =ω
∗, and acB


γ2 + (bc)2

= γ

γ2 + 1.

We record few properties of the extremal trajectories.
Fact 1: From Eq. (17), we have

dr2

dt
=
−2γ2 sin(2at)

a
,

which implies that r(t) is decreasing for t ∈ (0, π2a ), and it is increasing for t ∈ ( π2a , πa ). At the time

t = π
a

, the trajectory reaches the boundary of the unit disk. Moreover, since d(r2)
dt

|t=0 = 0, d2(r2)
dt2 |t=0 =

−2γ2, d3(r2)
dt3 |t=0 = 0, and d4(r2)

dt4 |t=0 = 8a2γ2, we have that given ω1 and ω2 and letting a1,2 and r1,2(t)
the corresponding value for the constant a and r(t), if a1 > a2, for t in a neighborhood of 0, we have
r1(t) > r2(t).

Fact 2: Calculating dψ
dt

from (18), (19), after some algebra, we obtain

dψ
dt
=

−γ2 sin2(at)ω + a2

a2 cos2(at) + b2 sin2(at) . (20)

Equation (20) implies that forω ≤ 1 the phase is always increasing. Moreover, whenω > 0, we have

−γ2 sin2(at)ω + a2 = ω2 − (2 + γ2 sin2(at))ω + (γ2 + 1) ≥ ω2 − (2 − γ2)ω + (γ2 + 1).
Since the last polynomial is positive when ω > ωc B 1 + γ2, we derive that the phase is always
increasing for ω ≤ 1 and for ω ≥ ωc.

Fact 3: The fully singular curve corresponds to the boundary of the unit disk. Therefore, every
point in the interior of the unit disk must be reached by an optimal trajectory which contains a non-
singular arc. We shall in fact see in Theorem 1 that even for the points on the boundary the optimal
trajectories are nonsingular, and this implies that all the optimal trajectories do not contain singular
arcs.

Fact 4: (Principle of optimality) If a trajectory reaching a point P is optimal, then that trajectory
is optimal for every point on that curve before P.

Fact 5: When two nonsingular trajectories intersect at a point P, they cannot be both optimal
after the point P. In fact, if they reach P at different times, then, obviously, the one that reaches P at
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a greater time is not optimal. If they reach P at the same time, then we could possibly switch from
one value ofω to the other in the control and still have an optimal trajectory. This contradicts the fact
that all the nonsingular extremals have the form (13). If a curve is optimal for every point before a
point P and not optimal after P we say that a curve looses optimality at P.

Fact 6: Because of the existence of the optimal control under our assumptions (see, e.g., Ref. 12),
and the fact we will see in Theorem 1 that only fully nonsingular extremal is optimal, every point in
the unit disk is reached by at least one fully nonsingular curve and among those that reach the point
at least one is optimal.

III. OPTIMAL CONTROL PROBLEM FOR DIAGONAL FINAL CONDITIONS
AND THE SEPARATRIX CURVE

A. Diagonal operators

Assume the final condition X f B
(
e
iψ f 0
0 e

−iψ f

)
, that is, we want to drive in minimum time to a

point on the boundary of the unit disk. According to formula (17), extremal nonsingular trajectories
reach the boundary of the unit disk at times T = kπ

a
. If T is the final time in (14), we have the two

equations

T =
kπ
a
, k ≥ 0, (21)

ωT + aT = ψ f + 2mπ, m ∈ ZI , (22)

which give the condition on the norm of the off diagonal term and on the phase of the diagonal term,
respectively.32 Plugging (21) into (22), we have

kπ(1 + ω
a
) = ψ f + 2mπ. (23)

A study of the function f (ω) B ω
a

for ω ∈ (−∞,∞) reveals that this function is bounded below by
−1, so that, when ψ f ∈ (0, 2π), (23) can only be verified for m ≥ 0. In general, we say that a pair k, m
is feasible if there exists a T ≥ 0, such that (21) and (23) are verified. We denote this (necessarily
unique) T by Tk,m. Notice that not all pairs k > 0,m ≥ 0 are feasible (the function ω

a
is bounded). We

shall show that no matter what ψ f ∈ (0,2π) is, the minimum of these times is T1,0 which is feasible.33

The proof can be achieved in two steps given by the following two lemmas. The result for the diagonal
case is summarized in Theorem 1. Proofs of Lemmas 3.1 and 3.2 are given in Appendix A.

Lemma 3.1. For every k > 0 and m > 0,

Tk,m ≥ Tk,0. (24)

Lemma 3.2. For every k > 0,

Tk,0 ≥ T1,0. (25)

Theorem 1. Assume γ ≤ 1. Then the minimum time to reach a diagonal operator X f B(
e
iψ f 0
0 e

−iψ f

)
, ψ f ∈ (0,2π), is

Tmin = T1,0(ψ f ) B ψ f (2π − ψ f )
π − ψ f +


π2 + γ2ψ f (2π − ψ f )

, (26)

which is obtained with the controls (13), with φ̃ arbitrary and ω given by34

ω =
xψ f

1 − x2
ψ f

(−xψ f
+


1 + γ2(1 − x2

ψ f
)). (27)
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Proof. The theorem summarizes the previous two Lemmas. The expression of the optimal fre-
quency ω is obtained from (23), (A8), with k = 1 and m = 0.

To make sure that this time is optimal, we need to compare it with the one obtained with the
singular trajectory which is Tsing(ψ f ) = ψ f . In fact, we have Tmin < Tsing. This follows from

Tmin

ψ f
=

2π − ψ f

π − ψ f +


π2 + γ2ψ f (2π − ψ f )

< 1 =
Tsing

ψ f
. (28)

�

A consequence of this theorem, which we already mentioned before, is that no optimal trajectory
may contain a singular arc. The same state transfer corresponding to the singular arc can be obtained
in smaller time.

B. The separatrix curve

Reconsider formula (27). There is a one to one correspondence between values of xψ f
∈ (−1,1)

(alternatively values of ψ f ∈ (0,2π)) and values of ω ∈ (−∞,ω∗). In fact, the right hand side of (27)
is a strictly increasing function of xψ f

with

lim
xψ f
→−1

ω = lim
ψ f→0

ω = −∞

and

lim
xψ f
→1
ω = lim

ψ f→2π
ω =

1 + γ2

2
= ω∗.

Consider now the trajectory corresponding exactly toω = ω∗ = 1+γ2

2 . In this case, sinceω∗ = a∗,
the parametric equations (15) and (16) become

xω(t) = 2
1 + γ2 cos(ω∗t) − 1 − γ2

1 + γ2 , (29)

yω(t) = 2
1 + γ2 cos(ω∗t) sin(ω∗t). (30)

These equations represent a circle with center in

P =
(
γ2

1 + γ2 ,0
)
, (31)

and radius 1
1+γ2

. We shall call this circle the “separatrix.” The following lemma justifies this name.

Lemma 3.3. All the optimal trajectories corresponding to diagonal operators (described in
Subsection III A) for t ≤ π

a
, intersect the separatrix curve only in the point (1,0).

The proof is in Appendix A.
Figures 1 and 2 give some plots of the trajectories outside the separatrix, leading to diagonal

operators for the cases γ = 1
2 and γ = 1, respectively. The separatrix is the red circle in both cases.

The cases ω = −3, ω = 0, and ω = 1
2 are displayed explicitly for γ = 1

2 and the same values of ω’s
and ω = 8

9 are displayed for γ = 1. As ω → ω∗, the trajectories tend to the separatrix.
The following proposition states two important properties of the optimal trajectories outside the

separatrix.

Proposition 3.4.

1. The trajectories corresponding to ω ∈ (−∞,ω∗) loose optimality after reaching the boundary of
the unit disk.
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FIG. 1. Optimal trajectories (in blue) to reach the boundary of the unit disk for various values ofω and γ = 1
2 . The outermost

trajectory is the one corresponding to ω = −3, the next one (reaching the point (−1,0)) corresponds to ω = 0. The innermost
trajectory is the one corresponding to ω = 1

2 . The separatrix is the red circle centered at the point ( 1
5 , 0).

2. Every point outside the separatrix is reached by an optimal trajectory (before reaching the bound-
ary) corresponding to a single value of ω, with ω ∈ (−∞,ω∗).

Proof. To prove 1., recall from Fact 2 of Subsection II C that the phase ψ is always increasing,
since ω∗ ≤ 1. This means that any of the trajectories corresponding to ω ∈ (−∞,ω∗) after hitting the
boundary will necessarily intersect another trajectory corresponding to a larger value of (final) ψ f

which is optimal. Therefore, such a trajectory looses optimality at the boundary.

FIG. 2. Optimal trajectories (in blue) to reach the boundary of the unit disk for various values ofω and γ = 1. The outermost
trajectory is the one corresponding to ω = −3, the next one (reaching the point (−1,0)) corresponds to ω = 0. The next on is
the one corresponding toω = 1

2 . The innermost trajectory is the one corresponding toω = 8
9 . The separatrix is the red circle

centered at the point ( 1
2 , 0).
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To prove 2., consider a point P outside the separatrix and assume by contradiction that none of the
curves reaching the boundary and corresponding toω ∈ (−∞,ω∗) contains such a point. In particular,
denote by Cψ f

any such curve corresponding to the phaseψ f ∈ (0,2π). By the existence of the optimal
control for P, there must exist an optimal trajectory ending in P, which we denote by CP, defined in
[0, tP], with tP < π

a
(cf. (17)). Any of the trajectories Cψ f

and CP never intersect (except for the point
(1,0)). Express the trajectory Cψ f

and CP as polar equations r = r(ψ) with ψ the (variable) phase. In
particular, we write r = r f (ψ) for Cψ f

and r = rP(ψ) for CP. With this notation, we say that Cψ f
is

above CP if r f (ψ) is greater than rP(ψ) for one (and therefore all since they cannot intersect) ψ , 0
which are in the common domain of the function r f and rP. Analogously, we say that Cψ f

is below
CP if r f (ψ) is smaller than rP(ψ). Consider the set AP (BP) of all ψ f ∈ (0,2π) which are such that
Cψ f

is above (below) CP. It is important to notice that both AP and BP are not empty. AP is not empty
because it definitely contains all ψ f ’s smaller than the phase of P since the phase is always increasing
from formula (20). BP is not empty because it is enough to take a curve Cψ f

sufficiently close to
the separatrix to leave P on the right. Moreover, AP


BP = (0,2π). By continuity (again using the

fact that Cψ f
and CP never intersect), AP and BP are both open set. Since they are not empty, this

contradicts the connectedness of AP


BP = (0,2π). �

1. The SWAP operator

The SWAP operator, is the operator that in quantum information theory, corresponds to a logic
operation NOT . It inverts the state of a two level quantum system. It is given in the computational
basis by

XSW AP B *
,

0 1
−1 0

+
-
, (32)

which corresponds to the origin of the unit disk. In formula (14), we need a = γ, b = 0, and ω = 1
(resonance condition3) and, minimum time Tmin(XSW AP) = π

2γ . The optimal trajectory is

X(t) = *
,

eit cos(γt) ei(t+φ̃) sin(γt)
−e−i(t+φ̃) sin(γt) e−it cos(γt)

+
-
. (33)

We have that if γ < 1, thenω∗ = 1+γ2

2 < 1, and the optimal trajectory corresponding to the SWAP
operator is inside the separatrix. It turns out (see Theorem 2) that this trajectory is going to be optimal
until it reaches a critical curve corresponding toω = ωc = 2ω∗ (this curve will be precisely defined in
Sec. IV). When γ = 1, ω∗ = 1, the optimal trajectory corresponding to the SWAP operator coincides
with the separatrix.

IV. THE OPTIMAL CONTROL PROBLEM INSIDE THE SEPARATRIX

From now on we denote by S the closed region inside the separatrix. For points in S, the fre-
quency ω of the optimal control must be greater than or equal to ω∗ = 1+γ2

2 . In fact, as we have seen
in Sec. III, the trajectories corresponding to ω < ω∗ do not intersect the separatrix before touching
the boundary of the unit disk (Lemma 3.3) and, after touching the boundary of the unit disk, they are
not optimal anymore (Proposition 3.4). Therefore, for all points inS, the optimal trajectories are with
ω ≥ ω∗.

A particularly important role is played by the curve corresponding to ωc B 2ω∗ B γ2 + 1. This
curve presents a cuspid point, i.e., a point where both ẋ and ẏ are zero. In particular, recalling the
definition of ac as the value of a corresponding to ωc, i.e., ac B γ


1 + γ2, from (15) and (16), we

obtain

ẋωc(t) = − sin(ωct) cos(act), (34)

ẏωc(t) = cos(ωct) cos(act), (35)



012106-10 F. Albertini and D. D’Alessandro J. Math. Phys. 56, 012106 (2015)

and both derivatives are zero when t = π
2ac

. We shall call the trajectory corresponding toω = ωc until
the point corresponding to t = π

2ac
, the critical trajectory. Its final point is

xωc( π

2ac
) = γ

1 + γ2
sin *

,
π


1 + γ2

2γ
+
-
, yωc( π

2ac
) = − γ

1 + γ2
cos *

,
π


1 + γ2

2γ
+
-
. (36)

It is in particular a point on the circle centered at the origin with radius γ√
1+γ2

. Such a circle will play

a role in the analysis that follows. We call it the critical circle.
The general picture of the optimal synthesis for points inS is presented in Theorem 2. We believe

this theorem holds for general values of γ ≤ 1 but we were able to completely prove it only for
γ ∈ [ 1√

3
,1].

Theorem 2. Assume γ ∈ [ 1√
3
,1]. The only optimal trajectories for points in S correspond to

ω ∈ [ω∗,ωc].
1. The trajectory corresponding to ωc until the point (36) is optimal for the points on the critical

trajectory.
2. The trajectory corresponding to ω∗ is optimal for the points of the separatrix.
3. For any other point in S, there exists a unique value of ω ∈ (ω∗,ωc) and an optimal trajectory

corresponding to ω leading to that point.

From the theorem, it follows that both the separatrix and the critical trajectory are optimal. The
trajectories corresponding to values ofω ∈ (ω∗,ωc) are optimal until they intersect the critical trajec-
tory. The situation is described in Figure 3 for the case γ = 1 and Figure 4 for the case γ = 1

2 , respec-
tively. In both figures, the red circle is the separatrix and the black trajectory inside the separatrix is
the critical trajectory. Optimal trajectories depicted in blue start from the point (1,0) and end, loosing
optimality, on the critical trajectory.

Before giving the proof of Theorem 2, we need to establish some preliminary results. Some proofs
are presented in Appendix B. Here, we give the main ideas highlighting where the assumption γ ≥ 1√

3
is used. The following property makes the geometry of the problem easier to visualize.

FIG. 3. Optimal trajectories inside the separatrix (in red) for γ = 1. The critical trajectory is in black, while the trajectories
for ω = 1.1ω∗, ω = 1.2ω∗, ω = 1.5ω∗, ω = 1.8ω∗, are in blue (starting closer to the separatrix when ω → ω∗ = 1 and
starting closer to the critical trajectory when ω → ωc = 2).
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FIG. 4. Optimal trajectories inside the separatrix (in red) for γ = 1
2 . The critical trajectory is in black, while the trajectories for

ω = 1.1ω∗, ω = 1.2ω∗, ω = 1.5ω∗, ω = 1.8ω∗, are in blue (starting closer to the separatrix when ω → ω∗ = 1+γ2
2 =

1+ 1
4

2
and starting closer to the critical trajectory when ω → 2ω∗ = 1 + γ2 = 5

4 ).

Proposition 4.1. Assume γ ≥ 1√
3
. The whole critical trajectory is in the interior of the first quad-

rant, except (possibly) at the endpoints.

Proof. Studying the velocity (34), (35), we check that, for the given parameters, and under the
assumption γ ≥ 1√

3
the derivative of xωc is always negative until π

2ac
, so the minimum is obtained at

the point (36), which is such that the x coordinate is non-negative. Since yωc is always positive for
t , 0, t ≤ π

2ac
the claim follows. �

When γ < 1√
3

this is not verified, for example, when γ = 1
2 we see in Figure 4 that the critical

curve has a portion in the second quadrant. In general, the critical trajectory looks like a spiral winding
around the origin more and more times as γ → 0.

Consider the critical trajectory. Starting from the point (1,0), the distance from the origin de-
creases monotonically according to formula (17) and the last point is on the critical circle. We intro-
duce a parameter λ to parametrize the critical trajectory. For any t ∈ [0, π

2ac
], let

λ = sin(act). (37)

Then, λ ∈ [0,1]. Because of (17), λ indicates the distance of the point on the critical trajectory from

the origin, which goes from 1 to


1 − γ
2

a2
c
=

γ√
1+γ2

(cf. (36)). For a given value of λ, i.e., for points

on the same circle centered at the origin, we compare the phase of any trajectory (corresponding to a
given value of ω and a) with the phase for the critical trajectory. In doing so, we assume 0 ≤ t < π

2a
and we use formula (18) for the phase. The next lemma, whose proof is given in Appendix B, shows
that the phase for the generic trajectory is always bigger than the one for the critical trajectory.

Lemma 4.2. For any value of ω , ωc, let Pω(t) = (xω(t), yω(t)) be a fixed point on the corre-
sponding trajectory for t ∈ (0, π2a ]. Then if there exists a λ as in Eq. (37) such that the absolute value
of Pω(t) is equal to the absolute value of the point of the critical trajectory corresponding to λ, then
the phase of Pω(t) is strictly bigger than the phase of this point.
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Corollary 4.3. The critical trajectory is entirely contained in the interior of S (except for the
point (1,0)).

Proof. The separatrix is in the first and second quadrant only until time t = π
2a∗ and therefore,

using Lemma 4.2 and Proposition 4.1, intersection cannot occur (except for the point (1,0)). �

Lemma 4.2 has two additional important consequences, which are presented in the next two
Corollaries. The first one is that every trajectory corresponding to ω ∈ (ω∗,+∞), ω , ωc that inter-
sects the critical trajectory has to do so at a time t > π

2a . The second one is that all trajectories corre-
spondingω ∈ (ωc,+∞) do not reach any of the points below the critical curve and outside the critical
circle (i.e., points in the region R of Figure 5), before hitting the boundary of the unit disk at time
t = π

a
.

Corollary 4.4. Any trajectory corresponding to a value ofω and a, withω , ωc cannot intersect
the critical trajectory for t ≤ π

2a .

Proof. Assume, by contradiction, that there exists an ω , ωc and a time t ∈ (0, π2a ], such that
the corresponding trajectory intersect the critical trajectory. Denote by P, the point of intersection.
Then, there exists a λ ∈ (0,1] such that the absolute value of P is equal to the absolute value of the
point of the critical trajectory corresponding to λ. By applying Lemma 4.2, we know that the phase
of P is strictly bigger than the phase of this point. If they coincide, their phases must be equal up to
a multiple of 2π. However, under the assumption γ ≤ 1√

3
, the critical trajectory (until time π

2ac
) is in

the first quadrant while a trajectory corresponding to ω has phase which, until time t = π
2a , can be

calculated using (18) and we have

0 ≤ phase of Pω ≤
π

2
+
π

2

(
max

ω∈(−∞,∞)
ω

a

)
≤ π

2
+ π. (38)

The last inequality is obtained by considering the function f (ω) = ω
a

which has its absolute maximum

at ω = ωc, which is equal to f (ωc) =
√
γ2+1
γ

. This, as a function of γ, attains its maximum value in
the interval [ 1√

3
,1] at the endpoint 1√

3
and this value is equal to 2.

From (38), it follows that the two points cannot coincide. �

FIG. 5. Geometric objects used in the proof of Theorem 2 depicted here for the case γ = 1√
2

. The critical trajectory and the
critical circle are in red. We deform the critical trajectory by adding a −ϵλ to the phase. The corresponding deformed curve
is in green. Trajectories for ω ∈ (ωc, 3ω∗] never reach the region R in the figure.
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Corollary 4.5. Consider a trajectory corresponding toω ∈ (ωc,+∞). Such a trajectory never en-
ters the critical circle. Moreover, if it goes in the region below the critical trajectory or intersect the
critical trajectory, it does so after going outside the region S.

The region below the critical trajectory is the region R in Figure 5, i.e., the region outside the crit-
ical circle, inside the separatrix, and below the critical trajectory. The assumption γ ≥ 1√

3
guarantees

that the critical circle is not completely included in the interior of S. Recall that after going outside
of S any trajectory cannot be optimal anymore since it intersects the optimal trajectories going to
the boundary of the unit disk. This corollary says that optimal trajectories for points in R have to be
sought for among the ones corresponding to values of ω ∈ [ω∗,ωc].

Proof. Fix an ω ∈ (ωc,+∞), and let Pω(t) be the point at time t of the corresponding trajectory,
and Pc(t) the point at time t of the critical trajectory. We first show that Pω(t) never enters the critical
circle. Since forω > ωc > 1, a =


γ2 + (1 − ω)2 is an increasing function ofω, we have a > ac and

1 − γ
2

a2 > 1 − γ
2

a2
c

, which is the square of the radius of the critical circle. From formula (17), we have

|Pω(t)|2 = 1 − γ
2

a2 sin2(at) ≥ 1 − γ
2

a2 > 1 − γ
2

a2
c

, (39)

which proves the claim.
Now, we follow the trajectory Pω(t). We know from Fact 1 in Subsection II C that the absolute

value of Pω(t) is bigger than the absolute value of Pc(t) for t in a suitable neighborhood of 0. From
Lemma 4.2, we also have that the phase of Pω(t) is bigger than the one of Pc(t). Thus, near t = 0, the
trajectory corresponding to ω is in the region above the critical curve; it either goes outside S or it
stays in the region Q of Figure 5.

Since it cannot enter the critical circle, in order to reach the region below the critical trajectory
(region R of Figure 5) Pω(t) can only either exit the region S or cross the critical trajectory. We want
to show that the first case is the only one possible. For t = π

a
, Pω(t) is at the boundary of the unit disk,

therefore outside S. So, we only have to show that no intersection is possible for t ∈ (0, π
a
]. In fact,

since by Corollary 4.4 we know that Pω(t) does not intersect the critical trajectory for t ∈ (0, π2a ], we
only have to show that intersection cannot occur for t ∈ ( π2a , πa ), unless Pω(t) exits the region S.

Consider Pω( π2a ) and let t̄ ∈ (0, π
2ac

) be such that |Pω( π2a )| = |Pc(t̄)|. Let λ̄ = sin(act̄) (see Eq. (37)).
Since for tω ∈ ( π2a , πa ], |Pω(tω)| > |Pω( π2a )| and for tc ∈ (t̄, π

2ac
], |Pc(t̄)| > |Pc(tc)|, we have

|Pω(tω)| > |Pω( π2a
)| = |Pc(t̄)| > |Pc(tc)| (40)

for all tc ∈ [t̄, π
2ac

]. Therefore, the second part of the trajectory Pω does not intersect the second part
of the critical trajectory. It remains to show that it does not intersect the first part (t < t̄) either.

The phase of Pω( π2a ) is bigger than the phase of Pc(t̄) from Lemma 4.2, and so also bigger than
the phase of Pc(t) for t ∈ [0, t̄], since the phase is increasing from Fact 2, in Subsection II C. Moreover,
for the same reason, the phase of Pω(t), for t ∈ ( π2a , πa ) is bigger than the phase of Pω( π2a ), so, for
t ∈ ( π2a , πa ), we have

phase of Pω(t) > phase of Pc(t̄) ≥ phase of Pc(tc) tc ∈ [0, t̄].
This condition is compatible with intersection only if the phase of Pω differs from the phase of Pc

by a multiple of 2π. Using Proposition 4.1, in order for the intersection to occur, the trajectory Pω
should exit the region S through the separatrix. �

Now we continuously deform the critical trajectory so that, for every λ, the new curve, which
is still parametrized by λ ∈ [0,1], is below the critical trajectory but still inside S and outside the
critical circle (except (possibly) for the endpoints). Because of Proposition 4.1, we also deform it
only slightly, so that the corresponding curve is entirely contained in the interior of the first quadrant
(except for the point (1,0)). We call such a curve an ϵ-curve. More precisely, an ϵ-curve is obtained
as follows. Choose a small ϵ > 0 with (at least)

ϵ < min(1, 1
a2
c

). (41)
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For every λ ∈ [0,1], the corresponding point on the ϵ-curve has the same radius as the corresponding
point on the critical trajectory and phase ψϵ(λ) B ψ(λ) − ϵλ, where ψ(λ) is the corresponding phase
for the critical trajectory. Notice that for λ = 0, the phases are the same (cf. Figure 5). Also choose ϵ
small enough so that the ϵ-curve is entirely contained in the first quadrant.35

We give two lemmas whose proofs are in Appendix B. They represent a crucial step in the proof
of Theorem 2. They describe a map, ζ ϵ, which associates to points on the ϵ-curve the frequency ω
giving the optimal control.

Lemma 4.6. Consider an ϵ-curve with ϵ > 0 and satisfying (41), sufficiently small so that the
curve is entirely contained in S and in the interior of the first quadrant (except for the point (1,0)).
Let λϵ B

√
1 − ϵ . Then there exists a function ζ ϵ B ζ ϵ(λ) with domain [0,λϵ] and range [ω∗,ωϵ] ⊂

[ω∗,ωc), such that for λ ∈ (0,λϵ), ζ ϵ(λ) is the unique value ω which gives the optimal trajectory for
the point on the ϵ-curve corresponding to λ. ζ ϵ(0) B ω∗, ζ ϵ(λϵ) B ωϵ. Furthermore, ζ ϵ satisfies the
following properties.

1. ζ ϵ is a differentiable, increasing function from [0,λϵ], one to one, and onto [ω∗,ωϵ] ⊆ [ω∗,ωc).
2. For a given λ, the curve corresponding to ζ ϵ(λ), intersects the ϵ-curve optimally at the first inter-

section and coming from below.

The idea of the proof is that since this ϵ-curve is in the region below the critical curve and outside
the critical circle all trajectories withω ∈ (ωc,∞) cannot reach it optimally (they touch the boundary
of the unit disk first (Corollary 4.5)). Thus, the only trajectories left are the ones in [ω∗,ωc]. So the
map ζ ϵ maps to the right set. To construct the function ζ ϵ we fix a point P on the ϵ-curve. Then, P
is written both as a function of the parameter λ and as a function of the control ω. By equating the
two expressions, in particular the absolute value and the phase up to a multiple of 2kπ of P, we find
an implicit equation satisfied by the pair (λ,ω) which, by using the implicit mapping theorem, gives
the desired function and has the properties described in the Lemma. Here, the assumption γ ≥ 1√

3
is

used to show that only the case k = −1 has to be used in the multiple 2kπ.

Lemma 4.7. Let ωϵ be defined as in Lemma 4.6. For ϵ sufficiently small ωϵ increases as ϵ de-
creases and we have

lim
ϵ→0+

ωϵ = ωc. (42)

A. Proof of Theorem 2

Proof of 1. The proof is obtained by excluding optimality for values of ω , ωc. If ω < ω∗, then
all the trajectories loose their optimality after reaching the boundary and so before intersecting the
critical trajectory, since until that point they are completely outside the separatrix. Ifω = ω∗, then the
trajectory is the separatrix which does not intersect the critical trajectory (except for the point (1,0)).
Using Corollary 4.4 we know that any trajectory corresponding to a value of ω and a, with ω , ωc

intersects the critical trajectory after π
2a . Now we consider ω ∈ (ω∗,ωc). The function a of ω has a

minimum at 1, no local maximum in the interval [ω∗,ωc] and at the endpoints is given by a∗ = 1+γ2

2

and ac = γ


1 + γ2. Under the assumption γ ≥ 1√
3
, ac is the largest of the two and therefore ac > a

for every ω ∈ (ω∗,ωc). Since this gives π
2a >

π
2ac

the intersection (if any) must happen, from Corol-
lary 4.4, after π

2a . However, this is the time to go through the whole critical trajectory, and therefore
the trajectory corresponding toω cannot be optimal. Ifω > ωc, using Corollary 4.5, we have that the
corresponding trajectory has to leave the regionS, and therefore looses optimality, before intersecting
the critical trajectory. This leaves the only value ω = ωc.

Proof of 2. Analogously to the previous case, the proof is obtained by excluding optimality for
values of ω , ω∗.

If ω < ω∗, then all the trajectories may intersect the separatrix only after reaching the bound-
ary, and so after having lost optimality (Lemma 3.3). Therefore, for any point on the separatrix, the
optimal trajectory must correspond to a value of ω ∈ [ω∗,+∞). The assumption γ ≥ 1√

3
guarantees
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that there are two (coinciding in the case γ = 1√
3
) points of intersection between the critical circle

and the separatrix (cf. Figure 5). Consider the first of these two points. For all points that follow it
on the separatrix the optimal control reaching these points cannot correspond to values of ω in the
interval (ωc,+∞), because of Corollary 4.5.36 Therefore, for these points, the optimal control has
to correspond to a value ω ∈ [ω∗,ωc]. We now show that trajectories corresponding to ω ∈ (ω∗,ωc)
cannot be optimal for these points. Assume by contradiction that there exists an ω̄ ∈ (ω∗,ωc) such
that the corresponding trajectory is optimal for a point P on the separatrix following the first point of
intersection with the critical circle. From formula (42) of Lemma 4.7, we can choose ϵ sufficiently
small so that ω̄ and therefore (ω∗, ω̄) is in the range of the function ζ ϵ of Lemma 4.6. Consider now the
trajectory corresponding to ω̄which by assumption is optimal for the point P. The point P must occur
before the intersection of the ϵ-curve or after the trajectory is only tangent to the ϵ-curve.37 The point
P cannot be after a crossing of the ϵ-curve because after crossing the ϵ-curve the trajectory will have
to cross it again and-or cross itself to reach the point P, this way loosing optimality (cf. Lemma 4.6).38

Consider ω, with ω∗ < ω < ω̄ optimal for a point on the ϵ-curve on the right of the point on the
ϵ-curve corresponding to ω̄. Such a trajectory starts above the trajectory for ω̄ and therefore it has
to cross it (since the trajectory corresponding to ω̄ contains the point P of the separatrix and both
trajectories cannot leave the region S, since otherwise they would loose optimality). This contradicts
the fact that both of them are optimal, and gives the desired contradiction.

For the given points (after the first point of intersection), the trajectory corresponding toωc cannot
be optimal either. This is easily seen because the trajectory is always in the interior ofS until t = π

2ac
.

Moreover, by using the definitions, it is easy to check that γ ≤ 1 implies π
2ac
≥ π

a∗ , and therefore for
t > π

2ac
we already employ more time than the full separatrix curve.

In conclusion for the points on the separatrix after the first point of intersection with the critical
circle, the only possibility for optimal trajectory is the separatrix itself. By the principle of optimality
(Fact 4 of Subsection II C), it is optimal for the points before as well.

Proof of 3. If the point we consider is below the critical trajectory or inside the critical circle,
then, by Corollary 4.5, the optimal control frequency must be in (ω∗,ωc). Therefore, for these points,
we only have to show that the corresponding ω is unique. Assume by contradiction that there are
two values of ω leading to the same point P optimally. Then, one of the two trajectories has to loose
optimality at P. Let us denote by ω̄ the corresponding ω. In Lemmas 4.6 and 4.7, we can use an ϵ
sufficiently small so that ω̄ is in the range of the function ζ ϵ. The point P is either inside the critical
circle or (if it is in the region R of Figure 5) below the ϵ-curve. The intersection between the trajectory
corresponding to ω̄ and P has to occur before the intersection with the ϵ-curve because otherwise the
ω̄-trajectory will have to intersect the ϵ-curve twice or intersect itself, thus loosing optimality (cf.
Lemma 4.6). However, the loss of optimality at P contradicts the optimality for the corresponding
point on the ϵ-curve.

By taking the limit as ϵ → 0+ and using Lemma 4.7 it follows that all trajectories corresponding
to ω ∈ (ω∗,ωc) loose optimality at the critical trajectory.

It remains to show that these are also the optimal trajectories for the points outside the critical
circle and above the critical trajectory, i.e., points in the region Q of Figure 5. The proof of this
part follows similar lines as the proof of statement 2 in Proposition 3.4. In particular, consider Q
the region inside the separatrix, above the critical curve, and outside the critical circle (see Figure
5). Fix any point P ∈ Q, we want to show that there exist a value ω̄ ∈ (ω∗,ωc) such that the trajec-
tory corresponding to this value passes through P before loosing optimality, i.e., before intersecting
the critical curve. Fix any curve C = C(τ) for τ ∈ [0,1], passing through P such that C(τ) ∈ Q if
τ ∈ (0,1), C(0) = P0 is on the separatrix, and C(1) = P1 is on the critical trajectory. Let τ̄ such that
C(τ̄) = P. Define A− ⊂ [ω∗,ωc] (respectively, A+ ⊂ [ω∗,ωc]) the set ofω’s such thatω ∈ A− (respec-
tively, ω ∈ A+) if the trajectory corresponding to ω intersects, before loosing optimality (i.e., before
intersecting the critical curve), the curve C in a point Pω = C(τ) with τ ≤ τ̄ (respectively, τ ≥ τ̄). We
have thatω∗ ∈ A−, andωc ∈ A+, moreover, since any trajectory withω ∈ (ω∗,ωc) must intersects the
curve C before intersecting the critical curve, A− ∪ A+ = [ω∗,ωc]. Using a continuity argument and
since allω’s are in a compact set, we have that both A− and A+ are closed, thus, by connectedness, we
must have that A− ∩ A+ , ∅. Necessarily if ω̄ ∈ A− ∩ A+, we have that its corresponding trajectory
goes through P before loosing optimality, as desired.
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V. DISCUSSION

The above analysis provides a description of the optimal trajectories for every element in SU(2).
It also gives a very simple method to find the optimal control for a fixed element X f ∈ SU(2).

Given such matrix one first singles out the X1,1 element of the matrix and the point Pf in the unit
disk and checks whether Pf is inside or outside the separatrix. If Pf is outside, one has to use the
trajectories described in Subsection III A, i.e., with ω ∈ (−∞,ω∗). The choice of ω can be made by
successive approximations (for example, using a simple bisection algorithm) by examining the plots
for trajectories which leave Pf on the right or on the left and getting closer and closer to the trajectory
which actually contains Pf . If Pf is inside the separatrix, the same procedure can be performed with
the trajectories described in Sec. IV. Onceω is found, one finds the corresponding t, either by tracing
the plot or by solving an optimization problem minimizing (in t) the distance of the point on the
trajectory from Pf . The last step is to adjust the phase φ̃ in (14) (with the values found forω and t) so
that the element X1,2 in (14) also coincides with the corresponding element in X f . This completely
determines the optimal controls in (13). If the mathematical problem is motivated by the time optimal
steering of any quantum mechanical state |ψ⟩ to ±X f |ψ⟩, then the same procedure has to be repeated
for the operator−X f to which it corresponds the point in the unit disk which is symmetric with respect
to the origin. The control is chosen as the one which gives the minimum time between the two.

Figure 6 describes the work we have done to find the optimal control for the Hadamard gate
X f B

1√
2

( 1 1
−1 1

)
and γ = 1√

2
. The point Pf is the point ( 1√

2
,0) which is inside the separatrix curve.

We have drawn a small circle around this point. The two curves in blue in the figure correspond to
ω = 1.2ω∗,ω = 1.4ω∗, andω∗ = 3

4 in this case. The optimal curve is found forω B ωopt ≈ 1.28ω∗ and
is the red curve crossing the small circle in the figure. The optimal time is found to be approximately
topt ≈ π + 0.2. The total phase of the X1,2 element in (14) must be zero (sin(at) is positive with the
given values of ω = ωopt and t = topt), therefore, we choose φ̃ = −ωopttopt = 1.28ω∗(π + 0.2). These
values have to be replaced in (13) to give the optimal controls.

In a time optimal control problem for a two level quantum system, the work has to be repeated for

−X f B − 1√
2

( 1 1
−1 1

)
where the corresponding point −Pf =

(
− 1√

2
,0

)
is the symmetric with respect

to the origin of Pf . In this case, the point is outside the separatrix. Therefore, the optimal trajectory
has to correspond to ω ∈ (−∞, 3

4 ). We have applied a bisection search starting from ω = 0.5ω∗ and
ω = 0.6ω∗, and plotted the trajectories forω = 0.55ω∗ andω = 0.575ω∗. These trajectories are drawn

FIG. 6. Search for the optimal control for the Hadamard gate in the case γ = 1√
2

. The separatrix is in black and the critical
trajectory is in red. Two trial trajectories corresponding to ω = 1.2ω∗ and ω = 1.4ω∗ are in blue and the (approximate)
optimal trajectory is in red.
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in blue in Figure 7 except for the one of ω B ωopt = 0.575ω∗ which is the optimal one as it crosses
the desired point (and this optimal trajectory is in red). The optimal time is found to be approximately
topt ≈ 0.7π, and therefore less than the time for X f . Thus, this is the minimum time required for the
optimal steering of a two level quantum system, and the frequency of the optimal control has to be
chosen at ωopt = 0.575ω∗ = 0.575 3

4 = 0.431 25. Then we have also to choose the phase φ̃ in (14) so
that the total phase is equal to π (because with the optimal values of γ, ω, a, and t, γ

a
sin(at) = 1√

2
).

Therefore, we have φ̃ = π − ωopttopt = π − (0.575ω∗) ∗ 0.7 ∗ π ≈ 2.193. We would like to stress that
the knowledge of the optimal synthesis we have developed in the paper is crucial to obtain the solution
of the practical problem of finding the minimum time control. Without the knowledge of the behavior
of the optimal trajectories and using only the maximum principle and the reduction to the unit disk
(Proposition 2.1), we only know that the optimal trajectories are parametrized by the frequency ω.
Then, given a point in the disk representing the (equivalence class of the) desired final condition,
we should in principle select among the trajectories that cross that point (which all have in principle
infinite length) the one that does it at the minimum time. This is a daunting task without knowing
the qualitative behavior of the trajectories and where they loose optimality. This is what the optimal
synthesis provides making the search for the optimal control possible.

While we were completing this work, other authors14 submitted a paper on the same topic, build-
ing upon their previous work in Ref. 13 for the case ω0 = 0 (cf. Remark 1.1) and previous work in
Refs. 2 and 20. In the paper,14 the authors parametrize elements in SU(2) with the so-called Hopf
parameters39 and the Euler parameters of the elements of SU(2). They derive the dynamical equations
in terms of these parameters and consider the optimal control problem in this setting. They prove
properties of the optimal trajectories and give an algorithm to find the optimal controls. Our geometric
analysis of the optimal trajectories in the unit disk provides an alternative approach which, beside
giving a very straightforward method to find the time optimal control, as we have seen above, high-
lights the general picture of the optimal trajectories. Main features of this picture are the existence
of a closed curve which separates two classes of optimal trajectories (the separatrix) and of a special
(non-smooth) trajectory inside this curve (the critical trajectory) which is some sort of limit of all
other trajectories and it is where these trajectories loose optimality. It will be interesting in the future
to investigate if, how and in what cases these features can be found in higher dimensional time optimal
control systems on Lie groups.

FIG. 7. Search for the optimal control for the opposite of the Hadamard gate, in the case γ = 1√
2

. The separatrix is in black
and the critical trajectory is in red. Three trial trajectories corresponding to ω = 0.6ω∗, ω = 0.5ω∗, ω = 0.55ω∗ are in blue
and the (approximate) optimal trajectory corresponding to ω = 0.575ω∗ is in red.
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While this paper was under review, another author,22 using the results described here, reconsid-
ered the time optimal control on SU(2) in the general case of unrestricted γ. He adopted our framework
of analysis in the unit disk and introduced a novel ingredient, the evolution of the boundary of the
reachable set, the “so called” front-line. It is a general fact that the geometry of the reachable sets
is related to the time optimal control problem since if a point is reached optimally at time T then
it belongs to the boundary of the reachable set at the same time T (see, e.g., Ref. 18). The paper22

visualizes the evolution of the reachable sets and their boundaries from which one can obtain the
optimal control. We believe that this geometric description might be used to extend the analytical
proof of the result of Theorem 2 removing the restriction on the value of γ. Overall, the paper22 is an
important development of our work as it provides a general picture although with less detailed proofs
which are visual in nature.
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APPENDIX A: SOME PROOFS OF RESULTS IN SECTION III

1. Proof of Lemma 3.1

Proof. Using the expression of a in terms of ω, we have

Tk,m =
πk(1 − ω)2 + γ2

, (A1)

where ω is chosen to satisfy the Eq. (22), that is,

1 +
ω

a
= 1 +

ω(1 − ω)2 + γ2
=
ψ + 2mπ

kπ
. (A2)

Since the function ω
a

has a maximum of
√

1+γ2

γ
and an infimum at −1, anω ∈ RI satisfying (A2) exists

if and only if

0 <
ψ + 2mπ

kπ
≤ 1 +


1 + γ2

γ
, (A3)

and there are at most two (solutions of second order algebraic equation) such ω’s.
From now on we assume to have fixed a value for k as in the statement of the Lemma. Set also

α(m) B ψ+2mπ
kπ
− 1 ≤

√
1+γ2

γ
. From (A1), Tk,m is a decreasing function of |b| B |1 − ω|. Therefore,

the minimum Tk,m will be obtained for the value of m which corresponds to the maximum value of
|b|, satisfying (A2), i.e.,

f (b) B 1 − b
b2 + γ2

= α(m). (A4)

The claim of the Lemma is proved if we show that this is obtained for m = 0.
It is easier to follow the proof if one looks at the shape of function f in (A4) (see Figure 8). This

function has its maximum in b = −γ2, with f (−γ2) =
√
γ2+1
γ

. Moreover, f is strictly increasing for
b ∈ (−∞,−γ2), and strictly decreasing for b ∈ (−γ2,+∞). We have

f
�(−∞,−γ2)� = (1,


γ2 + 1
γ

) f
�(−γ2,+∞)� = (−1,


γ2 + 1
γ

).
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FIG. 8. Shape of the function f defined in (A4). Here, the graph is given for γ = 1√
2

, but the properties used in the proof
hold for any values of γ.

To every value of m, there will correspond a value α(m) and a horizontal line (y = α(m)) in the graph.
The value(s) of b will be the one(s) where this line intersects the curve y = f (b). We need to show
that the value of m which gives the b with maximum absolute value is m = 0.

It holds that

−1 < α(0) = −1 +
ψ

kπ
< 1, (A5)

and that

α(m + 1) = α(m) + 2m
k
, (A6)

from which it follows that α(m) is increasing with m. Consider first the values of m ≥ 0 for which
α(m) ≤ 1. For these values, there exists only one value of b for which (A4) is verified. We denote
this value by b(m). Since f (0) = 1

γ
≥ 1 the value of b(m) is greater than or equal to zero, and it is

decreasing with m, i.e., 0 ≤ b(m) < b(0).
The first m such that α(m) > 1 is m = k, in which case α(m) B α(k) = 1 + ψ

kπ
. It is in fact easily

seen that α(k − 1) = −1 + ψ
kπ
+ 2 − 2

k
= 1 + ψ−2π

k
< 1.

For all m > k, since α(m) > 1, we have that either α(m) >
√
γ2+1
γ

, then there are no solutions to

the equation f (b) = α(m), or, if α(m) ≤
√
γ2+1
γ

, then there are at most two solutions (indeed there are

exactly two solutions for all values except in the case α(m) =
√
γ2+1
γ

where there is only one solution).
Let us denote now by b(m) the solution with the maximum absolute value. It is easy to show, by
examining the solutions of the second order algebraic equation (A4) that b(m) < 0, so we have that
b(m) ≤ −γ2 and, since f is increasing in (−∞,−γ2) it holds that |b(m)| < |b(k)|.

Thus to show that Tk,m is minimum at m = 0, we need only to show that

|b(k)| < b(0),
where, again b(k) now denotes the solution of f (b) = α(k) of maximum absolute value which is
negative. This is equivalent to

−b(k) < b(0). (A7)

Since the function f (b) is decreasing for b > 0, if we show that f (−b(k)) > f (b(0)), then Eq. (A7)
follows. We compute

f (−b(k)) = 1 + b(k)
b(k)2 + γ2

=
1 − b(k)
b(k)2 + γ2

+
2b(k)

b(k)2 + γ2
= 1 +

ψ

kπ
+

2b(k)
b(k)2 + γ2

.
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Since
�����

b(k)√
b(k)2+γ2

�����
< 1, we have that

f (−b(k)) > 1 +
ψ

kπ
− 2 = f (b(0)),

as desired. �

2. Proof of Lemma 3.2

Proof. For a given ψ f ∈ (0,2π), the expression of Tk,0 can be obtained from (21), where ω and
a = a(ω) are chosen so that (22) is satisfied. In particular, after defining xk,ψ B

ψ f−kπ
kπ

and using the
fact that a is by definition positive, we obtain Ref. 40,

a =
−xk,ψ +


x2
k,ψ
+ (1 + γ2)(1 − x2

k,ψ
)

(1 − x2
k,ψ

) . (A8)

Replacing this and the expression of xk,ψ in Tk,0 =
kπ
a

, we obtain, after some algebra,

Tk,0 = Tk,0(ψ f ) B ψ f (2kπ − ψ f )
kπ − ψ f +


(kπ)2 + γ2ψ f (2kπ − ψ f )

. (A9)

We want to show that Tk,0(ψ f ) > T1,0(ψ f ) for every ψ f . Since ψ f > 0 is a multiplicative factor of very
Tk,0 we can neglect it in comparing the two functions. Moreover, since γ is arbitrary, we can define
γ1 B γ

2ψ f > 0 and show, equivalently that T̃k(ψ f ) > T̃1(ψ f ), for every ψ f , with

T̃k(ψ f ) B 2kπ − ψ f

kπ − ψ f +


(kπ)2 + γ(2kπ − ψ f )

. (A10)

Write Yk B (kπ)2 + γ1(2kπ − ψ f ) = Y1 + ∆k, with∆k B (k2 − 1)π2 + 2πγ1(k − 1), so that the claim is
equivalent to

(2kπ − ψ f )[(π − ψ f ) +


Y1] > (2π − ψ f )[kπ − ψ f +


Y1 + ∆k]. (A11)

After some algebra, we obtain

(2kπ − ψ f )


Y1 − (k − 1)πψ f > (2π − ψ f )


Y1 + ∆k . (A12)

Since both sides are positive, we can square both sides, and collecting the terms containing Y1, and
using the definition of ∆k, we arrive at

(4(k2 − 1)π2 − 4(k − 1)πψ f )Y1 + (k − 1)2π2ψ2
f − 2(k − 1)πψ f (2kπ − ψ f )


Y1 >

(4π2 − 4πψ f + ψ
2
f )((k2 − 1)π2 + 2γ1π(k − 1)). (A13)

dividing everything by π(k − 1), we obtain

4((k + 1)π − ψ f )Y1 + (k − 1)πψ2
f − 2ψ f (2kπ − ψ f )


Y1 > (4π2 − 4πψ f + ψ

2
f )((k + 1)π + 2γ1).

(A14)

By collecting all terms that contain Y1 on the left hand side and after some algebra, we obtain

(4(k + 1)π − 4ψ f )Y1 − 2ψ f (2kπ − ψ f )


Y1 > 2πψ2
f + 4π2(k + 1)(π − ψ f ) + 2γ1(2π − ψ f )2.

(A15)

Using the expression for Y1 (but not under the square root), we obtain, after some algebra,

(2kπ − ψ f )γ1(2π − ψ f ) + πψ f (2kπ − ψ f ) − ψ f (2kπ − ψ f )


Y1 > 0, (A16)

which allows us to simplify the factor (2kπ − ψ f ), so that the theorem is verified if

γ1(2π − ψ f ) + πψ f > ψ f


Y1. (A17)
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Taking the squares of both sides and reintroducing the expression of Y1, we obtain, after some algebra,

γ
2
1(2π − ψ f )2 + 2πψ f γ1(2π − ψ f ) > ψ2

f γ1(2π − ψ f ), (A18)

which after dividing by γ1(2π − ψ f ), gives

γ1(2π − ψ f ) + 2πψ f > ψ2
f . (A19)

This is certainly true for ψ f ∈ (0,2π) since 2πψ f > ψ2
f , which completes the proof. �

3. Proof of Lemma 3.3

Proof. The optimal trajectories reaching the boundary of the unit disk do not intersect (before the
boundary) because the intersection would mean that one of them is not optimal. Denote by Pω(·) B
(xω(·), yω(·)) any of these trajectories, parametrized by ω, with −∞ < ω < ω∗ B

1+γ2

2 . The function
ω as a function of ψ f (27) is an increasing function. This implies that if ω2 > ω1 the curve Pω2 starts
below the curve Pω1, otherwise, they would have to intersect.

Assume now by contradiction that the curve Pω1 at time t̄ intersects the separatrix in the point
P B f (t∗,ω∗). Consider now a curve Pω2, withω2 > ω1, and let dP denote the distance of P from the
curve Pω2. Since there is no intersection between Pω1 and Pω2, dP > 0. Moreover, for every ω > ω2,
the distance of the curve from P is greater than dP, otherwise there would be intersection of this curve
with Pω2. Consider now Pω(t∗) and take the limit limω→ω∗ Pω(t∗), which by continuity must be P.
However, this contradicts the fact that the distance of any curve with ω > ω2 from P must be greater
than dP > 0. �

APPENDIX B: SOME PROOFS OF RESULTS IN SECTION IV

1. Proof of Lemma 4.2

Proof. Consider any two points, one on the curve Pω and one on the critical trajectory with equal
distance from the origin, and in particular let λ denote the corresponding value of the parameter on
the critical trajectory with λ ∈ (0,1]. Using formula (17), we have, for t the corresponding time on
the curve Pω,

sin2(at)
a2 =

λ2

a2
c

.

From this equation assuming t ≤ π
2a , we derive

sin(at) = aλ
ac
, (B1)

and therefore

t =
1
a

arcsin
(

aλ
ac

)
. (B2)

Notice in particular that (B1) implies

ac ≥ aλ. (B3)

From Eq. (B1), we get cos(at) =
√

a2
c−a2λ2

ac
, and we also have

tan(at) = aλ0
a2
c − a2λ2

, (B4)

if a2
c − a2λ2 > 0 (cf. (B3)). LetΦP(λ) be the phase of a point on the curve Pω. By using Eq. (18) along

with Eqs. (B2) and (B4), we have if a2
c − a2λ2 > 0,

ΦP(λ) = ω 1
a

arcsin
(

aλ
ac

)
+ arctan *

,

(1 − ω)λ
a2
c − a2λ2

+
-
. (B5)
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For the corresponding point on the critical trajectory, the phase Φc(λ) is obtained by the special case
ω = ωc and a = ac (assuming in this case λ < 1),

Φc(λ) = ωc
1
ac

arcsin(λ) + arctan *
,

λ(1 − ωc)
ac

√
1 − λ2

+
-
. (B6)

We know that ΦP(0) = Φc(0), and we now fix a λ0 ∈ (0,1]. We want to prove that the phase corre-
sponding to λ0 for the trajectory Pω is greater than the phase of the corresponding point on the critical
trajectory. Since the two phases are the same for λ = 0, it is enough to show that the derivative (with
respect to λ) of the phase for Pω is always greater than the derivative for the phase of the critical trajec-
tory for every λ < λ0 ≤ 1. Since Eq. (B3) holds for λ = λ0, it holds with strict inequality for λ < λ0,
therefore a2 − a2

cλ
2 > 0 and we can use (B4) and (B5) for the phase of the point on the trajectory Pω.

Also, since λ < λ0 ≤ 1, we can use formula (B6) for the phase of the point on the critical trajectory.
Therefore, we will prove that Φ′P(λ) > Φ′c(λ), for every λ ∈ (0,1). We have

Φ
′
P(λ) =

ω

a
1(

1 − a2λ2

a2
c

) a
ac
+

a2
c − a2λ2

a2
c − a2λ2 + (1 − ω)2λ2

(1 − ω)(a2
c − a2λ2) + (1 − ω)a2λ2

(a2
c − a2λ2)a2

c − a2λ2
=

=
ω

a2
c − a2λ2

+
(1 − ω)a2

c

(a2
c − γ2λ2)a2

c − a2λ2
=

1
a2
c − a2λ2

a2
c − ωγ2λ2

a2
c − γ2λ2 . (B7)

Considering the special case ω = ωc, and recalling the expression of ωc and ac in terms of γ, we
obtain

Φ
′
c(λ) = ac

√
1 − λ2

a2
c − γ2λ2 . (B8)

Using Eqs. (B7) and (B8), we have

Φ
′
P(λ) > Φ′c(λ) ⇔

a2
c − ωγ2λ2
a2
c − a2λ2

> ac

√
1 − λ2.

Thus, we want to prove that

a2
c − ωγ2

λ
2 > ac

√
1 − λ2


a2
c − a2λ2. (B9)

Now notice that the left hand side is always non-negative. In fact, we have

a2
c − ωγ2

λ
2 ≥ a2

c − ωγ2 = γ2(1 − ω + γ2) ≥ 0, (B10)

where the last equality is verified if ω ≤ ωc = 1 + γ2. Moreover, from formula (B3), we have

a2
c − ωγ2

λ
2 ≥ a2

λ
2 − ωγ2

λ
2 = (1 − ω)λ2(1 − ω + γ2) ≥ 0, (B11)

where the last inequality is verified if ω ≥ 1 + γ2 = ωc. Therefore, to show (B9), it is sufficient to
show the inequality on the squares of left and right hand side.

By taking the squares in (B9) we need to prove

a4
c + ω

2
γ

4
λ

4 − 2ωγ2
λ

2 − a2
c(1 − λ2)(a2

c − a2
λ

2) > 0,

which becomes

λ
4(ω2
γ

4 − a2
ca2) + λ2(a2

ca2 + a4
c − 2ωγ2a2

c) = λ2 �−γ2(ω − ωc)2λ2 + a2
c(ω − ωc)2� =

= λ2(ω − ωc)2(a2
c − γ2

λ
2) = λ2(ω − ωc)2γ2(γ2 + 1 − λ2) > 0,

where the last equality holds since λ < 1. �
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2. Proof of Lemma 4.6

Proof. Given an ϵ-curve, fix a value λ ∈ (0,λϵ) and denote by Pϵ(λ) the corresponding point on
the ϵ-curve and by Pc(λ) the corresponding point on the critical trajectory. We have

|Pϵ(λ)| = |Pc(λ)| and ψϵ(λ) = ψ(λ) − ϵλ, (B12)

where ψϵ(λ) denotes the phase of Pϵ(λ) and ψ(λ) denotes the phase of Pc(λ). Since Pϵ(λ) is in the
region below the critical curve and in the interior of S, we know by Corollary 4.5, that the value(s)
of ω that give the optimal control for the point Pϵ(λ) must be in the interval (ω∗,ωc].41 This gives a
function from ζ ϵ : (0,λϵ) → (ω∗,ωc], if we know that ω is unique.

To prove uniqueness of the optimal value ω, and to be able to construct the function ζ ϵ, we first
need to find some relations among the values of λ, ω, and t, where ω is one of the optimal values of
the frequency (in principle not unique at this point) and t is the corresponding minimum time.

If Pω(t) = Pϵ(λ), on an optimal trajectory, we know from Corollary 4.4 that t must be larger than
π

2a and it must be smaller than π
a

.42 Since the point Pϵ(λ) has the same distance from the origin as the
corresponding point on the critical trajectory, we have

|Pϵ(λ)|2 = 1 − λ
2

a2
c

.

From (17),

|Pω(t)|2 = 1 − sin2(at)
a2 ,

and, from these two equations, since all quantities are positive, we have

sin(at)
a

=
λ

ac
. (B13)

Equation (B13) gives a first relation between λ and ω and t. Next, by equating the phases of
the two points Pϵ(λ) and Pω(t) we will find another relation which will enable us to eliminate the t
dependence and find an implicit formula of the type Fϵ(λ,ω) = 0. From this relation and using the
implicit mapping theorem, we will prove our statements.

Using the definition of λ given by Eq. (37), the expression of the phase given in Eq. (18), and the
fact that the critical trajectory is in the first quadrant, we have

ψ(λ) = ωc
arcsin(λ)

ac
+ arctan *

,

(1 − ωc)λ
ac

√
1 − λ2

+
-
. (B14)

Now, using Eq. (19), since t > π
2a , we also have

Phase Pω(t) = ωt + π + arctan
( (1 − ω)

a
tan(at)

)
. (B15)

From Eq. (B13), and since t ∈ ( π2a , πa ) we have

t =
1
a

(
π − arcsin

(
aλ
ac

))
. (B16)

Furthermore, using again the fact that t ∈ ( π2a , πa ), we have from (B13), cos(at) = −


1 − a2λ2

a2
c

, and

therefore tan(at) = − aλ√
a2
c−a2λ2

.

Thus, using (B16), the previous equality, and Eq. (B13), we can rewrite Eq. (B15) as

Phase Pω(t) = ω

a

(
π − arcsin

(
aλ
ac

))
+ π + arctan *

,
− (1 − ω)λ

a2
c − (a2λ2)

+
-
. (B17)

Since Pϵ(λ) = Pω(t), the phases must be equal up to a multiple of 2π. Thus, we must have

ψϵ(λ) = Phase Pω(t) + 2kπ, (B18)
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for some k ∈ ZI . Since the ϵ-curve is in the first quadrant, we have

0 ≤ ψϵ(λ) ≤ π

2
.

Since γ ≥ 1√
3
, we have that 1 ≤ ω

a
≤ 2, and since the argument inside the function arcsin in Eq. (B17)

is positive, we have43

3π
2
≤ Phase Pω(t) ≤ 7

2
π.

Given the previous bound for the two phases, the only possible k ∈ ZI for which equality (B18) holds
is k = −1. Thus, we can rewrite equality (B18), using k = −1 and Eqs. (B14) and (B17). We have

ω

a

(
π − arcsin

(
aλ
ac

))
+ π + arctan *

,
− (1 − ω)λ

a2
c − a2λ2

+
-
− 2π = (B19)

= ωc
arcsin(λ)

ac
+ arctan *

,

(1 − ωc)λ
ac

√
1 − λ2

+
-
− ϵλ.

For ω ∈ (ω∗,ωc) (and recalling a =
(γ2 + (1 − ω)2)) and λ ∈ (0,λϵ), let44

Fϵ(λ,ω) = ω

a

(
π − arcsin

(
aλ
ac

))
− arctan *

,

(1 − ω)λ
a2
c − a2λ2

+
-
− π−

γ2 + 1
γ

arcsin(λ) + arctan *
,

γλ(γ2 + 1)(1 − λ2)
+
-
+ ϵλ.

(B20)

Notice that this function is well defined for λ ∈ (0,λϵ), since ac > a forω ∈ (ω∗,ωc) under the assump-
tion γ ≥ 1√

3
(cf. the proof of part one of Theorem 2 in the main body of the paper). For any λ ∈ (0,λϵ),

and corresponding optimal ω, Eq. (B19) says

Fϵ(λ,ω) = 0. (B21)

Now we want to show that this gives a well defined function ζ ϵ(λ) = ω, i.e., that given λ there is
only one ω giving the optimal control for that λ (uniqueness).

Uniqueness Assume by contradiction that there are two optimal ω’s for the same point on the
ϵ-curve. Both values of ω and corresponding a’s must satisfy Eq. (B16), with the same t (because
of optimality). Since the right hand side of (B16) is a decreasing function of a, independently of λ,
the two a’s must coincide. This means that the two values of ω, say ω1 and ω2, have to be such that
|1 − ω1| = |1 − ω2|. Now recall that the function a = a(ω) has a minimum at ω = 1 and is symmetric
around this point. Under the assumption γ ≥ 1√

3
, the largest interval symmetric around ω = 1 and

contained in (ω∗,ωc) is (ω∗,2 − ω∗). The two values ω1 and ω2 must be symmetric in this interval.
Therefore, we write ω1 B ω ∈ (ω∗,1), ω2 B 2 − ω. Both ω1 and ω2 must satisfy Eq. (B21), with the
same a and λ. Therefore, writing this equation for ω and for ω replaced by 2 − ω, we obtain

ω

a

(
π − arcsin

(
aλ
ac

))
− arctan *

,

(1 − ω)λ
a2
c − a2λ2

+
-
=

2 − ω
a

(
π − arcsin

(
aλ
ac

))
+ arctan *

,

(1 − ω)λ
a2
c − a2λ2

+
-
,

which, rearranging the terms and dividing by 2, gives

ω − 1
a

(
π − arcsin

(
aλ
ac

))
= arctan *

,

(1 − ω)λ
a2
c − a2λ2

+
-
. (B22)

The left and right hand side have opposite signs and can coincide only when ω = 1 = 2 − ω. This
shows the uniqueness.
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So, we can define

ζ ϵ : (0,λϵ) → (ω∗,ωc)
λ → ζ ϵ(λ) , (B23)

where ζ ϵ(λ) is the optimal value to reach the point Pϵ(λ), and we know that

Fϵ(λ, ζ ϵ(λ)) = 0. (B24)

Now, we use the implicit mapping theorem to prove all the properties (of differentiability and mono-
tonicity) of the statement of the Lemma, and to extend the domain of the map at the values λ = 0 and
λ = λe. We call this part of the proof “Properties.”

Properties We calculate ∂Fϵ

∂λ
and ∂Fϵ

∂ω
. We have from (B20)

∂Fϵ

∂λ
(λ,ω) = −ω(a2

c − a2λ2) −
(1 − ω)a2

c

γ2 ((γ2 + 1) − λ2)(a2
c − a2λ2)+

−
(γ2 + 1)
γ

1
√

1 − λ2
+

γ
(γ2 + 1)

√
1 − λ2 ((γ2 + 1) − λ2)

+ ϵ .

Thus, with λ ∈ (0,λϵ),
∂Fϵ

∂λ
(λ,ω) = −(γ2 + 1 − ωλ2)

(γ2 + 1 − λ2)(a2
c − a2λ2) −


γ2 + 1

√
1 − λ2

γ(γ2 + 1 − λ2) + ϵ . (B25)

Since, from (41), ϵ < 1
a2
c
= 1
γ2+γ4

and λ ∈ (0,λϵ), with λϵ B
√

1 − ϵ it holds that

−

γ2 + 1

√
1 − λ2

γ(γ2 + 1 − λ2) + ϵ < −

γ2 + 1

√
ϵ

γ(γ2 + 1 − λ2) + ϵ < −
√
ϵ

γ

γ2 + 1

+ ϵ < 0.

Thus, we have that

∂Fϵ

∂λ
(λ,ω) < 0. (B26)

We also have

∂Fϵ

∂ω
(λ,ω) = γ

2 + 1 − ω
a3

(
π − arcsin

(
aλ
ac

))
+
ω

a2

(1 − ω)λ
a2
c − a2λ2

− λ
a2
c − a2λ2

.

Thus,

∂Fϵ

∂ω
(λ,ω) = γ

2 + 1 − ω
a3

(
π − arcsin

(
aλ
ac

))
+
λ(γ2 + 1 − ω)
a2


a2
c − a2λ2

. (B27)

From (B27) it follows that, for any λ ∈ (0,λϵ) and ω ∈ (ω∗,ωc), we have that

∂Fϵ

∂ω
(λ,ω) > 0. (B28)

This from the implicit mapping theorem implies that ζ ϵ is continuously differentiable with derivative

dζ ϵ

dλ
= −

∂Fϵ

∂λ
(λ,ω)

∂Fϵ

∂ω
(λ,ω) > 0,

where the inequality follows using Eq. (B26). So, for λ ∈ (0,λϵ), ζ ϵ is strictly increasing, and therefore
one to one and onto an open interval in (ω∗,ωc).

Let ωϵ = supλ∈(0,λϵ) ζ
ϵ(λ) and define ζ ϵ(λϵ) B ωϵ. Then, ζ ϵ is continuous at λ = λϵ. Define ζ ϵ(0)

B ω∗, to prove continuity also at this point we need to show

lim
λ→0+

ζ ϵ(λ) = ω∗.
By monotonicity, we know that this limit exists.
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Let limλ→0+ ζ
ϵ(λ) = ω̄, then since Fϵ(λ, ζ ϵ(λ)) = 0, and Fϵ is continuous we must have Fϵ(0, ω̄) =

0. It holds

Fϵ(0, ω̄) =
(
ω̄

ā
− 1

)
π,

and this expression is zero if and only if ω̄
ā
= 1 which is equivalent to ω̄ = ω∗.

To complete the proof of the Lemma, we need to show the point 2 of its statement. First, we
show that a trajectory that intersect the ϵ-curve optimally does so at the first intersection. Assume
by contradiction that the optimal intersection for a trajectory ω1 happens after the first intersection
and denote by P the point of the first intersection. At this point, there must exist another trajectory
ω2 which reaches it optimally. However, this contradicts the fact that the ω1 trajectory intersect the
ϵ-curve optimally at a later time.45 To show that the optimal trajectory comes from below, using
formula (20) at the point where the intersection occurs we show that the phase of the trajectory Pω
is increasing. At that time t we have that Eq. (B13) is verified, so that, replacing the expression of
sin2(at) in (20), we obtain for the numerator (recalling the expressions of ωc and ac)

a2
(
1 − γ2λω

a2
c

)
> a2

(
1 − γ

2λ2ωc

a2
c

)
= a2(1 − λ2) > 0. (B29)

�

3. Proof of Lemma 4.7

Proof. By definition and continuity we have, with the notations of Lemma 4.6,

Fϵ(λϵ,ωϵ) = lim
λ→ λϵ

Fϵ(λ, ζ ϵ(λ)) = 0. (B30)

This equation defines ωϵ implicitly as a function of ϵ . In fact, if we calculate ∂Fϵ

∂ωϵ
this is the same

as in Eq. (B27) with λ replaced by λϵ and ω replaced by ωϵ and therefore strictly positive (cf. Eq.
(B28)). To calculate ∂Fϵ

∂ϵ
, we see from (B20) that Fϵ depends on ϵ directly and through λϵ. Therefore,

we have from (B20)

∂Fϵ

∂ϵ
=
∂Fϵ

∂λ
|λ=λϵ dλϵ

dϵ
+ λϵ. (B31)

Since ∂Fϵ

∂λ
|λ=λϵ < 0 (cf. (B26)) and dλϵ

dϵ
= −1

2
√

1−ϵ
< 0, we have that ∂Fϵ

∂ϵ
> 0, so that

dωϵ
dϵ
= −

∂Fϵ

∂ϵ

∂Fϵ

∂ωϵ

< 0, (B32)

which shows that ωϵ is a decreasing function of ϵ .
It remains to prove that limϵ→0+ωϵ = ωc. Let us denote byωL = limϵ→0+ωϵ and we have because

of monotonicity and, boundedness for every ϵ , that the limit ωL exists and ωL ≤ ωc. Moreover, by
continuity, ωL has to satisfy

lim
ϵ→0

F0(λϵ,ωL) = 0. (B33)

This, using (B20), gives that ωL is the ω satisfying

G(ω) = ω

a

(
π − arcsin

(
a
ac

))
− arctan *

,

1 − ω
a2
c − a2

+
-
− π

2
+


1 + γ2

γ

π

2
= 0. (B34)

Calculating dG
dω

we find that dG
dω

> 0 for everyω ∈ [ω∗,ωc). Therefore, the Eq. (B34) has at most one
solution in the interval [ω∗,ωc]. By replacing ωc in (B34), one directly verifies that ωc satisfies it.
Therefore, ωL = ωc. �
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37 This second case can in fact be ruled out by a closer examination of the trajectories but it is quicker to consider the two
cases.

38 Since the correspondence of the Lemma is one to one, if the trajectory crosses the ϵ-curve again it will have to be at a
point where another trajectory or itself at a previous time is optimal. Therefore it looses optimality at that point or it was
already not optimal.

39 These are defined as θ1,2,3 when writing x = cos(θ1) cos(θ2), y = cos(θ1) sin(θ2), c = sin(θ1) cos(θ3), d = sin(θ1) sin(θ3)
(5).

40 Notice that |xk,ψ | < 1. By plugging (21) into (22), we obtain ω = xk,ψa. Using this into the definition a2 B
γ2 + (1 −ω)2 we obtain a second order algebraic equation in a, whose positive solution is (A8).

41 It exists because of the existence theorem of optimal control.
42 To see that t > π

2a , one has to adapt the proof of Corollary 4.4 from the critical trajectory to the ϵ-curve. This is easily
achieved since we can still apply Lemma 4.2, because the phase of the point on the ϵ-curve is smaller than the phase
of the corresponding point on the critical curve. Also, we have chosen ϵ sufficiently small so that the ϵ-curve is entirely
contained in the first quadrant. Optimality is lost at t = π

a since the trajectory Pω touches the boundary of the unit disk.
43 A rough estimate in Eq. (B17) gives π ≤ Phase Pω(t). However since the intersection has to occur in the first quadrant

we have 3π
2 ≤ Phase Pω(t).

44 We have replaced here in some instances ωc, ac with their definitions.
45 It is faster to use the ω2 trajectory or if the time of intersection is the same, this contradicts uniqueness (as well as the

fact that the ω1 trajectory is not optimal at P).


