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Abstract Due to the challenges in upscaling daily climatic forcing to geological time, physically
realistic models describing how rainfall drives fluvial erosion are lacking. To bridge this gap between
short-term hydrology and long-term geomorphology, we derive a theoretical framework for long-term
fluvial erosion rates driven by realistic climate by integrating an established stochastic-mechanistic model
of hydrology into a threshold-stochastic formulation of stream power. The hydrological theory provides
equations for the daily streamflow probability distribution as a function of climatic boundary conditions.
The new parameters introduced are rooted firmly in established climatic and hydrological theory.
This allows us to account for how fluvial erosion rates respond to changes in rainfall intensity, frequency,
evapotranspiration rates, and soil moisture dynamics in a way that is consistent with existing theories.
We use this framework to demonstrate how hydroclimatic conditions and erosion threshold magnitude
control the degree of nonlinearity between steepness index and erosion rate. We find that hydrological
processes can have a significant influence on how erosive a particular climatic forcing will be. By accounting
for the influence of hydrology on fluvial erosion, we conclude that climate is an important control on erosion
rates and long-term landscape evolution.

1. Introduction

Rivers play an important role in shaping Earth’s surface, especially in high relief, mountain environments;
they have become a major focus of research in quantitative geomorphology (e.g., Tucker & Hancock, 2010;
Whipple et al., 1999, 2009), because they are one of the main links between climate and erosion (e.g.,
Burbank et al., 2003; Crave & Davy, 2001; DiBiase & Whipple, 2011; DiBiase et al., 2010; Lague, 2014; Tucker &
Bras, 2000; Whipple & Tucker, 1999). Mountainous bedrock rivers control landscape evolution in unglaciated
mountain environments by steepening hillslopes through bedrock incision and transporting away the result-
ing debris. In doing so, they not only set the relief structure of mountainous regions but also communicate
tectonic signals throughout the landscape (Whipple, 2009; Whipple et al., 1999). All of this is accomplished
ultimately by the ability of flowing water to transport sediment. Therefore, it is natural to conclude that cli-
mate, or more specifically, rainfall, plays an important role in landscape evolution as the main source of water.
Gilbert (1877) pointed this out more than 140 years ago. In the intervening time there have been myriad
theoretical models postulating, and sometimes demonstrating, that climate should play an integral part in
determining the form and rate of change of Earth’s surface. Some consider climate specifically in the context
of a landscape dominated by fluvial erosion (e.g., Beaumont et al., 1992; Roe et al., 2002; Whipple et al., 1999),
and others in a more general sense (e.g., Dahlen & Suppe, 1988; Willett, 1999; Whipple & Meade, 2006).

Despite theoretical predictions and the obvious influence of rainfall on erosion processes at the local scale,
many studies attempting to relate mean rainfall rates or stream power to erosion rates struggle to find a func-
tional relationship across a range of spatial and temporal scales (e.g., Acosta et al., 2015; Bermudez et al.,
2012; Blanckenburg, 2005; Burbank et al., 2003; Godard et al., 2014; Riebe et al., 2001). However, a few stud-
ies that carefully consider factors that may obscure the relationship between rainfall and erosion rates find
a clearer relationship (e.g., Ferrier et al., 2013). This suggests that when the major confounding factors can
be tightly controlled, a relationship between climate and erosion can emerge. In a fluvially dominated land-
scape, some of these factors include spatially varying rock type and uplift rate, erosion thresholds, the intensity
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and frequency of significant storms, the kind and amount of vegetation, sediment supply and transport
dynamics, channel form, and likely other as yet unidentified factors. In order to implement a landscape evo-
lution model that incorporates realistic climatic forcing, these confounding factors must be elucidated and
accounted for, and their potential effect on erosional efficiency must be quantified.

A major difficulty with understanding the impact of climate on fluvial erosion is the large disparity in
timescales. Rainfall rates relevant to erosion processes and streamflow generation vary over hours to days,
whereas the timescales relevant to landscape evolution rates are centuries to millennia. The ecological and
hydrological responses to climatic forcing are also time dependent, complex, and have a nontrivial influence
on landscape evolution (Istanbulluoglu, 2009). It is a challenge to establish geomorphic transport laws that
capture the net effects of this complexity over the relevant ranges of spatial and temporal scales in a quantifi-
able way. Initial attempts used a parameterized effective streamflow that was assumed to capture the average
effect of sediment-laden water flowing over bedrock (Beaumont et al., 1992; Tucker & Slingerland, 1994;
Wolman & Miller, 1960). However, it is well known that there exist thresholds for fluvial transport and erosion
(e.g., Bagnold, 1980; Baker & Kale, 1998; Howard, 1994; Shields, 1936). It has been repeatedly shown that in
the presence of thresholds, as well as other nonlinearities between streamflow and fluvial erosion, effective
streamflow approaches are unsuitable (Lague et al., 2005; Snyder et al., 2003; Tucker & Bras, 2000).

Stochastic treatments are well suited to the task of understanding the long-term effect of nonlinear time
and state-dependent processes operating over short timescales and thus provide an opportunity for linking
climatic and fluvial erosion processes. Pioneering efforts by Tucker and Bras (2000), Crave and Davy (2001),
Snyder et al. (2003), and Lague et al. (2005) using stochastic rainfall forcing and/or the full probability dis-
tribution of streamflow demonstrated the necessity of using a threshold-stochastic approach rather than a
constant effective streamflow one. These studies established a theoretical basis for the use of streamflow vari-
ability in landscape evolution models, a concept long considered important (e.g., Wolman & Miller, 1960).
Recent work has shown that these stochastic models predict catchment-scale erosion rates relatively well
(Scherler et al., 2017). While these studies have done much to account for the temporal complexities inher-
ent in rainfall and streamflow, they have not managed to connect rainfall to streamflow in a convincing way.
Crave and Davy (2001), Tucker (2004), and Tucker and Bras (2000) used a simplified model for hydrology which
is only applicable in small catchments (tens of km2). Lague et al. (2005) made use of an inverse gamma distri-
bution of daily streamflow known to match natural hydrological systems well but did not include any model
for hydrology itself. Ijjász-Vásquez et al. (1992) developed a clever way to integrate stochastic rainfall into a
hydrological and landscape evolution model, but the hydrological model used is ultimately a constant effec-
tive streamflow one. Several other studies have relied on simplified hydrologic models similar to Tucker and
Bras (2000) (e.g., Collins et al., 2004; Istanbulluoglu & Bras, 2006).

In order to explore how climate influences fluvial landscape evolution, it is critical that some of the complex-
ity of hydrological systems be modeled, so that river streamflow can respond realistically to changing climatic
and hydrological conditions. For example, it has been observed that the transformation of rainfall to stream-
flow is nonlinear, with heavy-tailed probability distributions of streamflow resulting from light-tailed rainfall
distributions (Basso, Schirmer, & Botter, 2015; Rossi et al., 2016), which has important implications for fluvial
erosion. In addition, there are other aspects of landscapes besides rainfall that determine the fluvial response
to a particular climatic forcing, such as vegetation (mainly through evapotranspiration), dynamics of soil mois-
ture storage, as well as how and how fast water is transmitted through basins to rivers (Huang & Niemann,
2008; Istanbulluoglu, 2009; Rodriguez-Iturbe, 2000; Rossi et al., 2016).

Landscape evolution models that include hydrology in varying degrees of complexity exist. For example,
Huang and Niemann (2006a) and Huang and Niemann (2008) present landscape evolution models with a
sophisticated hydrological component. However, they require very short time steps that make the mod-
els slow to run (runtimes measured in weeks). More modern, but similar models still require weeks to run
(Zhang et al., 2016). Using the Channel-Hillslope Integrated Landscape Development framework (Tucker et al.,
2001), Yetemen et al. (2015) develop a landscape evolution model with a sophisticated vegetation growth and
water use component, but again, the model is restricted to daily time steps. Realism and accuracy must be
balanced with computational efficiency and generality. A landscape evolution model that requires extensive
calibration or time steps on the order of hours or days to keep track of ecological and hydrological processes
will be difficult to evolve naturally or prohibitively slow when the timescales of interest are millions of years.
It is also not possible to explore theoretically the behavior of models that have many parameters and/or have
been implemented in an explicit, mechanistic manner.
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To address this problem, we aim to develop a model of threshold-stochastic fluvial erosion that accounts
for realistic, time-varying rainfall, hydrology, and streamflow but retains simplicity, a low number of parame-
ters needing minimal calibration and can handle time steps measured in decades or centuries. To that end,
we have integrated a stochastic-mechanistic model of hydrology (Botter et al., 2007, 2009), which has been
demonstrated to work well across a range of landscapes and climates (e.g., Basso, Schirmer, & Botter, 2015;
Botter et al., 2010; Ceola et al., 2010; Doulatyari et al., 2015; Schaefli et al., 2013) into the threshold-stochastic
stream power formulation of Lague et al. (2005). By using a stochastic approach, we can develop analytical
solutions that describe the net effect of daily climatic and hydrological processes over long periods, without
sacrificing the details of the daily effects. In this way, key thresholds and nonlinearities can be accounted for
with a minimum loss of computational efficiency. We establish equations for the daily streamflow distribution
and streamflow variability that are applicable across a large range of observed streamflow regimes. The model
shows how the distributions of daily streamflow arise from the climatic and hydrological conditions in a river
basin. The new climatic and hydrological parameters introduced are rooted firmly in established hydrological
theories and many are easily measured from hydrographs and weather station data.

Lague (2014) set out conditions that should be met by any stream power incision model (SPIM) that has been
properly temporally upscaled. In developing our model, we stay within the scope of this and previous work on
threshold-stochastic (TS)-SPIMs, reproducing results of previous work on the role of the mean and variability
in setting the long-term erosion rate (e.g., DiBiase & Whipple, 2011; Lague, 2014; Lague et al., 2005; Tucker &
Bras, 2000) and put them in a more general framework by explicitly relating long-term erosion rate to climatic
and hydrological conditions. In doing so we aim to better determine which and how hydrological processes
influence the relationship between long-term fluvial erosion rates and climate.

2. The Hydrological Model

The hydrological model presented in this work is an extension of the physically based stochastic hydrol-
ogy and soil moisture model laid out in Botter et al. (2007, 2009). In the following sections we summa-
rize key aspects of this model, focusing on those that are relevant to its incorporation into a landscape
evolution model.

2.1. Rainfall
It is critical that we capture the intermittent and widely variable intensity of daily rainfall. To do this, daily
rainfall is modeled after Rodriguez-Iturbe et al. (1999) as a marked Poisson process of rate 𝜆. The subdaily
temporal structure of individual storms is not considered. The depths of daily rainfall are considered to be
independent and identically distributed random variables, p, described by an exponential probability density
function (pdf)

fP(p) =
1
𝛼

e−p∕𝛼, (1)

where 𝛼 is the specific mean daily rainfall amount on days with rainfall (i.e., the volume of rainfall divided by
the catchment area, referred to as the mean storm depth). We follow this practice for all variables which are
measured as volumes integrated over a river catchment. The rate of the Poisson process𝜆 can be interpreted as
the mean frequency with which rainfall occurs; thus, we refer to it as the mean storm frequency. The reported
range of 𝜆 is from < 0.05 to nearly 1 day−1 and of 𝛼 is from 2 to > 30 mm (Deal et al., 2017; Rossi et al., 2016).
The specific mean daily rainfall rate is the product of the mean storm depth and the mean storm frequency,
p̄ = 𝛼𝜆 (Rodriguez-Iturbe et al., 1987).

There are some potential issues with using the exponential distribution to represent daily rainfall depths,
which we address at the end of the discussion. Regardless, the exponential distribution for daily rainfall
depths has been applied with great success in hydrology and ecohydrology, particularly for the characteriza-
tion of daily soil moisture and streamflow dynamics (e.g., Basso, Schirmer, & Botter, 2015; Botter et al., 2010;
Ceola et al., 2010; Doulatyari et al., 2015; Laio et al., 2001; Milly, 1993; Mueller et al., 2014; Park et al., 2014;
Porporato et al., 2004; Rodriguez-Iturbe et al., 1999; Settin et al., 2007; Tamea et al., 2010).

2.2. Soil Moisture
Soil moisture has come to be recognized as a vital ecological and hydrological feature of river basins, influenc-
ing the river response to storm events (e.g., Rodríguez-Iturbe et al., 2006, 2000). The daily soil moisture state
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is controlled by its local mass balance, as influenced by rainfall, evapotranspiration, surface runoff and runon,
subsurface flow, and leakage to deeper water reservoirs.

After Botter et al. (2007), we model the effect of these processes on daily streamflow with a physically based
model of soil moisture first developed by Rodriguez-Iturbe et al. (1999). For simplicity, we refer to the hydro-
logically active layer, or the layer of soil that is affected by rainfall and evapotranspiration processes at a daily
timescale as the soil layer. The soil layer acts as a reservoir that is filled by random rainfall inputs. Each rainfall
event of depth p replenishes the soil layer which has capacity nsolZr (where nsol is soil porosity with a reported
range of 0.35 to 0.55 (Doulatyari et al., 2015; Laio et al., 2001; Porporato et al., 2004) and Zr the active or root-
ing depth with a common value of 500 to 1,000 mm (Doulatyari et al., 2015)) until a critical threshold s = s1

is reached, after which the soil layer is saturated. At this point, additional rainfall is considered runoff, which
recharges the catchment-scale excess water storage and eventually becomes streamflow. In between rainfall
events, the soil moisture is reduced by evapotranspiration, which is considered to only occur above the wilt-
ing point s = sw and increases linearly with increasing soil moisture up to a maximum rate that depends on
available energy for vaporization (potential evapotranspiration, PET, reported range of U.S. Geological Survey
basins at the annual scale 1.5 to 5.6 mm/d (Rossi et al., 2016)). Since the soil moisture can only range from sw

to s1, the dynamic soil moisture capacity is so = (s1 − sw)nsolZr . According to Laio et al. (2001), values for s1 and
sw for a variety of soil types range from 0.35 ≤ s1 ≤ 1 and 0.11 ≤ sw ≤ 0.52. For a more in-depth description,
see Laio et al. (2001) or Porporato et al. (2004).

This model captures one of the key hydrological processes determining daily streamflow, which is that the
soil layer acts as a buffer, capturing and holding incoming rainfall, which allows time for evapotranspiration
to return moisture to the atmosphere. The presence of a soil moisture threshold that needs to be exceeded
before significant runoff and infiltration processes occur means that the buffer effect is more significant for
small storms than large storms. This perspective is put forth in Rossi et al. (2016), where the conclusions are
supported by an extensive data set of streamflow mean and variability, as well as basin rainfall and evapo-
transpiration rates from across the United States. Rossi et al. (2016) demonstrate that the disproportionate
effect of the soil layer and evapotranspiration on small and moderate rainstorms has a important impact on
the streamflow variability.

In order to know the mean daily streamflow as well as other statistical characteristics of streamflow in a basin, it
is necessary to know the mean magnitude and frequency of streamflow generation events, referred to here as
floods. Calculating the mean frequency of floods in particular is challenging because the storm depth required
to exceed the soil moisture threshold depends on the antecedent soil moisture state, which is time dependent.
It has been shown by Porporato et al. (2004) to be 𝜔𝜆, where 𝜔 is a nondimensional filtering factor that is a
function of hydrology and climate

𝜔 =
𝜙 ss∗∕𝜙

∗ e−s∗

s∗Γ(s∗∕𝜙)𝛾(s∗∕𝜙, s∗)
, (2)

where Γ() is the gamma function, 𝛾(, ) is the regularized lower incomplete gamma function (see Appendix A
for more information on the incomplete gamma functions used in this work), 𝜙 is the aridity index, and s∗ is
the effective soil depth. The effective soil depth describes the capacity of the soil layer to store water relative
to the average storm depth, s∗ = so∕𝛼, and the aridity index is the ratio of the potential evapotranspiration
rate to the mean rainfall rate (𝜙 = PET∕p̄). The aridity index has a commonly reported range from nearly 0 to 5
(Gentine et al., 2012; Rossi et al., 2016).

Therefore, the effects of the soil layer (storage and evapotranspiration) on incoming rainfall are captured by
𝜔. The soil layer dynamics can have an influence on streamflow generation ranging from very significant
(𝜔 = 0.01), where flood frequency and mean daily streamflow are several orders of magnitude less than rain-
fall frequency and mean, to having almost no effect (𝜔 = 1) (Rossi et al., 2016). The relevant parameters of the
soil moisture model are the dynamic soil storage, so, and the maximum evapotranspiration rate, PET, which
express the influence of the soil layer conditions on the streamflow ratio. Despite its simplicity and low dimen-
sionality, this minimalist mechanistic-stochastic model has seen wide application and success in predicting
probability distributions of catchment-scale daily soil moisture and streamflow (e.g., Doulatyari et al., 2015;
Dralle & Thompson, 2016; Feng et al., 2015; Laio et al., 2001; Porporato et al., 2004, 2002; Rodríguez-Iturbe
et al., 2006; Settin et al., 2007).
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Figure 1. Classic energy-limited and water-limited response of
evapotranspiration rates to changes in aridity index proposed by
Budyko (1974). Expected response of thin- and thick-soiled basins are
also shown. Thin-soiled basins never achieve high evapotranspiration
rates because a limited amount of water available for
evapotranspiration can be stored in the soil water.
ET = evapotranspiration; PET = potential ET.

2.3. Catchment-Scale Water Balance and the Streamflow Ratio
Here we consider a simplified mean catchment-scale water balance at steady
state that can be written as

⟨ET⟩⟨P⟩ +
⟨Q⟩⟨P⟩ = 1, (3)

where ⟨P⟩ = p̄A is the mean rainfall rate (A is catchment area), ⟨ET⟩ is the mean
loss to evapotranspiration, and ⟨Q⟩ is the mean daily streamflow. ⟨Q⟩ is the prod-
uct of the mean frequency of floods, 𝜔𝜆, and the mean storm depth. Therefore,
the fraction of incoming rainfall that is partitioned into streamflow is described
by the streamflow ratio 𝜔 ⟨Q⟩⟨P⟩ = 𝛼𝜔𝜆A

𝛼𝜆A
= 𝜔, (4)

and the specific mean daily streamflow (e.g., mean daily streamflow normalized
by catchment area) is simply

𝜇 = 𝛼𝜔𝜆 = 𝜔p̄. (5)

As seen in equation (2), the streamflow ratio is controlled by the effective soil depth, s∗, and the aridity index,
𝜙, two nondimensional numbers that describe the interaction of climate and hydrology. The effective soil
depth is a measure of how easily a single storm can saturate the soil layer. When s∗ is small, the average storm
can easily saturate the soil, putting the catchment into an effectively thin soil regime. When s∗ is large, the soil
is saturated only by intense, rare storms or a rapid sequence of smaller magnitude storms, and the catchment
is in an effectively thick soil regime.

The aridity index describes the losses to evapotranspiration relative to the volume of incoming rainfall. It is an
established measure of whether a catchment tends toward humid or arid conditions (Budyko, 1974), and is
useful for describing a simplified long-term water balance. When𝜙 < 1, the rainfall rate exceeds the potential
evapotranspiration rate, which leads to energy-limited conditions. In effect, the losses to evapotranspiration
are limited by energy available for evapotranspiration rather than water availability, and conditions are humid.
When 𝜙> 1, conditions are said to be water limited. On average, the capacity for evapotranspiration exceeds
the available water, and conditions are more arid (Figure 1).

Figure 2. The contours denote the value of the streamflow ratio 𝜔
as a function of the aridity index 𝜙 and the effective soil capacity s∗
(values shown on righthand side). The wet, intermediate and dry
conditions defined by Porporato et al. (2004) are also shown and
correspond approximately to humid conditions with effectively
thick soil; arid conditions with effectively thick soil; and arid
conditions with effectively thin soil, respectively.

The consideration of soil moisture storage capacity, s∗, further divides humid
and arid regimes, leading to four different soil moisture regimes. If s∗ > 1 under
energy-limited conditions, the catchment is in a humid, thick soil regime and
the main control on the streamflow ratio 𝜔 is the aridity index 𝜙. This regime
corresponds to the wet regime defined by Porporato et al. (2004) and shown in
Figure 2. Although the soil layer is effectively thick, the slow drying rate means
that storms will often occur over wet antecedent conditions. This means that
even small storms normally incapable of saturating the soil layer may push an
already wet soil layer over the threshold and produce a streamflow event. When𝜙
and s∗ are both less than one, the catchment is in a humid, thin soil regime and the
highest transmission rates of rainfall to streamflow occur. Most storms are able to
saturate the soil layer and produce a streamflow event, and the streamflow ratio
is not particularly sensitive to either 𝜙 or s∗.

When s∗ > 1 under water-limited conditions, the catchment is in an arid, thick
soil regime, 𝜔 is small, and the transformation of rainfall to streamflow is dra-
matically impacted by evapotranspiration. This regime corresponds roughly to
intermediate conditions defined by Porporato et al. (2004). The effectively thick
and dry soil layer acts as a buffer on incoming storms, absorbing small to mod-
erate storms, and releasing the water from these storms back to the atmosphere
through evapotranspiration. Rainfall rates and evapotranspiration potential are
balanced, evapotranspiration rates are high, and transmission rates of rainfall to
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Figure 3. (a) The empirical exceedance probability of three U.S. Geological Survey (USGS) stations (colored points) are
compared to the best fit b and 𝜈 (colored dashed lines). Blue corresponds to summer streamflow (June–August) over
the period 1980 to 2014 from USGS station 02298123 (Prairie Creek near Fort Ogden, FL). Yellow corresponds to spring
streamflow (March–May) over the period 1980 to 2014 from USGS station 02235200 (Blackwater Creek near Cassia, FL).
Black corresponds to summer streamflow (June–August) over the period 1980 to 2014 from USGS station 09430500
(Gila River near Gila, NM). Inset panel shows the same, but as probability densities instead of exceedence probabilities,
note both left- and right-hand tails are well fit. (b) Exceedance distributions of streamflow for different recession
exponents, b. All lines correspond to variability index of 1.

streamflow are moderate to low. As a result, both the mean streamflow𝜇 and the flood frequency are reduced.
The final case is an arid, thin soil regime (s∗ < 1, 𝜙> 1), corresponding approximately to the dry conditions
defined by Porporato et al. (2004) (see Figure 2). Despite high evapotranspiration rates, the role of evapotran-
spiration is downplayed due to the small soil moisture storage capacity—moderate and even small storms
can saturate the soil layer. As a result, effectively thin-soiled basins with high aridity indices will only lose a
small to moderate fraction of incoming rainfall to evapotranspiration (Figure 1—effectively thin soil trend).

2.4. Distributions of Daily Streamflow
The hydrological model treats catchments as a simple dynamical system and makes the assumption that stor-
age in the catchment (W) is released as river streamflow (q) according to a power law relationship (q = cwWd)
(e.g., Kirchner, 2009). This folds much of the hydrological complexity related to how water moves through
basins, and how runoff is generated into a few parameters. This is useful here both because we are inter-
ested at this point more in the dynamical hydrological response to rainfall than the specific and numerous
processes responsible for this response and because such an approach yields a description of streamflow
recessions that works well in many places (e.g., Basso, Frascati, et al., 2015; Botter et al., 2009; Kirchner, 2009).
This storage-streamflow relationship leads to the time rate change of streamflow being governed by

dq
dt

= −aqb + 𝜉r, (6)

where a and b are the recession coefficient and the recession exponent, respectively, and can be related to
cw and d (Kirchner, 2009), q is the (specific) daily streamflow, and 𝜉r is the stochastic effective rainfall forcing.
Alternatively, we can write this in terms of a nondimensional streamflow

dq∗

dt
= −

qb
∗

𝜏
+
𝜉r

𝜇
, (7)

where q∗ = q∕𝜇 is daily streamflow normalized by its mean and 𝜏 = 𝜇1−b∕a is a hydrological response
timescale that we discuss in more detail later. Botter et al. (2007) show that the effective rainfall forcing 𝜉r can
be well approximated by a Poisson process with the same distribution of depths as rainfall, but a lower rate
that is modulated by the streamflow ratio, such that the rate is equal to the flood frequency (𝜔𝜆).

This leads to three different solutions for the distribution of daily streamflow in terms of hydroclimatic param-
eters, depending on the value of the recession exponent, b. For the case b = 1, Botter et al. (2007) showed
that the streamflow distribution is a gamma distribution with shape parameter k = 𝜔𝜆𝜏 and rate parameter
𝛽 = 𝜔𝜆𝜏∕𝜇, shown here in nondimensional form

fQ∗
(q∗) =

(𝜔𝜆𝜏)𝜔𝜆𝜏

Γ(𝜔𝜆𝜏)
q𝜔𝜆𝜏−1
∗ exp

[
−𝜔𝜆𝜏q∗

]
. (8)
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Figure 4. An example streamflow recession that has been fit with equation (7) (solid black line, b = 1.5, 𝜏 = 10 days).
(a) The effect changing recession exponent b has on the shape of the streamflow recession is shown. (b) Same as in (a)
but for changes in response time 𝜏 .

We present a newly derived distribution of streamflow for the case b = 2 that is an inverse gamma distribution
with shape parameter k + 1 = 𝜔𝜆𝜏 + 1 and scale parameter 𝛽 = 𝜔𝜆𝜏𝜇 (derivation in Appendix B). It is worth
noting that this distribution is identical to that from Lague et al. (2005) and k is the same as that used in Lague
et al. (2005), DiBiase and Whipple (2011), Lague (2014), and Scherler et al. (2017)

fQ∗
(q∗) =

(𝜔𝜆𝜏)𝜔𝜆𝜏

Γ(𝜔𝜆𝜏)
q−𝜔𝜆𝜏−2
∗ exp

[
−𝜔𝜆𝜏q−1

∗
]
. (9)

This distribution has a power law tail, meaning that it has a much heavier tail relative to the gamma distribution
found for b = 1. The general solution for the case that b ≠ 1, 2 is given by Botter et al. (2009) as

fQ∗
(q∗) = C q−b

∗ exp

[
−𝜔𝜆𝜏

(
q2−b
∗

2 − b
−

q1−b
∗

1 − b

)]
, (10)

where C is a normalizing constant such that ∫ ∞
0 fQ∗

(q∗)dq∗ = 1. A general analytical solution for C is challeng-
ing, though there are straightforward solutions for certain values of b as well as analytical approximations
(see Appendix C). A particularly useful solution exists for b = 1.5

fQ∗
(q∗) =

q−3∕2
∗

4K−1(4𝜔𝜆𝜏)
exp

[
−2𝜔𝜆𝜏

(
q1∕2
∗ + q−1∕2

∗
)]
, (11)

where Kv(⋅) is a modified Bessel function of the second kind. In equation (10) there is an atom of probability,
po, that q = 0 for 0 < b < 1(Botter et al., 2009)

po = C𝜔𝜆𝜏𝜇b−1𝛿(q∗). (12)

Equation (10) is undefined at b = 1, 2. However, it can be shown numerically that the limit of equation (10) as
it approaches b = 1 is equation (8) and the limit as it approaches b = 2 is equation (9). Further, for 1 < b < 2,
equation (10) exhibits probabilities of extreme events between that of the analytical solutions for b = 1 and
b = 2 (Figure 3). This allows us to obtain the distribution of streamflow across the observed range of b. The
range of solutions for different values of b leads to a resolution of the issue of which distribution to use to best
represent daily streamflow. Depending on the value of b, the distribution of streamflow ranges from expo-
nential (light tailed) to power law tailed (heavy tailed). The use of the second parameter b vastly improves
the ability to fit empirical distributions of daily streamflow, which are not all well fit by the inverse gamma
distribution (Rossi et al., 2016) (Figure 3). Although flood flashiness b and the variability index 𝜈 both influ-
ence the variability of daily streamflow, they may express different influences of landscape and climate on
streamflow generation.
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Figure 5. (a) The 1,144 observations of recession exponent b, 725 rivers in Europe (Berghuijs et al., 2016), and 419 in the
United States (W. Berghuijs, personal communication, 2017). The values of b are well distributed around 1.5, with the
majority falling between 1 and 2. (b) The 1,183 observations of variability index collected from literature (Lague et al.,
2005, Taiwan, n = 23; Carretier et al., 2013, West Andes, n = 18; Doulatyari et al., 2015, United States, n = 44; Basso,
Schirmer, & Botter, 2015, United States, Switzerland, and Italy, n = 47; Rossi et al., 2016, United States and Puerto Rico,
n = 653; Scherler et al., 2017, Himalaya and Eastern Tibet, n = 398). Variability index shown here represents both annual
and seasonal values. The range is larger than discussed previously, from 0.025 to 50, but with most values between
0.1 and 10.

2.5. Streamflow Variability
Daily streamflow variability refers how often and by how much the daily streamflow deviates from the mean
and can be measured in many ways. In the context of landscape evolution we are concerned in particular with
the frequency and magnitude of streamflow events significantly larger than the mean.

The hydrological model used here idealizes hydrographs as being made up of storm impulses followed by
streamflow recessions that last until the next impulse. In this idealized case, the variability is controlled by the
specifics of streamflow recessions. We model streamflow recessions using equation (7). As a result, streamflow
variability is controlled by two factors: the shape of the recessions, determined by the recession exponent b,
and the speed of the recessions relative to the mean time between streamflow generating storms, determined
by hydrological response time 𝜏 and flood frequency 𝜔𝜆.
2.5.1. The Recession Exponent
The recession exponent b determines the response of a river basin to a single-storm impulse by dictating the
shape of the recession curve (see Figure 4a). When b is one, the recession follows a decreasing exponential
function of time. When b is greater than one, the response of the basin to an impulse is more dramatic, with
a faster drop from the initial high streamflow state to a slower decay at low streamflows. This means that for
higher values of b, the peak of the storm impulse is larger relative to the mean. This leads to a heavier-tailed
distribution of daily streamflow, as seen in equations (8)–(10).

While there are some theories as to precisely what determines b in a river basin (e.g., Biswal & Marani,
2010; Harman et al., 2009; Rupp & Selker, 2006), there is not yet a general consensus (Chen & Krajewski,
2016; Harman et al., 2009). Empirical data sets show that it is likely influenced by climate (Berghuijs et al.,
2014), ecohydrology (Szilagyi et al., 2007), land use (Bogaart et al., 2016), and basin geology/geomorphology
(Tague & Grant, 2004). For now we consider b to be an externally defined parameter. Despite uncertainties due
to different approaches used for fitting b (Chen & Krajewski, 2016), empirical distributions from bulk analysis
(rather than individual recessions) point to values which mostly fall between 0.5 and 2.5, with values above
3.5 rare (Berghuijs et al., 2016; Bogaart et al., 2016; Ye et al., 2014) (Figure 5a).

The observation that b is often between one and two implies that distributions of daily streamflow will have
tails that are less heavy than power law tails (b = 2), but heavier than exponential (b = 1). This is well sup-
ported by Rossi et al. (2016), which find that the majority of the stations analyzed in the United States have a
tail that is lighter than power law, but heavier than exponential.
2.5.2. Characteristic Response Time
Two river basins with the same recession exponents can still exhibit fundamentally different recessions.
This is because there exists a characteristic timescale for the catchment’s hydrological response to a storm
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Figure 6. Observations of annual variability index from United States
and Puerto Rico (Rossi et al., 2016, n = 653) divided into catchments
with less than 10% annual contribution to water budget by snowfall
(rainfall dominated), and those with greater than 10% contribution
by snowfall (snowpack influenced). As noted by Rossi et al. (2016),
snowpack-influenced catchments have systematically lower
variability indices, which agrees with predictions of snowpack
accumulation model of Schaefli et al. (2013).

impulse independent of the shape of the recession set by b (Figure 4). This
timescale captures important catchment-scale hydrological features such as
catchment morphology and aspect ratio and average hydrological pathway
length and conductivity (Botter et al., 2013). Conceptually, this is similar to
defining a half-life for the streamflow recessions.

We can extract the characteristic response time, 𝜏 , from the recession coefficient
a. Dralle et al. (2015) point out that due to the scaleless nature of the power law
describing streamflow recessions, equation (6), a will exhibit an artificial corre-
lation with b. They show that there exists a decorrelated recession coefficient â
such that â = aqb−1

o , where qo is a scaling factor that is basin specific. Here we use
the mean daily streamflow 𝜇 as a proxy for qo. Though not perfect, there is some
preliminary evidence that this is not a poor choice (Dralle et al., 2015). This defines
a new recession coefficient â with units of (day−1). The characteristic timescale
for the streamflow recession is then defined as 𝜏 = 1∕â.

If the mean time 𝜏storm between floods is small compared to the characteristic
time 𝜏 associated with the time for a storm pulse to leave the basin, recessions
will sample a narrow range of streamflow magnitudes, and the supply of water to
the river will be relatively consistent. This will yield a streamflow regime with low
variability. On the other hand if the time it takes for the river basin to drain a storm
pulse is small relative to the effective interstorm period, then the recessions will

span a large range of streamflow magnitudes from the highs right after the storm to the lows of baseflow. This
will yield a streamflow regime with high variability.

This explains why the shape parameter of the pdf of streamflow from equations (8)–(10) is the ratio of the
timescale of the hydrological response to the effective interstorm period. It is known to be a robust description
of the streamflow variability in the case b = 1 (Botter et al., 2013). Here we extend it to all values of b and
define it as the variability index. The distribution of 𝜈 from variety of climates is shown in Figure 5b.

𝜈 =
𝜏storm

𝜏
= 1
𝜔𝜆𝜏

. (13)

2.5.3. Accounting for Snowpack
Schaefli et al. (2013) develop a simplified method in the same stochastic hydrology framework used here
to account for winter streamflow influenced by significant winter snowpack accumulation using three sim-
ple assumptions. First, they assume that evapotranspiration does not occur during the winter season. As a
result the frequency of floods is equal to the frequency of precipitation because the catchment is not influ-
enced by soil moisture dynamics. Second, they assume that the catchment is divided into two sections. One
section that is permanently frozen and does not contribute to streamflow during the winter season, and the
rest of the catchment that is still hydrologically active but experiences periodic freezing and accumulation of
snowpack. It is assumed that the division of the catchment is a function of its hypsometry and an elevation,
z∗, above which the temperature remains below 0∘C the entire winter season. The final assumption is that
the hydrological response time 𝜏 is increased by the average period of time the mean catchment temper-
ature is below freezing and snowpack is accumulating, 𝜏D, such that the hydrological response time during
the winter season is 𝜏w = 𝜏 + 𝜏D (Schaefli et al., 2013). This results in a winter season pdf of daily streamflow
when b = 1

fQw∗
(qw∗) =

(𝜆𝜏w)𝜆𝜏w

Γ(𝜆𝜏w)
q𝜆𝜏w−1

w∗ exp
[
−𝜆𝜏wqw∗

]
, (14)

where qw∗ = q∕(𝜇fa), and fa is the fraction of the catchment active during the winter season. Similarly, in the
case that b = 2

fQw∗
(qw∗) =

(𝜆𝜏w)𝜆𝜏w

Γ(𝜆𝜏w)
q−𝜆𝜏w−2

w∗ exp
[
−𝜆𝜏wq−1

w∗
]
. (15)
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Figure 7. Changing the mean rainfall frequency and intensity, 𝜆 and 𝛼, while keeping the hydrological conditions
constant (PET = 5 mm/d, so = 5 mm, 𝜏 = 5 days, b = 1.5) demonstrates the covariation of 𝜇 and 𝜈. (a) Three different
daily rainfall distributions ranging from high mean rainfall intensity and frequency (dashed line) to low
(dash-dotted line). The associated streamflow distributions in (b) range from classically arid (dash-dotted line),
with low mean and high variability to classically humid (dashed line), with high mean and low variability.

And for the case that b ≠ 1, 2

fQw∗
(qw∗) = C q−b

w∗ exp

[
−𝜆𝜏w

(
q2−b

w∗

2 − b
−

q1−b
w∗

1 − b

)]
, (16)

where C is again a normalizing constant such that ∫ ∞
0 fQw∗

(qw∗)dqw∗ = 1.

In river basins where evapotranspiration does not account for a significant fraction of the water balance, the
main control on the variability index is the hydrological response time. This conditions is assumed to prevail in
basins with significant snowfall during the winter months. Therefore, the proposed model will lead to overall
lower variability indices during the winter in these catchments because of the increased response time 𝜏w . This
is in broad agreement with Rossi et al. (2016), who find that catchments with >10% precipitation as snowfall
have systematically lower variability indices (Figure 6).

It must be noted that the variability indices from Rossi et al. (2016) apply to the full year, and the model of
Schaefli et al. (2013) only makes predictions about the winter season. It does not necessarily follow that a low
winter variability index must lead to a reduced annual variability index (e.g., when mean streamflow during
other seasons is significantly higher or lower than winter mean streamflow, this could lead to an increased
annual variability index). Still, the model is shown to perform well in predicting probability distributions of
winter streamflow in several alpine catchments (Schaefli et al., 2013).

Another weakness of this model for winter streamflow is that it does not account for the spike in stream-
flow associated with springtime melting that must play an important role in determining annual streamflow
variability. Finally, much of the uncertainty in the model is hidden by calibrating the elevation parame-
ter z∗ to provide the best fitting pdf rather than determining z∗ a priori. Refer to Schaefli et al. (2013) for
further discussion on the issues inherent in using a minimalistic model to account for winter streamflow in
mountainous catchments with snowpack accumulation and melting, which are complex and heterogenous
processes.

2.6. Daily Streamflow Mean and Variability
Both the daily streamflow mean and variability depend on the flood frequency 𝜔𝜆, leading to the following
relationship between them

𝜈 = 𝛼

𝜏𝜇
. (17)

This offers theoretical support for the long-observed negative correlation between 𝜇 and 𝜈 (Lague, 2014;
Molnar et al., 2006; Rossi et al., 2016), as well as the common observation that dry river basins have high daily
streamflow variability. To illustrate this point, Figure 7 shows predicted streamflow probability distributions
resulting from a range of mean rainfall intensities and frequencies. As the mean rainfall frequency decreases,
the flood frequency decreases which, in turn, causes a decrease in the mean streamflow and an increase in
the streamflow variability index. The effect is that the frequency of moderate events is much lower in the dry
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basin, while the frequency of large floods is comparable between basins. This is in line with Rossi et al. (2016),
who observe a significant difference in the magnitude of frequent streamflow events, but a small difference
in the magnitude of rare events between arid and humid basins.

3. Integration of Hydrology Into the SPIM

In detachment-limited rivers incising into bedrock, the erosion rate is commonly modeled as a power law of
excess shear stress (e.g., Howard, 1994; Tucker & Bras, 2000) of the form

𝜀 = ke(𝜏s − 𝜏c)at , 𝜏s >𝜏c (18)

or of the form (DiBiase & Whipple, 2011; Lague et al., 2005)

𝜀 = ke(𝜏
at
s − 𝜏at

c ), 𝜏s >𝜏c, (19)

where 𝜀 is the vertical incision into the riverbed, 𝜏s is the basal shear stress, 𝜏c is the critical shear stress for
erosion to occur, ke is an erosional efficiency constant, and at an exponent reflecting the dominant erosion
process (Whipple et al., 2000). As in Tucker (2004), Lague et al. (2005), and Lague (2014), we use equation (19)
because it is more analytically tractable than the original shear stress incision model proposed by Howard
et al. (1994) and Tucker and Bras (2000). In order to relate streamflow to shear stress, it is necessary to know the
channel cross-sectional profile and roughness. To obtain this, we make common assumptions about channel
width and depth as a function of mean streamflow and daily streamflow (e.g., DiBiase & Whipple, 2011; Lague,
2014; Lague et al., 2005). This results in the following expression for the daily incision as a function of daily
streamflow, mean daily streamflow, and channel slope (Lague et al., 2005)

𝜀 = K⟨Q⟩mc Snc q𝛾∗ − 𝜓, q> qc. (20)

K = kekat
t k−at𝛼t

w ; mc = at𝛼t(1 − 𝜔b); nc = at𝛽t; 𝛾 = at𝛼t(1 − 𝜔s); 𝜓 = ke𝜏
at
c . (21)

For more information on channel hydraulic parameters (𝛼t , 𝛽t , kt , kw ,𝜔b, and𝜔s) and the derivation in general
see Appendix D. K is an erodibility coefficient that is a function of channel hydraulics and lithology but not
climate, q∗ = q∕𝜇 is the normalized specific daily streamflow, ⟨Q⟩ is the mean daily catchment integrated
streamflow (⟨Q⟩ = 𝜇A), S is the river slope, and 𝜓 is the threshold for erosion. The exponents mc, nc, and 𝛾
are determined by the channel form and hydraulics, as well as dominant erosion process. The exponent nc

determines the relative importance of the river slope. The exponent mc is related to the downstream scaling
of channel width. In contrast, the exponent 𝛾 describes the at-a-station channel width with the daily variations
in streamflow and therefore controls the sensitivity of the daily erosion rate to streamflow variability. When
𝛾 > 1 shear stress 𝜏s increases disproportionately to daily streamflow, and large floods will be more important
in determining the long-term erosion rate than when 𝛾 ≤ 1.

Equation (20) is the instantaneous incision rate due to the streamflow magnitude q. Our goal is to use
knowledge of the probability distribution of q to temporally upscale (20) into a SPIM of the form

⟨E⟩ = K ′kn
s = K ′AmSn, (22)

where ks = SA
mc
nc . K ′ may be a function of channel hydraulics, erosion thresholds, climate, hydrology, and

anything else deemed important, but it is independent of both catchment area A and channel slope S.

To obtain the upscaled SPIM, previous studies integrated the magnitude of daily incision as a function of
streamflow, weighted by the probability of observing a particular streamflow magnitude (e.g., DiBiase &
Whipple, 2011; Huang & Niemann, 2006b; Lague, 2014; Lague et al., 2005; Tucker & Bras, 2000)

⟨E⟩ = ∫
qm∗

qc∗

𝜀(q∗) fQ∗
(q∗)dq∗, (23)

where ⟨E⟩ is the mean long-term erosion rate, the lower bound of the integral is the critical streamflow that
exceeds the erosion threshold, and the upper bound is the maximum streamflow expected in the period of
observation. Conceptually, there is a small problem with this approach which may matter when the maximum
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streamflow is relatively low (qm < 100𝜇) or when the variability is high (see Appendix E for details). To properly
account for a maximum streamflow, the pdf of streamflow should be truncated at q = qm and renormalized,
producing a new pdf f t

Q(q | qm) that has zero probability of q> qm, and can be safely integrated to infinity,
leading to

⟨E⟩ = ∫
∞

qc∗

𝜀(q∗) f t
Q∗
(q∗ | qm∗)dq∗ =

∫ qm∗
qc∗

𝜀(q∗) fQ∗
(q∗)dq∗

∫ qm∗
0 fQ∗

(q∗)dq∗
(24)

Though this approach is effective, in the final derivation, we use a different approach that is functionally
equivalent, but we feel provides a firm theoretical basis for future work (see Appendix E for derivation).

The upscaled SPIM is ⟨E⟩ = 𝜇𝜀K 𝜇mc Amc Snc − 𝜆𝜀𝜓, (25)

where

𝜇𝜀 = ∫
∞

qc∗

q𝛾∗f t
Q∗
(q∗ | qm∗)dq∗ =

∫ qm∗
qc∗

q𝛾∗fQ∗
(q∗)dq∗

∫ qm∗
0 fQ∗

(q∗)dq∗
(26)

is the nonlinear average of daily streamflow above the threshold. This is similar to the most effective
streamflow defined in the classic work of Wolman & Miller (1960, their Figure 1). The second new variable

𝜆𝜀 = ∫
∞

qc∗

f t
Q∗
(q∗ | qm∗)dq∗ =

∫ qm∗
qc∗

fQ∗
(q∗)dq∗

∫ qm∗
0 fQ∗

(q∗)dq∗
(27)

is the probability of streamflow exceeding the threshold, which can be thought of as an erosion fre-
quency akin to the rainfall frequency 𝜆. Both 𝜇𝜀 and 𝜆𝜀 have analytical solutions for the case of b = 1, 2
(see Appendix G).

A useful and common approximation to make is to assume the maximum streamflow is so large that it can
be treated as infinite (DiBiase et al., 2010; Lague, 2014; Snyder et al., 2003; Tucker, 2004; Tucker & Bras, 2000).
Then the truncated pdf in equations (26) and (27) can be replaced with the original pdf of streamflow, fQ∗

(q∗),
leading to simpler analytical forms of 𝜇𝜀 and 𝜆𝜀. This approximation is helpful in simplifying the math and is
generally safe to make (Lague et al., 2005). However, it is possible, particularly for heavier-tailed distributions
with high variability indices, that assuming much larger maximum streamflows than are actually observed
could lead to overpredicted erosion rates. With the approximation qm∗ ∼ ∞, 𝜇𝜀, and 𝜆𝜀 are

𝜇𝜀 =
⎧⎪⎨⎪⎩

Γ(1∕𝜈+𝛾)
Γ(1∕𝜈)𝜈−𝛾

Γ(1∕𝜈 + 𝛾, qc∗∕𝜈); b = 1
K(2𝛾−1)(4∕𝜈)

K−1(4∕𝜈)
Γg(2𝛾 − 1, 2

√
qc∗∕𝜈; 4∕𝜈2); b = 1.5

Γ(1∕𝜈+1−𝛾)
Γ(1∕𝜈)𝜈𝛾−1 𝛾(1∕𝜈 + 1 − 𝛾, 1∕𝜈qc∗); b = 2

(28)

𝜆𝜀 =
⎧⎪⎨⎪⎩
Γ(1∕𝜈, qc∗∕𝜈); b = 1
Γg(−1, 2

√
qc∗∕𝜈; 4∕𝜈2); b = 1.5

𝛾(1∕𝜈 + 1, 1∕𝜈qc∗); b = 2
(29)

where Γ(, ) is the upper regularized incomplete gamma function, 𝛾(, ) is the lower regularized incom-
plete gamma function, and Γg(, ; ) is the generalized upper regularized incomplete gamma function (see
Appendix A for details on the special functions used here). This last function is not as useful as the other spe-
cial functions used here because it is not included in standard computational packages. However, there do
exist algorithms to calculateΓg(, ; ) that should be computationally cheaper than direct numerical integration
of (26) and (27) (Chaudhry et al., 1996; Veling, 2011). For the case b ≠ 1, 1.5, or 2, equations (26) and (27) can
be integrated numerically. We see from (28) and (29) that the influence of hydrology on the upscaled SPIM is
expressed entirely by 𝜈, b, and 𝜇.

Although equation (25) is an upscaled SPIM, it is not in the desired form of equation (22), because the proper
scaling between ⟨E⟩ and ks is not clear due to the dependence of the critical streamflow qc∗ on channel slope S.
In section 3.1 we discuss further how the scaling can be extracted from this SPIM.
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Figure 8. Slope exponent, n, as a function of qc∗ and b computed using equation (25) (blue, black, and gold lines)
compared to the approximation of ns from equation (37) (light gray lines). (a) shows 𝜈 = 0.2, (b) shows 𝜈 = 1, and
(c) shows 𝜈 = 5. We also set 𝛾 = 0.75 for (a)–(d), which is argued to be the most common value (DiBiase & Whipple,
2011). The three regimes discussed in text are labeled in all panels. (d) n as a function of the erosion threshold
normalized by mean long-term erosion rate instead of mean daily streamflow. While n is larger when b < 2 compared to
b = 2, the slope exponent takes on reasonable values within the observed range of normalized erosion thresholds. For
reference, the gray boxes correspond to conditions in the Himalaya and Eastern Tibet (Scherler et al., 2017, assuming
variable D50 and 𝜏c and 100 ≤ ksn ≤ 400), as well as the San Gabriel Mountains (DiBiase & Whipple, 2011), though the
variability index is not 1 for all rivers in these locations.

3.1. Controls on TS-SPIM Slope Exponent
Lague (2014) defined two classes of upscaled SPIMs: those that take into account erosion thresholds and
streamflow variability, referred to as TS-SPIMs, and those that use a constant effective streamflow with no
thresholds, referred to as constant-discharge SPIMs (CD-SPIMs). Further, there are three established regimes
that rivers can exist in for which the parameters K ′ and n are defined differently. These regimes depend on the
magnitude of the erosion threshold (DiBiase & Whipple, 2011; Lague et al., 2005). When the erosion threshold
is small (qc∗ ≪ 1), the CD-SPIM is accurate (DiBiase & Whipple, 2011; Lague et al., 2005), and the river is in
regime III (Figure 8). In this case, it can be shown that the SPIM derived here (25) collapses to a CD-SPIM in the
form we seek

⟨E⟩ = Kcdknc
s = KcdAmc Snc (30)

Kcd = 𝜇𝜀K𝜇mc (31)

assuming qc∗ = 0 and qm∗ ∼ ∞, where

𝜇𝜀 =
⎧⎪⎨⎪⎩

Γ(1∕𝜈+𝛾)
Γ(1∕𝜈)𝜈−𝛾

; b = 1
K(2𝛾−1)(4∕𝜈)

K−1(4∕𝜈)
; b = 1.5

Γ(1∕𝜈+1−𝛾)
Γ(1∕𝜈)𝜈𝛾−1 ; b = 2

(32)

In this case, Kcd is independent of channel slope and catchment area, and nc captures the scaling of the
steepness index with erosion rate.
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DiBiase and Whipple (2011) defined regime I for rivers with large erosion thresholds (qc∗ ≫ 1). In this regime,
the TS-SPIM applies and the CD-SPIM is inaccurate. Specifically, in the case of b = 2, Lague (2014) provides an
equation for TS-SPIM in the form of (25)

⟨E⟩ = Ktskns
s = KtsAms Sns (33)

Kts =
(
𝛾Γ(1∕𝜈 + 2)−1

(1 + 𝜈 − 𝛾𝜈)𝜈1∕𝜈

)
𝜓

1− ns
nc K

ns
nc 𝜇ms (34)

ns =
nc

𝛾

(1
𝜈
+ 1

)
=
𝛽t(1 + 𝜔𝜆𝜏)
𝛼t(1 − 𝜔s)

(35)

ms =
mc

nc
ns =

mc

𝛾

(1
𝜈
+ 1

)
. (36)

In general, the equation for Kts is not yet known in this regime. However, using the symmetry between
equations (8)–(10), we propose an approximation for the channel slope exponent when qc∗ ≫ 1, valid for
0 < b < 2.5

ns =
nc

𝛾

(
q2−b

c∗

𝜈
+ 1

)
=
𝛽t(1 + 𝜔𝜆𝜏q2−b

c∗ )
𝛼t(1 − 𝜔s)

. (37)

The accuracy of this equation is demonstrated in Figure 8. Similarly, it can be shown that the area exponent
in regime I can be approximated as

ms =
mc

𝛾

(
q2−b

c∗

𝜈
+ 1

)
=

1 − 𝜔b

1 − 𝜔s
(1 + 𝜔𝜆𝜏q2−b

c∗ ). (38)

Therefore, the SPIM predicts that profile concavity 𝜃 = m
n

should not change as a function of
threshold-stochastic effects because ms

ns
= mc

nc
. In between regime I and III is the transition regime, II, which

occurs when qc∗ is in the neighborhood of 1. Here K ′ and n take on transitional values between those of the
TS-SPIM and the CD-SPIM (Figure 8).

The observation that the exponent on channel slope is often significantly larger than 1 when the SPIM is fit
to river profiles (DiBiase et al., 2010; Ouimet et al., 2009; Snyder et al., 2003) is problematic for the CD-SPIM,
whose slope exponent, nc, is a function of the dominant erosion mechanism and channel cross-sectional pro-
file and should be close to 1 and not larger than 2 for most proposed models (Lague, 2014; Lague et al., 2005).
In contrast, the slope exponent of the TS-SPIM, ns, is also a function of climate, not just channel hydraulics,
and will be systematically larger than nc (Lague, 2014), which compares more favorably with observed slope
exponents.

The TS slope exponent computed using equation (37) is compared to the slope exponent n computed from
the full SPIM (equation (25)). When b < 2, the slope exponent becomes a function of the erosion threshold,
increasing the degree of nonlinearity of channel slope compared to when b = 2. The flood flashiness, b, is
often observed to be less than 2 (Berghuijs et al., 2014; Rossi et al., 2016). The resulting dependence of the TS
slope exponent on qc∗ means that it is sensitive to controls on qc∗, in particular the specific mean streamflow
and the grain size distribution in the river. It also means that channel slope is likely to have an influence on its
exponent through the critical streamflow.

The TS-SPIM provides an explanation for observed slope exponents significantly larger than one; however, the
slope exponents it predicts may actually be too large. Lague (2014) makes the observation that many moun-
tainous rivers are firmly in regime I (albeit with the assumption b = 2), which implies large slope exponents,
particularly when the variability index is small (Figure 8). This is at odds with the fact that slope exponents
have rarely been observed larger than 4 (DiBiase et al., 2010; Ouimet et al., 2009; Scherler et al., 2014). To
some extent, this mismatch is tempered by the fact that erosion is very slow in low variability, high threshold
regimes that should have very high slope exponents (i.e., if such rivers exist, they are not the ones whose slope
exponents are measured). Figure 8d shows the slope exponent where the erosion threshold is normalized
by mean long-term erosion rate instead of mean streamflow. The slope exponent takes on more reasonable
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Figure 9. At low streamflow variability the erosion threshold qc∗
controls the erosion efficiency, with the erosion rate decreasing
progressively as the erosion threshold is increased from 0 (solid lines)
to 1 (dashed lines) to 5 (dashed-dotted lines). At high streamflow
variability, the erosion nonlinearity 𝛾 becomes the dominant control,
and the erosion efficiency increases as 𝛾 increases from 0.75
(yellow lines) to 1 (black lines) to 1.25 (blue lines). Here b = 1.5,
but the trends are qualitatively similar for 1 ≤ b ≤ 2.5.

values within the observed range of normalized erosion thresholds. Regardless,
Figure 8 illustrates that the TS-SPIM exhibits a wider range in the slope expo-
nent than observed. The lack of slope exponents larger than 4 still merits further
study. The mismatch could imply that hydrology and hydraulics do not play as
important a role as expected.

One encouraging result is found in Scherler et al. (2017), who investigate slope
exponents in the Himalaya and Eastern Tibet. They find exceptionally low vari-
ability indices; however, the mean streamflow is very high, leading to qc∗ ≤ 1,
with the implication that these rivers are mostly in regimes II and III. The slope
exponents they find, between 1 and 2, are in the correct range. And indeed, the
erosion rates are best collapsed by a SPIM with small erosion thresholds.

3.2. Daily Streamflow Variability and Long-Term Erosion Rate
According to equation (25), the long-term erosion efficiency varies as a func-
tion of streamflow variability index (Figure 9). Erosion efficiency is measured by
the normalized long-term erosion rate, defined as the long-term erosion rate⟨E⟩ divided by the constant streamflow reference erosion rate 𝜀o = K⟨Q⟩mc Snc

(arrived at when there are no threshold effects and when 𝛾 = 1). This highlights
the influence of the variability of daily streamflow and the erosion threshold.

In general, when the variability index is large, erosion efficiency is controlled by the at-a-station nonlinearity, 𝛾
(see Figure 9). Erosion efficiency increases with increasing variability when 𝛾 > 1 because of the strengthened
influence of large floods and decreases with increasing variability when 𝛾 < 1 because of the weakened
influence of large floods. In contrast, when the variability index is small, erosion efficiency is controlled by
the erosion threshold qc∗. When the variability index is small, erosion efficiency decreases with increasingly
higher thresholds, regardless of the value of 𝛾 . These results are consistent for 1 ≤ b ≤ 2.5 and are in line with
previous work (Lague et al., 2005; Tucker & Bras, 2000). This suggests that for a wide range of conditions, the
erosion threshold will be a dominant factor in setting the long-term erosion rate for 𝜈 ≤ 1.
3.2.1. The Role of b
Larger values of b lead to heavier-tailed distributions of daily streamflow. Rare streamflow events associated
with heavier-tailed distributions are larger than equally rare events from light-tailed distributions. Thus, the
effect of increasing b is similar to increasing the variability index, 𝜈. Higher b values also lead to increased
sensitivity to 𝛾 when the variability index is large and a lowered sensitivity to the erosion threshold when the
variability index is small. Hydrological and geomorphological conditions are often implicated as controls on
b (Bogaart et al., 2016; Szilagyi et al., 2007; Tague & Grant, 2004). In this way, they can influence the efficiency
of fluvial erosion for different dominant processes, channel cross sections (setting 𝛾), and erosion thresholds.

The magnitude of the effect that changes in the variability index have on the erosion rate will differ for different
values of b. One consequence of this is that if b and 𝜈 covary, the response to increasing variability will be
compounded by increasing b and will be more significant than would be predicted for a constant b value.
3.2.2. The Importance of Maximum Streamflow for Power Law-Tailed Streamflow Distributions
For heavy-tailed distributions (b ≥ 2), the long-term mean erosion rate does not necessarily converge to a
constant value, even for long observation periods. Instead, the measured long-term erosion rate may fluctuate
continuously over time. However, if there exists a physical upper limit on the magnitude of daily streamflow
qm∗, the erosion rate will converge to a mean value once the observation period is long enough to have a
good probability of including qm∗. Thus, the existence of maximum streamflow has a significant impact on
the existence of a long-term mean erosion rate, especially when b ≥ 2 and 𝛾 ≥ 1. Despite the critical role of
the maximum streamflow, the precise value of qm∗ is often not important in determining the long-term mean
erosion rate, it is only important that it exist. This was also noted by Lague et al. (2005) who showed that the
value of qm∗ is only important in limited regimes (b ≥ 2, v> 1 and 𝛾 > 1).

4. Discussion

The hydrological model creates a framework where only the daily mean and variability of streamflow (𝜇 and 𝜈)
and the recession exponent b are needed to fully specify the distribution of daily streamflow and to relate that
distribution back to the climatic and hydrological conditions giving rise to it. This allows us to bring hydrology
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Figure 10. The interaction of climatic and hydrological conditions
(expressed as s∗ and 𝜙) is what determines the water partitioning
in a catchment. The hydrological conditions are held constant
(PET = 0.5 cm/d, 𝜆 = 0.4, soil capacity nsolZr(s1 − sw) = 2 cm) while the
mean storm intensity is varied (0.2 cm < 𝛼 < 20 cm). The result is that
the relative importance of hydrological processes such as soil moisture
storage and evapotranspiration changes across the range of storm
depths, with the fraction of rainfall lost to evapotranspiration and
interception decreasing significantly with increasing storm depth.

into an upscaled SPIM and unite the work of Tucker and Bras (2000) with
the work of Crave and Davy (2001) and Lague et al. (2005). These work-
ers established two different theoretical bases of stochastic climatic forcing
in landscape evolution that have been used in several subsequent studies
(Carretier et al., 2013; Collins et al., 2004; DiBiase & Whipple, 2011; Istanbul-
luoglu & Bras, 2005, 2006; Lague, 2014; Molnar et al., 2006; Rossi et al., 2016;
Scherler et al., 2017; Snyder et al., 2003; Tucker & Bras, 2000). Tucker and Bras
(2000) and Tucker (2004) consider the effect of realistic stochastic climate forc-
ing but neglect hydrology, arriving at a light-tailed exponential distribution
for streamflow and representing the variability of climate with a parameter
that can be described as one over the storm frequency 1∕𝜆. In contrast, Lague
et al. (2005) consider hydrology directly, using a heavy-tailed distribution for
streamflow commonly observed in nature and representing climatic variabil-
ity with the shape parameter of their heavy-tailed distribution k. However,
this is done at the expense of the connection to realistic climatic forcing,
as the distribution of streamflow cannot be cast in terms of rainfall. Within
the framework presented here, a light-tailed distribution of streamflow and
a solution for the long-term erosion rate very similar to Tucker & Bras, (2000,
their equation (33)) is recovered when b = 1. When b = 2, the streamflow
distribution is heavy tailed, and the solution for the long-term erosion rate
is equivalent to Lague et al. (2005, their equation (17) (assuming qm∗ ∼ ∞)).
Furthermore, the different concepts of climatic variability can be reconciled
in this framework with the variability parameter 𝜈 = 1∕k = (𝜔𝜆𝜏)−1, which is
equivalent to one over Lague’s variability k, and a linear function of Tucker’s
variability 1∕𝜆.

The hydrological model allows us to understand how the mean and variability of streamflow respond to
changes in the climatic and hydrological boundary conditions. In turn, the influence that streamflow mean
and variability have on stream power erosion has been clearly investigated in previous studies (e.g., Lague,
2014; Lague et al., 2005) and is well understood. As a result, the streamflow variability index 𝜈 and the mean
streamflow 𝜇 provide a useful way to understand the effect of hydrology and climate on long-term fluvial
erosion rates.

4.1. Hydrologic and Climatic Controls on Streamflow
Neither the climate nor the hydrology of a river basin alone dictates the resulting streamflow distribution,
but rather the interaction between the two. This means that the same climate can give rise to different fluvial
responses depending on the hydrological regime, leading to the conclusion that the erosional response to a
given climate cannot be predicted without taking into account the hydrology of a river basin.

However, the manner in which the soil layer dynamics and evapotranspiration modulate climate to yield the
streamflow regime (described by 𝜇, 𝜈, and b) is not straightforward. These processes effect both the total
amount of water transmitted through the hydrological system to the river as well as the frequency of floods
and consequently the streamflow variability. In some cases they act as a strong filter, fundamentally altering
the statistics of incoming rainfall. In other cases these processes are less important, leaving the statistics of
rainfall relatively intact as they are transmitted through the basin to become the statistics of streamflow.
4.1.1. Mean Streamflow
One of the most important influences the hydrological conditions in a river basin have on the mean stream-
flow is to control the fraction of the incoming rainfall enters the fluvial system (expressed by the streamflow
ratio𝜔). The reduction of the mean streamflow relative to incoming rainfall can be significant, with arid catch-
ments approaching 100% loss of incoming rainfall to evapotranspiration (Budyko, 1974; Lehner et al., 2017;
Thompson et al., 2011).

Two basins with similar mean rainfall rates, but different soil depths or evapotranspiration rates can have
significant differences in the mean streamflow rates. When the mean storm size is large compared to the
soil capacity, the soil layer is easily saturated, and most storms produce runoff events. In this case the
streamflow ratio is close to one, and the intensity and frequency of streamflow events are closely corre-
lated with the mean and frequency of rainfall. As the storm size decreases relative to soil storage capacity,
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the effective soil depth increases, and the soil layer is saturated only by increasingly infrequent, large storms.
This results in fewer runoff events, as larger fractions of each storm are stored in as soil moisture, and eventu-
ally lost to evapotranspiration. It also results in a larger aridity index, and reduced mean streamflow (Figure 10).
This leads to the conclusion that mean streamflow may be significantly influenced by factors other than the
mean rainfall rate in a river basin, including temperature, insolation, slope aspect, soil depth and porosity, and
vegetation type and cover. These factors can change over time, thereby influencing the long-term evolution
of a river basin.

The partitioning of rainfall into streamflow and evapotranspiration can also respond nonlinearly to changes
in rainfall intensity or frequency, such that changes in mean rainfall rate have a disproportionate effect on
mean streamflow (Figure 10). Additionally, mean streamflow may respond differently to a change in mean
rainfall intensity than it does to a change in mean rainfall frequency, even if the change to mean rainfall rate
is the same in both cases. This is because the rainfall intensity and frequency have different influences on the
effective soil thickness and aridity index.

All else constant, catchments in the thick and/or dry soil regimes will require steeper riverbed slopes to
achieve the same erosion rate compared to catchments with effectively thinner, wetter soils but with the same
mean rainfall rate because the associated mean streamflow rate will be lower. To the extent that vegetation is
correlated with thicker soils and higher evapotranspiration rates (leading to the dry thick soil regime), exten-
sively vegetated catchments could experience slower erosion for the same steepness not only because of
the vegetation’s ability to stabilize slopes but also because of its role in reducing the erosiveness of the rivers
by a (potentially significant) reduction in the mean daily streamflow relative to the incoming mean rainfall
(Lehner et al., 2017; Thompson et al., 2011). Similarly, arid catchments are expected to use each millimeter of
rainfall less efficiently for erosion due to more significant losses to atmospheric fluxes. However, this may be
obfuscated by other differences such as the erosion threshold or streamflow variability that are also expected
to vary systematically between catchments in different hydrological regimes.
4.1.2. Streamflow Variability
The retention of rainfall in the soil layer, and its release back into the atmosphere via evapotranspiration does
not only reduce the mean streamflow but also causes a shift in the statistics of runoff events relative to rainfall.
This is well supported by the study of the environmental controls on streamflow variability in several hun-
dred river basins in the United States and Puerto Rico (Rossi et al., 2016). This study finds that the increase
in streamflow variability associated with increasing basin aridity can be understood as a decrease in the fre-
quency of moderate streamflow events (event return period 0.2–2 years) relative to rare streamflow events
(event return period > 20 years). Rossi et al. (2016) attribute this to the increased likelihood in arid basins for
small and moderate rainfall events to be captured in the soil layer of the basin, and subsequently lost to evap-
otranspiration. The study additionally finds that the basin aridity index, 𝜙, evapotranspiration ratio, ETrat, and
the rainfall frequency, 𝜆, are the best predictors of streamflow variability in rainfall dominated catchments
(<10% precipitation as snow). Finally, Rossi et al. (2016) observe that mean and variability of daily rainfall
intensity are poor predictors of streamflow variability, suggesting that these are not important controls.

These findings match well with the environmental controls on the streamflow variability index described by
our model as well as the conceptual description of how effectively thin or thick, wet or dry soil regimes drive
the streamflow ratio, and consequently the streamflow variability index. Equation (13) predicts that the vari-
ability index is controlled by hydrological response time, mean rainfall frequency, and the runoff ratio, itself
a function of the effective soil thickness and the aridity index (𝜈 = [𝜔(s∗, 𝜙)𝜆𝜏]−1). Rossi et al. (2016) do not
assess the relationship between soil moisture storage capacity or hydrological response time and stream-
flow variability, but the relationships found between aridity index and streamflow variability as well as mean
rainfall frequency and streamflow variability are well captured by our model.

To show this, we use Monte Carlo techniques to probe the controls on streamflow variability predicted by the
model over a wide range of climatic and hydrological conditions (Figure 11). Under energy-limited conditions
(𝜙 < 1), the variability is mostly controlled by the hydrological response time. When conditions are water lim-
ited (𝜙> 1), streamflow variability is predominantly controlled by the effective soil depth, s∗. The control of
the effective soil depth reflects both the importance of soil moisture storage capacity and mean rainfall inten-
sity. However, we note that Rossi et al. (2016) find mean rainfall intensity to be a poor predictor of streamflow
variability, which may imply that the model overemphasizes the role of the effective soil depth.
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Figure 11. Monte Carlo simulations of the streamflow variability index for a wide range of hydrological and climatic
boundary conditions (PET = 0.2–20 mm/d, 𝛼 = 0.25–25 mm, 𝜆 = 0.01–1 day−1, so = 0.5-10 mm, 𝜏 = 1–10 days).
The parameters are chosen randomly from either uniform distributions or uniform distributions in logarithmic space.
(a) For a wide range of conditions, hydrological response time is an important control on variability in humid basins
(𝜙 < 1). (b) Effective soil depth is also an important control on variability, but for arid basins rather than humid ones
(𝜙> 1). Finally, the aridity index is an important overall control on variability, with humid basins tending to be less
variable than wet basins.

Finally, across a wide range of climatic and hydrological conditions, streamflow variability is predicted to be
higher under more arid conditions (Figure 11). This matches the observation from Rossi et al. (2016) and others
that the variability of daily streamflow increases in more arid conditions (e.g., DiBiase & Whipple, 2011;
Molnar et al., 2006).
4.1.3. Hydrology, Climate, and Erosion
It is useful to understand independently the influence of streamflow mean and variability (variability index
and flashiness) on the long-term erosion rate as we have done above. However, the relationship between
streamflow mean and variability index that emerges from the theory presented in this study (equation (17))
suggests that the two should be considered together. This is supported by widespread observations of a neg-
ative correlation between streamflow mean and variability (Molnar et al., 2006; Lague, 2014; Rossi et al., 2016),
which led to previous efforts to consider the influence of covarying mean and variability on long-term erosion
efficiency (DiBiase & Whipple, 2011; Molnar et al., 2006). Previous work was based on empirical relationships.
With our theoretical framework relating streamflow mean and variability index to climate and hydrology we
are ideally suited to explore the effect of covarying, negatively correlated mean and variability index as a result
of changing climate and hydrological boundary conditions.

We show the trajectory a river basin will chart in 𝜇-𝜈 parameter space in response to changing climatic and
hydrological boundary conditions using equation (25) (Figure 12). These trajectories tend to follow the neg-
ative correlation between mean and variability index (i.e., to trend from streamflow regimes with low mean
and high variability index to regimes with high mean and low variability index). This dominant trend results in
portions of 𝜇-𝜈 space that are unlikely to be occupied by a river basin, because they require extreme climatic
and hydrological conditions. This includes river basins with high mean and high variability index as well as
rivers with low mean and low variability index, which corresponds to the upper right and lower left corners
of the parameter space in Figure 12, respectively. This is useful for directing our analysis to a more restricted,
realistic parameter space.

We compute the long-term erosion rate as a function of the streamflow mean and variability using
equation (25) (shown as contours in Figure 12a, where b = 1.8, qc∗ = 5, 𝛾 = 0.75). Figures 12b and 12c show
the absolute erosion rate along the corresponding trajectories in Figure 12a due to changing the mean storm
frequency and intensity. These trajectories can result in a complex response to changing rainfall, such as dips
and peaks in erosion rate due to the trade-off of streamflow mean and variability index. This is consistent with
DiBiase & Whipple (2011, their Figure 10), who also find peaks in erosion rate for the same reason. For refer-
ence, we show the erosion rate for the CD-SPIM (no threshold or variability effects; equation (30) as well as a
model where erosion rate is a simple function of mean rainfall (e.g., ⟨E⟩ = K⟨P⟩mc Snc , Figures 12b and 12c).
The reduction in variability index as mean streamflow increases reduces the impact of a higher mean stream-
flow relative to the CD-SPIM and direct rainfall SPIM. As a result, erosion is in many cases less efficient for high
mean streamflow than predicted by simpler stream power models. This reiterates a point made by DiBiase
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Figure 12. (a) River basins with the same hydrological conditions, but different hydrological response times, are shown
as circles in the streamflow mean-variability index parameter space superimposed upon long-term erosion rate
(grey contours; each contour represents an order of magnitude change in erosion rate). The trajectories that these
basins follow with changing mean storm frequency (solid lines) and mean storm depth (dashed lines) are also plotted.
(b) and (c) show the long-term erosion rate along the trajectories with the corresponding line color and style in (a).
Also shown is the erosion rate as a function of rainfall intensity or frequency using the constant-discharge stream power
incision model without threshold effects ⟨E⟩ ∝ ⟨Q⟩mc (dashed gray lines) and a simple mean rainfall stream power
incision model ⟨E⟩ ∝ ⟨P⟩mc (solid gray lines). The erosion threshold is set at 5 times the mean streamflow (qc∗ = 5).
As a consequence, the absolute magnitude of the threshold increases with increasing mean streamflow. Other
hydroclimatic parameters: b = 1.8, 𝛾 = 0.75, PET = 10 mm/d, so = 12 mm.

and Whipple (2011) that beyond a given mean streamflow, the long-term erosion rate is likely to become rela-
tively insensitive to further increases in the mean streamflow. However, this is not true for the entire parameter
space. We find, in contrast to DiBiase and Whipple (2011), that if the mean streamflow continues to increase,
it eventually exceeds the erosion threshold so often that variability ceases to play a role, and erosion rates
again increase. This is supported by empirical observations of Scherler et al. (2017). Finally, in general, rivers
with a slower response time, 𝜏 should be more significantly affected by the trade-off of streamflow mean and
variability index.

Figure 12 illustrates why the changes in long-term erosion rate depend so heavily on both the climatic and
hydrological conditions of the river basin. Even if it can be established that the trajectory a basin will follow
with changing climatic forcing will trend from the lower right corner to the upper left corner of 𝜇-𝜈 space, we
cannot know how this will affect the erosion rate until we know the river basin’s current position in 𝜇-𝜈 space.
This requires knowledge of both the climatic and hydrological conditions in that basin. Therefore, understand-
ing what hydroclimatic regime a particular basin is in is key to understanding how the long-term erosion rate
will respond to changes in climatic forcing.
4.1.4. Critical Streamflow
Another key to understanding how the erosion rate will evolve with changing climate is the response of the
erosion threshold. The critical streamflow is the minimum flow that exceeds critical shear stress needed for
a given channel configuration (width, roughness, cross-sectional shape, and slope) (e.g., Lague et al., 2005;
Tucker & Bras, 2000). As such it is influenced both by changes in channel hydraulics and critical shear stress.
The parameterization of critical streamflow made here and in previous work (e.g., DiBiase & Whipple, 2011;
Lague, 2014; Lague et al., 2005; Tucker, 2004; Tucker & Bras, 2000) assumes that narrower channels and/or
steeper channels will be able to exceed the critical shear stress with lower streamflow magnitudes. Therefore,
in steeper and/or narrower channel reaches, the role of thresholds and variability will be subdued relative to
other parts of the channel network. However, sediment transport in steep channels is not as well studied as
in alluvial channels from which the parameterization of qc∗ was derived, and there may be other processes
that reduce the dependence of qc∗ on slope or width, such as a slope dependent Shields number (Lamb et al.,
2008; Scherler et al., 2017).

Critical streamflow can also be influenced by changes in the critical shear stress. The critical shear stress is
often related to the D50 of the grain size distribution in a river (DiBiase & Whipple, 2011; Lague et al., 2005).

DEAL ET AL. 762



Journal of Geophysical Research: Earth Surface 10.1002/2017JF004393

Figure 13. Steady state river long profiles with an uplift rate of 0.5 mm/yr
and constant climatic conditions. (a) Changes in the hydrologic response
time, 𝜏 , lead to long river profiles of different steepness due to the influence
on streamflow variability which modify erosional efficiency. (b) Changes
in the storage capacity also influence profile steepness, though the
storage capacity influences both the mean and variability of streamflow.
Modifying rainfall intensity, frequency, or evapotranspiration rates would
have a similar effect.

There is evidence that the grain size distribution delivered from hillslopes
to a river could be a function of erosion rate and climate (Attal et al., 2015;
Sklar et al., 2017) in addition to lithology. If this is the case, and given the
importance of the magnitude of critical streamflow, modeling the fluvial
erosion response to large changes in climate as shown in Figure 12 may not
be valid. Large climatic changes could have an impact on sediment avail-
ability and caliber that may amplify, reduce, or overshadow the change in
streamflow mean or variability.

4.2. Hydroclimatic Controls on Long Stream Profiles
To provide some tangible examples of the magnitude of influence of cli-
matic and hydrological boundary conditions on the stream power model,
we model the steady state long stream profile for several sets of dif-
ferent boundary conditions. We demonstrate with the following numer-
ical experiments that reasonable changes in climatic and hydrological
boundary conditions can result in significant changes in the erodibil-
ity rate constant K ′ and steepness exponent n. Unless otherwise noted,
we use moderate values for all climatic and hydrological parameters:
so = 3–30 mm, PET = 10 mm/d, 𝛼 = 10 mm, 𝜆 = 0.6 day−1, p̄ = 2 mm/d,
and 𝜏 = 3–6 days.

We first explore the effect of the hydrological response time. Rivers
with shorter response times will be characterized by rapid streamflow
responses to rainfall that have higher peak streamflows than rivers with

longer response times. In the model, this translates to a higher variability index, which should usually lead to
more efficient fluvial erosion. River basins at steady state with short response times should have lower relief
and smaller steepness indices than similar river basins with longer response times, all else equal.

This is borne out in Figure 13a, in which two river basins, identical except for the response time, are evolved to
steady state. Changing the response time from 3 to 6 days, which is well within the observed range, results in
a factor 3 change in relief. In our model, the hydrological response time is the sole parameter that influences
the streamflow variability independent of the mean daily streamflow. Therefore, its impact may be overexag-
gerated here. However, its influence on the steady state long river profile is significant, suggesting that even if
it is overexaggerated, the response time should be an important control on streamflow variability and fluvial
erosion rates. Thus, the hydrologic response time, which can be an expression of tectonic history (i.e., fractur-
ing), lithology, or basin size, could provide a mechanism for these basin properties to influence streamflow
variability, and by extension, the steady state profile of rivers.

Differences in the aridity index,𝜙, or the effective soil depth, s∗, between basins will have a similar effect as the
response time. However, different to the hydrological response time, these nondimensional numbers control
the runoff ratio, which influences both the mean and variability of streamflow. We explore this effect here by
modifying the soil moisture storage capacity, so. However, differences in other controls on the aridity index or
effective soil depth, such as the intensity or frequency of rainfall, or the mean evapotranspiration rate should
have similar effects. We model three identical river basins, with the exception of so, which is varied from 3,
to 10, to 30 mm (Figure 13b). For the chosen conditions this equates to effective soil depths of 0.3, 1, and 3,
respectively. As a result the difference in soil storage capacity means that the basin with so = 3 is in the thin,
dry soil regime, while the basin with so = 30 is in the thick, dry soil regime. This has significant consequences
for the runoff ratio, resulting in different streamflow means and variability indices between the three basins
and different steady state river profiles.

4.3. The Failure to Find Trends Between Rainfall Rates and Erosion Rates
Regional comparisons of mean rainfall rates to long-term erosion rates often fail to find significant correlation
between the two (e.g., Acosta et al., 2015; Bermudez et al., 2012; Blanckenburg, 2005; Burbank et al., 2003;
Godard et al., 2014; Riebe et al., 2001). This is perhaps not surprising as there are several confounding factors
such as river slope, catchment area, and spatially varying lithology and uplift rate. In general, comparisons
of the steepness index against long-term erosion rates yield clearer trends (DiBiase & Whipple, 2011; DiBiase
et al., 2010; Wobus et al., 2006); however, they still exhibit considerable spread. Spatially varying lithologies
can be responsible for this spread, but spatial variation of climatic and hydrological boundary conditions
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Figure 14. The distribution of two million Monte Carlo
simulations of the long-term erosion rate for a wide range of
hydrological and climatic conditions plotted against normalized
erosion rate. Contours encompass given percentage of all
simulations, in 10% steps. Additionally, we have shown a small
subsample of the simulations as black dots. The trend of the
normalized erosion rate for a selected set of hydroclimatic
parameters according to equation (25) is shown a black line;
the simulations with parameters falling with ±10% of the
selected set are shown as yellow points.

(b, 𝜏 , 𝜙, s∗) can also cause this spread. It should be expected that comparisons of
mean rainfall rate, specific stream power, or channel steepness index against the
long-term erosion rate over large regions of the Earth do not yield a clear relation-
ship, even when the landscape is expected to be at steady state and the spatial
distribution of uplift rate is known and accounted for. Different hydrological con-
ditions can give rise to different fluvial responses to the same climatic forcing, and
therefore different long-term erosion rates.

This is demonstrated by the results of 2 million Monte Carlo simulations of the
long-term erosion rate are shown for a wide range of hydrological and climatic con-
ditions (Figure 14). The river slope S, catchment area A, erodibility coefficient K , and
the exponents n and m were held constant. The long-term erosion rate can be seen
to vary by several orders of magnitude for a given rainfall rate. This is mostly due
to variations in streamflow ratio, 𝜔, the streamflow variability (parameterized by b
and 𝜈), the erosion threshold, qc∗, and the erosion nonlinearity, 𝛾 . This illustrates
how spatially and temporally varying hydrological, climatic, and channel conditions
can obfuscate the relationship between mean rainfall rate and the long-term ero-
sion rate. However, a trend between mean annual rainfall rate and the erosion rate
emerges from the Monte Carlo simulations when just these five important controls
are taken into consideration (yellow points in Figure 14).

The implication is that the failure of many studies to find regional trends in erosion
rate correlated to mean rainfall rate or stream power does not necessarily point to a
dominance of tectonics over climate. It could also reflect the fact that not all of the
important factors determining how rainfall drives erosion in a fluvially dominated
landscape have been taken into account.

4.4. Outstanding Issues and Limitations
4.4.1. Climate and Hydrological Nonstationarity
In this study we have chosen daily rainfall to represent the variability in climate and
study how it affects mean erosion rate which evolves over much longer timescales.

The resulting difference in timescales between the forcing (rainfall) and the response (erosion) is significant.
While a stochastic approach is useful to upscale these daily processes to landscape evolution timescales, it
assumes that the climatic and hydrological conditions are stationary—that they do not change over long
periods of time. However, it is clear that climate does in general change consistently over periods as short
as decades to centuries. Some of the key parameters, such as the streamflow ratio 𝜔, streamflow variabil-
ity 𝜈, and recession exponent b are relatively straightforward to measure in present-day basins (Doulatyari
et al., 2015). However, there is the inevitable question of whether or not these values have any meaning over
geological time.

It is common in applications of the hydrology model to break the year into seasons over which the controls on
the pdf of streamflow are constant (Doulatyari et al., 2015), as was also found to be necessary by Scherler et al.
(2017) who break the Himalayan year into the monsoon season and the dry season. This suggests a single
season as a minimum time step for any landscape evolution model based on this theory. However, it should
be possible to take larger time steps by using a composite streamflow pdf made of seasonal distributions
weighted by the length of the season, again an approach taken by Scherler et al. (2017). In that case the time
step is constrained by the period over which seasonal controls on the probability distribution of streamflow
remain relatively constant. It most places at most times it is probably reasonable to expect to be able to use
time steps on the order of one to a few decades (e.g., Botter, 2014; Botter et al., 2013), though more research
on reasonable time steps is warranted. Much more challenging than ensuring stationarity of hydroclimatic
conditions over a single time step will be deciding how to evolve these controls over time.
4.4.2. Catchment-Scale Parameters
The model presented here is purposely minimalistic. It reflects an effort to simply capture the key behaviors of
complex nonlinear systems while retaining low dimensionality. A result of this is that the presented framework
makes use of spatially integrated catchment-scale parameters, with the implicit assumption that a single value
can be used to represent spatially heterogeneous local, or point-scale, parameters. This produces a challenge.
It is not always clear how the behavior at the point-scale relates to a catchment-scale parameter. For example,
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although the mean rainfall rate at the catchment-scale is simply the arithmetic mean of the point-scale mean
rainfall rates, the same is not true for the mean storm depth or the mean storm frequency. An understanding
of how the point-scale parameters relate to the catchment-scale parameters, either empirical or theoretical,
is needed to extend this work to 2-D landscape evolution models.
4.4.3. Heavy-Tailed Rainfall
There are three important statistical characteristics of daily rainfall in the context of fluvial erosion rates.
The mean storm depth, the mean storm frequency, and the heaviness of the tail of the distribution of rain-
fall. In this work, we use an exponential distribution for daily rainfall that prohibits exploring the effects
of a heavier tail. The exponential distribution is known to be imperfect for modeling daily distributions of
storm depths, because it is often lighter tailed than empirical rainfall distributions. However, the stochastic
nature of rainfall is still captured, with the exponential distribution approximating the strongly right skewed
magnitude-frequency structure observed in nature while exhibiting the key memoryless property that makes
it analytically tractable. It has been shown that there are no true analytical solutions for the probability dis-
tribution of soil moisture, and therefore for the probability distributions of daily streamflow and erosion for
other functions commonly used to represent daily rainfall, such as the gamma distribution (Verma et al., 2011).

Mueller et al. (2014) tested numerically the error in the estimated distribution of daily streamflow produced by
using an exponential distribution to represent rainfall and found it to be a poor assumption only in the case of
heavy-tailed storm depth distributions (gamma shape parameter< 0.5). While there is some evidence that the
heaviness of the tail of rainfall is important in arid regions (Daly & Porporato, 2010; Mueller et al., 2014), Rossi
et al. (2016) presented an empirical analysis that suggests it is only a secondary control on the distribution of
daily streamflow. We feel that the uncertainties in other parts of the derivation, mainly the streamflow-erosion
relation preclude the need to focus on the details of rainfall. The fact that the exponential model of storm
depths captures the highly right skewed nature of rainfall distributions is sufficient. Additionally, we find the
benefits of analytical solutions make the exponential distribution a worthwhile choice for daily storm depth.
4.4.4. Limitations of the Stream Power Approach
The stream power approach used in this study is limited in that it does not allow for sediment transport
dynamics to be modeled at all and does not work well on short timescales (Beer & Turowski, 2015). The hydro-
logical model outlined above could be integrated with a more sophisticated model of fluvial erosion. However,
the stream power approach remains popular because it successfully predicts many aspects of the steady state
long river profile (Lague, 2014). Further, as pointed out by DiBiase and Whipple (2011) at steady state it is not
possible to distinguish between the stream power model and sediment transport driven models. We have
chosen to use the stream power approach because its simplicity enhances clarity in an already complex anal-
ysis, which is useful for a first step. It also allows us to compare our results with previous results and provides
a standard for future analysis using a more sophisticated erosion model.

Future fluvial incision models will invariably depend to some degree on instantaneous streamflow.
Further, Lague, (2010, 2014) have convincingly demonstrated that upscaling these models temporally is a crit-
ical step that can modify the form of equations substantially. Stochastic hydrological models such as the one
used here provide a powerful tool to properly upscale incision models to long timescales while simultane-
ously linking the long-term behavior to climatic and hydrological boundary conditions. The usefulness of this
approach is not limited to the SPIM.

5. Conclusions

We have developed a theoretical framework for long-term fluvial erosion rates based on a stochastic-
mechanistic model of hydrology in the context of the SPIM. This theory points to six important controls:
(1) the statistics of rainfall, described by the mean storm depth 𝛼 and frequency 𝜆; (2) soil and vegetation
dynamics which modify incoming rainfall, described here by aridity index 𝜙, the effective soil storage capac-
ity s∗ and the streamflow ratio 𝜔; (3) basin response to input described by the hydrological response time
𝜏 and the nonlinearity of the response b to forcing; (4) the erosion threshold, qc∗; (5) the nonlinearity of the
daily streamflow-erosion relationship, 𝛾 ; and (6) the stream power parameters (the exponents m and n, the
erodibility coefficient K , and the river slope S). The first three controls determine the distribution of daily
streamflow (essentially by setting 𝜇, 𝜈 and b), and the last three controls determine how that distribution of
streamflow relates to the distribution of daily erosion and the mean long-term erosion rate. This highlights
the two necessary aspects of any climate driven fluvial erosion model: a model for how rainfall translates into
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streamflow, and a model for how streamflow drives fluvial erosion. The framework presented here allows for a
large range of daily streamflow regimes and makes use of a general daily streamflow-erosion model (a power
law with a threshold and an exponent that can be less than or greater than one). Therefore, we expect that the
main conclusions laid out here will generally apply, even when compared to models with more sophisticated
hydrological or streamflow-erosion laws.

We defined a daily streamflow variability index that it is applicable to a wide range of hydrological regimes
and established that it has a solid physical basis. We also provided a theoretical basis for why streamflow vari-
ability is negatively correlated with mean daily streamflow, a long-observed relationship which is useful for
determining the erosional response to changing climate in a threshold-stochastic stream power context. Fur-
thermore, by using the hydrological model to relate both the mean and variability of streamflow to the climatic
and hydrological boundary conditions, we show how fluvial erosion might respond to realistic climatic forcing.
This allows for direct comparison to meteorological, hydrological, and geomorphological observations.

Finally, we demonstrated that the hydrological conditions in a river basin and the threshold-stochastic nature
of the streamflow-erosion relationship can cause the long-term erosion rate to vary over several orders of
magnitude for a given mean annual rainfall or streamflow rate. The failure of prior studies to find a dependence
of erosion rate on mean annual rainfall or streamflow may stem from not taking into account the above effects.

Notation

𝜆 (s−1) Mean frequency of daily rainfall. Equivalent to fraction of days with rainfall.
p (m) Random variable representing specific rainfall intensity, measured as mean depth of daily rainfall

over river catchment.
𝛼 (m) Specific rainfall intensity, measured as mean depth of daily rainfall over river catchment. This is

the mean magnitude of daily rainfall on days with rainfall.
fP(p) The pdf of daily rainfall intensity.

p̄ (m s−1) Specific mean daily rainfall rate, measured as mean depth of rainfall over river catchment. In
contrast to mean daily rainfall intensity, this is the mean rainfall rate including days with no rainfall.

nsol (0 ≤ ns ≤ 1) (nondimensional) Soil porosity (i.e., fraction of soil volume not occupied by soil).
Zr (m) Vertical thickness of soil/active layer/rooting depth.

s (0 ≤ s ≤ 1) (nondimensional) Random variable representing soil moisture (0 is no soil moisture, 1 is
completely saturated).

sw (0 < sw < s1) (nondimensional) Wilting point—soil moisture threshold below which transpiration
by plants ceases, and evapotranspiration rates are low. Here evapotranspiration is assumed to stop
completely below this threshold.

s1 (sw < s1 < 1) (nondimensional) Soil moisture threshold at which significant streamflow generation
occurs.

so (m) The dynamic soil moisture capacity (e.g., depth of rainfall per unit area that can be absorbed by
soil layer). so = (s1 − sw)nsZr .

𝜔 [0 ≤ 𝜔 ≤ 1] (nondimensional) Runoff ratio. The fraction of incoming rainfall that is partitioned into
streamflow.

𝜙 (nondimensional) Aridity index. Ratio of potential evapotranspiration rate to mean rainfall rate.
s∗ (nondimensional) Effective soil depth. Ratio of soil storage capacity to mean storm depth.

PET (m s−1) Maximum evapotranspiration rate.⟨ET⟩ (m3 s−1) Mean long-term, catchment integrated rate of loss of water to evapotranspiration.⟨P⟩ (m3 s−1) Mean long-term, catchment integrated rate of gain of water from precipitation.⟨Q⟩ (m3 s−1) Mean long-term, catchment integrated rate of loss of water to streamflow.
W (m) Catchment-scale water storage normalized by catchment area.

q (m) Random variable representing specific daily streamflow magnitude.
cw Coefficient of storage-streamflow power law.

d (nondimensional) Exponent of storage-streamflow power law.
a (mb−1 sb−2) Recession coefficient.
b (nondimensional) Recession exponent.
𝜉r (m s−2) Stochastic effective rainfall forcing.
𝜏 (s−1) Hydrologic response time.
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𝜏storm (s−1) Mean time between runoff generating storms (floods). 𝜏storm = 1∕𝜔𝜆.
𝜈 (nondimensional) Streamflow variability index. Related to inverse of parameter used to describe

variability in previous work (𝜈 = 1∕k). 𝜈 = 𝜏storm∕𝜏 = (𝜔𝜆𝜏)−1.
𝛽 Rate parameter in distributions of streamflow.
k (nondimensional) Parameter used to describe variability in previous work, related to variability index

(k = 1∕𝜈). k = 𝜏∕𝜏storm = 𝜔𝜆𝜏 .
qo (m s−1) Scaling factor used to decorrelate recession coefficient a. Here it is taken as being equal to the

specific mean daily streamflow.
𝜇 (m s−1) Specific mean daily streamflow.
â (s−1) Decorrelated recession coefficient. â = a𝜇b−1.

q∗ (nondimensional) Random variable representing normalized daily streamflow. q∗ = q∕𝜇.
fQ∗

(q∗) The pdf of normalized daily streamflow.
fQ(q) The pdf of daily streamflow.

C Normalizing constant for pdf of daily streamflow when b ≠ 1 or 2.
po Atom of probability that q = 0 when b < 1.
at (nondimensional) Exponent of shear stress erosion law.
ke (m s−1 Pa−at ) Rate constant of shear stress erosion law describing efficiency of erosion.
𝜏s (Pa) Shear stress on river bottom exerted by streamflow.
𝜏c (Pa) Critical shear stress for erosion to take place.
𝜀 (m s−1) Daily fluvial erosion rate.
K (m(1−3mc) s(−1+mc)) Erodibility constant, K = kekat

t k−at𝛼t
w .

A (m2) Catchment area.
S (nondimensional) Slope of river channel.

m (nondimensional) Stream power area exponent.
mc (nondimensional) Area exponent in CD-SPIM, mc = at𝛼t(1 − 𝜔b).
ms (nondimensional) Area exponent in TS-SPIM, ms =

mc

𝛾

(
q2−b

c∗
𝜈

+ 1
)

.
n (nondimensional) Stream power steepness or slope exponent.

nc (nondimensional) Steepness exponent in CD-SPIM, nc = at𝛽t .

ns (nondimensional) Steepness exponent in TS-SPIM, ns =
nc

𝛾

(
q2−b

c∗
𝜈

+ 1
)

.

𝜓 (m s−1) Erosion threshold, 𝜓 = ketat
c .

𝛾 (nondimensional) Daily stream power exponent describing the at-a-station nonlinearity of fluvial
erosion as a function of daily streamflow.

qc (m s−1) Specific critical streamflow value that exceeds critical shear stress threshold for a given mean
streamflow, and channel slope and cross-sectional shape.

qc∗ (nondimensional) Normalized critical streamflow value. qc∗ = qc∕𝜇.
qm (m s−1) Maximum daily specific streamflow observed.

qm∗ (nondimensional) Normalized maximum daily streamflow. qm∗ = qm∕𝜇.⟨E⟩ (m s−1) Mean fluvial erosion rate.
𝜆𝜀 (nondimensional) Mean frequency of fluvial erosion.
𝜇𝜀 (nondimensional) Nonlinear average of fluvial erosion weighted by 𝛾 .
𝛼t (nondimensional) Flow exponent from Darcy-Weisbach (𝛼t = 2∕3) or Gauckler-Manning-Strickler

(𝛼t = 3∕5) flow resistance relationship.
𝛽t (nondimensional) Slope exponent from Darcy-Weisbach (𝛽t = 2∕3) or Gauckler-Manning-Strickler

(𝛽t = 7∕10) flow resistance relationship.
𝜔s (nondimensional) Exponent controlling at-a-station scaling of flow width with instantaneous stream-

flow magnitude.
𝜔b (nondimensional) Empirically derived exponent describing along channel scaling of flow width with

mean streamflow magnitude.
kt (Pa s𝛼 m(−2𝛼)) Rate coefficient from Darcy-Weisbach or Gauckler-Manning-Strickler flow resistance

relationship.
kw (m(1−3𝜔b) s(𝜔b)) Empirically derived rate coefficient describing along channel scaling of flow width with

mean streamflow magnitude.

K ′ (m
1−2n mc

nc s−1) SPIM rate constant relating mean long-term erosion rate to steepness index, it is
independent of steepness index.
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Kcd (m1−2mc s−1) CD-SPIM rate constant relating mean long-term erosion rate to steepness index, it is
independent of steepness index.

Kts (m1−2ms s−1) TS-SPIM rate constant relating mean long-term erosion rate to steepness index, it is
independent of steepness index.

ks (m
2n mc

nc ) Steepness index, a measure of area normalized channel slope, ks = A𝜃S.
𝜃 (nondimensional) Concavity index 𝜃 = mc

nc
= 𝛼t

𝛽t
(1 − 𝜔b).

Appendix A: Special Functions

In this study we use the upper regularized incomplete gamma function Γ(, ) defined as

Γ(s, x) = 1
Γ(s) ∫

∞

x
ts−1e−tdt, (A1)

where Γ(⋅) is the gamma function, defined as

Γ(s) = ∫
∞

0
ts−1e−tdt. (A2)

We also use the lower regularized incomplete gamma function 𝛾(, ) defined as

𝛾(s, x) = 1 − Γ(s, x) = 1
Γ(s)∫

x

0
ts−1e−tdt. (A3)

We made a point to use only the regularized versions of the incomplete gamma function even though this
made the notation a bit more awkward because they are simpler to call in python and Matlab. In python
these functions as used here can be called using the scipy package as follows: the gamma function as
scipy.special.gamma(s); the upper regularized incomplete gamma function as scipy.special.gammaincc(s,x);
and the lower regularized incomplete gamma function as scipy.special.gammainc(s,x). In Matlab these func-
tions as used here can be called as follows: the gamma function as gamma(s); the upper regularized incom-
plete gamma function as gammainc(x,s,‘upper’); and the lower regularized incomplete gamma function as
gammainc(x,s,‘lower’), or simply as gammainc(x,s).

Further, we make use of modified Bessel functions of the second kind (Veling, 2011), defined here as

Kv(s) =
2v−1

sv ∫
∞

0
tv−1e

−
(

t+ s2

4t

)
dt, (A4)

which can be called in python as scipy.special.kv(v,s).

Finally, we use the generalized gamma function (Harris, 2008; Veling, 2011), which is defined as

Γ(s, x; a) = ∫
∞

x
ts−1e

−
(

t+ a
t

)
dt. (A5)

Note that Γ(s, x; 0) = Γ(s, x) and Γ(s, 0; 0) = Γ(s). Also, a useful identity is

Γ(s, 0; a) = 2as∕2Ks(2
√

a), (A6)

where Ks() is the modified Bessel function defined above. We use this to define a generalized upper regularized
incomplete gamma function that is analogous to the incomplete regularized functions above

Γg(s, x; a) = 1
Γ(s, 0; a) ∫

∞

x
ts−1e

−
(

t+ a
t

)
dt = 1

2as∕2Ks(2
√

a) ∫
∞

x
ts−1e

−
(

t+ a
t

)
dt. (A7)

Appendix B: Distribution of Daily Streamflow When b = 2

Botter et al. (2009) showed that the pdf of q is

fQ(q) = C
dr(q)∕dq

q
exp

[
−

r(q)
𝛼

+ 𝜔𝜆∫ g(r(q))−1dr(q)
]
+ po𝛿(q), (B1)
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where C is a normalizing constant, po𝛿(q) is an atom of probability that q = 0, g(x) is the storage loss function
q = g(W), and r(q) is its inverse

W = g−1(q) = r(q). (B2)

To find r(q) in the case b = 2, we start with

dq
dt

= −aq2. (B3)

We also note that due to conservation of mass, the storage term W will change over time as

dW
dt

= −q. (B4)

Integrating both (B3) and (B4), it is straightforward to show that (with the assumption that q(0) = 0)

q(t) = (at)−1 (B5)

and

W(t) = −1
a

ln(t) + c. (B6)

Inverting (B5) and substituting it into (B6) leads to

r(q) = 1
a

ln(cq), (B7)

where c is a constant. Putting r(q) into the general solution for the pdf of daily stream flow (equation (B1)), we
find that for b = 2

fQ(q) =
(𝜔𝜆∕a)1∕𝛼a+1

Γ(1∕𝛼a + 1)
q−1∕𝛼a−2 exp

[
−𝜔𝜆∕aq

]
, (B8)

which is an inverse gamma function equivalent to equation (9) when the substitution a = 𝜇1−b∕𝜏 is made.

Appendix C: Analytical Approximations for C

We can rewrite the general distribution of daily streamflow (equation (10)) as

fQ∗
(q∗) = Cq−b

∗ e−k1q1−b
∗ ek2q2−b

∗ , (C1)

where k1 = k∕(b − 1) and k2 = k∕(b − 2). To find C, we need to integrate from 0 to ∞

C =
[
∫

∞

0
q−b
∗ e−k1q1−b

∗ ek2q2−b
∗ dq∗

]−1

. (C2)

If we make the substitution t = x1−b and dt = (1 − b)x−bdx

C = (1 − b)
∫ ∞

0 ek2t𝜙e−k1tdt
, (C3)

where𝜙 = −k1∕k2 = (b−2)∕(1−b). This is equivalent to the laplace transform of the first term of the integrand

C = (1 − b)
{ek2t𝜙}(k1)

. (C4)

This is the laplace transform of a stretched exponential, and there is no simple analytical solution, though
solutions in the form of Meijer G functions are possible for certain values of b, as well as simpler solutions for
particular values of b, such as b = 3∕2. We also offer one approximation, valid only for 1 < b < 2, arrived
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at by noting the similarity between equations (8)–(10), and by taking advantage of the known normalizing
factors from equations (8) and (9)

C =
(

2𝜋(2 − b)(b − 1)
𝜇2k

)1∕2 (k∕(2 − b))k∕(2−b)

Γ(k∕(2 − b))
k∕(b − 1)k∕(b−1)

Γ(k∕(b − 1))
. (C5)

This approximation has very low error when k> 1. When k < 1, the error is low when b is close to 1 or 2 and
reaches a maximum when b = 1.5. The error reaches about 50% for b = 1.5 when k = 0.01.

Appendix D: Channel Hydraulics

A common starting point for derivations of the stream power law is given by Tucker (2004) and Lague
et al. (2005)

𝜀 = ke(𝜏
at
s − 𝜏at

c ), 𝜏s >𝜏c, (D1)

which relates the daily fluvial incision rate 𝜀 to the excess shear stress on the riverbed. The exponent at is a
function of dominant incision process (Whipple et al., 2000), and the rate coefficient ke appears to be in the
range of 10−13 (Lague, 2014). In order to make use of the distribution of daily streamflow, it is necessary to
relate the streamflow to the shear stress it exerts. To do this, we use the derivation of Tucker and Bras (2000) to
relate the shear stress exerted on the riverbed to the flow depth (approximated by the streamflow qA divided
by the river width) and the riverbed slope using a formulation equivalent to the Manning or Darcy-Weisbach
equation, depending on the values for 𝛼t and 𝛽t ,

𝜏s = kt

(
qA
w

)𝛼t

S𝛽t , (D2)

where w is the channel width, S is the riverbed slope, and kt is a factor accounting for acceleration of grav-
ity, density of water, and a friction factor. This implies that what we need to know in order to estimate the
shear stress 𝜏s from the distribution of streamflow is the relationship between stage (the height of water sur-
face) and streamflow. Tucker and Bras (2000), Lague et al. (2005), and DiBiase and Whipple (2011) accomplish
this with two empirical relations. First, they describe how the width of the river at one location on the river
changes relative to a benchmark width (e.g., bankfull width or mean streamflow width) with daily variations
in streamflow,

w
wa

=
(

q
𝜇

)𝜔s

, (D3)

where wa is the benchmark width. This amounts to describing the cross-sectional profile of the channel. Differ-
ent shapes can be described by changing the value of𝜔s. Lague et al. (2005) then describe how the benchmark
width of the river increases with downstream increases in ⟨Q⟩, written as a power law

wa = kw⟨Q⟩𝜔b , (D4)

where kw and 𝜔b are empirically derived constants.

Substituting equations (D2)–(D4) into (D1) leads to equation (20), which describes the daily erosion rate in
terms of daily streamflow and river slope

𝜀 = K⟨Q⟩mc Snc q𝛾∗ − 𝜓, q> qc, (D5)

where K = kekat
t k−at𝛼t

w , mc = at𝛼t(1 −𝜔b), nc = at𝛽t , 𝛾 = at𝛼s(1 −𝜔s), and 𝜓 = ke𝜏
at
c (Lague et al., 2005; Tucker

& Bras, 2000).

Appendix E: Missing Probability in Previous Approaches to Estimating Long-Term
Fluvial Erosion Rates
To obtain the long-term mean erosion rate, previous studies integrated the magnitude of daily incision as
a function of streamflow, weighted by the probability of observing a particular streamflow magnitude (e.g.,
DiBiase & Whipple, 2011; Huang & Niemann, 2006b; Lague et al., 2005; Tucker & Bras, 2000)

⟨E⟩ = ∫
qm∗

qc∗

𝜀(q∗) fQ∗
(q∗)dq∗, (E1)

DEAL ET AL. 770



Journal of Geophysical Research: Earth Surface 10.1002/2017JF004393

where the lower bound of the integral is the critical streamflow that exceeds the erosion threshold and the
upper bound is the maximum streamflow expected in the period of observation. Conceptually, this approach
makes sense, though mathematically, there is a small problem.

The probability of erosion not occurring plus erosion occurring accounts for all possible outcomes, and
therefore must be equal to one (∫ ∞

0 fQ∗
(q∗)dq∗ = 1). The probability of erosion not occurring is equal to

the probability that streamflow does not exceed the critical streamflow, Pr[q∗ < qc∗] = ∫ qc∗
0 fQ∗(q∗)dq∗.

In equation (E1), the probability that erosion occurs is implicitly stated to be Pr[qc∗ ≤ q∗ ≤ qm∗] =
∫ qm∗

qc∗
fQ∗

(q∗)dq∗. There is a small probability remaining that q∗ > qm∗. Simply stating that streamflow should
not exceed the maximum is not sufficient. Equation (E1) implicitly, and accidentally, assumes that when
streamflow exceeds the maximum qm∗ no erosion occurs. The assumption that should be made is that the
probability of exceeding the maximum streamflow is zero. This requires truncating the streamflow pdf above
qm∗ before integrating, leading to a slightly modified pdf, f t

Q∗
(q∗ | qm∗). Finally, and most importantly, this pdf

is renormalized such that the Pr[q∗ < qm∗] = 1 (Daly & Porporato, 2010).

In most cases, this is not a significant issue, because the probability of exceeding the maximum streamflow is
low. However, when the distribution of streamflow is highly variable, or the maximum streamflow is chosen
to be relatively small, the missing probability will be more significant, which can lead to incorrect estimations
of the long-term erosion rate. To correct this, it is possible to take the same approach as previous studies, but
now integrating to infinity and using a properly truncated pdf of streamflow f t

Q∗
(q∗ | qm∗) (see Appendix F for

derivation of truncated pdf)

⟨E⟩ = ∫
∞

qc∗

𝜀(q∗) f t
Q∗
(q∗ | qm∗)dq∗. (E2)

However, we use a different approach described in the next appendix that is functionally equivalent but we
feel is more complete and provides a firmer theoretical basis for future work.

Appendix F: Long-Term Erosion Rate
F1. Pdf of Daily Erosion
We start with the distributions of streamflow for b = 1

fQ∗
(q∗) =

kk

Γ(k)
qk−1
∗ exp

[
−kq∗

]
(F1)

b = 2

fQ∗
(q∗) =

kk

Γ(k)
q−k−2
∗ exp

[
−kq−1

∗
]

(F2)

and b ≠ 1, 2

fQ∗
(q∗) = C q−b

∗ exp

[
−k

(
q2−b
∗

2 − b
−

q1−b
∗

1 − b

)]
. (F3)

Imposing a maximum observed daily streamflow qm∗ truncates the pdf above qm∗ and requires that the pdf
be renormalized such that ∫ qm∗

0 fQ∗
(q∗)dq∗ = 1. This leads to a new distribution f t

Q∗
(q∗ | qm∗)

f t
Q∗
(q∗ | qm∗) =

{
CfQ∗

(q∗) q∗ ≤ qm∗
0 q∗ > qm∗

, (F4)

where C is a normalizing constant. We can find this constant by integrating f t
Q∗
(q∗ | qm∗):

∫
∞

0
f t

Q∗
(q∗ | qm∗)dq∗ = C

(
∫

qm∗

0
fQ∗

(q∗)dq∗ + ∫
∞

qm∗

0 dq∗

)
= 1, (F5)

which, in the case of b = 1, leads to

C =
[
1 − Γ(k, kqm∗)

]−1
(F6)
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and in the case b = 2

C = Γ(k + 1, k∕qm∗)−1, (F7)

where Γ(a, x) is the regularized upper incomplete gamma function.

The effect of a threshold at q∗ = qc∗ is different than truncating the pdf because we gather the probability of
q∗ < qc∗into an atom of probability in the pdf of 𝜀 at 𝜀 = 0. This atom of probability is equal to Pr[q∗ < qc∗].
We define this atom of probability as 1 − 𝜆𝜀. The probability that an erosion event occurs then is 𝜆𝜀, defined
in the text.

If we assume a relationship between daily incision 𝜀 and daily streamflow q of the form 𝜀 = g(q), then we can
calculate the pdf of daily incision as a simple change of variable

fE(𝜀) = f t
Q(g

−1(𝜀) | qm)
dq
d𝜀
. (F8)

So then the overall pdf of 𝜀 is composed of three parts. First, the atom of probability at 𝜀 = 0, second, the
truncated probability distribution of q> qc as a function of 𝜀, and finally, 0 for all values of 𝜀 corresponding to
q> qm because the probability of q> qm is also 0:

fE(𝜀) =
⎧⎪⎨⎪⎩

1 − 𝜆𝜀 𝜀 = 0
𝜆𝜀f t

Q(g
−1(𝜀) | qm) 0 < 𝜀 ≤ 𝜀m

0 𝜀> 𝜀m

, (F9)

where 𝜀m = 𝜀(qm).

If we want to use the pdf of daily incision to calculate the long-term erosion rate, we simply calculate the mean
incision rate

⟨E⟩ = ∫
∞

0
𝜀 fE(𝜀)d𝜀., (F10)

which, using the definition of fE(𝜀), breaks down to

⟨E⟩ = 𝜀(qc) (1 − 𝜆𝜀) + ∫
𝜀m

0
𝜀 𝜆𝜀f t

Q(g
−1(𝜀) | qm)

dq
d𝜀

d𝜀 + ∫
∞

𝜀m

𝜀 0 d𝜀, (F11)

where 𝜀(qc) = 0. This reduces to

⟨E⟩ = 𝜆𝜀 ∫
𝜀m

0
𝜀 f t

Q(g
−1(𝜀) | qm)

dq
d𝜀

d𝜀. (F12)

Note that up to this point, we have specified neither the form of fQ∗ or 𝜀, which makes this approach general.
This is also very similar to the approach of Tucker and Bras (2000), Lague et al. (2005), Huang and Niemann
(2006b), and DiBiase and Whipple (2011) where they integrate over the magnitude of daily incision as a
function of streamflow prorated by the probability of observing a particular streamflow magnitude

⟨E⟩ = ∫
qm

qc

𝜀(q) fQ(q)dq, (F13)

except we have properly eliminated the probability of exceeding qm and we keep explicit track of the effects
of the erosion threshold and streamflow distribution on the frequency of erosion (𝜆𝜀) and the magnitude of
daily erosion (expressed by the pdf of 𝜀).

The function g−1(𝜀) can be found from daily incision as a function of daily streamflow as derived by Lague
et al. (2005)

𝜀 = K⟨Q⟩mSnq𝛾∗ − 𝜓, (F14)

where K is a complex erodibility coefficient, m, n, and 𝛾 exponents defined in Lague et al. (2005) and 𝜓 is the
threshold of erosion. It can easily be shown 𝜓 = K⟨Q⟩mSnq𝛾c∗, which, if we set 𝜀o = K⟨Q⟩mSn (a constant with
respect to q) reduces daily incision to

𝜀 = g(q) = 𝜀oq𝛾∗ − 𝜓 = 𝜀o(q𝛾∗ − q𝛾c∗), (F15)
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Figure F1. Distributions of daily erosion associated with the
distributions of streamflow from Figure 3. For all distributions the
ecohydrological and climatic conditions are held constant, 𝜈 = 1 and
𝛾 = 1. The shaded regions show the effect of changing the variability
parameter from 0.5 to 2.0 for b = 1 and b = 2.

where q∗ = q∕𝜇. The inverse is then

g−1(𝜀) =
(
𝜀 + 𝜓
𝜀o𝜇

−𝛾

)1∕𝛾

(F16)

and then

dq
d𝜀

= (𝜀 + 𝜓)1∕𝛾−1

𝛾𝜀
1∕𝛾
o 𝜇−1

. (F17)

F2. Distributions of Daily Erosion Rate
Recalling that

fE(𝜀) = f t
Q

(
g−1(𝜀) | qm

) dq
d𝜀
, (F18)

we arrive at the pdf of daily erosion by substituting equations (F16) and (F17)
into (F18), choosing the appropriate form of f t

Q(q) (equations (F1)–(F3)). For
the case b = 1

fE(𝜀) =
(𝜀 + 𝜓)1∕𝜈𝛾−1

𝜂𝛾(𝜀o𝜈
𝛾 )1∕𝜈𝛾 exp

[
−
(
𝜀 + 𝜓
𝜀o𝜈

𝛾

)1∕𝛾
]
, (F19)

where 𝜂 = Γ(1∕𝜈)[Γ(1∕𝜈, qc∗∕𝜈) − Γ(1∕𝜈, qm∗∕𝜈)] is a normalizing constant that takes into account the fact
that the distribution of erosion only exists for streamflows above qc∗ and below qm∗. For b = 2

fE(𝜀) =
(𝜀 + 𝜓)−(1∕𝜈+1)∕𝛾−1

𝜂𝛾(𝜀o𝜈
−𝛾 )−(1∕𝜈+1)∕𝛾 exp

[
−
(
𝜀 + 𝜓
𝜀o𝜈

−𝛾

)−1∕𝛾
]
, (F20)

where 𝜂 = Γ(1∕𝜈 + 1)[Γ(1∕𝜈+ 1, 1∕𝜈qm∗) −Γ(1∕𝜈+ 1, 1∕𝜈qc∗] is a slightly different normalizing constant that
serves the same role as in the case b = 1.

In the case b ≠ 1, 2

fE(𝜀) = C𝜀
(𝜀 + 𝜓)(1−b)∕𝛾−1

𝜀
(1−b)∕𝛾
o

exp

[
−1
𝜈

(
(𝜀 + 𝜓)(2−b)∕𝛾

(2 − b)𝜀(2−b)∕𝛾
o

− (𝜀 + 𝜓)(1−b)∕𝛾

(1 − b)𝜀(1−b)∕𝛾
o

)]
, (F21)

where C𝜀 is a normalizing constant such that ∫ 𝜀m
0 fE(𝜀)d𝜀 = 1. In the above expressions, we see that the pdf

of daily erosion can be expressed as a function of geomorphic (K , S, m, n, 𝛾 , 𝜓 ) and hydrological (b, 𝜈, 𝜇)
parameters.

Figure F1 shows the distributions of daily erosion corresponding to the distributions of daily streamflow in
Figure 3. The effect of changing the variability index 𝜈 is shown as shaded regions for b = 1 and b = 2. Its
influence is slightly different due to the significant probability to have days with no erosion at all.

F3. Long-Term Erosion Rate
Before we solve the mean erosion intensity, it is useful to show two identities. First, we define a new
variable 𝜀∗

𝜀∗ =
𝜀 + 𝜓
𝜀o

. (F22)

If we substitute x into the pdf of daily erosion, where in the case b = 1

x = k𝜀1∕𝛾
∗ , (F23)

it can be shown that

fE(𝜀) =
−xk−1

𝜂
e−x (F24)

and

k𝛾𝜀∗fE(𝜀) =
−xk+𝛾−1

𝜂
e−x . (F25)
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Similarly, in the case b = 2, if

x = k𝜀−1∕𝛾
∗ , (F26)

then

fE(𝜀) =
−xk

𝜂
e−x (F27)

and

k−𝛾𝜀∗fE(𝜀) =
−xk−𝛾

𝜂
e−x . (F28)

To solve for the mean erosion intensity in the case b = 1

Ē = ∫
𝜀m

0
𝜀 f t

E(𝜀)d𝜀, (F29)

we multiply by 𝜀ok−𝛾∕𝜀ok−𝛾 and add and subtract the same term

Ē = 𝜀ok−𝛾 ∫
𝜀m

0

𝜀

𝜀ok−𝛾 f t
E(𝜀)d𝜀 + 𝜀ok−𝛾 ∫

𝜀m

0

𝜓

𝜀ok−𝛾 f t
E(𝜀)d𝜀 − 𝜀ok−𝛾 ∫

𝜀m

0

𝜓

𝜀ok−𝛾 f t
E(𝜀)d𝜀, (F30)

which becomes

Ē = 𝜀ok−𝛾 ∫
𝜀m

0
k𝛾𝜀∗ f t

E(𝜀)d𝜀 − 𝜓 ∫
𝜀m

0
f t

E(𝜀)d𝜀. (F31)

Making use of our identities we can write

Ē =
−𝜀ok−𝛾

𝜂 ∫
xm

xc

xk+𝛾−1e−xdx − −𝜓
𝜂 ∫

xm

xc

xk−1e−xdx, (F32)

where xc = kqc∗ and xm = kqm∗. We complete the solution using the following relationship derived from the
definition of the incomplete gamma function

∫
𝛽

𝛼

xs−1e−xdx = ∫
𝛽

0
xs−1e−xdx − ∫

𝛼

0
xs−1e−xdx = Γ(s) [Γ(s, 𝛼) − Γ(s, 𝛽)] . (F33)

Therefore, the analytical solution for the mean erosion intensity is

Ē =
𝜀ok−𝛾Γ(k + 𝛾)

𝜂

[
Γ(k + 𝛾, kqc∗) − Γ(k + 𝛾, kqm∗)

]
− 𝜓Γ(k)

𝜂

[
Γ(k, kqc∗) − Γ(k, kqm∗)

]
. (F34)

Recalling that 𝜂 = Γ(k)[Γ(k, kqc∗) − Γ(k, kqm∗)], (F34) can be rewritten as

Ē = 𝜀o

[
Γ(k + 𝛾)
Γ(k)k𝛾

(
Γ(k + 𝛾, kqc∗) − Γ(k + 𝛾, kqm∗)

Γ(k, kqc∗) − Γ(k, kqm∗)

)
− q𝛾c∗

]
= 𝜀o(𝜇𝜀∕𝜆𝜀 − q𝛾c∗). (F35)

In the case the b = 2, we follow the same steps to find that

Ē =
𝜀ok𝛾Γ(k + 1 − 𝛾)

𝜂

[
Γ(k + 1 − 𝛾, k∕qm∗) − Γ(k + 1 − 𝛾, k∕qc∗)

]
− 𝜓Γ(k + 1)

𝜂

[
Γ(k + 1, k∕qm∗) − Γ(k + 1, k∕qc∗)

]
.

(F36)

Recalling again that here 𝜂 = Γ(k + 1)[Γ(k + 1, k∕qm∗) − Γ(k + 1, k∕qc∗], (F36) can be rewritten as

Ē = 𝜀o

[
Γ(k + 1 − 𝛾)
Γ(k)k1−𝛾

(
Γ(k + 1 − 𝛾, k∕qm∗) − Γ(k + 1 − 𝛾, k∕qc∗

Γ(k + 1, k∕qm∗) − Γ(k + 1, k∕qc∗)

)
− q𝛾c∗

]
= 𝜀o(𝜇𝜀∕𝜆𝜀 − q𝛾c∗). (F37)

The mean long-term erosion rate is

⟨E⟩ = 𝜆𝜀Ē = 𝜇𝜀𝜀o − 𝜆𝜀𝜓. (F38)
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Appendix G: Analytical Forms of 𝝁𝜺 and 𝝀𝜺

For the case of b = 1 and assuming qc∗ > 0 and qm∗ <∞

𝜇𝜀 =
Γ(1∕𝜈 + 𝛾)
Γ(1∕𝜈)𝜈−𝛾

(
Γ(1∕𝜈 + 𝛾, qc∗∕𝜈) − Γ(1∕𝜈 + 𝛾, qm∗∕𝜈)

1 − Γ(1∕𝜈, qm∗∕𝜈)

)
(G1)

𝜆𝜀 =
Γ(1∕𝜈, qc∗∕𝜈) − Γ(1∕𝜈, qm∗∕𝜈)

1 − Γ(1∕𝜈, qm∗∕𝜈)
. (G2)

For the case of b = 2 and again assuming qc∗ > 0 and qm∗ <∞

𝜇𝜀 =
Γ(1∕𝜈 + 1 − 𝛾)
Γ(1∕𝜈)𝜈𝛾−1

(
Γ(1∕𝜈 + 1 − 𝛾, 1∕𝜈qm∗) − Γ(1∕𝜈 + 1 − 𝛾, 1∕𝜈qc∗)

Γ(1∕𝜈 + 1, 1∕𝜈qm∗)

)
(G3)

𝜆𝜀 =
Γ(1∕𝜈 + 1, 1∕𝜈qm∗) − Γ(1∕𝜈 + 1, 1∕𝜈qc∗)

Γ(1∕𝜈 + 1, 1∕𝜈qm∗)
. (G4)

The analytical solution for b = 1.5 only applies when we can assume qm∗ ∼ ∞.
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