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Table 12. TE and EE dust contamination levels, D`=500.

Contamination level [ µK2]

Spectrum 100 GHz (G70) 143 GHz (G50) 217 GHz (G41)

DTE
`=500

100 GHz (G70) . . . . . . . 0.14 ± 0.042 0.12 ± 0.036 0.3 ± 0.09
143 GHz (G50) . . . . . . . 0.24 ± 0.072 0.6 ± 0.018
217 GHz (G41) . . . . . . . 1.8 ± 0.54

DEE
`=500

100 GHz (G70) . . . . . . . 0.06 ± 0.012 0.05 ± 0.015 0.11 ± 0.033
143 GHz (G50) . . . . . . . 0.1 ± 0.02 0.24 ± 0.048
217 GHz (G41) . . . . . . . 0.72 ± 0.14

Notes. Values reported in the table correspond to the evaluation of the contamination level in each frequency by fitting the 353 GHz cross half-
mission spectra against the CMB-corrected 353 ⇥ 100, 353 ⇥ 143 and 353 ⇥ 217 spectra over a range of multipoles. The CMB correction is
obtained using the 100 GHz cross half-mission spectra (we have similar results at 143 GHz). Level reported here correspond to the amplitude of
the contaminationD` at ` = 500 in µK2.

The cosmic infrared background. The CIB model has a num-
ber of di↵erences from that used in Like13. First of all, it is now
entirely parameterized by a single amplitude DCIB

217 and a tem-
plate CCIB

` :

⇣
CCIB
⌫⇥⌫0

⌘
`
= aCIB

⌫ aCIB
⌫0 CCIB

` ⇥D
CIB
217 , (26)

where the spectral coe�cients aCIB
⌫ represent the CIB emission

law normalized at ⌫ = 217 GHz.
In 2013, the template was an e↵ective power-law model with

a variable index with expected value n = �1.37 (when including
the “highL” data from ACT and SPT). We did not assume any
emission law and fitted the 143 GHz and 217 GHz amplitude,
along with their correlation coe�cient. The Planck Collabora-
tion has studied the CIB in detail in Planck Collaboration XXX
(2014) and now proposes a one-plus-two-halo model, which
provides an accurate description of the Planck and IRAS CIB
spectra from 3000 GHz down to 217 GHz. We extrapolate this
model here, assuming it remains appropriate in describing the
143 GHz and 100 GHz data. The CIB emission law and template
are computed following Planck Collaboration XXX (2014). The
template power spectrum provided by this work has a very small
frequency dependence that we ignore.

At small scales, ` > 2500, the slope of the template is similar
to the power law used in Like13. At larger scales, however, the
slope is much shallower. This is in line with the variation we ob-
served in 2013 on the power-law index of our simple CIB model
when changing the maximum multipole. The current template is
shown as the green line in the TT foreground component plots
in Fig. 17.

In 2013, the correlation between the 143 GHz and 217 GHz
CIB spectra was fitted, favouring a high correlation, greater
than 90% (when including the “highL” data). The present model
yields a fully correlated CIB between 143 GHz and 217 GHz.

We now include the the CIB contribution at 100 GHz, which
was ignored in 2013. Another di↵erence with the 2013 model
is that the parameter controlling the amplitude at 217 GHz now
directly gives the amplitude in the actual 217 GHz Planck band
at ` = 3000, i.e., it includes the colour correction. The ratio be-
tween the two is 1.33. The 2013 amplitude of the CIB contribu-
tion at ` = 3000 (including the highL data) was 66 ± 6.7 µK2,

while our best estimate for the present analysis is 63.9± 6.6 µK2

(PlanckTT+lowP).

Point sources. At the likelihood level, we cannot di↵erentiate
between the radio- and IR-point sources. We thus describe their
combined contribution by their total emissivity per frequency
pair,
⇣
CPS
⌫⇥⌫0

⌘
`
= DPS

⌫⇥⌫0/A3000, (27)

where D⌫⇥⌫0 is the amplitude of the point-source contribution in
D` at ` = 3000. Contrary to 2013, we do not use a correlation
parameter to represent the 143 ⇥ 217 point-source contribution;
instead we use a free amplitude parameter. This has the disad-
vantage of not preventing a possible unphysical solution. How-
ever, it simplifies the parameter optimization, and it is easier to
understand in terms of contamination amplitude.

Kinetic SZ (kSZ). We use the same model as in 2013. The
kSZ emission is parameterized with a single amplitude and a
fixed template from Trac et al. (2011),
⇣
CkSZ
⌫⇥⌫0

⌘
`
= CkSZ

` ⇥D
kSZ, (28)

whereDkSZ is the kSZ contribution at ` = 3000.

Thermal SZ (tSZ). Here again, we use the same model as in
2013. The tSZ emission is also parameterized by a single am-
plitude and a fixed template using the ✏ = 0.5 model from
Efstathiou & Migliaccio (2012),
⇣
CtSZ
⌫⇥⌫0

⌘
`
= atSZ

⌫ atSZ
⌫0 CtSZ

` ⇥D
tSZ
143, (29)

where atSZ
⌫ is the thermal Sunyaev-Zeldovich spectrum, normal-

ized to ⌫0 = 143 GHz and corrected for the Planck bandpass
colour corrections. Ignoring the bandpass correction, we recall
that the tSZ spectrum is given by

atSZ
⌫ =

f (⌫)
f (⌫0)

, f (⌫) =
✓
x coth

✓ x
2

◆
� 4
◆
, x =

h⌫
kBTcmb

· (30)
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Thermal SZ ⇥ CIB correlation. Following Like13 the cross-
correlation between the thermal SZ and the CIB, tSZ⇥ CIB, is
parameterized by a single correlation parameter, ⇠, and a fixed
template from Addison et al. (2012),

⇣
CtSZ⇥CIB
⌫⇥⌫0

⌘
`
= ⇠
q
D

tSZ
143D

CIB
217

⇥

⇣
atSZ
⌫ aCIB

⌫0 + atSZ
⌫0 aCIB

⌫

⌘

⇥CtSZ⇥CIB
` , (31)

where atSZ
⌫ is the thermal Sunyaev-Zeldovich spectrum, cor-

rected for the Planck bandpass colour corrections and aCIB
⌫ is

the CIB spectrum, rescaled at ⌫ = 217 GHz as in the previous
paragraphs.

SZ prior. The kinetic SZ, the thermal SZ, and its correlation with
the CIB are not constrained accurately by the Planck data alone.
Besides, the tSZ⇥CIB level is highly correlated with the ampli-
tude of the tSZ. In 2013, we reduced the degeneracy between
those parameters and improved their determination by adding
the ACT and SPT data. In 2015, we instead impose a Gaussian
prior on the tSZ and kSZ amplitudes, inspired by the constraints
set by these experiments. From a joint analysis of the Planck
2013 data with those from ACT and SPT, we obtain

D
kSZ + 1.6DtSZ = (9.5 ± 3) µK2, (32)

in excellent agreement with the estimates from Reichardt et al.
(2012), once they are rescaled to the Planck frequencies (see
Planck Collaboration XIII 2016, for a detailed discussion).

As can be seen in Fig. 17, the kSZ, tSZ, and tSZ⇥CIB corre-
lations are always dominated by the dust, CIB, and point-source
contributions.

3.4. Instrumental modelling

The following sections describe the instrument modelling ele-
ments of the model vector, addressing the issues of calibration
and beam uncertainties in Sects. 3.4.1�3.4.3, and describing the
noise properties in Sect. 3.4.4. For convenience, Table 10 defines
the symbol used for the calibration parameters and the priors
later used for exploring them.

3.4.1. Power spectra calibration uncertainties

As in 2013, we allow for a small recalibration of the di↵erent
frequency power spectra, in order to account for residual uncer-
tainties in the map calibration process. The mixing matrix in the
model vector from Eq. (14) can be rewritten as
⇣
MXY

ZW,⌫⇥⌫0
⌘
`

(✓inst) = GXY
⌫⇥⌫0 (✓calib)

⇣
MXY,other

ZW,⌫⇥⌫0
⌘
`

(✓other),
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2
q

cXX
⌫ cYY

⌫0

+
1

2
q

cXX
⌫0 cYY

⌫

1
CCCCCCCCCCA
, (33)

where cXX
⌫ is the calibration parameter for the XX power spec-

trum at frequency ⌫, X being either T or E, and yP is the overall
Planck calibration. We ignore the `-dependency of the weighting
function between the TE and ET spectra at di↵erent frequencies
that are added to form an e↵ective cross-frequency TE cross-
spectrum. As in 2013, we use the TT at 143 GHz as our inter-
calibration reference, so that cTT

143 = 1.

We further allow for an overall Planck calibration uncer-
tainty, whose variation is constrained by a tight Gaussian prior,

yP = 1 ± 0.0025. (34)

This prior corresponds to the estimated overall uncertainty,
which is discussed in depth in Planck Collaboration I (2016).

The calibration parameters can be degenerate with the fore-
ground parameters, in particular the point sources at high ` (for
TT ) and the Galaxy for 217 GHz at low `. We thus proceed as in
2013, and measure the calibration refinement parameters on the
large scales and on small sky fractions near the Galactic poles.
We perform the same estimates on a range of Galactic masks
(G20, G30, and G41) restricted to di↵erent maximum multipoles
(up to ` = 1500). The fits are performed either by minimizing the
scatter between the di↵erent frequency spectra, or by using the
SMICA algorithm (see Planck Collaboration VI 2014, Sect. 7.3)
with a freely varying CMB and generic foreground contribution.
For the TT spectra, we obtained in both cases very similar re-
calibration estimates, from which we extracted the conservative
Gaussian priors on recalibration factors,

cTT
100 = 0.999 ± 0.001, (35)

cTT
217 = 0.995 ± 0.002. (36)

These are compatible with estimates made at the map level, but
on the whole sky; see Planck Collaboration VIII (2016).

3.4.2. Polarization efficiency and angular uncertainty

We now turn to the polarization recalibration case. The signal
measured by an imperfect PSB is given by

d = G(1+�)
⇥
I + ⇢(1 + ⌘) (Q cos 2(� + !) + U sin 2(� + !))

⇤
+n,
(37)

where I, Q, and U are the Stokes parameters; n is the instrumen-
tal noise; G, ⇢, and � are the nominal photometric calibration
factor, polar e�ciency, and direction of polarization of the PSB;
and �, ⌘, and ! are the (small) errors made on each of them
(see, e.g., Jones et al. 2007). Due to these errors, the measured
cross-power spectra of maps a and b are then contaminated by a
spurious signal given by

�CTT
` = (�a + �b) CTT

` , (38a)

�CTE
` =

⇣
�a + �b + ⌘b � 2!2

b

⌘
CTE
` , (38b)

�CEE
` =

⇣
�a + �b + ⌘a + ⌘b � 2!2

a � 2!2
b

⌘
CEE
`

+ 2
⇣
!2

a + !
2
b

⌘
CBB
` , (38c)

where �x, ⌘x, and !x, for x = a, b, are the e↵ective instrumental
errors for each of the two frequency-averaged maps. Pre-flight
measurements of the HFI polarization e�ciencies, ⇢, had un-
certainties |⌘x| ⇡ 0.3%, while the polarization angle of each
PSB is known to |!x| ⇡ 1� (Rosset et al. 2010). Analysis of the
2015 maps shows the relative photometric calibration of each
detector at 100 to 217 GHz to be known to about |�x| = 0.16% at
worst, with an absolute orbital dipole calibration of about 0.2%,
while analysis of the Crab Nebula observations showed the po-
larization uncertainties to be consistent with the pre-flight mea-
surements (Planck Collaboration VIII 2016).

Assuming CBB
` to be negligible, and ignoring !2

⌧ |⌘| in
Eq. (38), the Gaussian priors on � and ⌘ for each frequency-
averaged polarized map would have rms of �� = 2 ⇥ 10�3 and
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�⌘ = 3 ⇥ 10�3. Adding those uncertainties in quadrature, the
auto-power spectrum recalibration cEE

⌫ introduced in Eq. (33)
would be given, for an equal-weight combination of nd = 8 po-
larized detectors, by

cEE
⌫ = 1 ± 2

s
�2
� + �

2
⌘

nd
= 1 ± 0.0025. (39)

The most accurate recalibration factors for TE and EE could
therefore be somewhat di↵erent from TT . We found, though,
that setting the EE recalibration parameter to unity or imple-
menting those priors makes no di↵erence with respect to cosmol-
ogy; i.e., we recover the same cosmological parameters, with the
same uncertainties. Thus, for the baseline explorations, we fixed
the EE recalibration parameter to unity,

cEE
⌫ = 1, (40)

and the uncertainty on TE comes only from the TT calibration
parameter through Eq. (33).

We also explored the case of much looser priors, and found
that best-fit calibration parameters deviate very significantly, and
reach values of several percent (between 3% and 12% depend-
ing on the frequencies and on whether we fit the EE or TE case).
This cannot be due to the instrumental uncertainties embodied
in the prior. In the absence of an informative prior, this degree
of freedom is used to minimize the di↵erences between frequen-
cies that stem from other e↵ects, not included in the baseline
modelling.

The next section introduces one such e↵ect, the temperature-
to-polarization leakage, which is due to combining detectors
with di↵erent beams without accounting for it at the map-making
stage (see Sect. 3.4.3). But anticipating the results of the analysis
described in Appendix C.3.5, we note that when the calibration
and leakage parameters are explored simultaneously without pri-
ors, they remain in clear tension with the priors (even if the level
of recalibration decreases slightly, by typically 2%, showing the
partial degeneracy between the two). In other words, when cali-
bration and leakage parameters are both explored with their re-
spective priors, there is evidence of residual unmodelled system-
atic e↵ects in polarization – to which we will return.

3.4.3. Beam and transfer function uncertainties

The power spectra from map pairs are corrected by the corre-
sponding e↵ective beam window functions before being con-
fronted with the data model. However, these window functions
are not perfectly known, and we now discuss various related
sources of errors and uncertainties, the impact of which on the
reconstructed C`s is shown in Fig. 21.

Sub-pixel effects. The first source of error, the so-called “sub-
pixel” e↵ect, discussed in detail in Like13, is a result of the
Planck scanning strategy and map-making procedure. Scanning
along rings with very low nutation levels can result in the cen-
troid of the samples being slightly shifted from the pixel centres;
however, the map-making algorithm assigns the mean value of
samples in the pixel to the centre of the pixel. This e↵ect, similar
to the gravitational lensing of the CMB, has a non-diagonal in-
fluence on the power spectra, but the correction can be computed
given the estimated power spectra for a given data selection, and
recast into an additive, fixed component. We showed in Like13
that including this e↵ect had little impact on the cosmological
parameters measured by Planck.

Masking effect. A second source of error is the variation, from
one sky pixel to another, of the e↵ective beam width, which
is averaged over all samples falling in that pixel. While all the
HEALPix pixels have the same surface area, their shape – and
therefore their moment of inertia (which drives the pixel window
function) – depends on location, as shown in Fig. 22, and there-
fore makes the e↵ective beam window function depend on the
pixel mask considered. Of course the actual sampling of the pix-
els by Planck leads to individual moments of inertia slightly dif-
ferent from the intrinsic values shown here, but spot-check com-
parisons of this semi-analytical approach used by QuickBeam
with numerical simulations of the actual scanning by FEBeCoP
showed agreement at the 10�3 level for ` < 2500 on the result-
ing pixel window functions for sky coverage varying from 40
to 100%.

In the various Galactic masks used here (Figs. 12–13) the
contribution of the unmasked pixels to the total e↵ective win-
dow function departs from the full-sky average (which is not in-
cluded in the e↵ective beam window functions), and we there-
fore expect a di↵erent e↵ective transfer function for each mask.
We ignored this dependence and mitigated its e↵ect by using
transfer functions computed with the Galactic mask G60 which
retains an e↵ective sky fraction (including the mask apodiza-
tion) of fsky = 60%, not too di↵erent from the sky fractions fsky
between 41 and 70% (see Sect. 3.2.2) used for computing the
power spectra.

Figure 21 compares the impact of these two sources of un-
certainty on the stated Planck statistical error bars for �` = 30.
It shows that, for ` < 1800 where most of the information on
⇤CDM lies, the error on the TT power spectra introduced by
the sub-pixel e↵ect and by the sky-coverage dependence are less
than about 0.1%, and well below the statistical error bars of the
binned C`. In the range 1800  `  2500, which helps constrain
one-parameter extensions to base ⇤CDM (such as Ne↵), the rel-
ative error can reach 0.4% (note as a comparison that the high-`
ACT experiment states a statistical error of about 3% on the bin
2340  `  2540, Das et al. 2014). The bottom panel shows the
Monte Carlo error model of the beam window functions, which
provides negligible (`-coupled) uncertainties. Even if this model
is somewhat optimistic, since it does not include the e↵ect of
the ADC non-linearities and the colour-correction e↵ect of beam
measurements on planets (Planck Collaboration VII 2016), we
note that even expanding them by a factor of 10 keeps them
within the statistical uncertainty of the power spectra.

Modelling the uncertainties. As in the 2013 analysis, the beam
uncertainty eigenmodes were determined from 100 (improved)
Monte Carlo (MC) simulations of each planet observation used
to measure the scanning beams, then processed through the same
QuickBeam pipeline as the nominal beam to determine their
e↵ective angular transfer function B(`). Thanks to the use of
Saturn and Jupiter transits instead of the dimmer Mars used in
2013, the resulting uncertainties are now significantly smaller
(Planck Collaboration VII 2016).

For each pair of frequency maps (and frequency-averaged
beams) used in the present analysis, a singular-value decom-
position (SVD) of the correlation matrix of 100 Monte Carlo
based B(`) realizations was performed over the ranges [0, `max]
with `max = (2000, 3000, 3000) at (100, 143, 217 GHz), and the
five leading modes were kept, as well as their covariance matrix
(since the error modes do exhibit Gaussian statistics). We there-
fore have, for each pair of beams, five `-dependent templates,
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Fig. 21. Contribution of various beam-window-function-related errors and uncertainties to the C` relative error. In each panel, the grey histogram
shows the relative statistical error on the Planck CMB TT binned power spectrum (for a bin width �` = 30) divided by 10, while the vertical grey
dashes delineate the range ` < 1800 that is most informative for base ⇤CDM. Top: estimation of the error made by ignoring the sub-pixel e↵ects
for a fiducial C` including the CMB and CIB contributions. Middle: error due to the sky mask, for the Galactic masks used in the TT analysis.
Bottom: current beam window function error model, shown at 1� (solid lines) and 10� (dotted lines).

each associated with a Gaussian amplitude centred on 0, and a
covariance matrix coupling all of them.

Including the beam uncertainties in the mixing matrix of
Eq. (14) gives

⇣
MXY

ZW,⌫⇥⌫0
⌘
`

(✓inst) =
⇣
MXY,other

ZW,⌫⇥⌫0
⌘
`

(✓other)
⇣
�WZW

⌫⇥⌫0

⌘
`

(✓beam),

⇣
�WZW

⌫⇥⌫0

⌘
`

(✓beam) = exp
5X

i=1

2 ✓ZW,i
⌫⇥⌫0

⇣
EZW,i
⌫⇥⌫0

⌘
`
, (41)

where
⇣
�WZW

⌫⇥⌫0

⌘
`

(✓beam) stands for the beam error built from the

eigenmodes
⇣
EZW,i
⌫⇥⌫0

⌘
`
. The quadratic sum of the beam eigenmodes

is shown in Fig. 21. This is much smaller (less than a percent)
than the combined TT spectrum error bars. This contrasts with
the 2013 case where the beam uncertainties were greater; for in-
stance, for the 100, 143, and 217 GHz channel maps, the rms
of the W(`) = B(`)2 uncertainties at ` = 1000 dropped from
(61, 23, 20) ⇥ 10�4 to (2.2, 0.84, 0.81) ⇥ 10�4, respectively. The
fact that beam uncertainties are sub-dominant in the total error
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Fig. 22. Map of the relative variations of the trace of the HEALPix pixel
moment of inertia tensor at Nside = 2048 in Galactic coordinates.

budget is even more pronounced in polarization, where noise
is higher. We use the beam modes computed from temperature
data, combined with appropriate weights when used as parame-
ters a↵ecting the TE and EE spectra.

As in 2013, instead of including the beam error in the vec-
tor model, we include its contribution to the covariance matrix,
linearizing the vector model so that
⇣
CXY
⌫⇥⌫0

⌘
`

(✓) =
⇣
CXY
⌫⇥⌫0

⌘
`

(✓, ✓beam = 0) +
⇣
�WZW

⌫⇥⌫0

⌘
`

(✓beam)
⇣
CXY
⌫⇥⌫0

⌘⇤
`
,

(42)

where
⇣
CXY
⌫⇥⌫0

⌘⇤
`

is the fiducial spectrum XY for the pair of fre-
quencies ⌫ ⇥ ⌫0 obtained using the best cosmological and fore-
ground model. We can then marginalize over the beam uncer-
tainty, enlarging the covariance matrix to obtain

Cbeam marg. = C + C⇤
D
�W�WT

E
C⇤T, (43)

where
D
�W�WT

E
is the Monte Carlo based covariance matrix,

restricted to its first five eigenmodes.
In 2013, beam errors were marginalized for all the modes ex-

cept the two greatest of the 100 ⇥ 100 spectrum. In the present
release we instead marginalize over all modes in TT , TE, and
EE. We also performed a test in which we estimated the ampli-
tudes for all of the first five beam eigenmodes in TT , TE, and
EE, and found no indication of any beam error contribution (see
Sect. 4.1.3 and Fig. 35).

Temperature-to-polarization leakage. Polarization measure-
ments are di↵erential by nature. Therefore any unaccounted dis-
crepancy in combining polarized detectors can create some leak-
age from temperature to polarization (Hu et al. 2003). Sources of
such discrepancies in the current HFI processing include, but are
not limited to: di↵erences in the scanning beams that are ignored
during the map-making; di↵erences in the noise level, because
of the individual inverse noise weighting used in HFI; and dif-
ferences in the number of valid samples.

For this release, we did not attempt to model and remove
a priori the form and amplitude of this coupling between the
measured TT , TE, and EE spectra; we rather estimate the resid-
ual e↵ect by fitting a posteriori in the likelihood some flexible
template of this coupling, parameterized by some new nuisance
parameters that we now describe.

The temperature-to-polarization leakage due to beam
mismatch is assumed to a↵ect the spherical harmonic

coe�cients via

aT
`m �! aT

`m, (44a)

aE
`m �! aE

`m + "(`)a
T
`m, (44b)

and, for each map, the spurious polarization power spectrum
CXY
` ⌘

P
m aX
`maY⇤
`m/(2` + 1) is modelled as

�CTE
` = "(`) CTT

` , (45a)

�CEE
` = "2(`) CTT

` + 2"(`) CTE
` . (45b)

Here "` is a polynomial in multipole ` determined by the e↵ec-
tive beam of the detector-assembly measuring the polarized sig-
nal. Considering an e↵ective beam map b(n̂) (rotated so that it
is centred on the north pole), its spherical harmonic coe�cients
are defined as b`m ⌘

R
dn̂b(n̂) Y⇤`m(n̂). As a consequence of the

Planck scanning strategy, pixels are visited approximately every
six months, with a rotation of the focal plane by 180�, and we
expect b`m to be dominated by even values of m, and especially
the modes m = 2 and 4, which describe the beam ellipticity. As
noted by, e.g., Souradeep & Ratra (2001) for elliptical Gaussian
beams, the Planck-HFI beams for a detector d obey

b(d)
`m ' �

(d)
m `

mb(d)
`0 . (46)

We therefore fit the spectra using a fourth-order polynomial

"(`) = "0 + "2`
2 + "4`

4, (47)

treating the coe�cients "0, "2, and "4 as nuisance parameters
in the MCMC analysis. Tests performed on detailed simulations
of Planck observations with known mismatched beams have
shown that Eqs. (45) and (47) describe the power leakage due
to beam mismatch with an accuracy of about 20% in the ` range
100�2000.

The equations above suggest that the same polynomial "
can describe the contamination of the TE and EE spectra for a
given pair of detector sets. But in the current Plik analysis, the
TE cross-spectrum of two di↵erent maps a and b is the inverse-
variance-weighted average of the cross-spectra TaEb and TbEa,
while EE is simply EaEb. In addition, the temperature maps in-
clude the signal from SWBs, which is obviously not the case for
the E maps. We therefore describe the TE and EE corrections by
di↵erent " parameters. Similarly, we treated the parameters for
the EE cross-frequency spectra as being uncorrelated with the
parameters for the auto-frequency ones.

The leakage is driven by the discrepancy between the in-
dividual e↵ective beams b(d)

`m making up a detector assembly,
coupled with the details of the scanning strategy and relative
weight of each detector. If we assumed a perfect knowledge of
the beams, precise – but not necessarily accurate – numerical
predictions of the leakage would be possible. However, we pre-
ferred to adopt a more conservative approach in which the leak-
age was free to vary over a range wide enough to enclose the true
value. On the other hand, in order to limit the unphysical range of
variations permitted by so many nuisance parameters, we need
priors on the "m terms used in the Monte Carlo explorations. We
assume Gaussian distributions of zero mean with a standard de-
viation �m representative of the dispersion found in simulations
of the e↵ect with realistic instrumental parameters. We found
�0 = 1 ⇥ 10�5, �2 = 1.25 ⇥ 10�8, and �4 = 2.7 ⇥ 10�15. This
procedure ignores correlations between terms of di↵erent m, and
is therefore likely substantially too permissive.
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Fig. 23. Best fit of the power spectrum leakage due to the beam mis-
match for TE (Eq. (45a), upper panel) and EE (Eq. (45b), lower
panel). In each case, we show the correction for individual cross-spectra
(coloured thin lines) and the co-added correction (black line). The in-
dividual cross-spectra corrections are only shown in the range of mul-
tipoles where the data from each particular pair is used. The individual
correction can be much higher than the co-added correction. The co-
added correction is dominated by the best S/N pair for each multipole.
For example, up to ` = 500, the TE co-added correction is dominated by
the 100 ⇥ 143 contribution. The grey dashed lines show the TE and EE
best-fit spectra rescaled by a factor of 20, to give an idea of the location
of the model peaks.

Another way of deriving the beam leakage would be to use a
cosmological prior, i.e., by finding the best fit when holding the
cosmological parameters fixed at their best-fit values for base
⇤CDM. Figure 23 shows the result of this procedure for the
cross-frequency pairs. The figure also shows the implied cor-
rection for the co-added spectra. This correction is dominated
by the pair with the highest S/N at each multipole. The fact that
di↵erent sets are used in di↵erent `-ranges leads to discontinu-
ities in the correction template of the co-added spectrum. As
can be seen in the figure, the co-added beam-leakage correction,
of order µK2, is much smaller than the individual corrections,
which partially compensate each other on average (but improve
the agreement between the individual polarized cross-frequency
spectra).

It is shown in Appendix C.3.5 that neither procedure is fully
satisfactory. The cosmological prior leads to nuisance parame-
ters that vastly exceed the values allowed by the physical priors,
and the physical priors are clearly overly permissive (leaving the
cosmological parameters unchanged but with doubled error bars
for some parameters). In any case, the agreement between the
di↵erent cross-spectra remains much poorer in polarization than
in temperature (see Sect. 4.4, Fig. 40, and Appendix C.3.5); they
present oscillatory features similar to the ones produced by our
beam leakage model, but the model is clearly not su�cient. For
lack of a completely satisfactory global instrumental model, this
correction is only illustrative and it is not used in the baseline
likelihood.

Fig. 24. Deviations from a white noise power spectrum induced by noise
correlations. We show half-ring di↵erence power spectra for 100 GHz
half-mission 1 maps (blue lines) of Stokes parameters I (top panel), Q
(middle panel), and U (bottom panel). The best-fitting analytical model
of the form Eq. (48) is over-plotted in red.

3.4.4. Noise modelling

To predict the variance of the empirical power spectra, we
need to model the noise properties of all maps used in
the construction of the likelihood. As described in detail in
Planck Collaboration VII (2016) and Planck Collaboration VIII
(2016), the Planck HFI maps have complicated noise properties,
with noise levels varying spatially and with correlations between
neighbouring pixels along the scanning direction.

For each channel, full-resolution noise variance maps are
constructed during the map-making process (Planck
Collaboration VIII 2016). They provide an approximation
to the diagonal elements of the true npix ⇥ npix noise covariance
matrix for Stokes parameters I (temperature only), or I, Q,
and U (temperature and polarization). While it is possible to
capture the anisotropic nature of the noise variance with these
objects, noise correlations between pixels remain unmodelled.
To include deviations from a white-noise power spectrum, we
therefore make use of half-ring di↵erence maps. Choosing the
100 GHz map of the first half-mission as an example, we show
the scalar (spin-0) power spectra of the three temperature and
polarization maps in Fig. 24, rescaled by arbitrary constants. We
find that the logarithm of the HFI noise power spectra as given
by the half-ring di↵erence maps can be accurately parameterized
using a fourth-order polynomial with an additional logarithmic
term,

log(CHRD
` ) =

4X

i=0

↵i `
i + ↵5 log(` + ↵6). (48)

Since low-frequency noise and processing steps like deglitching
leave residual correlations between both half-ring maps, noise
estimates derived from their di↵erence are biased low, at the
percent level at high-` (where it was first detected and under-
stood, see Planck Collaboration VI 2014). We correct for this

A11, page 28 of 99

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201526926&pdf_id=23
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201526926&pdf_id=24


Planck Collaboration: Planck 2015 results. XI.

0.0

0.1

0.2

0.3

II

100 HM 1 100 HM 2 AVG FIT

0.0

0.1

0.2

0.3

(C
H

M
A
⇥

H
M

A
�

�
C

H
M

1⇥
H

M
2

�
)/

C
H

R
D

A
�

�
1

QQ

0 1000 2000 3000
�

0.0

0.1

0.2

0.3

UU

Fig. 25. Di↵erence between auto and cross-spectra for the 100 GHz
half-mission maps, divided by the noise estimate from half-ring dif-
ference maps (blue and green lines). Noise estimates derived from half-
ring di↵erence maps are biased low. We fit the average of both half-
mission curves (black line) with a power law model (red line). The
analysis procedure is applied to the Stokes parameter maps I, Q, and
U (top to bottom). All data power spectra are smoothed.

e↵ect by comparing the di↵erence of auto-power-spectra and
cross-spectra (assumed to be free of noise bias) at a given fre-
quency with the noise estimates obtained from half-ring di↵er-
ence maps. As shown in Fig. 25, we use a a power-law model
with free spectral index to fit the average of the ratios of the first
and second half-mission results to the half-ring di↵erence spec-
trum, using the average to nullify chance correlations between
signal and noise:

Cbias
` = ↵0 `

↵1 + ↵2. (49)

At a multipole moment of ` = 1000, we obtain correction fac-
tors for the temperature noise estimate obtained from half-ring
di↵erence maps of 9%, 10%, and 9% at 100, 143, and 217 GHz,
respectively.

In summary, our HFI noise model is obtained as follows. For
each map, we capture the anisotropic nature of the noise am-
plitude by using the diagonal elements of the pixel-space noise
covariance matrix. The corresponding white-noise power spec-
trum is then modulated in harmonic space using the product of
the two smooth fitting functions given in Eqs. (48) and (49).

Correlated noise between detectors. If there is some correla-
tion between the noise in the di↵erent cuts in our data, the trick of
only forming e↵ective frequency-pair power spectra from cross-
spectra to avoid the noise biases fails. In 2013, we evaluated the
amplitude of such correlated noise between di↵erent detsets. The
correlation, if any, was found to be small, and we estimated its
e↵ect on the cosmological parameter fits to be negligible. As
stated in Sect. 3.2.1, the situation is di↵erent for the 2015 data.
Indeed, we now detect a small but significant correlated noise
contribution between the detsets. This is the reason we change
our choice of data to estimate the cross-spectra, from detsets to
half-mission maps. The correlated noise appears to be much less
significant in the latter.
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Fig. 26. Correlated noise model. In grey are shown the cross-detector
TT spectra of the half-ring di↵erence maps. The black line show the
same, smoothed by a �` = 200 sliding average, while the blue data
points are a �` = 100 binned version of the grey line. Error bars simply
reflect the scatter in each bin. The green line is the spline-smoothed
version of the data that we use as our correlated noise template.

To estimate the amount of correlated noise in the data,
we measured the cross-spectra between the half-ring di↵erence
maps of all the individual detsets. The cross-spectra are then
summed using the same inverse-variance weighting that we used
in 2013 to form the e↵ective frequency-pair spectra. Figure 26
shows the spectra for each frequency pair. All of these deviate
significantly from zero. We build an e↵ective correlated noise
template by fitting a smoothing spline on a �` = 200 sliding av-
erage of the data. Given the noise level in polarization, we did
not investigate the possible contribution of correlated noise in
EE and TE.

Section 4.1.1 shows that when these correlated noise tem-
plates are used, the results of the detsets likelihood are in ex-
cellent agreement with those based on the baseline, half-mission
one.

3.5. Covariance matrix structure

The construction of a Gaussian approximation to the likelihood
function requires building covariance matrices for the pseudo-
power spectra. Mathematically exact expressions exist, but they
are prohibitively expensive to calculate numerically at Planck
resolution (Wandelt et al. 2001); we thus follow the approach
taken in Like13 and make use of analytical approximations
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(Hansen et al. 2002; Hinshaw et al. 2003; Efstathiou 2004;
Challinor & Chon 2005).

For our baseline likelihood, we calculate covariance matrices
for all 45 unique detector combinations that can be formed out
of the six frequency-averaged half-mission maps at 100, 143,
and 217 GHz. To do so, we assume a fiducial power spectrum
that includes the data variance induced by the CMB and all fore-
ground components described in Sect. 3.3; this variance is com-
puted assuming these components are Gaussian-distributed. The
e↵ect of this approximation regarding Galactic foregrounds is
tested by means of simulations in Sect. 3.6. The fiducial model is
taken from the best-fit cosmological and foreground parameters;
since they only become available after a full exploration of the
likelihood, we iteratively refine our initial guess. As discussed
in Sect. 3.1, the data vector used in the likelihood function of
Eq. (13) is constructed from frequency-averaged power spectra.
Following Like13, for each polarization combination, we there-
fore build averaged covariance matrices for the four frequencies
⌫1, ⌫2, ⌫3, ⌫4,

Var(ĈXY ⌫1,⌫2
` , ĈZW ⌫3,⌫4

`0 ) =
X

(i, j)2(⌫1,⌫2)
(p,q)2(⌫3,⌫4)

wXY i, j
` wZW p,q

`0

⇥ Var
⇣
ĈXY i, j
` , ĈZW p,q

`0

⌘
, (50)

where X,Y,Z,W 2 {T, E}, and wXY i, j is the inverse-variance
weight for the combination (i, j), computed from

wXY i, j
` / 1/Var

⇣
ĈXY i, j
` , ĈXY i, j

`

⌘
, (51)

and normalized to unity. For the averaged XY = T E covariance
(and likewise for ZW = T E), the sum in Eq. (50) must be taken
over the additional permutation XY = ET . That is, the two cases
where the temperature map of channel i is correlated with the
polarization map of channel j and vice versa are combined into a
single frequency-averaged covariance matrix. These matrices are
then combined to form the full covariance used in the likelihood,

C =

0
BBBBBBB@
CTTTT CTT EE CTTT E

CEETT CEEEE CEET E

CT ETT CT EEE CT ET E

1
CCCCCCCA , (52)

where the individual polarization blocks are constructed from the
frequency-averaged covariance matrices of Eq. (50) (Like13).

Appendix C.1.1 provides a summary of the equations used to
compute temperature and polarization covariance matrices and
presents a validation of the implementation through direct sim-
ulations. Let us note that, for the approximations used in the
analytical computation of the covariance matrix to be precise,
the mask power spectra have to decrease quickly with multipole
moment `; this requirement gives rise to the apodization scheme
discussed in Sect. 3.2.2. In the presence of a point-source mask,
however, the condition may no longer be fulfilled, reducing the
accuracy of the approximations assumed in the calculation of the
covariance matrices. We discuss in Appendix C.1.4 the heuristic
correction we developed to restore the accuracy, which is based
on direct simulations of the e↵ect.

3.6. FFP8 simulations

In order to validate the overall implementation and our approxi-
mations, we generated 300 simulated HFI half-mission map sets
in the frequency range 100 to 217 GHz, which we analysed like
the real data. For the CMB, we created realizations of the⇤CDM

Table 13. Shifts of parameters over 300 TT simulations.

Parameter 300 sims r30
A r65

A r100
A

⌦bh2 . . . . . . . . 0.27 0.62 0.50 0.52
⌦ch2 . . . . . . . . �0.71 �0.65 �0.44 0.00
✓ . . . . . . . . . . . 1.48 1.67 1.67 1.29
⌧ . . . . . . . . . . . �0.57 �0.38 �0.56 �0.38
ln
⇣
1010As

⌘
. . . . �0.70 �0.52 �0.65 �0.35

ns . . . . . . . . . . 1.86 1.87 1.46 0.78
A217

CIB . . . . . . . . �0.99 �1.09 �1.44 �1.34

gal100
545 . . . . . . . 0.31 0.13 �0.09 0.04

gal143
545 . . . . . . . 0.40 �0.21 �0.23 �0.19

gal143�217
545 . . . . . �0.22 �0.35 0.36 0.22

gal217
545 . . . . . . . 1.61 1.48 2.19 2.04

Notes. Shifts are given in units of the posterior width rescaled by
1/
p

300. If the parameters were uncorrelated, 68% of the shifts would
be expected to lie within ±1�. The e↵ect of varying the value of `min is
measured on the likelihood of the average spectra over 300 realizations,
labelled r`min

A . A significant decrease of the bias on ns is obtained by not
including low-` multipoles, at the cost, however, of a degradation in the
determination of the foreground amplitudes A217

CIB, gal143�217
545 , and gal217

545.

model with the best-fit parameters obtained in this paper. After
convolving the CMB maps with beam and pixel window func-
tions, we superimposed CIB, dust, and noise realizations from
the FFP8 simulations (Planck Collaboration XII 2016) that cap-
ture both the correlation structure and anisotropy of foregrounds
and noise. We then computed power spectra using the set of
frequency-dependent masks described in Sect. 3.2.2 and created
the corresponding Plik TT likelihood. We modified the shape
of the foreground spectra to fit the FFP8 simulations, but kept the
parameterization used on the data. In the case of dust, we used
priors similar to those used on data. Furthermore, in the follow-
ing the dust amplitude parameter is named gal⌫⇥⌫

0

545 . We then ran
an MCMC sampler to derive the cosmological and foreground
parameters posterior distributions for all dataset realizations.

For each simulation, we computed the shift of the derived
posterior mean parameters with respect to the input cosmology,
normalized by their posterior widths �post. When a Gaussian
prior with standard deviation �prior is used, we rescale �post by
[1 � �2

post/�
2
prior]

1/2; this is the case for ⌧ and for the Galactic
dust amplitudes gal⌫545 in the four cross-frequency channels used.
In Fig. 27, we show histograms of the shifts we found for all
300 simulations for the six baseline cosmological parameters, as
well as the FFP8 CIB and galactic dust amplitudes. As shown in
the figure, we recover the input parameters with little bias and
a scatter of the normalized parameter shifts around unity. The
p-values of the Kolmogorov-Smirnov test that we ran are given
in the legend and we do not detect significant departures from
normality. The average reduced �2 for the histograms of Fig. 27
is equal to 1.02.

Table 13 (second column) compiles the average shifts of
Fig. 27, but in order to gauge whether they are as small as ex-
pected for this number of simulations (assuming no bias), the
shifts are expressed in units of the posterior width rescaled by
1/
p

300. We note that the shift of the average is above one
(scaled)� in three cases out of a total of 11 parameters (68%
of the �s would be expected to lie within 1� if the parameters
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Fig. 27. Plik parameter results on 300 simulations for the six baseline cosmological parameters, as well as the FFP8 CIB and Galactic dust
amplitudes. The simulations include quite realistic CMB, noise, and foregrounds (see text). The distributions of inferred posterior mean parameters
are centred around their input values with the expected scatter. Indeed the dotted red lines show the best-fit Gaussian for each distribution, with a
mean shift, �µ, and a departure �� from unit standard deviation given in the legend; both are close to zero. These best fits are thus very close to
Gaussian distributions with zero shift and unit variance, which are displayed for reference as black lines. The legend gives the numerical value of
�µ and ��, as well as the p-values of a Kolmogorov-Smirnov test of the histograms against a Gaussian distribution shifted from zero by �µ and
with standard deviation shifted from unity by ��. This confirms that the distributions are consistent with Gaussian distributions with zero mean
and unit standard deviation, with a small o↵set of the mean.

were uncorrelated), with ✓, ns, and gal217
545 at the 1.7, 2.0, and 1.5

(scaled)� level, respectively.
Before proceeding, let us note that an estimate (third col-

umn) of these shifts is obtained by simply computing the shift
from a single likelihood using as input the average spectra of the
300 simulations. This e↵ectively reduces cosmic variance and
noise amplitude by a factor

p
300 and, more importantly, it de-

creases the cost and length of the overall computation, enabling
additional tests. These shift estimates are noted rA. The table
shows that significant improvement in the determination of ns is
obtained by removing low-` multipoles. Indeed, Cols. 4 and 5
of Table 13 show the variation of the shift when the `min of the
high-` likelihood is increased from 30 to 65 and 100. The shift in
ns is decreased by a factor two, while the decrease in the number
of bins per cross-frequency spectrum is only reduced from 199
to 185 (having little impact on the size of the covariance matrix
of cosmological parameters).

These changes with `min therefore trace the small biases back
to the lowest-` bins. It suggests that the Gaussian approxima-
tion used in the high-` likelihood starts to become mildly inac-
curate at ` = 30. Indeed, even if noticeable, this e↵ect would
contribute at most a 0.11� bias on ns. This is further confirmed
by the lack of a detectable e↵ect found in Sect. 5.1 when vary-
ing the hybridization scale in TT between Commander and Plik.
However, the exclusion of low-` information degrades our abil-
ity to accurately reconstruct the foreground amplitudes A217

CIB,
gal143�217

545 , and gal217
545. Indeed, the dust spectral amplitudes in the

143⇥ 217 and 217⇥ 217 channels are highest at low multipoles,
and the CIB spectrum in the range 30  `  100 also adds sub-
stantial information.

In spite of this low-` trade-o↵ between an accurate determi-
nation of ns on the one hand and A217

CIB, gal143�217
545 , and gal217

545 on
the other, we can conclude that the Plik implementation is be-
having as expected and can be used for actual data analysis.

Appendix C.2 extends this conclusion to the joint PlikTT,
EE, TE likelihood case.

3.7. End-to-end simulations

While the previous section validated our methodology, our ap-
proximations, and the overall implementation, this does not yet
give the sensitivity to residual systematic uncertainties unde-
tected by data consistency checks. These are by their very nature
very much more di�cult to address realistically, since, when an
e↵ect is detected and su�ciently well understood, it can be mod-
elled and is corrected for, in general at the TOI-processing stage;
only the uncertainty of the correction needs to be addressed.
Still, HFI has developed a complete model of the instrument
which contains all identified systematic e↵ects and enables re-
alistic simulation of the instrumental response. We have there-
fore generated a number of full-mission time streams which we
have then processed with the DPC TOI processing pipeline in or-
der to create map datasets as close to instrumental reality as we
can in order to assess the possible impact of low-level residual
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Table 14. End-to-end parameter shifts for a single realization of CMB and foregrounds, along with five di↵erent noise realizations. Shifts are
computed with respect to those obtained without noise and with instrumental e↵ects turned o↵.

Parameter 1 2 3 4 5 Mean Median �FFP8

⌦bh2 . . . . . . . . 0.32 0.09 �0.3 �0.02 �0.17 �0.01 �0.02 0.42
⌦ch2 . . . . . . . . �0.07 �0.20 �0.22 �0.22 0.30 �0.08 �0.20 0.35
✓ . . . . . . . . . . . 0.18 0.08 0.24 �0.12 0.15 0.10 0.14 0.45
⌧ . . . . . . . . . . . 0.08 0.19 �0.02 0.006 �0.21 0.01 0.005 0.25
ln
⇣
1010As

⌘
. . . . 0.04 0.10 �0.11 �0.11 �0.21 �0.05 �0.11 0.25

ns . . . . . . . . . . 0.11 0.06 0.22 �0.13 �0.64 �0.07 0.05 0.40

Notes. In columns labelled 1 to 5: shifts of the cosmological parameters of the five noise realizations of the end-to-end simulations with respect
to those obtained for the simulations without noise and with instrumental e↵ects turned o↵, normalized by the end-to-end simulations’ posterior
widths. In columns labelled “Mean” and “Median”: the corresponding mean and median. In column labelled “�FFP8”: the standard deviation of
the distribution obtained from the cosmological parameter shifts of 100 FFP8 simulations, varying the noise only with respect to the cosmological
parameters of the CMB only.

Table 15. End-to-end parameter shifts for four di↵erent CMB realizations but comprising four pairs of realizations with the same noise realization
with respect to those obtained without noise and with instrumental e↵ects turned o↵.

Parameter 4 5 6 7 8 �5�6 �4�7 �4�8 �7�8 �FFP8

⌦bh2 . . . . . . . . �0.02 �0.17 �0.25 �0.53 0.29 0.08 0.51 0.31 0.83 0.34
⌦ch2 . . . . . . . . �0.22 0.30 �0.20 0.52 �0.59 0.50 0.74 0.37 1.11 0.30
✓ . . . . . . . . . . . �0.12 0.15 �0.34 �1.06 0.41 0.48 0.94 0.52 1.47 0.35
⌧ . . . . . . . . . . . 0.006 �0.21 �0.16 �0.17 �0.16 0.04 0.18 0.16 0.01 0.175
ln
⇣
1010As

⌘
. . . . �0.11 �0.21 �0.29 �0.15 �0.34 0.07 0.04 0.24 0.20 0.19

ns . . . . . . . . . . �0.13 �0.64 �0.39 �0.86 0.24 0.24 0.72 0.37 1.03 0.35

Notes. In columns labelled 4 to 8: shifts of the cosmological parameters of the end-to-end simulations with respect to those obtained for the
simulations without noise and with instrumental e↵ects turned o↵, normalized by the end-to-end simulations’ posterior widths. We point out that
realizations numbered 4 and 5 are common to the sets of Tables 14 and 15. In columns labelled “�5�6” to “�7�8”, the absolute di↵erences in the
shifts within pairs of realizations having di↵erent CMB but the same foregrounds and noise realizations. In column labelled “�FFP8”: the standard
deviation of the distribution obtained from the cosmological parameter shifts of 100 FFP8 simulations, varying the CMB only but keeping the
same FFP8 noise realization, with respect to the cosmological parameters of the CMB only.

instrumental systematics, the e↵ects of which might have re-
mained undetected otherwise.

In this section, we report on the shifts in the values of the cos-
mological and foreground parameters induced by these specific
residual systematic e↵ects, comparing the results of a TT likeli-
hood analysis for two overlapping sets of five simulations:

1. five simulations of maps at 100 GHz, 143 GHz and 217 GHz,
for a single realization of the CMB and of the foregrounds
but for five di↵erent realizations of the noise,

2. five simulations of maps at 100 GHz, 143 GHz and 217 GHz,
composed of four CMB realizations, two noise realizations,
a single realization of the foregrounds, but forming four pairs
of realizations having the same noise but di↵erent CMB.

These simulations sum to a total of eight distinct simulations and
are numbered from 1 to 8 in Tables 14 and 15. To be more ex-
plicit, in the second set, among simulations numbered 4 to 8,
simulations 4, 7 and 8 have di↵erent CMB, but the same noise
as each other. Simulations 5 and 6 have di↵erent CMB, and the
same noise as each other, but di↵erent from simulations 4, 7
and 8. Realizations 4 and 5, having the same CMB but di↵er-
ent noise, are common to the two sets of five realizations.

Each of these have been performed twice, with the end-
to-end (instrument plus TOI processing) pipeline and noise
contribution switched either on or o↵. End-to-end simulations
are computationally very costly, (typically a week for each

simulated mission dataset) and hence only a few realizations
were generated).

As explained in Sect. 5.4 of Planck Collaboration VII
(2016), the end-to-end simulations are created by feeding the
TOI processing pipeline with simulated data to evaluate and
characterize the overall transfer function and the respective con-
tribution of each individual e↵ect on the determination of the
cosmological parameters. Simulated TOIs are produced by ap-
plying the real mission scanning strategy to a realistic input sky
specified by the Planck Sky Model (PSM; Delabrouille et al.
2013) containing a lensed CMB realization, galactic di↵use fore-
grounds, and the dipole components. To this sky-scanned TOI,
we add a white-noise component, representing the phonon and
photon noises. The very low-temporal-frequency thermal drift
seen in the real data is also added to the TOI. The noisy sky
TOI is then convolved with the appropriate bolometer transfer
functions. Another white-noise component, representing John-
son noise and read-out noise, is also added. Simulated cosmic
rays using the measured glitch rates, amplitudes, and shapes
are added to the TOI. This TOI is interpolated to the electronic
HFI fast-sampling frequency. It is then converted from analogue
to digital using a simulated non-linear analogue-to-digital con-
verter (ADC). Identified 4 K cooler spectral lines are added to
the TOI. Both e↵ects (ADC and 4 K lines) are derived from the
measured in-flight behaviour. The TOI finally goes through the
data compression/decompression algorithm used for communi-
cation between the Planck satellite and Earth. The simulated TOI

A11, page 32 of 99



Planck Collaboration: Planck 2015 results. XI.

is then processed in the same way as the real mission data for
cleaning and systematic error removal, calibration, destriping,
and map-making.

Some limitations of the current end-to-end approach follow.
No pointing error is included, although previous (dedicated) sim-
ulations suggest that this has negligible e↵ect. In addition, this
e↵ect was included in the dedicated simulations performed to
assess the precision of the beam recovery procedure. The first
step of the TOI processing is to correct the ADC non-linearity
(ADC NL). For the flight data, the ADC NL was determined by
using HFI’s measured signal at the end of the HFI mission, with
the instrument’s cooling system switched o↵ and an instrument
temperature equal to 4 K. This determination relied on suppos-
ing the signal to be perfect white noise and therefore to corre-
spond to the distortions brought in by the ADC. In the current
implementation, we assume perfect knowledge of ADC NL and
4 K lines. This is of course not true for the real data and future
end-to-simulations, accompanying Planck’s next data release,
will improve our model of this e↵ect. After ADC NL correction,
the signal is converted to volts. Deglitching is then performed
by flagging glitch heads and by using glitch tail time-lines. This
enables the creation of the thermal baseline which is used for
signal demodulation. The thermal baseline and glitch tails are
subtracted, the signal is converted to watts, and the 4 K lines
are removed. The resulting signal is then deconvolved by the
bolometer transfer functions. We do not include uncertainties in
the glitch tail shape used in the deglitching procedure, i.e., the
templates are the same for the simulations and the processing;
but here again, previous studies suggest any di↵erence is a small
e↵ect.

The analysis of these sets of end-to-end simulations, and of
their counterparts for which all instrumental e↵ects are turned
o↵, is performed similarly to that of the simulations described in
Sect. 3.6. Angular power spectra for all cross-half-missions and
for all frequency combinations are computed using the Planck
masks described in Sect. 3.2.2 and with the appropriate beam
functions. Noise levels are evaluated as described in Sect. 3.4.4.
Templates for galactic foregrounds (CO, free-free, synchrotron,
thermal and spinning dust), the kinetic and thermal SZ e↵ects,
the cosmic infrared background, and radio and IR point sources
are constructed based on the PSM input foreground maps. The
covariance matrix is computed with the method outlined in
Appendix C.1 with the aforementioned input CMB power spec-
trum, input foreground spectra, noise levels, beam functions and
masks.

All sets of power spectra and the inverse covariance matrix
are then binned and used in the likelihood analysis performed us-
ing an MCMC sampler together with Plik and PICO in order to
determine the best fit cosmological parameters. The shifts in cos-
mological parameter values induced by the imperfect correction
of instrumental e↵ets by the TOI processing pipeline are then
computed for the end-to-end simulations with respect to those
obtained for the simulations without noise and with instrumen-
tal e↵ects turned o↵, normalized by the end-to-end simulations’
posterior widths. Comparing shifts computed in this way can-
cels out cosmic variance and chance correlations between the
CMB and the foregrounds and are thus fully attributable to the
instrument and to the noise, which cannot be disentangled, as
well as to CMB-noise chance correlations. That is, those shifts
probe directly the scatter and possible biases induced by residual
systematics e↵ects.

The mean and median shifts for the five simulations with
a single CMB realization and a single foreground realization,
but di↵erent noise realizations, are given in Table 14. In order

to verify that these shifts are within expectations, we computed
the shifts in cosmological parameters for 100 FFP8 simulations,
each with identical CMB signal but di↵erent FFP8 noise, with
respect to the cosmological parameters obtained for the CMB
only, normalized by their posterior widths. The standard devi-
ations of the resulting distributions are given in the column la-
belled “�FFP8” of Table 14 and can be compared with the shifts
obtained for the five end-to-end simulations. All shifts are within
1� of the shifts expected from FFP8. In addition, there is no indi-
cation of any detectable bias. All shifts are thus compatible with
scatter introduced by noise.

The shifts for the five realizations with four di↵erent
CMB realizations, the same foregrounds, but comprising four
pairs with the same noise realization, are given in Cols. 4 to
8 of Table 15. As mentioned at the beginning of this section,
realizations numbered 4 and 5 are common to the sets of Ta-
bles 14 and 15. In the columns labelled “�5�6” to “�7�8”, we
computed the absolute di↵erences in the shifts within pairs of
realizations having di↵erent CMB but the same foreground and
noise realizations. We compare these di↵erences to the stan-
dard deviations of the distributions of cosmological parameter
shifts of 100 FFP8 simulations, varying the CMB but keeping the
same FFP8 noise realization, with respect to the cosmological
parameters of the corresponding CMB but without noise (col-
umn labelled “�FFP8”). These distributions quantify the impact
of CMB-noise correlations on the determination of the cosmo-
logical parameters. The Table shows that among all �’s, 11 are
within 1�FFP8, 7 are within 1 to 2�FFP8, 3 are within 2 to 3�FFP8,
2 are within 3 to 4�FFP8. 50% of the di↵erences are within 1�
and 78% within 2�. At the very worst, taking the example of
�7�8 a cosmological parameter (✓) moves a total of 4�, from
�3� to 1� in units of �FFP8 when the CMB is changed but
the noise is left the same. This is rare but can be expected in
a few percent of simulations. As in the case of the shifts listed in
Table 14, there is thus no detectable bias, with all shifts compat-
ible with those expected from FFP8.

In summary, we have detected no sign as yet of systematic
biases of the cosmological parameters due to known low-level
instrumental e↵ects as corrected by the current HFI TOI process-
ing pipeline. An increase in the significance of these tests is left
for further work once the simulation chain is further optimized
for more massive numerical work.

3.8. High-multipole reference results

This section describes the results obtained using the baseline
Plik likelihood, in combination with a prior on the optical
depth to reionization, ⌧ = 0.07 ± 0.02 (referred to, in TT , as
PlikTT+tauprior). The robustness and validation of these re-
sults (presented in Sect. 4) can therefore be assessed indepen-
dently of any potential low-` anomaly, or hybridization issues.
The full low-` + high-` likelihood will be discussed in Sect. 5.

Figure 28 shows the high-` co-added CMB spectra in TT ,
TE, and EE, and their residuals with respect to the best-fit
⇤CDM model in TT (red line), both `-by-` (grey points) and
binned (blue circles). The blue error bars per bin are derived
from the diagonal of the covariance matrix computed with the
best-fit CMB as fiducial model. The bottom sub-panels with
residuals also show (yellow lines) the diagonal of the `-by-` co-
variance matrix, which may be compared to the dispersion of the
individual ` determinations. Parenthetically, it provides graphi-
cal evidence that TT is dominated by cosmic variance through
` ⇡ 1600, while TE is cosmic-variance dominated at ` . 160 and
` ⇡ 260�460. The jumps in the polarization diagonal-covariance
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Fig. 28. Plik 2015 co-added TT , TE, and EE spectra. The blue points are for bins of �` = 30, while the grey points are unbinned. The lower
panels show the residuals with respect to the best fit PlikTT+tauprior ⇤CDM model. The yellow lines show the 68% unbinned error bars. For TE
and EE, we also show the best-fit beam-leakage correction (green line; see text and Fig. 23).

error-bars come from the variable ` ranges retained at di↵erent
frequencies, which therefore vary the amount of data included
discontinuously with `. Figure 29 zooms in to five adjacent `
ranges on the co-added spectra to allow close inspection of the
data distribution around the model.

More quantitatively, Table 16 shows the �2 values with
respect to the ⇤CDM best fit to the PlikTT+tauprior data com-
bination for the unbinned CMB co-added power spectra (ob-
tained as described in Appendix C.4). The TT spectrum has a re-
duced �2 of 1.03 for 2479 degrees of freedom, corresponding to
a probability to exceed (PTE) of 17.2%; the base ⇤CDM model

is therefore in agreement with the co-added data. The best-fit
⇤CDM model in TT also provides an excellent description of
the co-added polarized spectra, with a PTE of 12.8% in TE and
34.6% in EE. This already suggests that extensions with, e.g.,
isocurvature modes can be severely constrained.

Despite this overall agreement, we note that the PTEs are not
uniformly good for all cross-frequency spectra (see in particular
the 100⇥100 and 100 ⇥ 217 in TE). This shows that the baseline
instrumental model needs to include further e↵ects to describe
all of the data in detail, even if the averages over frequencies
appear less a↵ected. The green line in Fig. 28 (mostly visible in
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Fig. 29. Zoom in to various ` ranges of the HM co-added power spectra, together with the PlikTT+tauprior ⇤CDM best-fit model (red line). We
show the TT (top), TE (centre) and EE (bottom) power spectra. The lower panels in each plot show the residuals with respect to the best-fit model.

the �CEE
` plot) shows the best-fit leakage correction (shown on

its own in Fig. 23), which is obtained when fixing the cosmology
to the TT -based model. Let us recall, though, that this correction
is for illustrative purposes only, and it is set to zero for all actual
parameter searches. Indeed, we shall see that these leakage ef-
fects are not enough to bring all the data into full concordance
with the model.

In more quantitative detail, Fig. 30 shows the binned (�` =
100) residuals for the co-added CMB spectra in units of the stan-
dard deviation of each data point, (data�model)/error. For TT ,
we find the greatest deviations at ` ⇡ 434 (�1.8�), 464 (2.7�),
1214 (�2.1�), and 1450 (�1.8,�). At ` = 1754, where we pre-
viously reported a deficit due to the imperfect removal of the
4He-JT cooler line (see Planck Collaboration XIII 2016, Sect. 3),
there is now a less significant fluctuation, at the level of �1.4�.
The residuals in polarization show similar levels of discrepancy.

In order to assess whether these deviations are specific
to one particular frequency channel or appear as a common
signal in all the spectra, Fig. 31 shows foreground-cleaned
TT power spectra di↵erences across all frequencies, in units
of standard deviations (details on how this is derived can be
found in Appendix C.3.2). The agreement between TT spec-
tra is clearly quite good. Figure 32 then shows the residuals per
frequency for the TT power spectra with respect to the ⇤CDM

PlikTT+tauprior best-fit model (see also the zoomed-in resid-
ual plots in Fig. C.5). The ` ⇡ 434, 464, and 1214 deviations
from the model appear to be common to all frequency chan-
nels, with di↵erences between the frequencies smaller than 2�.
However, the deviation at ` ⇡ 1450 is higher at 217 ⇥ 217 than
in the other channels. In particular, the inter-frequency di↵er-
ences (Fig. 31) between the 217 ⇥ 217 power spectrum and the
100 ⇥ 100, 143 ⇥ 143, and 143 ⇥ 217 ones show deviations at
` ⇡ 1450 at the roughly 1.7, 2.6, and 3.4� levels, respectively.

This inter-frequency di↵erence is due to a deficit in the resid-
uals of the 217 ⇥ 217 channel of about �3.4� in the bin centred
at 1454 in Fig. 32. To better quantify this deviation, we also fit
for a feature of the type cos2((⇡/2)(`� `p)/(�`)), with maximum
amplitude centred at `p = 1460, width �` = 25 (we impose
the feature to be zero at |` � `p| > �`) and with an indepen-
dent amplitude in each frequency channel. At 217⇥217, we find
an amplitude of (�37.44 ± 9.5)µK2, while in the other channels
we find (�15.0 ± 7.8)µK2 at 143 ⇥ 143 and (�19.7 ± 7.9)µK2

at 143 ⇥ 217. This outlier seems to be at least in part due to
chance correlation between the CMB and dust. Indeed, the am-
plitude of the feature in the di↵erent spectra is in rough agree-
ment with the dust emission law. Moreover, the feature can also
be found when varying the retained sky fraction in the galactic
mask, again with an amplitude scaling compatible with a dust
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Fig. 30. Residuals of the co-added CMB TT power spectra, with respect
to the PlikTT+tauprior best-fit model, in units of standard deviation.
The three coloured bands (from the centre, yellow, orange, and red)
represent the ±1, ±2, and ±3� regions.

origin. We discuss below the impact on cosmological parame-
ters, see the case “CUT ` = 1404�1504” in Fig. 35.

Finally we note that there is a deficit in the ` = 500�800 re-
gion (in particular between ` = 700 and 800) in the residuals
of all the frequency spectra, roughly in correspondence with the
position of the second and third peaks. Section 4.1 is dedicated
to the study of these deviations and their impact on cosmologi-
cal parameters. In spite of these marginally significant deviations
from the model, the �2 values shown in Table 16 indicate that the
⇤CDM model is an acceptable fit to each of the unbinned indi-
vidual frequency power spectra, with PTEs always P & 10%
in TT . We therefore proceed to examine the parameters of the
best-fit model.

The cosmological parameters of interest are summarized in
Table 17. Let us note that the cosmological parameters inferred
here are obtained using the same codes, priors, and assumptions
as in Planck Collaboration XIII (2016), except for the fact that
we use the much faster PICO (Fendt & Wandelt 2007a) code in-
stead of CAMB when estimating cosmological parameters12 from
TT ,T E or TT , TE, EE using high-` Planck data. Appendix C.5
establishes that the results obtained with the two codes only dif-
fer by small fractions of a standard deviation (less than 15% for
most parameters, with a few more extreme deviations). However,
we still use the CAMB code for results from EE alone, since in
this case the parameter space explored is so wide that it includes

12 The definition of AL di↵ers in PICO and CAMB; see Appendix C.5.

Fig. 31. Inter-frequency foreground-cleaned TT power spectra di↵er-
ences, in µK2. Each of the sub-panels shows the di↵erence, after fore-
ground subtraction, between pairs of frequency power spectra (the spec-
trum named on the vertical axis minus the one named on the horizontal
axis), in units of standard deviation. The coloured bands identify devi-
ations that are smaller than one (yellow), two (orange), or three (red)
standard deviations. We show the di↵erences for both the HM power
spectra (blue points) and the DS power spectra (light blue points) after
correlated noise correction. Figure 41 displays the same quantities for
the TE and EE spectra.

regions outside the PICO interpolation region (see Appendix C.5
for further details).

Figure 33 shows the posterior distributions of each pair of
parameters of the base ⇤CDM model from PlikTT+tauprior.
The upper-right triangle compares the 1� and 2� contours for
the full likelihood with those derived from only the ` < 1000
or the ` � 1000 data. Section 4.1.6 addresses the question of
whether the results from these di↵erent cases are consistent with
what can be expected statistically. The lower-left triangle further
shows that the results are not driven by the data from a specific
channel, i.e., dropping any of the 100, 143, or 217 GHz map data
from the analysis does not lead to much change. The next section
provides a quantitative analysis of this and other jack-knife tests.

We now turn to polarization results. Inter-frequency compar-
isons and residuals for TE and EE spectra are analysed in detail
in Sect. 4.4. Su�ce it to say here that the results are less satis-
factory than in TT , both in the consistency between frequency
spectra and in the detailed �2 results. This shows that the in-
strumental data model for polarization is less complete than for
temperature, with residual e↵ects at the µK2 level. The model
thus needs to be further developed to take full advantage of the
HFI data in polarization, given the level of noise achieved. We
thus consider the high-` polarized likelihood as a “beta” version.
Despite these limitations, we include it in the product delivery, to
allow external reproduction of the results, even though the tests
that we show indicate that it should not be used when searching
for weak deviations (at the µK2 level) from the baseline model.
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Fig. 32. Residuals in the half-mission TT power spectra after subtracting the PlikTT+tauprior ⇤CDM best-fit model (blue points, except for
those which di↵er by at least 2 or 3�, which are coloured in orange or red, respectively). The light blue line shows the di↵erence between the
best-fit model obtained assuming a ⇤CDM+AL model and the ⇤CDM best-fit baseline; the green line shows the di↵erence of best-fit models using
the `max = 999 likelihood (fixing the foregrounds to the baseline solution) minus the baseline best-fit (both in the ⇤CDM framework); while the
pink line is the same as the green one but for `max = 1404 instead of `max = 999; see text in Sect. 4.1. For the TE and EE spectra, see Fig. 40.

Nevertheless, we generally find agreement between the TT ,
TE, and EE spectra. Figure 34 shows the T E, and EE resid-
ual spectra conditioned on TT , which are close to zero. This is
particularly the case for TE below ` = 1000, which gives some
confidence in the polarization model. Most of the data points for
TE and EE lie in the ±2� range. As for all �2-based evaluations,
the interpretation of this result depends crucially on the quality
of the error estimates, i.e., on the quality of our noise model (see
Sect. 3.4.4). We further note that the agreement is consistent with
the finding that unmodelled instrumental e↵ects in polarization
are at the µK2 level.

4. Assessment of the high-multipole likelihood

This section describes tests that we performed to assess the accu-
racy and robustness of the reference results of the high-` likeli-
hood that were presented above. First we establish the robustness
of the TT results using Plik alone in Sect. 4.1 and with other
likelihoods in Sect. 4.2. We verify in Sect. 4.3 that the amplitudes
of the compact-source contributions derived at various frequen-
cies are consistent with our current knowledge of source counts.

We then summarize in Sect. 4.4 the results of the detailed tests
of the robustness of the polarization results, which are expanded
upon in Appendix C.3.5. The paper Planck Collaboration XVI
(2016) examines the dependence of the power spectrum on an-
gular direction.

4.1. TT robustness tests

Figure 35 shows the marginal mean and the 68% CL error bars
for cosmological parameters calculated assuming di↵erent data
choices, likelihoods, parameter combinations, and data combi-
nations. The 31 cases shown assume a base-⇤CDM framework,
except when otherwise specified. The reference case uses the
PlikTT+tauprior data combination. Figure 36 adds the specific
results for the lensing parameter AL (left) in a⇤CDM+AL frame-
work and for the e↵ective number of relativistic species Ne↵
(right) in a ⇤CDM+Ne↵ extended framework.

In both figures, the grey bands show the standard deviation of
the parameter shifts relative to the baseline likelihood expected
when using a sub-sample of the data (e.g., excising `-ranges
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Fig. 33. ⇤CDM parameters posterior distribution for PlikTT+tauprior. The lower left triangle of the matrix displays how the constraints are
modified when the information from one of the frequency channels is dropped. The upper right triangle displays how the constraints are modified
when the information from multipoles ` greater or less than 1000 is dropped. All the results shown in this figure were obtained using the CAMB code.

or frequencies). Because the data sets used to make inferences
about a model are changed, one would naturally expect the in-
ferences themselves to change, simply because of the e↵ects of
noise and cosmic variance. The inferences could also be influ-
enced by inadequacies in the model, deficiencies in the likeli-
hood estimate, and systematic e↵ects in the data. Indeed, one
may compare posterior distributions from di↵erent data subsets
with each other and with those from the full data set, in order to
assess the overall plausibility of the analysis.

To this end it is useful to have some idea about the typical
variation in posteriors that one would expect to see even in the

ideal case of an appropriate model being used to fit data sets with
correct likelihoods and no systematic errors. It can be shown
(Gratton & Challinor, in prep.) that if Y is a subset of a data
set X, and PX and PY are vectors of the maximum-likelihood
parameter values for the two data sets, then the sampling dis-
tribution of the di↵erences of the parameter values is given by

(PY � PX) (PY � PX)T = cov(PY ) � cov(PX), (53)

i.e., the covariance of the di↵erences is simply the di↵erence of
their covariances. Here the covariances are approximated by the
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Fig. 34. TE (left) and EE (right) residuals conditioned on the TT spectrum (black line) with 1 and 2� error bands. The blue points are the actual
TE and EE residuals. We do not include any beam-leakage correction here.

Table 16. Goodness-of-fit tests for the Plik temperature and polarization spectra at high `.

Multipole
Frequency [GHz] fsky[%]a range �2 �2/N` N` ��2 p2N`b PTE [%]c �norm

d PTE�[%]e

TT
100 ⇥ 100 . . . . . . . . 66 30–1197 1234.91 1.06 1168 1.38 8.50 -0.30 76.44
143 ⇥ 143 . . . . . . . . 57 30–1996 2034.59 1.03 1967 1.08 14.09 -0.39 69.91
143 ⇥ 217 . . . . . . . . 49 30–2508 2567.11 1.04 2479 1.25 10.63 -1.07 28.25
217 ⇥ 217 . . . . . . . . 47 30–2508 2549.40 1.03 2479 1.00 15.87 -0.17 86.72
Co-added . . . . . . . . . 30–2508 2545.50 1.03 2479 0.94 17.22 -0.16 87.17

TE
100 ⇥ 100 . . . . . . . . 67 30–999 1089.75 1.12 970 2.72 0.43 3.70 0.02
100 ⇥ 143 . . . . . . . . 50 30–999 1033.38 1.07 970 1.44 7.72 0.92 35.66
100 ⇥ 217 . . . . . . . . 41 505–999 527.85 1.07 495 1.04 14.85 5.05 0.00
143 ⇥ 143 . . . . . . . . 50 30–1996 2028.18 1.03 1967 0.98 16.45 -2.21 2.69
143 ⇥ 217 . . . . . . . . 41 505–1996 1606.06 1.08 1492 2.09 2.02 -0.75 45.19
217 ⇥ 217 . . . . . . . . 41 505–1996 1431.65 0.96 1492 -1.10 86.60 1.33 18.20
Co-added . . . . . . . . . 30–1996 2038.54 1.04 1967 1.14 12.76 0.09 93.09

EE
100 ⇥ 100 . . . . . . . . 70 30–999 1027.14 1.06 970 1.30 9.89 1.13 25.88
100 ⇥ 143 . . . . . . . . 52 30–999 1048.77 1.08 970 1.79 3.94 1.77 7.72
100 ⇥ 217 . . . . . . . . 43 505–999 479.49 0.97 495 -0.49 68.33 -3.01 0.26
143 ⇥ 143 . . . . . . . . 50 30–1996 2001.48 1.02 1967 0.55 28.87 3.74 0.02
143 ⇥ 217 . . . . . . . . 43 505–1996 1430.95 0.96 1492 -1.12 86.89 -0.71 47.70
217 ⇥ 217 . . . . . . . . 41 505–1996 1409.48 0.94 1492 -1.51 93.66 -1.39 16.45
Co-added . . . . . . . . . 30–1996 1991.37 1.01 1967 0.39 34.55 1.88 6.00

Notes. (a) E↵ective fraction of the sky retained in the analysis. For the TE cross-spectra between two di↵erent frequencies, we show the smaller
fsky of the TE or ET combinations. (b) ��2 = �2

� N` is the di↵erence from the mean, assuming the best-fit TT base-⇤CDM model is correct,
here expressed in units of the expected dispersion,

p
2N`. (c) Probability to exceed the tabulated value of �2. (d) Weighted linear sum of deviations,

scaled by the standard deviation, as defined in Eq. (60). (e) Probability to exceed the absolute value |�norm|.

inverses of the appropriate Fisher information matrices evalu-
ated for the true model. One might thus expect the scatter in the
modes of the posteriors to follow similarly, and to be able, if the
parameters are well-constrained by the data, to use covariances
of the appropriate posteriors on the right-hand side.

4.1.1. Detset likelihood

We have verified (case “DS”) that the results obtained using
the half-mission cross-spectra likelihood are in agreement with
those obtained using the detset (DS) cross-spectra likelihood. As

explained in Sect. 3.4.4, the main di�culty in using the DS like-
lihood is that the results might depend on the accuracy of the
correlated noise correction. Reassuringly, we find that the results
from the HM and DS likelihoods agree within 0.2�. This is an
important cross-check, since we expect the two likelihoods to be
sensitive to di↵erent kinds of temporal systematics. Direct dif-
ferences of half-mission versus detset-based TT cross-frequency
spectra are compared in Fig. 31 (Fig. 41 shows similar plots for
the TE and EE spectra.).

When using the detsets, we fit the calibration coe�cients
of the various detector sets with respect to a reference. The
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Table 17. Cosmological parameters used in this analysis.

Parameter Prior range Baseline Definition

!b ⌘ ⌦bh2 . . . . . . . [0.005, 0.1] . . . Baryon density today
!c ⌘ ⌦ch2 . . . . . . . [0.001, 0.99] . . . Cold dark matter density today
✓ ⌘ 100✓MC . . . . . [0.5, 10.0] . . . 100⇥ approximation to r⇤/DA (used in CosmoMC)
⌧ . . . . . . . . . . . . . . [0.01, 0.8] . . . Thomson scattering optical depth due to reionization
⌧ . . . . . . . . . . . . . . (0.07 ± 0.02)
Ne↵ . . . . . . . . . . . . [0.05, 10.0] 3.046 E↵ective number of neutrino-like relativistic degrees of freedom (see text)
YP . . . . . . . . . . . . . [0.1, 0.5] BBN Fraction of baryonic mass in helium
AL . . . . . . . . . . . . . [0.0, 10] 1 Amplitude of the lensing power relative to the physical value
ns . . . . . . . . . . . . . [0.8, 1.2] . . . Scalar spectrum power-law index (k0 = 0.05 Mpc�1)
ln(1010As) . . . . . . . [2, 4.0] . . . Log power of the primordial curvature perturbations (k0 = 0.05 Mpc�1)

⌦⇤ . . . . . . . . . . . . . . . . . . Dark energy density divided by the critical density today
Age . . . . . . . . . . . . . . . . . . Age of the Universe today (in Gyr)
⌦m . . . . . . . . . . . . . . . . . . Matter density (inc. massive neutrinos) today divided by the critical density
zre . . . . . . . . . . . . . . . . . . . Redshift at which Universe is half reionized
H0 . . . . . . . . . . . . [20, 100] . . . Current expansion rate in km s�1 Mpc�1

100✓D . . . . . . . . . . . . . . . . 100⇥ angular extent of photon di↵usion at last scattering
100✓eq . . . . . . . . . . . . . . . . 100⇥ angular size of the comoving horizon at matter-radiation equality

Notes. The columns indicate the cosmological parameter symbol, their uniform prior ranges in square brackets, or between parenthesis for a
Gaussian prior, the baseline values if fixed for the standard ⇤CDM model, and their definition. These parameters are the same as for the previous
release. The top block lists the estimated parameters, while the lower block lists derived parameters.

resulting best-fit values are very close to one13, with the great-
est calibration refinement being less than 0.2%, in line with
the accuracy expected from the description of the data process-
ing in Planck Collaboration VIII (2016). This verifies that the
maps produced by the HFI DPC and used for the half-mission-
based likelihood come from the aggregation of well-calibrated
and consistent data.

4.1.2. Impact of Galactic mask and dust modelling

We have tested the robustness of our results with respect to our
model of the Galactic dust contribution in various ways.

Galactic masks. We have examined the impact of retaining a
smaller fraction of the sky, less contaminated by Galactic emis-
sion. The baseline TT likelihood uses the G70, G60, and G50
masks (see Appendix A) at 100, 143, and 217 GHz, respectively.
We have tested the e↵ects of using G50, G41, and G41 (corre-
sponding to f noap

sky = 0.60, 0.50, and 0.50 before apodization, case
“M605050” in Fig. 35), and of the priors on the Galactic dust
amplitudes relative to these masks described in Table 11. We find
stable results as we vary these sky cuts, with the greatest shift in
✓MC of 0.5�, compatible with the expected shift of 0.57� calcu-
lated using Eq. (53). Going to higher sky fraction is more dif-
ficult. Indeed, the improvement in the parameter determination
from increasing the sky fraction at 143 GHz and 217 GHz would
be modest, as we would only gain information in the small-scale
regime, which is not probed by 100 GHz. Increasing the sky frac-
tion at 100 GHz is also more di�cult because our estimates have
shown that adding as little as 5% of the sky closer to the Galac-
tic plane requires a change in the dust template and more than
doubles the dust contamination at 100 GHz.

13 The fitted values are 1.0000, 0.9999, 1.0000, 1.0000, 0.9987, 0.9986,
0.9992, 0.9989, 0.9989, 0.9981, 0.9989, 1.0000, and 0.9999 for detsets
100-ds1, 100-ds2, 143-ds1, 143-ds2, 143-5, 143-6, 143-7, 217-1, 217-2,
217-3, 217-4, 217-ds1, and 217-ds2, respectively.

Amplitude priors. We have tested the impact of not using any
prior (i.e., using arbitrarily wide, uniform priors) on the Galactic
dust amplitudes (case “No gal. priors” in Fig. 35). Again, cos-
mological results are stable, with the greatest shifts in ln(1010As)
of 0.23� and in ns of 0.20�. The values of the dust amplitude pa-
rameters, however, do change, and their best-fit values increase
by about 15 µK2 for all pairs of frequencies, while at the same
time the error bars of the dust amplitude parameters increase
very significantly. All of the amplitude levels obtained from the
545 GHz cross-correlation are within 1� of this result. The dust
levels from this experiment are clearly unphysically high, requir-
ing 22 µK2 (D`, ` = 200) for the 100 ⇥ 100 pair. This level of
dust contamination is clearly not allowed by the 545 ⇥ 100 cross-
correlation, demonstrating that the prior deduced from it is infor-
mative. Nevertheless, the fact that cosmological parameters are
barely modified in this test indicates that the values of the dust
amplitudes are only weakly correlated with those of the cosmo-
logical parameters, consistent with the results of Figs. 44 and 45
below, which show the parameter correlations quantitatively.

Galactic dust template slope. We have allowed for a variation
of the Galactic dust index n, defined in Eq. (24), from its default
value n = �2.63, imposing a Gaussian prior of �2.63 ± 0.05
(“GALINDEX” case in Fig. 35). We find no shift in cosmologi-
cal parameters (smaller than ⇠0.1�) and recover a value for the
index of n = �2.572 ± 0.038, consistent with our default choice.

Impact of ` <⇠ 500 at 217 GHz. We have analysed the impact
of excising the first 500 multipoles (“LMIN=505 at 217 GHz”
in Fig. 35) in the 143 ⇥ 217 and 217 ⇥ 217 spectra, where
the Galactic dust contamination is the strongest. We find very
good stability in the cosmological parameters, with the greatest
change being a 0.16� increase in ns. This is compatible with
the expectations estimated from Eq. (53) of 0.14�. The inclu-
sion of the first 500 multipoles at 217 GHz in the baseline Plik
likelihood is one of the sources of the roughly 0.45� di↵erence

A11, page 40 of 99



Planck Collaboration: Planck 2015 results. XI.

Fig. 35. Marginal mean and 68% CL error bars on cosmological parameters estimated with di↵erent data choices for the Plik likelihood, in
comparison with results from alternate approaches or model. We assume a ⇤CDM model and use variations of the PlikTT likelihood in most of
the cases, in combination with a prior ⌧ = 0.07±0.02 (using neither low-` temperature nor polarization data). The “PlikTT+tauprior” case (black
dot and thin horizontal black line) indicates the baseline (HM, `min = 30, `max = 2508), while the other cases are described in Sect. 4.1 (and 4.2,
5.6, E.4). The grey bands show the standard deviation of the expected parameter shift, for those cases where the data used is a sub-sample of the
baseline likelihood (see Eq. (53)). All the results were run with PICO except for few ones that were run with CAMB, as indicated in the labels.

in ns observed when using the CamSpec code, since the lat-
ter excises that range of multipoles; for further discussion see
Planck Collaboration XIII (2016, Table 1 and Sect. 3.1), as well
as Sect. 4.2.

4.1.3. Impact of beam uncertainties

The case labelled “BEIG” in Fig. 35 corresponds to the explo-
ration of beam eigenvalues with priors 10 times higher than indi-
cated by the analysis of our MC simulation of beam uncertainties
(which indicated by dotted lines in Fig. 21). This demonstrates
that these beam uncertainties are so small in this data release that
they do not contribute to the parameter posterior widths. They
are therefore not enabled by default.

4.1.4. Inter-frequency consistency and redundancy

We have tested the e↵ect of estimating parameters while exclud-
ing one frequency channel at a time. In Figs. 33 and 35, the
“no100” case shows the e↵ect of excluding the 100 ⇥ 100 fre-
quency spectrum, the “no143” of excluding the 143 ⇥ 143 and
143 ⇥ 217 spectra, and the “no217” of excluding the 143 ⇥ 217
and 217 ⇥ 217 spectra.

We obtain the greatest deviations in the “no217” case for
ln(1010As) and ⌧, which shift to lower values by 0.53� and
0.47�, about twice the expected shift calculated using Eq. (53),
0.25� and 0.23� respectively (in units of standard deviations of
the “no217” case). The value of ⌦ch2 decreases by only �0.1�.
Figure 37 further shows the 217 ⇥ 217 spectrum conditioned

on the 100 ⇥ 100 and 143 ⇥ 143 ones. This conditional devi-
ates significantly in two places, at ` = 200 and ` = 1450. The
` = 1450 case was already discussed in Sect. 3.8 and is further
analysed in Sect. 4.1.6. Around ` = 200, we see some excess
scatter (both positive and negative) in the data around a jump be-
tween two consecutive bins of the conditional. This corresponds
to the two bins around the first peak (one right before and the
other almost at the location of the first peak), as can be seen in
Fig. 28. All of the frequencies exhibit a similar behaviour (see
Fig. 32); however, it is most pronounced in the 217 GHz case.
This multipole region is also near the location of the bump in the
e↵ective dust model. The magnitude of this excess power in the
model is not big enough or sharp enough to explain this excess
scatter (see Fig. 17). Finally, note that the best-fit CMB solution
at large scales is dominated by the 100 ⇥ 100 data, which are
measured on a greater sky fraction (see Fig. 14).

This test shows that the parameters of the ⇤CDM model do
not rely on any specific frequency map, except for a weak pull
of the higher resolution 217 GHz data towards higher values of
both As and ⌧ (but keeping As exp(�2⌧) almost constant).

4.1.5. Changes of parameters with `min

We have checked the stability of the results when chang-
ing `min from the baseline value of `min = 30 to `min =
50 and 100 (and `min = 1000, which is discussed in
Sect. 4.1.6). These correspond to the cases labelled “LMIN 50”
and “LMIN 100” in Fig. 35 (to be compared to the reference
case “PlikTT+tauprior”). This check is important, since the
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Fig. 36. Marginal mean and 68% CL error bars on the parameters AL (left) and Ne↵ (right) in ⇤CDM extensions, estimated with di↵erent data
choices for the PlikTT likelihood in comparison with results from alternate approaches or model, combined with a Gaussian prior on ⌧ =
0.07±0.02 (i.e., neither low-` temperature nor polarization data). The “PlikTT+tauprior” case indicates the baseline (HM, `min = 30, `max = 2508),
while the other cases are described in subsections of Sect. 4.1. The thin horizontal black line shows the baseline result and the thick dashed grey
line displays the ⇤CDM value (AL = 1 and Ne↵ = 3.04). The grey bands show the standard deviation of the expected parameter shift, for those
cases where the data used is a sub-sample of the baseline likelihood (see Eq. (53)).

Fig. 37. 217 ⇥ 217 spectrum conditioned on the joint result from the
100 ⇥ 100 and 143 ⇥ 143 spectra. The most extreme outliers are at ` =
200 and ` = 1450.

Gaussian approximation assumed in the likelihood is bound to
fail at very low ` (for further discussion, see Sect. 3.6).

The results are in good agreement, with shifts in parame-
ters smaller than 0.2�, well within expectations calculated from
Eq. (53). This is also confirmed in Fig. 42, where the TT hy-
bridization scale of the full likelihood is varied (i.e., the multi-
pole where the low-` and high-` likelihoods are joined).

4.1.6. Changes of parameters with `max

We have tested the stability of our results against changes in the
maximum multipole `max considered in the analysis. We test the
restriction to `max in the range `max = 999�2310, with the base-
line likelihood having `max = 2508. For each frequency power
spectrum we choose `freq

max = min(`max, `
freq, base
max ), where `freq, base

max
is the baseline `max at each frequency as reported in Table 16.
The results shown in Fig. 35 use the same settings as the baseline
likelihood (in particular, we leave the same nuisance parameters
free to vary) and always use a prior on ⌧.

The results in Fig. 35 suggest there is a shift in the mean val-
ues of the parameters when using low `max; e.g., for `max = 999,

ln(1010As), ⌧, and ⌦ch2 are lower by 1.0, 0.8, and 0.8� with
respect to the baseline parameters. These parameters then con-
verge to the baseline values for `max >⇠ 1500. Following the ar-
guments given earlier (Eq. (53)), when using these nested sub-
samples of the baseline data we expect shifts of the order of 0.5,
0.4, and 0.8� respectively, in units of the standard deviation of
the `max = 999 results. We further note that the value of ✓ for
`max <⇠ 1197 is lower compared to the baseline value. In partic-
ular, at `max = 1197, its value is 0.8� low, while the expected
shift is of the order of 0.7�, in units of the standard deviation of
the `max = 1197 results. The value of ✓ then rapidly converges
to the baseline for `max >⇠ 1300. Figure C.8 in Appendix C.3.3
also shows that these shifts are related to a change in the ampli-
tude of the foreground parameters. In particular, the overall level
of foregrounds at each frequency decreases with increasing `max,
partially compensating for the increase in ln(1010As) and ⌦ch2.
Although all these shifts are compatible with expectations within
a factor of 2, we performed some further investigations in order
to understand the origin of these changes. In the following, we
provide a tentative explanation.

Table 18 shows the di↵erence in �2 between the best-fit
model obtained using `max = 999 (or `max = 1404) and the
baseline PlikTT+tauprior best-fit solution in di↵erent multipole
intervals. For this test, we ran the `max cases fixing the nuisance
parameters to the baseline best-fit solution. This is required in or-
der to be able to “predict” the power spectra at multipoles higher
than `max, since otherwise the foreground parameters, which are
only weakly constrained by the low-` likelihood, can converge
to unreasonable values. We note that fixing the foregrounds has
an impact on cosmological parameters, which can di↵er from
the ones shown in Fig. 35 (see Appendix C.3.4 for a direct com-
parison). Nevertheless, since the overall behaviour with `max is
similar, we use this simplified scenario to study the origin of the
shifts.

The �2 di↵erences in Table 18 indicate that the cosmology
obtained using `max = 999 is a better fit in the region between
` = 630 and 829. In particular, the low value of ✓ preferred
by the `max = 999 data set shifts the position of the third peak
to smaller scales. This enables a better fit to the low points at
` ⇡ 700�850 (before the third peak), followed by the high points
at ` ⇡ 850�950 (after the third peak). This is also clear from
the residuals and the green solid line in Fig. 32, which shows
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Table 18. Di↵erence of �2 values between pairs of best-fit models in
di↵erent `�ranges for the co-added TT power spectrum.

Multipole range �`max=999 �`max=1404 �AL

30–129 . . . . . . 0.1 0.31 0.4
130–229 . . . . . . 0.07 0.05 0.3
230–329 . . . . . . �0.4 �0.22 �0.45
330–429 . . . . . . 0.34 �0.09 0.22
430–529 . . . . . . �0.01 0.17 0.26
530–629 . . . . . . 0.61 �0.26 �0.2
630–729 . . . . . . �1.66 �0.8 �0.8
730–829 . . . . . . �1.15 �0.13 �0.79
830–929 . . . . . . �0.45 0.01 0.91
930–1029 . . . . . �0.87 0.41 0.58

1030–1129 . . . . . 2.17 �0.94 �0.24
1130–1229 . . . . . 1.65 1.47 �0.17
1230–1329 . . . . . 0.87 0.17 �0.08
1330–1429 . . . . . 6.21 �1.46 �0.64
1430–1529 . . . . . �0.2 3.35 �0.62
1530–1629 . . . . . 0.78 0.27 �0.44
1630–1729 . . . . . 0.73 0.9 0.06
1730–1829 . . . . . 0 1.18 �0.01
1830–1929 . . . . . 0.59 �0.08 �0.31
1930–2029 . . . . . 0.21 0.04 �0.04
2030–2129 . . . . . 0 0.57 �0.12
2130–2229 . . . . . 0.11 0.19 �0.18
2230–2329 . . . . . �0.17 0.25 �0.2
2330–2429 . . . . . 0.06 �0.16 0.09
2430–2508 . . . . . 2.63 2.66 �0.19

Notes. The first column shows the `-range, the second shows the dif-
ference �`max=999 between the �2 values for a ⇤CDM best-fit model ob-
tained using either a likelihood with `max = 999 or the baseline, i.e.,
�999 ⌘

⇣
�2
`max=999 � �

2
BASE

⌘
⇤CDM

. The `max = 999 case was run fixing
the foreground parameters to the best fit of the baseline case. The third
column is the same as the second, but for `max = 1404. The fourth
column shows the di↵erence �AL between the �2 values obtained in the
⇤CDM+AL and the⇤CDM frameworks. In this case, all the foreground
and nuisance parameters were free to vary in the same way as in the
baseline case.

the di↵erence in best-fit models between the `max = 999 case
and the reference case. However, the values in Table 18 also
show that the `max = 999 cosmology is disfavoured by the mul-
tipole region between ` ⇡ 1330�1430, before the fifth peak.
The `max = 999 model predicts too little power in this multi-
pole range, which can be better fit if the position of the fifth peak
moves to lower multipoles. As a consequence, ✓ shifts to higher
values when including `max & 1400.

Concerning the shifts in ⌦ch2, As and ⌧, Fig. 35 shows that
these parameters converge to the full baseline solution between
`max = 1404 and `max = 1505. The ��2 values in Table 18 be-
tween the best-fit `max = 1404 case and the baseline suggest
that the `max = 1404 cosmology is disfavoured by the multi-
pole region ` = 1430�1530 (fifth peak), and – at somewhat
lower significance – by the regions close to the fourth peak (` ⇡
1130�1230) and the sixth peak (` ⇡ 1730�1829). The pink line
in Fig. 32 shows the di↵erences between the `max = 1404 best-
fit model and the baseline, and it suggests that the `max = 1404
cosmology predicts an amplitude of the high-` peaks that is too
large.

This e↵ect can be compensated by more lensing, which can
be obtained with greater values of ⌦ch2 and ln(1010As), as well
as a greater value of ⌧ to compensate for the increase in As in
the normalization of the spectra, as observed when considering

`max >⇠ 1500. This also explains why the baseline (`max = 2508)
best-fit solution prefers a value of the optical depth which is
0.8� higher than the mean value of the Gaussian prior (⌧ =
0.07 ± 0.02), ⌧ = 0.085 ± 0.018. In order to verify this inter-
pretation, we performed the following test (using the CAMB code
instead of PICO). We fixed the theoretical lensing power spec-
trum to the best-fit parameters preferred by the `max = 1404 cos-
mology, and estimated cosmological parameters using the base-
line likelihood. This is the “CAMB, FIX LENS” case in Fig. 35,
which shows that cosmological parameters shift back to the val-
ues preferred at `max = 1404 (“CAMB, `max = 1404”) if they
cannot alter the amount of lensing in the model.

Since the ` ⇡ 1400�1500 region is also a↵ected by the
deficit at ` = 1450 (described in Sect. 3.8), we tested whether
excising this multipole region from the baseline likelihood (with
`max = 2508) has an impact on the determination of cosmo-
logical parameters. The results in Fig. 35 (case “CUT ` =
1404�1504”) show that the parameter shifts are at the level of
0.47, �0.29, 0.38, and 0.45� on ⌦bh2, ⌦ch2, ✓, and ns, respec-
tively (0.39, 0.09, 0.24, and 0.29� expected from Eq. (53)), con-
firming that this multipole region has some impact on the pa-
rameters, although it cannot completely account for the shift
between the `max ⇡ 1400 case and the baseline.

We also estimated cosmological parameters including only
multipoles ` > 1000 (“LMIN 1000” case), and compared them
to the “LMAX 999” case14 (see also Appendix C.5). The two-
dimensional posterior distributions in Fig. 33 show the comple-
mentarity of the information from `  999 and ` � 1000, with
degeneracy directions between pairs of parameters changing in
these two multipole regimes. The `min = 1000 likelihood sets
constraints on the amplitude of the spectra Ase�2⌧ and on ns that
are almost a factor of 2 weaker than the ones obtained with the
baseline likelihood, and somewhat higher than the ones obtained
with `max = 999. The value of ⌧ is thus more e↵ectively deter-
mined by its prior and shifts downward by 0.59� with respect to
the baseline. The value of ⌦ch2 shifts upward by 1.7� (cf. 0.8�
expected from Eq. (53)). Whether this change is just due to a
statistical fluctuation is still a matter of investigation.

However, since parameter shifts are correlated, we evaluated
whether the ensemble of the shifts in all cosmological parame-
ters between the `max = 999 and `min = 1000 cases are compati-
ble with statistical expectations. In order to do so, we computed
the �2

�
statistic of the shift as

�2
� =
X

i j

�i⌃
�1
i j � j, (54)

where �i is the di↵erence in best-fit value of the ith parameter
between the `max = 999 and `min = 1000 cases and ⌃ is the
covariance matrix of the expected shifts, calculated as the sum

14 During the revision of this paper, we noticed that the ` > 1000 case
explores regions of parameter space that are outside the optimal PICO
interpolation region, as also remarked by Addison et al. (2016). This
inaccuracy mainly a↵ected this particular test for constraints on ns and
⌦bh2: the error bars for these parameters were underestimated by a fac-
tor of about 2 while the mean values were misestimated by about 0.8�
with respect to runs performed with CAMB. Nevertheless, we found that
for all other parameters, and in all other likelihood tests presented in
this section, this problem did not arise, since the explored parameter
space was entirely contained in the PICO interpolation region so as to
guarantee accurate results, as also detailed in Sect. C.5. Furthermore,
this inaccuracy does not change any of the conclusions of this paper.
We therefore decided to keep in Fig. 35 the results obtained with PICO
but we have added results for the ` > 1000 case obtained with CAMB
(case “CAMB, lmin = 1000”).
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of the parameter covariance matrices obtained in each of the
two cases, ignoring correlations between the two datasets. We
include in this calculation the ⇤CDM parameters (⌦bh2, ⌦ch2,
✓, ns, As exp (�2⌧)), excluding ⌧, since the constraints on this
parameter are dominated by the same prior in both cases, and
using As exp (�2⌧) instead of ln(1010As), since the latter is very
correlated with ⌧ and the TT power spectrum is mostly sensi-
tive to the combination As exp (�2⌧). Finally, we estimate the �2

�
both in the case where we leave the foregrounds free to vary
or in the case where we fix them to the best fit of the baseline
PlikTT+ tauprior solution. Assuming that �2

�
has a �2 distribu-

tion for 5 degrees of freedom, we find that the shifts observed in
the data are consistent with simulations at the 1.2� (1.1� with
fixed foregrounds) level for the case where we do not include
the low-` TT likelihood at ` < 30 to the `max = 999 case, and at
the 1.5� (1.4� with fixed foregrounds) level for the case where
we include the low-` TT likelihood. We also find that the use of
As exp (�2⌧) instead of ln(1010As) changes these significances
only in the case where we include the low-` TT likelihood to the
`max = 999 case and leave the foregrounds free to vary, in which
case we find consistency at the level of 1.8�, in agreement with
the findings of Addison et al. (2016; although in this case the
use of ln(1010As) and the exclusion of ⌧ makes this test less in-
dicative of the true significance of the shifts). In all cases, we do
not find evidence for a discrepancy between the two datasets. A
more precise and extended evaluation and discussions of these
shifts, based on numerical simulations, will be presented in a fu-
ture publication.

4.1.7. Impact of varying AL

Figure 36 (left) displays the impact of various choices on the
value of the lensing parameter AL in the ⇤CDM+AL framework.
The baseline likelihood prefers a value of AL that is about 2�
greater than the physical value, AL = 1. It is clear that this prefer-
ence only arises when data with `max >⇠ 1400 are included, and it
is caused by the same e↵ects as we proposed in Sect. 4.1.6 to ex-
plain the shifts in parameters at `max >⇠ 1400 in the ⇤CDM case.
More lensing helps to fit the data in the ` ⇡ 1300�1500 region,
as indicated by the �2 di↵erences between the ⇤CDM+AL best-
fit and the ⇤CDM one in Table 18. This drives the value of AL to
1.159±0.090 with PlikTT+tauprior, 1.8� higher than expected.
The case “⇤CDM+AL” of Fig. 35 also shows that opening up
this unphysical degree of freedom shifts the other cosmological
parameters at the 1� level; e.g., ⌦ch2 and As shift closer to the
values preferred in the ⇤CDM case when using `max <⇠ 1400.
While in the ⇤CDM case high values of these parameters allow
increasing lensing, in the ⇤CDM+AL case this is already en-
sured by a high value of AL, so⌦ch2 and As can adopt values that
better fit the ` <⇠ 1400 range. When using PlikTT in combina-
tion with the lowTEB likelihood, the deviation increases to 2.4�,
AL = 1.204 ± 0.086,15 due to the fact that more lensing allows
smaller values of ⌦ch2 and As and a greater value of ns, better
fitting the deficit at ` ⇡ 20 in the temperature power spectrum
(see Planck Collaboration XIII 2016, Sect. 5.1.2 and Fig. 13).

4.1.8. Impact of varying Neff

We have investigated the e↵ect of opening up the Ne↵ degree
of freedom in order to assess the robustness of the constraints

15 These results were obtained with the PICO code, and are thus
close to but not identical to those obtained with CAMB and reported in
Planck Collaboration XIII (2016).

on the ⇤CDM extensions, which rely heavily on the high-` tail
of the data. Figure 36 (right) shows that Ne↵ departs from the
standard 3.04 value by about 1� when using PlikTT+tauprior,
Ne↵ = 2.7 ± 0.33. The �2 improvement for this model over
⇤CDM is only ��2 = 1.5. We note that when the lowTEB like-
lihood (or alternatively, the low-` TT likelihood plus the prior
on ⌧) is used in combination with PlikTT, the value of Ne↵ shifts
higher by about 1�, Ne↵ = 3.09 ± 0.29. This shift is about a fac-
tor 2 more than the one expected from Eq. (53), 0.5�, between
the PlikTT+tauprior and PlikTT+tauprior+low-` TT cases.
This shift is due to the fact that the deficit at ` ⇡ 20 is better
fit by higher ns and, as a consequence, an increase in Ne↵ helps
decreasing the enhanced power at high `.

Figure 36 also shows that, not surprisingly, the most extreme
variations as compared to the reference case (less than 1�) arise
when the high-resolution data are dropped (by reducing `max or
by removing the 217 GHz channel), owing to the strong depen-
dence of the Ne↵ constraints on the damping tail.

Having opened up this degree of freedom, the standard pa-
rameters are now about 1� away (see case “⇤CDM+Ne↵” of
Fig. 35), and such a model would prefer quite a low value of
H0, which would then be at odds with priors derived from di-
rect measurements (see Planck Collaboration XIII 2016, for an
in-depth analysis).

4.2. Intercomparison of likelihoods

In addition to the baseline high-` Plik likelihood, we have de-
veloped four other high-` codes, CamSpec, Hillipop, Mspec,
and Xfaster. CamSpec and Xfaster have been described in
separate papers (Planck Collaboration XV 2014; Rocha et al.
2011), and brief descriptions of Mspec and Hillipop are given
in Appendix D. These codes have been used to perform data
consistency tests, to examine various analysis choices, and to
cross-check each other by comparing their results and ensuring
that they are the same. In general, we find good agreement be-
tween the codes, with only minor di↵erences in cosmological
parameters.

The CamSpec, Hillipop, and Mspec codes are, like Plik,
based on pseudo-C` estimators and an analytic calculation of the
covariance (Efstathiou 2004, 2006), with some di↵erences in the
approximations used to calculate this covariance. The Xfaster
code (Rocha et al. 2011) is an an approximation to the iterative,
maximum likelihood, quadratic band-power estimator based on a
diagonal approximation to the quadratic Fisher matrix estimator
(Rocha et al. 2011, 2010), with noise bias estimated using dif-
ference maps, as described in Planck Collaboration IX (2016).
For temperature, all of the codes use the same Galactic masks,
but they di↵er in point-source masking: Hillipop uses a mask
based on a combination of S/N > 7 and cuts based on flux,
while the others use the baseline S/N > 5 mask described in
Appendix A. The codes also di↵er in foreground modelling, in
the choice of data combinations, and in the `-range. For the com-
parison presented here, all make use of half-mission maps.

Figure 38 shows a comparison of the power spectra residuals
and error bars from each code, while Fig. E.5 in Appendix E.4
compares the combined spectra with the best-fit model. In tem-
perature, the main feature visible in these plots is an overall
nearly constant shift, up to 10 µK2 in some cases. This repre-
sents a real di↵erence in the best-fit power each code attributes
to foregrounds. For context, it is useful to note the statistical un-
certainty on the foregrounds; for example, the 1� error on the
total foreground power at 217 GHz at ` = 1500 is 2.5 µK2 (cal-
culated here with Mspec, but similar for the other codes). Shifts
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Fig. 38. Comparison of power spectra residuals from di↵erent high-` likelihood codes. The figure shows “data/calib � FG � PlikCMB”, where
“data” stands for the empirical cross-frequency spectra, “FG” and “calib” are the best-fit foreground model and recalibration parameter for each
individual code at that frequency, and the best-fit model PlikCMB is subtracted for visual presentation. These plots thus show the di↵erence in the
amount of power each code attributes to the CMB. The power spectra are binned in bins of width �` = 100. The y-axis scale changes at ` = 500
for TT and ` = 1000 for EE (vertical dashes).

of this level do not lead to very large di↵erences in cosmological
parameters except in a few cases that we discuss.

For easier visual comparison of error bars, we show in
Fig. 39 the ratios of each code’s error bars to those from Plik.
These have been binned in bins of width �` = 100, and are thus
sensitive to the correlation structure of each code’s covariance
matrix, up to 100 multipoles into the o↵-diagonal. For all the
codes and for both temperature and polarization, the correlation
between multipoles separated by more than �` = 100 is less than
3%, so Fig. 39 contains the majority of the relevant information
about each code’s covariance.

A few di↵erences are visible, mostly at high frequency, when
the 217 GHz data are used. First, the Hillipop error bars in TT
for 143 ⇥ 217 become increasingly tighter than the other codes
at ` > 1700. This is because Hillipop, unlike the other codes,
gives non-zero weight to 143 ⇥ 217 spectra when both the 143
and the 217 GHz maps come from the same half-mission. This
leads to a slight increase in power at high ` compared to Plik,
as can be seen in Fig. 38. Conversely, the Hillipop error bars
are slightly larger by a few percent at ` < 1700; however the
source of this di↵erence is not understood. Second, the Mspec
error bars in temperature are increasingly tighter towards higher
frequency, as compared to other codes; for 217⇥217, Mspec un-
certainties are smaller by 5�10% for ` between 1000 and 2000.
This arises from the Mspec map-based Galactic cleaning proce-
dure, which removes excess variance due to CMB–foreground
correlations by subtracting a scaled 545 GHz map. However, for
polarization, where one must necessarily clean with the noisier

353 GHz maps, the Mspec error bars for TE and EE become
larger. CamSpec, which also performs a map cleaning for low-`
polarization, switches to a power-spectrum cleaning at higher `
to mitigate this e↵ect.

The di↵erences in ⇤CDM parameters from TT are shown in
Table 19. Generally, parameters agree to within a fraction of�,
but with some di↵erences we discuss. One thing to keep in mind
in interpreting this comparison is that these di↵erences are not
necessarily indicative of systematic errors. Some of the di↵er-
ences are expected due to statistical fluctuations because di↵er-
ent codes weight the data di↵erently.

One of the biggest di↵erences with respect to the baseline
code is in ns, which is higher by about 0.45� for CamSpec, with
a related downward shift of Ase�2⌧. To put these shifts into per-
spective, we refer to the whisker plots of Figs. 35 and 36 which
compare CamSpec TT results with Plik in the ⇤CDM case
(base and extended). A di↵erence in ns of about 0.16� between
Plik and CamSpec can be attributed to the inclusion in Plik of
the first 500 multipoles for 143 ⇥ 217 and 217 ⇥ 217; these mul-
tipoles are excluded in CamSpec (see also Sect. 4.1.2). Indeed,
cutting out those multipoles in Plik brings ns closer by 0.16�
to the CamSpec value and slightly degrades the constraint on ns
compared to the full Plik result. Using Eq. (53), we see that
the shift and degradation in constraining power are consistent
with expectations. A similar 0.16� shift can be attributed to dif-
ferent dust templates. CamSpec uses a steeper power law index
(�2.7). Using the CamSpec template in Plik brings ns closer to
the CamSpec value. Allowing the power law index of the galactic
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Fig. 39. Comparison of error bars from the di↵erent high-` likelihood codes. The quantities plotted are the ratios of each code’s error bars to those
from Plik, and are for bins of width �` = 100. Results are shown only in the ` range common to Plik and the code being compared.

template to vary when exploring cosmological parameters yields
a slightly shallower slope (see Sect. 4.1.2). The slope of the dust
template is mainly determined at relatively high `, i.e., in the
regime where it is hardest to determine the template accurately
since the dust contribution is only a small fraction of the CIB and
point-source contributions (see the ` >⇠ 1000 parts of Figs. 19
and 20). The remaining di↵erence of 0.13� arises from di↵er-
ences in data preparation (maps, calibration, binning) and co-
variance estimates. We therefore believe that a 0.2� is a conser-
vative upper bound of the systematic error in ns associated with
the uncertainties in the modelling of foregrounds, which is the
biggest systematic uncertainty in TT .

A shift that is less well understood is the ⇡1� shift in Ase�2⌧

between Plik and Hillipop. The preference for a lower ampli-
tude from Hillipop is sourced by the lower power attributed to
the CMB, seen in Fig. 38. With ⌧ partially fixed by the prior, this
implies lower As and hence a smaller lensing potential envelope,
explaining the somewhat lower value of AL found by Hillipop.
Tests performed with the same code suggest that 1� is too great
a shift to be explained simply by the di↵erent foreground mod-
els, so some part of it must be due to the di↵erent data weight-
ing; as can be seen in Fig. 39, Hillipop gives less weight to
500 . ` . 1500, and slightly more outside of this region.

This comparison also shows the stability of the results with
respect to the Galactic cleaning procedure. Mspec and Plik use
di↵erent procedures, yet their parameter estimates agree to bet-
ter than 0.5� (see Appendix D.1). But we note that the Plik–
CamSpec di↵erences are higher in the polarization case, and can
reach 1�, as can be judged from the whisker plot in polarization
of Fig. C.10.

4.3. Consistency of Poisson amplitudes with source counts

The Poisson component of the foreground model is sourced by
shot-noise from astrophysical sources. In this section we discuss
the consistency between the measured Poisson amplitudes and
other probes and models of the source populations from which
they arise. The Poisson amplitude priors that we calculate are not
used in the main analysis, because they improve uncertainties on
the cosmological parameters by at most 10%, and only for a few
extensions; instead they serve as a self-consistency check.

This type of check was also performed in Like13, which we
update here by:

1. developing a new method for calculating these priors that
is accurate enough to give realistic uncertainties on Poisson
predictions (for the first time);

2. including a comparison of more theoretical models;
3. taking into account the 2015 point-source masks.

In Like13 the Poisson power predictions were calculated via

C` =
Z S cut

0
dS S 2 dN

dS
, (55)

where dN/dS is the di↵erential number count, S cut is an e↵ective
flux-density cut above which sources are masked, and the inte-
gral was evaluated independently at each frequency. Although it
is adequate for rough consistency checks, Eq. (55) ignores the
facts that the 2013 point-source mask was built from a union
of sources detected at di↵erent frequencies, and that the Planck
flux-density cut varies across the sky, and it also ignores the ef-
fect of Eddington bias. In order to accurately account for all of
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Table 19. Comparison between the parameter estimates from di↵erent high-` codes.

Parameter Plik CamSpec Hillipop Mspec Xfaster (SMICA)

⌦bh2 . . . . . . . . . . 0.02221 ± 0.00023 0.02224 ± 0.00023 0.02218 ± 0.00023 0.02218 ± 0.00024 0.02184 ± 0.00024
⌦ch2 . . . . . . . . . . 0.1203 ± 0.0023 0.1201 ± 0.0023 0.1201 ± 0.0022 0.1204 ± 0.0024 0.1202 ± 0.0023
100✓MC . . . . . . . . 1.0406 ± 0.00047 1.0407 ± 0.00048 1.0407 ± 0.00046 1.0409 ± 0.00050 1.041 ± 0.0005
⌧ . . . . . . . . . . . . . 0.085 ± 0.018 0.087 ± 0.018 0.075 ± 0.019 0.075 ± 0.018 0.069 ± 0.019
109Ase�2⌧ . . . . . . 1.888 ± 0.014 1.877 ± 0.014 1.870 ± 0.011 1.878 ± 0.012 1.866 ± 0.015
ns . . . . . . . . . . . . 0.962 ± 0.0063 0.965 ± 0.0066 0.961 ± 0.0072 0.959 ± 0.0072 0.960 ± 0.0071

⌦m . . . . . . . . . . . 0.3190 ± 0.014 0.3178 ± 0.014 0.3164 ± 0.014 0.3174 ± 0.015 0.3206 ± 0.015
H0 . . . . . . . . . . . 67.0 ± 1.0 67.1 ± 1.0 67.1 ± 1.0 67.1 ± 1.1 66.8 ± 1.0

Notes. Each column gives the results for various high-` TT likelihoods at ` > 50 when combined with a prior of ⌧ = 0.07 ± 0.02. The SMICA
parameters were obtained for `max = 2000.

these e↵ects, we now calculate the Poisson power as

Ci j
` =

Z
1

0
dS 1 . . . dS n S iS j

dN(S 1, . . . , S n)
dS 1 . . . dS n

I(S 1, . . . , S n), (56)

where the frequencies are labelled 1 . . . n, the di↵erential source
count model, dN/dS , is now a function of the flux densities at
each frequency, and I(S 1, . . . , S n) is the joint “incompleteness”
of our catalogue for the particular cut that was used to build the
point-source mask.

The joint incompleteness was determined by injecting sim-
ulated point sources into the Planck sky maps, using the proce-
dure described in Planck Collaboration XXVI (2016). The same
point-source detection pipelines that were used to produce the
Second Planck Catalogue of Compact Sources (PCCS2) were
run on the injected maps, producing an ensemble of simulated
Planck sky catalogues with realistic detection characteristics.
The joint incompleteness is defined as the probability that a
source would not be included in the mask as a function of the
source flux density, given the specific masking thresholds being
considered. The raw incompleteness is a function of sky loca-
tion, because the Planck noise varies across the sky. The incom-
pleteness that appears in Eq. (56) is integrated over the region of
the sky used in the analysis; the injection pipeline estimates this
quantity by injecting sources only into these regions.

Equation (56) can be applied to any theoretical model which
makes a prediction for the multi-frequency dN/dS . We have
adopted the following models.

1. For radio galaxies we have two models. The first is the
Tucci et al. (2011) model, updated to include new source-
count measurements from Mocanu et al. (2013). We also
consider a phenomenological model that is a power law in
flux density and frequency, and assumes that the sources’
spectral indices are Gaussian-distributed with mean ↵̄ and
standard deviation �↵; we use di↵erent values for ↵̄ and
�↵ above and below 143 GHz. We shall refer to this second
model as the “power-law” model, and the di↵erential source
counts are given by

dN(S 1, S 2, S 3)
dS 1dS 2dS 3

=
A(S 1S 2S 3)��1

2⇡�12�23
(57)

⇥ exp
2
66664�

(↵(S 1, S 2) � ↵̄12)2

2�2
12

�
(↵(S 2, S 3) � ↵̄32)2

2�2
32

3
77775 ,

where labels 1�3 refer to Planck 100, 143, and 217 GHz and
↵(S i, S j) = ln(S j/S i)/ln(⌫ j/⌫i). Both radio models are ex-
cellent fits to the available source-count data, and we take

the di↵erence between them as an estimate of model uncer-
tainty. With the power-law model we are additionally able to
propagate uncertainties in the source count data to the final
Poisson estimate via MCMC.

2. For dusty galaxies we use the Béthermin et al. (2012) model,
as in Planck Collaboration XXX (2014). The model is in
good agreement with the number counts measured with te
Spitzer Space Telescope and the Herschel Space Observa-
tory. It also gives a reasonable CIB redshift distribution,
which is important for cross-spectra, and is a very good fit
to CIB power spectra (see Béthermin et al. 2013). In con-
trast to the radio-source case, the major contribution to the
dusty galaxy Poisson power arises from sources with flux
densities well below the cuts; for example, we note that de-
creasing the flux-density cuts by a factor of 2 decreases the
Poisson power by less than 1% at the relevant frequencies.
In this case, Eq. (55) is a su�cient and more convenient ap-
proximation, and we make use of it when calculating Poisson
levels for dusty galaxies.

We give predictions for Poisson levels for three di↵erent masks:
(1) the 2013 point-source mask, which was defined for sources
detected at S/N > 5 at any frequency between 100 and 353 GHz;
(2) the 2015 point-source mask, which is frequency-dependent
and includes S/N > 5 sources detected only at each individual
frequency (used by Plik, CamSpec, and Mspec in this work);
and (3) the Hillipop mask, which is also frequency-dependent
and involves both a S/N cut and a flux-density cut16.

Table 20 summarizes the main results of this section. Gen-
erally, we find good agreement between the priors from source
counts and the posteriors from chains, with the priors being
much more constraining. The exception to the good agreement
is at 100 GHz where the prediction is lower than the measured
value by around 4� for the baseline 2015 mask and 6� for the
Hillipop mask. This is a sign either of a foreground modelling
error or (perhaps more likely) of a residual unmodelled system-
atic in the data. We note that this disagreement was not present
in Like13, where the Poisson amplitude at 100 GHz was found
to be smaller. We also note that removing the relative calibra-
tion prior (Eq. (35)) or increasing the `max at 100 GHz by a few
hundred reduces the tension in the Mspec results. In any case, it
is unlikely to a↵ect parameter estimates at all, since very little

16 We note that the Hillipop mask was constructed partly so that
Eq. (55) would be an accurate approximation. We find that for the radio
contribution is is accurate to 2%, or 1�, and for the dust contribution it
is essentially exact.
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Table 20. Priors on the Poisson amplitudes given a number of di↵erent point-source masks and models.

Power spectrum

Mask Type Model 100 ⇥ 100 143 ⇥ 143 143 ⇥ 217 217 ⇥ 217

Baseline 2013 . . . . . . . Radio Power-law 84 ± 3 29 ± 1 16 ± 1 9 ± 1
Dusty Bethermin 4 ± 1 13 ± 3 41 ± 8 129 ± 25

Baseline 2015 . . . . . . . Radio Power-law 148 ± 7 40 ± 1 16 ± 1 10 ± 1
Tucci 139 40 16 11

Dusty Bethermin 4 ± 1 13 ± 3 41 ± 8 129 ± 25
Plik 260 ± 28 44 ± 8 39 ± 10 97 ± 11
Mspec 317 ± 46 22 ± 13 12 ± 7 21 ± 9

Hillipop 2015 . . . . . . Radio Power-law 150 ± 7 47 ± 2 18 ± 1 11 ± 1
Tucci 141 47 18 12

Dusty Bethermin 4 ± 1 13 ± 3 41 ± 8 129 ± 25
Hillipop 372 ± 38 58 ± 21 53 ± 24 105 ± 18

Notes. Entries are D` at ` = 3000 in µK2 and are given at the e↵ective band centre for each component. Uncertainties on the “power-law” model
are statistical errors propagated from uncertainties in the Mocanu et al. (2013) source-count data. Priors on the dust component have formally been
calculated only for the Hillipop mask, but they are repeated for the other masks, for which they are accurate to better than 1%. The results from
di↵erent codes, to which these predictions should be compared, use TT ` > 50 data with a prior of ⌧ = 0.07 ± 0.02. For Mspec about 90% of the
dusty contribution is cleaned out at the map level, hence the measured values above are in some cases far less than prior value.

cosmological information comes from the multipole range at
100 GHz that constrains the Poisson amplitude.

4.4. TE and EE test results

4.4.1. Residuals per frequency and inter-frequency
differences

Figure 40 shows the residuals for each frequency and Fig. 41
shows the di↵erences between frequencies of the TE and EE
power spectra (the procedure is explained in Appendix C.3.2).
The residuals are calculated with respect to the best-fit cosmol-
ogy as preferred by PlikTT+tauprior, although we use the best-
fit solution of the PlikTT, TE, EE+tauprior run to subtract the
polarized Galactic dust contribution.

The binned inter-frequency residuals show deviations at the
level of a few µK2 from the best-fit model. These deviations do
not necessarily correspond to high values of the �2 calculated on
the unbinned data (see Table 16). This is because some of the de-
viations are relatively small for the unbinned data and correctly
follow the expected �2 distribution. However, if the deviations
are biased (e.g., have the same sign) in some ` range, they can
result in larger deviations (and large �2) after binning. Thus, the
�2 calculated on unbinned data is not always su�cient to iden-
tify these type of biases. We therefore also use a second quantity,
�, defined as the weighted linear sum of residuals, to diagnose
biased multipole regions or frequency spectra:

� = wT(Ĉ � C) with w = (diag C)�1/2, (58)

where Ĉ is the unbinned vector of data in the multipole region or
frequency spectrum of interest, C) is the corresponding model,
and w is a vector of weights, equal to the inverse standard devia-
tion evaluated from the diagonal of the corresponding covariance
matrix C. The � statistic is distributed as a Gaussian with zero
mean and standard deviation equal to

�� =
p
wTCw. (59)

We then define the normalized �norm as the � in units of standard
deviation,

�norm = �/��. (60)

The �norm values that we obtain for di↵erent frequency power
spectra are given in Table 16.

For EE, the worst-behaved spectra from the �norm point of
view are 143 ⇥ 143 (3.7� deviation) and 100 ⇥ 217 (�3.0�),
while from the �2 point of view, the worst is 100 ⇥ 143 (PTE =
3.9%). For TE, the worst from the �norm point of view are 100 ⇥
217 (5�), 100 ⇥ 100 (3.7�), and 143 ⇥ 143 (�2.2�), while from
the �2 point of view the worst is 100 ⇥ 100 (PTE = 0.43%). The
extreme deviations from the expected distributions show that the
frequency spectra are not described very accurately by our data
model. This is also clear from Fig. 41, which shows that there
are di↵erences of up to 5� between pairs of foreground-cleaned
spectra.

However, as the co-added residuals in Fig. 29 show, sys-
tematic e↵ects in the di↵erent frequency spectra appear to av-
erage out, leaving relatively small residuals with respect to the
PlikTT+tauprior best-fit cosmology. In other words, these ef-
fects appear not to be dominated by common modes between
detector sets or across frequencies. This is also borne out by the
good agreement between the data and the expected polarization
power spectra conditioned on the temperature ones, as shown in
the conditional plots of Fig. 34.

4.4.2. TE and EE robustness tests

For TE and EE, we ran tests of robustness similar to those ap-
plied earlier to TT . These are presented in Appendix C.3.5, and
the main conclusions are the following. We find that the Plik
cosmological results are a↵ected by less than 1� when using
detset cross-spectra instead of half-mission ones. This is also
the case when we relax the dust amplitude priors, when we
marginalize over beam uncertainties, or when we change `min
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Fig. 40. Residual frequency power spectra after subtraction of the
PlikTT+tauprior best-fit model. We clean Galactic dust from the spec-
tra from using the best-fit solution of PlikTT, TE, EE+tauprior. The
residuals are relative to the baseline HM power spectra (blue points,
except for those that deviate by at least 2 or 3�, which are shown in or-
ange or red, respectively). The vertical dashed lines delimit the ` ranges
retained in the likelihood. Upper: TE power spectra. Lower: EE power
spectra.

or `max. The alternative CamSpec likelihood has larger shifts,
but still smaller than 1� in TE and 0.5� in EE. However, we
also see larger shifts (more than 2� in TE) with Plik when
some frequency channels are dropped; and, when they are var-
ied, the beam leakage parameters adopt much higher values
than expected from the prior, while still leaving some small dis-
crepancies between individual cross-spectra that have yet to be
explained.

Fig. 41. Inter-frequency foreground-cleaned power-spectra di↵erences.
Each panel shows the di↵erence of two frequency power spectra, that
indicated on the left axis minus that on the bottom axis, after subtracting
foregrounds using the best-fit PlanckTT+lowP foreground solutions.
Di↵erences are shown for both the HM power spectra (dark blue) and
the DS power spectra (light blue).

These results shows that our data model leaves residual in-
strumental systematic errors and is not yet su�cient to take
advantage of the full potential of the HFI polarization infor-
mation. Indeed, the current data model and likelihood code do
not account satisfactorily for deviations at the µK2 level, even
if they can be captured in part by our beam leakage mod-
elling. Nevertheless, the results for the ⇤CDM model obtained
from the PlikTE+tauprior and PlikEE+tauprior runs are in
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good agreement with the results from PlikTT+tauprior (see
Appendix C.3.6). This agreement between temperature and po-
larization results within ⇤CDM is not a proof of the accuracy of
the co-added polarization spectra and their data model, but rather
a check of consistency at the µK2 level. This consistency is, of
course, a very interesting result in itself. But this comparison of
probes cannot yet be pushed further to check for the potential
presence of a physical inconsistency within the base model that
the data could in principle detect or constrain.

5. The full Planck spectra and likelihoods

This section discusses the results that are obtained by using the
full Planck likelihood. Section 5.1 first addresses the question of
robustness with respect to the choice of the hybridization scale
(the multipole at which we transition from the low-` likelihood
to the high-` likelihood). Sections 5.2 and 5.3 then present the
full results for the power spectra and the baseline cosmologi-
cal parameters. Section 5.4 summarizes the full systematic error
budget. Section 5.5 concentrates on the significance of the pos-
sibly anomalous structure around ` ⇡ 20 in this new release. We
then introduce in Sect. 5.6 a useful compressed Planck high-`
temperature and polarization CMB-only likelihood, Plik_lite,
which, when applicable, enables faster parameter exploration.
Finally, in Sect. 5.7, we compare the Planck 2015 results with
the previous results from WMAP, ACT, and SPT.

5.1. Insensitivity to hybridization scale

Before we use the low-` and high-` likelihoods together, we
address the question of the hybridization scale, `hyb, at which
we switch from one to the other (neglecting correlations be-
tween the two regimes, as we did and checked in Like13). To
that end, we focus on the TT case and use a likelihood based
on the Blackwell-Rao estimator and the Commander algorithm
(Chu et al. 2005; Rudjord et al. 2009) as described in Sect. 2.2,
since this likelihood can be used to much higher `max than the full
pixel-based T, E, B one. For this test without polarization data,
we assume the same ⌧ = 0.07 ± 0.02 prior as before.

The whisker plot of Fig. 42 shows the marginal mean and
the 68% CL error bars for base-⇤CDM cosmological param-
eters when `hyb is varied from the baseline value of 30 (case
“LOWL 30”) to `hyb =50, 100, 150, 200, and 250, and com-
pared to the PlikTT+tauprior case. The di↵erence between the
“LOWL 30” and “PlikTT+tauprior” values shows the e↵ect of
the low-` dip at ` ⇡ 20, which reaches 0.5� on ns. The plot
shows that the e↵ect of varying `hyb from 30 to 150 is a shift in
ns by less than 0.1�. This is the result of the Gaussian approxi-
mation pushed to `min = 30, already discussed in the simulation
section (Sect. 3.6). It would have been much too slow to run the
full low-` T EB likelihood with `max substantially greater than
30, and we decided against the only other option, to leave a gap
in polarization between ` = 30 and the hybridization scale cho-
sen in TT .

5.2. The Planck 2015 CMB spectra

The visual appearance of Planck 2015 CMB co-added spectra in
TT , TE, and EE can be seen in Fig. 50. Goodness-of-fit values
can be found in Table E.1 of Appendix E. These di↵er somewhat
from those given previously in Table 16 for Plik alone, because
the inclusion of low ` in temperature brings in the ` ⇡ 20 feature
(see Sect. 5.5). Still, they remain acceptable, with PTEs all above
10% (16.8% for TT ).

Fig. 42. Marginal mean and 68% CL error bars on cosmological param-
eters estimated with di↵erent multipoles for the transition between the
low-` and the high-` likelihood. Here we use only the TT power spectra
and a Gaussian prior on the optical depth ⌧ = 0.07 ± 0.02, within the
base-⇤CDM model. “PlikTT+tauprior” refers to the case where we
use the Plik high-` likelihood only.

With this release, Planck now detects 36 extrema in total,
consisting of 19 peaks and 17 troughs. Numerical values for
the positions and amplitudes of these extrema may be found
in Table E.2 of Appendix E.2, which also provides details of
the steps taken to derive them. We provide in Appendix E.3
an alternate display of the correlation between temperature and
(E-mode) polarization by showing their Pearson correlation co-
e�cient and their decorrelation angle versus scale (Figs. E.2
and E.3).
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5.3. Planck 2015 model parameters

Figure 43 compares constraints on pairs of parameters as well
as their individual marginals for the base-⇤CDM model. The
grey contours and lines correspond to the results of the 2013 re-
lease (Like13), which was based on TT and WMAP polarization
at low ` (denoted by WP), using only the data from the nom-
inal mission. The blue contours and lines are derived from the
2015 baseline likelihood, PlikTT+lowTEB (“PlanckTT+lowP”
in the plot), while the red contours and line are obtained from
the full PlikTT, EE, TE+lowTEB likelihood (“PlanckTT, TE,
EE+lowP” in the plot, see Appendix E.1 for the relevant ro-
bustness tests). In most cases the 2015 constraints are in quite
good agreement with the earlier constraints, with the exception
of the normalization As, which is higher by about 2%, reflect-
ing the 2015 correction of the Planck calibration which was in-
deed revised upward by about 2% in power. The figure also il-
lustrates the consistency and further tightening of the parameter
constraints brought by adding the E-mode polarization at high `.
The numerical values of the Planck 2015 cosmological parame-
ters for base ⇤CDM are given in Table 21.

As shown in Fig. 44, the degeneracies between foreground
and calibration parameters generally do not a↵ect the determi-
nation of the cosmological parameters. In the PlikTT+lowTEB
case (top panel), the dust amplitudes appear to be nearly un-
correlated with the basic ⇤CDM parameters. Similarly, the 100
and 217 GHz channel calibration is only relevant for the level
of foreground emission. Cosmological parameters are, however,
mildly correlated with the point-source and kinetic SZ ampli-
tudes. Correlations are strongest (up to 30%) for the baryon den-
sity (⌦bh2) and spectral index (ns). We do not show correlations
with the Planck calibration parameter (yP), which is uncorrelated
with all the other parameters except the amplitude of scalar fluc-
tuations (As). The bottom panel shows the correlation for the
PlikTE+lowTEB and PlikEE+lowTEB cases, which do not
a↵ect the cosmological parameters, except for 20% correlations
in EE between the spectral index (ns) and the dust contamination
amplitude in the 100 and 143 GHz maps.

We also display in Fig. 45 the correlations between the
foreground parameters and the cosmological parameters in the
PlikTT+lowTEB case when exploring classical extensions to
the ⇤CDM model. While nrun seems reasonably insensitive to
the foreground parameters, some extensions do exhibit a notice-
able correlation, up to 40% in the case of YHe and the point-
source level at 143 GHz.

Finally, we note that power spectra and parameters derived
from CMB maps obtained by the component-separation meth-
ods described in Planck Collaboration IX (2016) are generally
consistent with those obtained here, at least when restricted to
the ` < 2000 range in TT ; this is detailed in Sect. E.4.

5.4. Overall systematic error budget assessment

The tests presented throughout this paper and its appendices doc-
umented our numerous tests of the Planck likelihood code and
its outputs. Here, we summarize those results and attempt to iso-
late the dominant sources of systematic uncertainty. This assess-
ment is of course a di�cult task. Indeed, all known systematics
are normally corrected for, and when relevant, the uncertainty
on the correction is included in the error budget and thus in the
error bar we report. In that sense, except for a very few cases
where we decided to leave a known uncertainty in the data, this
section tries to deal with the more di�cult task of evaluating the
unknown uncertainty!

Table 21. Constraints on the basic six-parameter ⇤CDM model using
Planck angular power spectra.

PlanckTT+lowP PlanckTT, TE, EE+lowP
Parameter 68% limits 68% limits

⌦bh2 . . . . . . . . . 0.02222 ± 0.00023 0.02225 ± 0.00016
⌦ch2 . . . . . . . . . 0.1197 ± 0.0022 0.1198 ± 0.0015
100✓MC . . . . . . . 1.04085 ± 0.00047 1.04077 ± 0.00032
⌧ . . . . . . . . . . . . . 0.078 ± 0.019 0.079 ± 0.017
ln(1010As) . . . . . 3.089 ± 0.036 3.094 ± 0.034
ns . . . . . . . . . . . . 0.9655 ± 0.0062 0.9645 ± 0.0049

H0 . . . . . . . . . . . 67.31 ± 0.96 67.27 ± 0.66
⌦⇤ . . . . . . . . . . . 0.685 ± 0.013 0.6844 ± 0.0091
⌦m . . . . . . . . . . . 0.315 ± 0.013 0.3156 ± 0.0091
⌦mh2 . . . . . . . . . 0.1426 ± 0.0020 0.1427 ± 0.0014
⌦mh3 . . . . . . . . . 0.09597 ± 0.00045 0.09601 ± 0.00029
�8 . . . . . . . . . . . 0.829 ± 0.014 0.831 ± 0.013
�8⌦

0.5
m . . . . . . . . 0.466 ± 0.013 0.4668 ± 0.0098

�8⌦
0.25
m . . . . . . . 0.621 ± 0.013 0.623 ± 0.011

zre . . . . . . . . . . . . 9.9+1.8
�1.6 10.0+1.7

�1.5
109As . . . . . . . . . 2.198+0.076

�0.085 2.207 ± 0.074
109Ase�2⌧ . . . . . . 1.880 ± 0.014 1.882 ± 0.012
Age/Gyr . . . . . . 13.813 ± 0.038 13.813 ± 0.026
z⇤ . . . . . . . . . . . . 1090.09 ± 0.42 1090.06 ± 0.30
r⇤ . . . . . . . . . . . . 144.61 ± 0.49 144.57 ± 0.32
100✓⇤ . . . . . . . . . 1.04105 ± 0.00046 1.04096 ± 0.00032
zdrag . . . . . . . . . . 1059.57 ± 0.46 1059.65 ± 0.31
rdrag . . . . . . . . . . 147.33 ± 0.49 147.27 ± 0.31
kD . . . . . . . . . . . . 0.14050 ± 0.00052 0.14059 ± 0.00032
zeq . . . . . . . . . . . 3393 ± 49 3395 ± 33
keq . . . . . . . . . . . 0.01035 ± 0.00015 0.01036 ± 0.00010
100✓s,eq . . . . . . . 0.4502 ± 0.0047 0.4499 ± 0.0032

f 143
2000 . . . . . . . . . . 29.9 ± 2.9 29.5 ± 2.7

f 143⇥217
2000 . . . . . . . 32.4 ± 2.1 32.2 ± 1.9

f 217
2000 . . . . . . . . . . 106.0 ± 2.0 105.8 ± 1.9

Notes. The top group contains constraints on the six primary parameters
included directly in the estimation process. The middle group contains
constraints on derived parameters. The last group gives a measure of
the total foreground amplitude (in µK2) at ` = 2000 for the three high-`
temperature spectra used by the likelihood. These results were obtained
using the CAMB code, and are identical to the ones reported in Table 3 in
Planck Collaboration XIII (2016).

This section summarizes the contribution of the known sys-
tematic uncertainties along with these potential unknown un-
knowns, specifically highlighting both internal consistency tests
based on comparing subsets of the data, along with those using
end-to-end instrumental simulations.

5.4.1. Low-` budget

The low-` likelihood has been validated using both internal con-
sistency tests and simulation-based, tests. Here we summarize
only the main result of the analysis, which has been set forth in
Sect. 2 above.

A powerful consistency test of the polarization data, de-
scribed in Sect. 2.4, is derived by rotating some of the likelihood
components by ⇡/4. Specifically, the rotation is applied to the
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Fig. 43. ⇤CDM parameter constraints. The grey contours show the 2013 constraints, which can be compared with the current ones, using either
TT only at high ` (red) or the full likelihood (blue). Apart from further tightening, the main di↵erence is in the amplitude, As, due to the overall
calibration shift.

data maps and only to the noise covariance matrix (the likelihood
being a scalar function, applying the same rotation to the signal
matrix as well would be equivalent to not performing the rota-
tion). The net e↵ect is a conversion of E ! �B and B ! E for
the signal, but leaving una↵ected the Gaussian noise described
in the covariance matrix. Under these circumstances, we do not
expect to pick up any reionization signal, since it would then be
present in BB or TB: the operation should result in a null ⌧ detec-
tion. This is precisely what happens (see the blue dashed curve
in Fig. 8). It is of course possible – though unlikely – that sys-
tematics are only showing up in the E channel, leaving B modes
una↵ected. Indeed, this possibility is further challenged by the
fact that we do not detect anomalies in any of the six polarized
power spectra; as detailed in Fig. 7, they are consistent with a

⇤CDM signal and noise as described by the final 70 GHz co-
variance matrix.

These tests are specific to Planck and aimed at validating
the internal consistency of the datasets employed to build the
likelihood. As a further measure of consistency, we have carried
out a null test employing the WMAP data, detailed in Sect. 2.6.
In brief, we have taken WMAP’s Ka, Q and V channels and
cleaned them from any polarized foreground contributions us-
ing a technique analogous to the one used to clean the LFI
70 GHz maps, employing the Planck 353 GHz map to mini-
mize any dust contribution, but relying on WMAP’s K chan-
nel to remove any synchrotron contribution. The resulting LFI
70 GHz and WMAP maps separately lead to compatible ⌧ detec-
tions; their half-di↵erence noise estimates are compatible with
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