
RESEARCH ARTICLE

Electrophysiological priming effects

demonstrate independence and overlap of

visual regularity representations in the

extrastriate cortex

Alexis D. J. MakinID
1*, John Tyson-Carr1, Yiovanna Derpsch1, Giulia Rampone1,

Marco BertaminiID
1,2

1 Department of Psychological Sciences, University of Liverpool, Liverpool, United Kingdom, 2 Department

of General Psychology, University of Padova, Padova, Italy

* Alexis.makin@liverpool.ac.uk

Abstract

An Event Related Potential (ERP) component called the Sustained Posterior Negativity

(SPN) is generated by regular visual patterns (e.g. vertical reflectional symmetry, horizontal

reflectional symmetry or rotational symmetry). Behavioural studies suggest symmetry

becomes increasingly salient when the exemplars update rapidly. In line with this, Experi-

ment 1 (N = 48) found that SPN amplitude increased when three different reflectional sym-

metry patterns were presented sequentially. We call this effect ‘SPN priming’. We then

exploited SPN priming to investigate independence of different symmetry representations.

SPN priming did not survive changes in retinal location (Experiment 2, N = 48) or non-

orthogonal changes in axis orientation (Experiment 3, N = 48). However, SPN priming trans-

ferred between vertical and horizontal axis orientations (Experiment 4, N = 48) and between

reflectional and rotational symmetry (Experiment 5, N = 48). SPN priming is interesting in

itself, and a useful new method for identifying functional boundaries of the symmetry

response. We conclude that visual regularities at different retinal locations are coded inde-

pendently. However, there is some overlap between different regularities presented at the

same retinal location.

Introduction

Electroencephalography (EEG) studies have identified a symmetry-related ERP called the Sus-
tained Posterior Negativity (SPN, for review see [1]). Amplitude is more negative at posterior

electrodes for symmetrical than asymmetrical stimuli [2–4]. The SPN is a difference wave that

begins immediately after the visual N1 (at around 200–250 ms post stimulus onset). Larger

SPNs are those where amplitude much more negative in symmetrical than random conditions.

The SPN has been well characterized: Amplitude scales with the salience of different sym-

metry types [5] and with the proportion of symmetry in symmetry plus noise displays [6]. An
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example of the parametric SPN response to symmetry is shown in Fig 1. The SPN is found

whether participants are actively discriminating regularity, or performing secondary tasks [7].

Source localization suggests that the SPN is generated by the extrastriate visual cortex [3,8].

This is consistent with functional Magnetic Resonance Imaging (fMRI), which has identified a

parametric response to symmetry in a network of extrastriate areas including V3, V3a, V4,

VO1 and LOC, but not in the primary visual cortex [8–12]. Throughout this paper we refer to

‘the extrastriate symmetry network’ that ‘generates the SPN’, while of course acknowledging

that the same posterior brain regions mediate many other visual computations.

Behavioural studies have also identified systematic influences on symmetry perception [13].

One such influence was reported by Sharman and Gheorghiu [14], who found that symmetry

in rapidly changing displays is discriminated more easily than symmetry in static displays.

This dynamic symmetry advantage was also found by Niimi, Watanbe and Yokosawa [15].

Fig 1. Example Sustained Posterior Negativity from Palumbo et al. [6]. A) Grand average ERP waves from posterior electrodes. P1 and the SPN

intervals are labelled. B) SPN as a difference wave (reflection–random). Larger SPNs are ones where this difference wave falls a long way below zero.

Here SPN amplitude scaled with the proportion of symmetry in the image. C) Example stimuli with 20 to 100% symmetry and corresponding

topographic difference maps. Here the SPN appears as increasing blue at posterior electrodes. In the current series of experiments, we investigated how

the SPN changes with repeated presentation.

https://doi.org/10.1371/journal.pone.0254361.g001
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Given these results, Sharman and Gheorghiu [14] concluded that “It might be the case that con-
tinuous rapid presentation of symmetrical patterns, could result in an SPN that increases in
amplitude over time.” (page 8).

Our Experiment 1 explored SPN repetition effects and confirmed Sharman and Gheor-

ghiu’s [14] prediction. We term the increase in SPN amplitude ‘SPN priming’. Experiments

2–5 then exploited this SPN priming to determine functional boundaries within the extrastri-

ate symmetry network. Repetition effects are often used to determine functional boundaries in

this way: If prior presentation of stimulus A has no effect on the response to stimulus B, then

A and B are coded independently. Conversely, if prior presentation of stimulus A alters the

neural response to stimulus B, then there is some overlap between A and B in the brain. Trans-

fer of repetition effects indicate representational overlap, while absence of transfer indicates

representational independence [16–21]. We thus tested whether SPN repetition effects survive

changes in location (Experiment 2), orientation (Experiments 3 and 4) and regularity type

(Experiment 5).

Experiment 1. Repetition effects with different and identical

reflections

The trial structure of Experiment 1 is shown in Fig 2A. Each trial began with a 1500 ms blank

period. This was followed by a sequence of three abstract black and white patterns (500 ms

each, separated by 200 ms gaps). The three patterns were either random or regular with salient

8-fold reflectional symmetry (Fig 2B). Participants identified oddball trials with a grey blank

disk at the second sequence position. We used this secondary task because we were interested

in the dynamics of spontaneous regularity coding, rather than repetition effects on cognitive

classification.

As mentioned, the SPN is a difference wave. We expected amplitude to be lower for reflec-

tion than random patterns. When refer to SPN priming, we mean the difference between

reflection and random waves increases across the three successive presentations.

Experiment 1 explored SPN repetition effects with identical and different exemplars (Fig

2B). Sharman and Gheorghiu’s results predict SPN priming in the different exemplars condi-

tion only. Experiment 1 also tested the specificity of SPN priming. We contrasted simple and

complex patterns, which differed in spatial frequency content and other low-level visual fea-

tures (see left and right columns of Fig 2B). This was a between-subjects factor, with 24 partici-

pants each condition. Finally, it is likely that mere repetition of any stimulus elicits some non-

specific effects. Therefore, we also included a condition where a reflection pattern is presented

third, following two randoms (RandRandRef condition). The SPN response to this third reflec-

tion allows us to estimate this non-specific repetition effect.

Experiment 1 methods

General methods for all experiments are described at the end of the manuscript. We provide a

few essential details here. Experiment 1 had 48 participants (age 18–43, mean age 20, 9 males,

4 left-handed). Each trial began with a 1500 ms blank with white placeholder disk and red fixa-

tion dot in the centre. On most trials, three patterns were then shown for 500 ms, separated by

200 ms intervals. On rare oddball trials, the second element of the sequence was a blank grey

disk. On each trial, participants responded ‘all patterns’ or ‘blank in the middle’, using the A

and L keys to enter their responses (Fig 2A). The response key mapping switched unpredict-

ably (A for blank in the middle, L for all patterns, or vice versa). There were an equal number

of trials with each key mapping.
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Fig 2. Experiment 1 method and stimuli. A) Trial structure in normal and oddball trials. All trials involved a sequence of three 500 ms

presentations, separated by 200 ms gaps. Participants responded by pressing buttons for "All patterns" (all three presentations involved

black and white patterns, as in the top row) or "Blank in the middle" (the second item in the sequence was blank, as in the lower row). B)

Different triplets used. 24 participants were presented with complex patterns (left column) and another 24 were presented with simple

patterns (right column). Individual patterns shown here are examples, in the real experiment each trial used different patterns. The

coloured frames are matched with the colour of ERP waves in subsequent figures.

https://doi.org/10.1371/journal.pone.0254361.g002
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The experiment was divided in 15 blocks of 36 trials (540 trials in total). Participants had a

break in between each block, and the electrodes were checked if necessary. Trials in each block

were presented in random order. In the main experiment there were 240 different random tri-

als (where all three patterns had a random arrangement), and 60 trials from each of the other

conditions (Fig 2B). There were also 60 additional oddball trials (11.1%) requiring a blank in
the middle response. These oddball trials were not included in EEG analysis. The proportion of

triplet types in each block was identical and thus matched the whole experiment. An additional

single block was presented as practice (not included in EEG analysis). Participants gave the

correct answer on 97% of trials. Trials were included in EEG analysis even if participants gave

the wrong behavioural response. Given the moderate cognitive demands of the unpredictable

key mapping, it is likely that most errors were introduced at the response entry stage. Most

errors are unlikely to reflect genuine confusion about whether there was a blank in the middle.

All stimuli and image construction algorithms are available on Open Science Framework

(OSF), along with ERP analysis materials and Supplementary Materials 1, 2 and 3 (https://osf.

io/2yjus/).

Experiment 1 results

Fig 3A shows grand-average ERP data from the posterior electrode cluster [PO7, O1, O2 and

PO8], averaged over the between-subjects factor Complexity (simple, complex). Unsurprisingly,

Fig 3. Experiment 1 results. A) Grand Average ERPs from electrode cluster O1, PO7, O2 and PO8. Colour corresponds to coloured outlines in Fig 1.

Results are averaged over the Complex and Simple patterns. B) The SPN shown as a difference wave. The intervals where the patterns were visible on

the screen are shown with dotted boxes. C) Mean SPN for first, second and third intervals. Note SPN priming in the different reflections condition

(red), but not in the identical reflections condition (dark blue). Results from Experiment 1. Error bars = 95% confidence intervals (if they do not cross

zero, the amplitude difference from zero significant at the.05 level). Stars show significant pairwise comparisons within an interval (� p<0.05, ��� p

<0.001).

https://doi.org/10.1371/journal.pone.0254361.g003
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there are three Visual Evoked Potentials (VEPs), driven by the three successive onsets. The

waves for different and identical random sequences were very similar (green and black waves in

Fig 3A). The waves for different and identical reflection sequences diverged over the trial (red

and blue waves in Fig 3A).

The SPN difference wave also had three peaks, although amplitude remained below zero

throughout (Fig 3B). When three different reflections were presented, SPN amplitude

increased with repetition (red trace). This repetition enhancement effect is referred to as SPN
priming. When three identical patterns were presented, there was no SPN priming (blue trace).

In the RandRandRef condition, the third pattern (a reflection) generated an SPN of intermedi-

ate amplitude (light blue trace).

The nature of SPN priming requires clarification: We did not observe three discrete SPNs.

Instead, this should be interpreted a long difference wave, with a single 200 ms pre-stimulus

baseline. The long difference wave selectively enhanced by a sequence of three of changing

exemplars, but not identical exemplars.

To examine this selective SPN priming effect statistically, the difference from correspond-

ing random wave was measured in the final 250ms of each presentation interval and 100 ms

into the ISI (First window = 250–600 ms, Second window = 950 to 1300 ms, Third win-

dow = 1650 to 2000 ms). Average SPN amplitude from these time windows is shown in Fig 3C.

Bars in Fig 3C represent mean amplitudes significantly lower than zero (all one sample t tests

significant p< 0.001, see 95% confidence intervals).

Effects were analysed with a mixed ANOVA. There were two within-subject factors [3

Sequence position (first, second, third) X 3 Sequence type (different reflections, identical

reflections, RandRandRef)] and one between-subjects factor [2 Pattern complexity (complex,

simple)]. Here we only report the most theoretically interesting effects for the sake of brevity.

The full results of this ANOVA analysis are reported in Supplementary materials 3. Note that

the Greenhouse Geisser-correction factor was used to adjust degrees of freedom when the

assumption of sphericity was violated, so some non-integer DFs are reported. There were

main effects of Sequence position (F (2,92) = 56.179, p< 0.001, ηp
2 = 0.550) and Sequence

type (F (2,92) = 37.906, p< 0.001, ηp
2 = 0.450) and an interaction between Sequence position

and Sequence type (F (2.752, 126.594) = 54.052, p< 0.001, ηp
2 = 0.540). There was no effect

of the between-subjects factor Complexity (F (1,46) = 3.627, p = 0.063) and no interactions

involving Complexity (p> 0.116).

The three-way interaction was largely driven by the unique nature of the RandRandRef

sequence (reported in Supplementary materials 3). However, the most theoretically interesting

comparison between the Identical and Different Reflections sequences. We thus ran a 2X3 fol-

low up ANOVA to compare these conditions [Sequence position (first, second, third) X

Sequence type (different reflections, identical reflections)]. There was a significant interaction

(F (1.520, 71.437) = 7.945, p = 0.002, ηp
2 = 0.145). This was due to a significant linear effect

of Sequence position in the different reflections condition (F (1,47) = 13.674, p = 0.001,

ηp
2 = 0.225) but not in the identical reflections condition (F< 1).

Next, we analysed amplitude of the third SPN with one factor repeated measures ANOVA

[3 Previous patterns (different reflections, identical reflections, randoms)]. There was a signifi-

cant influence of Previous patterns (F (2,94) = 4.570, p = 0.013, ηp
2 = 0.089). The SPN was

larger after two different reflection exemplars than two identical reflection exemplars (t (47) =

2.657, p = 0.011). The third pattern from the RandRandRef sequence (e.g. the reflection) gen-

erated an SPN of intermediate amplitude, which did not significantly differ from the other

conditions (different reflections t (47) = -1.136, p = 0.262; identical reflections sequence t (47)

= 1.980, p = 0.054). This aspect of the results was somewhat inconclusive (t-tests have different

DF to ANOVA because the between subject’s factor Complexity is not included).
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This basic ERP analysis was based on a subset of electrodes and time windows. Rather than

running whole scalp analysis with Electrode cluster as an additional factor, we complemented

the above with mass univariate (LIMO) and global field power (GFP) analysis, which incorpo-

rates all electrodes and time points. This is a more efficient way of imaging the full data set (see

Supplementary materials 1).

Cortical sources of the SPN priming effect

We interpreted the SPN priming effect as an increase in amplitude of the bilateral extrastriate

symmetry response. However, an alternative explanation is that SPN priming is caused by

additional activations emerging elsewhere—ERPs from different cortical sources summate at

the scalp, so another repetition sensitive ERP, generated elsewhere in the cortex, may be

responsible for the observed priming effect at posterior electrodes. We thus used source dipole

analysis to test whether the SPN priming effect happens within the extrastriate symmetry net-

work, as assumed. A source dipole model was constructed using a sequential strategy [22,23]

whereby equivalent current dipoles (ECDs) were fitted to explain the 3D source currents con-

tributing to the observed data [24,25]. Classical LORETA recursively applied (CLARA) [26]

was used as an independent source localisation method to determine whether results converge

across different localisation methods. The analysis used here was based on other recent work

[27].

A source dipole model comprising of two bilateral sources within the extrastriate regions

explained 94.7% of variance. Both ECD1 (left Brodmann area 19; approximate Talairach coor-

dinates–x = -26.9, y = -75.9, z = -12.9) and ECD2 (right Brodmann area 19; approximate

Talairach coordinates–x = 26.9, y = -75.9, z = -12.9) were located within the fusiform gyrus.

The nearest local maximum detected using CLARA was 18.41 mm from both ECD1 and

ECD2, evidencing the reliability of the final model. Thus, it appeared that this extrastriate

region was the only significant generator of symmetry-specific cortical activity. The final

model is detailed in Fig 4A, and the resulting source waveforms for each ECD are illustrated in

Fig 4B. In these source waveforms, there was again selective SPN priming effect in the different

reflections condition, replicating the sensor level analysis.

Apparent source waveform effects were confirmed with repeated measures ANOVA

[Sequence position (first, second, third) X Sequence type (different reflections, identical reflec-

tions) X Hemisphere (left (ECD1), right (ECD2)]. The apparent right lateralization in Fig 4C

was not significant (F (1,47) = 3.651, p = 0.062). However, there was a main effect of Sequence

position (F (1.584, 74.426) = 5.375, p = 0.011, ηp
2 = 0.103), as well as a Sequence position X

Sequence type interaction (F (1.712,80.443) = 4.407, p = 0.020, ηp
2 = .086). There was an

effect of Sequence position in the different reflections condition (F (1.456, 68.453) = 11.731,

p< 0.001, ηp
2 = 0.200), but not in the identical reflections condition (F (1.731, 81.355) = 1.138,

p = 0.319). There were no other effects or interactions (p> 0.211).

In sum, the selective priming effects originally observed in sensor level analysis were found

within this pair of bilateral extrastriate sources. From this, we conclude that the SPN priming

effect happens within the extrastriate symmetry network and does not reflect effects generated

elsewhere in the brain.

Experiment 1 discussion

Experiment 1 found an SPN priming effect for the sequence of three different reflections. Con-

versely, there was no SPN priming effect for the sequence of three identical reflections. The

results were similar for complex and simple patterns, despite their disparate image statistics.

PLOS ONE ERP priming for visual regularity

PLOS ONE | https://doi.org/10.1371/journal.pone.0254361 July 9, 2021 7 / 28

https://doi.org/10.1371/journal.pone.0254361


We thus conclude that both SPN priming and the SPN itself are unaffected by large variation

of spatial frequency and other low-level visual features.

We also conclude that SPN priming happens within the extrastriate network and repre-

sents increasing amplitude of the extrastriate symmetry response. Two alternative explana-

tions are less likely. First, the SPN priming effect could also be due to scalp summation from

a third repetition-sensitive dipole, which beings later in the trial. However, source-dipole

analysis did not support this alternative. Second, the different exemplar sequences might

evoke cognitive surprise. Indeed, several ERPs, such as the Mismatch Negativity, are gener-

ated when expectations build up over a sequence of events and are then violated [28]. How-

ever, such non-specific expectation effects are subtracted when the SPN is computed as a

difference wave (different reflections–different randoms). It is also noteworthy that different

random and identical random waves were very similar (Fig 3A), which is inconsistent with

cognitive surprise explanations.

It seems that there is something special about the onset of new reflection exemplars, which

increases activation of the extrastriate SPN generators. This is consistent with some beha-

vioural findings from Sharman and Gheorghiu [14], who found that symmetry discrimination

improved when reflected elements moved to new positions or rapidly flickered on and off.

Niimi et al. [15] also found a perceptual advantage for dynamic stimuli.

Another recent SPN study by Bertamini, Rampone, Oulton, Tatlidil, & Makin [29] found

comparable results. In this experiment two patterns were separated by a one second ISI. The

SPN generated by the second pattern was larger in the category repeat condition (different

Fig 4. Experiment 1 source dipole model. A) Approximate locations of Equivalent Current Dipoles (ECDs) in the left and right extrastriate cortex. B)

Left and right ECD source waveforms for the different and identical reflection sequences. The intervals used for statistical analysis are shown in green.

Bar graphs indicate the mean activity in these intervals (error bars = +/- 1 SD). Note the selective SPN priming effect in these extrastriate source

waveforms. C) Rear view scalp difference maps (Different Reflection–Different Random; Identical Reflection–Identical Random). Each row shows

topographies from first, second and third intervals.

https://doi.org/10.1371/journal.pone.0254361.g004
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examples of reflectional symmetry) than in the exemplar repeat condition (identical examples

of reflectional symmetry). This again shows that SPN priming only happens when novel exem-

plars are repeated. The fact that this experiment involved different task and stimuli provides

good converging evidence for selective SPN priming.

Having established the basic SPN priming effect with changing exemplars, subsequent

experiments exploited the effect to assess overlap and independence of the visual regularity

code. If SPN priming transfers between conditions, then conditions may share processing

resources. Experiment 2 tested whether SPN priming transfers across changes in retinal

location.

Experiment 2: Repeated and changing retinal locations

Experiment 2 tested whether SPN priming transfers between left and right visual hemifields.

We expected no inter-hemispheric transfer of SPN priming. Indeed, there is some experimen-

tal evidence to suggest that regularities presented in different retinal locations are functionally

independent. For instance, Wright, Makin and Bertamini [30] presented symmetrical patterns

on the left or right of fixation, and recorded an SPN in the contralateral hemisphere only. This

contralateral SPN was not altered by the pattern presented to the ipsilateral hemisphere (sym-

metry, asymmetry or nothing).

Experiment 2 used the same 8-fold reflections as Experiment 1. On each presentation in

the triplet, a pair of patterns was presented with one pattern on either side of central fixation

(therefore, a trial involved a triplet of pairs). Patterns were 5˚ in diameter, and the gap between

the left and right patterns was also 5˚ (Fig 5). This ensured that symmetry information was

presented in the opposite hemifield, well outside the putative foveal confluence. Participants

fixated centrally, and fixation was monitored online with an eye tracker. We analysed eye data

to confirm that participants did not routinely break central fixation or move their eyes towards

the symmetrical patterns (see Supplementary materials 2).

SPNs were computed as difference from the double random condition (black framed trip-

lets in Fig 5). The crucial comparison was between repeated location conditions, where all

three reflections were on one side (either the left or right, red framed triplets in Fig 5), and

changing location conditions, where reflection switched from left to right or vice versa (green

framed triplets in Fig 5). Note that the total amount of reflection presented in a trial was identi-

cal in repeated and changing location conditions, therefore, if the extrastriate network codes

regularity independently of retinal location, then SPN priming effect would be the same in

both.

Experiment 2 methods

Another 48 participants were involved in Experiment 2 (age 16–43, mean age 22, 11 male, 8

left-handed). We tested 24 participants in the simple pattern condition and 24 in the complex

pattern conditions. There were 30 blocks of 14 trials (120 random trials, and 60 of each of

the other 4 conditions). There were 60 additional oddball trials (14.285%) which were not

included in EEG analysis. Participants performed the same oddball discrimination task as in

Experiment 1, although blank oddballs now involved presentation of two blank disks. Partici-

pants gave the correct answer in 96% of trials. The same time windows and electrodes were

used in ERP analysis as Experiment 1.

Experiment 2 results

Results from repeated and changing location conditions are shown in Fig 6. The difference

waves in Fig 6B and 6C represent the difference from the double random condition (where
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Fig 5. Experiment 2 stimuli. Each triplet had three pairs, with one pattern on the left of fixation, and one on the right

of fixation. 24 participants were presented with complex pattern pairs (left column) and another 24 were presented

with simple pattern pairs (right column).

https://doi.org/10.1371/journal.pone.0254361.g005
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both left and right patterns were random). There was a clear SPN priming effect when the loca-

tion of reflections was repeated, but not when location of reflections alternated between visual

hemifields. None of the 6 SPNs in Fig 6C was significant (one sample t-test, p> 0.05). This

SPN is not surprising. Our analysis was optimised to assess interhemispheric transfer of SPN

priming: It thus averages over left and right hemisphere electrodes (a more detailed breakdown

of results by hemisphere is available in Supplementary materials 3).

A mixed ANOVA confirmed these impressions. There were two within-subject factors [3

Sequence position (first, second, third), Sequence Type (repeated locations, changing loca-

tions)] and one between-subjects factor [Pattern complexity (complex, simple)]. This found

main effects of Sequence position (F (2,92) = 3.296, p = 0.041, ηp
2 = 0.067) and Sequence Type

(F (1,46) = 5.377, = 0.025, ηp
2 = 0.105) and a Sequence position X Sequence type interaction

(F (1.698, 78.096) = 5.410, p = 0.009, ηp
2 = 0.105). As expected, there was a significant linear

effect of Sequence position in the repeated locations condition (F (1,47) = 4.575, p = 0.038,

ηp
2 = 0.089), but not in the changing locations condition (F< 1). There were no other effects

or interactions (F< 1).

Unfortunately signal-to-noise ratio in Experiment 2 was not sufficient for source dipole

analysis. Complementary mass univariate and GFP analyses are included in Supplementary

Materials 1.

Fig 6. Experiment 2 results. Conventions are the same as Fig 3. A) Grand Average ERPs from electrode cluster O1, PO7, O2 and PO8. B) Difference

waves as difference from the double random condition. C) Mean SPN for first, second and third intervals. Error bars = 95% confidence intervals. Stars

show significant pairwise comparisons (p<0.01) Note SPN priming in the repeated locations condition (red), but not in the changing locations

condition (green).

https://doi.org/10.1371/journal.pone.0254361.g006
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Experiment 2 discussion

Experiment 2 replicated the contralateral SPN from Wright et al. [30]. As predicted, there was

an SPN priming effect when reflectional symmetry was repeated in the same hemifield, but

not when it switched between left and right visual hemifields. This suggests that there are inde-

pendent symmetry sensitive networks in each cerebral hemisphere, and that cross talk between

the hemispheres is minimal.

Nevertheless, these results are complicated slightly by an ipsilateral contribution to SPN

priming in the repeated locations condition (as described in Supplementary materials 3). Spe-

cifically, when reflection was repeated the left hemifield, there was SPN priming in the contra-

lateral right hemisphere (as expected), but also increasing negativity in the ipsilateral left

hemisphere (not expected). This could be explained if participants broke central fixation and

moved their eyes to the symmetry on the left side of the screen. However, eye tracking pro-

vided no evidence for this (Supplementary materials 2). It would be a mistake to overinterpret

this unexpected aspect of the results.

Experiment 3. Repeated and changing orientations

Wenderoth [31] found that symmetry discrimination can benefit from repetition of axis orien-

tations within a block of trials. Experiment 3 thus examined independence of reflections with

different axis orientations. This experiment required one-fold reflection (Fig 7). On the first

presentation of the triplet, axis orientation angle was set randomly between 0 (vertical) and 90

(horizontal). In the repeated orientation sequences, the chosen orientation was repeated on

the second and third presentations. In the changing orientation sequence, orientation was set

randomly again on the second and third presentation (with the constraint that subsequent

Fig 7. Experiment 3 stimuli. 24 participants were presented with complex patterns (left column) and another 24 were presented with simple patterns

(right column).

https://doi.org/10.1371/journal.pone.0254361.g007
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orientations had to be separated by more than 10 degrees). The task was the same as Experi-

ment 1 and 2. All stimuli were presented centrally at fixation.

Experiment 3 methods

Experiment 3 involved another group of 48 participants (age 18–51, mean age 22, 9 male, 5

left-handed). There were 24 participants in the simple pattern condition and 24 in the complex

pattern condition. There were 18 trials in 15 blocks (120 random trials, 60 repeated and 60

changing orientation trials). There were 30 additional oddball trials (11.1%). On average, par-

ticipants gave the correct response on 96% of the trials. The same time windows and electrodes

were used as Experiments 1 and 2.

On consistent orientation trials, the orientation of the first pattern was set at random

between 0 (vertical) and 90 degrees (horizontal), then the second and third patterns had the

same orientation as the first. On changing orientation and random trials, the orientation of the

second and third patterns was again set randomly between 0 and 90 degrees. However, there

was a constraint that the absolute angular offset between one pattern and the next had to

exceed 10 degrees. This prevented subsequent patterns in the changing sequence from having

similar orientations by chance.

Experiment 3 results

Grand average ERPs from Experiment 3 are shown in Fig 8. All six reflections generated a sig-

nificant SPN (one sample t tests, p< 0.005). A mixed ANOVA revealed no significant main

effects (p> 0.060) and the predicted Sequence position X Sequence type interaction was

not significant (F (1.567, 72.084) = 2.710, p = 0.086). However, there was an expected linear

effect of Sequence position in the repeated orientation condition (F (1,47) = 5.838, p = 0.020,

ηp
2 = 0.110) but not in the changing orientations condition (F< 1). This suggests that SPN

priming does not transfer between orientations that vary unpredictably. Again, the signal to

noise ratio was not sufficient for source dipole analysis in Experiment 3. Complementary mass

univariate and GFP analyses are included in Supplementary Materials 1.

Experiment 3 discussion

SPN priming was present in the repeated orientations condition, by not in the changing orien-

tations condition. However, we are cautious about interpreting this apparent selectivity,

because there was no significant interaction (for discussion of absent interactions in cognitive

neuroscience, see [32]). On the other hand, the results are broadly consistent with those of

Wenderoth [31], who found that axis orientation priming enhanced symmetry detection in

2D dot patterns, and with those of Yamauchi et al. [33], who found related results for 3D

objects. We can thus be moderately confident that the reflection code is not completely orien-

tation-invariant.

Despite the apparent orientation-selectivity of SPN priming in Experiment 3, we cannot

claim SPN priming is completely orientation selective without examining transfer between

horizontal and vertical reflections. After all, horizontal and vertical axes have a special visual

status [34] and horizontal and vertical reflections are more salient in many conditions (Wen-

deroth, 1994) [31]. This was the topic of Experiment 4.

Experiment 4: Vertical and horizontal orientations

Experiment 4 was closely related to Experiment 3, but all reflections were either horizontal or

vertical. The repeated orientations condition either involved all horizontals or all verticals. The
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changing orientations condition involved switches between horizontal and vertical or vice

versa (Fig 9).

Experiment 4 was an important extension of Experiment 3. Previous behavioural research

shows that orthogonal axes might be more perceptually coupled than non-orthogonal axes.

Treder, van der Vloed and van der Helm [35] examined symmetry discrimination when pat-

terns were preceded by same axis primes, orthogonal axis primes or non-orthogonal axis

primes. They found a similar facilitation for same and orthogonal axis primes, but inhibition

for non-orthogonal primes. Treder et al.’s result suggests that SPN priming should transfer

between orthogonal horizontal and vertical reflections in Experiment 4.

Experiment 4 methods

Another 48 participants were recruited (age 18–62, mean age 23, 8 male, 2 left-handed). Exper-

iment 4 had the same design as Experiment 3. There were 24 participants in the simple pattern

conditions and 24 in the complex pattern conditions. The consistent orientation conditions

involved sequences of either three verticals (30 repeats) or three horizontals (30 repeats) (these

trials were averaged in EEG analysis). The changing orientation conditions involved sequences

of Vertical Horizontal Vertical (30 repeats), or Horizontal, Vertical Horizontal (30 repeats)

(these were also averaged in EEG analysis). There were 30 additional oddball trials. On aver-

age, participants gave the correct answer in 98% of trials. The same time windows and elec-

trodes were used in ERP analysis as Experiments 1–3.

Fig 8. Experiment 3 results. Note SPN priming in the repeated orientations condition (Red) but not in the changing orientations condition (green).

https://doi.org/10.1371/journal.pone.0254361.g008

PLOS ONE ERP priming for visual regularity

PLOS ONE | https://doi.org/10.1371/journal.pone.0254361 July 9, 2021 14 / 28

https://doi.org/10.1371/journal.pone.0254361.g008
https://doi.org/10.1371/journal.pone.0254361


Experiment 4 results

Results are shown in Fig 10. All 6 conditions generated a significant SPN (p<0.001). Unlike

Experiment 3, there was an SPN priming effect in both repeated and changing orientations

conditions. A mixed ANOVA revealed a significant main effect of Sequence position (F (1.706,

78.463) = 8.981, p = 0.001, ηp
2 = 0.163), linear contrast (F (1, 46) = 11.396, p = 0.002, ηp

2 =

0.199) but no other effects or interactions (p> 0.118). Again, complementary mass univariate

and GFP analyses are included in Supplementary Materials 1.

A source dipole model comprising of two bilateral sources within the extrastriate regions

explained 76.7% of variance. Both left ECD1 (Brodmann area 19;–x = -24.3, y = -64.7, z = -8.1)

and right ECD2 (Brodmann area 19;–x = 24.3, y = -64.7, z = -8.1) were located within the fusi-

form gyrus. The nearest local maximum to ECD1 and ECD2 detected using CLARA was 15.17

mm and 22.617 mm respectively. The final model is detailed in Fig 11A, and the resulting

Fig 9. Experiment 4 stimuli. 24 participants were presented with complex patterns (left column) and another 24 were presented with simple patterns

(right column).

https://doi.org/10.1371/journal.pone.0254361.g009
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source waveforms are illustrated in Fig 11B. It can be seen that the SPN priming effect was

found in both hemispheres, an in both repeated and changing orientation conditions. This

was confirmed by three-way repeated measures ANOVA [Sequence position (first, second,

third) X Sequence type (repeated orientations, changing orientations) X Hemisphere (left

(ECD1); right (ECD2)], which revealed a main effect of Sequence position (F (1.524,71.603) =

11.362, p< 0.001, ηp
2 = 0.195), but no other effects or interactions (p> 0.229).

Experiment 4 discussion

Experiment 4 provided the first clear example of transfer: Namely, SPN priming transferred

between vertical and horizontal orientations. While we cannot be sure that transfer would be

replicated with other orthogonal axis pairs (e.g. 45 and 135 degrees), Experiment 4 suggests

that vertical and horizontal axes are perceptually coupled [35].

Experiment 5: Consistent and changing regularities

Finally, Experiment 5 examined independence of reflection and rotational symmetry. We

used 90-degree rotation and 1-fold reflection because they were approximately matched for

salience. The consistent regularity condition involved three reflections or three rotations. The

changing regularity condition involved sequences where reflection and rotation alternated

(Fig 12). We expected reflection and rotation to be independent in Experiment 5.

Fig 10. Experiment 4 results. Note SPN priming in both repeated and changing orientation conditions.

https://doi.org/10.1371/journal.pone.0254361.g010
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Experiment 5 methods

Another 48 participants were recruited (age 16–52, mean age 25, 12 males, 6 left-handed). As

usual, there were 24 participants in the simple pattern condition and 24 in the complex pattern

conditions (Fig 12). There were 30 blocks of 18 trials. There were 240 random patterns. There

were 60 repeats of each regular sequence type and 60 additional oddball trials (11.1%). On

average participants gave the correct answer on 98% of trials. The same time windows and

electrodes were used in ERP analysis as Experiments 1–3.

Experiment 5 results

Results are shown in Fig 13. All 6 conditions generated a significant SPN (one sample t tests,

p<0.001). There was an SPN priming effect in both repeated and changing regularity condi-

tions. A mixed ANOVA revealed a significant main effect of Sequence position only (F (1.460,

67.169) = 19.388 p< 0.001, ηp
2 = 0.298, linear contrast F (1, 46) = 23.088, p< 0.001, ηp

2 =

0.334). There were no other effects or interactions (p> 0.128).

Unlike Experiments 1–4, mass univariate and GFP analyses were not perfectly consistent

with the traditional ERP analysis. Specifically, the SPN priming effect in changing regularity

condition was not supported by mass univariate analysis (https://osf.io/2yjus/).

As with Experiment 4, a source dipole model comprising of two bilateral sources within the

extrastriate regions explained 92.01% of variance. Both left ECD1 (Brodmann area 19;–x =

-25.6, y = -60.8, z = -10.2) and right ECD2 (Brodmann area 19;–x = 25.6, y = -60.8, z = -10.2)

were located within the fusiform gyrus. The nearest local maximum to ECD1 detected using

CLARA was 16.322 mm for ECD1. ECD2 was localized to the same point using CLARA. The

final model is detailed in Fig 14. The SPN priming effect was evident in both extrastriate

Fig 11. Experiment 4 source dipole model. Conventions are the same as Fig 4, albeit with different Y axis scales. Note the ubiquitous SPN priming

effect in the left and right extrastriate source waveforms.

https://doi.org/10.1371/journal.pone.0254361.g011
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dipoles. This replicates the source waveform analysis in Experiments 1 and 4. However, there

was one unexpected effect: the SPN was selectively attenuated in the left hemisphere during

the changing regularity condition.

We performed a three-way repeated measures ANOVA [Sequence position (first, second,

third) X Sequence type (repeated regularity; changing regularity) X Hemisphere (left

(ECD1); right (ECD2)]. There was a main effect of Sequence position (F (1.633,76.738) =

17.89, p < 0.001, ηp
2 = 0.276). There was an unexpected interaction between Sequence type

and Hemisphere (F(1,47) = 4.619, p = 0.037, ηp
2 = 0.089) because the SPN was right lateral-

ized in the changing regularity condition (F (1,47) = 5.811, p = 0.020, ηp
2 = 0.110) but not

in in the repeated regularity condition (F < 1). There were no other effects or interactions

(p > 0.204).

Fig 12. Experiment 5 stimuli. 24 participants were presented with complex patterns (left column) and another 24 were presented with simple patterns

(right column).

https://doi.org/10.1371/journal.pone.0254361.g012
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Experiment 5 discussion

ERP results of Experiment 5 were surprising. There was an SPN priming effect for repeated

regularities, and also when regularity alternated between reflection and rotation. This suggests

some overlap between the way reflection and rotation are coded in the visual system. Although

the traditional ERP analysis was straightforward, source dipole analysis found a relatively weak

response to changing regularity in the left hemisphere, and SPN priming for changing regular-

ity was not apparent with mass univariate analysis. Nevertheless, the balance of evidence sug-

gests that SPN priming at least partially transfers from reflection to rotation and vice versa,

despite our initial predictions.

General discussion

In Experiment 1, we presented triplets of patterns and found that SPN amplitude increased
from presentation 1> 2> 3 when different exemplars were used. This was a case of repetition

enhancement within the extrastriate symmetry network. This SPN priming was consistent

with previous behavioural studies [14].

Our subsequent experiments exploited SPN priming to test the independence of visual reg-

ularity representations. Experiment 2 provided evidence of SPN priming within one hemi-

sphere, and no hint of transfer between hemispheres. Experiment 3 found SPN priming when

orientation was consistent, but not when it changed unpredictably. These two experiments

suggest different regularity codes are functionally independent. However, Experiment 4 found

that SPN priming survived alternation between vertical and horizontal axis orientations.

Fig 13. Experiment 5 results. Note SPN priming in both repeated and changing regularity conditions.

https://doi.org/10.1371/journal.pone.0254361.g013
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Finally, and most surprisingly, Experiment 5 found that SPN priming transferred between

reflection and rotational symmetry. These two experiments suggest that different regularity

codes partially overlap. In other recently published work, we found SPN priming transferred

between black and white reflections. This shows the regularity code is independent of lumi-

nance polarity [36] as anticipated by previous work using other methods [37–39]. It seems that

different regularities are coded by overlapping neural populations, but only when they are pre-

sented at the same retinal location.

Some previous work inspired by filter models of symmetry perception [40] has also

addressed this topic of representational independence. It has been found that symmetry dis-

crimination is not impaired by noise masks with different spatial frequencies [41] or orienta-

tions [42]. This suggests that the symmetry representations are built on retinotopic maps of

low-level features, and therefore different regularity representations with different low-level

features do not overlap and perceptually interfere with each other. In contrast, SPN priming

suggests that disparate regularity codes can overlap—we found some crosstalk between neural

systems that code horizontal and vertical reflection (Experiment 4), and between reflection

and rotation (Experiment 5). These experiments suggest more representational overlap than

filter models allow. Perhaps there are higher-level visual integration mechanisms with proper-

ties not captured by the filter models, and SPN priming occurs at this higher level?

Interpretational considerations

Repetition paradigms are widely used, but there are many important interpretation consider-

ations which can render the results of a single experiment ambiguous [21]. Furthermore, the

SPN priming effect is relatively new, so our interpretation necessarily involves some debatable

Fig 14. Experiment 5 source dipole model. Note the ubiquitous SPN priming effect in these source waveforms, but right lateralization in the changing

regularity condition.

https://doi.org/10.1371/journal.pone.0254361.g014
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assumptions. However the results of Experiment 1 are consistent with Bertamini et al. [29]

even though that study different procedure and trial structure. Likewise, the results of Experi-

ment 1 are arguably a conceptual replication of Sharman and Gheorghiu [14] and Niimi et al.

[15]. This consistency increases confidence in our interpretation of Experiment 1 (and the sub-

sequent experiments which build on this foundation).

We acknowledge that source localization is insufficient to support an original claim about

neuroanatomy, especially when it based on just 64 electrodes. However, converging evidence

from previous fMRI, TMS and EEG studies make us confident that the SPN is generated in

the extrastriate cortex. We do not need the new source localization analysis to be confident

that the SPN is generated in the extrastriate cortex. However, we do need source dipole anal-

ysis to establish that SPN priming recorded on the scalp actually happens within the extra-

striate cortex. Without the source dipole analysis, our interpretation of SPN priming would

be ambiguous.

We note that the SPN priming effect, when present, was always around 0.5 μV, whatever

the amplitude of the SPNs themselves (e.g. an increase from -2.6 to -3.3 μV in Experiment 1,

but only -0.47 to -1.05 μV in Experiment 3). This might imply that SPN priming is caused by

some non-specific increase in visual alertness. However, there was no SPN priming in Experi-

ment 1 when identical patterns were repeated, so this explanation is less likely.

Most EEG and fMRI repetition studies have used pairs of stimuli, rather than triplets. With

hindsight, this two-repeat convention is probably superior, because the third presentation is

inherently complicated (It is a repeat of the first presentation even in changing sequences, and

it is cognitively predictable in repeated sequences). However, the potential disadvantages of

triplets were not a large issue in practice: Most of the repetition effects found here were already

evident in the first two repeats, and none were reversed on the third repeat.

Our participants were not attending to regularity and explicitly classifying the patterns as

symmetrical or random. It could be that the SPN priming becomes more transferrable when

participants attend to regularity. Alternatively, the distinctions between different types of regu-

larity could be sharpened when participants attend them, so SPN priming could become less
transferable. This ambiguity can only be resolved with future experiments.

Next, we note that there are some inconsistencies between repetition effects measured with

different techniques. For instance, stimulus repetition effects on single cell responses in IT

seem to be more selective that those measured in classic fMRI adaptation (fMRI-A) paradigms

[43]. Likewise, face repetition effects have not always been consistent from fMRI-A to ERP

studies [20]. Many SPN results mirror fMRI results [6], so one might expect repetition

enhancement in the BOLD symmetry response with repeated presentation. On the other

hand, BOLD repetition suppression is caused by repeated presentation Glass patterns [17].

Whether the BOLD response to symmetry is subject to repetition enhancement or suppression

is again an empirical question.

Finally, abstract symmetrical patterns might be perceived as faces (a case of face pareidolia).

However, it is unlikely that activation of face-sensitive visual areas with repeated presentation

is responsible for SPN priming. The face response would be strongest for 1-fold vertical reflec-

tion in Experiment 4, and SPN priming was not unique to this condition.

Future work on SPN priming

As mentioned, Makin et al. [36] used SPN priming technique to demonstrate that the regular-

ity code is luminance independent. Future work could use the SPN priming effect to answer

other questions about symmetry coding. For instance, people can perceive anti-symmetry,
where luminance in symmetrical positions is anti-correlated (e.g. black regions paired with
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white and white regions paired with black). We know that anti-symmetry generates an SPN,

albeit with slightly reduced amplitude [39,44]. However, it is uncertain whether symmetry and

anti-symmetry are coded by the same extrastriate networks [38]. Future work could examine

this by testing whether SPN priming generalizes from symmetry to anti-symmetry. Finally,

future work could measure SPN priming across changes in virtual view angle [45]. Perhaps the

symmetry code is view invariant under some conditions?

Conclusions

The SPN priming effect is robust when different reflection exemplars are presented. This con-

firms that dynamism advantages found in behavioural work on symmetry perception. SPN

priming is sometimes selective, and it does not survive changes in retinal location or non-

orthogonal changes in axis orientation. However, SPN priming is not completely selective, and

it transfers between horizontal and vertical orientations and between reflection and rotation.

Based on available evidence, we conclude that there are common visual integration mecha-

nisms which can extract different regularities at specific retinal locations.

General methods

Participants

Each of our 5 experiments had 48 participants (240 in total). There were 24 participants in the

simple pattern condition and 24 in the complex pattern conditions. All participants had nor-

mal or corrected to normal vision, except for those Experiment 2 where people with glasses or

contact lenses were excluded because it interfered with eye tracking. The study was approved

by the Health and Life Sciences Research Ethics Committee (Psychology, Health and Society)

at University of Liverpool (Ref 2122) which ensured that the study in accordance with APA

ethics codes. Participants gave written informed consent and signed consent forms in the pres-

ence of the researcher.

Apparatus

All EEG data was collected with a BioSemi Active-2 64 channel EEG system. Electrodes were

embedded in an elasticated cap and arranged according to the international 10–20 system.

Bipolar HEOG and VEOG channels were monitored for excessive blinking or eye movements

and sample rate was 512 Hz. HEOG and VEOG were not included in the montage.

In all Experiments a chin rest was used for head stabilization. Experiments 1, 3 and 4 were

presented on a 40 X 30 Cm (23 X 17˚) CRT monitor. Participants were seated 100 cm back

from the monitor. In Experiment 2 participants were seated 57 cm back from a 53 X 30˚ LCD

monitor. In Experiment 5, participants were seated 57 Cm back from a 51 X 29˚ LCD monitor.

All monitors had a refresh rate of 60Hz. Although the monitors changed between experiments,

stimulus size was identical in degrees of visual angle.

All Experiments except Experiment 2 were conducted in an electrically shielded and dark-

ened cubicle. Experiment 2 was conducted on an identical BioSemi EEG recording system, but

in a separate eye tracking cubicle that was not electrically shielded. In Experiment 2, eye posi-

tion was monitored with a desk mounted Gazepoint 60Hz infra-red eye tracker. The experi-

menter could monitor eye position superimposed on the stimulus in real time, and thus assess

whether participants routinely broke fixation. Eye position analysis confirmed that partici-

pants were fixating successfully without bias to the symmetrical pattern (see Supplementary

materials 2).
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Stimulus construction algorithm

The images were constructed using Python and PsychoPy [46], and saved as PNG image files.

The algorithm for construction of 8-fold reflection or matched random patterns in Experiment

1 is shown in Fig 1. The patterns were based on an implicit grid of 432 cells. This produced 8

segments, each with a central mirror reflection (Fig 15A). The grid was 6.1˚ of visual angle in

diameter, and the outer black ring was 7.2˚ in diameter.

Next half of each segment was occupied with dots in a probabilistic fashion (Fig 15B). For

complex patterns, each cell had a 50% probability of occupation. When occupied, small (0.18 ˚

diameter), medium (0.36˚ diameter) or large (0.72 ˚ diameter) dots were chosen at random

with from a distribution with a ratio of 6:2:1. In other words, on average, there were 3 times as

many small dots as medium, and twice as many medium as large (again this was probabilistic,

so it would be possible, albeit extremely unlikely, for all dots to be the same size). For regular

patterns, the arrangement was mirrored in each segment, and all segments were identical (Fig

15C). For random patterns, each segment was independent, and the dots on each side were

not mirrored. The average number of small, medium and large dots was the same in the regu-

lar and random patterns. However, the dot-size variability between patterns was higher for

regular patterns because only one segment was original, so any statistically usual properties

became like frozen accidents in the other segments.

For simple patterns, the construction algorithm and implicit grid were the same, the proba-

bility of occupation was set at 10%, and all dots were 1˚diameter. This results in stimuli with a

greater distribution of energy at lower spatial frequencies, larger ‘blobby’ substructures, and

reduced coastline of black regions.

Stimulus construction was the same for Experiments 2–5, except the implicit grid was

changed. In Experiment 2 the images were resized, so the black ring was 5˚ in diameter, but

the proportional sizes of elements were the same as all other experiments. One-fold reflections

was based on an implicit grid with a single vertical seam, and 90-degree rotations had 4 seams.

In Experiments 3 and 4, the images were rotated after generation. In Experiment 5 were 120

random triplets based on the 1F grid, and 120 based on the 4F grid. This made no discernible

difference to the appearance of the random patterns.

The required number of regular and random images were generated in advance, so no pat-

tern was ever presented twice. In each experiment, all participants were shown the same set of

images. However, images were shuffled so that they played different roles for each participant.

For instance, a particular reflection might appear as the first in a reflection triplet for one par-

ticipant, as the third pattern in a RandRandRef sequence for another participant. This abol-

ished any potential effects of chance stimulus features on our results.

Basic ERP analysis

EEG analysis was based on our previous SPN studies. EEG data was analysed offline using

eeglab 13.4 functions in Matlab 2014b [47]. Data from the 64 scalp electrodes was re-refer-

enced to the scalp average, and low pass filtered at 25Hz. We then downsampled to 128 Hz to

reduced file size and segmented the data in epochs from -0.5 to + 2.1 seconds around the onset

of the first pattern. ERP waves were baseline corrected to a 200 ms pre-stimulus interval.

Independent Components Analysis [48] then used to remove blink and other high ampli-

tude artefacts. The number of ICA components removed was as follows (out of a maximum of

64): Experiment 1: mean = 9.75, min = 0, max = 20, Experiment 2 mean = 12.35, min = 4,

max = 22, Experiment 3: mean = 11.46, min = 2, max = 21. Experiment 4 mean = 9.92,

min = 2, max = 13: Experiment 5: mean = 9.06, min 2, max = 21. After cleaning with ICA,

epochs where amplitude exceeded +/- 100 μV at any electrode were excluded. Mean exclusion
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rates were as follows: Experiment 1; 11–14%, Experiment 2: 14–15%, Experiment 3: 14–15%,

Experiment 4: 15–16%, Experiment 5: 8–9%.

All ERP analysis was conducted on electrode cluster [PO7, O1, O2 and PO8]. This was con-

sistent other recent SPN papers [7]. The included trials in each condition were averaged to

provide the data for ERP analysis with mixed ANOVA. The Greenhouse-Geisser correction

Fig 15. Stimulus construction steps. A) An in implicit grid of possible locations was created. B) The grid was probabilistically occupied with black

dots. For complex stimuli, the black dots were small, medium or large (top two rows). For simple stimuli, all black dots were large (lower two rows). C)

For random patterns each segment half was occupied independently. For reflectional pattern, each half was mirrored.

https://doi.org/10.1371/journal.pone.0254361.g015
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factor was used whenever the assumption of sphericity was violated (p< 0.05). Consequently,

adjusted degrees of freedom are reported throughout. Across the 5 Experiments we analysed

33 SPN difference waves (i.e., each bar in the results figures). None of 33 SPN waves violated

the assumption of normality according to the Kolmogorov-Smirnov test of normality

(p< 0.05). This replicates previous experiments, where individual participant SPN amplitudes

are usually normally distributed around the grand average. ERP data used for plotting and sta-

tistical analysis is also available on OSF (https://osf.io/2yjus/).

Source dipole modelling

In order to investigate the spatiotemporal dynamics of SPN priming, a source dipole model

was constructed in BESA v. 7.0 (MEGIS GmbH, Munich, Germany) for each experiment. For

the greatest accuracy of source localization, it is necessary to utilize data with a large signal-to-

noise ratio. To achieve this, difference waves (symmetry–random) for each condition were

averaged to produce a single grand-average waveform representing symmetry-specific

responses. This was done for each experiment individually.

The protocol for producing an appropriate source dipole model required that equivalent

current dipoles (ECDs) were fitted to describe the 3-dimensional source currents in the

regions contributing predominantly to the data. Principle component analysis (PCA) was first

used to identify an appropriate number of ECDs to fit. Since previous studies have identified

bilateral extrastriate cortices as being the primary generators of symmetry specific neural activ-

ity [9–11] two ECDs were first inserted in the bilateral extrastriate regions. Following the inser-

tion of these two ECDs, residual variance was used as a tool for indicating the sufficiency of

the model. The ECD fitting procedure required waveforms with a large signal-to-noise ratio

and intervals with a strong cortical response. Therefore, the weak SPN observed in Experiment

2 and 3 could not be accurately modelled. Since data across experiment 1, 4 and 5 were suffi-

ciently explained by bilateral extrastriate ECDs, no further fitting of ECDs were required.

Classical LORETA analysis recursively applied (CLARA), which is an iterative application

of the LORETA algorithm [26] was used to confirm and adjust the locations of the ECDs in

the final model. Following the fitting of the ECD locations, the orientation of the ECDs then

had to be determined. Since there are differences between individuals regarding gyral anatomy

in the brain, ECD orientation was determined on a subject-by-subject basis, but with fixed

location between subjects, based on the entire corresponding grand average difference wave-

form. A 4-shell ellipsoid head volume conductor model was employed using the following con-

ductivities (S/m = Siemens per meter): Brain = .33 S/m; Scalp = 0.33 S/m; Bone = 0.0042 S/m,

Cerebrospinal Fluid = 1 S/m. Source waveforms for each experiment and condition were

exported and analyzed using repeated-measures ANOVAs.
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