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Elevational gradients of biodiversity have been widely investigated,
and yet a clear interpretation of the biotic and abiotic factors that
determine how species richness varies with elevation is still elusive.
In mountainous landscapes, habitats at different elevations are
characterized by different areal extent and connectivity properties,
key drivers of biodiversity, as predicted by metacommunity theory.
However, most previous studies directly correlated species richness
to elevational gradients of potential drivers, thus neglecting the
interplay between such gradients and the environmental matrix.
Here, we investigate the role of geomorphology in shaping patterns
of species richness. We develop a spatially explicit zero-sum
metacommunity model where species have an elevation-dependent
fitness and otherwise neutral traits. Results show that ecological
dynamics over complex terrains lead to the null expectation of a
hump-shaped elevational gradient of species richness, a pattern
widely observed empirically. Local species richness is found to be
related to the landscape elevational connectivity, as quantified by
a newly proposed metric that applies tools of complex network
theory to measure the closeness of a site to others with similar
habitat. Our theoretical results suggest clear geomorphic controls
on elevational gradients of species richness and support the use
of the landscape elevational connectivity as a null model for the
analysis of the distribution of biodiversity.

macroecology | complex networks | landscape connectivity |
metacommunity theory

The search for the mechanisms determining the distribution of
life on Earth has long been, and still is, a challenge of great

importance for ecologists and biogeographers. Indeed, developing
conservation strategies demands knowledge of ex ante and ex post
biodiversity patterns through their linkage with ecological pro-
cesses. As a common approach, general patterns in species rich-
ness are sought to understand the underlying processes (1–3). One
outstanding example is the study of elevational gradients of spe-
cies richness, the subject of much attention because strong ele-
vational gradients can be observed in any mountainous landscape
(4, 5). Among possible drivers, temperature directly controls
biological productivity of the community, which, in turn, has been
linked to diversity (6). A simplistic association of elevational gradi-
ents with temperature gradients in mountainous ecosystems suggests
a decline of species richness with increasing elevation (1, 2, 7, 8),
echoing the latitudinal decline from the equator to the poles (9).
However, such an expectation is clearly inconsistent with empirical
observations that often show a hump-shaped rather than a mono-
tonically decreasing pattern (4, 8, 10–12).
A possible explanation is that both productivity versus eleva-

tion and species richness versus productivity may be described by
nonmonotonic relations (10, 13, 14). At low elevations, in par-
ticular, human disturbance may play a major role in reducing
biodiversity (15). Whereas several factors [such as temperature,
habitat capacity, precipitation, anthropogenic pressure and geo-
metric constraints (1, 5, 15)] change (somewhat) predictably with

elevation, other relevant factors (such as moisture, clear-sky tur-
bidity and cloudiness, sunshine exposure and aspect, wind strength,
season length, and exposed lithology) are not elevation-specific
(16). Thus, empirical results may hardly sort out general rules un-
ambiguously. Given the multitude of possible confounding factors,
theoretical analyses are key to understand elevational gradients of
diversity and how biota respond to geophysical drivers and controls
(5, 17, 18) [e.g., the foreseen upward shift in plant species optimum
elevation (19)].
Here, we identify and analyze three distinctive geomorphic

features characteristic of mountainous landscapes that can
systematically affect the distribution of species and result in
hump-shaped patterns of biodiversity along elevational gradients:
(i) finiteness of the landscape elevational range; (ii) frequency
distribution of areal extent at different elevation; and (iii) differ-
ential elevational connectivity.
Geometrically constrained landscapes are subject to the so-

called middomain effect, according to which, if the species’ ranges
are randomly distributed over a bounded geographic domain free
of environmental gradients, ranges would increasingly overlap over
the center of the domain (20, 21). Applying the same principle to a
finite landscape elevational range would support hump-shaped
patterns of local species richness along elevational gradients
(e.g., refs. 22–24).
The frequency distribution of elevation in real-life landscapes

is distinctly hump-shaped, with the majority of land situated at
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midelevations (Fig. 1 and ref. 25). This pattern is ubiquitous in
landscapes shaped by fluvial erosion when a sufficiently large
region rather than a single slope or mountain is considered, and
the pattern is altered only if large areas outside runoff-producing
zones (e.g., large plains) are included in the domain (Supporting
Information). This pattern is often overlooked (e.g., refs. 1 and 4)
because the mountain-cone analogy suggests a monotonically
decreasing distribution of elevation. However, mountains are not
cones (26) but complex fractal structures. The area of available
habitat within a given elevational band may have a direct effect
on the diversity of the regional community it hosts [γ-diversity
(8, 13, 22, 27, 28)], as predicted by the species–area relationship
(29). The area of available habitat may also have an indirect
effect on the local species richness [diversity of equal-area plots
(i.e., α-diversity)] because local communities can be assembled
from a more diverse regional pool of species that are fit to live at
similar elevation (28).
Finally, a feature potentially capable of shaping elevational di-

versity patterns is the inherent elevational connectivity of fluvial
landscapes. When mapping the fitness, assumed to be elevation-
dependent, of three hypothetical species with the same niche
width but different niche position [the elevation at which fitness is
maximum (30)] over a real mountainous landscape, we find that
suitable habitat patches for different species feature very different
connectivity (Fig. 2). Valleys (low-elevation sites) and mountain
tops (high-elevation sites) form fragmented patches nearly isolated
from each other, whereas midelevation sites are both more abun-
dant and more interconnected. Habitat size and connectivity are
key determinants of extinction and immigration rates, and thus
of diversity, as first predicted by the classic theory of island bio-
geography (31) and later confirmed by many experimental and
theoretical studies (e.g., refs. 32–42). It is thus expected that
communities at low (high) elevation, being more isolated, exhibit
lower species richness than those at midelevation. This effect has
already been discussed for mountain tops (4, 31), and yet iso-
lation of valleys has been so far overlooked, and a comprehen-
sive framework to quantify this effect is missing.
Another limitation of previous studies (e.g., refs. 4, 10, 11, and

13) is that the environmental matrix and the elevational gradi-
ents were considered disconnected, and movement and dispersal
of organisms across space ignored. Indeed, deriving species dis-
tribution patterns directly from elevational gradients of potential
drivers implicitly requires the assumption of a 1D landscape (Fig. 1B),
where all sites at the same elevation share the same characteristics.
Such a landscape model is in stark contrast to the complexity of a
typical real-life mountainous region (Fig. 1). The hypothesis that the
very structure of landscapes can lead to nontrivial diversity patterns,
even in the absence of species’ preferential elevation or gradients of
productivity and habitat capacity, is tested here. To that end, we

simulate ecological dynamics in 3D landscapes using a zero-sum
metacommunity model (43, 44) (Materials and Methods). The
model has been formalized by invoking the minimum set of as-
sumptions principle. Specifically, the following set of rules has
been implemented: (i) individuals of each species have a fitness
(i.e., a competitive ability in this context) that depends on ele-
vation, with all other vital rates being the same; (ii) different
species have different niche positions but the same niche width
(Fig. 2B); (iii) niche positions are uniformly distributed along the
elevational range of the domain, so that there is no preferential
elevation at the metacommunity scale; (iv) dispersal is isotropic
(toward the four nearest-neighbor communities in a regular 2D
lattice); and (v) the size of local communities is constant over the
entire domain (i.e., constant habitat capacity). The above assump-
tions could be straightforwardly relaxed to mimic more realistic
metacommunities. However, this set of assumptions is specifically
designed to provide a null model to single out the effect of geo-
morphic controls of landscape structure on elevational diversity,
while deliberately excluding other possible confounding factors.
In addition to real-life landscapes, we run the zero-sum model

over synthetic elevation fields derived from optimal channel
networks (OCNs) (Supporting Information), which are topological
structures that minimize a functional describing the total energy
dissipated along drainage directions by landscape-forming discharges
that hierarchically accumulate toward the outlet of the basin. OCNs
are known to systematically reproduce all mutually connected scaling
exponents of topological and metric landscape features (25, 45) and
are exact steady-state solutions to the landscape evolution equation
in the small gradient approximation (46). The use of OCNs has a
twofold advantage. First, the use of synthetic elevation fields allows
generating consistent replicas of fluvial landscapes in the same do-
main as the minimization process produces dynamically accessi-
ble, yet different, stable states endowed with the same statistical
features. Second, OCNs allow producing periodic elevation
fields and simulating ecological dynamics over a pseudoinfinite
domain, thus avoiding edge effects.

Results
Fig. 3 shows elevational gradients of local species richness
(α-diversity) resulting from the simulation of the metacommunity
model in real mountainous landscapes at two different scales of
analysis. Patterns emerging from a landscape derived from an
OCN are reported in Fig. 4. Remarkably, species interacting in
an elevation field that embeds the complexity of a real fluvial
landscape naturally produce a hump-shaped elevational gradient
of species richness (Figs. 3 and 4D) even in the absence of gra-
dients of productivity or habitat capacity.
Figs. 3 and 4D also reveal that sites at the same elevation can

host quite a different number of species depending on their
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Fig. 1. Comparison between a real-life elevation field (a fluvial landscape in the Swiss Alps, 50  ×   50 km2) (A) and an oversimplified, 1D elevation field (B).
(C) Frequency distributions of elevation of the two landscapes. Fig. S1 reports other examples.
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connectivity. Such an effect is further highlighted by analyzing
local subplots (Fig. 4E). The two quadrants cover very different
elevation ranges, and yet they both exhibit similar well-defined
midpeak gradients of elevational diversity. Sites at the upper end
of the elevational range of the first plot host few species, whereas
α-diversity at similar elevation is much higher in the second plot.
This difference can be explained by the different connectivity.
Sites at the same elevation represent a local mountain top in the
first plot, thus poorly connected with sites characterized by
similar elevation, whereas in the second plot, the sites lay in the
middle of the elevation range, with multiple connections with
similar elevations. Therefore, in such systems elevation alone is a
poor predictor of species richness, which is instead controlled by
the geomorphic organization of the surrounding habitat.
We have sought a measure to quantify the combined effect of

the three geomorphic controls on elevational gradients of species
richness without resorting to any particular modeling assump-
tions. To that end, we apply concepts of complex network theory
applied to ecology (35, 38–40, 47). The proposed measure, which
we term landscape elevational connectivity (LEC) (Materials and

Methods and Fig. 5), quantifies the closeness of a site to all others
with similar elevation. Such closeness is computed over a graph
whose edges represent connections among sites and whose weights
are proportional to the cost of spreading through patches at dif-
ferent elevation. Although LEC simply depends on the elevation
field and on the niche width, LEC predicts well (Spearman’s
correlation, r = 0.79) the α-diversity simulated by the full meta-
community model (Fig. 4). In particular, LEC is able to capture
the variability of diversity hosted at the same elevation, as opposed
to a simpler predictor like the elevation frequency (r = 0.60; Fig.
4F). Simulations over different landscapes and with different pa-
rameter sets confirm the main results presented herein (Supporting
Information).

Discussion
Fluvial networks in runoff-generating areas are naturally fractal
(25, 26), owing to the similarity of the networks’ parts with the whole.
The networks’ self-similarity leads to self-affine invariance of the
elevation fields owing to the relation between slope and cumulative
drainage area, a well-known proxy of landscape-forming hydrological
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Fig. 3. Elevational gradients of α-diversity resulting from the application of the zero-summetacommunity model over two real landscapes derived from the digital
elevation model of the Swiss alpine region. The two landscapes cover different areal extents: 625 km2 (A) and 2,500 km2 (B). Blue symbols represent average (circles)
and SD (error bars) of α-diversity within elevational bands. Averages over 500 realizations of the metacommunity model are shown. Parameters used are N= 104,
n= 100, σ=ðzmax − zminÞ= 0.1, and ν= 1. With this parameter set, the average number of deaths between the emergence of new species into the system is
about 3,500.
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events (Supporting Information). Fluvial landforms thus show
deep similarities across many orders of magnitude despite great
diversity of their drivers and controls (e.g., relief, exposed li-
thology, geology, vegetation, or climate) (25). The universality
of the main attributes of the fluvial landscape naturally lends
itself to the quest for general patterns of the ecological dynamics
that such landscapes host (41, 42, 48–54).
The α-diversity map shown in Fig. 4B reveals a clear spatial

pattern with valleys and mountain tops characterized by lower
species richness. All three geomorphic factors described before
simultaneously concur to the formation of such pattern. The first
factor is related to the finiteness of the landscape elevational
range: sites at midelevation can potentially be colonized by
species that live at (and are fit for) higher and lower elevations,
whereas sites at the lowest (highest) extreme are only subject to
the colonizing pressure from higher (lower) elevations. In addi-
tion to this boundary effect, the geomorphic structure of fluvial
landscapes results in a midelevation peak in both area and
connectivity across the landscape, both of which can promote
diversity. We have specifically designed a set of simulations to
disentangle the role of these three factors (Supporting Information).
Results show that without any of these effects, the model predicts
no gradients of diversity. Each geomorphic factor produces, inde-
pendently or in combination with others, a hump-shaped pattern of
species richness. Moreover, the differential elevational connectivity
characteristic of fluvial landscapes results in a marked variability of
diversity for the same elevation.
The results shown in Figs. 3 and 4 reveal that similar mid-peak

elevational gradients of diversity can be observed at different scales
of observation even if the domains span different elevational ranges.
This pattern is a direct consequence of the self-affine fractal
structure of fluvial landscapes that reproduces statistically similar

elevational fields (properly rescaled) at every scale of observa-
tion. Results also show that, when the scale of observation is enlarged,
different hump-shaped patterns are blended together, possibly
producing a confounding effect (Fig. 4E), especially if the anal-
ysis is limited to the average diversity as a function of eleva-
tion. This feature might help in understanding why elevational
diversity is often found to be dependent on the scale of obser-
vation (10, 11, 15).
As a proof of concept, we have presented results based on

nearest-neighbor dispersal to highlight the role of elevational
connectivity. Indeed the effect of elevational isolation is expected to
be reduced as dispersal limitation decreases because species can
overcome elevational constraints with long-distance dispersal (e.g.,
dispersing from one mountain top to another without going through
unfavorable lower elevation habitats). Moreover, we have assumed
that the landscape can be uniformly colonized, whereas real-life
habitats are often composed by patches with different spatial con-
nectivity and size (33). Spatial and elevational connectivities can
interact in a complex ways to shape diversity patterns. The modeling
framework proposed can be easily generalized to accommodate
both fragmented habitats and generic dispersal kernels, and the
framework has the potential to effectively describe how spatial and
elevational connectivities shape diversity in complex 3D landscapes.
Our exploration of metacommunity patterns suggests that the

specific spatial arrangement of sites at different elevation in fluvial
landscapes suffices in inducing mid-peak elevational gradients of
species richness without invoking specific assumptions, except that
each species is fit for a specific elevation. In this framework, an
elevation-dependent fitness applied to a real-life landscape translates
into a fragmented habitat map (Fig. 2). Such conceptualization lends
itself to the application of classic concepts of metacommunity dy-
namics (33, 55), according to which habitat size and connectivity are
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key drivers of biodiversity. We thus expect different metacommunity
models to produce similar results. For this reason, we have
developed a measure, LEC, that subsumes the geomorphic
controls on elevational diversity without resorting to any particular
biodiversity model.
Intermediate elevations hold, on average, higher LEC (Fig. S6),

and this statistical property might explain the hump-shaped ele-
vational gradients of mean species richness widely observed in
nature. We do not dismiss as negligible other potential drivers of
diversity, including those that often covary with elevation (e.g.,
habitat capacity, productivity, human disturbance). However, we
argue that these drivers may act on top of the unavoidable effects
provided by the geomorphic controls. A general consensus has
been achieved on the fact that the analysis of elevational di-
versity should not seek one single overriding force but rather
understand how different factors covariate to synergistically shape
the observed patterns (4, 5). Our results strongly suggest that
fluvial geomorphology likely has an important, yet thus far over-
looked, role in driving emergent diversity elevational patterns.

Materials and Methods
Zero-Sum Metacommunity Model. The model assumes a system of N local
communities, organized in an equally spaced 2D lattice in which each cell is
characterized by its elevation. Each local community assembles n individ-
uals. The system is assumed to be at saturation [zero-sum assumption (43)].
Thus, at any time, the system is populated by N ·n individuals belonging to
S different species. Each species is characterized by a specific elevational
niche that expresses, in this context, how the species’ competitive ability
varies with elevation. This relationship is modeled by a Gaussian suitability
function (30):

fiðzÞ  =   fmaxi e
−
ðz−zopti Þ2

2σ2
i ,

where fiðzÞ reflects the competitive ability of the individuals of species i at
elevation z, zopti is the niche position (30) of species i [i.e., the elevation
where fiðzÞ equals its maximum fmaxi (Fig. 2B)], and σi controls the dispersion
of the Gaussian function. A neutral approach is adopted (43), save for the
effects of elevation on fitness, in that the analysis is limited to the case
where all species have the same parameters σi = σ and fmaxi = fmax , as well as
the same fertility, death, and dispersal rates. Ecological interactions among
individuals are simulated as follows. At each time step, a randomly selected

individual dies and is replaced by an offspring of one of the individuals living
in either the same community or one of the four nearest-neighbor com-
munities (von Neumann neighborhood) or by the offspring of an additional
individual, belonging to a species not currently present in the system. This
additional competitor is added with probability ν at every time step. zopti of
the new competitor is drawn from a uniform distribution spanning twice the
relief of the system to avoid edge effects (Fig. S7A). The introduction of new
species is aimed at modeling both speciation and immigration from external
communities (43, 56). The offspring replacing the dead individual is ran-
domly selected with a probability proportional to the scores fiðzÞ of all of the
candidate colonizing offsprings evaluated at the elevation z of the local
community of the dead individual. The system is initially populated by one
single species and is simulated until a statistically steady state is reached
ð∼ 104 generations, where a generation is N ·n time steps). Periodic
boundaries conditions are prescribed. Model results do not depend on the
actual elevation range ð½zmin, zmax �Þ but only on the ratio σ=ðzmax − zminÞ.
Moreover, fmax does not affect the simulated dynamics, and it has thus been
set to 1.

LEC. The LEC LECi of site i can be expressed as

LECi =
XN

j=1

Cji , [1]

with Cji being a measure of the closeness of site j to i in terms of elevational
connectivity. Such a measure should quantify how easily a species living in
patch j can spread and colonize patch i. Because the fitness is assumed to be
elevation-dependent, Cji depends on how often a species, assumed to be
adapted to the elevation of j, zj , needs to travel outside its optimal fitness
range in the path from j to i. Cji thus depends on the elevation field but also
on the width of the species niche, here described by the parameter σ. In-
deed, for high σ, species are free to spread throughout the system regardless
of elevational constraints. Conversely, for low σ, species are constrained to
spread following paths with similar elevation without the ability to cross
elevational barriers. LEC subsumes the combined effect of the three geo-
morphic factors: bounded elevational range, frequency distribution of areal
extent at different elevation, and differential elevational connectivity.

The closeness Cji can be expressed as

Cji = max
p∈fj→ig

Cji,p, [2]

where Cji,p is a measure of the closeness of community j to i along path p.
The overall closeness Cji is defined as the maximum value of Cji,p along all of
the possible paths p form j to i (see the graphical representation in Fig. 5).
Cji,p is assumed to be proportional to the product of the probabilities of
making each step of the path p. Let p= ½k1, k2, . . . , kL�, k1 = j, kL = i be the
sites comprised in a path p form j to i. Cji,p can be expressed as

Cji,p = ∏
L

r=2
e−

ðzkr −zjÞ2
2σ2 . [3]

In Eq. 3, the exponential form is proportional to the fitness that species
adapted to site j have in site kr .

From an operational viewpoint, Cji is computed by focusing on the quantity

−lnCji =
1
2σ2

min
p∈fj→ig

XL

r=2

�
zkr − zj

�2, [4]

where the log-transformation maintains extremal properties. For each
site j, a graph is built with edges representing all possible nearest-
neighbor connections among sites and weights equal to the square
of the difference between the site elevation and zj . The Dijkstra al-
gorithm (57) is then used to find the shortest path from j to all
other sites.
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Fig. 5. Computation of LEC. Examples of two possible paths connecting site
j to i (Inset) with the corresponding elevational profile. Although the blue
path is longer, the associated cost ðPL

r=2ðzkr − zjÞ2Þ is smaller than that of the
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