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ABSTRACT

The objective of this study was to compare the 
prediction accuracy of 92 infrared prediction equa-
tions obtained by different statistical approaches. The 
predicted traits included fatty acid composition (n 
= 1,040); detailed protein composition (n = 1,137); 
lactoferrin (n = 558); pH and coagulation properties 
(n = 1,296); curd yield and composition obtained by 
a micro-cheese making procedure (n = 1,177); and 
Ca, P, Mg, and K contents (n = 689). The statistical 
methods used to develop the prediction equations were 
partial least squares regression (PLSR), Bayesian ridge 
regression, Bayes A, Bayes B, Bayes C, and Bayesian 
least absolute shrinkage and selection operator. Model 
performances were assessed, for each trait and model, 
in training and validation sets over 10 replicates. In 
validation sets, Bayesian regression models performed 
significantly better than PLSR for the prediction of 33 
out of 92 traits, especially fatty acids, whereas they 
yielded a significantly lower prediction accuracy than 
PLSR in the prediction of 8 traits: the percentage of 
C18:1n-7 trans-9 in fat; the content of unglycosylated 
κ-casein and its percentage in protein; the content of 
α-lactalbumin; the percentage of αS2-casein in protein; 
and the contents of Ca, P, and Mg. Even though Bayes-
ian methods produced a significant enhancement of 
model accuracy in many traits compared with PLSR, 
most variations in the coefficient of determination in 
validation sets were smaller than 1 percentage point. 
Over traits, the highest predictive ability was obtained 
by Bayes C even though most of the significant differ-
ences in accuracy between Bayesian regression models 
were negligible.
Key words: infrared spectra, fatty acid, protein 
fraction, Bayesian regression

INTRODUCTION

Mid-infrared spectroscopy is a recognized tool for 
predicting novel milk traits for payment systems, man-
agement of dairy cows, and selective breeding purposes 
(Gengler et al., 2016). The utility of prediction (re-
gression) equations for practical applications depends 
mostly on their accuracy. According to Soyeurt et al. 
(2011), equations with a coefficient of determination 
(R2) greater than 0.95 in cross-validation are useful 
in milk payment systems. For management purposes, 
the usefulness of equations depends on the correlation 
between the predicted traits and the management in-
dicators (e.g., prevalence of metabolic disorders). For 
selective breeding, the usefulness of infrared predictions 
relies mostly on their heritability and on their genetic 
correlation with the breeding goal traits. Even though 
equations with medium to low accuracy might be suc-
cessfully used for breeding purposes, more accurate pre-
diction equations would lead to a faster genetic progress 
because a positive relationship exists between the R2 in 
cross-validation and the estimated genetic correlation 
between measured and predicted traits (Rutten et al., 
2010; Bonfatti et al., 2017). Thus, there is interest in 
finding chemometric methods that can increase the ac-
curacy of prediction models.

To date, prediction equations have been developed 
mostly using partial least squares regression (PLSR). 
Recently, Bayesian models adopted for regression on 
high-dimensional genotypes have been reported to dra-
matically increase the prediction accuracy of infrared 
prediction equations for the prediction of 8 traits re-
lated to fatty acid (FA) composition and technological 
properties of milk (Ferragina et al., 2015). However, 
results might depend on the traits as well as on the 
conditions under which models are developed. For ex-
ample, the presence of noise regions in the development 
of prediction models might affect the accuracy of PLSR 
(De Marchi et al., 2009; Bonfatti et al., 2011; Eskildsen 
et al., 2014) without influencing the accuracy of Bayes-
ian regressions, as those methods allow shrinkage and 
perform variable selection, down-weighting or exclud-
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ing the uninformative variables (de los Campos et al., 
2013).

The objective of this study was to compare the ac-
curacy of prediction equations obtained by PLSR and 
by Bayesian regression methods for predicting a large 
number of traits related to milk fine composition and 
technological properties. Comparison among models 
was performed considering different numbers of spec-
tral variables and PLSR terms for prediction equation 
development.

MATERIALS AND METHODS

Reference Data

A total of 1,330 individual milk samples of Simmen-
tal cows were collected for reference analyses. Samples 
were collected during the morning milking in 21 herds 
located in northern Italy. Herd size ranged from 30 
to 125 cows. Cows were between 5 and 484 DIM and 
ranged from 1 to 9 parities. All samples, with the ex-
ception of those that were lost during the analysis due 
to nonmatching sample numbers or poor preservation, 
were analyzed for pH, milk coagulation properties, mi-
cro-cheese yield, micro-cheese composition, and protein 
profile. Measures of pH and milk coagulation properties 
were available for 1,296 samples. Contents of αS1-CN, 
αS2-CN, β-CN, γ-CN, glycosylated and unglycosylated 
κ-CN, β-LG, and α-LA of individual milk samples were 
measured in 1,137 samples. Curd yield and composition 
were obtained for 1,177 samples using a micro-cheese 
making procedure and measuring DM content, protein 
content, and fat content in the micro-curds.

Samples from cows with known sire and dam (1,040 
cows in 20 herds; daughters of 378 sires) were also 
analyzed for FA composition. Part of these samples, 
depending on budget constraints, was also analyzed 
for mineral contents and lactoferrin (LF). Contents of 
Ca, P, Mg, and K were analyzed in 689 samples from 
15 herds, whereas LF was measured in 558 samples 
from 11 herds. All samples with measures of mineral 
contents, LF, and FA also had measures of pH, milk 
coagulation properties, protein profile, and cheese 
yield. In total, 92 traits were investigated. Details on 
the methods used to obtain the reference traits, as well 
as descriptive statistics of all the investigated traits, 
can be found in Bonfatti et al. (2016).

Milk Infrared Spectra

Infrared absorption spectra (1,060 variables) were 
collected on all samples by the Friuli Venezia Giulia 
Milk Recording Agency laboratory (Codroipo, Italy) 
using a MilkoScan FT6000 (Foss Electric A/S, Hillerød, 

Denmark). Spectra exhibiting a Mahalanobis distance 
from the population centroid greater than 3 were con-
sidered to be outliers and were discarded. Records with 
a trait value above 4 or below −4 SD from the mean 
were also excluded. For each trait, the number of outli-
ers ranged from 5 to 11 samples. Spectra variables were 
standardized to a null mean and a unit variance before 
the analysis.

Due to the interference of water absorption, the O–H 
bending and stretching regions of the spectra (between 
1,628 and 1,658 cm−1 and between 3,105 and 3,444 
cm−1, respectively) are assumed to contain no useful 
chemical information and to have very high coefficients 
of variation and a very low heritability (Soyeurt et al., 
2010); for these reasons, they are often discarded be-
fore the chemometric analysis (De Marchi et al., 2009; 
Bonfatti et al., 2011; Eskildsen et al., 2014). Analyses 
were performed on the totality of the spectra variables 
and on the spectra variables cleared of the 2 water 
absorption regions of the spectra. In the latter case, 
prediction equations were developed using 872 spectra 
variables. The derivative of the spectral data is often 
used because it enhances resolution by sharpening the 
absorption bands and it removes baseline offset (Burns 
and Ciurczak, 2001). Models were fitted to both raw 
spectra and spectra transformed with a first derivative 
mathematical treatment. The results obtained from 
treated and untreated spectra were very similar, and 
only those obtained for the raw spectra are shown.

Prediction Equations

Prediction equations can be considered as a series 
of partial regression coefficients, in number equal to 
the number of wavelengths, providing a prediction of 
a measurable trait in a sample. In the present study, 
these regression coefficients were estimated using 6 dif-
ferent methods. The PLSR implemented in the R (R 
Development Core Team, 2013) package PLS (Mevik 
and Wehrens, 2007) was used as the reference method. 
The PLSR models were fitted by either (1) choosing 
the number of PLSR components that minimized the 
prediction error in the training set (PLSR-M) or (2) 
setting the maximum number of components to 16 
(PLSR-16). The PLSR-16 was performed only on the 
totality of the spectra variables and was carried out to 
compare the results with previous literature estimates 
obtained using WinISI II software (InfraSoft Interna-
tional, State College, PA), for which the maximum 
number of terms is 16 by default. In addition, PLSR 
and modified PLSR (MPLSR; Shenk and Westerhaus, 
1991) were performed on 1,060 spectra variables using 
WinISI II software to enable the comparison between 
results yielded by different software products.
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The regression coefficients that are part of the predic-
tion equations can be obtained by multiple linear regres-
sion implemented in a Bayesian framework. The algo-
rithms used in this study were Bayesian ridge regression 
(BRR), Bayes A (BA), Bayes B (BB), Bayes C (BC), 
and Bayesian least absolute shrinkage and selection 
operator (LASSO; BL) and were tested as alterna-
tive methods to PLSR. These are penalization methods 
(i.e., they are used to reduce the estimator variance to 
guarantee the stability of the estimates). The models 
differ in the form of the prior density assigned to the 
effects. In BRR, effects are assigned Gaussian priors. 
This shrinks the estimate toward zero, and the extent of 
shrinkage is homogeneous across effects. In BA, effects 
are assigned a scaled t density (Meuwissen et al., 2001). 
The estimated effects of variables that are weakly cor-
related with the trait are strongly shrunk toward zero, 
whereas those of variables with strong association with 
the trait are shrunk to a lesser extent. The prior for BB 
and BC is a 2-component mixture with a point of mass 
at zero and with a slab that can be either a scaled t (in 
BB; Habier et al., 2011) or a Gaussian (in BC; Habier 
et al., 2011) density. These 2 models perform variable 
selection. For BL, the prior for the effects is a double-
exponential density (Park and Casella, 2008).

All the Bayesian regression models listed above were 
implemented in the BGLR package (de los Campos and 
Pérez-Rodriguez, 2014) of the R software. In all the 
Bayesian models, the number of iterations was 100,000, 
with a burn-in of 20,000. The high-order hyperparam-
eters of the models were specified using built-in BGLR 
rules that select default values for these unknowns to 
yield proper but relatively uninformative priors. The 
priors are chosen in a way that, a priori, they obey a 
variance partition of the y variable into components 
attributable to the error terms and to each of the ele-
ments of the linear predictors. This partition (R2 of the 
model) is set equal to 0.5. Pérez and de los Campos 
(2014) provide a detailed description of the models and 
algorithms implemented in BGLR. Briefly, in BRR the 
normal distribution assigned to the effects has mean 
zero and variance σβ

2 . The variance parameter is as-
signed a scaled-inverse chi-squared density, with pa-
rameters dfβ and Sβ. The BGLR package sets dfβ = 5 
and solves for the scale parameter Sβ to match the R2 
of the model. In BA, the marginal distribution of the 
effects is a scaled t density, with parameters dfβ and Sβ. 
The BGLR package sets dfβ = 5, whereas Sβ ~ gamma 
(r, s). It also sets s = 1.1 and solves for the rate r so 
that the total contribution of the linear predictor 
matches the R2 of the model. Models BB and BC ex-
tend BA and BRR, respectively, by introducing an ad-
ditional parameter π representing the prior proportion 

of nonzero effects. In BGLR, π ~ beta (p0, π0), with p0 
= 10 and π0 = 0.5. In BL, effects are assigned indepen-
dent normal densities with the null mean and effect-
specific variance parameter τ σεjk

2 2× . The residual vari-
ance is assigned a scaled-inverse chi-squared density, 
and the effect-specific scale parameters, τ jk

2 , are assigned 
independent and identically distributed exponential 
densities with rate parameter λ2/2, where λ2 ~ gamma 
(r, s), s = 1.1, and r is solved to match the expected R2 
of the model.

Model Comparison

In practice, prediction equations are developed using 
data from a restricted number of samples and applied 
over a larger population. Prediction models should cov-
er the variability expected in the population over which 
the models are to be applied. The effect of the herd rep-
resents the main source of spectra variability. Hence, 
testing the predictive ability of models using validation 
sets formed by herds that are not included in the train-
ing set would be the most conservative approach. In 
our study, this approach was not possible due to the 
limited number of herds. Therefore, individual records 
were randomly assigned to training and validation sets. 
As a result, records from the same herd are likely to 
appear in both training and validation sets, leading to 
a possible overestimation of model robustness. Data 
available for each trait, after outlier elimination, were 
randomly assigned to 10 nonoverlapping subsets. Pre-
diction equations were developed using 9 subsets at a 
time and validated on the remaining subset. For each 
trait, models were tested on the same subsets of data.

Prediction equations were therefore obtained for each 
trait in each training set by either PLSR or Bayesian 
multiple regression models. The regression coefficients 
were then multiplied by the respective wavelengths of 
the samples included in the validation set to obtain a 
predicted value for that trait. Prediction performance 
was assessed by computing the R2 between the predicted 
and measured values in training (R2t) and validation 
(R2v) and the root-mean-squared error of prediction in 
training (RMSEPt) and validation (RMSEPv). The 
difference in R2t, R2v, RMSEPt, and RMSEPv between 
models was assessed for each trait by paired t-tests per-
formed using the R software.

RESULTS AND DISCUSSION

Accuracy of PLSR Models Performed Under  
Different Scenarios

The mean of the estimated model parameters and 
the distribution of the number of terms obtained with 
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PLSR-16 and PLSR-M is reported in Table 1. With 
PLSR-M, only 4 traits had a maximum number of 
terms equal to or lower than 16: the time from rennet 
addition to curd firming, LF, fat curd yield, and protein 
content in the curd. For 88 traits, a higher number of 
latent variables (on average 55) was required to reach 
the minimum prediction error.

With PLSR-16, values of R2t and R2v across traits 
were on average 13 and 9 percentage points lower than 
those yielded by PLSR-M, respectively. The difference 
in R2v ranged from −31 (for the percentage of C18:1n-7 
trans-9 in fat) to −2 (for the content of SFA) percent-
age points. In all traits, prediction accuracy in train-
ing was significantly affected by the number of PLSR 
terms chosen, whereas the accuracy in validation was 
significantly different for 67 traits. Overall, in these 67 
traits, the decrease in R2v obtained by PLSR-16 com-
pared with PLSR-M was approximately 12 percentage 
points. Hence, limiting the number of PLSR terms to 
16 reduced the prediction accuracy of the models in 
the large majority of the traits. One may argue that 
increasing the number of PLSR terms might lead to 
overfitting. However, it is worth noting that all PLSR 
models were performed under a 10-fold cross-validation, 
thus ensuring the identification of the optimal number 
of PLSR terms while avoiding overfitting.

A maximum number of PLSR terms was used to en-
able the comparison of our results with those that would 
be expected using the WinISI II software, for which the 
maximum number of terms is 16. Under this condition, 
the PLSR performed using the R software led to very 
similar results as the MPLSR procedure implemented 
in the WinISI II. Across traits, the correlation between 
the 2 systems for R2t was 0.97, with a bias of −0.001 
(results not reported in tables). This indicates that R 
and WinISI II are expected to yield consistent results, 
and a higher number of terms might effectively enhance 
their predictive performances.

When PLSR-M was used on 872 spectral variables 
instead of 1,060, the average number of PLSR terms 
necessary to reach the minimum prediction error across 
traits decreased from 55 to 29, with 65 models having 
fewer than 35 components (data not reported in tables). 
Even though the accuracy of prediction equations built 
after spectral variable selection was very similar to that 
yielded by models developed on the entire spectra, the 
average number of terms necessary to reach that ac-
curacy was almost halved. This suggests that PLSR 
models perform better when water absorption regions 
of the spectra are excluded from the analysis, and it 
indicates that models developed on 872 variables are 
expected to be more robust.

However, also in this scenario, the number of PLSR 
terms necessary to minimize the prediction error was 
less than or equal to 16 for few traits: DM curd yield, 
fat curd yield, protein content in the curd, and percent-
age of β-LG in protein. Figure 1 shows the relationship 
between the average R2v obtained for each trait by 
PLSR-16 and PLSR-M using either the whole spectra 
or the selected spectra variables. Results suggest that 
16 PLSR terms are not sufficient to exploit all the po-
tential accuracy of models, even when noise spectral 
regions are omitted.

Results of the comparison between parameters 
yielded by models applied to the whole spectra (1,060 
variables) and to the spectra cleared of the water ab-
sorption regions (872 variables) are reported in Table 
2. Across traits, the average R2v obtained using 872 
spectral variables was 3.2 percentage points higher 
than that obtained using the whole spectrum. For 18 
traits, the difference in R2v under the 2 approaches was 
significant and was on average 5.3 percentage points, 
with a maximum difference of 8.9 percentage points for 
the content of unglycosylated κ-CN.

The overall difference in R2v between PLSR-16 
performed on 1,060 spectra variables and PLSR-M 
performed on 872 variables was around 12 percentage 
points, with 69 traits (i.e., 75% of the investigated traits) 
being significantly affected by the different scenario in 
which PLSR models were fitted. For those traits, the 
average difference in R2v for the 2 methods was 15 per-
centage points (results not reported in tables). These 
results indicate that PLSR models can have a very dif-
ferent predictive ability depending on the conditions 
under which models are fitted to the data.

Table 1. Mean ± SD of predictive performance parameters obtained 
by a partial least squares regression (PLSR) in which the maximum 
number of terms was set to 16 (PLSR-16) and a PLSR in which 
the number of terms was chosen to minimize the prediction error 
(PLSR-M)1

Parameter2 PLSR-16 PLSR-M

R2t 59.5 ± 17.8 72.1 ± 17.9
R2v 51.6 ± 20.7 60.4 ± 21.4
RMSEPt 1.63 ± 7.09 1.51 ± 7.09
RMSEPv 1.75 ± 7.41 1.68 ± 7.41
No. of PLSR terms   
 Mean 15.6 54.6
 Minimum 5 5
 Maximum 16 92
No. of traits with no. of PLSR 
 terms ≤16

92 4

1Comparison between PLSR-16 and PLSR-M was performed using the 
whole spectra (1,060 variables).
2R2t = coefficient of determination in training; R2v = coefficient of 
determination in validation; RMSEPt = root-mean-squared error in 
training; RMSEPv = root-mean-squared error in validation.
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Accuracy of Bayesian Models Developed Using  
the Whole Spectra or Selected Spectra Regions

Results of the comparison between model parameters 
obtained with Bayesian regression models applied on 
1,060 and 872 spectral variables are reported in Table 
2. Generally, results obtained for Bayesian regression 
models were consistent with those observed for PLSR-
M, with an increased prediction accuracy after the ex-
clusion of the water absorption regions. For BRR, BA, 
and BL, the average difference in R2v when using 1,060 
or 872 spectral variables ranged from 4 to 7 percentage 
points. The models less affected by the inclusion of the 
noise regions were BB and BC, for which the difference 
in R2v was significant in only 3 and 5 traits, respec-
tively. This result was expected because those models 
perform variable selection excluding the uninformative 
variables (de los Campos et al., 2013).

For BB, the traits favorably affected by the use of the 
selected spectra regions were the content of unglycosyl-
ated κ-CN and the percentages of unglycosylated κ-CN 
and total κ-CN in protein. For BC, in addition to such 
traits, the percentage of ΣC18:1 trans in fat and the 
content of C18:1n-7 trans-9 had a significantly higher 
R2v when prediction equations were developed using 
872 spectral variables.

Theoretically, informative wavelengths might also 
exist in the spectra regions corresponding to water 
absorbance, and the a priori exclusion of those regions 
could lead to a loss of potential useful information for 
the prediction of new phenotypes. Prediction equations 
as obtained with BB or BC would benefit from the use 
of the whole spectra because those 2 Bayesian methods 

might select informative wavelengths potentially hid-
den in the noise regions.

The BB and BC models performed on 1,060 vari-
ables, however, yielded the same prediction accuracy of 
models carried out on 872 variables, and the prediction 
for few traits was negatively affected (−15.5 percentage 
points in R2v, on average) by the presence of the noise 
regions. This indicates that BB and BC were not able 
to extract any additional information from the variables 
included in the water absorption regions of the spectra.

Accuracy of PLSR-M Models Across Traits

Values of R2v obtained by PLSR for all the inves-
tigated traits are reported in the Appendix tables. 
Results obtained by PLSR analysis of the data used 
in this study have already been published (Bonfatti et 
al., 2016), albeit no measures of variability in the per-
formance parameters were reported. Although results 
were in the range of variation of those presented in this 
study, the R2 values reported by Bonfatti et al. (2016) 
were slightly lower. This might be attributed to the dif-
ferent approach used to determine the optimal number 
of PLSR terms. In Bonfatti et al. (2016), no additional 
PLSR components were retained if the increase in the 
R2 of the model was smaller than 0.002. In this study, 
the number of PLSR terms was the one corresponding 
to the minimum prediction error, leading to a slightly 
higher number of terms. A remarkable difference be-
tween the 2 studies was detected for the content of 
C18:3n-3, for which the R2 reported previously (29%) 
was much lower than the one estimated in this study 
(71%). Comparison of the accuracy of the PLSR mod-

Figure 1. Relationship between the coefficient of determination of validation obtained by a partial least squares regression (PLSR) in which 
the maximum number of terms was set to 16 (PLSR-16) and a PLSR in which the number of terms was chosen to minimize the prediction er-
ror (PLSR-M). Predicted traits were fatty acid contents (Δ); fatty acid percentage in fat (+); protein fraction contents and percentage in total 
protein (○); and technological traits, lactoferrin, and minerals (◆).



Journal of Dairy Science Vol. 100 No. 9, 2017

BAYESIAN MODELS IN MILK INFRARED SPECTRA ANALYSIS 7311

T
ab

le
 2

. M
ea

n 
±

 S
D

 o
f 
th

e 
pr

ed
ic

ti
on

 p
er

fo
rm

an
ce

 p
ar

am
et

er
s 

ob
ta

in
ed

 a
cr

os
s 

tr
ai

ts
 a

nd
 a

cr
os

s 
m

od
el

s 
us

in
g 

th
e 

w
ho

le
 s

pe
ct

ra
 (

1,
06

0 
va

ri
ab

le
s)

 a
nd

 m
ea

n 
±

 S
D

 o
f 
th

e 
di

ff
er

en
ce

 
be

tw
ee

n 
pa

ra
m

et
er

s 
ob

ta
in

ed
 u

si
ng

 t
he

 s
pe

ct
ra

 w
it
h 

th
e 

ex
cl

us
io

n 
of

 t
he

 w
at

er
 a

bs
or

ba
nc

e 
re

gi
on

s 
(8

72
 v

ar
ia

bl
es

) 
an

d 
th

e 
w

ho
le

 s
pe

ct
ra

P
ar

am
et

er
1

 
N

o.
 o

f 
sp

ec
tr

a 
 

va
ri

ab
le

s
 

N
o.

 o
f 
tr

ai
ts

2
P

L
SR

-M
3

B
ay

es
 R

R
4

B
ay

es
 A

B
ay

es
 B

B
ay

es
 C

L
A

SS
O

5

R
2 t

 
 

 
 

 
 

 
 

 
1,

06
0

A
ll

71
.1

 ±
 1

7.
9

63
.2

 ±
 2

3.
4

65
.0

 ±
 2

2.
3

66
.7

 ±
 2

0.
8

67
.2

 ±
 2

0.
8

64
.6

 ±
 2

2.
9

 
87

2
A

ll
−

1.
2 

±
 2

.5
4.

6 
±

 8
.5

2.
6 

±
 5

.7
1.

3 
±

 3
.7

1.
2 

±
 4

.3
3.

7 
±

 6
.5

 
87

2
Se

le
ct

ed
−

1.
5 

±
 2

.7
 (

69
)

5.
3 

±
 8

.9
 (

81
)

3.
6 

±
 6

.4
 (

67
)

1.
8 

±
 4

.3
 (

66
)

1.
8 

±
 5

.2
 (

60
)

4.
6 

±
 6

.9
 (

75
)

R
2 v

 
 

 
 

 
 

 
 

 
1,

06
0

A
ll

60
.4

 ±
 2

1.
4

56
.5

 ±
 2

4.
5

58
.8

 ±
 2

3.
7

61
.2

 ±
 2

2.
4

62
.4

 ±
 2

2.
4

58
.0

 ±
 2

4.
0

 
87

2
A

ll
3.

2 
±

 2
.5

6.
6 

±
 7

.5
4.

4 
±

 4
.9

1.
5 

±
 3

.3
1.

3 
±

 3
.5

5.
5 

±
 5

.6
 

87
2

Se
le

ct
ed

5.
3 

±
 1

.8
 (

18
)

10
.9

 ±
 8

.1
 (

47
)

9.
0 

±
 5

.3
 (

30
)

15
.5

 ±
 5

.5
 (

3)
12

.0
 ±

 8
.3

 (
5)

9.
4 

±
 5

.7
 (

43
)

R
M

SE
P

t
 

 
 

 
 

 
 

 
 

1,
06

0
A

ll
1.

51
 ±

 7
.0

9
1.

55
 ±

 6
.8

5
1.

55
 ±

 6
.8

2
1.

53
 ±

 6
.7

9
1.

53
 ±

 6
.8

4
1.

55
 ±

 6
.8

6
 

87
2

A
ll

−
0.

09
 ±

 0
.8

9
−

0.
02

 ±
 0

.2
2

−
0.

03
 ±

 0
.1

0
−

0.
02

 ±
 0

.1
1

−
0.

00
 ±

 0
.2

0
−

0.
03

 ±
 0

.1
5

 
87

2
Se

le
ct

ed
−

0.
14

 ±
 1

.1
2 

(6
0)

−
0.

03
 ±

 0
.2

5 
(7

1)
−

0.
04

 ±
 0

.1
1 

(7
9)

−
0.

02
 ±

 0
.1

2 
(8

0)
−

0.
00

 ±
 0

.2
4 

(6
6)

−
0.

03
 ±

 0
.1

7 
(6

9)
R

M
SE

P
v

 
 

 
 

 
 

 
 

 
1,

06
0

A
ll

1.
68

 ±
 7

.4
1

1.
68

 ±
 7

.3
3

1.
66

 ±
 7

.3
0

1.
62

 ±
 7

.2
4

1.
63

 ±
 7

.3
0

1.
67

 ±
 7

.3
1

 
87

2
A

ll
−

0.
09

 ±
 0

.3
0

−
0.

08
 ±

 0
.1

3
−

0.
07

 ±
 0

.1
7

−
0.

04
 ±

 0
.1

0
−

0.
03

 ±
 0

.0
9

−
0.

07
 ±

 0
.1

2
 

87
2

Se
le

ct
ed

−
0.

04
 ±

 0
.0

9 
(3

0)
−

0.
07

 ±
 0

.0
9 

(4
2)

−
0.

07
 ±

 0
.0

9 
(2

8)
−

0.
09

 ±
 0

.0
9 

(4
)

−
0.

09
 ±

 0
.1

0 
(4

)
−

0.
06

 ±
 0

.0
9 

(3
8)

1 R
2 t

 =
 c

oe
ff
ic

ie
nt

 o
f 

de
te

rm
in

at
io

n 
in

 t
ra

in
in

g;
 R

2 v
 =

 c
oe

ff
ic

ie
nt

 o
f 

de
te

rm
in

at
io

n 
in

 v
al

id
at

io
n;

 R
M

SE
P

t 
=

 r
oo

t-
m

ea
n-

sq
ua

re
d 

er
ro

r 
in

 t
ra

in
in

g;
 R

M
SE

P
v 

=
 r

oo
t-

m
ea

n-
sq

ua
re

d 
er

ro
r 

in
 v

al
id

at
io

n.
2 S

el
ec

te
d 

tr
ai

ts
 c

or
re

sp
on

d 
to

 t
he

 t
ra

it
s 

fo
r 

w
hi

ch
 t

he
 d

iff
er

en
ce

 b
et

w
ee

n 
es

ti
m

at
es

 o
f 

a 
pa

ra
m

et
er

 o
bt

ai
ne

d 
us

in
g 

1,
06

0 
or

 8
72

 s
pe

ct
ra

 v
ar

ia
bl

es
 w

as
 s

ig
ni

fic
an

t 
(P

 <
 0

.0
5)

. 
T

he
 

nu
m

be
r 

of
 s

el
ec

te
d 

tr
ai

ts
 i
s 

re
po

rt
ed

 i
n 

pa
re

nt
he

se
s.

3 P
L
SR

-M
 =

 p
ar

ti
al

 l
ea

st
 s

qu
ar

es
 r

eg
re

ss
io

n 
in

 w
hi

ch
 t

he
 n

um
be

r 
of

 t
er

m
s 

w
as

 c
ho

se
n 

to
 m

in
im

iz
e 

th
e 

pr
ed

ic
ti
on

 e
rr

or
.

4 R
R

 =
 r

id
ge

 r
eg

re
ss

io
n.

5 L
A

SS
O

 =
 l
ea

st
 a

bs
ol

ut
e 

sh
ri

nk
ag

e 
an

d 
se

le
ct

io
n 

op
er

at
or

.



7312 BONFATTI ET AL.

Journal of Dairy Science Vol. 100 No. 9, 2017

els for all the investigated traits with other results in 
the literature can be found in Bonfatti et al. (2016).

Accuracy of Bayesian Models Compared with PLSR 
for the Prediction of FA Contents

The comparison between performance parameters of 
PLSR-M and Bayesian regression models was based on 
the analysis of spectra cleared of the water absorption 
regions (i.e., in the scenario in which all models gave 
the best prediction accuracy). Overall, R2t yielded by 
Bayesian regressions was 2 to 8% lower than that pro-
vided by PLSR-M, depending on the Bayesian method. 
The lower R2 was also accompanied by a 4 to 5% higher 
RMSEPt (results not reported in tables).

Comparisons among the R2v of the 6 different models 
for the prediction of FA contents are reported in Fig-
ure 2. Despite a lower prediction accuracy in training 
sets, Bayesian regression models yielded a significantly 
higher R2v than PLSR-M, indicating that they are 
more robust than PLSR-M. In particular, BRR and BA 
performed significantly better than PLSR-M for the 
prediction of 3 traits, whereas BB, BC, and BL models 
performed significantly better than PLSR-M in 9, 11, 
and 6 traits, respectively. Hence, the model providing 
the best results across traits was BC, and short- and 
medium-chain individual FA were the traits benefiting 
more from the use of this approach. However, the maxi-
mum difference in R2v due to the use of Bayesian meth-
ods compared with PLSR-M was 1.5 percentage points, 
obtained for ΣC16:1 with BC. For all the other traits, 
the difference in R2v ranged from 0.1 to 0.4 percentage 
points. Hence, although being statistically significant, 
most variations in R2v produced by Bayesian models 
were smaller than 1 percentage point. The RMSEPv 
yielded by Bayesian models across traits was on average 
0.5 to 1.8% lower than that obtained by PLSR-M. For 
the traits for which the model used significantly af-
fected prediction accuracy, BC yielded on average a 3% 
lower RMSEPv than PLSR-M and the improvement 
in RMSEPv was never greater than 4% (results not 
reported in tables).

Accuracy of Bayesian Models Compared with PLSR 
for the Prediction of FA Percentages

Results of the comparison between models obtained 
for percentages of FA were very similar to those ob-
served for FA contents. Prediction equations developed 
using Bayesian regression models generally led to lower 
values of R2t and slightly greater (+5%) RMSEPt. 
The differences between the R2v of Bayesian models 
and PLSR-M for the prediction of FA percentages are 

reported in Figure 2. Bayesian models yielded similar 
or better results than those produced by PLSR-M, 
with the only exception of BRR for the prediction of 
C18:1n-7 trans-9, which led to a slightly worse accuracy 
(−2 percentage points of R2v) than PLSR-M. Like for 
FA content, the best performances were obtained by 
BC. The improvements in R2v yielded by the differ-
ent models were on average 1 percentage point, with 
a maximum value of 2.3 percentage points. Hence, the 
benefits deriving from the use of Bayesian models in-
stead of PLSR for FA percentage were slightly greater 
than those observed for FA contents. On average, for 
the 13 traits for which models yielded a significantly 
different accuracy, the RMSEPv of Bayesian models 
was 3% lower than that obtained by PLSR-M.

This was in contrast to the findings of Ferragina et al. 
(2015), who reported that BRR, BA, and BB showed 
significantly higher prediction accuracy than PLSR-16 
or MPLSR. Comparison between values of R2v across 
studies might not always be appropriate due to the dif-
ferent experimental conditions under which validation 
has been performed (herds vs. individuals assigned to 
training and validation sets). For this reason, results 
obtained by PLSR-16 and PLSR-M in the current or 
other literature studies were compared with the R2 val-
ues estimated by Ferragina et al. (2015) on their entire 
data set, when individuals were randomly assigned to 
the training or validation sets.

Results by Ferragina et al. (2015) showed that the 
improvements in accuracy provided by the Bayesian 
models compared with PLSR-16 were around 30 per-
centage points for the R2 calculated on the entire data 
set. Differences in accuracy compared with MPLSR 
were lower but still remarkable (on average, 19 per-
centage points in R2). Using PLSR-16, values of R2 
estimated by Ferragina et al. (2015) on the entire data 
set for C10:0, C16:0, and C18:0 were 0.48, 0.44, and 
0.27, respectively. However, the performance in R2 in 
training when using a nonrestricted PLSR seems to be 
more promising. For example, R2 for the same traits 
was 75, 71, and 51% in Rutten et al. (2009). In addi-
tion, in agreement with results from the current study, 
R2 values for these traits were 0.93, 0.88, and 0.75 in 
Ferrand-Calmels et al. (2014), who compared penaliza-
tion methods, such as LASSO and elastic nets, with 
PLSR-M for the prediction of FA contents and percent-
ages, concluding that the best results were obtained 
with PLSR-M.

A possible explanation for the inconsistent results 
might be the use of the PLSR-M instead of PLSR and 
MPLSR with a maximum number of 16 terms, as used 
in the previous study. Some of the traits investigated 
by Ferragina et al. (2015), namely C10:0, C16:0, and 
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Figure 2. Difference (percentage points) between the coefficient of determination of validation obtained by Bayesian models and by a partial 
least squares regression in which the number of terms was chosen to minimize the prediction error for the prediction of all the investigated traits. 
RR = ridge regression; LASSO = least absolute shrinkage and selection operator. Only significant differences (P < 0.05) are shown. Color ver-
sion available online.
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C18:0 percentage in total fat as well as rennet coagu-
lation time, were also among our traits, and values 
of R2v obtained for such traits with PLSR-16 were 
remarkably lower than those estimated using PLSR-
M. The R2v for C10:0, C16:0, and C18:0 percentage 
in total fat was 25, 28, and 16 percentage points 
lower, respectively, than that obtained by PLSR-M 
and 14 percentage points lower than the R2v yielded 
by PLSR-M for rennet coagulation time (results not 
reported in tables). Thus, it can be hypothesized that 
the settings under which the PLSR and MPLSR were 
performed in Ferragina et al. (2015) might have pe-
nalized the accuracy of those methods in comparison 
with the Bayesian models.

Accuracy of Bayesian Models Compared with PLSR 
for the Prediction of Protein Composition

Consistent with results for FA, Bayesian models led, 
on average, to 7% lower R2t and 4% greater RMSEPt 
than PLSR-M in the prediction of protein composition. 
Comparisons between R2v values obtained with the 6 
different models for the prediction of protein fraction 
contents and percentages are reported in Figure 2. In 
validation, Bayesian models offered very limited or no 
benefits when compared with PLSR-M. For some traits, 
the R2v yielded by Bayesian methods was significantly 
lower than that yielded by PLSR-M. This occurred for 
the content of unglycosylated κ-CN (from −3.4 percent-
age points with BB to −10.3 percentage points with 
BRR) and for its percentage in total protein (from −2.7 
percentage points with BA and BL to −8.4 percentage 
points with BRR). In addition, BRR showed a lower 
accuracy than PLSR-M when predicting the content of 
α-LA and αS2-CN percentage (−3.1 and −2.2 percent-
age points, respectively). Conversely, BA, BB, BC, and 
BL yielded a significantly higher R2v for the content of 
total whey protein and αS1-CN percentage, which were 
the only protein fractions predicted more accurately by 
Bayesian methods than by PLSR-M. For the content 
and percentage of unglycosylated κ-CN, RMSEPv was 
significantly higher than that of PLSR-M when using 
BRR (+4 and +5%, respectively). When using BB and 
BC, the same parameter was 1% lower than that of 
PLSR-M in the prediction of whey protein. For αS1-CN 
percentage, the decrease in RMSEPv due to the use 
of Bayesian models was not significant. These results 
indicate that Bayesian models offer a small advantage 
over PLSR-M for the prediction of protein composition, 
particularly when considering that the improvements in 
the prediction accuracy for the content of total whey 
protein and αS1-CN percentage were lower than 2 per-
centage points of R2v.

Accuracy of Bayesian Models Compared with PLSR 
for the Prediction of Technological Properties, LF, 
and Minerals

For the prediction of milk coagulation properties, 
curd yield and composition, LF, and minerals, R2t 
yielded by Bayesian models was 3 to 4 percentage 
points lower than that obtained with PLSR-M, with a 
corresponding 4% higher RMSEPt. Differences between 
the R2v obtained with the 6 models for the prediction 
of such traits are reported in Figure 2. For coagula-
tion properties, BB, BC, and BL gave slightly better 
results when predicting rennet coagulation time, time 
from rennet addition to curd firming, and curd firm-
ness after 30 min from rennet addition. Using BC, the 
RMSEPv decreased from 2 to 3% in comparison with 
PLSR-M. However, the maximum difference in R2v 
between the PLSR-M and Bayesian methods was lower 
than 2 percentage points. No significant difference was 
detected in the prediction accuracy for the traits re-
lated to curd yield and composition when using either 
the PLSR-M or Bayesian models, with the exception 
of a slightly higher R2v (0.3 percentage points) and a 
slightly smaller RMSEPv (−0.63%) provided by BB for 
fat curd yield.

In contrast with our results, Ferragina et al. (2015) 
reported a remarkable difference (from 6 to 14 percent-
age points) in the R2 yielded by BB and MPLSR for 
rennet coagulation time, cheese yield, protein recovery, 
and fat recovery. However, like for FA, values were gen-
erally lower than other literature estimates obtained for 
the same traits and breed using PLSR-M (Cecchinato 
et al., 2009; De Marchi et al., 2009). As hypothesized 
for FA percentage, the conditions under which PLSR 
and MPLSR were fitted, together with the use of the 
whole and raw spectra, might have reduced the ac-
curacy of those models and enhanced the differences 
between those methods and Bayesian models.

The prediction accuracy of LF was not influenced by 
the model used, whereas it decreased for Ca, P, and Mg 
when Bayesian models were used. In particular, for Mg, 
the R2v was 3.5 to 6 percentage points lower and the 
RMSEPv was 4% higher than that yielded by PLSR-
M. Hence, PLSR should be preferred over Bayesian 
methods in the development of prediction equations for 
mineral contents. 

Differences in Prediction Ability Among  
Bayesian Models

Significant differences in the predictive ability of 
Bayesian models were detected. However, they were 
limited and, for R2v, generally lower than 0.5 percent-
age point (Appendix Tables A1, A2, A3, and A4). Our 
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results indicate that the effect of the noise spectral re-
gions on the accuracy of prediction equations depends 
on the statistical method used, with BRR, BA, and BL 
being the most sensitive (Table 2). As the major noisy 
spectral regions were excluded from the analysis, all 
Bayesian models provided very consistent results.

Ferragina et al. (2015) performed model comparison 
on the whole spectra, including the noise regions, and 
reported statistically significant and quantitatively re-
markable differences among Bayesian models. Accord-
ing to their results, BB exhibited the best performanc-
es, as it was highly selective in identifying the most 
informative wavelengths in the 1,060 spectral variables. 
Conversely, BRR assigned small effects to almost all 
wavelengths, even within the regions affected by water 
absorbance, and PLSR estimated greater effects for 
those regions. This explained the better performance 
provided by BB compared with the other methods as 
well as the intermediate results obtained by BRR.

It is worth noting that water absorption regions are 
not the only noisy or noninformative spectral regions 
that might potentially affect model predictive ability. 
In preliminary analyses, we excluded the entire region 
ranging from 3,000 to 5,000 cm−1 (Eskildsen et al., 
2014; Grelet et al., 2015), but this did not affect the 
performance of PLSR and MPLSR models. However, 
the presence of other noninformative wavelengths might 
affect the predictive accuracy of PLSR and MPLSR 
while having less or no effect on the accuracy of BB 
and BC models. Spectra mathematical treatments 
(e.g., derivatives, smoothing) can also have a poten-
tial effect on model accuracy because they influence 
the amount of noise. For this reason, the use of raw 
or pretreated spectra might influence the accuracy of 
prediction models, depending on the method used to 
build the equations. The application of a first deriva-
tive mathematic treatment to spectra further decreased 
differences in accuracy between PLSR-M and Bayesian 
models: across traits, BB and BC obtained the highest 
prediction accuracy within Bayesian models, but pro-
duced significantly better results than PLSR for only 
7 traits over 92, with a maximum difference in R2v of 
1.32% (results not presented in tables).

CONCLUSIONS

For the first time, BC and LASSO were tested as 
chemometric tools for the development of infrared pre-
diction equations and BRR, BA, and BB were tested 
for the prediction of contents of FA, protein profile, 
LF, and minerals in milk. Overall, prediction accuracies 
yielded by BC were slightly higher than those provided 
by the other methods, in particular for the prediction 
of FA profile. Despite being significant, most of the 

differences in prediction accuracy between models were 
small or negligible; the only exceptions were the pre-
diction of Mg and unglycosylated κ-CN contents, for 
which Bayesian methods had worse predictive abilities 
compared with PLSR. Differences between regression 
methods were ascribed mainly to their ability of cop-
ing with spectral noise. The presence of noninformative 
wavelengths and the use of raw spectra affect predictive 
accuracy of PLSR while having less or no effect on the 
accuracy of BB and BC models. Hence, spectra vari-
able selection and mathematical pretreatments might 
influence the accuracy of prediction models depending 
on the method used to build the equations. Differences 
in prediction accuracy between PLSR and Bayesian 
regression models were null or negligible after reducing 
noise by spectral mathematical treatments.
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APPENDIX
Table A1. Mean ± SD of the coefficient of determination in validation (R2v), obtained by partial least squares regression (PLSR) in which the 
number of terms was chosen to minimize the prediction error (PLSR-M), and mean ± SD of the difference between the R2v yielded by Bayesian 
models and by PLSR-M for prediction equations developed for fatty acid (FA) contents (g/dL of milk)

Trait1 R2v PLSR-M

Difference between Bayesian models and PLSR-M2

S3Bayes RR Bayes A Bayes B Bayes C LASSO

SFA 98.9 ± 0.3a 0.0 ± 0.1ab 0.1 ± 0.1b 0.1 ± 0.1c 0.1 ± 0.1c 0.0 ± 0.1a +
MUFA 94.3 ± 1.5a 0.3 ± 0.3b 0.3 ± 0.3b 0.4 ± 0.3b 0.3 ± 0.4b 0.3 ± 0.2b +
PUFA 78.8 ± 3.7 −0.2 ± 1.4 −0.4 ± 1.8 −0.3 ± 1.6 0.0 ± 1.1 −0.1 ± 1.2
Short-chain FA 91.7 ± 3.5ab 0.0 ± 0.5a 0.0 ± 0.6ab 0.1 ± 0.5ab 0.1 ± 0.4ab 0.1 ± 0.5b

Medium-chain FA 96.3 ± 0.8ab 0.0 ± 0.3a 0.2 ± 0.3b 0.3 ± 0.3c 0.2 ± 0.3abc 0.1 ± 0.2b +
Long-chain FA 81.1 ± 3.3ab 0.3 ± 1.6a 0.6 ± 1.5b 1.2 ± 1.6c 1.4 ± 1.5c 0.7 ± 1.4b +
n-6 74.3 ± 5.2ab −0.3 ± 1.7b −0.6 ± 2.1a −0.4 ± 2.0ab −0.2 ± 1.8ab −0.2 ± 1.7ab

n-3 75.9 ± 3.9 0.0 ± 2.1 −0.7 ± 2.7 −0.5 ± 2.4 −0.6 ± 1.9 −0.1 ± 2.1
C10:0 90.8 ± 2.1a 0.2 ± 0.4ab 0.2 ± 0.5ab 0.3 ± 0.4ab 0.3 ± 0.3bc 0.3 ± 0.4c +
C12:0 92.1 ± 1.5a 0.2 ± 0.3ab 0.2 ± 0.6ab 0.3 ± 0.5ab 0.3 ± 0.3b 0.2 ± 0.3ab +
C14:0 91.4 ± 3.2a 0.3 ± 0.6a 0.4 ± 0.6ab 0.6 ± 0.6c 0.6 ± 0.8c 0.4 ± 0.5bc +
C16:0 93.7 ± 1.4a 0.1 ± 0.3a 0.2 ± 0.4ab 0.4 ± 0.4c 0.4 ± 0.5bc 0.3 ± 0.3bc +
C18:0 80.8 ± 2.9ab 0.2 ± 1.7a 0.7 ± 1.5b 1.2 ± 1.6c 1.3 ± 1.4c 0.7 ± 1.6b +
ΣC14:1 64.4 ± 5.1ab −0.2 ± 0.8a 0.2 ± 0.6b 0.6 ± 0.7c 0.8 ± 0.6c 0.3 ± 0.6b +
ΣC16:1 74.3 ± 5.2ab 0.4 ± 2.2a 0.6 ± 2.3ab 0.8 ± 2.3b 1.5 ± 2.0c 0.7 ± 2.2b +
Σunsaturated C18 92.6 ± 2.3a 0.2 ± 0.2b 0.2 ± 0.3b 0.3 ± 0.4c 0.4 ± 0.3c 0.3 ± 0.3bc +
ΣC18:1 92.6 ± 1.7 0.1 ± 0.5 0.1 ± 0.5 0.1 ± 0.5 0.2 ± 0.4 0.1 ± 0.5
ΣC18:1 trans 68.6 ± 5.3abc −0.5 ± 2.8a −0.4 ± 3.4ab 0.4 ± 2.7bc 0.8 ± 2.1bc 0.5 ± 2.7c

C18:1n-7, cis-9 82.5 ± 4.1a 0.4 ± 0.3b 0.1 ± 0.6a 0.2 ± 0.6a 0.3 ± 0.4b 0.3 ± 0.4b +
C18:1n-7 trans-9 69.5 ± 4.2abc −0.7 ± 1.7ab −0.8 ± 2.5a −0.1 ± 2.6bc 0.8 ± 1.3c 0.4 ± 1.7c

ΣC18:2 78.5 ± 3.1ab −0.2 ± 1.3ab −0.6 ± 1.3a −0.2 ± 1.0b −0.2 ± 0.8ab −0.2 ± 0.9ab

C18:2n-6 75.2 ± 3.2abc −0.6 ± 1.5ab −1.2 ± 2.1a −0.7 ± 1.9bc −0.4 ± 1.3c −0.2 ± 1.7c

ΣCLA 61.7 ± 4.4ab −1.6 ± 4.9a −1.4 ± 5.2a −1.0 ± 5.2ab −0.5 ± 4.1b −0.6 ± 4.3b

C18:2 cis-9,trans-11 65.3 ± 6.5ab −1.3 ± 2.3a −1.5 ± 2.3a −0.5 ± 2.0b −0.1 ± 1.9b −0.5 ± 2.0b

C18:3n-3 70.7 ± 4.1ab −0.4 ± 1.7ab −0.8 ± 2.1a −0.3 ± 2.2b −0.2 ± 1.9b −0.3 ± 1.7ab  
a–cDifferent superscripts indicate significantly different (P < 0.05) parameter estimates.
1Short-chain FA = FA from C4 to C10; medium-chain FA = FA from C12 to C16; long-chain FA = FA from C18 to C24; Σ = sum of FA.
2RR = ridge regression; LASSO = least absolute shrinkage and selection operator.
3S = presence of at least 1 significant difference (P < 0.05) between Bayesian models and PLSR.

https://doi.org/10.3168/jds.2009-2456
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Table A2. Mean ± SD of the coefficient of determination in validation (R2v), obtained by partial least squares regression (PLSR) in which the 
number of terms was chosen to minimize the prediction error (PLSR-M), and mean ± SD of the difference between the R2v yielded by Bayesian 
models and by PLSR-M for prediction equations developed for the prediction of fatty acid (FA) contents (g/100 g of fat)

Trait1 R2v PLSR-M

Difference between Bayesian models and PLSR-M2

S3Bayes RR Bayes A Bayes B Bayes C LASSO

SFA 83.6 ± 4.0a 0.5 ± 0.6bc 0.6 ± 0.7b 0.9 ± 0.8c 0.6 ± 0.7c 0.7 ± 0.7bc +
MUFA 82.6 ± 3.3a 0.4 ± 0.7ab 0.6 ± 0.9ab 0.9 ± 0.9c 0.8 ± 1.0c 0.8 ± 0.7bc +
PUFA 69.4 ± 6.4ab −0.7 ± 1.6ab −0.9 ± 1.6a −0.6 ± 1.3b 0.0 ± 2.0b −0.5 ± 1.5ab

Short-chain FA 75.4 ± 5.4 −0.1 ± 1.6 −0.2 ± 2.0 0.1 ± 1.5 0.4 ± 1.9 −0.1 ± 1.5
Medium-chain FA 76.6 ± 4.2a 0.6 ± 1.0ab 1.2 ± 1.4bc 1.4 ± 1.3c 1.7 ± 1.2c 1.2 ± 1.1c +
Long-chain FA 74.4 ± 4.5abc 0.0 ± 1.5a 0.3 ± 1.5b 0.7 ± 1.5c 1.4 ± 1.2d 0.1 ± 1.5abc +
n-6 71.6 ± 4.5ab −0.1 ± 2.6b −0.9 ± 2.5a −0.3 ± 2.7b 0.1 ± 2.4b 0.0 ± 2.3b

n-3 65.8 ± 8.2a 1.7 ± 2.0b 1.3 ± 2.2a 1.6 ± 2.1b 1.8 ± 1.9b 1.9 ± 1.9b +
C10:0 77.8 ± 6.0ab −0.1 ± 0.9a 0.3 ± 1.2ab 0.3 ± 1.3ab 0.5 ± 1.1ab 0.4 ± 1.1b

C12:0 81.3 ± 4.4a 0.5 ± 0.9ab 0.4 ± 1.3ab 0.7 ± 1.3ab 1.0 ± 1.0b 0.7 ± 1.0ab +
C14:0 68.0 ± 9.9a 1.5 ± 2.0b 1.8 ± 2.3bc 2.2 ± 2.4c 2.3 ± 2.1c 1.8 ± 1.8c +
C16:0 70.3 ± 4.3a 0.5 ± 0.9ab 0.9 ± 1.8abc 1.2 ± 1.7bc 1.3 ± 1.5c 1.2 ± 1.6bc +
C18:0 74.5 ± 4.6abc 0.1 ± 1.5a 0.4 ± 1.6ab 1.0 ± 1.5c 1.1 ± 1.4d 0.5 ± 1.5b +
ΣC14:1 50.6 ± 6.9ab 0.1 ± 2.1a 0.4 ± 1.8a 0.9 ± 1.8b 1.2 ± 1.7b 0.5 ± 1.8a

ΣC16:1 54.5 ± 5.8ab 0.7 ± 2.6a 0.7 ± 3.2ab 0.8 ± 2.9ab 1.4 ± 2.6ab 1.2 ± 2.4b

Σunsaturated C18 82.7 ± 4.9a 0.6 ± 0.6b 0.9 ± 0.9bc 1.1 ± 0.9d 0.9 ± 0.8bc 0.8 ± 0.7cd +
ΣC18:1 82.1 ± 5.9a 0.8 ± 0.9b 0.7 ± 1.0ab 1.1 ± 1.3b 0.9 ± 1.0b 0.9 ± 0.9b +
ΣC18:1 trans 56.2 ± 5.6ab −1.6 ± 2.5a −1.6 ± 2.9a −0.9 ± 2.5a 1.4 ± 1.9c 0.2 ± 2.0bc +
C18:1n-7, cis-9 91.8 ± 2.6a 0.7 ± 1.1ab 0.4 ± 1.2ab 0.6 ± 1.2ab 0.7 ± 1.0ab 0.8 ± 1.0b +
C18:1n-7, trans-9 56.1 ± 6.0bc −2.0 ± 2.7a −1.9 ± 3.3ab −1.1 ± 3.3abc 0.1 ± 2.0c −0.5 ± 2.2c +
ΣC18:2 69.3 ± 3.8 0.1 ± 2.8 0.3 ± 3.5 0.5 ± 3.1 0.4 ± 2.6 0.5 ± 2.7
C18:2n-6 72.0 ± 3.9abc −0.3 ± 2.2bc −1.3 ± 2.4a −0.7 ± 2.2b 0.2 ± 2.0c −0.4 ± 2.2bc

ΣCLA 43.2 ± 7.4abcd −2.0 ± 5.6b −2.5 ± 5.9a −1.4 ± 5.4bc −0.7 ± 5.0d −1.5 ± 5.3c

C18:2 cis-9,trans-11 53.8 ± 5.3abc −1.8 ± 4.6b −2.6 ± 5.2a −1.6 ± 4.8b −0.8 ± 4.4c −0.9 ± 4.2c

C18:3n-3 65.4 ± 5.9ab 0.0 ± 2.4b −0.5 ± 2.6a −0.1 ± 2.5ab 0.3 ± 2.4b 0.2 ± 2.2b  
a–dDifferent superscripts indicate significantly different (P < 0.05) parameter estimates.
1Short-chain FA = FA from C4 to C10; medium-chain FA = FA from C12 to C16; long-chain FA = FA from C18 to C24; Σ = sum of FA.
2RR = ridge regression; LASSO = least absolute shrinkage and selection operator.
3S = presence of at least 1 significant difference (P < 0.05) between Bayesian models and PLSR.
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Table A3. Mean ± SD of the coefficient of determination in validation (R2v), obtained by partial least squares regression (PLSR) in which the 
number of terms was chosen to minimize the prediction error (PLSR-M), and mean ± SD of the difference between the R2v yielded by Bayesian 
models and by PLSR-M for prediction equations developed for the prediction of protein fractions (g/L of milk and g/100 g of protein)

Trait1 R2v PLSR-M

Difference between Bayesian models and PLSR-M2

S3Bayes RR Bayes A Bayes B Bayes C LASSO

Protein 80.0 ± 8.9abc −0.0 ± 1.2a 0.3 ± 1.0bc 0.3 ± 1.1bc 0.2 ± 1.1b 0.2 ± 1.1c

Protein fractions, g/L       
 Casein 81.7 ± 6.7abc −0.0 ± 1.3a 0.2 ± 1.2b 0.3 ± 1.2c 0.1 ± 1.2b 0.1 ± 1.2b

  αS1-CN 74.8 ± 5.3ab 0.3 ± 1.1a 0.5 ± 1.0b 0.6 ± 1.1b 0.5 ± 1.0b 0.4 ± 1.1ab

  αS2-CN 54.2 ± 6.7abc −0.9 ± 3.8a −0.7 ± 3.6a −0.2 ± 3.4bc 0.0 ± 3.4c −0.3 ± 3.5b

  β-CN 60.1 ± 6.8abc 0.3 ± 2.5a 0.7 ± 2.3b 1.2 ± 2.1c 1.0 ± 2.4c 0.8 ± 2.2ab

  γ-CN 35.8 ± 5.8abc −2.6 ± 4.6a −1.5 ± 3.3b −0.9 ± 3.3c −0.7 ± 3.6c −1.6 ± 3.7ab

  Total κ-CN 43.1 ± 5.2abc −0.9 ± 1.8ab −1.0 ± 2.1a −0.5 ± 1.9b 0.2 ± 1.6c −0.6 ± 2.0ab

  Glycosylated κ-CN 52.5 ± 6.3abc −0.1 ± 3.0b −0.7 ± 3.4a −0.4 ± 3.1ab 0.8 ± 3.0c −0.5 ± 4.7ab

  Glyco-free κ-CN 26.4 ± 7.7a −10.3 ± 7.6b −5.0 ± 7.7c −3.4 ± 6.6d −6.5 ± 8.5bc −8.2 ± 9.6bc +
 Whey protein 54.2 ± 7.7a 0.7 ± 1.4abc 0.9 ± 1.2b 0.9 ± 1.1bc 1.0 ± 1.2c 0.9 ± 1.2bc +
  α-LA 27.4 ± 5.4bcd −3.1 ± 4.2a −1.1 ± 3.4d −0.9 ± 3.1d −3.1 ± 4.4ab −1.8 ± 3.8c +
  β-LG 49.2 ± 8.6ab 0.2 ± 1.2a 0.4 ± 1.0ab 0.5 ± 1.0ab 0.3 ± 1.3b 0.4 ± 1.1b

Protein fractions, %       
 Casein 54.2 ± 6.2ab 0.1 ± 1.1a 0.2 ± 1.0ab 0.2 ± 1.1ab 0.3 ± 1.1b 0.2 ± 1.1b

  αS1-CN 27.4 ± 9.9a 1.4 ± 2.1abc 1.5 ± 2.0b 1.8 ± 2.1c 1.9 ± 2.2c 1.9 ± 2.2bc +
  αS2-CN 31.1 ± 6.4bc −2.2 ± 2.8a −2.4 ± 2.7a −1.4 ± 2.5b −0.0 ± 2.3c −1.3 ± 2.4b +
  β-CN 44.8 ± 5.5abc −0.3 ± 1.7a 0.2 ± 1.4b 0.6 ± 1.5c 0.7 ± 1.3c 0.3 ± 1.5b

  γ-CN 33.7 ± 5.5ab −1.3 ± 3.1a −0.9 ± 2.8a −0.4 ± 2.9b −0.2 ± 2.8b −0.9 ± 2.7ab

  Total κ-CN 28.3 ± 4.5abc −0.3 ± 2.6ab −1.0 ± 3.4a −0.2 ± 3.0b 0.8 ± 2.4c −0.5 ± 2.6ab

  Glycosylated κ-CN 39.2 ± 9.0abc −0.3 ± 2.5bc −1.3 ± 2.9a −0.8 ± 2.7b 0.4 ± 2.1c −1.4 ± 5.5abc

  Glyco-free κ-CN 24.1 ± 6.6c −8.4 ± 7.2a −2.7 ± 3.4b −2.1 ± 3.6c −2.2 ± 6.4bc −2.7 ± 3.1b +
 α-LA 30.1 ± 8.2ab −1.4 ± 3.2a −0.6 ± 2.6b −0.5 ± 2.5b −1.3 ± 3.1a −0.7 ± 2.8b

 β-LG 41.5 ± 7.1ab 0.1 ± 1.5ab 0.1 ± 1.4ab 0.2 ± 1.4b 0.1 ± 1.5a 0.2 ± 1.2ab  
a–dDifferent superscripts indicate significantly different (P < 0.05) parameter estimates.
1Protein = casein + whey protein; casein = αS1-CN + αS2-CN + β-CN + γ-CN + κ-CN; κ-CN = glycosylated κ-CN + unglycosylated κ-CN; 
whey protein = α-LA + β-LG.
2RR = ridge regression; LASSO = least absolute shrinkage and selection operator.
3S = presence of at least 1 significant difference (P < 0.05) between Bayesian models and PLSR.
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Table A4. Mean ± SD of the coefficient of determination in validation (R2v), obtained by partial least squares regression (PLSR) in which the 
number of terms was chosen to minimize the prediction error (PLSR-M), and mean ± SD of the difference between the R2v yielded by Bayesian 
models and by PLSR-M for prediction equations developed for the prediction of technological traits, lactoferrin, and mineral contents

Trait1 R2v PLSR-M

Difference between Bayesian models and PLSR-M2

S3Bayes RR Bayes A Bayes B Bayes C LASSO

pH 81.4 ± 5.4ab 0.3 ± 1.1ab 0.1 ± 1.2a 0.2 ± 1.2a 0.3 ± 1.1ab 0.3 ± 1.2b

Coagulation properties            
 RCT, min 73.0 ± 4.2a 0.7 ± 1.2a 0.8 ± 1.2ab 0.9 ± 1.1bc 1.3 ± 1.0c 0.9 ± 1.1c +
 k20, min 46.1 ± 6.1ab 0.7 ± 2.1a 0.5 ± 2.3a 0.8 ± 2.4ab 1.2 ± 2.0b 0.6 ± 2.2ab

 t20, min 70.5 ± 3.5a 1.1 ± 1.3b 1.3 ± 1.4bc 1.4 ± 1.5bc 1.8 ± 1.4c 1.3 ± 1.2bc +
 a30, mm 37.8 ± 4.2a 1.1 ± 2.2a 0.9 ± 2.6a 1.2 ± 2.4a 2.0 ± 2.1b 1.2 ± 2.4ab +
 a45, mm 24.4 ± 9.2abc −1.1 ± 2.9a −0.4 ± 2.6bc −0.2 ± 2.5c −0.8 ± 2.8a −0.7 ± 2.9ab

 a60, mm 19.1 ± 5.3abc −0.7 ± 1.3a 0.4 ± 1.2c 0.4 ± 1.1c −0.3 ± 1.1b −0.4 ± 2.1abc

Curd yield, g/100 g of milk            
 Overall 64.0 ± 6.9 0.4 ± 1.1 0.4 ± 1.1 0.5 ± 1.0 0.4 ± 1.2 0.5 ± 1.0
 DM 78.2 ± 8.6 0.1 ± 0.9 0.2 ± 0.8 0.2 ± 0.9 0.2 ± 0.9 0.2 ± 0.9
 Water 62.2 ± 6.4 0.3 ± 1.6 0.3 ± 1.4 0.2 ± 1.5 0.3 ± 1.4 0.1 ± 1.6
 Protein 56.5 ± 9.9abc −0.5 ± 1.8a −0.0 ± 1.5c −0.1 ± 1.6c −0.5 ± 1.8a −0.3 ± 1.7b

 Fat 70.6 ± 6.4a 0.2 ± 0.4a 0.3 ± 0.4a 0.3 ± 0.4b 0.2 ± 0.4a 0.2 ± 0.4a +
Curd composition, %            
 Moisture 59.1 ± 10.2ab −0.3 ± 1.6a 0.0 ± 1.4b −0.2 ± 1.5ab −0.1 ± 1.4ab −0.2 ± 1.3ab

 Protein in DM 42.6 ± 10.9ab −0.8 ± 3.2a −0.1 ± 2.5b −0.0 ± 2.6b −0.7 ± 3.1a −0.9 ± 3.2a

 Fat in DM 41.5 ± 10.0abc −0.2 ± 1.8a 0.3 ± 1.7bc 0.4 ± 1.7c 0.1 ± 1.8bc 0.1 ± 1.7b

Lactoferrin, µg/mL 44.4 ± 11.8ab −3.4 ± 4.9a −2.0 ± 4.5b −1.9 ± 4.5b −3.3 ± 4.6a −3.1 ± 4.6a

Minerals, mg/L            
 Ca 56.2 ± 8.8bc −2.7 ± 4.2b −3.7 ± 4.2a −3.0 ± 4.3b −1.7 ± 3.9c −1.8 ± 4.0c +
 P 47.3 ± 8.6c −3.7 ± 4.7b −4.1 ± 5.1a −3.1 ± 5.0bc −2.9 ± 5.3c −2.6 ± 5.4c +
 Mg 53.0 ± 4.3d −6.0 ± 3.0a −5.7 ± 3.6ab −4.8 ± 3.8b −4.1 ± 3.7c −3.5 ± 3.2c +
 K 46.3 ± 5.1ab −3.4 ± 5.5ab −3.7 ± 5.8a −3.4 ± 5.7a −3.4 ± 6.1ab −2.9 ± 5.7b  
a–dDifferent superscripts indicate significantly different (P < 0.05) parameter estimates.
1RCT = rennet coagulation time; k20 = curd firming time; t20 = time from rennet addition to k20; a30 = curd firmness at 30 min from rennet 
addition; a45 = curd firmness at 45 min from rennet addition; a60 = curd firmness at 60 min from rennet addition.
2RR = ridge regression; LASSO = least absolute shrinkage and selection operator.
3S = presence of at least 1 significant difference (P < 0.05) between Bayesian models and PLSR.
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