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Summary. Our motivating application stems from surveys of natural populations and is characterized by large spatial
heterogeneity in the counts, which makes parametric approaches to modeling local animal abundance too restrictive. We adopt
a Bayesian nonparametric approach based on mixture models and innovate with respect to popular Dirichlet process mixture
of Poisson kernels by increasing the model flexibility at the level both of the kernel and the nonparametric mixing measure.
This allows to derive accurate and robust estimates of the distribution of local animal abundance and of the corresponding
clusters. The application and a simulation study for different scenarios yield also some general methodological implications.
Adding flexibility solely at the level of the mixing measure does not improve inferences, since its impact is severely limited by
the rigidity of the Poisson kernel with considerable consequences in terms of bias. However, once a kernel more flexible than
the Poisson is chosen, inferences can be robustified by choosing a prior more general than the Dirichlet process. Therefore, to
improve the performance of Bayesian nonparametric mixtures for count data one has to enrich the model simultaneously at
both levels, the kernel and the mixing measure.

Key words: Abundance heterogeneity; Bayesian Nonparametrics; Mixture model; Pitman–Yor process; Poisson mixture;
Rounded Mixture of Gaussians.

1. Introduction
The Dirichlet process (DP) mixture model, introduced by Lo
(1984), currently represents the most popular Bayesian non-
parametric model and is widely used for density estimation,
clustering, and as key nonparametric ingredient in complex
models. See Müller et al. (2015), Hjort et al. (2010) for exhaus-
tive accounts. A recent line of research has explored the
possibility of replacing, within mixture models, the DP with
more general classes of nonparametric priors. It turns out that
a more general nonparametric prior can lead to more accu-
rate estimates, especially in terms of the quantification of the
mixture components. See, for instance, Ishwaran and James
(2001), Lijoi et al. (2005, 2007b), and the recent reviews in
Barrios et al. (2013), De Blasi et al. (2015). However, up to
now all studies have been confined to the case of mixture
models for continuous data. Although the case of count data,
or discrete data in general, is also important, little is known
on the performance of general nonparametric mixtures for
their estimation. Here, we fill this gap by considering discrete
mixtures based on the Pitman–Yor process (Pitman and Yor,
1997), which includes the DP as a special case, and verify
whether the added flexibility is beneficial also in the discrete
case.

Our motivating application stems from surveys of natural
populations and is characterized by large spatial heterogene-
ity in the counts, a direct consequence of difference in animal
abundance among sample locations. In particular, we focus
on a specific dataset consisting of counts of an endangered
fish species first analyzed in Dorazio et al. (2008), to be

described in Section 3. In their article Dorazio et al. (2008)
nicely show that the data heterogeneity requires a nonpara-
metric approach, which is clearly superior to parametric
models. As Bayesian nonparametric model they adopt a DP
mixture of Poisson kernels, a natural choice in presence of
count data. Poisson parametric and nonparametric mixtures,
indeed, played a central role in extending the Poisson distribu-
tion for complex situations for their mathematical tractability.
See, for instance, Hougaard et al. (1997), Viallefont et al.
(2002), Karlis and Xekalaki (2005), Guindani et al. (2006,
2014), Brown and Buckley (2015), and Li et al. (2015). An
alternative nonparametric approach for discrete data is to
avoid the mixture specification and instead directly model
the data by a discrete random probability measure. While this
has been done successfully in the context of species sampling
problems (see, e.g., Lijoi et al., 2007a; Favaro et al., 2012), it
has major disadvantages, such as not allowing the posterior
to smoothly deviate from the prior, in the context of proba-
bility mass function estimation. See, e.g., Canale and Dunson
(2011) for a discussion. One of the key aspects of the results
pointed out in Dorazio et al. (2008) is that the estimation of
the mixture components is a difficult task in this context. This
observation represents the starting point of our analysis aim-
ing at improving estimation by replacing the DP with a more
general nonparametric prior. However, we discover that this
is not sufficient to stabilize and improve the estimates of the
number of mixture components. In contrast, the difficulty of
this estimation problem is even more apparent with a general
nonparametric prior. This leads to conjecture that the origin
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of the problem is actually represented by the Poisson kernel
and our findings confirm it. It is well-known that the stan-
dard parametric Poisson model cannot accommodate under-
and over-dispersion. However, this lack of flexibility carries
over, to a certain extent, to Poisson mixtures regardless of
how general the chosen mixing measure is. In fact, the mean–
variance structure of Poisson mixtures is still rigid and it is
also easy to show that even infinite Poisson mixtures do not
contain under-dispersed distributions in their support. There-
fore, in order to appropriately tackle the application at hand
we also consider kernels more flexible than the Poisson and, in
particular, the Rounded Gaussian kernel recently introduced
in Canale and Dunson (2011). As will be shown, adding flex-
ibility to both kernel and mixing measure leads then to the
envisaged more accurate and robust results.

Given these findings for the population count application,
it is then natural to investigate the general validity of the dis-
covered phenomena. This is done by a simulation study for
several different scenarios. The conveyed evidence is unequiv-
ocal in suggesting: (i) to use Poisson mixtures with caution
given their lack of flexibility leading to a potentially poor fit
in terms of estimation of both the probability mass function
and the number of mixture components; (ii) a flexible and
robust mixture model can be achieved by acting at both levels,
the kernel and the mixing measure, and Rounded Gaussian
Pitman–Yor process mixtures appear to be an effective and
computationally convenient choice.

Section 2 first describes the setup of animal abundance esti-
mation together with the sampling protocol, then presents
our nonparametric prior and the computational strategy. In
Section 3, the modeling strategy is applied to the Okaloosa
darters dataset analyzed in Dorazio et al. (2008) and the
results are discussed. Section 4 is devoted to a simulation
study in which several different scenarios of data generating
distribution are considered and the performance of differ-
ent nonparametric mixtures is compared. Section 5 contains
some concluding remarks. The Supplementary Materials (SM)
provide complements concerning computational aspects, the
application and the simulation study.

2. Animal Abundance Estimation

Surveys of animal populations represent a natural source of
count data. See Royle and Dorazio (2008) for a recent review.
In an important article by Dorazio et al. (2008), the prob-
lem of modeling heterogeneity in abundance of stream fishes
among different sampling locations was considered. Here we
consider the same dataset, analyzed in Section 3, as motivat-
ing application.

In particular, data are collected with a specific sampling
protocol called “removal sampling” (Dorazio et al., 2005).
Under this protocol, animals are removed from site i with
i = 1, . . . , n in Ji successive occasions called “removal passes.”
Clearly, the actual number of animals Yi at each site cannot be
directly observed and is to be estimated. The observed data,
for the i-th site, consist of zi = (zi1, . . . , ziJi

)′, a vector contain-
ing the number of animals observed in Ji successive removal
passes. The observed counts zi are modeled as multinomial
outcomes with parameters (Yi, πi) with πi = (πi1, . . . , πiJi

)′

and πij = πi(1 − πi)
j−1 for j = 1, . . . , Ji, where πi denotes the

capture probability at site i. Hence, the probability mass func-
tion (pmf) of zi given (Yi, πi) is

Pr(zi|Yi, πi) = Yi!

(Yi − zi)!
∏Ji

j=1
zij!

(
Ji∏

j=1

π
zij

ij

)

×
(

1 −
Ji∑

j=1

πij

)Yi−zi

, (1)

with zi = ∑Ji

j=1
zij.

As in Dorazio et al. (2008) we assume independent pri-
ors for πi while the site-specific abundances yi are modeled
via a nonparametric mixture p(·) = ∫

k(·; x)P̃(dx), where k

is a parametric kernel and the nonparametric component
is given by random probability measure P̃ . Dorazio et al.
(2008) clearly show that the flexibility conveyed by a non-
parametric approach is necessary in this context overcoming
drawbacks inherent to a parametric modeling. We innovate on
their approach in two dimensions. First, we consider mixing
measures more general than the DP, namely the Pitman–Yor
process, to further improve the flexibility. Second, by consid-
ering kernels more flexible than the Poisson. The results both
for this dataset, reported in Section 3, and for simulated data
for different scenarios, reported in Section 4, show the bene-
fit of our proposed innovations and have interesting general
methodological implications.

2.1. Prior Specification

As far as the nonparametric component is concerned, we pro-
pose to use a Pitman–Yor (PY) process, which represents
probably the most tractable generalization of the DP. Such a
nonparametric prior has already found many successful appli-
cations in various areas including imagine reconstruction,
linguistics, networks, and species sampling, among others.
See, e.g., Hjort et al. (2010), Jara et al. (2010), and De Blasi
et al. (2015) for recent accounts. Like for the DP, any sam-
ple X1, . . . , Xn drawn from a PY process will feature ties
with positive probability, therefore generating Kn ≤ n dis-
tinct observations X∗

1, . . . , X
∗
Kn

with frequencies n1, . . . , nKn

such that
∑Kn

j=1
nj = n. The PY can be defined in terms of

its predictive distributions, which take on a particularly sim-
ple form and uniquely characterize it. Let (σ, θ) be parameters
such that σ ∈ [0, 1] and θ > −σ and P0 be a probability distri-
bution on X. The associated predictive distributions are then
of the form

Pr(Xn+1 ∈ · |X1, . . . , Xn) = θ + σKn

θ + n
P0( · )

+ 1

θ + n

Kn∑
j=1

(nj − σ)δX∗
j
( · )

(2)

with δa indicating a point mass at a. In symbols a PY process
will be denoted by PY(θ, σ;P0). For σ = 0, the predictive dis-
tributions (2) clearly reduce to the well-known DP case and
for θ = 0 one obtains the normalized stable process. Note that
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the PY process is also defined for the parameter range σ < 0
and θ = |σ|m for some positive integer m, but for our purposes
it suffices to consider the case of σ ≥ 0 which includes the pop-
ular special cases. The predictive distributions (2) represent
also a key ingredient of the sampling scheme detailed in the
next section.

Given the nonparametric prior to be used, we propose to
model the abundance distribution p via PY mixture priors,
i.e.,

p(·) =
∫

k(·; x)P̃(dx), P̃ ∼ PY(θ, σ;P0). (3)

As for the kernel k, we compare the results of two different
choices. Following Dorazio et al. (2008), the first specification
corresponds to k being a Poisson kernel with mean param-
eter λ = exp(φ) and we also set the base measure P0 to be
normal with mean α and variance ω2. Hence, the hierarchical
representation of the model is

Yi | φi ∼ Poi(exp(φi)), φi | P̃ ∼ P̃,

P̃ | σ, θ, N(α, ω2) ∼ PY(σ, θ;N(α, ω2)). (4)

The second specification relies on a flexible rounded Gaus-
sian (RG) kernel. The general idea is that a discrete kernel
kr can be obtained by thresholding the domain of a con-
tinuous kernel k via a prespecified sequence aj such that
kr(j; x) = ∫ aj+1

aj
k(y∗; x)dy∗. For instance, if k(·, x) is defined on

R
+, one can set aj = j for j = 0, 1, 2, . . . , whereas if k(·; x)

is defined on [0, 1], one can set aj = 0, 1/2, . . . , 1 − 1/2j, . . . .
Henceforth, we consider the following RG mixture

Yi | μi, τi ∼ RG(μi, τ
−1
i ), (μi, τi) | P̃ ∼ P̃,

P̃ | σ, θ, P0 ∼ PY(σ, θ;P0). (5)

where RG(·;μ, τ−1) denotes a RG kernel with location μ

and precision τ and thresholds a0 = −∞, aj = j for j =
1, 2, . . . ,∞, i.e.,

RG(j;μ, τ−1) =
∫ aj+1

aj

N(y∗;μ, τ−1)dy∗.

For the base measure, we adopt standard choices (Escobar and
West, 1995) assuming P0(μ, τ) = N(μ;μ0, κτ

−1)Ga(τ;α, β)
and a hyperprior on the rate parameter β. Adopting a default
empirical Bayes approach, the scale parameter κ is fixed equal
to the variance of the observed counts in the first removal
pass and the location parameter μ0 is set equal to

∑
j>1

z̄j,
where z̄j is the sample mean of the j-th removal pass, cal-
culated for the locations having at least j removal passes.
Typically the location parameter is centered on the sample
mean of the observed data, which corresponds to computing
the sample mean of the Yi’s in our sampling protocol. Since
these are not observed, we use the sum of the means of each
removal count, accounting for the fact that different numbers
of removal counts are considered for different locations, as a
proxy.

As for the parameters (θ, σ) of the PY process, we take
different values of σ and fix θ in a way to make the cor-
responding PY priors comparable. Specifically we consider
σ = 0, 0.25, 0.5, 0.75 and fix θ such that the prior expected
number of distinct mixture components, E[Kn], is equal to
a desired value. In this way all PY priors are centered, a
priori, on the same number of clusters. This is achieved in
a straightforward way by using the well-known expressions
for E[Kn] in PY case (reported in the SM). In both cases,
we assume πi to be fixed for each location and variability in
detectability among sites is modeled with independent beta
priors πi ∼ Be(a, b) with a and b equal to the posterior means
obtained by Dorazio et al. (2008).

2.2. Posterior Computation

Posterior samples from the specifications discussed in Sec-
tion 2.1 are obtained by using Markov chain Monte Carlo
(MCMC) algorithms. For the nonparametric Poisson mix-
tures, the algorithm detailed in the Supplementary Materials
of Dorazio et al. (2008) has been used with the appropriate
modifications to extend it to PY processes. Instead, for model
(5), our algorithm is obtained by suitably adapting the one set
forth in Canale and Dunson (2011). According to their pro-
posal, a first data augmentation step is required to simulate
latent continuous Y ∗

i ’s. Then, conditionally on the Y ∗
i ’s, the

algorithm relies on any existing MCMC algorithm developed
for nonparametric mixtures of Gaussians. However, in this
particular application also the Yi’s are unobserved and need
to be estimated from the observed removal counts. In Dorazio
et al. (2008) the full conditionals of the Yi’s have a simple
Poisson specification and thus the simulation of the Yi’s can be
done easily. In contrast, for the RG case the conditional poste-
rior of Yi is not in closed form and a Metropolis–Hastings step
needs to be introduced to simulate yi. However, we are able
to mitigate this issue by merging the steps to simulate Yi and
Y ∗

i in a single step, directly simulating Y ∗
i from its full condi-

tional posterior distribution via Metropolis–Hastings. Details
are reported in the SM.

Conditionally on Y ∗
i , each observation is assigned to a

cluster Si with Si = 1, . . . , Kn with Kn ≤ n. The posterior clus-
tering is done via a generalized Pólya-Urn sampler based on
the predictive distributions (2). In particular, the modification
of Algorithm 8 of Neal (2000) reported in the SM is employed.
A further reshuffling step that, conditionally on such cluster
allocations, draws new values for the kernel’s parameters is
also performed following Bush and MacEachern (1996).

Finally, the conditional posterior distribution of πi and the
probability of animal detection at site i in a single removal
have the same simple closed form as in Dorazio et al. (2008).

3. Okaloosa Darters Data Analysis and
Discussion

The dataset that we considered consists of counts of Okaloosa
darters (Etheostoma okaloosae) in n = 53 different locations
of a stream in northwest Florida and has already been ana-
lyzed in Dorazio et al. (2008). The number of fishes observed
in the first pass has mean 40.34 and standard deviation 39.48
suggesting substantial heterogeneity in local abundances.
Also, the total number of removal passes varies from site to
site and ranges between 1 and 3. In those sites where multi-
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Table 1
PY prior centering for the n = 53 Okaloosa darters dataset:
values of θ corresponding to various choices of σ such that

the prior expected number of components is equal to a
desired number.

E[Kn] σ = 0 σ = 0.25 σ = 0.50 σ = 0.75

10 3.38 1.60 0.21 −0.60
22 13.59 8.24 3.46 0.07
30 27.82 18.24 9.20 1.72
40 72.55 50.95 29.75 9.83

ple passes were taken, lower removal counts were registered
in successive passes suggesting effectiveness of the sampling
protocol in depleting the local populations of animals.

To conduct our analysis, we consider prior centerings on
10, 22, 30, and 40 components and the corresponding pairs of
(θ, σ) are reported in Table 1.

In discussing the results of the analysis, we focus on the two
key quantities of inferential interest, namely the estimation of
the pmf of the local abundance, which given the heterogene-
ity in population distribution can be thought of as mixture,

and the number of components such a pmf is made of. The
different mixture components can be interpreted as clusters
of locations with similar fish abundance. A low number of
mixture components denotes a substantially homogeneous
distribution of the fishes along the stream while a high num-
ber of mixture components, denotes a highly heterogeneous
distribution.

First we focus on the estimation of the pmf of local
abundance, which according to the adopted Bayesian non-
parametric approach, is obtained as posterior expected value
of (3) or, in other terms, as the predictive distribution. Fig-
ure 1 displays the corresponding estimates for the Poisson
and RG mixture models. In terms of prior specification, the
plots correspond to the intermediate case of σ = 0.25 and prior
expected number of components E[Kn] = 30. It is important
to remark that there is no significant difference in the pmf
estimates for each model when varying σ or the prior cen-
tering of E[Kn]. For completeness all the estimated pmfs are
reported in the SM. The pmf estimates corresponding to the
Poisson mixture essentially coincides with one obtained in
Dorazio et al. (2008) for the special case of a Dirichlet pro-
cess, i.e., a PY process with σ = 0. However, by comparing
the Poisson mixture to the RG mixture one realizes that the
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Figure 1. Posterior estimates of local abundance Y for the Okaloosa darters dataset: Poisson mixture (upper panel) and
RG mixture (lower panel) with σ = 0.25 and E[Kn] = 30. This figure appears in color in the electronic version of this article.
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Figure 2. Posterior mean number of distinct clusters E[Kn|−] for the Okaloosa darters dataset: Poisson mixture (left panel)
and RG mixture (right panel) for σ = 0, 0.25, 0.5, 0.75 and prior expected number of components E(Kn) equal to 10 (continuous
line), 22 (dashed line), 30 (dotted line), and 40 (dash-dot line). Lines are connected for visualization purposes only. This figure
appears in color in the electronic version of this article.

Poisson mixture tends to assign mixture components to those
observations that are far from 0. In fact, considering Poisson
mixtures is a natural and at first glance highly flexible choice.
However, the well-know rigidity of the Poisson kernel (due
to a single parameter controlling location and scale) carries
over to the mixture model even when the mixing measure is
a highly flexible nonparametric prior such as the PY process.
In contrast, as apparent from Figure 1, the RG model is able
to capture both over- and under-dispersed components. This
can be done since the RG kernel has two different parame-
ters designated to control its location and scale, respectively.
Another appealing aspect of the RG model, if compared to the
Poisson model, is the ability to naturally detect zero-inflated
pmf. Indeed, the estimated mass in zero for the RG mixture
is 0.112, while for the Poisson mixture it is just 0.032. Note
that the proportion of zero counts in the sample is 0.094.

Things become even more interesting when looking at the
second key aspect, the posterior distribution of the number
of mixture components. This is quite a delicate point with
Dirichlet process mixtures, since the inferential output often
heavily depends on the specification of the total mass param-
eter θ of the Dirichlet process. This undesirable feature is
typically faced by putting a prior on θ. However, Dorazio
et al. (2008) were the first to highlight that the results may
actually depend on the chosen prior. This probably went
unnoticed because Dirichlet process mixtures are typically
used with continuous kernels and most often mixtures with
a small number of components are considered. The authors
then circumvented the problem by adopting the empirical
Bayes procedure of McAuliffe et al. (2006) to estimate θ and
obtained reasonably stable results with a posterior estimate
of 22 mixture components.

Here we have a closer look at this important phenomenon.
Figure 2 displays the posterior mean number of compo-
nents used to fit the data by the Poisson and RG mixture
models as σ varies and with the four different prior specifica-

tions E[Kn] = 10, 22, 30, 40. First consider Poisson mixtures.
For the Dirichlet process case (σ = 0) and prior centering
E[Kn] = 22, one obtains the same estimate as Dorazio et al.
(2008) for the number of mixture components. However, still
with σ = 0, by varying the prior centering and considering
10, 30, 40, the mean number of components differ significantly
and only slightly moves toward the desired 22 components.
The unpleasant influence of prior specifications on the esti-
mated number of components is well-known in the case of
continuous mixtures, where it can be fixed by employing a
nonparametric prior more flexible than the Dirichlet process
(see Lijoi et al., 2007b). In our case this means allowing σ

to be different from 0 or, in other terms, using the full range
admitted by the PY process. One would then expect that this
should fix the problem also for discrete mixtures. Figure 2
shows that this is not the case and that allowing σ to vary
results only in increasing the number of estimated mixture
components as σ increases. This is clearly due to the inflexi-
bility of the Poisson kernel, which is not able to benefit from
the greater flexibility at the level of the mixing measure and
uses it only to increase the number of components resulting
in almost erratic behavior. Hence, with a Poisson mixture,
the task of estimating the mixture components of the present
dataset in a robust way is essentially an impossible task. This
discovery and its methodological implications will be explored
in depth in Section 4. Turning to the RG mixtures one notes
the usual sensitivity with respect to the prior specification
of E[Kn] for the Dirichlet process case (σ = 0). However, for
larger σ the estimates shrink closer to each other and, regard-
less of the prior centering of E[Kn], essentially agree on about
30 components for σ = 0.75. The path and tendency to over-
all stability of the estimates is neat and means that, with a
more flexible kernel like the RG, the mixture model is able to
make a good use of the added flexibility at the mixing measure
level. This phenomenon will be further investigated through
a simulation study in Section 4. Finally, further evidence of
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the described behaviors can be deduced from Figures 1 and
2 in the SM, where the corresponding posterior distributions
are depicted.

Summing up our discoveries, we find that the local abun-
dance distribution of the Okaloosa darters dataset is a
highly complex mixture with zero-inflation and over- and
under-dispersed components. They confirm the conclusions of
Dorazio et al. (2008) concerning the need for a nonparamet-
ric model to deal with unobserved sources of heterogeneity.
Moreover, they reveal that the mixture distribution at hand
is even more complex than previously thought with large het-
erogeneity in terms of both number and shape of the clusters.
From a methodological point of view, our findings show the
limitations of Poisson mixture models, which cannot be reme-
died by using a more flexible mixing measure. Instead, once a
sufficiently flexible kernel, such as the RG, is chosen, the ben-
efit of a general nonparametric component is apparent and
inferences can be robustified by choosing a prior more general
than the DP.

4. Simulation Study

By means of a simulation study, we now further investigate
the behavior of both Poisson and RG mixtures driven by a
PY process. In order to exclude a possible influence of the
sampling protocol on the inferential outcome, we assume to
directly observe the count data Y . As the results will show,
the behaviors emerged in the application do not depend on
it and are confirmed by the simulation study. Computations
have been carried out with the R package rmp (Canale, 2016),
whose new version has been purposedly updated to include
the PY process. Our goal is to compare the two competing
mixture models in terms of providing robust estimates of the
number of components of the data generating distribution and
performance in estimating the pmf of count data. Three types
of data generating distributions are considered: RG mixtures,
Poisson mixtures, and complex mixtures made of components
belonging to different distributions. The corresponding pmf,
from which the data are generated, are displayed in Figure
11 of the SM. The first (second) type serves to test the RG
(Poisson) mixture in the most favorable situation, i.e., when
data are drawn from a mixture made of the same kernels, and
verifies whether it detects the correct number of components.
Note that outside this favorable scenario, one cannot expect
to detect the correct number of components. In fact, when
fitting a mixture of kernels ka with a mixture of kernels kb, the
number of kernels kb needed is different, and typically larger,
than the correct number of kernels ka. However, it is crucial
that the estimate of the number components is robust with
respect to the prior specification leading to consistently stable
estimates. Such a robustness should also hold with respect to
increases in the sample size, although some moderate increase
in the estimated components as the sample size increases is
reasonable. In fact, a larger sample implies potentially more
components in nonparametric model and it is natural that
when using kernels kb to fit an ka kernel mixture some of these
potential new components will be used to produce a better fit.

As for the RG and Poisson mixtures data generating distri-
butions, for each we consider three scenarios with k0 = 3, 6, 12
components and generate datasets of size n = 50, 100, 200 on

which the models will be tested. Despite the outputs of sin-
gle datasets for each scenario are reported, the results are
consistent also with different replicates. In terms of prior
specification of the nonparametric models, we vary the key
parameter of the PY process σ considering 0, 0.25, 0.5, and
0.75. In addition, to make the models comparable and to check
their sensitivity with respect to prior centering we allow the
prior expected number of components, E[Kn] to be equal to
3, 6, 12, 24. This means that for each of the 9 samples (as
k0 and n vary) we have 16 estimates (as σ and E[Kn] vary)
allowing to closely inspect the robustness of the model.

Consider first the case of RG mixtures with data generating
distribution a RG mixture. This is clearly a benchmark test
for the RG mixture model and the posterior mean number
of components are reported in Table 2. If the prior expected
number of components of the model, E[Kn] is centered on the
correct one k0 (i.e., 3, 6, or 12 in Table 2), the posterior esti-
mated number of components sticks to the truth with minimal
variability as σ varies, hence satisfying this minimal require-
ment. The key question is then whether the estimated number
of components is close to the truth also when the model is
“misspecified,” i.e., centered on a different number of prior
expected components. Table 2 shows that this is the case. For
instance, in the case of k0 = 6 true components and n = 100,
when the prior is centered on three components, the posterior
estimated number of components increases toward the truth,
whereas it decreases toward the truth when centered in 12 or
24. This holds for any value of σ. Moreover, a closer look at
the estimates, as σ varies, shows these are significantly bet-
ter for larger σ implying that a large σ allows to overcome
prior misspecifications in a much more effective way. Analo-
gous considerations hold for all other cases. Importantly, from
a modeling perspective, this shows that RG mixtures bene-
fit from using a more flexible mixing measure, i.e., with a
large σ, to overcome prior misspecifications. This is consis-
tent with the findings in the case of nonparametric mixtures
for continuous data. See Lijoi et al. (2007b) and De Blasi et al.
(2015).

Now consider the case of Poisson mixtures with data
generated from a RG mixture. The estimated number of
components are also reported in Table 2. If the true data
generating distribution is made of three RG components, the
model behaves relatively well. The estimated number of com-
ponents stabilizes around four components as both the value
of σ and the sample size increase. The only exception is the
case of n = 50 with prior centering on 24 components, where
however one can see that the estimate moves in the right
direction as σ increases. Recall that the specific estimated
value of the number components is not crucial given the data
are not generated from a Poisson mixture. What is impor-
tant is the robustness of the inferential outcome with respect
to different prior specifications (and misspecifications). If we
move on to considering mixtures made of six components, the
estimated number of components settles around 13–16 com-
ponents for σ = 0.75, but things start to become unstable as
σ, n, and k0 vary. This is then apparent for the case of the
12 components data generating mixture where things derail:
the added model flexibility connected to larger σ’s induces
the model to add more and more components rather than to
adapt quickly to specific value. In fact, the estimated number
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Table 2
Posterior mean number of mixture components E(Kn|−) for the simulated datasets. Data generated from RG mixtures with

k0 = 3, 6, 12 components and samples sizes n = 50, 100, 200. Results for Poisson mixtures and RG mixtures and for
σ = 0, 0.25, 0.50, 0.75 and prior expected number of components E(Kn) = 3, 6, 12, 24.

Mixture of Poissons Mixture of rounded Gaussians

σ σ

k0 n E[Kn] 0 0.25 0.50 0.75 0 0.25 0.50 0.75

3 50 3 2.77 3.11 3.26 4.95 2.80 2.85 3.02 3.11
6 4.56 4.63 4.83 4.94 4.22 3.66 3.33 3.10

12 8.22 7.38 6.28 5.57 6.99 5.65 4.22 3.40
24 16.26 14.38 12.67 10.16 12.66 10.43 7.58 4.48

100 3 2.76 2.97 3.40 4.28 2.77 2.84 3.05 3.18
6 4.16 4.26 4.38 4.42 4.22 3.56 3.26 3.21

12 8.26 6.53 4.79 4.48 7.00 5.13 3.82 3.34
24 17.16 14.72 10.57 5.28 11.86 8.89 5.58 3.70

200 3 2.66 2.79 3.22 3.66 2.88 2.86 3.00 3.15
6 3.99 4.04 4.07 4.11 3.93 3.30 3.07 3.05

12 7.45 5.38 4.06 4.01 6.59 4.62 3.41 3.25
24 15.52 11.51 6.47 4.77 11.52 7.45 4.45 3.31

6 50 3 4.02 4.88 7.30 12.93 4.24 5.13 5.79 6.09
6 6.23 6.61 8.75 13.17 5.85 5.90 5.97 6.05

12 11.15 11.26 11.53 14.82 8.51 7.59 6.82 6.17
24 23.18 22.84 21.83 19.65 12.91 11.26 9.38 7.00

100 3 3.97 5.16 8.14 14.31 4.27 5.33 5.88 6.14
6 5.93 6.80 8.68 13.78 5.92 5.99 6.15 6.20

12 11.13 11.16 11.24 14.49 8.90 7.83 6.78 6.40
24 21.78 20.74 17.79 15.51 13.24 11.06 8.26 6.50

200 3 3.78 4.99 7.62 14.24 3.96 5.02 5.53 5.95
6 5.86 7.04 9.03 15.93 5.45 5.49 5.61 5.90

12 10.08 10.22 10.29 16.38 8.51 6.91 5.97 5.90
24 21.74 18.99 16.07 17.08 13.50 9.94 7.05 6.01

12 50 3 6.27 9.28 14.59 23.80 6.36 7.80 8.69 9.38
6 8.33 10.55 15.17 23.86 7.61 8.13 8.61 9.53

12 13.13 14.35 16.85 24.13 9.17 9.24 9.37 9.59
24 23.25 23.38 23.84 26.40 13.20 12.17 11.07 10.02

100 3 6.78 11.98 22.84 44.77 6.53 10.21 11.76 12.26
6 9.38 13.54 23.96 45.63 9.15 10.92 11.65 11.87

12 14.19 17.25 25.23 45.50 12.65 12.48 12.19 12.08
24 24.96 26.05 29.82 45.89 17.22 15.06 13.52 12.12

200 3 7.02 13.14 27.98 57.54 6.02 10.25 11.30 11.96
6 9.36 14.69 27.96 60.07 9.19 10.80 11.97 12.19

12 14.20 17.90 30.19 57.56 12.39 12.26 12.23 12.02
24 24.24 26.12 33.27 62.82 17.53 15.48 13.13 12.37

of components is increasing in σ, regardless of the prior cen-
tering and the sample size, leading for σ = 0.75 to estimated
number of components of about 24, 45, and 60 for samples
sizes of 50, 100, and 200, respectively. This means that, with
a rigid kernel like the Poisson, adding flexibility to the mix-
ing measure does not bring any benefit and actually adds to
the instability. To the authors knowledge this is the first time
such phenomena are reported in the literature and we suspect
they are specific to the discrete case. From a methodological
point of view the implications are clear: in order to gain the
model flexibility required by count data, it is not enough to
enrich the mixing measure since this is neutralized by rigid
kernels. To gain flexibility both kernel and mixing measure
are to be made more flexible at the same time. And, a RG
kernel combined with a PY process appear to be an effective
choice.

Now consider the second type of data generating distri-
bution, namely that of Poisson mixtures. The full results
are reported in Table 1 of the SM. Here we limit ourselves
in displaying Figure 3, which depicts the posterior mean
number of components for both models estimated on the
basis of samples of size n = 50, 100, 200 generated from a
mixture of k0 = 6 Poisson distributions. In fact, the plot
suffices to show the erratic behavior of Poisson mixtures,
which are not able to detect the correct number of mixture
components (although the data are generated by a Pois-
son mixture). Moreover, as before, adding flexibility to the
mixing measure by increasing σ results in a strong overes-
timation of the mixture components. For the RG mixture
model the behavior is exactly the opposite: the estimated
number of components stabilizes around 10, which is reason-
able given the data are not generated by a RG mixture, and
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Figure 3. Posterior mean number of mixture components E[Kn|−] for simulated datasets. Data generated from a k0 = 6
Poisson mixture and results reported for samples sizes n = 50, 100, 200 (from left to right). Each plot depicts the posterior
mean for both Poisson (dashed) and RG (dotted) models for σ = 0, 0.25, 0.50, 0.75 and E[Kn] = 3, 6, 12, 24. Lines are connected
for visualization purposes only. This figure appears in color in the electronic version of this article.

the larger σ the more the prior misspecification on the com-
ponents number is overcome.

As for the estimated pmf, the plots, corresponding to the
two types of data generating distributions considered so far,
are reported in Figures 12 and 13 of the SM. The greater
flexibility and robustness of RG mixtures are clear as well as
the poor fit and rigidity of Poisson mixtures. However, the
differences are less apparent at the pmf level given the num-
ber of employed components is typically difficult to visualize
and, more importantly, the considered data generating distri-
butions have a quite regular structure with components of the
same type.

Things change dramatically when considering more com-
plex data generating distributions with components of
different shape. As we will see the rigidity of the Pois-
son mixture emerges strikingly also at the pmf estimation
level. In particular, the first scenario we consider corre-
sponds to a data generating distribution with 6 component

pmf of the form

.05δ0( · ) + .2Poi(·; 10) + .1B(·; 100, .6) + .15B(·; 100, .6)

+.2R-Poi(·; 40, 9) + .3NC-Poi(·; 41, 6) (6)

where B(·; n, π) is a binomial with n ∈ N and π ∈ [0, 1], and
R-Poi(·;m, λ) and NC-Poi(·;m, λ) are, respectively, a reverse
and non-central Poisson, i.e.,

R-Poi(j;m, λ) ∝ λm−j

(m − j)!
exp{−λ} for j = 1, . . . , m

NC-Poi(j;m, λ) = λj−m

(j − m)!
exp{−λ} for j = m, m + 1, . . . .
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Figure 4. Posterior pmf for the two complex scenarios given n = 100 data generated from (6) (upper two plots) and (7)
(lower two plots). The first and third figures display the posterior estimates of the RG model (depicted in solid), whereas the
second and fourth of the Poisson model (depicted in solid) with E[Kn] = 6 and σ = 0.75. The true pmf are in dotted gray.
This figure appears in color in the electronic version of this article.
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The second scenario corresponds to a nine component mixture
with pmf of the form

.1δ0( · )+.05δ1( · ) + .3Poi(·; 5) + .05Poi(·; 1) + .15B(·; 25, 0.8)

+.2R-Poi(·; 45, 6) + .05R-Poi(·; 40, 3)

+.05NC-Poi(·; 45, 7) + .05NC-Poi(·; 50, 8). (7)

Both data generating mixtures are depicted in the third row
of Figure 11 of the SM. As for their estimation, we com-
pare our two competing models. For samples of sizes n = 100,
the posterior pmf, corresponding to both the Poisson and
RG nonparametric mixtures with E[Kn] = 6 and σ = 0.75, are
depicted in Figure 4. The evidence concerning the lack of
flexibility of the Poisson mixture model is indisputable and
clearly shows its inability to fit under-dispersed components
and overly smooth different components with locations far
from zero. In contrast, the RG mixture has a satisfactory
performance being able to closely resemble the data generat-
ing distributions. Analogous behaviors arise for different prior
specifications and sample sizes. For instance, for the case (7),
their performance as the sample sizes varies is shown in Fig-
ure 14 of the SM. The results on the posterior mean number of
components are reported in Table 2 of the SM. Given (6) and
(7) have little in common with both Poisson and RG mixtures
and the components are irregular, it is not surprising that the
nonparametric model uses more components than the actual
ones. However, exactly as in the cases considered before, the
RG nonparametric mixture stabilizes around the used num-
ber of components as σ increases. The Poisson nonparametric
mixture, instead, is again erratic.

Focusing again on the pmf estimation, it is also important
to evaluate a quantitative index of discrepancy between the
estimated pmf and the data generating distribution. We do
this by means of the Kullback–Leibler divergence. The results,
reported in Tables 3–5 of the SM, clearly show that the RG
mixture has a dramatically better performance both when the
data are generated from RG mixtures and the complex mix-
tures with components of different shapes. Quite naturally,
when the data are generated from a Poisson mixture, the per-
formance of the Poisson mixture model is slightly better with
the differences decreasing as n increases.

The considered scenarios are not particular cases and are
confirmed by several other simulation studies not reported
here. Although there may be cases in which also a Poisson
mixture well approximates true pmf with the correct number
of mixture components, practitioners are to warned to using
nonparametric Poisson mixtures with caution.

5. Concluding Remarks

We considered an application concerning surveys of natural
populations of animals with significant spatial heterogeneity
in the corresponding counts. Given the need for nonpara-
metric modeling in such contexts as proven in Dorazio et al.
(2008), we adopted a Bayesian nonparametric approach and
innovated previous studies by considering mixture models
with more flexible both kernel and mixing measure. This leads
to more accurate estimation of the pmf of local abundance and
to a more robust quantification of its components. Starting

from these findings, we enlarged the goal to deduce general
methodological implications via a simulation study for sev-
eral different scenarios. We discovered that adding flexibility
to a Poisson mixture model by generalizing the nonparamet-
ric mixing measure is severely limited by the rigidity of the
Poisson kernel and leads to a full display of the instabil-
ity of Poisson mixtures in estimating the number of mixture
components. In contrast, if a sufficiently flexible kernel, such
as the RG, is chosen, inferences become more accurate and
robust by choosing a prior more general than the DP. Overall
inferences for count data are improved when simultaneously
selecting both kernel and mixing measure more general than
the standard DP mixture with Poisson kernel.

6. Supplementary Material

The Online Supplementary Materials report the Gibbs sam-
pling algorithm for Section 2, details for the prior elicitation
of the PY process, and additional plots for Section 3 and 4.
A series of R functions and scripts to perform the analysis
described in Section 2 is also provided. All these materials
are available with this article at the Biometrics website on
Wiley Online Library.
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