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ABSTRACT

Milk minerals and coagulation properties are impor-
tant for both consumers and processors, and they can 
aid in increasing milk added value. However, large-scale 
monitoring of these traits is hampered by expensive 
and time-consuming reference analyses. The objective 
of the present study was to develop prediction models 
for major mineral contents (Ca, K, Mg, Na, and P) 
and milk coagulation properties (MCP: rennet coagula-
tion time, curd-firming time, and curd firmness) using 
mid-infrared spectroscopy. Individual milk samples (n 
= 923) of Holstein-Friesian, Brown Swiss, Alpine Grey, 
and Simmental cows were collected from single-breed 
herds between January and December 2014. Refer-
ence analysis for the determination of both mineral 
contents and MCP was undertaken with standardized 
methods. For each milk sample, the mid-infrared spec-
trum in the range from 900 to 5,000 cm−1 was stored. 
Prediction models were calibrated using partial least 
squares regression coupled with a wavenumber selection 
technique called uninformative variable elimination, to 
improve model accuracy, and validated both internally 
and externally. The average reduction of wavenumbers 
used in partial least squares regression was 80%, which 
was accompanied by an average increment of 20% of 
the explained variance in external validation. The pro-
portion of explained variance in external validation was 
about 70% for P, K, Ca, and Mg, and it was lower 
(40%) for Na. Milk coagulation properties prediction 
models explained between 54% (rennet coagulation 
time) and 56% (curd-firming time) of the total variance 
in external validation. The ratio of standard deviation 
of each trait to the respective root mean square error of 
prediction, which is an indicator of the predictive abil-

ity of an equation, suggested that the developed models 
might be effective for screening and collection of milk 
minerals and coagulation properties at the population 
level. Although prediction equations were not accurate 
enough to be proposed for analytic purposes, mid-
infrared spectroscopy predictions could be evaluated 
as phenotypic information to genetically improve milk 
minerals and MCP on a large scale.
Key words: mid-infrared spectroscopy, dairy cattle, 
milk mineral, milk coagulation property

INTRODUCTION

Milk quality is crucial to maximize milk’s added value 
and it contributes to increase the profitability of the en-
tire dairy chain. Traditional quality traits have mainly 
referred to milk chemical composition, particularly pro-
tein and fat quantity and concentration, as confirmed 
by selection indices of several cattle breeds worldwide 
(Miglior et al., 2005). However, the concept of milk 
quality is often interpreted differently by processors 
and consumers. For example, under a processor point of 
view, adequate milk quality is translated into adequate 
processing ability, whereas the consumer’s perception 
of milk quality deals more with health aspects.

Minerals represent a relatively small part of cow milk, 
close to 10 g/L, and they are divided into 2 categories, 
based on their concentration (Cashman, 2006): macro 
minerals (normally expressed in mg/kg) and trace ele-
ments (normally expressed in μg/kg). Macro minerals 
include Ca, K, Mg, Na, and P, which are important 
for the homeostasis of both infants and adults. Indeed, 
Ca and Mg are involved in bone and tooth health, and 
in muscular and cardiac contractility (Cashman, 2006; 
Haug et al., 2007). A deficiency of these minerals is as-
sociated with osteoporosis and muscular disorders, and 
Ca deficiency in the diet might be partially responsible 
for a greater incidence of hypertension, colon cancer, 
and obesity (Huth et al., 2006). Potassium is known 
as the most important intracellular cation, playing a 
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fundamental role in the maintenance of homeostasis 
(Young et al., 1995; He and MacGregor, 2008). How-
ever, K is found also as an extracellular element and 
participates in the transmission of nervous impulses, 
muscle contraction, and regulation of blood pressure 
(He and MacGregor, 2008). In particular, an increase 
of dietary K, coupled with a reduction of dietary Na, 
limits the risk of hypertension (Whelton and He, 2014). 
Recently, Uribarri and Calvo (2014) claimed that, al-
though considered an essential nutrient, high dietary 
P intake is a risk factor for bone and cardiovascular 
diseases. Besides health aspects, Ca and P are essential 
components of casein micelles and thus they are di-
rectly involved in milk coagulation process. Malacarne 
et al. (2014) reported that high content of inorganic P 
positively affects casein micelle reactivity to rennet.

Milk coagulation properties (MCP); namely, rennet 
coagulation time (RCT, min), curd-firming time (k20, 
min), and curd firmness (a30, mm), are currently used 
to measure milk quality during the cheese-making pro-
cess, and they are measured by several laboratories for 
breeding purposes and milk quality payment systems 
(Tiezzi et al., 2013; Penasa et al., 2015). Several studies 
demonstrated that milk characterized by short RCT 
and firm curd results in greater cheese yield and thus 
increases the efficiency of the entire cheese-making pro-
cess (Comin et al., 2005; Malacarne et al., 2006; Pretto 
et al., 2013).

Reference methods normally used to measure milk 
mineral composition and coagulation traits are expen-
sive and time consuming. Mid-infrared spectroscopy 
(MIRS) is a rapid, nondestructive, and cost-effective 
laboratory technique that allows the (a posteriori) pre-
diction of innovative phenotypes from milk samples (De 
Marchi et al., 2014; McParland and Berry, 2016), but 
the prediction of both MCP (De Marchi et al., 2013; 
Visentin et al., 2015) and mineral content (Soyeurt et 
al., 2009; Toffanin et al., 2015) is still a big challenge. 
To improve the accuracy of MIRS prediction models 
2 paths should be considered: (1) to increase the ac-
curacy of reference methods, and (2) to use different 
statistical approaches coupled with multivariate analy-
ses, including partial least squares (PLS) regression. 
Recently, Gottardo et al. (2015) demonstrated that 
uninformative variable elimination (UVE) can increase 
the prediction accuracy of MIRS models by reducing 
the number of uninformative spectral regions. This pro-
cess is extremely advantageous when models have to be 
applied subsequently to large spectral data set for the 
prediction of novel phenotypes, since a lower number of 
spectral wavelengths used for PLS regression reduces 
the computational time. Therefore, the aim of the pres-
ent study was to develop MIRS prediction models for 

major mineral contents and MCP using PLS coupled 
with UVE for the application of these prediction mod-
els on spectral data.

MATERIALS AND METHODS

Data

Sample Collection. From January to December 
2014, 923 individual cow milk samples were collected in 
60 single-breed herds. This data set, subsequently used 
to develop MIRS prediction models, contained the 4 
major cattle breeds reared in the Alpine area of Bolzano 
province (Italy), where all animals were sampled. Cow 
breeds considered in the present study were Holstein-
Friesian (HF, n = 237), Brown Swiss (BS, n = 223), 
Alpine Grey (AG, n = 223), and Simmental (SI, n 
= 240). The sampling protocol aimed at covering as 
much biological variability as possible, for both MCP 
and major mineral composition. For each cow, two 50-
mL aliquots were collected, immediately added with 
preservative (Bronysolv; ANA.LI.TIK Austria, Vienna, 
Austria) and kept at refrigerating temperature.

Milk Chemical Composition and Spectra De-
termination. Both aliquots were transferred to the 
laboratory of the South Tirol Dairy Association (Bol-
zano, Italy) and one aliquot was processed the same 
day of sampling according to the International Com-
mittee for Animal Recording (ICAR, 2014) recommen-
dations. For each milk sample, both traditional milk 
quality traits (pH and contents of protein, casein, fat, 
lactose, and urea) and MIRS spectra were determined 
using a MilkoScan FT+ (Foss Electric A/S, Hillerød, 
Denmark). Each individual spectral information, con-
taining 1,060 infrared transmittance data in the region 
between 900 and 5,000 cm−1, was stored. Somatic cell 
count was measured using Fossomatic (Foss Electric 
A/S) and then converted to SCS through the formula 
SCS = 3 + log2(SCC/100,000). The other 50-mL 
aliquot was transferred (within 24 h from collection) 
at refrigerating temperature to the laboratory of the 
Department of Agronomy, Food, Natural Resources, 
Animals and Environment of the University of Padova 
(Legnaro, Italy). This aliquot was subsequently split in 
2 sub-aliquots: one was stored at −20°C and the other 
one was delivered the same day to the laboratory of the 
Breeders Association of Veneto Region (Padova, Italy).

Reference Analysis of Major Mineral Con-
tents. Milk content of Ca, K, Mg, Na, and P was de-
termined on 251 milk samples in the laboratory of the 
Department of Agronomy, Food, Natural Resources, 
Animals and Environment (Legnaro, Italy) and each 
of the 4 cattle breeds (HF, BS, AG, and SI) was rep-
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resented in equal proportion. In the present study, we 
chose to perform a mineralization of milk samples be-
fore their quantification, as recommended by Soyeurt 
et al. (2009). A nitroperchloric mineralization by a 
Milestone Start D microwave (1,200 W, Milestone Srl 
Sorisole, Bergamo, Italy) was used. The microwave con-
tained a SK-10 rotor at high pressure (6.4 MPa) and 
control systems with temperature probe and software. 
Milk samples stored at −20°C were thawed in water at 
35°C and homogenized before sampling. A total of 2.5 
g of sample was introduced in Teflon vessels at high 
pressure, and 2 mL of H2O2 30% and 7 mL of HNO3 
67% were added. The vessel was hermetically sealed 
and placed in the microwave. The process of mineral-
ization involved 3 steps: (1) the sample was heated to 
200°C in 15 min; (2) the sample was kept at 200°C for 
18 min; and (3) the sample was cooled down to 35°C. 
The mineralized sample was added with demineralized 
water to reach a final volume of 25 mL.

Content of Ca, K, Mg, Na, and P was quantified 
using inductively coupled plasma optical emission spec-
trometry, Ciros Vision EOP (Spectro Analytical In-
struments GmbH, Kleve, Germany). This method was 
employed to determine Ca at wavelength 315.887 nm, 
K at wavelength 766.491 nm, Mg at wavelength 279.079 
nm, Na at wavelength 589.592 nm, and P at wavelength 
178.287 nm. Instrument operating parameters were 
optimized for acid solution and calibration standards 
were matched with nitric acid 5% “suprapure” grade. 
The elements to be determined were added from single 
element solutions (Inorganic Ventures, Christiansburg, 
VA). The concentration range of the calibration solu-
tions was between 0 and 100 mg/kg for all elements. 
The accuracy and precision of this method were in-
vestigated by analyzing the certified reference material 
BCR-063R skim milk powder (Institute for Reference 
Materials and Measurements, Geel, Belgium). These 
standards of skim milk powder were mineralized accord-
ing to the protocol previously described. The measured 
and the certified values were in excellent agreement for 
all the elements (R2 of calibration curves for all miner-
als >0.99).

Reference Analysis of Milk Coagulation Prop-
erties. Reference analysis was assessed through the 
Formagraph (Foss Electric A/S), using the method 
proposed by McMahon and Brown (1982), in the 
laboratory of the Breeders Association of Veneto Re-
gion (Padova, Italy) within 1 d from sample arrival. 
A 10-mL aliquot of each preserved milk sample was 
heated to 35°C and then added with 200 μL of a rennet 
solution (Hansen Standard 160; Pacovis Amrein AG, 
Bern, Switzerland) diluted to 1.6% (wt/vol) in distilled 
water. At the start of the analysis, an oscillating loop 

pendulum is brought into contact with the milk; when 
the coagulation begins, the viscosity of milk increases 
and so a force is back-transmitted to the loop. The 
output of the Formagraph is therefore a graph of curd 
firmness against time. Measured traits were (1) RCT, 
the time required, from the beginning of the test, to 
induce milk coagulation; (2) k20, the time from RCT 
to the achievement of a 20 mm width in the graph; 
and (3) a30, the width of the graph at the end of the 
test, which lasted 30 min. Milk samples that did not 
coagulate within the testing time (about 12% of total 
samples) were classified as noncoagulating and labeled 
as missing values.

Chemometric Analysis

Data Editing. The normality of each trait and the 
identification of any possible reference outliers were 
ascertained both through visual inspection of the his-
togram/density plot and by carrying out the Shapiro-
Wilk normality test in R software (R Development Core 
Team, 2015). Traits that are not normally distributed 
are characterized by a low and statistically significant 
(P < 0.05) Shapiro-Wilk value, and they require nor-
malization. In the present study, both milk minerals 
and MCP were normally distributed, and thus no data 
transformation was needed. Reference outliers were de-
fined as samples whose values deviated more than 3 SD 
from the mean of each trait (McDermott et al., 2016a). 
Based on this definition, none observations for a30 and 
K, 1 observation for RCT, k20, and Mg, 2 observations 
for Na and P, and 3 observations for Ca were discarded 
before the development of prediction models.

Spectral data expressed in transmittance were 
transformed to absorbance by taking the log10 of the 
reciprocal of the transmittance (McDermott et al., 
2016b; Figure 1). Two high noise level spectral regions 
related to water absorption (1,600 to 1,700 cm−1, and 
3,040 to 3,660 cm−1) were discarded before multivariate 
analysis (Hewavitharana and van Brakel, 1997; Figure 
1). Principal component analysis was carried out on 
raw spectral data to identify similarities and differences 
between spectra, to detect any possible spectral outlier. 
Principal component analysis is a method of data com-
pression that produces a new matrix of uncorrelated 
variables called principal components; each principal 
component captures in a descending order as much 
of the variation of the initial variables (i.e., spectral 
wavenumbers) as possible. First and second principal 
component explained 71.09 and 16.01% of total spec-
tral variation, respectively. The score plot of the first 
versus second principal component did not highlight 
any specific spectrum outlier, and this was also con-
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Figure 1. Plot of 923 spectra expressed in (A) transmittance, (B) absorbance with high noise regions included in the box, and (C) absorbance 
after elimination of high noise regions. Color version available online.
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firmed by computing the robust Mahalanobis distance 
for each sample. Therefore, all spectra were retained for 
further statistical analysis.

Prediction Models. To develop and to externally 
validate the prediction models, for each trait of inter-
est the data set was divided randomly into 2 subsets, 
namely a calibration set (80% of the observations) and 
a validation set (20% of the observations). The predic-
tion models included each milk mineral and MCP as 
dependent variable and the edited milk spectra wave-
numbers as predictor variables. The calibration set was 
used to develop the MIRS models through PLS and 
UVE combined with PLS regression on the edited spec-
tra, and these models were subsequently applied to the 
validation set. The validation set was used to assess the 
predictive ability of each prediction model, because the 
samples included were not considered to build the mod-
els. Leave-one-out cross-validation was also performed 
in the calibration set. This process was repeated 1,000 
times for the development of each prediction model, 
and it was performed both when equations were built 
through PLS regression on edited spectra and when 
equations were built using UVE combined with PLS 
regression (UVE-PLS) on edited spectra. Partial least 
squares regression was carried out using the Chemomet-
rics with R package (Wehrens, 2011), and UVE-PLS 
was tested using a homemade script in R software (R 
Development Core Team, 2015), following the approach 
of Gottardo et al. (2015). Moreover, PLS regression was 
carried out on spectra expressed in first derivative us-
ing a Savitzky-Golay filter with a linear polynomial and 
a window size of 3 points, but no improvement of pre-
dictive accuracy of equations was detected compared 
with PLS regression performed on untreated spectra. 

The optimal number of PLS factors (#L) to perform 
PLS regression was defined as the minimum number of 
factors to achieve the lowest root mean square error of 
cross validation (RMSECV). Goodness-of-fit statistics 
considered were the coefficient of determination of cross 
validation (R2

CV) and of external validation (R2
EV), 

the RMSECV, the root mean square error of external 
validation (RMSEEV), and the ratio of prediction to 
deviation (RPD), which was calculated as the ratio of 
the SD of the trait to the RMSEEV, and it was used to 
test the practical utility of the prediction models. In 
particular, RPD values greater than 2 are desired for 
practical application of the prediction model (Williams, 
2007). Results represent the average goodness-of-fit 
statistics of the 1,000 analyses.

RESULTS

Summary Statistics of Calibration Data Set

Descriptive statistics of milk yield, chemical com-
position predicted by MilkoScan FT+ (Foss Electric 
A/S), reference mineral contents, and reference MCP 
of samples after removal of outlier reference values are 
reported in Table 1. Milk yield averaged 23.20 kg/d, 
mean percentages of fat, protein, and casein were 4.07, 
3.60, and 2.81, respectively, and SCS averaged 2.82. 
The most abundant milk mineral was K (1,500.52 mg/
kg), followed by Ca (1,348.22 mg/kg) and P (1,010.04 
mg/kg). Magnesium content averaged 128.30 mg/
kg, and it was the less concentrated in milk. Means 
of RCT, k20, and a30 were 18.57 min, 5.20 min, and 
28.07 mm, respectively. Minerals were characterized 
by appreciable variability, with coefficient of variation 

Table 1. Descriptive statistics of milk mineral composition and coagulation properties used for the development 
of prediction models

Trait1 Mean SD Range CV, %

Milk yield, kg/d 23.20 8.42 51.20 36.29
Chemical composition     
 Fat, % 4.07 0.72 7.61 17.69
 Protein, % 3.60 0.45 3.16 12.50
 Casein, % 2.81 0.36 2.67 12.81
 SCS 2.82 1.84 12.44 65.25
Mineral composition, mg/kg     
 Ca 1,348.22 229.60 1,281.52 17.03
 K 1,500.52 228.04 1,108.58 15.20
 Mg 128.30 22.10 112.71 17.23
 Na 399.18 91.87 448.54 23.05
 P 1,010.04 181.04 1,010.95 17.92
Coagulation trait     
 RCT, min 18.57 4.61 24.70 24.84
 k20, min 5.20 1.63 11.15 31.30
 a30, mm 28.07 12.37 54.72 44.07
1RCT = rennet coagulation time; k20 = curd-firming time; a30 = curd firmness 30 min after rennet addition.
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ranging between 15.20% (K) and 23.05% (Na). Milk 
coagulation properties exhibited greater variability 
compared with milk chemical composition and mineral 
contents, with coefficients of variation of 24.84, 31.30, 
and 44.07% for RCT, k20, and a30, respectively.

Accuracy of Prediction Models

Goodness-of-fit statistics of cross validation and ex-
ternal validation for MIRS prediction models are sum-
marized in Tables 2 and 3, respectively. The optimal #L 
selected by PLS regression was 15 for Ca, K, and Na, 
and it was 20 for Mg, P, RCT, k20, and a30. The R2

CV 
(Table 2) of models for milk minerals developed using 
only PLS regression ranged from 0.29 (Na; RMSECV 
of 90.03 mg/kg) and 0.62 (P; RMSECV of 109.77 mg/

kg). The R2
CV (RMSECV) of models for RCT, k20, and 

a30 developed using only PLS regression was 0.46 (3.38 
min), 0.46 (1.18 min), and 0.48 (9.26 mm), respectively. 
In external validation (Table 3), R2

EV of milk minerals 
varied from 0.25 (Na) to 0.60 (P), and for MCP it 
ranged from 0.43 (RCT) to 0.46 (a30).

Uninformative variable elimination reduced the 
number of wavenumbers used by the software to com-
pute PLS regression and both RMSECV and RMSEEV, 
and increased R2

CV and R2
EV for all prediction models 

(Tables 2 and 3). The greatest increment of explained 
variance in external validation was observed for Na 
prediction, with R2

EV that improved from 0.25 to 0.40 
(+60%; Table 3), followed by k20 prediction, whose 
explained variance in external validation increased by 
27.3% (R2

EV from 0.44 to 0.56). For the other traits, the 

Table 2. Average fitting statistics1 of prediction models for milk mineral composition and milk coagulation properties in leave-one-out cross-
validation obtained from partial least squares (PLS) regression only and from PLS after uninformative variable elimination (UVE-PLS) 
procedure

Trait2 #L

PLS

 

UVE-PLS

N1 RMSECV R2
CV (SD) N2 RMSECV R2

CV (SD) RPD

Mineral composition, mg/kg          
 Ca 15 873 146.20 0.60 (0.08)  113 120.00 0.68 (0.06) 1.91
 K 15 873 139.11 0.60 (0.05)  173 120.00 0.69 (0.05) 1.90
 Mg 20 873 15.62 0.61 (0.05)  93 12.30 0.65 (0.05) 1.80
 Na 15 873 90.03 0.29 (0.06)  341 68.80 0.42 (0.08) 1.34
 P 20 873 109.77 0.62 (0.07)  210 83.90 0.71 (0.08) 2.16
Coagulation trait          
 RCT, min 20 873 3.38 0.46 (0.03)  163 2.86 0.55 (0.03) 1.61
 k20, min 20 873 1.18 0.46 (0.03)  144 1.00 0.59 (0.03) 1.63
 a30, mm 20 873 9.26 0.48 (0.05)  110 8.43 0.56 (0.05) 1.47
1#L = number of model PLS factors; N1 = number of wavenumbers in PLS regression; RMSECV = root mean square error in cross validation; 
R2

CV = coefficient of determination in cross-validation; N2 = number of wavenumbers in PLS regression after UVE procedure; RPD = ratio of 
prediction to deviation.
2RCT = rennet coagulation time; k20 = curd-firming time; a30 = curd firmness 30 min after rennet addition.

Table 3. Average fitting statistics1 of prediction models for milk mineral composition and milk coagulation properties in external validation 
obtained from partial least squares (PLS) regression only and from PLS after uninformative variable elimination (UVE-PLS) procedure

Trait2 #L

PLS

 

UVE-PLS

N1 RMSEEV R2
EV (SD) N2 RMSEEV R2

EV (SD) RPD

Mineral composition, mg/kg                  
 Ca 15 873 153.02 0.58 (0.08)   113 122.00 0.67 (0.06) 1.88
 K 15 873 144.23 0.57 (0.08)   173 120.00 0.69 (0.08) 1.90
 Mg 20 873 18.22 0.57 (0.06)   93 12.50 0.65 (0.05) 1.77
 Na 15 873 91.76 0.25 (0.10)   341 70.00 0.40 (0.08) 1.31
 P 20 873 115.43 0.60 (0.08)   210 88.12 0.68 (0.05) 2.05
Coagulation trait                  
 RCT, min 20 873 4.00 0.43 (0.05)   163 2.90 0.54 (0.05) 1.59
 k20, min 20 873 1.30 0.44 (0.06)   144 1.22 0.56 (0.06) 1.34
 a30, mm 20 873 9.30 0.46 (0.03)   110 9.00 0.52 (0.03) 1.37
1#L = number of model PLS factors; N1 = number of wavenumbers in PLS regression; RMSEEV = root mean square error in external valida-
tion; R2

EV = coefficient of determination in external validation; N2 = number of wavenumbers in PLS regression after UVE procedure; RPD = 
ratio of prediction to deviation.
2RCT = rennet coagulation time; k20 = curd-firming time; a30 = curd firmness 30 min after rennet addition.
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increment of explained variance in external validation 
was between 13.0 (a30) and 25.6% (RCT; Table 3). The 
UVE procedure reduced by at least 80% the number of 
wavenumbers used in PLS regression, with the only ex-
ception of Na (60.9%) and P (75.9%) prediction models 
(Tables 2 and 3).

The RPD was calculated only when models were 
generated by UVE-PLS, and in external validation it 
ranged from 1.31 (Na) to 2.05 (P) for milk minerals, 
and from 1.34 (k20) to 1.59 (RCT) for MCP (Table 3).

DISCUSSION

Data Variation

Mid-infrared spectroscopy prediction models require 
representative variability in the calibration data set. Re-
garding milk mineral variation, coefficient of variation 
for Ca and P of the present study (17.03 and 17.92%, 
respectively) was greater than coefficient of variation 
reported by Toffanin et al. (2015) for the same miner-
als (11.28 and 11.74%, respectively). However, Toffanin 
et al. (2015) focused their study only on Italian HF 
cows sampled in a short period (3 mo). On the other 
hand, Soyeurt et al. (2009) developed MIRS predic-
tion models on a multi-breed data set (n = 100) of 
HF, Jersey, Belgian Blue, Montbéliarde, and Normande 
cattle breeds over a 1-yr sampling, and coefficients of 
variation for Ca, K, Mg, Na, and P were comparable 
to those reported in the current research. Concerning 
MCP, data variability was similar to that reported by 
Cassandro et al. (2008) on a large-scale study of 1,071 
Holstein-Friesian cows (CV of 27 and 35% for RCT and 
a30, respectively).

Variable Selection and Accuracy  
of Prediction Models

Spectral data are characterized by multicollinearity: 
indeed, some wavenumbers can be rewritten as a lin-
ear function of others. Partial least squares regression 
compresses the initial spectral matrix by creating an-
other matrix containing a smaller amount of variables 
called PLS factors. Subsequently, these factors are used 
in the regression equation, and the less relevant and 
unstable information of the initial spectral matrix is 
discarded (Næs et al., 2002). Theoretically, variable 
selection would not be needed because PLS regression 
already ignores noninformative wavenumbers. However, 
a large number of wavenumbers and a small number of 
samples could still have a negative effect on the final 
accuracy of the developed prediction model, and this 
is the main reason to use variable selection techniques. 

Several variable selection methods are available in the 
literature, and they have been recently reviewed by 
Mehmood et al. (2012). Uninformative variable elimi-
nation was first introduced by Centner et al. (1996), 
and it basically creates a stability criterion for each 
variable; if the criterion is below a specific threshold, 
this indicates that the specific wavenumber is not es-
sential for the development of the prediction model. By 
discarding these wavenumbers, the accuracy of predic-
tion models is expected to increase. Recently, UVE has 
been applied by Gottardo et al. (2015) to 208 milk 
spectra to develop MIRS prediction models for Ca and 
titratable acidity. Those authors reported a substantial 
improvement of the R2

EV, from 0.46 to 0.55 and from 
0.72 to 0.80 for Ca and titratable acidity, respectively. 
Moreover, Niero et al. (2016) applied the UVE method 
for the prediction of casein and whey fractions, and 
they obtained an increment of R2

CV from 0.83 to 0.88, 
0.36 to 0.60, and 0.66 to 0.74 for α-CN, β-CN, and 
κ-CN models, respectively. The R2

CV of whey fractions 
models increased from 0.31 to 0.37 and from 0.31 to 
0.47 for α-LA and β-LG, respectively.

To our knowledge only 2 studies have investigated 
the potential use of MIRS to predict milk mineral 
content, but none of them used UVE-PLS procedure 
for the development of calibration models. Soyeurt et 
al. (2009) developed calibration models for the same 
milk minerals investigated in the present study, and 
they reported greater R2

CV for Ca (0.87), Na (0.65), 
and P (0.85), similar R2

CV for Mg (0.65), and lower 
R2

CV for K (0.36), compared with findings of the cur-
rent study. Toffanin et al. (2015) developed calibration 
equations for Ca and P using 208 milk samples of HF 
cows through PLS regression, and they obtained R2

CV 
of 0.56 and 0.70 for Ca and P, respectively, which were 
lower than those obtained in the present study. Only 
Soyeurt et al. (2009) quantified the predictive ability 
of MIRS models on an independent data set, and they 
reported R2

EV of 0.97, 0.14, and 0.88 for Ca, Na, and 
P, respectively.

The prediction of MCP by MIRS has been reported 
in both Italian BS (De Marchi et al., 2009) and HF (De 
Marchi et al., 2013) cows, and by Visentin et al. (2015) 
in a multi-breed data set of Irish cattle (HF, Jersey, 
and Norwegian Red) reared in a grazing dairy system. 
Results from the present research were comparable 
with those of Visentin et al. (2015), in terms of fitting 
statistics of both internal and external validation, but 
less accurate than those of De Marchi et al. (2013), who 
obtained R2

CV of 0.76, 0.72, and 0.70 for RCT, k20, and 
a30, respectively. Nevertheless, the study of De Marchi 
et al. (2013) was carried out using a quite different ref-
erence analysis; indeed, even if they used a Formagraph 
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instrument, they extended the time of the analysis until 
60 min to allow the detection of noncoagulating milk 
samples (i.e., samples that did not coagulate within 
30 min). The wide range of variation in the reference 
data set improved the overall accuracy of the prediction 
models.

CONCLUSIONS

Mid-infrared spectroscopy has been used to develop 
calibration models for milk minerals and coagulation 
properties. Models explained moderate variance of 
studied traits and thus they were not accurate enough 
to be proposed for analytic purposes. However, these 
models could represent a valid tool for a quick and 
cost-effective screening or acquiring phenotypes at the 
population level (or both), and they could be applied 
for research purposes to spectral data. Finally, the use 
of the UVE-PLS approach has been validated to be 
an interesting approach to improve the accuracy of 
prediction models. Future research will investigate the 
feasibility of using mid-infrared predictions as indicator 
traits to genetically improve milk minerals and MCP.

ACKNOWLEDGMENTS

The authors thank Luis Kerschbaumer and Thomas 
Kerschbamer (Sennereiverband Südtirol, Bolzano, 
Italy), Christian Plitzner (Vereinigung der Südtiroler 
Tierzuchtverbände, Bolzano, Italy), Claudio Stecchi 
(CTS informatica srl, Bolzano, Italy), and Luciano 
Magro, Massimo Cagnin, and Martina Isaia (Depart-
ment of Agronomy, Food, Natural Resources, Animals 
and Environment, University of Padova) for technical 
support.

REFERENCES

Cashman, K. D. 2006. Milk minerals (including trace elements) and 
bone health. Int. Dairy J. 16:1389–1398.

Cassandro, M., A. Comin, M. Ojala, R. Dal Zotto, M. De Marchi, L. 
Gallo, P. Carnier, and G. Bittante. 2008. Genetic parameters of 
milk coagulation properties and their relationships with milk yield 
and quality traits in Italian Holstein cows. J. Dairy Sci. 91:371–
376.

Centner, V., D.-L. Massart, O. E. de Noord, S. de Jong, B. M. Van-
degiste, and C. Sterna. 1996. Elimination of uninformative vari-
ables for multivariate calibration. Anal. Chem. 68:3851–3858.

Comin, A., M. Cassandro, M. Povinelli, and G. Bittante. 2005. Genetic 
aspects of milk coagulation properties in Italian Holstein cows. 
Ital. J. Anim. Sci. 4(Suppl. 2):10–12.

De Marchi, M., C. C. Fagan, C. P. O’Donnell, A. Cecchinato, R. Dal 
Zotto, M. Cassandro, M. Penasa, and G. Bittante. 2009. Predic-
tion of coagulation properties, titratable acidity, and pH of bovine 
milk using mid-infrared spectroscopy. J. Dairy Sci. 92:423–432.

De Marchi, M., V. Toffanin, M. Cassandro, and M. Penasa. 2013. 
Prediction of coagulating and noncoagulating milk samples using 
mid-infrared spectroscopy. J. Dairy Sci. 96:4707–4715.

De Marchi, M., V. Toffanin, M. Cassandro, and M. Penasa. 2014. 
Invited review: Mid-infrared spectroscopy as phenotyping tool for 
milk traits. J. Dairy Sci. 97:1171–1186.

Gottardo, P., M. De Marchi, M. Cassandro, and M. Penasa. 2015. 
Technical note: Improving the accuracy of mid-infrared prediction 
models by selecting the most informative wavelengths. J. Dairy 
Sci. 98:4168–4173.

Haug, A., A. T. Høstmark, and O. M. Harstad. 2007. Bovine milk in 
human nutrition—A review. Lipids Health Dis. 6:25.

He, F. J., and G. A. MacGregor. 2008. Beneficial effects of potassium 
on human health. Physiol. Plant. 133:725–735.

Hewavitharana, A. K., and B. van Brakel. 1997. Fourier transform in-
frared spectrometric method for the rapid determination of casein 
in raw milk. Analyst (Lond.) 122:701–704.

Huth, P. J., D. B. DiRienzo, and G. D. Miller. 2006. Major scientific 
advances with dairy foods in nutrition and health. J. Dairy Sci. 
89:1207–1221.

ICAR. 2014. International Committee for Animal Recording—
Approved by the General Assembly held in Berlin, Germany, on 
May 2014. http://www.icar.org/wp-content/uploads/2015/11/
Guidelines_2014.pdf.

Malacarne, M., P. Franceschi, P. Formaggioni, S. Sandri, P. Mariani, 
and A. Summer. 2014. Influence of micellar calcium and phospho-
rus on rennet coagulation properties of cows milk. J. Dairy Res. 
81:129–136.

Malacarne, M., A. Summer, E. Fossa, P. Formaggioni, P. Franceschi, 
M. Pecorari, and P. Mariani. 2006. Composition, coagulation prop-
erties and Parmigiano-Reggiano cheese yield of Italian Brown and 
Italian Friesian herd milks. J. Dairy Res. 73:171–177.

McDermott, A., G. Visentin, M. De Marchi, D. P. Berry, M. A. Fe-
nelon, P. M. O’Connor, O. A. Kenny, and S. McParland. 2016a. 
Prediction of individual milk proteins including free amino acids in 
bovine milk using mid-infrared spectroscopy and their correlations 
with milk processing characteristics. J. Dairy Sci. 99:3171–3182.

McDermott, A., G. Visentin, S. McParland, D. P. Berry, M. A. Fenel-
on, and M. De Marchi. 2016b. Effectiveness of mid-infrared spec-
troscopy to predict the color of bovine milk and the relationship 
between milk color and traditional milk quality traits. J. Dairy 
Sci. 99:3267–3273.

McMahon, D. J., and R. J. Brown. 1982. Evaluation of Formagraph 
for comparing rennet solutions. J. Dairy Sci. 65:1639–1642.

McParland, S., and D. P. Berry. 2016. The potential of Fourier trans-
form infrared spectroscopy of milk samples to predict energy in-
take and efficiency in dairy cows. J. Dairy Sci. 99:4056–4070.

Mehmood, T., K. H. Liland, L. Snipen, and S. Sæbø. 2012. A review 
of variable selection methods in Partial Least Squares Regression. 
Chemom. Intell. Lab. Syst. 118:62–69.

Miglior, F., B. L. Muir, and B. J. Van Doormaal. 2005. Selection in-
dices in Holstein cattle of various countries. J. Dairy Sci. 88:1255–
1263.

Næs, T., T. Isaksson, T. Fearn, and T. Davies. 2002. A User-Friendly 
Guide to Multivariate Calibration and Classification. NIR Publi-
cations, Chichester, UK.

Niero, G., M. Penasa, P. Gottardo, M. Cassandro, and M. De Mar-
chi. 2016. Short communication: Selecting the most informative 
mid-infrared spectra wavenumbers to improve the accuracy of 
prediction models for detailed milk protein content. J. Dairy Sci. 
99:1853–1858.

Penasa, M., M. De Marchi, S. Ton, L. Ancilotto, and M. Cassandro. 
2015. Reproducibility and repeatability of milk coagulation prop-
erties predicted by mid-infrared spectroscopy. Int. Dairy J. 47:1–5.

Pretto, D., M. De Marchi, M. Penasa, and M. Cassandro. 2013. Ef-
fect of milk composition and coagulation traits on Grana Padano 
cheese yield under field conditions. J. Dairy Res. 80:1–5.

R Development Core Team. 2015. R: A language and environment 
for statistical computing. R Foundation for Statistical Computing, 
Vienna, Austria. http://www.R-project.org/.

Soyeurt, H., D. Bruwier, J.-M. Romnee, N. Gengler, C. Bertozzi, D. 
Veselko, and P. Dardenne. 2009. Potential estimation of major 
mineral contents in cow milk using mid-infrared spectrometry. J. 
Dairy Sci. 92:2444–2454.



Journal of Dairy Science Vol. 99 No. 10, 2016

MINERAL COMPOSITION AND COAGULATION TRAITS 8145

Tiezzi, F., D. Pretto, M. De Marchi, M. Penasa, and M. Cassandro. 
2013. Heritability and repeatability of milk coagulation properties 
predicted by mid-infrared spectroscopy during routine data re-
cording, and their relationships with milk yield and quality traits. 
Animal 7:1592–1599.

Toffanin, V., M. De Marchi, N. Lopez-Villalobos, and M. Cassandro. 
2015. Effectiveness of mid-infrared spectroscopy for prediction of 
the contents of calcium and phosphorus, and titratable acidity 
of milk and their relationship with milk quality and coagulation 
properties. Int. Dairy J. 41:68–73.

Uribarri, J., and M. S. Calvo. 2014. Dietary phosphorus intake and 
health. Am. J. Clin. Nutr. 99:247–248.

Visentin, G., A. McDermott, S. McParland, D. P. Berry, O. A. Kenny, 
A. Brodkorb, M. A. Fenelon, and M. De Marchi. 2015. Prediction 

of bovine milk technological traits from mid-infrared spectroscopy 
analysis in dairy cows. J. Dairy Sci. 98:6620–6629.

Wehrens, R. 2011. Chemometrics With R: Multivariate Data Analysis 
in the Natural Sciences and Life Sciences. Springer, Heidelberg, 
Germany.

Whelton, P. K., and J. He. 2014. Health effects of sodium and potas-
sium in humans. Curr. Opin. Lipidol. 25:75–79.

Williams, P. 2007. Near-Infrared Technology—Getting the Best Out of 
Light. 5.0 ed. PDK Projects Inc., Nanaimo, Canada.

Young, D. B., H. Lin, and R. D. McCabe. 1995. Potassium’s cardio-
vascular protective mechanisms. Am. J. Physiol. 268:R825–R837.


	Predictive ability of mid-infrared spectroscopy for major mineral composition and coagulation traits of bovine milk by using the uninformative variable selection algorithm
	Introduction
	Materials and Methods
	Data
	Sample Collection
	Milk Chemical Composition and Spectra Determination
	Reference Analysis of Major Mineral Contents
	Reference Analysis of Milk Coagulation Properties

	Chemometric Analysis
	Data Editing
	Prediction Models


	Results
	Summary Statistics of Calibration Data Set
	Accuracy of Prediction Models

	Discussion
	Data Variation
	Variable Selection and Accuracy of Prediction Models

	Conclusions


