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ABSTRACT

The aim of this study was to assess the performance 
of Bayesian models commonly used for genomic selec-
tion to predict “difficult-to-predict” dairy traits, such 
as milk fatty acid (FA) expressed as percentage of 
total fatty acids, and technological properties, such as 
fresh cheese yield and protein recovery, using Fourier-
transform infrared (FTIR) spectral data. Our main 
hypothesis was that Bayesian models that can estimate 
shrinkage and perform variable selection may improve 
our ability to predict FA traits and technological traits 
above and beyond what can be achieved using the 
current calibration models (e.g., partial least squares, 
PLS). To this end, we assessed a series of Bayesian 
methods and compared their prediction performance 
with that of PLS. The comparison between models was 
done using the same sets of data (i.e., same samples, 
same variability, same spectral treatment) for each trait. 
Data consisted of 1,264 individual milk samples col-
lected from Brown Swiss cows for which gas chromato-
graphic FA composition, milk coagulation properties, 
and cheese-yield traits were available. For each sample, 
2 spectra in the infrared region from 5,011 to 925 cm−1 
were available and averaged before data analysis. Three 
Bayesian models: Bayesian ridge regression (Bayes 
RR), Bayes A, and Bayes B, and 2 reference models: 
PLS and modified PLS (MPLS) procedures, were 
used to calibrate equations for each of the traits. The 
Bayesian models used were implemented in the R pack-
age BGLR (http://cran.r-project.org/web/packages/
BGLR/index.html), whereas the PLS and MPLS were 
those implemented in the WinISI II software (Infrasoft 
International LLC, State College, PA). Prediction ac-
curacy was estimated for each trait and model using 
25 replicates of a training-testing validation procedure. 

Compared with PLS, which is currently the most wide-
ly used calibration method, MPLS and the 3 Bayesian 
methods showed significantly greater prediction accu-
racy. Accuracy increased in moving from calibration to 
external validation methods, and in moving from PLS 
and MPLS to Bayesian methods, particularly Bayes A 
and Bayes B. The maximum R2 value of validation was 
obtained with Bayes B and Bayes A. For the FA, C10:0 
(% of each FA on total FA basis) had the highest R2 
(0.75, achieved with Bayes A and Bayes B), and among 
the technological traits, fresh cheese yield R2 of 0.82 
(achieved with Bayes B). These 2 methods have proven 
to be useful instruments in shrinking and selecting very 
informative wavelengths and inferring the structure 
and functions of the analyzed traits. We conclude that 
Bayesian models are powerful tools for deriving calibra-
tion equations, and, importantly, these equations can 
be easily developed using existing open-source software. 
As part of our study, we provide scripts based on the 
open source R software BGLR, which can be used to 
train customized prediction equations for other traits 
or populations.
Key words: infrared spectroscopy, Bayesian method, 
milk trait, fatty acid, cheese yield

INTRODUCTION

Infrared spectroscopy (IRS) is based on using dif-
ferent waves of the infrared region of the electromag-
netic spectrum to excite molecules in relation to their 
rotational-vibrational structure (Karoui et al., 2010). 
The infrared spectrum of a sample is recorded after 
passing a beam of infrared light through it. When 
the frequency of the infrared wave is the same as the 
vibrational frequency of a chemical bond, absorption 
occurs; the spectrum therefore reflects the quantities 
and proportions of the various chemical bonds within 
the sample and hence its composition.

Infrared spectroscopy is often used to predict the 
chemical composition of food and feed (Karoui et al., 
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2010), but it is a secondary method needing prior 
calibration based on a training data set and valida-
tion based on a different data set, both obtained us-
ing samples analyzed according to reference methods. 
The Fourier-transform infrared (FTIR) spectroscopy, 
which measures transmission of a spectrum consisting 
of more than 1,000 different waves in the short-wave in-
frared region (SWIR, or near-infrared), the mid-wave 
IR (MWIR, or mid-infrared), and the long-wave IR 
(LWIR), is often used to predict the chemical com-
position of milk (Barbano and Lynch, 2006; Karoui 
and Baerdemaeker, 2007). Fourier-transform infrared 
spectroscopy has important advantages compared with 
traditional laboratory-based analysis techniques. Some 
advantages include the low time requirements, inex-
pensive except for the cost of the apparatus, ability to 
predict a large number of phenotypes for one sample 
carrying out only one analysis, ability to predict new 
phenotypes from stored spectra when a new prediction 
equation becomes available, and the feasibility of ob-
taining individual phenotypes for selection. In addition, 
FTIR spectroscopy is an accurate tool for predicting 
major milk component contents and is used interna-
tionally for the analysis of the fat, protein, casein, and 
lactose contents of cow milk from routine recording 
samples (ICAR, 2012). The prediction of milk compo-
nents and technological traits (especially those that are 
difficult to analyze) is of particular interest in many 
areas, including milk payment systems, assessing tech-
nological properties of milk by the dairy industry, and 
direct (in relation to human health) or indirect (animal 
welfare, reproduction, methane production) prediction 
of some traits through milk FA content. All of these 
traits could be used in selection programs.

In recent years, several studies have used FTIR spec-
troscopy to predict the FA content of milk (Soyeurt 
et al., 2006; De Marchi et al., 2011). The FA show 
different prediction accuracy based on, for example, the 
amount of the individual FA in milk and the way of 
expressing that amount (on a milk or milkfat basis); 
for these reasons, these traits are considered to be dif-
ficult to predict and the level of accuracy is lower than 
when predicting major milk components (e.g., protein 
or fat). In part, this is because FA make up a smaller 
fraction of milk and many compounds with similar 
chemical composition are present (Stefanov et al., 2013; 
De Marchi et al., 2014). Calibration FTIR is even more 
difficult if an FA profile (i.e., each FA as a proportion of 
the sum of all FA) is to be predicted. Few studies have 
attempted to predict the FA profile of milk fat using 
FTIR spectroscopy, and the results are less accurate 
than those for the total FA content of milk (Soyeurt et 
al., 2006; Rutten et al., 2009).

Infrared spectroscopy technology is not very precise 
when used to predict the technological properties of 
food that only indirectly depend on the sample’s chemi-
cal composition. In the case of milk, FTIR spectroscopy 
has been used to predict new phenotypes of significant 
economic interest to the dairy industry, such as milk 
coagulation properties (MCP; Cecchinato et al., 2009), 
cheese yield (CY) and curd recovery (REC) or whey 
loss of milk nutrients (Ferragina et al., 2013).

The IRS prediction of new phenotypes is of par-
ticular interest for its potential use in the selection of 
farm animal populations using existing samples and 
spectrometers, such as milk recordings for the genetic 
improvement of milk fat and protein. Several studies 
have estimated the genetic parameters of infrared-
predicted phenotypes, such as FA content (Rutten et 
al., 2010; Bastin et al., 2011; Cecchinato et al., 2012a), 
MCP (Bittante et al., 2012), and CY and REC of dif-
ferent nutrients (Cecchinato et al., 2015). Heritability 
estimates of measured phenotypes are similar to, or 
lower than, the heritabilities of the predicted traits 
such as milk technological properties (e.g., RCT; Cec-
chinato et al., 2009, 2011b; Bittante et al., 2014). In the 
case of FA profiles, there is a higher variation of heri-
tability estimates (Rutten et al., 2010). Importantly, 
the estimated genetic correlations between measured 
and FTIR-predicted values for all traits studied were 
greater than the phenotypic correlations between the 
same values. The biological basis of the potential of 
FTIR spectra for genetic improvement of farm animals 
lies in the fact that the absorbance of many individual 
waves (Bittante and Cecchinato, 2013) or their princi-
pal components (Soyeurt et al., 2010; Dagnachew et al., 
2013) have been proven to be heritable.

The accuracy of predictions obtained with IRS is 
influenced by many factors, including the trait to be 
predicted, the quality of the reference data set and the 
spectra, the number of samples used to develop the 
prediction equations, and the amount of the analyzed 
substance in the samples (Rutten et al., 2009; Karoui 
et al., 2010). A distinction is needed between direct 
and indirect predictions, and this distinction plays an 
important role in the prediction accuracy. One trait can 
be considered directly predicted when it has a signifi-
cant signal in the spectral data (e.g., protein content); 
otherwise, in the indirect prediction of one trait, the 
signal in the spectral data is related to traits having a 
relationship with the studied trait (e.g., cheese yield), 
and a greater number of samples in calibration set is 
needed for high prediction accuracy. A special role, 
however, is played by mathematical techniques known 
collectively as chemometrics, including the selection 
of wavelengths, the pretreatment of spectra data, and 
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the choice of statistical model used to develop the 
calibration equation. Infrared spectral data are high 
dimensional and therefore require special modeling 
techniques, such as dimension reduction regression, 
shrinkage estimation, and variable selection methods.

Partial least squares regression (PLS), a dimension-
reduction method, is the most commonly used technique 
for developing calibration equations, and principal 
component analysis is a useful technique to carry out 
qualitative analysis of spectra and of their information 
(Tsenkova et al., 2000). Partial least squares regression 
is implemented in commercial software, such as WinISI 
(Infrasoft International LLC, State College, PA) or 
Unscrambler (Camo ASA, Oslo, Norway). These soft-
ware programs provide multiple user-friendly tools for 
analyzing spectral data, although few regression models 
are implemented in them and the user has little control 
over many of the parameters controlling the algorithm.

Principal component regression and PLS are compa-
rable methods (Luinge et al., 1993); PLS has some im-
portant advantages over principal component regression 
(Soyeurt et al., 2006) and performs well in predicting 
major milk components. Although the prediction ac-
curacy of both PLS and principal components is much 
lower for qualitative traits, such as milk FA profiles 
and technological properties, this highlights the need to 
develop more efficient chemometric methods to analyze 
spectral data.

In recent years, important advances have been made 
in developing penalized and Bayesian models for high-
dimensional regressions, and many of these methods 
have been adopted for regression on high-dimensional 
genotypes (e.g., genomic selection, Meuwissen et al., 
2001). The Bayesian method is extremely flexible 
in that, with the choice of prior density assigned to 
marker effects, it allows implementation of models 
that estimate shrinkage and perform variable selection. 
Evidence from genomic selection suggests that these 
Bayesian models may have higher predictive power 
than dimension-reduction methods (de los Campos et 
al., 2013). We hypothesize that these methods can help 
us improve our ability to predict milk properties that 
are difficult to predict using dimension reduction meth-
ods such as PCR and PLS.

Therefore, the main goal of this study was to assess 
the performance of Bayesian models commonly used for 
genomic selection in predicting problematic traits, such 
as milk FA profiles and technological properties, from 
FTIR spectral data. We assessed the performance of 
several methods not used before in this context, which 
perform either shrinkage of variables (e.g. Bayesian 
ridge regression) or both shrinkage and variable selec-
tion (e.g., Bayes B), and compared their performance 
with that of the current industry standard method 

based on PLS. We also provide scripts based on the 
open source R software BGLR (de los Campos and 
Pérez-Rodriguez, 2014; Pérez and de los Campos, 2014) 
that can be used to develop calibration equations for 
other traits and data sets.

MATERIALS AND METHODS

Field Data

Data came from the Cowplus projects of the Au-
tonomous Province of Trento, Italy. Samples were 
obtained from 1,264 Brown Swiss cows from 85 herds 
located in Trento with parities of 1 to 5, DIM rang-
ing from 5 to 449, and production levels of 24.3 ± 7.9 
kg/d. The samples were collected between April 2010 
and February 2011; on a given day, only 1 herd was 
sampled during the evening milking; 2 milk subsamples 
per cow were collected and immediately refrigerated 
at 4°C without any preservative. One subsample (50 
mL) was taken to the milk quality laboratory of the 
Breeders Federation of the Province of Trento (Trento, 
Italy) for composition analysis. The other subsample 
(2,000 mL) was taken to the cheese-making labora-
tory of the Department of Agronomy, Food, Natural 
Resources, Animals and Environment of the University 
of Padua; there, a subsample was used for model cheese 
fabrication and MCP analysis, whereas the remaining 
sample was frozen for further analysis (e.g., FA). Fur-
ther details regarding the sampling procedure can be 
found in Cipolat-Gotet et al. (2012), and Cecchinato 
et al. (2013a). All samples were processed for analysis 
and model cheese fabrication within 20 h of collection. 
Data on the cows, herds, and individual test-day milk 
yields were provided by the Superbrown Consortium of 
Bolzano and Trento (Italy).

FTIR Spectral Acquisition

All individual milk samples were analyzed using a 
MilkoScan FT6000 (Foss, Hillerød, Denmark) over the 
spectral range from wavenumber 5,011 to 925 cm−1 
(from SWIR to LWIR). Spectra were stored as ab-
sorbance (A) using the transformation A = log(1/T), 
where T is the transmission (Figure 1). Two spectral 
acquisitions were carried out for each sample, and the 
results were averaged before data analysis.

Milk FA and Technological Properties

Forty-seven FA were analyzed by GC on a frozen 
aliquot of each individual milk sample and expressed as 
a percentage of total FA in the sample. We selected 4 
FA for the prediction models: decanoic (or capric) acid 
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(C10:0), 9-tetradecenoic (or myristoleic) acid (C14:1 
cis-9; C14:1c9), hexadecanoic (or palmitic) acid 
(C16:0), and octadecanoic (or stearic) acid (C18:0). 
These 4 FA are highly representative of the variation in 
all 47 FA in terms of effect of diet, physiology, length of 
the carbonated chain (small, medium, and long), pres-
ence or absence of double bonds in the FA structure, 
proportion of the total FA, and heritability (Cecchinato 
et al., 2013b).

For every cow sampled, we produced an individual 
model cheese in accordance with the cheese-making 
procedure described by Cipolat-Gotet et al. (2013) and 
Bittante et al. (2013a). Briefly, 1,500 mL of milk from 
each individual cow was heated to 35°C in a stainless 
steel microvat, supplemented with thermophilic starter 
culture, mixed with rennet, and controlled for coagula-
tion time. The resulting curd from each vat was cut, 
drained, shaped in wheels, pressed, salted, weighed, 
sampled, and analyzed. The whey collected from each 
vat was also weighed, sampled, and analyzed. All 
traits were derived from measures of the weights (g) 
and chemical compositions of the milk and whey. The 
traits considered here were cheese yield (CYCURD) 
as grams of curd per 100 g of milk; protein recovery 
(RECPROTEIN) as (grams of milk protein – grams of 
whey protein) × 100 g of milk protein; and fat recovery 
(RECFAT) as (grams of milk fat – grams of whey fat) 
× 100 g of milk fat.

Milk coagulation properties of each individual milk 
sample were measured using a Formagraph (Foss Elec-

tric A/S) as described in Cipolat-Gotet et al. (2012). A 
rack containing 10 cuvettes was prepared, milk samples 
(10 mL) were heated to 35°C, and 200 μL of a rennet 
solution [Hansen Standard 160, with 80 ± 5% chymo-
sin and 20 ± 5% pepsin, 160 international milk clot-
ting units (IMCU)/mL; Pacovis Amrein AG, Bern, 
Switzerland] diluted to 1.6% (wt/vol) in distilled water 
was added at the beginning of the analysis to a final 
concentration of 0.051 IMCU/mL. Rennet coagulation 
time (RCT, min), defined as the time from addition of 
the enzyme to milk gelation, was used in this work as a 
trait representative of MCP.

Editing of the Spectra and Outlier Detection

The absorbance values of every wave in the FTIR 
spectra were centered and standardized to a null mean 
and a unit sample variance. Next, we calculated Maha-
lanobis distances using the standardized spectra data 
for outlier spectra detection. Looking at the plot of 
the Mahalanobis distances and deciding to exclude only 
the spectra with a very high probability to be outli-
ers, we discarded the observations with a Mahalanobis 
distance greater than 5 times the standard deviation. 
All data editing was done in the R environment (R 
Core Team, 2013). The first derivative was also ap-
plied as mathematical pretreatment of the spectra. The 
results obtained using the pretreatment showed that all 
models we implemented fitted the data better using the 
first derivatives, but the ranking of the models did not 

Figure 1. Absorbances of milk samples (Log T−1; solid black line represents the average, whereas the 2 gray lines represent the mean ± SD). 
The vertical dashed lines define the 5 infrared regions (SWIR = short-wavelength infrared or near-infrared; MWIR = mid-wavelength infrared; 
LWIR = long-wavelength infrared).
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change. For this reason, and to simplify interpretation, 
only the results of the “nonpretreatment” procedure are 
shown.

Statistical Analysis

Separate models were fitted to RCT, CYCURD, 
RECPROTEIN, RECFAT, C10:0, C14:1c9, C16:0, and 
C18:0. Here, we describe the statistical models for a 
generic phenotype (yi; i = 1, …, n). Three Bayesian 
models, Bayesian ridge regression (Bayes RR), Bayes 
A and Bayes B (Meuwissen et al., 2001; see details 
below), and 2 reference models, PLS and modified par-
tial least squares (MPLS), were fitted to each of the 
outcomes. Although PLS is one of the most commonly 
used in the literature for analysis of FTIR data, the 
MPLS method was also implemented, as there has been 
recent interest in using this model for FTIR analysis. 
Each of these methods is briefly described below.

Bayesian Models. Phenotypes were regressed on 
standardized spectra covariates using the linear model

 y xi
j

ij j i= + +
=
∑β β ε0
1

1 060,

,  

where β0 is an intercept, {xij} are standardized FTIR 
spectra-derived wavelength data (j = 1, …, 1,060), βj 
are the effects of each of the wavelengths, and εi are 
model residuals assumed to be independent and identi-
cally distributed (iid) with normal distribution centered 
at zero with variance σ2. Given the above assumption, 
the conditional distribution of the data given effects 
and variance parameters is
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i

n

i( |  y θ) , ,= ( )
=
∏
1

2μ εσ  

where y = {yi}, θ represents the collection of model 
parameters θ = { }β0

2, ,  ,β σε  N iμ σ, 
2( ) is a normal distri-

bution centered at μi
j

= +
=
∑0
1

1 060,

xij j  and with variance 

σ2, and β = {βj} is a vector containing the effects of the 
individual spectra-derived wavelengths. Specification of 
the Bayesian model is completed by assigning prior 
distribution to the unknowns, θ. In the Bayesian mod-
els considered here, the prior density was as follows:
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Here, the intercept is assigned a normal prior with a 
very large variance, which amounts to treating the 
intercept as a “fixed” effect, the residual variance is 
assigned a scaled-inverse chi-squared density (χ−2) with 
degree of freedom dfε and scale parameters Sε, and the 
effects of wavelengths are assigned iid priors, p(βj|Ω), 
indexed by a set of hyperparameters Ω, which are also 
treated as random. Finally, p(Ω) represent the prior 
distribution assigned to the hyperparameters; p(βj|Ω) 
and p(Ω) are different depending on the model imple-
mented as it is described herein.

The Bayes RR, Bayes A, and Bayes B models differ 
in the form of the prior density assigned to the effects. 
In Bayes RR, effects are assigned Gaussian priors; that 
is, β Ω β βj

iid
jN| |( ) ( )∼ 0 2, ,σ  Ω β= σ2, and 

p df SΩ χ
β β β( ) = ( )−2 2σ | , . This specification shrinks the 

estimate toward zero, as also happens for Bayes A and 
Bayes B; the extent of shrinkage is homogeneous across 
effects and the method does not perform variable selec-
tion (de los Campos et al., 2013; Gianola, 2013). In 
Bayes A, β Ω β β βj

iid
jt df S| |( ) ( )∼ ,  is a scaled-t density, 

which is indexed by 2 hyperparameters {dfβ, Sβ}: we 
fixed dfβ = 5 and treated the scale as random; that is, 
Ω = Sβ, and p(Ω) = Gamma (Sβ| rate, shape). The 
scaled-t density has greater mass at zero and thicker 
tails than the Gaussian prior, and induces differential 
shrinkage of estimates of effects, whereas the estimated 
effects of predictors weakly correlated with the pheno-
type are shrunk toward zero strongly and those of pre-
dictors with strong association with the response are 
shrunk to a lesser extent (de los Campos et al., 2013; 
Gianola, 2013).

Finally, in Bayes B, p(βj|Ω) is a mixture of a point of 
mass at zero and a scaled-t density, that is, 
β Ω β π ββ βj | ~ , ;( ) × ( )+ −( )× =( )iid

j jt df Sπ | 1 1 0  there-
fore, a priori, with probability π, βj is drawn from the 
t-density and with probability (1 − π) βj = 0. As with 
Bayes A, we set dfβ = 5, and the other hyperparameters 
were treated as random; specifically, Sβ ~ Gamma (Sβ| 
rate, shape) and π ~ Beta (π|shape1, shape2).

The Bayesian models described above were imple-
mented in BGLR (de los Campos and Pérez-Rodriguez, 
2014). A detailed description of the models and algo-
rithms implemented in BGLR, as well as a comprehen-
sive list of examples can be found in Peréz and de los 
Campos (2014). All the above models have high-order 
hyperparameters that need to be specified, which in-
clude dfε, Sε, dfβ, rate, shape, shape1, and shape2. All 
these parameters were specified using built-in BGLR 
rules that select default values for these unknowns and 
are fully explained in Peréz and de los Campos (2014). 
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The rules were designed to yield proper but relatively 
uninformative priors. In all the Bayesian models, in-
ferences were based on 30,000 samples collected after 
discarding the first 10,000 samples.

Simplified scripts showing how the predictive equa-
tions for Bayes A, Bayes B, and Bayes RR models can 
be implemented in BGLR are freely available along 
with data files relative to milk spectra and reference 
data by requesting them from the corresponding author 
of this paper.

Reference Models. We compared the performance 
of the Bayesian models with 2 commonly used methods: 
PLS and MPLS, both as implemented in the WinISI II 
software (Infrasoft International LLC). The following 
program settings were used to implement the reference 
models: no spectra pretreatments or outlier elimina-
tion stage; 4 groups for the cross-validation procedure 
(internal to the training data sets); a maximum of 16 
MPLS and PLS terms.

Data Analysis. First, we fitted the models described 
above to each of the traits separately using the entire 
data set as training. We used this analysis to derive 
estimates of error variance σg

2( ), the R2 between pheno-
types and predictions in the entire training data set, 
and the correlations among the predictions made by 
the different models. For the Bayesian models, we also 
reported the deviance information criterion (DIC) and 
the effective number of parameters (pD; Spiegelhalter 
et al. 2002). For the PLS and MPLS models, we re-
ported the effective number of terms used. In addition, 
we provide the marginal correlation between the traits 
and the absorbances for each wave and the estimated 
coefficients for each model to shed light on how the 
different Bayesian models and MPLS and PLS models 
work.

Assessment of Prediction Accuracy. Most of 
the literature on calibration equations has assessed 
prediction accuracy using validation methods where 
individual records are randomly assigned to either 
training or testing sets, or folds of a cross-validation 
procedure. When this is done, records from the same 
herd are likely to appear in both training and valida-
tion data sets. In industry practice, calibration equa-
tions are derived using data from a restricted number of 
herds, which is problematic because it means predicting 
from FTIR traits (e.g., FA content or profiles) in herds 
that were not used to derive the prediction equations. 
This is clearly a much more difficult, but perhaps more 
realistic, prediction scenario. Therefore, in this study, 
we assigned herds and not individual records to train-
ing and testing data sets. In total, we generated 25 
training-testing experiments, in each of which the data 
set was split into training (TRN) and testing (TST) 

subsets. The training subset was used to fit the models 
and to develop the calibration equation for predicting 
individual phenotypes in the testing subset as valida-
tion. Partition of the data set into TRN and TST sub-
sets was done as follows: we sampled random herds and 
assigned all cows in the selected herds to the TST data 
set until we had at least 200 complete records. The 
remaining records were assigned to the TRN subset. 
This procedure guaranteed that the records from all 
cows in a given herd are in either the TRN or the TST 
subset, so that our setting assessed the “across-herd” 
predictive power of the calibration equations.

The numbers of cows per herd were similar for all 
traits measured. The mean, SD (minimum; maximum) 
herd size was as follows: 14.20, 1.33 (8; 15) in the FA 
traits; 14.61, 0.96 (8; 15) for RCT; 14.65, 0.83 (10; 15) 
for CYCURD; 14.58, 0.92 (10; 15) for RECPROTEIN; and 
14.45, 0.95 (10; 15) for RECFAT.

The TRN-TST procedure described above was rep-
licated 25 times for each trait. The average numbers 
of samples (out of the 25 TRN-TST partitions) in 
TRN (TST) were 973 (206), 1,036 (206), 1,040 (205), 
1,035 (205), and 1,023 (206) for FA, RCT, CYCURD, 
RECPROTEIN, and RECFAT, respectively. The average 
numbers of herds in TRN (TST) were 68 (15) for 
FA, and 71 (14) for RCT, CYCURD, RECPROTEIN, and 
RECFAT.

Prediction accuracy was measured using the coef-
ficient of determination between predictions and ob-
served traits in the TST data sets, the square root of 
the mean squared prediction error (RMSE), and the 
regression (estimated intercept and slope) of observed 
phenotype in the TST data set and predictions. In ad-
dition, we conducted pair-wise comparisons by counting 
the number of times (out of 25 replicates) in which the 
R2 of a model was higher than that of another model, 
and conducted paired t-tests to compare the R2 of pairs 
of models.

RESULTS

Table 1 shows descriptive statistics for the 4 FA 
(C10:0, C14:1c9, C16:0, and C18:0) and technological 
traits RCT, CYCURD, RECPROTEIN, and RECFAT. The 
number of samples shown in the table differs among 
traits because phenotypes were not available for all the 
samples, and the number of samples shown refers to 
those remaining after elimination of outlier spectra. All 
traits had distributions in the expected ranges of values. 
Parameter estimates by trait and model using the full 
data set are presented in Table 2 for milk FA and Table 
3 for technological traits. The calibration R2 values (in 
the entire training data set) were high (about 0.50 on 
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average for all models) for RCT, CYCURD, RECPROTEIN, 
C10:0, and C16:0 and lower for RECFAT, C14:1c9, and 
C18:0. The model for PLS had the smallest R2 and 
largest residual variance across traits. The Bayesian 
methods had higher calibration R2 and smaller residual 

variance than the MPLS for all of the traits; however, 
the goodness of fit of the calibration equations to the 
calibration data set obtained with MPLS were those 
more similar to the fit obtained with the Bayesian 
methods. The DIC tended to favor Bayes A and Bayes 

Table 1. Descriptive statistics of 4 milk FA and selected technological traits

Trait
No. of  

samples Mean SD Minimum Maximum

FA,1 %      
 C10:0 1,179 3.17 0.63 0.61 5.65
 C14:1 cis-9 1,179 1.08 0.32 0.22 2.56
 C16:0 1,179 30.54 3.68 18.92 46.73
 C18:0 1,179 8.97 1.89 3.38 16.31
Technological trait2      
 RCT, min 1,242 19.88 5.71 6.00 43.00
 CYCURD, % 1,245 15.04 1.89 10.23 20.58
 RECPROTEIN, % 1,240 78.08 2.41 70.51 85.25
 RECFAT, % 1,229 89.88 3.58 76.77 98.12
1C10:0 = decanoic (capric) acid; C14:1 cis-9 = 9-tetradecenoic (myristoleic) acid; C16:0 = hexadecanoic 
(palmitic) acid; C18:0 = octadecanoic (stearic) acid; each FA is expressed as a percentage of the total FA by 
weight.
2RCT = rennet coagulation time, min; CYCURD = cheese yield, weight of fresh curd as a percentage of the milk 
processed by weight; RECPROTEIN = recovery of protein, protein of the curd as a percentage of the protein of 
the milk processed; RECFAT = recovery of fat, fat of the curd as a percentage of the fat of the milk processed.

Table 2. Parameter estimates, goodness of fit statistics, and correlations between predictions made by different methods obtained for 4 milk 
FA when models were fitted to the entire data set, by trait and model1

Trait2 and  
model

Variance

R2 DIC pD/Terms

Correlations between predictions 
of different models

Phenotypic Residual MPLS Bayes RR Bayes A Bayes B

C10:0 0.40         
 PLS  0.21 0.48 — 15 0.90 0.89 0.86 0.83
 MPLS  0.17 0.58 — 15 — 0.93 0.91 0.91
 Bayes RR  0.10 0.76 971 184 — — 0.98 0.97
 Bayes A  0.10 0.75 889 135 — — — 0.98
 Bayes B  0.10 0.76 729 73 — — — —
C14:1 cis-9 0.10         
 PLS  0.07 0.33 — 11 0.94 0.95 0.89 0.82
 MPLS  0.07 0.35 — 10 — 0.94 0.90 0.85
 Bayes RR  0.05 0.50 80.3 109 — — 0.96 0.90
 Bayes A  0.04 0.57 −104 104 — — — 0.96
 Bayes B  0.04 0.59 −244 71 — — — —
C16:0 13.56         
 PLS  7.70 0.44 — 14 0.88 0.88 0.87 0.81
 MPLS  5.75 0.58 — 14 — 0.94 0.94 0.92
 Bayes RR  3.72 0.73 5,275 182 — — 0.98 0.96
 Bayes A  3.90 0.71 5,249 144 — — — 0.97
 Bayes B  3.68 0.73 5,035 75 — — — —
C18:0 3.56         
 PLS  2.68 0.27 — 11 0.85 0.82 0.77 0.71
 MPLS  2.41 0.35 — 14 — 0.87 0.85 0.81
 Bayes RR  1.37 0.62 4,071 171 — — 0.98 0.93
 Bayes A  1.27 0.65 3,945 152 — — — 0.96
 Bayes B  1.27 0.65 3,750 62 — — — —
1R2 = coefficient of determination calculated as the square of the correlation between observed and predicted values; DIC = deviance informa-
tion criterion; pD/Terms = effective number of parameters/number of MPLS or PLS terms; PLS = partial least squares regression; MPLS = 
modified partial least squares regression, Bayes RR = Bayes ridge regression.
2C10:0 = decanoic (capric) acid; C14:1 cis-9 = 9-tetradecenoic (myristoleic) acid; C16:0 = hexadecanoic (palmitic) acid; C18:0 = octadecanoic 
(stearic) acid; each FA is expressed as a percentage of the total FA by weight.
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B over Bayes RR, particularly in the case of the 4 FA. 
The effective number of terms used was, on average 
similar, for PLS and MPLS.

Tables 2 and 3 include correlations between the 
predictions derived from the models. In general, these 
correlations were high for all pairs of models, although 
the correlations between the predictions obtained with 
the Bayesian methods were higher, whereas they were 
slightly lower between the predictions obtained using 
PLS and MPLS.

Figures 2 and 3 show the absolute values of marginal 
correlations between the absorbances at each wave and 
the phenotypes (FA in Figure 2, and technological traits 
in Figure 3), together with the estimated absolute value 
of effect of each wavelength by model. The coefficients 
of the individual waves of the calibration equations 
were expressed as the absolute ratio with respect to 
the greatest one, so that they included values in the 
[0, 1] range. All wavelengths in the SWIR region were 
positively correlated with the FA C10:0, C14:1c9, and 
C18:0 (about 0.3) and RCT (about 0.2), whereas within 
the same region, the correlations with C16:0, RECFAT, 
and RECPROTEIN were considerably lower. The marginal 

correlations in the SWIR-MWIR region were very low 
for all traits except CYCURD. The MWIR and LWIR 
regions showed different correlation patterns across 
traits. Many waves were correlated with the traits of 
interest and, in most cases, the individual correlations 
were <0.3, the only notable exception being CYCURD, 
characterized by many waves with correlations >0.5.

The same figures (FA in Figure 2 and technological 
traits in Figure 3) show the absolute values of estimated 
effects for the MPLS, Bayes RR, and Bayes B methods, 
characterized by very different patterns of effect size. 
The Bayes RR and MPLS methods generated many 
intermediate estimates in all regions of the spectra, 
typical of shrinkage estimation procedures. In contrast, 
with Bayes B (a variable selection method), the effects 
on most regions were small or null and very few waves 
had sizable effects.

The results of validation in an independent sample 
are summarized in Table 4 for milk FA proportions and 
Table 5 for technological traits. As expected, the R2 val-
ues in the independent data sets (TST sets) were lower 
than those of the calibration R2 reported in Tables 2 
and 3. In most cases, the external validation R2 was 10 

Table 3. Parameter estimates, goodness of fit statistics, and correlations between predictions made by different methods obtained for milk 
technological properties when models were fitted to the entire data set, by trait and model1

Trait2 and  
model

Variance

R2 DIC pD/Terms

Correlations between predictions 
of different models

Phenotypic Residual MPLS Bayes RR Bayes A Bayes B

RCT 32.57         
 PLS  15.49 0.53 — 14 0.92 0.92 0.92 0.87
 MPLS  12.69 0.61 — 15 — 0.96 0.96 0.94
 Bayes RR  8.35 0.75 6,534 179 — — 0.99 0.97
 Bayes A  8.82 0.73 6,513 138 — — — 0.98
 Bayes B  8.71 0.73 6,333 60 — — — —
CYCURD 3.57         
 PLS  1.00 0.72 — 14 0.97 0.98 0.98 0.96
 MPLS  0.92 0.74 — 11 — 0.98 0.99 0.98
 Bayes RR  0.74 0.79 3,405 118 — — 1.00 0.98
 Bayes A  0.72 0.80 3,335 107 — — — 0.99
 Bayes B  0.67 0.81 3,175 72 — — — —
RECPROTEIN 5.81        
 PLS  2.69 0.54 — 15 0.89 0.87 0.87 0.84
 MPLS  1.85 0.68 — 16 — 0.95 0.95 0.94
 Bayes RR  1.06 0.82 4,029 210 — — 0.99 0.98
 Bayes A  1.14 0.81 4,050 179 — — — 0.98
 Bayes B  1.08 0.81 3,844 110 — — — —
RECFAT 12.84         
 PLS  9.44 0.27 — 10 0.89 0.95 0.91 0.88
 MPLS  8.79 0.32 — 9 — 0.93 0.93 0.94
 Bayes RR  7.71 0.41 6,209 104 — — 0.97 0.95
 Bayes A  7.57 0.42 6,152 88 — — — 0.96
 Bayes B  7.48 0.42 6,079 59 — — — —
1PLS = partial least squares regression; MPLS = modified partial least squares regression, Bayes RR = Bayes ridge regression; R2 = coefficient 
of determination calculated as the square of the correlation between observed and predicted values; DIC = deviance information criterion; pD/
Terms = effective number of parameters/number of MPLS or PLS terms.
2RCT = rennet coagulation time, min; CYCURD = cheese yield, weight of fresh curd as a percentage of the milk processed by weight; RECPROTEIN 
= recovery of protein, protein of the curd as a percentage of the protein of the milk processed; RECFAT = recovery of fat, fat of the curd as a 
percentage of the fat of the milk processed.
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to 20 percentage points smaller than the calibration R2 
value. The standard deviations of validation R2 ranged 
from 5 to 10 percentage points across traits and meth-
ods (Tables 4 and 5), the greatest variability being for 
the 2 REC traits and the lowest for RCT.

Bayes A and Bayes B had the highest prediction ac-
curacy across traits, except for RECFAT, where Bayes 
B and MPLS gave the same results. Pair-wise com-
parisons showed that the PLS had the lowest predic-
tion accuracy across traits; MPLS was better than 
PLS but less accurate than the Bayes A and Bayes 
B methods, except for RECFAT, where no significant 
differences were found. Bayes RR (a shrinkage method) 
produced somewhat mixed results: for some traits (e.g., 
RECPROTEIN, RCT), it performed better than MPLS, 
but for other traits (e.g., RECFAT), its performance was 
worse. Tables 6 and 7 show the intercept and regression 
coefficient estimates from regressions of the observed 
phenotype and predictions from the testing data set. A 
null intercept (0) and a unit slope (1) were interpreted 
as indicating no prediction bias. The estimated inter-
cepts of the Bayesian models were closer to 0 and the 
estimated slopes consistently closer to 1 than those of 
PLS and MPLS, except for C16:0, RECPROTEIN, and 
RECFAT, where estimated intercept and slope of Bayes 
B and MPLS were very similar. Table 6 also shows 
the proportion (across TRN-TST partitions) of cases 
where a 95% CI for the intercept (slope) included 0 (1). 
These proportions were clearly higher for the Bayes-
ian methods, suggesting that their prediction bias is 
smaller than that of PLS or MPLS, following the same 
trend described above.

DISCUSSION

Phenotypic Values for Milk FA Proportions  
and Technological Traits

The average fractions of total milk FA of the 4 FA 
considered in the present study were within the range 
found in Holsteins (Bobe et al., 2008; Garnsworthy et 
al., 2010) and various other breeds (Heck et al., 2009; 
Poulsen et al., 2012). The 85 herds sampled for the 
present study were from mountain farms rearing Brown 
Swiss cows fed predominantly hay and concentrates, 
with some silage on only a small percentage of the 
farms and without the use of pasture or fresh forage 
(Sturaro et al., 2013). The RCT average value found in 
the present study is longer than the average coagulation 
time found in 33 studies on Holstein cows reviewed by 
Bittante et al. (2012), despite the fact that they found 
the values for Brown Swiss cows to be 11% shorter than 
those for the Holstein breed. This is likely explained 
by 2 factors: the low quantity of rennet added and the 

inclusion of late-coagulating samples (Bittante et al., 
2013b).

The fresh CYCURD found in the present study was 
similar to that found by Martin et al. (2009) in Mont-
béliarde cow milk and greater than that found by the 
same authors and by Cologna et al. (2009) in Holstein 
cow milk, which characterized by lower fat and pro-
tein contents. In addition, the average RECFAT and 
RECPROTEIN in the present study were similar to those 
measured by Bynum and Olson (1982) and by Mistry 
et al. (2002).

FTIR Calibrations of Technological Properties

Prediction of milk fat content using FTIR calibra-
tions is very accurate (Ferrand et al., 2011; Soyeurt 
et al., 2011) and the method is approved by the In-
ternational Committee on Animal Recording (ICAR, 
2012) as an official method for milk recording. This 
reflects the ability of the FTIR spectrum to capture 
information on the main chemical bonds characterizing 
the lipids: C–C, C–H, and C=O (Bittante and Cec-
chinato, 2013). Predictions of individual FA are usu-
ally much less accurate because of the great similarity 
among them in terms of chemical bonds. Soyeurt et al. 
(2006) computed the calibration equations from a GC 
analysis of 49 milk samples using PLS and obtained 
calibration R2 values of 0.77, 0.12, 0.91, and 0.73 and 
cross-validation R2 values of 0.64, 0.07, 0.82, and 0.69 
for capric, myristoleic, palmitic, and stearic acids in 
milk, respectively. By applying PLS to the 4,000 to 900 
cm−1 FTIR spectral data of 267 randomly selected milk 
samples analyzed by GC, De Marchi et al. (2011) ob-
tained cross-validation R2 of 0.52, 0.44, 0.49, and 0.65, 
respectively, for prediction of the amounts of the same 
4 FA in milk. By selecting the same number of samples 
according to spectral variability, adopting a math-
ematical pretreatment of spectral data before PLS, and 
selecting only a quarter of the FTIR spectrum, Soyeurt 
et al. (2011) improved the calibration R2 values to 0.91, 
0.58, 0.92, and 0.87, and the validation R2 values to 
0.90, 0.50, 0.86, and 0.74, respectively, for the 4 FA. 
By applying PLS to the first derivative of spectral data 
of 1,236 analyzed samples to predict the amounts of 
the same 4 FA in milk, Maurice-Van Eijndhoven et al. 
(2013) obtained R2 values of 0.96, 0.80, 0.98, and 0.91 
from calibration, and of 0.85 to 0.94, 0.64 to 0.80, 0.86 
to 0.93, and 0.58 to 0.80 from validation, according to 
the breed of cow.

Predicting FA proportions in milk fat (FA profile) 
is more difficult than predicting FA content in milk 
because only the proportions and not the quantities 
of different chemical bonds can be taken into account, 
which explains the smaller R2 values obtained from FA 
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calibration and especially from validation in predicting 
fat composition with respect to milk composition.

Soyeurt et al. (2006) obtained R2 cross-validation 
values of only 0.53, 0.23, 0.50, and 0.09 for capric, 
myristoleic, palmitic, and stearic acids, respectively. 
Using the larger preselected data set with mathemati-
cal pretreatment and only one quarter of the spectral 

range, the same authors were able to improve predic-
tion accuracy to R2 values of 0.75, 0.39, 0.55, and 0.39 
for these FA (Soyeurt et al., 2011). Prediction accura-
cies obtained in our study were in line with previous 
reports. Using records from 1,179 milk samples from 
Brown Swiss cattle, with no mathematical pretreatment 
or spectral area selection, and with replicated external 

Figure 2. Absolute values of estimated effects (solid curves) and marginal correlations (CORR) with phenotype (dashed curve) by wave-
length (horizontal axis). C10:0 = decanoic (capric) acid; C14:1 cis-9 = 9-tetradecenoic (myristoleic) acid; C16:0 = hexadecanoic (palmitic) 
acid; C18:0 = octadecanoic (stearic) acid; SWIR = short-wavelength infrared or near-infrared; MWIR = mid-wavelength infrared; LWIR = 
long-wavelength infrared; MPLS = modified partial least squares regression; Bayes RR = Bayes ridge regression. Color version available online.
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validations on samples from different farms and dates, 
with the PLS method, we obtained validation R2 values 
of 0.44, 0.30, 0.41, and 0.26 for prediction of the fat 
content of capric, myristoleic, palmitic, and stearic FA, 
respectively (Table 4). With the best performing model 
(Bayes B), we achieved prediction R2 values of 0.67, 

0.48, 0.60, and 0.49 for prediction of the fat content 
of capric, myristoleic, palmitic, and stearic FA, respec-
tively (Table 4). It is worth noting that the fat content 
of milk from the Brown Swiss breed is characterized 
by lower genetic variability estimates compared with 
milk from the Holstein Friesian breed (Cecchinato et 

Figure 2 (Continued). Absolute values of estimated effects (solid curves) and marginal correlations (CORR) with phenotype (dashed 
curve) by wavelength (horizontal axis). C10:0 = decanoic (capric) acid; C14:1 cis-9 = 9-tetradecenoic (myristoleic) acid; C16:0 = hexadecanoic 
(palmitic) acid; C18:0 = octadecanoic (stearic) acid; SWIR = short-wavelength infrared or near-infrared; MWIR = mid-wavelength infrared; 
LWIR = long-wavelength infrared; MPLS = modified partial least squares regression; Bayes RR = Bayes ridge regression. Color version avail-
able online.
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al., 2011b; Samorè et al., 2012), in part because the 
DGAT1 gene in the Brown Swiss breed is monomorphic 
(Cecchinato et al., 2012b).

A previous study on predicting MCP was carried out 
on a similar data set of 1,200 milk samples from Brown 

Swiss cows in different regions but using an FTIR spec-
trum of 4,000 to 900 cm−1 collected with a different 
spectrometer (Cecchinato et al., 2009). Calibration was 
carried out using PLS on 4 calibration subsets of 170 
to 175 cows, whereas validation was performed on the 

Figure 3. Absolute values of estimated effects (solid curves) and marginal correlations (CORR) with phenotype (dashed curve) by wave-
length (horizontal axis). RCT = rennet coagulation time, min; CYCURD = cheese yield, weight of fresh curd as a percentage of the milk processed 
by weight; RECPROTEIN = recovery of protein, protein of the curd as a percentage of the protein of the milk processed; RECFAT = recovery of fat, 
fat of the curd as a percentage of the fat of the milk processed; SWIR = short-wavelength infrared or near-infrared; MWIR = mid-wavelength 
infrared; LWIR = long-wavelength infrared; MPLS = modified partial least squares regression; Bayes RR = Bayes ridge regression. Color ver-
sion available online.
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remaining 858 to 863 cows from the same herds. The 
calibration R2 values for RCT ranged from 0.61 to 0.69 
according to the different subsets. Results from Cec-
chinato et al. (2009) are similar to those obtained in 
the present study with different animals, spectrometer, 

and spectral interval using PLS (0.53, Table 3). The 
validation R2 values obtained in the previous study 
on randomly selected cows varied from 0.61 to 0.72, 
whereas the values obtained in the present study using 
PLS methods on randomly selected herds were smaller, 

Figure 3 (Continued). Absolute values of estimated effects (solid curves) and marginal correlations (CORR) with phenotype (dashed 
curve) by wavelength (horizontal axis). RCT = rennet coagulation time, min; CYCURD = cheese yield, weight of fresh curd as a percentage of the 
milk processed by weight; RECPROTEIN = recovery of protein, protein of the curd as a percentage of the protein of the milk processed; RECFAT 
= recovery of fat, fat of the curd as a percentage of the fat of the milk processed; SWIR = short-wavelength infrared or near-infrared; MWIR 
= mid-wavelength infrared; LWIR = long-wavelength infrared; MPLS = modified partial least squares regression; Bayes RR = Bayes ridge 
regression. Color version available online.
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varying from 0.41 to 0.59 (Table 5). This was expected 
because the out-of-herd prediction problem identified 
in this study was much more challenging than that 
identified by Cecchinato et al. (2009).

The only published results from FTIR prediction 
of the remaining milk technological traits (CYCURD, 
RECFAT, and RECPROTEIN) were obtained from the same 
data set as that used in the present study (Ferragina et 
al., 2013). The MPLS method was adopted with 10, 12, 
and 16 principal components for the 3 traits, respec-
tively, some mathematical pretreatments, and, in the 
case of RECPROTEIN, exclusion of the spectral regions af-
fected by water absorbance (SWIR-MWIR and MWIR-
2). The calibration R2 values obtained in the previous 
study were 0.85, 0.49, and 0.86 for CYCURD, RECFAT, 
and RECPROTEIN, respectively. The corresponding 
values obtained in the present study using the MPLS 
method were similar (0.74, 0.32, and 0.68, Table 3). In 
the previous study, the cross-validation R2 values were 
0.83, 0.41, and 0.81, whereas in the present research, the 
external validation R2 values for PLS (Bayes B) were 

0.66 (0.71), 0.21 (0.28), and 0.47 (0.65) for CYCURD, 
RECFAT, and RECPROTEIN, respectively. Fat retention 
in the curd (RECFAT) is more dependent on physical 
properties, such as fat globule size, curd-firming rate, 
and curd cutting (Fagan et al., 2007; Cipolat-Gotet et 
al., 2013) than on chemical composition, which could 
explain the low accuracy of all the prediction models.

To our knowledge, ours is the first study to have con-
sidered using Bayesian shrinkage and variable selection 
methods for predicting milk composition and techno-
logical traits using FTIR. Comparison of the methods 
yielded conclusive results: Bayesian methods, especially 
Bayes B, outperformed PLS and MPLS across traits.

Coefficients of Individual FTIR Waves

Generally, FTIR data have a larger number of predic-
tors, so that for regression, the number of parameters 
(p) to be estimated (the effect on the wavelengths) is 
potentially greater than sample size (n). Traditional 
statistical methods cannot accommodate this type of 

Table 4. Prediction R-squared (R2
VAL), square root of the mean-squared prediction error (RMSE) in testing data sets by trait and model, and 

pair-wise comparisons of prediction accuracies of the models for 4 milk FA1

Trait2 and  
model

R2
VAL

RMSE

Pair-wise comparisons

Mean Minimum Maximum SD PLS MPLS Bayes RR Bayes A Bayes B

C10:0           
 PLS 0.44 0.33 0.57 0.07 0.49 — 100 100 100 100
 MPLS 0.56 0.44 0.68 0.07 0.43 *** — 80 100 100
 Bayes RR 0.59 0.50 0.68 0.06 0.41 *** *** — 100 96
 Bayes A 0.66 0.58 0.75 0.05 0.38 *** *** *** — 64
 Bayes B 0.67 0.55 0.75 0.06 0.38 *** *** *** NS —
C14:1 cis-9           
 PLS 0.30 0.20 0.41 0.06 0.28 — 88 100 100 100
 MPLS 0.33 0.18 0.44 0.06 0.27 *** — 48 100 100
 Bayes RR 0.33 0.25 0.42 0.05 0.27 *** NS — 96 100
 Bayes A 0.38 0.28 0.48 0.06 0.26 *** *** *** — 96
 Bayes B 0.48 0.37 0.65 0.06 0.24 *** *** *** *** —
C16:0           
 PLS 0.41 0.25 0.60 0.08 2.82 — 100 100 100 100
 MPLS 0.51 0.34 0.70 0.08 2.55 *** — 84 100 96
 Bayes RR 0.54 0.40 0.70 0.07 2.45 *** *** — 84 92
 Bayes A 0.58 0.46 0.72 0.07 2.33 *** *** *** — 72
 Bayes B 0.60 0.42 0.74 0.08 2.30 *** *** *** NS —
C18:0           
 PLS 0.26 0.09 0.38 0.08 1.65 — 80 92 100 100
 MPLS 0.30 0.16 0.43 0.08 1.61 *** — 64 100 100
 Bayes RR 0.31 0.17 0.42 0.07 1.57 *** NS — 96 96
 Bayes A 0.45 0.24 0.59 0.08 1.40 *** *** *** — 76
 Bayes B 0.49 0.30 0.65 0.11 1.35 *** *** *** *** —
1PLS = partial least squares regression; MPLS = modified partial least squares regression, Bayes RR = Bayes ridge regression; R2

VAL = coef-
ficient of determination calculated as the square of the correlation between observed and predicted values; Mean, Minimum, Maximum = mean, 
minimum, and maximum of the R2 of 25 replicates; RMSE = mean of the root mean square errors of 25 replicates; the values above the diagonal 
indicate the percentage of replicates where the model in the column had a higher prediction R2

VAL than the model in the row; the asterisks below 
the diagonal indicate P-values from paired t-tests comparing the R2

VAL of the model in the column and the model in the row: ***Significant 
differences at the 0.001 level; NS indicates no significant difference at the 0.05 level.
2C10:0 = decanoic (capric) acid; C14:1 cis-9 = 9-tetradecenoic (myristoleic) acid; C16:0 = hexadecanoic (palmitic) acid; C18:0 = octadecanoic 
(stearic) acid; each FA is expressed as a percentage of the total FA by weight.
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large-p-small-n regression, although dimension-reduc-
tion regression, shrinkage estimation, and variable 
selection methods can. A naïve “variable selection” 
method includes preselection of predictors based on 
regions of the spectrum (e.g., regions affected by water 
absorbance) or individual wave correlations (Rutten et 
al., 2009). Another popular calibration method uses 
PLS (Soyeurt et al., 2006, 2011; Ferrand et al., 2011), 
which is based on reducing the size of the set of predic-
tors. Other authors have taken a different approach to 
preselection of the waves whose absorbances are to be 
analyzed using PLS. In particular, Ferrand et al. (2011) 
combined a genetic algorithm (GA) with PLS and ob-
tained a substantial reduction in the number of waves 
to be considered (112 to 150 waves) and increased ac-
curacy in predicting the content of several FA in milk. 
Subsequently, Ferrand-Calmels et al. (2014) compared 
several alternative methods to PLS on untreated milk 
FA data from cows, sheep and goats: PLS on de-noised 
data using first-derivative or wavelet transformation 
and multi-resolution analysis, PLS on GA-based pre-

selected waves, the use of penalization methods such 
as the least absolute shrinkage and selection operator 
(LASSO), and elastic net methods. They concluded 
that the best results were obtained with PLS on un-
treated or first-derivative data or GA-based preselected 
waves, according to the different FA.

Bayesian methods have not previously been used in 
the calibration of milk traits from FTIR spectra, al-
though they have been studied for near-infrared spectra 
of other materials (Thodberg, 1996; Pérez-Marìn et al., 
2012). Our results (see Figures 2 and 3) indicate that 
the methods examined in our study (PLS, MPLS, and 
the 3 Bayesian methods) use milk FTIR spectrum infor-
mation in very different ways. Bayes RR is a shrinkage 
procedure so it does not perform variable selection but 
instead tends to use information from all the available 
wavelengths. At the other extreme, Bayes B uses vari-
able selection, and our results suggest that predictions 
from this method are mostly based on a relatively small 
number of wavelengths with large effects. The MPLS 
procedure represented an intermediate situation.

Table 5. Prediction R-squared (R2
VAL), square root of the mean-squared prediction error (RMSE) in testing data sets by trait and model, and 

pair-wise comparisons of prediction accuracies of the models for milk technological properties

Trait2 and  
model

R2
VAL

RMSE  

Pair-wise comparisons

Mean Minimum Maximum SD PLS MPLS Bayes RR Bayes A Bayes B

RCT            
 PLS 0.50 0.41 0.59 0.05 4.14  — 96 100 100 96
 MPLS 0.57 0.41 0.65 0.05 3.82  *** — 92 88 92
 Bayes RR 0.60 0.48 0.67 0.05 3.70  *** *** — 60 80
 Bayes A 0.60 0.47 0.68 0.05 3.67  *** *** NS — 72
 Bayes B 0.63 0.53 0.73 0.06 3.59  *** *** ** * —
CYCURD           
 PLS 0.66 0.55 0.76 0.07 1.11  — 84 96 96 92
 MPLS 0.68 0.54 0.80 0.07 1.07  *** — 48 80 84
 Bayes RR 0.68 0.56 0.78 0.07 1.08  *** NS — 80 80
 Bayes A 0.70 0.59 0.81 0.07 1.04  *** *** *** — 72
 Bayes B 0.71 0.57 0.82 0.06 1.03  *** *** *** NS —
RECPROTEIN           
 PLS 0.47 0.30 0.63 0.09 1.75  — 100 100 100 100
 MPLS 0.60 0.37 0.75 0.10 1.52  *** — 96 96 80
 Bayes RR 0.65 0.47 0.79 0.09 1.42  *** *** — 48 44
 Bayes A 0.65 0.46 0.80 0.09 1.42  *** *** NS — 48
 Bayes B 0.65 0.47 0.80 0.09 1.44  *** *** NS NS —
RECFAT           
 PLS 0.21 0.07 0.36 0.08 3.31  — 88 80 88 92
 MPLS 0.28 0.14 0.42 0.09 3.13  *** — 4 16 52
 Bayes RR 0.23 0.07 0.37 0.08 3.24  ** *** — 84 92
 Bayes A 0.24 0.08 0.38 0.08 3.22  *** *** ** — 92
 Bayes B 0.28 0.14 0.42 0.09 3.13  *** NS *** *** —
1PLS = partial least squares regression; MPLS = modified partial least squares regression, Bayes RR = Bayes ridge regression; R2

VAL = coef-
ficient of determination calculated as the square of the correlation between observed and predicted values; Mean, Minimum, Maximum = mean, 
minimum, and maximum of the R2 of 25 replicates; RMSE = mean of the root mean square errors of 25 replicates; the values above the diagonal 
indicate the percentage of replicates where the model in the column had a higher prediction R2

VAL than the model in the row; the asterisks below 
the diagonal indicate P-values from paired t-tests comparing the R2

VAL of the model in the column and the model in the row: ***, **, and *: 
significant differences at the 0.001, 0.01, and 0.05 levels, respectively; NS indicates no significant difference at the 0.05 level.
2RCT = rennet coagulation time, min; CYCURD = cheese yield, weight of fresh curd as a percentage of the milk processed by weight; RECPROTEIN 
= recovery of protein, protein of the curd as a percentage of the protein of the milk processed; RECFAT = recovery of fat, fat of the curd as a 
percentage of the fat of the milk processed.
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The Bayes RR method assigns small effects to almost 
all waves, even within the regions affected by water 
absorbance (“water” regions), which are characterized 
by small-effect coefficients in MPLS and Bayes B; this 
was particularly clear in the case of the equations for 
CYCURD. As already noted, Bayes B was highly selec-
tive among the 1,060 waves considered. For instance, 
estimated effects were all small in the “water” regions 
(SWIR, SWIR-MWIR, and MWIR-2).

In this work, different calibration models were com-
pared and the estimated coefficients, in particular 
those estimated by the Bayesian models, are used as 
predictor variables. Being aware of this, we tried to 
give an alternative explanation and interpretation of 
the estimated coefficients obtained. We compared the 
Bayes B selected waves with the waves characteristic 
of different chemical bonds (Bittante and Cecchinato, 
2013; e.g., the MWIR1 region for the FA), and the 
profile of estimated effects suggests that this method 
was able to capture a subset of wavelengths that were 
more informative for predicting milk composition and 
technological traits. Bayes B could be useful in identify-
ing informative waves, through the solution of the n 

p problem, and for understanding the structure and 
functions of molecules involved in each trait.

CONCLUSIONS

Infrared spectroscopy is a rapid, nondestructive, and 
inexpensive technique that allows accurate predictions 
to be made of the content of many chemical compounds 
in various food materials, mainly because the many 
chemical bonds of the analyzed material affect specific 
areas of the IR spectrum. Being a secondary method, 
IRS requires a calibration equation that links the IR 
spectrum with a primary analysis carried out on a 
“training” or “calibration” set of samples. When IRS is 
not used to predict the content of a given substance in 
the sample but instead used to predict features such as 
ratios among nutrients, physico-technological proper-
ties, or the geographical origin or production system 
of the analyzed sample, the nature of the prediction 
is mainly correlative in nature and accuracy is lower. 
In these cases, the choice of method for selecting and 
“weighing” the information hidden in the absorbances 
of individual waves in the IRS could be important. The 

Table 6. Estimated intercept and slope of the regression between predictions and phenotypes in testing data 
sets, by trait and model for the 4 milk FA1

Trait2 and 
model Intercept % Intercept = 0 Slope % Slope = 1

C10:0, %     
 PLS 0.39 64 0.87 52
 MPLS 0.19 68 0.94 64
 Bayes RR 0.02 84 0.99 88
 Bayes A 0.00 68 1.00 76
 Bayes B 0.13 52 0.96 52
C14:1 cis-9, %     
 PLS 0.19 56 0.83 52
 MPLS 0.16 60 0.85 48
 Bayes RR 0.03 80 0.98 80
 Bayes A 0.04 76 0.96 80
 Bayes B 0.04 60 0.96 56
C16:0, %     
 PLS 4.12 56 0.88 56
 MPLS 1.41 60 0.96 64
 Bayes RR −0.11 64 1.00 72
 Bayes A 0.20 72 1.00 76
 Bayes B 1.41 68 0.96 64
C18:0, %     
 PLS 2.19 36 0.75 32
 MPLS 2.06 32 0.76 32
 Bayes RR 0.49 72 0.99 76
 Bayes A 0.40 68 0.95 72
 Bayes B 0.74 60 0.91 64
1PLS = partial least squares regression; MPLS = modified partial least squares regression; Bayes RR = Bayes 
ridge regression; Intercept = mean of the intercept estimated between observed and predicted values (of each 
replicate) in 25 replicates; % Intercept = 0 is the percentage of times (over 25 replicates) in which the estimated 
95% CI for the intercept included zero; Slope = mean of the slope estimated between observed and predicted 
values (of each replicate) in 25 replicates; % Slope = 1 is the percentage of times (on 25 replicates) in which 
the estimated 95% CI for the slope included 1.
2C10:0 = decanoic (capric) acid; C14:1 cis-9 = 9-tetradecenoic (myristoleic) acid; C16:0 = hexadecanoic (pal-
mitic) acid; C18:0 = octadecanoic (stearic) acid; each FA is expressed as a percentage of total FA by weight.
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results of the present study showed that the 5 methods 
tested use individual wave absorbance information in 
very different ways, and in ways very different from the 
simple correlations between individual wave absorbanc-
es and milk traits and the measured value of the trait 
to be predicted. Compared with PLS, which is cur-
rently the most widely used calibration method, MPLS 
and the 3 Bayesian methods tested showed signifi-
cantly greater prediction accuracy. Accuracy increased 
when moving from calibration to external validation 
methods, and when moving from PLS and MPLS to 
Bayesian methods, particularly Bayes A and Bayes B. 
As Bayes B performed best in predicting “difficult-to-
predict” milk traits, it appears to be a promising tool 
for deriving prediction equations for use in industry to 
control the quality milk submissions and to make ge-
netic improvements to these milk traits. Bayes B had a 
remarkable ability to select a small subset of important 
waves from the 1,060 in the FTIR spectrum, whereas 
dimension-reduction methods (e.g., PLS, MPLS) and 
the Bayes RR shrinkage estimation procedure tended 
to use information from a large number of spectral 

waves. Further studies are needed to understand the 
relationship and significance between the estimated co-
efficients and the chemical bonds corresponding to the 
wavelength with the largest estimates. Bayes B showed 
an impressive selection ability and this capacity could 
make it an interesting instrument for researchers to 
identify the chemical bonds more closely related to the 
expression of the predicted trait, which may shed light 
on the nature and effects of the trait studied.

ACKNOWLEDGMENTS

The authors thank the Province of Trento (Italy) 
for financial support, and the Superbrown Consortium 
of Bolzano and Trento, and the Trento Breeders Fed-
eration (Italy) for technical support. A. I. Vazquez ac-
knowledges financial support from National Institutes 
of Health grant 7-R01-DK-062148-10-S1. A. I. Vazquez 
and G. de los Campos knowledge support from Na-
tional Institute of Health grants R01GM09992 and 
R01GM101219 and from National Science Foundation 
grant IOS-1444543, sub-award UFDSP00010707.

Table 7. Estimated intercept and slope of the regression between predictions and phenotypes in testing data 
sets, by trait and model for the milk technological traits1

Trait2 and 
model Intercept % Intercept = 0 Slope % Slope = 1

RCT, min        
 PLS 1.67 72 0.93 68
 MPLS 1.14 76 0.95 76
 Bayes RR 0.24 92 1.00 84
 Bayes A 0.36 84 0.99 80
 Bayes B 1.08 68 0.96 72
CYCURD, %        
 PLS 1.21 64 0.92 60
 MPLS 0.94 68 0.94 68
 Bayes RR 0.68 76 0.96 76
 Bayes A 0.67 72 0.96 68
 Bayes B 0.86 48 0.94 56
RECPROTEIN, %        
 PLS 10.24 48 0.87 48
 MPLS 6.59 48 0.92 44
 Bayes RR 2.61 64 0.97 68
 Bayes A 3.00 64 0.96 64
 Bayes B 6.88 40 0.91 44
RECFAT, %        
 PLS 21.82 40 0.76 36
 MPLS 11.56 56 0.87 56
 Bayes RR 7.53 68 0.91 68
 Bayes A 9.00 68 0.90 68
 Bayes B 11.19 56 0.87 56
1PLS = partial least squares regression; MPLS = modified partial least squares regression; Bayes RR = Bayes 
ridge regression; Intercept = mean of the intercept estimated between observed and predicted values (of each 
replicate) in 25 replicates; % Intercept = 0 is the percentage of times (over 25 replicates) in which the estimated 
95% CI for the intercept included zero; Slope = mean of the slope estimated between observed and predicted 
values (of each replicate) in 25 replicates; % Slope = 1 is the percentage of times (on 25 replicates) in which 
the estimated 95% CI for the slope included 1.
2RCT = rennet coagulation time, min; CYCURD = cheese yield, weight of fresh curd as a percentage of the milk 
processed by weight; RECPROTEIN = recovery of protein, protein of the curd as a percentage of the protein of 
the milk processed; RECFAT = recovery of fat, fat of the curd as a percentage of the fat of the milk processed.
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