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Abstract. For a given closed target we embed the dissipative relation that defines a control
Lyapunov function in a more general di↵erential inequality involving Hamiltonians built from it-
erated Lie brackets. The solutions of the resulting extended relation, here called degree-k control
Lyapunov functions (k � 1), turn out to be still su�cient for the system to be globally asymptoti-
cally controllable to the target. Furthermore, we work out some examples where no standard (i.e.,
degree-1) smooth control Lyapunov functions exist while a C

1 degree-k control Lyapunov function
does exist for some k > 1. The extension is performed under very weak regularity assumptions on
the system, to the point that, for instance, (set-valued) Lie brackets of locally Lipschitz vector fields
are considered as well.
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1. Introduction. A control Lyapunov function (CLF) for a control system,

(1)

8
<

:

ẏ = f(y, a)

y(0) = x 2 Rn\T ,

where the control parameter a ranges over a compact set of controls and the (closed)
subset T ⇢ Rn is regarded as a target, is a positive definite function U : Rn\T ! R
such that, at each point x 2 Rn\T , the dynamics f(x, a) points in a direction along
which U is strictly decreasing for a suitable choice of a 2 A. A wide literature
investigates the links between the existence of a CLF and some properties of the
system-target pair. Standard regularity assumptions include local semiconcavity of
U in the interior of the domain of U , which, in particular, allows defining the set
of limiting gradients1 D

⇤
U(x) at each x 2 Rn\T . Therefore, the monotonicity of U

along suitable directions of f can be expressed by means of the dissipative di↵erential
inequality

(2) H(x,D⇤
U(x)) < 0 8x 2 Rn\T ,

where
H(x, p) := inf

a2A

D
p , f(x, a)

E
.
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†Dipartimento di Matematica, Università di Padova, Padova 35121, Italy (motta@math.unipd.it,
rampazzo@math.unipd.it).

1See Definition 2.3. Under this hypothesis, D⇤
U(x) coincides with the limiting subdi↵erential

@LU(x), largely used in the literature on Lyapunov functions.
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LYAPUNOV-LIKE FUNCTIONS DETERMINED BY LIE BRACKETS 1509

Relation (2) has to be interpreted as the occurrence, at each x, of the inequality
H(x, p) < 0 for every p 2 D

⇤
U(x). Since U is assumed to be (proper and) positive

definite, by choosing controls verifying (2) one is ideally looking for trajectories that
run closer and closer to the target. More precisely, one has the following.

Theorem 1.1. If there exists a CLF, system (1) is GAC to T .

As customary, GAC to T is an acronym for globally asymptotically controllable to T
(see Definition 1.2), which means that for any initial point x there exists a system tra-
jectory y(·), y(0) = x, approaching the target T (in possibly infinite time), uniformly
with respect to the distance d(x, T ).

Results like Theorem 1.1—of which some “inverse” versions exist as well—lie
at the basis of various constructions dealing, in particular, with stabilizability (see,
e.g., [S2], [Ri], and the references therein). Nonsmoothness is crucial for control Lya-
punov functions: Though relation (2) is a partial di↵erential inequality—so admitting
many more solutions than the corresponding Hamilton–Jacobi equation—in general
no smooth control Lyapunov functions exist. A great deal of e↵ective ideas have been
flourishing during the last four decades to deal with this unavoidable lack of regularity
(see, e.g., [CLSS], [MaRS], the books [CLSW] and [BR], and the references therein).
Nevertheless, the regularity issue is of obvious interest from a numerical point of view.
In addition, any feedback stabilizing strategy would likely benefit from smoothness
properties of a CLF (or of some suitable CLF replacement)—in particular, in reference
with sensitivity to data errors.

As an attempt to reduce the unavoidability of nonsmoothness, in the present
paper we replace relation (2) with a less demanding inequality which involves Lie
brackets.2 Let us assume that the dynamics is driftless control a�ne, namely,

(3)

8
>><

>>:

ẏ =
X

i=1,...,m

aifi(y)

y(0) = x 2 Rn\T ,

and let A := {±e1, . . . ,±em}.3 Assume the vector fields f1, . . . , fm are of class Ck�1

for some integer k � 1. We will define4 the degree-k Hamiltonian H
(k)(x, p) by

setting

(4) H
(k)(x, p) := inf

v2F(k)(x)

⌦
p, v
↵

8(x, p) 2 (Rn\T )⇥ Rn
,

where F (k) denotes the family of iterated Lie brackets of degree  k of the vector
fields f1, . . . , fm. (Notice, in particular, that H(1) = H.)

A function U : Rn\T ! R will be called a degree-k control Lyapunov function–
shortly, degree-k CLF– if (it is positive definite, proper, semiconcave on domain’s
interior, and) it verifies inequality

(5) H
(k)(x,D⇤

U(x)) < 0 8x 2 Rn\T .

2We remind the reader that the Lie bracket of two C
1 vector fields X,Y is defined (on any

coordinate chart) as [X,Y ] := DY ·X �DX · Y .
3More general control systems can be considered; see Remark 2.2 and subsection 5.3.
4See section 4 for an extension of the notion of H(2) when the vector fields are locally Lipschitz

but not smooth.
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1510 MONICA MOTTA AND FRANCO RAMPAZZO

Observe that, because of

(6) H
(k)  H

(k�1) · · ·  H
(1)

,

relation (5) is weaker than (2).
Still, in view of Theorem 1.2 below, the inequality (5) is su�cient for the system

to be GAC to T , as stated in the following result.

Theorem 1.2. Let a degree-k CLF exist for some positive integer k. Then system

(3) is GAC to T .

The use of Lie brackets as higher-order directions is widespread in control the-
ory, both within necessary conditions for optimality and within su�cient condi-
tions for various kinds of controllability (see, e.g., [AgSa], [BP], [Co], [K], [S1], [Su],
[FHT]). Furthermore, they are involved in boundary conditions ensuring uniqueness
for Hamilton–Jacobi equations, e.g., in relation with continuity properties of the cor-
responding value function (see, e.g., [BCD], [So]). However, in the present paper Lie
brackets are directly involved in the proposed di↵erential inequalities.

Let us point out that, in relation with systems having a nonzero drift, a set
of results involving Lie-bracket–based Lyapunov-like functions can be found, e.g., in
[MTT], [T], [TT]. These works aim directly to the main goal of various investigations
on asymptotic controllability, namely, feedback stabilizability. Actually, it will be
interesting to bridge some of the general notions and results contained in these papers
with the ones presented here. In particular, in section 5 we give some partial results
for systems with drifts. Let us point out, however, that the hypotheses considered,
e.g., in [T, Proposition 2] and in [TT, Proposition 3] cannot be met by any driftless
system.

As for the regularity issue, we wish to remark that a degree-k control Lyapunov
function, k > 1, may happen to be more regular than a standard (i.e., degree-1) control
Lyapunov function. It may even occur in the case whereH(k)(x,D⇤

U(x)) < 0 for some
C

1 function U , while no smooth U satisfies the standard inequalityH(x,D⇤
U(x)) < 0

(see Examples 2.1–2.3 below). Let us observe that the two reasons why a (degree-
1) control Lyapunov function may result not di↵erentiable are (i) the shape of the
target’s boundary @T and (ii) the shortage of the dynamics’ directions. While there
is nothing one can do to remedy (i), the introduction of Hamiltonians H(k) (k > 1),
which are minima over larger sets of directions, is a way to reduce the e↵ects of (ii).

The regularity hypotheses in the case of degree-2 control Lyapunov functions are
relaxed in section 4 in order to include Lipschitz continuous vector fields. Since the
classical brackets [fi, fj ] may happen to be not even defined at possibly infinitely
many points, we make use of the generalized, set-valued brackets defined in [RS1].
Accordingly, the Hamiltonian H

(2) is computed as a min-max value. Let us remark
that the degree-2 control Lyapunov function of Example 4.1 is C

1 despite the fact
the vector fields are not even C

1.
The paper is organized as follows. Section 2 comprises the definition of degree-k

control Lyapunov function, the main result (namely, Theorem 2.1), and a few exam-
ples; section 3 is entirely devoted to the proof of Theorem 2.1; by making use of a
set-valued notion of Lie bracket, in section 4 we prove a nonsmooth version of the
main result for the case k = 2; in section 5, after considering feedback constructions
and establishing a connection with the theory of viscosity supersolutions, we prove a
partial result for the case with drift (Theorem 5.1) as well as a generalization of the
main result to unbounded closed targets (Theorem 5.2).
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LYAPUNOV-LIKE FUNCTIONS DETERMINED BY LIE BRACKETS 1511

1.1. Preliminaries and notation. For the readers convenience, some classical
concepts, like global asymptotic controllability to a set T , in short GAC to T , and a
few technical definitions are here recalled.

Given an integer k � 1 and an open subset ⌦ ✓ Rn, we write C
k(⌦) to denote

the set of vector fields of class C
k on ⌦, namely, Ck(⌦) := C

k(⌦,Rn). The subset
C

k
b (⌦) ⇢ C

k(⌦) of functions with bounded derivatives (up to the order k) will be
endowed with the norm

kfkk :=
X

i=0,...,k

sup
x2⌦

|f (i)(x)| (f (0) := f)

(which makes it a Banach space). Similarly, Ck�1,1(⌦) ⇢ C
k�1(⌦) denotes the subset

of vector fields whose k�1th derivative is locally Lipschitz continuous and C
k�1,1
b (⌦)

is the subset of Ck�1
b (⌦) with (globally) Lipschitz continuous k � 1th derivative.

Definition 1.1. Let k � 1 be an integer, and let f1, . . . , fm be vector fields be-

longing to C
k�1(Rn \ T ). For any initial condition x 2 Rn \ T and any measurable

control ↵ : [0,+1) ! A, a trajectory-control pair (y,↵)(·) will be called admissible if

there exists T  +1 such that y(·) is a solution of (3) defined on [0, T ) and

lim
t!T

d(y(t)) = 0,

where d(·) := d(·, T ). When k > 1, we will use yx(·,↵) to denote the unique (possibly

local) forward solution to the Cauchy problem (3).

Remark 1.1. The main object of the paper consists in establishing relations in-
volving Lie brackets, so that a certain regularity is necessary when k > 1 (see also
section 4). However, observe that as soon as k = 1, the vector fields f1, . . . , fm are
just continuous, so that solutions of the Cauchy problem (3) for a given control may
be not unique.

To give the notion of global asymptotic controllability, we recall that KL is used
to denote the set of continuous functions � : [0,+1)⇥ [0,+1) ! [0,+1) such that
(1) �(0, s) = 0 and �(·, s) is strictly increasing and unbounded for each s � 0, (2)
�(�, ·) is decreasing for each � � 0, and (3) �(�, s) ! 0 as s ! +1 for each � � 0.

Definition 1.2. The control system in (3) is globally asymptotically controllable
to T —shortly, (3) is GAC to T —provided there is a function � 2 KL such that for

each initial state x 2 Rn \T , there exists an admissible trajectory-control pair (y,↵)(·)
such that

(7) d(y(t))  �
�
d(x), t

�
8t 2 [0,+1).5

Let us recall that if g1, g2 are C
1 vector fields on a di↵erential manifold (of class

C
2), their Lie bracket [g1, g2] is the (continuous) vector field which is defined (on

coordinate charts) by
[g1, g2] = Dg2 · g1 �Dg2 · g1.

Since [g1, g2] turns out to be a vector field, provided su�cient regularity is assumed,
one can iterate the bracketing process, so obtaining iterated Lie brackets. We call

5By convention, we fix an arbitrary x̄ 2 @T and formally establish that, if T < +1, the trajectory
y(·) is prolonged to [0,+1) by setting y(t) = x̄ for all t � T .
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1512 MONICA MOTTA AND FRANCO RAMPAZZO

degree of a given iterated bracket B the number of objects appearing in B (regarded
as a formal object) when commas and left and right brackets are deleted. For instance,
the degrees of [[g2, g3], g2], [[g2, g3], [g2, g4]], and [g4, [g4, [g4, [g4, g6]]]] are 3, 4, and 5,
respectively.

Let us summarize some basic notions in nonsmooth analysis (see, e.g., [CS],
[CLSW] for a thorough treatment).

Definition 1.3 (positive definite and proper functions). A continuous function

F : Rn \ T ! R is said to be positive definite on Rn \ T if F (x) > 0 8x 2 Rn \ T
and F (x) = 0 8x 2 @T . The function F is called proper on Rn \ T if the preimage

F
�1(K) of any compact set K ⇢ [0,+1[ is compact.

Definition 1.4. (semiconcavity). Let ⌦ ⇢ Rn
. A continuous function F : ⌦ !

R is said to be semiconcave on ⌦ if there exist ⇢ > 0 such that

F (z1) + F (z2)� 2F

✓
z1 + z2

2

◆
 ⇢|z1 � z2|2

for all z1, z2 2 ⌦ such that [z1, z2] ⇢ ⌦. The constant ⇢ above is called a semiconcavity
constant for F in ⌦. F is said to be locally semiconcave on ⌦ if it is semiconcave on

every compact subset of ⌦.

Let us remind the reader that locally semiconcave functions are locally Lipschitz.
Actually, they are twice di↵erentiable almost everywhere.

Definition 1.5. (limiting gradient). Let ⌦ ⇢ Rn
be an open set, and let F :

⌦ ! R be a locally Lipschitz function. For every x 2 ⌦ let us set

D
⇤
F (x)

.
=
n
w 2 Rn : w = lim

k
rF (xk), xk 2 DIFF (F ) \ {x}, lim

k
xk = x

o
,

where r denotes the classical gradient operator and DIFF (F ) is the set of di↵eren-

tiability points of F . D
⇤
F (x) is called the set of limiting gradients of F at x.

The set-valued map x 7! D
⇤
F (x) is upper semicontinuous on ⇥, with nonempty,

compact values. Notice that D⇤
F (x) is not convex. When F is a locally semiconcave

function, D⇤
F coincides with the limiting subdi↵erential @LF , namely,

D
⇤
F (x) = @LF (x) := {lim pi : pi 2 @PF (xi), lim xi = x} 8x 2 ⇥,

where @PF denotes the proximal subdi↵erential, largely used in the literature on
Lyapunov functions.

2. Degree-k control Lyapunov functions.

2.1. The main result. Let k � 1 be an integer. Throughout the whole paper
we assume that the target T ⇢ Rn is a closed set with compact boundary and that
f1, . . . , fm are vector fields belonging to C

k�1
b (⌦ \ T ) for any open, bounded subset

⌦ ⇢ Rn (see subsection 1.1).

Definition 2.1. Let us consider the family of vector fields

F (1) :=

(
f =

mX

i=1

aifi, a 2 A

)
=
�
± fi, i = 1, . . . ,m

 
.

Moreover, if k > 1 for every positive integer h such that 2  h  k, set

F (h) :=
�
B, B is a iterated Lie bracket of degree  h of f1, . . . , fm

 
.
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LYAPUNOV-LIKE FUNCTIONS DETERMINED BY LIE BRACKETS 1513

Clearly, every element of F (h) is a vector field belonging to C
k�h
b (⌦\T ) for any open,

bounded subset ⌦ ⇢ Rn. Notice that

(8) F (1) ✓ F (2) ✓ · · · ✓ F (k)
.

For every h = 1, . . . , k, let us introduce the set-valued map

F (h)(x) :=
n
X(x), X 2 F (h)

o
8x 2 Rn \ T .

Definition 2.2. For any integer 1  h  k, let us define the degree-h Hamilto-
nian H

(h)
corresponding to the control system (3) by setting

H
(h)(x, p) := inf

v2F(h)(x)

⌦
p, v

↵
8(x, p) 2 (Rn \ T )⇥ Rn

.

Under the above hypotheses the Hamiltonians H(h) are well defined and continuous.
As already mentioned in the Introduction, the degree-1 Hamiltonian H

(1) coincides
with the standard Hamiltonian:

H
(1)(x, p) = H(x, p) := inf

a2A

D
p,

mX

i=1

aifi(x)
E
.

Morever, by (8) one gets

(9) H
(k)  H

(k�1)  · · ·  H
(1)

.

Definition 2.3. We call degree-k control Lyapunov function—in short, degree-k
CLF—any continuous function U : Rn \ T ! R such that the restriction to Rn \ T is

locally semiconcave, positive definite, and proper and verifies

(10) H
(k)(x,D⇤

U(x)) < 0 8x 2 Rn \ T ,

the latter inequality meaning H
(k)(x, p) < 0 for each p 2 D

⇤
U(x).

In Theorem 2.1 below we prove that the existence of a degree-k control Lyapunov
function, k > 1, is su�cient for the system to be globally asymptotically controllable
to T (GAC to T ; see Definition 1.2), as in the classical case k = 1.

Theorem 2.1. Let us assume that for some integer k � 1, a degree-k control

Lyapunov function exists. Then system (3) is GAC to T .

We postpone the proof of Theorem 2.1 to the next section and make some general
remarks. Furthermore, we give some examples where, in particular, the distance
function is a (possibly smooth) degree-k CLF for some k > 1 and is not a degree-1
CLF.

2.2. Remarks and examples.

Remark 2.1. The regularity assumptions can be slightly weakened in some cases
by observing that, in order that certain degree-k brackets (k > 3) are defined, it is
not necessary that the vector fields are k � 1 times di↵erentiable. For instance, the
bracket [[f1, f2], [f3, f4]] is well defined as soon as the vector fields f1, f2, f3, f4 are two
times di↵erentiable.

Remark 2.2. By suitably rescaling time, one can easily generalize Theorem 2.1 to
the case when the control set A contains a ball of Rm with positive radius. By means
of linear algebraic and relaxation arguments one can also try to extend the result up
to the point of admitting sets A such that 0 is contained in the interior of the convex
hull co(A).
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1514 MONICA MOTTA AND FRANCO RAMPAZZO

Remark 2.3. It is easy to adapt Theorem 2.1 to the case when the state space
is an open set ⌦ ⇢ Rn, ⌦ � T . In fact, the thesis keeps unchanged as soon as one

requires the degree-k CLF U : ⌦ \
�
T ! R to verify all the assumptions in Definition

2.3 in ⌦, plus the following one:

9U0 2 (0,+1] : lim
x!x0, x2⌦

U(x) = U0 8x0 2 @⌦; U(x) < U0 8x 2 ⌦ \
�
T .

Remark 2.4. While the fact that U is a degree-k control Lyapunov function im-
plies that U is also a degree-k̄ control Lyapunov function for every k̄ > k, the converse
is in general false (see Example 2.1). On the other hand, coupling Theorem 2.1 with
an inverse Lyapunov result like in [S2], [Ri], it is easy to verify that the existence of a
degree-k control Lyapunov function, k > 1, implies the existence of a standard (i.e.,
degree-1) control Lyapunov function.

Remark 2.5. As in the case of standard (i.e., degree-1) CLF, the notion of degree-
k CLF is intrinsic, for vector fields, their Lie brackets, and the set of limiting gradients
D

⇤
U are chart independent. In particular the results in Theorems 2.1 and 4.1 are

fit to be extended to Riemannian manifolds (where, of course, the notion of distance
should coincide with the considered Riemannian metric). Incidentally, let us notice
that we can define the Hamiltonians H

(k) in terms of Poisson brackets.6 Indeed,
setting for every vector field X

HX(x, p) := hp,X(x)i,

one has

H
(1)(x, p) = inf

n
± hp, fii, i = 1, . . . ,m

o
= inf

n
� |Hfi(x, p)|, i = 1, . . . ,m

o
.

Moreover by utilizing the well-known identity

{HX , HY } = H[X,Y ],

we get

H
(2)(x, p) = inf

n
H

(1)(x, p),�|{Hfi , Hfj}(x, p)|, i, j = 1, . . . ,m
o
.

Similarly, we obtain

H
(3)(x, p) = inf

n
H

(2)(x, p),�|{Hfi , {Hfj , Hf`}}(x, p)|, i, j, ` = 1, . . . ,m
o

and so on for higher degrees.

Example 2.1. Consider the so-called nonholonomic integrator

ẏ = a1 f1(y) + a2 f2(y) ,

where f1 :=
@

@x1
� x2

@

@x3
, f2 :=

@

@x2
+ x1

@

@x3
.

6If H(x, p) and K(x, p) are di↵erentiable functions, the Poisson bracket {H,K} is defined by

{H,K}(x, p) :=
kX

i=1

✓
@H

@xi

@K

@pi
�

@H

@pi

@K

@xi

◆
(x, p).
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By [f1, f2] = 2
@

@x3
we get

H
(1)(x, p) = �max {|p1 � p3x2| , |p2 + p3x1|}

and
H

(2)(x, p) = �max {|p1 � p3x2| , |p2 + p3x1| , 2|p3|} .
Let T be a compact target, and let U(·) coincide with the distance d(·) from T . If there
exists a point x̄ 2 ({0}⇥ {0}⇥ R)\

�
R3\T

�
such that D⇤(U)(x)\({0}⇥{0}⇥R) 6= ;,

then H
(1)(x̄, D⇤

U(x̄)) = 0. Therefore, in this case the distance function U fails to be
a degree-1 CLF. For instance, this is the case when T = {x, | |x|  ⇢} for some ⇢ � 0.
Indeed,

H
(1)((0, 0, x3), D

⇤
U((0, 0, x3))) = 0

for all |x3| > ⇢. In fact, when ⇢ = 0, no degree-1 CLF of class C
1 exist (see [BR],

[Ri]).
Yet, U is a degree-2 CLF, for whichever compact target T . Indeed, for every

x 2 R3\T , one has |p| = 1 for all p 2 D
⇤
U(x), which implies

H
(2)(x,D⇤

U(x))  max
|p|=1

n
�max {|p1 � p3x2| , |p2 + p3x1| , 2|p3|}

o
< 0

for all x 2 R3\T . In the case when T = {x, | |x|  ⇢} for some ⇢ � 0, U is a C
1—

actually, C1—degree-2 CLF (hence, D⇤
U(x) = {rU(x)}). Furthermore, one has

(11) H
(2)(x,D⇤

U(x))  �2

3
8x 2 R3\T .

Example 2.2. Now let us consider the system

ẏ = a1 f1(y) + a2 f2(y),

where f1 :=
@

@x2
+ x

2
2
@

@x3
, f2 :=

@

@x2
+ x

2
1
@

@x3
.

Let us compute the brackets of degree less than or equal to 3:

[f1, f2](x) = 2(x1 � x2)
@

@x3
,
⇥
f1, [f1, f2]

⇤
(x) = �

⇥
f2, [f1, f2]

⇤
(x) = 2

@

@x3
.

Therefore,
H

(1)(x, p) = �max
�
|p1 + p3x

2
2| , |p2 + p3x

2
1|
 
,

H
(2)(x, p) = �max

�
|p1 + p3x

2
2| , |p2 + p3x

2
1| , 2|p3(x1 � x2)|

 
,

and

H
(3)(x, p) = �max

�
|p1 + p3x

2
2| , |p2 + p3x

2
1| , 2|p3(x1 � x2)| , 2|p3|

 
.

For simplicity let us consider only the target T = {0}. Once again, the distance
function U(x) := |x| is not a degree-1 CLF since H

(1)(x,D⇤
U(x)) = 0 for all x 2

{0}⇥ {0}⇥ (R \ {0}). U is not even a degree-2 CLF for H(2)(x,D⇤
U(x)) = 0 for all

x 2 {0}⇥ {0}⇥ (R \ {0}). However, |rU(x)| = 1 (and D
⇤
U(x) = {rU(x)}) so that

H
(3)(x,D⇤

U(x))  max
|p|=1

H
(3)(x, p) < 0,

and the distance U is a (C1) degree-3 CLF.
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1516 MONICA MOTTA AND FRANCO RAMPAZZO

Remark 2.6. The control systems in Examples 2.1 and 2.2 verify a Lie algebra
rank condition at each point.7 Hence, by the Chow–Rashevsky theorem, they are
small time locally controllable at every point x; that is, the interior of the reachable
set from x at any time contains x. Actually, with similar arguments it is not di�cult
to prove the following general fact.

Let T ⇢ Rn
be any target with compact boundary. If a system verifies the Lie

algebra rank condition at every point by means of brackets of degree  k, the distance

function d(·) from T is a degree-k CLF.

Indeed, since |p| = 1 for every p 2 D
⇤
d(x) and every x 2 Rn\T , the Lie algebra

rank condition implies that for every such x and p there must exist w 2 Fk(x) such
that hp, wi < 0.

While in the previous examples the minimum time function is finite at each point,
this is not the case for the following example, where no trajectories issuing from points
(x1, x2, x3) such that x3 6= 0 can reach the target (in finite time). Notice incidentally
that the Lie algebra rank condition is violated at each point belonging to the plane
x3 = 0.

Example 2.3. Consider the system

ẏ = a1 f1(y) + a2 f2(y) ,

where

f1 :=
@

@x1
� x2�(x3)

@

@x3
f2 :=

@

@x2
+ x1�(x3)

@

@x3
,

� : R ! [0,+1[ being a C
1 function such that �(x3) = 0 if and only if x3 = 0. By

[f1, f2](x) = 2�(x3)
@

@x3

one gets

H
(1)(x, p) = �max {|p1 � p3x2�(x3)| , |p2 + p3x1�(x3)|}

and

H
(2)(x, p) = �max {|p1 � p3x2�(x3)| , |p2 + p3x1�(x3)| , 2�(x3)|p3|} .

Let us consider again the target T = {0}. Also in this case the distance function
U(x) := |x| is not a degree-1 CLF since

H
(1)(x,D⇤

U(x)) = 0 8x 2 {0}⇥ {0}⇥ (R \ {0}),

and U is a still degree-2 CLF since

H
(2)(x,D⇤

U(x)) < 0

for all x 2 {0}⇥ {0}⇥ (R \ {0}).
Of course the fact that the Lie algebra rank condition is verified almost

everywhere—as in the previous examples—is far from being necessary for a CLF
of whatever degree to exist. In fact, a system that fails to be small time locally
controllable on large areas of its domain might not have any C

1 degree-1 CLF while
admitting a smooth degree-k CLF for some k > 1, as illustrated in the following
example.

7A system verifies the Lie algebra rank condition at x if the iterated Lie brackets linearly span
Rn.
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Example 2.4. Let ',  : [0,+1) ! [0, 1] be C
1 maps such that for any q 2 N,

'(r) = 1 if r 2 [2q, 2q + 1],
'(r) = 0 if r 2 [2q + (5/4), 2q + (7/4)];

 (r) = 1 if r 2 [2q + (7/8), 2q + (17/8)],
 (r) = 0 if r 2 [2q + (1/4), 2q + (3/4)] [ [0, (1/4)].

Let us consider the control system

ẏ = a1 f1(y) + a2 f2(y) + a3 f3(y) ,

where

f1 = '(|x|)
✓

@

@x1
� x2

@

@x3

◆
, f2 = '(|x|)

✓
@

@x2
+ x1

@

@x3

◆
,

f3 =  (|x|)
✓
x1

@

@x1
+ x2

@

@x2
+ x3

@

@x3

◆
.

Clearly the system is not small time locally controllable at every point x such that
2q + (5/4)  |x|  2q + (7/4). Let the target T coincide with the origin {0}, and,
again, let us set U(x) := d(x) = |x|. For every q 2 N one has

H
(1)(x,D⇤

U(x)) = �|x| for all x such that 2q + (5/4)  |x|  2q + (7/4).

Furthermore, H(1)(x,D⇤
U(x)) = 0 for every x such that x1 = x2 = 0 and |x3|  1 or

2q + (1/4)  |x3|  2q + (3/4), q � 1.8 However, one easily checks that

H
(2)(x,D⇤

U(x)) = � 1

|x| max {|x1 � x3x2| , |x2 + x3x1| , 2|x3|}  �2

3

for all x 2 R3 \ T so that U is a (C1) degree-2 Lyapunov function.

3. Proof of Theorem 2.1. The case when k = 1 has already been proved in
[MR], where the hypotheses are even weaker than the ones assumed here (for instance,
vector fields are allowed to be unbounded near the target). So we will always assume
k > 1: In particular, there will be a unique trajectory yx(·,↵) corresponding to an
initial condition x and a control ↵(·).

3.1. Preliminary facts. To begin with, let us point out that the 0 in the dis-
sipative relation can be replaced by a nonnegative function of U .

Proposition 3.1. Let U : Rn \ T ! R be a continuous function such that U is

locally semiconcave, positive definite, and proper on Rn \ T . Then the two conditions

below are equivalent:

(i) U verifies

(12) H
(k)(x,D⇤

U(x)) < 0

for all x 2 Rn \ T ;

8Actually, there are no C
1 degree-1 CLF, as it can be proved by noticing that the system coincides

with the nonholonomic integrator in a whole neighborhood of the target.
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1518 MONICA MOTTA AND FRANCO RAMPAZZO

(ii) for every � > 0 there exists a continuous, strictly increasing function � :
[0,+1) !: [0,+1) such that

(13) H
(k)(x,D⇤

U(x))  ��(U(x))

for all x 2 U
�1((0, 2�]).

Notice that the only nontrivial implication, namely, (i) =) (ii), is a simple con-
sequence of the upper semicontinuity of the set-valued map x 7! D

⇤
U(x) on the

compact sets U�1([u, 2�]) (u 2 (0, 2�)) and of the upper semicontinuity of H(k). For
a detailed proof, we refer the reader to [MR, Proposition 3.1].

Remark 3.1. In a good deal of literature on control Lyapunov functions, one uti-
lizes the proximal subdi↵erential @PU(x) as a nonsmooth substitute for the derivative
of U (see [CLSW]). However, the use of the set of limiting gradients D⇤

U(x) is equiv-
alent to the use of the proximal subdi↵erential. Indeed, for any locally semiconcave
function U , D⇤

U(x) coincides with the limiting subdi↵erential @LU(x) defined as

(14) @LU(x) := {lim pi : pi 2 @PU(xi), lim xi = x} for any x 2 Rn \ T

(see subsection 1.1), so the (equivalent) assertions (i), (ii) of Proposition 3.1 hold true
when @LU(x) replaces D⇤

U(x). Since @PU(x) ⇢ @LU(x), (ii) implies that
(ii)0 for � and � as above,

(15) H
(k)(x, @PU(x))  ��(U(x)) for all x 2 U

�1((0, 2�]).

In fact, by (14) and the continuity of H(k)(·) we get that the equivalence

(i) () (ii) () (ii)0.

Second, basic properties of the semiconcave functions imply the following fact
(see, e.g., [CS]).

Lemma 3.1. Let U : Rn \ T ! R be a continuous function such that U is locally

semiconcave, positive definite, and proper on Rn \ T . Then for any compact set K ⇢
Rn \ T there exist some positive constants L and ⇢ such that for any x 2 K,

9

(16)
|p|  L 8p 2 D

⇤
U(x),

U(x̂)� U(x)  hp, x̂� xi+ ⇢|x̂� x|2

for any point x̂ 2 K such that [x, x̂] ⇢ K.

Moreover, if K1,K2 ⇢ Rn \ T are compact subsets and K1 ✓ K2, we can choose

the corresponding constants L1, ⇢1 and L2, ⇢2 such that L1  L2 and ⇢1  ⇢2.

3.2. A degree-k “feedback”. Let U be a degree-k control Lyapunov function.
Correspondingly, we are introducing a notion of degree-k feedback. For a given � >

0, let � be a function as in Proposition 3.1, and let x 7! p(x) be a selection of
x 7! D

⇤
U(x) on U

�1((0, 2�]), so that

H
(k)(x, p(x))  ��(U(x)) 8x 2 U

�1((0, 2�]).

9The inequality (16) is usually formulated with the proximal superdi↵erential @P
F . However,

this does not make a di↵erence here since @
P
F = @CF = coD

⇤
F as soon as F is locally semiconcave.

Hence, (16) is true in particular for D
⇤
U .
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Definition 3.1. For a given � > 0, let �(·) and p(·) be chosen as above. A

selection

v : U�1((0, 2�]) ! Rn
, x 7! v(x) 2 F (k)(x)

is called a degree-k feedback (corresponding to U , �, �(·), and p(·)) if for every

x 2 U
�1((0, 2�]) there exists a positive integer h  k such that

(17)

8
>>>>><

>>>>>:

v(x) 2 F (h)(x),

D
p(x), v(x)

E
 ��(U(x)),

and if h > 1: H
(h�1)(x, p(x)) > ��(U(x)).

The number h will be called the degree of the feedback v at x.

Let us momentarily assume that there exists M̂ � 0 such that

(18) kfikk�1  M̂ 8i = 1, . . . ,m

in the whole set Rn\T , which, in view of the compactness of the control set A, implies
that there is M � 0 verifying

(19) kXk0  M

for any iterated bracket X in F (k). Under this assumption one can regard each vector
v(x) as a tangent vector to a curve that is a suitable composition of flows, as stated
in the following result (see, e.g., [FR1], [FR2]).

Lemma 3.2. Under assumption (18) there exists a real constant c > 0 such that

for any x 2 Rn \ T , any feedback v(·) of degree h at x, and any t > 0, one can find a

control ↵t : [0, t] ! A such that

(i) ↵t(·) is constant on intervals


jt

r
,
(j + 1)t

r

◆
, j = 0, . . . , r � 1;

(ii) the estimate

(20)

����yx(t,↵t)� x� v(x)

rh
t
h

���� 
c

rh
t
h+1

holds true, where r is an integer depending on the formal Lie bracket corre-

sponding to v(x) and is increasing with the degree.

For instance, r = 1, 4, 10 if h = 1, 2, 3, respectively. In particular, if v(x) =
[[f1, f2], f3](x) one sets

↵t(s) :=

8
>>>>>><

>>>>>>:

e1 if s 2 [0, t/10) [ [6t/10, 7t/10)
e2 if s 2 [t/10, 2t/10) [ [5t/10, 6t/10)
e3 if s 2 [4t/10, 5t/10)

� e1 if s 2 [2t/10, 3t/10) [ [8t/10, 9t/10)
� e2 if s 2 [3t/10, 4t/10) [ [7t/10, 8t/10)
� e3 if s 2 [9t/10, t).

Let us point out that one can have di↵erent r’s for feedbacks having the same degree.10

10Precisely, for each formal bracket B, the corresponding r = r(B) is defined recursively: One
sets r(B) = 1 if B has degree 1, while if B = [B1, B2] and r1 = r(B1), r2 = r(B2), one sets
r(B) := 2(r1 + r2). For instance, r([g1, g2]) = 4, r([g1, [g2, g3]]) = 10, r([g1, [g2, [g3, g4]]]) = 22, and
r([[g1, g2], [g3, g4]] = 16.
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1520 MONICA MOTTA AND FRANCO RAMPAZZO

3.3. A step of degree h  k. Now let us choose z 2 U
�1((0,�]) and a feedback

v of degree k (surely existing by (10)). Let the feedback v have degree h at z. We
shall rely on the following result.

Claim 3.1. Let us consider a degree-k CLF U , and let �, �(·) and p(·) be chosen

as above. Furthermore, let v(·) be a degree-k feedback corresponding to these data.

Then there exists a time-valued function

⌧ : (0,�]⇥ {1, . . . , k} ! (0, 1]

such that

(i) j 7! ⌧(u, j)j and j 7! ⌧(u, j)j�1
are decreasing for every u 2]0,�];

(ii) u 7! ⌧(u, j) is increasing for every j 2 {1, . . . , k};
(iii) for all z 2 U

�1((0,�]) with a feedback v(·) of degree h at z, one has

U(yz(t,↵t))� U(z)  ��(U(z))

2

✓
t

r

◆h

8t 2 [0, ⌧(U(z), h)] ,

where r and yz(·,↵t) are an integer and a trajectory associated to v(z) as in

Lemma 3.2.

Proof. Let ⌫ > 0 be such that U
�1((0, 2�]) ⇢ B

�
T ,

⌫
2

�
, and fix z 2 U

�1((0,�])
with a feedback v(·) of degree h at z. To begin with we wish to choose a time ⌧̄ such
that for any t 2 [0, ⌧̄ ],

(i) y(t) 2 B(T , ⌫) for any system’s trajectory issuing from a point of U�1((0,�]);

(ii) y
t
z(t) 2 B

⇣
z,

d(z)
2

⌘
for any trajectory y

t
z(·) := yz(·,↵t) associated to v(z) as

in Lemma 3.2.
For this purpose, it is clearly su�cient to set

⌧̄(u, j) := min

(
⌫

2M
,

j

r
d(U�1(u))

2M

)
8(u, j) 2 (0,�]⇥ {1, . . . , k}

and to choose

⌧̄ := ⌧̄(U(z), h).

Because of d(U�1(U(z)))  d(z) and (20), the distance d([z, ytz(t)]) between the
segment [z, ytz(t)] and the target T verifies

d([z, ytz(t)]) �
d(z)

2
� d(U�1(U(z)))

2

for every t 2 [0, ⌧̄ ]. For every u 2 (0,�], in relation with the compact set

K(u) :=

⇢
x :

d(U�1(u))

2
 d(x)  ⌫

�
,

let L(u) and ⇢(u) be a Lipschitz continuity and a semiconcavity constant, whose
existence is stated in Lemma 3.1. Let us set L := L(U(z)) and ⇢ := ⇢(U(z)). By (20),
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for any t 2 [0, ⌧̄ ], we get

(21)

U(ytz(t))� U(z) 
D
p(z), ytz(t)� z

E
+ ⇢
��ytz(t)� z

��2 

D
p(z),v(z)

E✓
t

r

◆h

+ |p(z)|ct
✓
t

r

◆h

+ ⇢

✓
t

r

◆2h

(M + ct)2 

��(U(z))

✓
t

r

◆h

+ |p(z)|ct
✓
t

r

◆h

+ ⇢

✓
t

r

◆2h

(M + ct)2 

 
��(U(z)) + Lct+ ⇢

✓
t

r

◆h

(M + ct)2
!✓

t

r

◆h

.

Let us observe that
�
t
r

�h  t  1 as soon as t  1. Therefore, if we define for every u

(22) ⌧̌(u) :=
�(u)

2[L(u)c+ ⇢(u)(M + c)2]

and we set

(23) ⌧(u, j) := min {1, ⌧̄(u, j), ⌧̌(u)} 8(u, j) 2 (0,�]⇥ {1, . . . , k},

we get

Lct+ ⇢

✓
t

r

◆h

(M + ct)2  t[Lc+ ⇢(M + c)2]  �(U(z))

2

as soon as t 2 [0, ⌧ ], ⌧ := ⌧(U(z), h).
Therefore, with this choice of ⌧ we obtain

(24) U(ytz(t))� U(z)  ��(U(z))

2

✓
t

r

◆h

8t 2 [0, ⌧ ].

Moreover, u 7! ⌧(u, j) is increasing for every j: indeed, by Lemma 3.1, the constants
L(u) and ⇢(u) turn out to be decreasing in u. Finally, the fact that j 7! ⌧(u, j)j and
j 7! ⌧(u, j)j�1 are decreasing is an easy consequence of the definition of ⌧(u, j) in
(23). The claim is now proved.

3.4. Piecewise C1
trajectories approaching the target. Now let us de-

fine recursively a sequence of times (tj)j�0 of trajectory-control pairs (yj(·),↵j(·)) :
[sj�1, sj ] ! Rn ⇥A, j � 1, s0 := 0, sj := sj�1 + ti, and points xj as follows:

• t0 := s0 = 0, x1 := x ;
• if j � 1, tj := ⌧(U(xj), hj), where hj is the degree of the feedback v at xj

and ⌧(·, ·) is as in Claim 3.1;
• (y1,↵1) : [s0, s1] ! Rn⇥A is the trajectory-control pair defined as (y1,↵1) :=
(yt1x1

,↵t1);
• for every j > 1, yj(sj�1) := yj�1(sj�1) := xj , and the pair (yj(·),↵j(·)) :

[sj�1, sj ] ! Rn ⇥ A is given by (yj ,↵j) := (y
tj
xj ,↵tj )(s � sj�1) for every

s 2 [sj�1, sj ].
Let us consider the real sequence

uj := U(xj) j 2 N,
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1522 MONICA MOTTA AND FRANCO RAMPAZZO

and let us show that

lim
j!1

uj = 0.

Indeed, the degree hj of the feedback v at every xj is bounded by k. Moreover, if we
use rj to denote the positive integer appearing in formula (20) in relation with the
feedback v at xj , we get

r
hj

j  (r(k))k

if we set

r(k) := max{rj , j 2 N}11.

Therefore, by Claim 3.1 we obtain

(25)

uj+1 � uj = U(xj+1)� U(xj)  ��(uj)
2

⇣
⌧(uj ,hj)

rj

⌘hj

 ��(uj)
2

⇣
⌧(uj ,k)
r(k)

⌘k
< 0

for all j � 1. Hence, the sequence (uj) is positive and decreasing, so there exists the
limit

lim
j!1

uj = ⌘ � 0.

Let us show that ⌘ = 0. If, on the contrary, ⌘ were strictly positive, by Claim 3.1 one
would have limj!1 ⌧(uj , k) � ⌧(⌘, k) > 0. Hence, taking the limit in (25) one would
obtain

0 = ⌘ � ⌘  � lim
j!1

�(uj)⌧k(uj , k)

2(r(k))k
 ��(⌘)⌧

k(⌘, k)

2(r(k))k
< 0,

a contradiction. Therefore,

lim
j!1

U(xj) = lim
j!1

uj = 0.

Hence, setting

S := lim
j!1

sj =
1X

i=1

ti

and

(y,↵)(s) := (yj ,↵j)(s) 8j � 1, 8s 2 [sj�1, sj ],

one finds that

lim
j!1

d (y(sj)) = 0.

Actually, the stronger limit relation

lim
s!S�

d (y(s)) = 0

holds, as it follows from the construction of the function � below.

11This maximum clearly exists and depends (monotonically) on k. For instance, r(2) = 4, r(3) =
10, r(4) = max{22, 16} = 22.
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3.5. Construction of a bounding KL function. In order to conclude the
proof that the system is GAC to T , we have to establish the existence of a KL

function � such that d(y(s))  �(d(y(0)), s) for every s � 0, as in Definition 1.2.

By Claim 3.1, for any tj = ⌧(uj , hj), one has t
hj�1
j � ⌧

k�1(uj , k). Moreover, as

already remarked, (rj)hj  (r(k))k (recall that we are using rj to denote the positive
integer appearing in formula (20) in relation with the feedback v at xj) . Hence, for
any j � 1, we have

U(yj(sj))� U(yj(sj�1)) = uj+1 � uj

 ��(uj)
2

⇣
tj
rj

⌘hj

 ��(uj)⌧
k�1(uj ,k)

2(r(k))k tj .

Let us define the function �̃ : (0,�] ! R by setting

(26) �̃(u) :=
�(u) ⌧k�1(u, k)

2(r(k))k
.

Clearly, by the monotonicity of u 7! ⌧(u, k), �̃ is (positive and) strictly increasing.
Therefore, since U(y(sj))  U(y(si)) for every i = 1, . . . , j, we get

U(y(sj))� U(z) = [U(y(sj))� U(y(sj�1))] + [U(y(sj�1))� U(y(sj�2))] + . . .

+[U(y(s1))� U(y(0))]  �
Pj

i=1 �̃(U(y(si))) [si � si�1]  ��̃(U(y(sj))) sj .

In particular, we have

(27) U(y(sj)) + �̃(U(y(sj))) sj  U(z) .

We now replace the function �̃ with the slightly di↵erent function �̂ : [0,+1) !
[0,+1) defined by �̂(u)

.
= min{u, �̃(u)} for all u 2 [0,+1). Notice that �̂ is con-

tinuous and strictly increasing and �̂(u) > 0 8u > 0, �̂(0) = 0. Then for any
j � 1,

�̂(U(y(sj)))(1 + sj)  U(z),

so that

(28) U(y(sj))  �̂
�1

✓
U(z)

1 + sj

◆
.

Let ��, �+ : [0,+1) ! [0,+1) be the continuous, strictly increasing, unbounded
functions defined by

(29) ��(u)
.
= min{d(x) : U(x) � u}, �+(u)

.
= max{d(x) : U(x)  u},

and let us set �̂�(u) := min{��(u), u}. Notice that �̂�(0) = �
+(0) = 0 and

�̂�(U(x))  d(x)  �
+(U(x))

8x 2 U
�1((0,�]). Therefore, setting

(30) �̂(�, s) := �+ � �̂�1

 
�̂
�1
� (�)

1 + s

!
8(�, s) 2 [0,+1)⇥ [0,+1),
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1524 MONICA MOTTA AND FRANCO RAMPAZZO

by (28) we get

(31) d(y(sj))  �+ (U(y(sj))  �+

✓
�̂
�1

✓
U(z)

1 + sj

◆◆
 �̂(d(z), sj)

for every j � 1. The estimate (31) says that the function �̂ bounds the distance of
the trajectory y(·) from the target T at the discrete times sj . Hence, in order to

get a bound at all times, we need to slightly modify �̂. For this purpose, given any
x 2 Rn \ T , let us select a point ⇡(x) 2 T such that d(x) = |x � ⇡(x)|. Notice that
for any s 2 [sj , sj+1], one has

d(y(s))  |y(s)� ⇡(y(sj))|  |y(s)� y(sj)|+ |y(sj)� ⇡(y(sj))|

 M [sj+1 � sj ] + d(y(sj)).

Furthermore, by the definition of ⌧ (see Claim 3.1) it follows that

(32) sj+1 � sj = tj+1  ⌧(uj+1, k)  ⌧(��1
� (d(y(sj))), k).

Therefore,

d(y(s))  M⌧(��1
� (d(y(sj))), k) + d(y(sj))

 M⌧(��1
� (�̂(d(z), sj)), k) + �̂(d(z), sj) .

Since for all � the function s 7! �̂(�, s) is decreasing, one obtains

d(y(s))  �(d(z), s) 8s 2 [0,+1[,

where we have set for all s 2
⇥
0, ⌧(��1

� (�), k)
⇤

�(�, s) := M⌧(��1
� (�̂(�, 0)), k) + �̂(�, 0)

and, if s > ⌧(��1
� (�), k),

�(�, s) := M⌧(��1
� (�̂(�, s� ⌧(��1

� (�), k))), k) + �̂(�, s� ⌧(��1
� (�), k)).

3.6. Removal of the fictitious Ck�1
-bound. Let us see now that, by means

of a cuto↵ argument, we can remove the auxiliary boundedness hypothesis (19). Let
 : Rn ! [0, 1] be a C

1 map such that

(33)  = 1 on B(T , ⌫) \ T ,  = 0 on Rn\B(T , 2⌫),

and consider the control system

(34) ⇠
0 =

mX

i=1

ai ( fi(⇠)) .

Notice that the functions ( fi) belong to C
k�1
b (Rn\T ) because of the cuto↵ factor  .

Moreover, any trajectory ⇠(·) of (34) with the initial condition z 2 U
�1((0,�]) exists

globally and cannot exit the compact set B(T , 2⌫) \ T . Owing to the previous step,
there exists a trajectory ⇠ which approaches asymptotically the target and verifies
d(⇠(s))  �(d(z), s) 8s 2 [0,+1[. Moreover, ⇠(s) belongs to B(T , ⌫) for every
s � 0. Therefore, ⇠ is a solution of the original system, proving that (3) has the GAC
property in U

�1((0,�]).
By the arbitrariness of � > 0, it is easy to extend these constructions from

U
�1((0,�]) to the whole set Rn \ T . This concludes the proof of Theorem 2.1.
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LYAPUNOV-LIKE FUNCTIONS DETERMINED BY LIE BRACKETS 1525

4. The case of nonsmooth dynamics. Let us begin with an example where
the vector fields are not C1.

Example 4.1. Let us consider the system

(35) ẏ = a1 f1(y) + a2 f2(y) ,

where

f1 :=
@

@x1
+ (|x2|� 2x2)

@

@x3
, f2 :=

@

@x2
+ (|x1|+ 2x1)

@

@x3
,

and let the target T coincide with the origin. For the same reason as in the
nonholonomic integrator, a smooth degree-1 CLF does not exist (see Example 2.1).
On the other hand, the given notion of degree-2 control Lyapunov function is not even
meaningful here in that the classical bracket [f1, f2] is not defined at points x such
that x1 = 0 or x2 = 0. Yet, in the open, dense set {x : x1 6= 0, x2 6= 0}, the bracket
is well defined, and, furthermore, the Lie algebra rank condition is verified. So it is
reasonable to look for a Lyapunov-like condition involving somehow Lie brackets.

On the one hand, in the definition of degree-k CLF, one requires the vector fields
f1, . . . , fm to be of class Ck�1 (see also Remark 2.1), for this guarantees that the Lie
brackets up to the degree k are well defined and continuous. On the other hand, as
remarked in the Introduction, the nonsmoothness of a degree-1 CLF is more related
to a shortage of the dynamics’ directions than to the regularity of the involved vector
fields.

Let us introduce the notion of set-valued bracket for locally Lipschitz vector fields.

Definition 4.1 ([RS1]). Let ⌦ ⇢ Rn
be an open set, and let f , g be vector fields

belonging to C
0,1(⌦). For every x 2 ⌦, let us set

[f, g]set(x) :=

co

n
v 2 Rn

, v = limxn!x[f, g](xn) (xn)n2N ⇢ DIFF (f) \DIFF (g)
o
,

where co means “convex hull” and DIFF (f), DIFF (g) denote the subsets of di↵er-

entiability points of f and g, respectively. Let us observe that DIFF (f) and DIFF (g)
have full measure; hence, they are dense in ⌦.

Notice that, as in the regular case, one has [f, f ]set(x) = {0} and
[f, g]set(x) = �[g, f ]set(x) for every x 2 ⌦ (for any E ⇢ Rn we use the notation
�E = {�v : v 2 E}).

Let us consider the control system

(36)

8
>><

>>:

ẏ =
X

i=1,...,m

ai fi(y)

y(0) = x 2 Rn \ T ,

and let us assume that f1, . . . , fm belong to C
0,1
b (⌦ \ T ) for any bounded, open set

⌦ ⇢ Rn (see subsection 1.1).
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1526 MONICA MOTTA AND FRANCO RAMPAZZO

The families F (1) and F (2) are formally defined as in the regular (i.e., C1) case,
except that their elements are set-valued vector fields:12

F (1) :=
n
{f`(·)} , {�f`(·)} : ` = 1, . . . ,m

o

and
F (2) := F (1) [

n
[fi, fj ]set(·) : i, j = 1, . . . ,m

o
.

As in the regular case, for every x 2 Rn \ T , we set

F (1)(x) :=
n
{f`(x)} , {�f`(x)} : ` = 1, . . . ,m

o

and
F (2)(x) := F (1)(x) [

n
[fi, fj ]set(x) : i, j = 1, . . . ,m

o
.

Accordingly, for h = 1, 2, we define the degree-h Hamiltonian H
(h) by setting

H
(h)(x, p) := inf

v2F(h)(x)
sup
w2v

D
p, w

E

for all (x, p) 2 (Rn \ T )⇥ Rn. More explicitly, one has

H
(1)(x, p) = inf

�
�
��⌦p, f`(x)

↵�� : ` = 1, . . . ,m
 

and

H
(2)(x, p) = inf

`,i,j

(
�
��⌦p, f`(x)

↵�� , sup
w2[fi,fj ]set(x)

⌦
p, w

↵
: `, i, j = 1, . . . ,m

)
.

We can now state for the case k = 2 a generalization of Theorem 2.1 to the
nonsmooth case.

Theorem 4.1. Let us assume that a degree-2 control Lyapunov function exists.

Then system (36) is GAC to T .

Example 4.1 (continued). Let us come back to the system in (35) and compute
the bracket [f1, f2]set. It turns out that

[f1, f2]set(x) = I(x)
@

@x3
,

where

I(x) :=

8
>>>>>><

>>>>>>:

{4} if x1x2 > 0,
{2} if x1 < 0 and x2 > 0,
{6} if x1 > 0 and x2 < 0,
[2, 4] if either x1 = 0 and x2 > 0 or x1 < 0 and x2 = 0,
[4, 6] if either x1 = 0 and x2 < 0 or x1 > 0 and x2 = 0,
[2, 6] if x1 = x2 = 0.

12F(1) practically coincides with the one in the regular case, for its elements are set-valued maps
which are singletons, indeed.
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The distance function U(x) = |x| is not a degree-1 CLF. Indeed, by

H
(1)(x, p) = inf

n
� |p1 + p3(|x2|� 2x2)| , �|p2 + p3(|x1|+ 2x1)|

o
,

one obtains
H

(1)
�
(0, 0, x3), DU(0, 0, x3)

�
= 0 for every x3 6= 0.

Yet, the distance function U happens to be a (C1) degree-2 CLF. Indeed,

H
(2)(x, p) = inf

n
H

(1)(x, p) , supw2I(x) w p3 , supw2�I(x) w p3

o
=

� sup
n
|p1 + p3(|x2|� 2x2)| , |p2 + p3(|x1|+ 2x1)| , 2|p3|

o
,

and since |DU(x)| = 1 for every x 6= 0, one gets

(37) H
(2)
�
x,DU(x)

�
< 0.

Notice that for the validity of the strict inequality in (37), it is crucial that 0 /2
[f1, f2]set(x) for every x 6= 0. Furthermore, arguing as in Remark 2.4, we know that
a (possibly nonsmooth) degree-1 CLF does exist. Actually, the function

U(x) = max
nq

x
2
1 + x

2
2, |x3|�

q
x
2
1 + x

2
2

o

introduced in [Ri] as a control Lyapunov function for the nonholonomic integrator is
a degree-1 CLFalso for this system.

4.1. Proof of Theorem 4.1. The proof is akin to the proof of Theorem 2.1.
Yet, because of the new kind of brackets and Hamiltonians here involved, some changes
are needed.

As in the regular case, the 0 in the dissipative relation can be replaced by a
nonnegative function of U :

Proposition 4.1. Let U : Rn \ T ! R be a continuous function, such that U is

locally semiconcave, positive definite, and proper on Rn \ T . Then the conditions (i)
and (ii) below are equivalent:

(i) U verifies

H
(2)(x,D⇤

U(x)) < 0 for all x 2 Rn \ T ;

(ii) for every � > 0 there exists a continuous, strictly increasing function � :
[0,+1) !: [0,+1) such that

H
(2)(x,D⇤

U(x))  ��(U(x)) for all x 2 U
�1((0, 2�]).

Proof. By [RS1], for every i, j, the set-valued map x 7! [fi, gj ]set(x) is upper
semicontinuous, with compact, convex values. Moreover, basic results on marginal
functions imply that (x, p) 7! supw2[fi,gj ]set(x)

⌦
p, w

↵
is upper semicontinuous (see,

e.g., [AC]). As an easy consequence, the Hamiltonian

(x, p) 7! H
(2)(x, p)

turns out to be upper semicontinuous. At this point one can conclude, arguing exactly
as in Proposition 3.1.
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1528 MONICA MOTTA AND FRANCO RAMPAZZO

We now need to adapt the notion of degree-2 feedback to the case when Lie
brackets are set-valued. For a given � > 0, let � be a function as in Proposition 4.1,
and let x 7! p(x) be a selection of x 7! D

⇤
U(x) on U

�1((0, 2�]), so that

H
(2)(x, p(x))  ��(U(x)) 8x 2 U

�1((0, 2�]).

Definition 4.2. For a given � > 0, let �(·) and p(·) be chosen as above. A

selection

v : U�1((0, 2�]) ! 2R
n

, x 7! v(x) 2 F (2)(x)

is called a degree-2 feedback (corresponding to U , �, �, and p(·)) if for every x 2
U

�1((0, 2�]) there exists h 2 {1, 2} such that

(38)

8
>>>>>><

>>>>>>:

v(x) 2 F (h)(x),

sup
w2v(x)

D
p(x), w

E
 ��(U(x)),

and, if h = 2, H
(1)(x, p(x)) > ��(U(x)).

The number h will be called the degree of the feedback v at x.

More explicitly, when h = 1 for some ` = 1, . . . ,m, one has
8
><

>:

v(x) = {f`(x)} or v(x) = �{f`(x)}

�
���
D
p(x), f`(x)

E���  ��(U(x));

if h = 2 for some i, j = 1, . . . ,m (i 6= j), one has
8
>>>>><

>>>>>:

v(x) = [fi, fj ]set(x),

D
p(x), w

E
 ��(U(x)) 8w 2 [fi, fj ]set(x),

and H
(1)(x, p(x)) > ��(U(x)).

The following claim is a version of Claim 3.1 adapted to the set-valued notion of
feedback.

Claim 4.1. Let U(·), �, �(·), and p(·) as above. Furthermore, let v(·) be a (set-

valued) degree-2 feedback corresponding to these data. Then there exists a time-valued

function

⌧ : (0,�]⇥ {1, 2} ! (0, 1]

such that

(i) j 7! ⌧(u, j)j and j 7! ⌧(u, j)j�1
are decreasing for every u 2 (0,�];

(ii) u 7! ⌧(u, j) is increasing for every j 2 {1, 2};
(iii) for all z 2 U

�1((0,�]) with a feedback v(·) of degree h at z, one has

U(yz(t,↵t))� U(z)  ��(U(z))

2

✓
t

r

◆h

8t 2 [0, ⌧(U(z), h)] ,

where r and yz(·,↵t) are an integer and a trajectory associated to v(z) ac-

cording to Lemma 4.1.
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The proof of Claim 3.1 was based on the asymptotic formulas stated in Lemma
3.2. Similarly, Claim 4.1 results proved as soon as one applies the asymptotic formula
stated in Lemma 4.1 below. Precisely, once arrived to formula (21), one simply
replaces estimate (20) with (44) and observes that, by the definition of H

(2), the

inequality
D
p(z), w

E
 ��(U(z)) is verified for all w 2 [fi, fj ]set(z) (see Definition

4.2).

Lemma 4.1 ([RS2], [FR2]). If f1, . . . , fm 2 C
0,1
b (Rn \ T ), there exists a constant

c > 0 such that for any x 2 Rn \ T , any feedback v(x) = [fi, fj ]set(x), and any t > 0,
setting

↵t(s) = ei�[0,t/4[(s) + ej�[t/4,t/2[(s)� ei�[t/2,3t/4[(s)� ej�[3t/4,t](s), s 2 [0, t],

the estimate

(39) d

✓
yx(t,↵t)� x , [fi, fj ]set(x)

t
2

16

◆
 c

16
t
3

holds true. In particular, for any t > 0 there exists some w(t) 2 v(x) such that

(40)

����yx(t,↵t)� x� w(t)
t
2

16

���� 
c

16
t
3
.

Let us point out that Claim 3.1 is the starting point for the construction of an
admissible trajectory-control pair by means of the recursive procedure described in
the proof of Theorem 2.1. Through exactly the same arguments and in view of Claim
4.1, the proof of Theorem 4.1 can now be completed.

5. Concluding remarks.

5.1. Feedback constructions. Degree-1 control Lyapunov functions are used
as a primary ingredient for the construction of feedback stabilizing strategies, a clas-
sical question that is mainly concerned with the definition of an appropriate notion
of solution for discontinuous ODEs (see, e.g., [CLSS], [CLRS], [MaRS], [AB]).

It might be interesting to associate some concept of feedback strategy also in
relation with a degree-k control Lyapunov function, k > 1, all the more so as it may
happen to be smoother than the degree-1 CLF. As a matter of fact, the proofs of
Theorems 2.1 and 4.1 seem to suggest a notion of “feedback” such that, depending on
which bracket minimizes the Hamiltonian H

(k), singles out a suitable finite sequence
of constant controls to be implemented along small time intervals. As for the feedback
issue, see also Remark 5.1 below.

5.2. Degree-k CLF as viscosity supersolutions. One is obviously tempted
to refer to a degree-k control Lyapunov function as a strict supersolution of the
Hamilton–Jacobi equation

�H
(k)(x,DU(x)) = 0.

Actually, this holds true as soon as we consider, for instance, the notion of viscosity
solution. More precisely, one has the following.

Let U : Rn \ T ! R be a continuous function which, furthermore, is locally

semiconcave, positive, and proper on Rn \ T . Then U is a degree-k control Lyapunov

function if and only for any N > 0 there is some continuous, strictly increasing
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function � : [0,+1) ! [0,+1) such that U is a viscosity supersolution
13

of

(41) �H
(k)(x,DU(x)) = �(U(x)) in U

�1((0, N)).

Indeed, in the case of a locally semiconcave function U , at every x 2 DIFF (U) the
subdi↵erential D�

U(x) = {rU(x)} coincides with D
⇤
U(x), while D

�
U(x) is empty

if x /2 D
�
U(x). Therefore, thanks to Proposition 3.1, (41) follows from the inequality

(42) H
(k)(x,D⇤

U(x)) < 0,

which defines the notion of degree-k CLF. To obtain the converse implication for any
x 2 U

�1((0, N)) and p 2 D
⇤
U(x), let (xn)n ⇢ U

�1((0, N))\ DIFF (U) be such that
limn(xn,rU(xn)) = (x, p). Then, by hypothesis (41), one has

�H
(k) (xn,rU(xn)) � �(U(xn)) 8n 2 N,

so, passing to the limit, one gets (42).

5.3. Generalizations to larger classes of systems. As it is well known, the
lack of symmetry poses nontrivial problems for controllability. The same kind of
di�culty is therefore encountered in the attempt to define a reasonable notion of
degree-k CLF for systems

(43)

8
>><

>>:

ẏ = f0(y) +
X

i=1,...,m

aifi(y)

y(0) = x 2 Rn\T

a 2 {0,±e1, . . . , em}

having a nonzero drift f0. Let us assume that f0, . . . , fm belong to C
1
b (⌦ \ T ) for any

open, bounded set ⌦ ⇢ Rn.
Let us examine the case k = 2. Intuition coming from controllability literature

suggests that a notion of degree-2 control Lyapunov function should be shaped in
such a way that it would be allowed to violate the standard dissipative inequality
only at the points where the drift f0 vanishes. Accordingly, let us redefine the classes
of vector fields

F (1) :=
n
f0, f0 � fi, f0 + fi i = 1 . . . ,m

o
,

F (2) := F (1) [
n
± [f0, fi] · �{f0=0}, [fj , f`] · �{f0=0} i, j, ` = 1 . . . ,m

o

and the Hamiltonians

H
(h)(x, p) := inf

g2F(h)(x)

⌦
p, g

↵
h = 1, 2.

Accordingly, one might call degree-2 control Lyapunov function any continuous func-
tion U : Rn\T ! R such that its restriction to Rn\T is locally semiconcave, positive
definite and proper and verifies

H
(2)(x,D⇤

U(x)) < 0 8x 2 Rn\T .

In particular, U is a degree-2 CLF if, at each point x 2 Rn\T , either

min
n
hD⇤U(x), f0(x)i, hD⇤U(x), (f0 � fi)(x)i, hD⇤U(x), (f0 + fj)(x)i, i, j = 1, . . . ,m

o
< 0

13Namely, �H
(k)(x, p) � �(U(x)) for all x 2 Rn \ T and p in the subgradient DU

�(x) of U at x

(see [BCD]).
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or
8
><

>:

f0(x) = 0,

min
n
� |hD⇤U(x), [f0, fi](x)i|,�|hD⇤U(x), [fj , f`(x)i| i, j, ` = 1, . . . ,m

o
< 0.

With these settings, we get the following result.

Theorem 5.1. Let a degree-2 control Lyapunov function exist. Then system (43)
is GAC to T .

A proof of this result can be deduced by first observing that Lemma 3.2 has a
counterpart in an asymptotic formula for brackets of the form [f0, fi], [fj , f`] valid at
all points x where f0(x) = 0. Precisely, through standard Taylor expansions one can
prove the following result.

Lemma 5.1. If f0, f1, . . . , fm 2 C
1
b (Rn \ T ), there exists a constant c > 0 such

that for any x 2 Rn \ T where f0(x) = 0, any j = 1, . . . ,m, and any t > 0, the

following estimates hold true:

(44) d

✓
yx(t,↵t)� x , [f0, fi](x)

t
2

4

◆
 c

4
t
3 8s 2 [0, t]

with

↵t(s) := ei�[0,t/2[(s)� ei�[t/2,t[(s);

(45) d

✓
yx(t, ↵̂t)� x , [fi, f0](x)

t
2

4

◆
 c

4
t
3 8s 2 [0, t]

with

↵̂t(s) := �ei�[0,t/2[(s) + ei�[t/2,t[(s);

and

(46) d

✓
yx(t, ↵̃t)� x , [fj , f`](x)

t
2

16

◆
 c

16
t
3
, s 2 [0, t]

with

↵̃t(s) = ej�[0,t/4[(s) + e`�[t/4,t/2[(s)� ej�[t/2,3t/4[(s)� e`�[3t/4,t](s).

Hence, provided one gives a (obvious) notion of degree-2 feedback at the points x

where f0(x) = 0, the proof of Theorem 5.1 can be easily achieved by means of the
same arguments as in the proof of Theorem 2.1.

Example 5.1. Consider the so-called soft landing problem, ẏ1 = y2 , ẏ2 = a,
a 2 {0,�1, 1}, T = {(0, 0)}. The distance function U(x) = |x|—as well as |x|↵,
↵ > 1—fails to be a degree-1 CLF (because the required inequality is not strict on the
x1 axis). However, U(x) is a degree-2 CLF.

A reasonable and useful notion of degree-k CLF can be likely given for the general
case k � 1 provided that only suitable subsets of brackets are allowed.14

14For instance, one can consider “good” brackets (see, e.g., [Co]), of which [f0, fi], [fj , f`] are
degree-2 instances. Among degree-3 brackets, [f0, [f0, fi]] is good for every i = 1, . . . ,m, while
[f0, [fj , f`]] is not good for all j, ` = 1, . . . ,m.
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Remark 5.1. An interesting line of research in the case of systems with drift
can be found, e.g., in [MTT], [T], [TT]. In particular, in [TT, Proposition 3] a
general hypothesis—akin to the one considered in Theorem 5.1 above in the special
case of degree-2 control Lyapunov functions—is shown to imply not only asymptotic
controllability but also some forms of feedback stabilizability. Actually, it might be
interesting to extend such notions to the case of a general target T and investigate
the relation with our results on GAC to T , which are based on the construction of a
rate function �. Let us remark that, in the quoted papers, Lyapunov-like functions
are always assumed to be regular. Therefore, such an extension should address the
regularity issue, the results of which are unavoidable because of both the target-shape
issue and the “direction-shortage” argument mentioned in the Introduction.

5.4. Generalization to unbounded closed targets. Theorem 2.1 can be
adapted to the case of a closed target set T with unbounded boundary. This requires
some care, for in the proof of Theorem 2.1 one crucially relies on both the properness
of the function U and the fact that U is uniformly Lipschitz and semiconcave on the
level strata U

�1([⌘1, ⌘2]), ⌘1 > 0.
To begin with, for every closed set C, let us introduce the notion of near-C

Lipschitz-semiconcavity.

Definition 5.1. Let U : Rn \ C ! R be a locally semiconcave function. We say

that U is near-C Lipschitz-semiconcave if for all ⌫1, ⌫2 2 R such that ⌫2 > ⌫1 > 0,
there exist some constants L > 0 and ⇢ > 0 such that

(47)
|p|  L 8p 2 D

⇤
U(x),

U(x̂)� U(x)  hp, x̂� xi+ ⇢|x̂� x|2

for all x, x̂ 2 K such that [x, x̂] ⇢ K, where we have set

K := {x 2 ⌦ : ⌫1  d(x)  ⌫2}.
Let us remark that if d denotes the distance function from a closed set C, then

d is near-C Lipschitz-semiconcave (with L = 1 and ⇢ = 1/⌫1). Moreover, if the set
C has compact boundary, in view of Lemma 3.1, a map U : Rn \ C ! R is near-C
Lipschitz-semiconcave if (and only if) it is locally semiconcave on Rn \ C.

In Theorem 5.2 below we replace the properness assumption of Theorem 2.1
with hypothesis (ii). Moreover, the uniform degree-k Lyapunov relation is directly
assumed in (iii) (while in the bounded case it was a consequence of the simple degree-k
Lyapunov relation).

Theorem 5.2. Assume that for some k � 1, the vector fields f1, . . . , fn and their

derivatives up to the order k are globally bounded and there exists a continuous func-

tion U : Rn \ T ! R such that

(i) the restriction of U to Rn \ T is near-T Lipschitz-semiconcave and positive

definite;

(ii) there is a continuous, strictly increasing, surjective function

⌘ : [0,+1) ! [0,+1) such that

U(x) � ⌘(d(x)) 8x 2 Rn \ T ;

(iii) for every � > 0 there is a continuous, strictly increasing function

� : [0,+1) ! [0,+1) such that

H
(k)(x,D⇤

U(x))  ��(U(x)) for all x 2 U
�1((0, 2�]).

Then system (3) is GAC to T .
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