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ABSTRACT: Dimuon and dielectron mass spectra, obtained from data resulting from proton-
proton collisions at 8 TeV and recorded by the CMS experiment, are used to search for both
narrow resonances and broad deviations from standard model predictions. The data corre-
spond to an integrated luminosity of 20.6 (19.7) fb~! for the dimuon (dielectron) channel.
No evidence for non-standard-model physics is observed and 95% confidence level lim-
its are set on parameters from a number of new physics models. The narrow resonance
analyses exclude a Sequential Standard Model Zg,, resonance lighter than 2.90 TeV, a
superstring-inspired Ziﬁ lighter than 2.57 TeV, and Randall-Sundrum Kaluza-Klein gravi-
tons with masses below 2.73, 2.35, and 1.27 TeV for couplings of 0.10, 0.05, and 0.01, re-
spectively. A notable feature is that the limits have been calculated in a model-independent
way to enable straightforward reinterpretation in any model predicting a resonance struc-
ture. The observed events are also interpreted within the framework of two non-resonant
analyses: one based on a large extra dimensions model and one based on a quark and
lepton compositeness model with a left-left isoscalar contact interaction. Lower limits are
established on Mg, the scale characterizing the onset of quantum gravity, which range from
4.9 to 3.3 TeV, where the number of additional spatial dimensions varies from 3 to 7. Sim-
ilarly, lower limits on A, the energy scale parameter for the contact interaction, are found
to be 12.0 (15.2) TeV for destructive (constructive) interference in the dimuon channel and
13.5 (18.3) TeV in the dielectron channel.
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Introduction

This paper describes a general investigation for evidence of physics beyond the standard

model (SM) using the dilepton (dimuon and dielectron) invariant mass spectra obtained
from /s = 8 TeV proton-proton (pp) collision data collected by the CMS detector at the

CERN LHC [1].

The analyses include searches both for new narrow resonances and for

deviations from SM expectations at high invariant mass values that do not result in a

resonance structure.



Numerous new physics models predict the existence of narrow resonances at the TeV
mass scale. The approach described in this paper is designed to be independent of specific
model assumptions, allowing the results to be reinterpreted for any model predicting a
spin-1 or spin-2 narrow resonance. A generic resonance is denoted by Z’ in this paper;
wherever a specific model is implied a subscript is used to specify the model. The search
results are interpreted in the context of various models: the Sequential Standard Model
Zggyy with SM-like couplings (2], the Zéb possible in grand unified theories where the gauge
group is Eg [3, 4], and Kaluza-Klein graviton (Gkk) excitations arising in the Randall-
Sundrum (RS) model of extra dimensions [5, 6]. For a resonance mass of 2.5TeV, the
widths of the Zgg); and Z;; are 80 and 14 GeV. Similarly, the Gk widths are 3.5, 9.0, and
35GeV for Ggk coupling parameters k/Mp; of 0.01, 0.05, and 0.10, where k is the warp
factor of n-dimensional anti-de Sitter space and Mp; is the reduced Planck scale.

Non-resonant deviations from the SM are interpreted within two frameworks: the (1)
Arkani-Hamed-Dimopoulos-Dvali (ADD) model [7, 8], where possible enhancements in the
high invariant mass cross section are due to virtual graviton-mediated processes, and (2)
contact interactions, specifically the left-left isoscalar model [9], where possible deviations
are due to quark and lepton substructures.

In the ADD model, three possible parametrizations of the differential cross section
are given by Hewett [10], Han, Lykken, Zhang (HLZ) [11], and Giudice, Rattazzi, Wells
(GRW) [12]. In the HLZ convention, the parameters that define the characteristics of the
model are the ultraviolet cutoff scale of the divergent sum of the KK graviton excitations
Mg, which characterizes the onset of quantum gravity effects [13], and the number of extra
spatial dimensions ngp. These can be related to the similar ultraviolet cutoff scale At in
the GRW convention:

2
M4 (%) = 2;
Arf4 _ S 0og M222 , TNED (11)

where My, is the dilepton invariant mass. The HLZ and GRW conventions are based on
effective field theory, which is expected to break down at the energy scale My, at which
quantum gravity effects become strong, i.e. close to Mg (HLZ) or Ay (GRW). In this
analysis, when presenting results in the HLZ (GRW) convention it is assumed that Max
is equal to Mg (Ar). The results do not depend strongly on the exact choice of My for
a broad range of Mpyax values around the chosen cutoff scale [14].

The data are also interpreted in the context of possible contact interactions (CI). The
existence of three families of quarks and leptons might be explained if these particles are
composed of more fundamental constituents. In order to confine the constituents and to
account for the properties of quarks and leptons, a new strong gauge interaction, meta-
color, is introduced. Below a given interaction energy scale A, the effect of the metacolor
interaction is to bind the constituents into metacolor-singlet states. For parton-parton
centre-of-mass energies less than A, the metacolor force will manifest itself in the form of a
flavour-diagonal CI [15]. The model considered here is the left-left isoscalar model, which
is the conventional benchmark for CI in the dilepton channel. The predicted differential



cross section includes an interference term, which may be positive or negative, and the
measurements are interpreted in the context of both possibilities.

Results of searches for narrow Z' — ¢T¢~ (¢ = p,e) resonances in pp collision data have
previously been reported by the ATLAS and CMS Collaborations [16, 17]. The CDF and
DO Collaborations have published results based on a pp collision sample at /s = 1.96 TeV
and ~5fb~! of integrated luminosity [18-23]. Similarly, there are recent limits from the
LHC on the ADD [14, 24] and CI [24-28] model parameters in dilepton channels.

The results presented in this paper are obtained from an analysis of a data sample col-
lected in 2012 at /s = 8 TeV, corresponding to an integrated luminosity of 20.6 (19.7) fb~*
for the dimuon (dielectron) channel. The data used have been processed with the most
recent calibration and alignment constants for all detector elements.

2 The CMS detector

The central feature of the CMS detector is a superconducting solenoid providing an axial
magnetic field of 3.8 T and enclosing the all-silicon inner tracker, the crystal electromag-
netic calorimeter (ECAL), and the brass and scintillator hadron calorimeter (HCAL). The
inner tracker is composed of a silicon pixel detector and a silicon strip tracker, and measures
charged-particle trajectories in the pseudorapidity range || < 2.5. The finely segmented
ECAL consists of nearly 76 000 lead tungstate crystals, which provide coverage in pseu-
dorapidity up to |n| = 3.0. The muon system covers the pseudorapidity region |n| < 2.4
and consists of up to four stations of gas-ionization muon detectors installed outside the
solenoid and sandwiched between the layers of the steel flux-return yoke. A more detailed
description of the CMS detector, together with a definition of the coordinate system used
and the relevant kinematic variables, can be found in ref. [29].

The CMS experiment uses a two-level trigger system. The level-1 (L1) trigger [30],
composed of custom hardware processors, selects events of interest using information from
the calorimeters and muon detectors and reduces the readout rate from the 20 MHz bunch-
crossing frequency to a maximum of 100kHz. The high level trigger (HLT) [31] uses
software algorithms accessing the full event information, including that from the inner
tracker, to reduce further the event rate to the 400 Hz that is recorded.

3 Methodology

The searches described in this paper probe fundamentally different manifestations of
physics beyond the standard model. The first type looks for a resonance structure ap-
pearing above a smooth background. This search parametrizes the expected signal and
background shapes using appropriate functional forms and takes an unbinned likelihood
approach to establish compatibility with the representative new physics models used as
benchmarks. The second type looks for a smooth deviation from the background where no
resonance structure is expected. In the non-resonant analyses the number of events above
a particular invariant mass is compared with the total number of expected background
events. The same observed mass spectra are used by all of the analyses.



To be robust against uncertainties in the absolute background level, the search for
resonances makes use only of the shape of the dilepton mass spectra. In the absence of
a signal, limits are set on the ratio R, of the production cross section times branching
fraction for high-mass resonances to that of the Z boson. In this approach, many experi-
mental and theoretical uncertainties common to both measurements cancel or are reduced.
The non-resonant analyses also use the number of reconstructed Z boson events to reduce
some systematic uncertainties. Using theoretical cross sections, lower mass limits, or limits
on model parameters in the case of the non-resonant analyses, are calculated for specific
models. The experimental limits derived within the resonance analysis are designed to
be easily reinterpretable in the context of any model predicting a narrow resonance, and
spin-specific parametrizations for the product of the acceptance and the reconstruction
efficiencies are provided for completeness. Similarly, the signal cross section limits above
different lower mass thresholds may be reinterpreted in the context of other models pre-
dicting a non-resonant enhancement at large masses in the dilepton mass spectrum.

4 Event selection

4.1 Triggers

The trigger used to select dimuon events requires at least one muon candidate with trans-
verse momentum pt > 40 GeV. The candidate muon tracks in the HLT are created by
combining tracks reconstructed using muon chamber information alone with information
from the silicon tracking detectors. To keep the trigger rate at an acceptable level, the
acceptance of this trigger is restricted to a pseudorapidity range of || < 2.1. In addition,
the candidate tracks are required to have a y?/dof < 20 and to have a point of closest
approach to the beam axis of less than 0.1 cm in the transverse plane.

The trigger used to select dielectron events requires the presence of two clusters in the
ECAL, each associated with a track reconstructed using tracker information. The clusters
are reconstructed by summing energy deposits in crystals surrounding a “seed”, which
is locally the crystal containing the largest energy. The summing procedure encompasses
energy deposits potentially arising from bremsstrahlung emission. The clusters are required
to have transverse energies Er (= E'sin(f)) greater than 33 GeV. The total energy in the
hadron calorimeter cells, within a cone of radius AR = vV (An)? + (A¢)? < 0.14 centred
on the ECAL cluster, is required to be less than 15% (10%) of the cluster energy in the
barrel (endcap) region of the ECAL. At least one of the ECAL clusters identified in the
HLT is required to be compatible with an energy deposit identified by the L1 trigger. In
the electron trigger, ECAL cluster information is used to identify associated hits in the
pixel detector, which are then used to initiate track reconstruction.

The trigger efficiencies can be represented as a product of uncorrelated efficiencies of
the different trigger components. In order to determine these separate elements, various
triggers with criteria different from those used for the signal triggers are employed. In
general, these triggers have larger rates than the signal triggers and are prescaled, meaning
that only a fraction of the events potentially passing these triggers are recorded. The tag-



and-probe methodology described in refs. [16, 32, 33| is used, where applicable, to obtain
detailed efficiencies for the main contributions to the total efficiency.

The efficiency of a single muon trigger varies as a function of 7, resulting in an efficiency
for triggering on a dimuon system that varies between 97 and 100%. From simulations
this efficiency is constant over the mass range from the region of the Z peak to greater
than 3 TeV.

The total electron trigger efficiency, for events with two electron candidates that pass
the offline electron selection requirements, is (99.3 + 0.1)% for E1 > 38 GeV, where the
trigger efficiency reaches a plateau. Where required in the dielectron resonance analysis,
and in the plots relevant to electrons shown in this paper comparing predicted event yields
with data, the effect of trigger efficiencies on simulated event samples is included by using
the trigger efficiencies determined from the data and applying a weight to each simulated
event. In the ADD and CI analyses a systematic uncertainty is assigned to account for the
small inefficiency.

4.2 Lepton reconstruction and identification

Muons and electrons are reconstructed using standard algorithms, described in more detail
in refs. [16, 32, 33]. The primary vertices in the event are reconstructed using silicon
tracker information [34]. In each analysis, the primary vertex closest to the origin of the
reconstructed pair of leptons is used.

Muon tracks are reconstructed separately in both the muon system and the silicon
tracker. For each compatible pair of tracks the set of space points is fitted to form a
track that spans the entire detector [33]. For muons with pr < 200 GeV, the transverse
momentum resolution is dominated by the resolution on track parameters in the inner
tracker [33]. However, above 200 GeV the muon stations also contribute significantly to the
precision of the measurement. The muon pr resolution is estimated using collision data
and cosmic rays to be around 2% for pr ~ 100 GeV and better than 10% for pr =~ 1TeV,
for muons reconstructed in the barrel. Monte Carlo simulations reproduce the performance
observed in collision data and cosmic rays. Each of the muon candidates is required to have
pr > 45GeV and d(p7)/pr < 0.3, where §(pr) is the uncertainty in the measured pr of
the track. The muons must lie within the acceptance of the muon detectors, |n| < 2.4,
furthermore the muon that triggers the event must be within || < 2.1 as a consequence
of the trigger criteria. The muon candidates are required to have a transverse impact
parameter of less than 0.2 cm with respect to the primary vertex position, at least one hit
in the pixel detector, hits in at least six silicon-strip tracker layers, and matched segments in
two or more muon stations. To suppress backgrounds from non-prompt muons, the scalar
sum of the pr of all other tracks with a z impact parameter within 0.2 cm of the relevant
primary vertex and lying within a cone of AR < 0.3 about the track of the muon candidate,
is required to be less than 10% of the pr of the candidate. The impact parameter criterion
also reduces the effect of tracks originating from additional pp interactions occurring in
the same bunch crossing (pileup) on reconstructed quantities. Its effectiveness was assessed
using muons arising from Z bosons where efficiencies have been shown to agree in data and



simulation. When varying the average number of pileup events between 0 and 30 a change
of less than 1% is observed in the muon selection efficiency.

Clusters in the ECAL are matched to hits in the silicon pixel detector, which are
then used to seed tracks in the rest of the tracker. The resulting cluster-track matched
pairs form electron candidates. These candidates are required to have E1 > 35GeV and
In| < 2.5, excluding the barrel-endcap transition region 1.442 < |n| < 1.560. To suppress
the misidentification of jets as electrons, the sum of the pt of all other tracks in a cone of
AR < 0.3 around the track of the electron candidate is required to be less than 5 GeV, which
imposes an isolation condition on the track. To be used in the calculation of the isolation of
the candidate track, the tracks have to be within 0.2 cm, in the z direction, of the primary
vertex with which the electron candidates are associated. This requirement reduces the
impact of pileup. For electrons with transverse energies above 100 GeV, a negligible change
in the selection efficiency is observed as the number of pileup events increases from 0 to
40. For electrons identified as arising from Z bosons, i.e. where the E1 are much lower
than 100 GeV, the efficiency falls by between 5 and 10% depending on the region of the
detector in which the electrons are detected. Within this same cone, the sum of the Er
of the energy deposits in the calorimeter that are not associated with the candidate is
required to be less than 3% (plus a small n-dependent offset) of the candidate Er. This
sum, which allows a selection on the isolation of the electron candidate, is corrected for
the average energy density in the event [35] to minimize the dependence of the efficiency
of this selection criterion on pileup. Further suppression of the misidentification of jets as
electrons is achieved by requiring that the profile of the energy deposition in the ECAL be
consistent with that expected for an electron, and that the sum of HCAL energy deposits
in a cone of AR < 0.15 be less than 5% of the ECAL energy of the electron. The track
associated with the cluster is required to have no more than one hit missing in the pixel
layers, and in the transverse plane to lie within 0.02 cm (barrel) or 0.05cm (endcaps) of
the primary vertex associated with the candidates. The energy resolution for the selected
electrons varies between approximately 1.0 and 3.5% depending on the momentum, the
extent of bremsstrahlung emission and the point of incidence on the ECAL [36].

For signal events, the total efficiency (including triggering, reconstruction, and identifi-
cation) is estimated from simulated events. In the resonance analysis, limits are set on Ry,
which is the ratio of the product of cross section and branching fraction for Z’ production
relative to that for Z bosons. In the non-resonant analyses the relevant ratio is the one
between the summed events above the minimum mass threshold and the number of events
in the Z peak region. Therefore the simulation does not need to reproduce the absolute
value of the efficiency in data; it must however correctly reproduce the evolution of the
efficiency with Er. Data are used to measure the electron identification efficiency at the Z
resonance, using the tag-and-probe method [16, 32, 33]. The ratio of this efficiency to that
found in simulation is 0.997 + 0.007 for electrons in the barrel region and 0.979 + 0.006
in the endcaps. This ratio was also studied as a function of the probe electron Et to
~500 GeV and as a function of the tag-and-probe pair mass up to ~1TeV, and was found
to be invariant with respect to these quantities, although the systematic and statistical un-
certainties become large at high transverse energies and masses. Using these scale factors,



the total efficiency to reconstruct and select electrons with pp > 100 GeV is expected to
be (88 £ 2)% in the barrel region and (84 + 4)% in the endcaps, where the uncertainties
cover the extrapolation of the data-to-simulation ratio to very high transverse momenta.
This gives efficiencies for electron pairs of 78% where both electrons are in the barrel and
75% where one of the electrons is in the endcap. A similar procedure is used to evaluate
the muon identification efficiency. Applying the tag-and-probe technique to muons from
7 boson decays, and using tracks in the silicon inner tracker as probes, the total muon
identification efficiency (including isolation) is measured to be (95 + 1)% in the barrel and
endcap regions. The corresponding efficiency ratios between data and the simulation are
0.990 4+ 0.005 and 0.993 + 0.005, respectively. To within the statistical precision available
using the 2012 data sample, both the efficiencies and the related correction factors remain
constant up to a pr of approximately 300 GeV. With these correction factors applied, the
combined reconstruction and selection efficiency for triggered events in the acceptance re-
gion is expected to be (89 + 2)% at a mass of 200 GeV. The simulation predicts that the
efficiency above 200 GeV is constant to within 3%.

For both the dimuon and dielectron final states, two isolated, same-flavour leptons that
pass the lepton identification criteria described above, are required. In the case of muons,
the particle momentum is measured from the curvature of the associated track, and thus
the sign of the charge is automatically determined. Muons in dimuon events are therefore
required to have charges of opposite sign. Dielectron events are separated into barrel-barrel
and barrel-endcap categories, because of the different signal-to-background ratios and mass
resolutions in the two regions. The measurement of the energy of the electron depends
only upon the energy deposition in the ECAL and therefore is independent of the charge
of the particle. The opposite-sign requirement is therefore not applied to dielectron events
since this would only result in a loss of efficiency without providing useful background
suppression.

Muon candidates are also required to originate from the same vertex, by requiring the
x?2/dof to be less than 10 when tracks are fitted to a common vertex. Cosmic ray and beam
halo muons are suppressed to negligible levels by the common-vertex requirement together
with the further requirement that the opening angle between the two reconstructed muons
be less than m — 0.02 radians.

The acceptance times efficiency for heavy particles with spins 1 and 2 decaying to lepton
pairs is determined using simulation and varies as a function of the particle mass. Table 1
lists the parametrizations of the acceptance times efficiency as a function of mass along
with their evaluation at two example mass points, 1000 and 2500 GeV. The uncertainties
in this table are dominated by the uncertainties in the efficiencies described above.

4.3 Study of energy deposits in the ECAL crystals

The energy calibration procedure for the crystals in the ECAL makes use of both collision
data and test beam data taken before the installation of the detector [29]. This procedure
provides a well-calibrated detector up to energies of around 100 GeV. Very high energy
electrons can potentially deposit energies of several hundreds of GeV in a single crystal.



Functional form Acceptancex Efficiency Uncertainty
1000 GeV 2500 GeV
spin 1
s 0.81 — % 0.77 0.80 3%
ee barrel-barrel 0.59 — % 0.43 0.55 4%
ee barrel-endcap| 0.06 — mf§45 + m;flxﬁlgioﬁ 0.21 0.10 6%
spin 2
phum 0.75 + L2, — _gLd0 0.82 0.79 3%
ee barrel-barrel 0.57 — 00T 0.54 0.57 4%
ee barrel-endcap | —0.24 + mﬁélxofm + mff;;gim 0.13 0.09 6%

Table 1. Parametrizations of the product of the acceptance and the efficiency as a function of the
mass m expressed in units of GeV.

The procedure described below was developed in order to ensure that the calibration could
be extrapolated to such energies.

An electron deposits its energy over an array of crystals approximately 5 X 5 in extent.
In general, only the energy deposited in the central crystal will significantly exceed the
energies at which calibrations are performed. Given the shape of the electromagnetic
shower, the energy of the central crystal can be predicted from the energy distribution in the
surrounding 24 crystals. This is done using both an algorithmic fit to the distributions and
an artificial neural network. The difference between the observed energy E7 in the central
crystal and the energy reconstructed, £, is calculated from data using the above method.
The distribution (E; — Ej°°)/E; obtained using simulated data results in a displacement
from zero of the mean of the distribution of less than 0.01. For electrons in the data with
energies above 500 GeV, the distribution found using simulation agrees with that for the
data, where displacements of the mean are observed to be less than 0.01 in both the barrel
and endcap regions. This procedure has also been adapted to reconstruct the energies in
any crystals in a cluster where the readout is not functioning. This correction is used in
about 2% of events where the dilepton mass is above 200 GeV.

5 Background sources

The principal standard model process that contributes to the dimuon and dielectron invari-
ant mass spectra, either directly or via 77, is Drell-Yan production (Z/v*). There are also
contributions from tt, tW, and diboson processes. In addition, jets may be misidentified as
leptons and contribute to the dilepton invariant mass spectra through multijet and vector
boson plus jets final states. The contribution from diphotons misidentified as dielectrons
has been established to be negligible.



5.1 The Z/v* background

Drell-Yan production is simulated using the POWHEG (r1513) [37-39] next-to-leading order
(NLO) event generator. The differential cross section from this source can be modified
by higher-order corrections and by variations in Parton Distribution Functions (PDF).
Uncertainties due to these sources are included in all of the analyses and are described
in section 7.5. The resonance search relies only on the shape of the spectrum, using data
primarily from mass regions where no non-standard-model contribution is expected, to
constrain the magnitude of the background, making the result insensitive to the predicted
absolute cross section. The non-resonant analyses use simulation to predict the number of

events and hence are more sensitive to these systematic uncertainties.

5.2 Other background sources with prompt lepton pairs

Prompt lepton pairs can result from tt, tW, and diboson production in addition to the
dominant Drell-Yan process. In order to demonstrate that simulations provide a good
representation of these processes, their flavour-symmetric nature is exploited. The e*
invariant mass spectrum is used solely to test the quality of the simulations. The tt and tW
simulated samples are generated using POWHEG [40], while the diboson simulated samples
are generated using the PYTHIA v6.426 [41] event generator.

Figure 1 shows the e* T invariant mass spectrum resulting from a trigger that requires
the presence of both a muon and an electromagnetic object. The muon and electron selec-
tion criteria described in section 4 are used and the leptons are required to have opposite
signs. All components are estimated from simulations except for the component arising
from multijet events where both lepton candidates are misidentified jets. This compo-
nent is derived from data by using the same-sign ey spectrum. The observed number of
opposite-sign ey events is 20513 (6756) in the mass region above 120 (200) GeV. Using
simulations, and the estimation from data for the contribution from jets being misrecon-
structed as leptons, the expected number of events above 120 (200) GeV is 21100 + 600
(6800 = 200).

5.3 Events with misidentified and non-prompt leptons

Both jets and photons can be misidentified as prompt electrons. Potential sources of such
backgrounds are W(— ev)+jets, y+jets, and multijet events. The method described below
primarily uses the data to determine the contribution to the observed mass spectra from
these sources. The misidentification rate (MR) is the probability for a jet, having been
reconstructed as an electron candidate, to pass the electron selection. This rate is measured
using a sample collected with a prescaled single electromagnetic cluster trigger. To suppress
the contribution from Z boson decays, events in this sample are required to have no more
than one reconstructed electron above 10 GeV. Contamination from genuine electrons in
W-+jet events and from converted photons in v+jet events may affect the MR measurement.
A less significant source of contamination is from processes that can give a single electron
such as tt, tW, WW, WZ, Z/v* — 7777, and Z/y* — eTe™, and in which a second
electron is produced but fails to be reconstructed. The effect of the real electromagnetic
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Figure 1. The observed opposite-sign ety dilepton invariant mass spectrum (data points). The
filled red (dark shading) histogram shows the contribution to the spectrum from tt and other sources
of prompt leptons (tW, diboson production, Z/y* — 7777, W+jets, jets). The background where
at least one of the reconstructed objects is not a correctly identified lepton is shown in yellow (light
shading). All components are estimated using simulations except for the jet component where both
leptons are misidentified jets, which is estimated from the data using the same-sign e* p* spectrum.
The simulated backgrounds are normalized so that in the dielectron channel, the observed data and
the prediction from simulation agree in the region of the 60 < mee < 120GeV. The lower plot
shows the difference between the number of data and background events in each bin divided by the
number of background events. All error bars shown are statistical only.

object contamination on the MR is corrected using simulated samples where the W+jet
simulated sample is generated using MADGRAPH 5 [42] and the y+jet sample is derived
from the PYTHIA event generator. Following these corrections, the MR is defined as the
number of electrons passing the full selection divided by the number of electron candidates
in the sample. The misidentification rate is quantified in bins of E1 and 7.

Once this rate has been measured, the jet background can be estimated using two
samples selected from data. The first sample consists of events with two reconstructed
electron candidates that pass the trigger, but fail the full selection. The second sample is
similar to the first sample except one electron has to pass the full selection instead of failing
it. When weighted by the MR/(1 — MR) appropriate for each electron, the first sample
estimates the multijet component, where both electrons candidates arise from misidentified
jets, of the jet background only. When weighted by the MR/(1 — MR) appropriate for the
failing electron, the second sample estimates the sum of the W — ev+jet background,
~v+jet background, and twice the multijet background. The second sample overestimates
the multijet background by a factor of two because there are two combinations possible
with one electron passing and one failing the selection. However, as the multijet back-
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ground has been estimated by the first sample, the total jet background is the number of
events estimated from the second sample minus the number of events estimated from the
first sample. Based on the results of various consistency tests and cross-checks, a 40% sys-
tematic uncertainty is applied to the misidentified-jet background estimate. The estimated
background contributions are shown in table 3.

In principle the dimuon channel also has contributions from jets and photons that are
misidentified as muons. However, the background from this source, determined using the
procedure in ref. [16], is found to be negligible as can be seen in table 2.

5.4 Cosmic ray muon backgrounds

The potential background in the p™u~ sample from events containing cosmic ray muons is
suppressed by the selection criteria described in section 4.2, which reject events with back-
to-back muons and events with muons that have a large impact parameter relative to the
collision vertex. For the dimuon mass region m,, > 200 GeV, the residual expected back-
ground is estimated using two event samples. Events in one sample are selected without
imposing the requirement on the dimuon opening angle and in the other sample the require-
ments on muon impact parameter and on the existence of a good quality primary vertex are
not applied. The efficiencies of the remaining selection requirements are estimated using
these samples under the assumption that they are uncorrelated. The background due to
cosmic rays is estimated to be less than 0.1 events above a mass of 200 GeV.

6 Dilepton invariant mass spectra

The dilepton invariant mass spectra are shown in figures 2 and 3, where the data are
compared with the expected backgrounds. If more than two leptons passing all selection
criteria are present in an event, the pair with the largest invariant mass is chosen. The
largest dimuon invariant mass observed is 1840 GeV and the largest dielectron mass is
1790 GeV. In figures 2 and 3 the contribution labeled “Jets” consists of events where at
least one jet has been misreconstructed as a lepton. The other background components are
derived from simulations. The relative fractions of the simulated processes are fixed by their
theoretical cross sections, and the total simulated background contribution is normalized
to the number of events in the data in the region of 60 < my < 120 GeV. The pt > 45 GeV
selection requirement on the muons removes most of the events in this mass range, and also
has a significant effect on the efficiency of events above this mass region (but well below the
search region of interest). To derive the normalization for dimuon production, a prescaled
trigger, which is identical to the main muon trigger but with a lower pr selection criterion,
is used to select events. The use of this trigger allows the offline pr threshold criterion
to be lowered to 27 GeV. Figure 4 shows the corresponding cumulative distributions of
the spectra. The SM expected yields in various mass bins are shown compared to the
observed yields in tables 2 and 3. These plots and the tables illustrate that there is good
agreement between observation and expectation in the whole explored region including
dilepton masses above 1 TeV. The analyses are designed to look for evidence of beyond the
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my,, range  Data Total Z/v* tt + other Jet mis-
(GeV) background prompt bkgd reconstruction
120-400 | 96299 96800 + 4300 | 86800 + 3800 9900 =+ 420 147 £ 18
400-600 1367 1460 + 80 1180 + 60 276 + 13 3+3
600-900 273 283 + 19 246 + 16 37+4 —

900-1300 55 46 + 4 40 + 4 541 —

1300-1800 8 6.1 £0.8 5.7+ 0.8 0.4 +02 —
>1800 2 0.8 +£0.2 0.8 +£0.2 — —

Table 2. The number of dimuon events in various invariant mass ranges for an integrated

luminosity of 20.6fb~'.

The total background is the sum of the events for the standard model

processes listed. The yields from simulation are normalized relative to the expected cross sections,
and overall the simulation is normalized to the data using the number of events in the mass window
60-120 GeV acquired using a prescaled low threshold trigger. Uncertainties include both statistical
and systematic components, summed in quadrature. A dash (—) is used to indicate negligibly small

contributions.

Mee range  Data Total Z/v* tt + other Jet mis-
(GeV) background prompt bkgd reconstruction
120-400 | 87117 88700 % 3900 | 77100 4+ 3900 10130 % 680 1500 £ 300
400-600 1266 1240 £ 100 970 £ 100 226 £ 15 40 £+ 8
600-900 259 245 £ 21 211 £ 21 27T £ 2 7T+1
900-1300 41 39 +3 35+ 3 3.5 +0.2 1.2+ 0.2
13001800 4 52405 48 £ 0.5 0.36 = 0.02  0.005 % 0.001
>1800 0 0.64 £+ 0.06 0.64 £+ 0.06 — —

Table 3. The number of dielectron events in various invariant mass ranges for an integrated lumi-
nosity of 19.7fb~*. The total background is the sum of the events for the standard model processes
listed. The yields from simulation are normalized relative to the expected cross sections, and overall
the simulation is normalized to the data using the number of events in the mass window 60-120 GeV.
Uncertainties include both statistical and systematic components, summed in quadrature. A dash
(—) is used to indicate negligibly small contributions.

standard model physics that is expected to become manifest at masses above about 1 TeV,
nonetheless the entire region above masses of 200 GeV is examined for such evidence.

7 Statistical analysis and results

The observed invariant mass spectra agree with expectations based on standard model
processes. Limits have been set on the possible presence of the narrow heavy resonances
predicted in various models, and on the excesses of the form expected in the ADD and CI
models. The procedures used are described in the following sections.

7.1 Resonance search

An unbinned likelihood Bayesian approach is used to set 95% confidence level (CL) cross
section limits on possible contributions for narrow heavy resonances.
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Figure 2. The invariant mass spectrum of uu~ (top) and ee (bottom) events. The points with
error bars represent the data. The histograms represent the expectations from SM processes: Z/v*,
tt, and other sources of prompt leptons (tW, dibosons, Z/v* — 7777), as well as the multijet
backgrounds. Multijet backgrounds contain at least one jet that has been misreconstructed as a
lepton. The simulated backgrounds are normalized to the number of events in the data in the
region of 60 < my < 120 GeV, with the dimuon channel using events collected with a prescaled
lower-threshold trigger.

The parameter of interest is the ratio of the cross sections for producing dilepton final

states:
R olpp =2 +X - U+ X)

. , 1
opp—=Z+X = U+ X) (7.1)

The use of this ratio R, eliminates the uncertainty in the integrated luminosity and

reduces the dependence on the experimental acceptance, trigger, and offline efficiencies.
The ratio of acceptances of a new boson to that of the Z boson are calculated using
simulations. This has been done for two possible scenarios, corresponding to spin 1 or 2
final states. The dimuon and dielectron channels are treated separately. The cross sections
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Figure 3.  The invariant mass spectrum for ee events separated into barrel-barrel (top) and

barrel-endcap (bottom) categories. The points with error bars represent the data. The histograms
represent the expectations from SM processes: Z/v*, tt, and other sources of prompt leptons (tW,
diboson production, Z/v* — 777), as well as the multijet backgrounds. Multijet backgrounds
contain at least one jet that has been misreconstructed as an electron. The simulated backgrounds
are normalized to the data using events in the region of 60 < me, < 120 GeV.

correspond to a mass range of £5%+/s [43] about the Z’ on-shell mass and a mass range of
+30 GeV about the Z peak. This Z’ mass window is designed to ensure the results are as
model independent as possible, allowing for straightforward reinterpretation of the limits
derived in this paper in the context of models not specifically addressed. The window
chosen reduces model-dependent effects such as Z/~*/Z’ interference and low mass tails
due to higher parton luminosities at lower values of v/3.

The statistical procedure presented in this section is identical to that used in
refs. [16, 44], with the exception that barrel-barrel and barrel-endcap electron events are
now treated as separate channels. This is because the signal-to-background ratios and
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Figure 4. The cumulative distribution, where all events above the specified mass on the = axis
are summed, of the invariant mass spectrum of u*u~ (top) and ee (bottom) events. The points
with error bars represent the data; the histograms represent the expectations from standard model
processes. The simulated backgrounds are normalized to the number of events in the data in the
region of 60 < my < 120 GeV, with the dimuon channel using events collected with a prescaled
lower-threshold trigger.

mass resolutions differ in the barrel and endcap regions, and the mass limits are sensitive
to these quantities. As an example, at 500 GeV, the mass resolution in the barrel-barrel
channel is 1.2% while it is 1.9% in the barrel-endcap channel. These resolutions remain
fairly constant above 500 GeV. At high masses where there is little background, the sepa-
ration into the two channels does not result in significantly improved limits. The dimuon
mass resolution is similar in all regions and hence no differentiation into separate regions
is used. The resolution varies with mass, ranging from approximately 3% at 500 GeV to
9% at 3TeV. In the case of electrons, the mass resolution is dominated by the energy
resolution, and for muons by the momentum resolution. A key feature of the limit-setting
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a (Gev™h) B (GeV~2) K
phtp~ —2.29x 1073  3.32x107® —-3.65
ee barrel-barrel —1.16 x 1072  —2.02 x 10~7 —3.97
ee barrel-endcap —3.79 x 1073 1.86 x 10~7  —3.15

Table 4. The parameters «, 8 and x in the background function mreem+Bm® ohtained from a fit
to the background simulation, where the mass m is in GeV.

procedure is that it requires no knowledge of the integrated luminosity as the background
estimations are normalized to the data in regions where contributions from SM processes
are large compared to any potential signal and the limits are set on the ratio of Z' to Z

cross sections.

7.2 Resonance search likelihood function

The extended unbinned likelihood function for the invariant mass spectrum consists of a
sum of probability density functions (pdf) for the signal and background shapes, where the
signal fraction is set to zero for the background-only hypothesis. The signal is parametrized
as a convolution of a Breit-Wigner (BW) and a Gaussian resolution function. The BW
width is sufficiently small that the detector resolution dominates.

The Poisson mean of the signal yield is us = Rouz - Re, where R, is defined in
eq. (7.1) and R, is the ratio of the selection efficiency times detector acceptance for the 7'’
decay relative to that of the Z decay. The variable py is the Poisson mean of the number of
7 — ff events. It is estimated by counting the number of events in the Z boson mass region,
where the background contamination is predicted to be small (~0.5% in simulation). The
quantities puz and R, are obtained separately for the dimuon and dielectron channels.

A background pdf fg is chosen and its shape parameters fixed by fitting to the full SM
background estimate in the mass range 200 < my, < 3500 GeV. The functional form used

2 . . . . .
am+8m* This form includes an m? term, which previous versions

for the background is m"e
of this analysis [16] did not include. The increasing range of the fit has required this addition
to ensure that the background is well described across the entire range. The parameters
«, B, and &, obtained from fitting to the simulation and subsequently used in the limiting
setting procedure, are shown in table 4. The simulated background distributions used to
obtain the expected limits are normalized to data in the mass regions above 200 GeV in
each channel.

Finally, the extended likelihood is:

N

Ne—p R,
E(m]RU,M,F,w,a,B,/{, :U’B) = K NI H (MS(M >fS(mZ|M>Faw) + /LBfB(mi‘avﬁﬂ%)) )
Toi=1

(7.2)
where m denotes the data set in which the observables are the invariant mass values of
the lepton pairs, m;; N denotes the total number of events observed in the mass window
for which the likelihood is evaluated; ug denotes the Poisson mean of the total background
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yield; and p = ug + up is the mean of the Poisson distribution from which N is an obser-
vation. The mass and width of the Breit-Wigner function are denoted by M and I', and w
denotes the width of the Gaussian resolution function. The signal and background pdf’s
are denoted by fg and fg.

7.3 Non-resonant searches

The ADD and CI searches both use the same methodology and are based on counting
events above mass thresholds. In the ADD analysis an optimal minimum mass threshold
is chosen to maximize the limit on the parameter At using expected limits, and a similar
procedure is followed in the CI analysis, where the relevant parameter is the energy scale
A, and both destructive and constructive interference scenarios are considered.

7.4 Non-resonant likelihood function

The probability of observing a number Nys of events is given by the Poisson likelihood

aNobs o
P (Nops) = ——e~ 2, 7.3
(Nobs) Nobs!e (7.3)
where a is the assumed Poisson mean. Both the background and a potential signal can

contribute to the Poisson mean, a, which can be expressed as

)Nobs,Z
ozez

a = (€505 + €pop (7.4)
where o, and o}, are the respective cross sections of the signal and the background, and e, €,
are the total efficiencies (including acceptances) for the signal and background, respectively.
The expected number of background events is estimated using the number of events in a
mass window of £30 GeV around the Z peak, as in the resonance analysis. In eq. (7.4) the
relevant quantities are indicated by the subscript Z.

7.5 Uncertainties

The sources of uncertainty are the same in all of the interpretations of the observed spectra.
However, because the Z’' analysis makes use only of the background shape and the ADD
and CI analyses are based on counting events, the importance of the uncertainties differs.
In general, the uncertainties have little effect on the derived limits, particularly when these
limits are set using regions where no events are observed in the data.

The dominant uncertainty in the Z’ analysis is from the determination of R, the ratio
of selection efficiency times detector acceptance for the Z' decay to that of the Z decay. This
uncertainty is 3% for the dimuon channel, 4% for the dielectron barrel-barrel channel, and
6% for the barrel-endcap channel. These values reflect the uncertainty in the estimation of
the detector acceptance (including the contribution associated with the choice of PDF set)
and in the evaluation of the reconstruction efficiency, particularly in the “turn-on” region
at low mass.

In the dimuon channel, the effects of the uncertainties in the muon transverse mo-
mentum resolution and in the transverse momentum scale at high pt are evaluated in the
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context of both the resonance and non-resonant searches. Different misalignment scenarios
where displacements can be incoherent or coherent are considered. The transverse mo-
mentum resolution uncertainty has a negligible effect in the resonance analysis and leads
to a 5% uncertainty in the predicted background in the non-resonant analyses. Misalign-
ments also lead to a transverse momentum scale uncertainty of 5% per TeV. This has a
negligible effect on the resonance analysis, but does dominate the yield uncertainty in the
non-resonant search analyses. The uncertainty depends on the lower mass selection thresh-
old m?}in, and the rapidly falling spectrum leads to an increasing relative uncertainty with
the mass threshold. In the ADD analysis m?l}in = 1900 GeV and the uncertainty is 41%.
Similarly, in the CI analysis for destructive interference m?l}in = 1500 GeV resulting in
an uncertainty of 28% and for constructive interference m%n = 1200 GeV, giving a 20%
uncertainty.

In both channels the residual background from jets misidentified as leptons is very
small, and the uncertainty in this background has a negligible effect on the limit determi-
nation.

The PDF uncertainty in the Drell-Yan cross section is evaluated using the PDFALHC
procedure [45, 46]. Cross sections are calculated at next-to-next-to-leading order (NNLO)
using FEWZ [47]. The NNLO PDF sets MSTWO08 [48], CT10 [49], and NNPDF21 [50]
implemented in LHAPDF [51] are used to evaluate the PDF uncertainty as a function of
mass. The resulting uncertainties can be parametrized as a quadratic function of mass:
(2.76 + 3.03 x 1073m + 2.38 x 107m?)% for dimuons and (4.15 + 1.83 x 1073m + 2.68 x
1075m?2)% for dielectrons, where m is expressed in units of GeV. These uncertainties are
included as a function of mass in the limit calculations for all of the analyses. In the
non-resonant dielectron analyses the PDF uncertainty dominates.

The POWHEG Monte Carlo simulation includes QCD effects at NLO and electroweak
effects at leading order (LO). The FEWZ and HORACE [52-57] programs are used to evaluate
the effects of NLO electroweak corrections and the addition of photon induced interactions.
The overall correction is found to be approximately constant as a function of the invariant
mass, though the size of the photon induced correction is rather sensitive to the PDF set
used [58]. In the ADD and CI analysis the correction and its uncertainty, namely 1.0 £0.1,
is used for the background prediction. Using FEWZ, a K-factor of 1.024 4+ 0.030 is found
for QCD NLO to NNLO processes. For the Z' analysis neither of these constant K-factors
has any effect on the background uncertainty because the function used to parametrize the
background is normalized to the data.

Common systematic uncertainties are taken to be fully correlated in the calculation of
combined limits.

7.6 Exclusion limits

A Bayesian limit setting procedure is used for all interpretations of the observed mass
spectra. A positive, flat prior is used for the signal cross section as described in refs. [16, 44]
and log-normal priors for the systematic uncertainties. The Markov Chain Monte Carlo
approach is used for integration.
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A prior flat in the signal cross section o yields excellent frequentist coverage properties.
Previous searches [14, 28] presented results with prior functions effectively flat in 1/,/o,
in search regions where interference is negligible for the ADD and CI models [24, 27]. Such
priors can exclude a larger Mg (A1) range, however, they are known to have a frequentist
coverage of less than 90% for a 95% Bayesian confidence interval in non-resonant searches.

In the Z’ search analysis, only events in a window of +6 times the mass resolution are
considered in the limit setting procedure. To ensure the background is properly constrained,
the lower edge of the window is adjusted so that there are at least 400 events in the
mass window. The observed limits have been found to be robust and do not significantly
change for reasonable variations in the limit setting procedure, such as modifications in the
window for accepting events in the likelihood and changes in the background normalization
and shape.

Figure 5 shows the observed and expected upper limits on the ratio R, of the pro-
duction cross section times branching fraction of a Z’ boson relative to that for a Z boson,
for the dimuon and dielectron channels. Figure 6 shows the upper limits for the combined
dimuon and dielectron channels for the two spin hypotheses. The figures also show the
predicted ratios of cross section times branching fraction for Zgg,,; and Z:,b production;
together with those for Gkk production, with the dimensionless graviton coupling to SM
fields k/Mp; = 0.05, 0.01, and 0.1. The LO cross section predictions for Zggy and Zip
from PYTHIA using the CTEQ6.1 PDF set [59] are corrected by a mass-dependent K-factor
obtained using ZWPRODP [60-62], to account for the NNLO QCD contributions. The cal-
culated Z’ cross sections include generated dileptons with masses only within +£5%+/s of
the nominal resonance mass, to enhance sensitivity to a narrow-width resonance [43]. The
NNLO prediction used for the Z/v* production cross section in the mass window of 60 to
120 GeV is 1.117 nb, which was calculated using FEWZ [47]. The theoretical uncertainty is
expected to be 4%, based on 7 TeV studies where factorization and renormalization scales
were varied and an uncertainty from PDFs included. No uncertainties in cross sections for
the various theoretical Z' models are included when determining the limits.

For the dimuon channel, the 95% CL lower limit on the mass of a Z’ resonance is 2.73
(2.39) TeV for Zggy; (Z7;) and for the dielectron channel it is 2.67 (2.34) TeV for Zggy; (Z7)).
For the combined dimuon and dielectron channels, the 95% CL lower limit on the mass of
a Z' resonance is 2.90 (2.57) TeV. Randall-Sundrum Kaluza-Klein gravitons are excluded
below 2.56, 2.12, and 1.13 TeV for couplings of 0.10, 0.05, and 0.01 in the dimuon channel
and similarly 2.50, 2.13, and 1.25TeV in the dielectron channel. The combined limits are
2.73, 2.35, and 1.27 TeV. The only limit that differs from the expected value is that for the
Randall-Sundrum Kaluza-Klein graviton with a coupling of 0.01, where the expectation is
1.38 TeV. The limits quoted above are a commonly used set of benchmarks. However, the
model-independent method used to derive these limits enables them to be reinterpreted in
a straightforward way in the context of any model that is characterized by a narrow spin-1
or spin-2 resonance. The discussion that follows illustrates the versatility of these results.

The cross section for charged lepton-pair production via a Z’ vector boson can, in
the narrow-width approximation (NWA), be expressed in terms of the quantity c,w, +
cqwg [60, 63]. The parameters ¢, and ¢4 contain information from the model-dependent
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Figure 5. Upper limits as a function of the resonance mass M on the ratio of the product of
production cross section and branching fraction into lepton pairs for a spin-1 resonance relative
to that of Z bosons. The limits are shown for dimuon (top) and dielectron (bottom) final states.
The shaded bands correspond to the 68% and 95% quantiles for the expected limits. Theoretical
predictions for spin-1 resonances, Zgg,, and Zi/j, are shown for comparison.

Z' couplings to fermions in the annihilation of charge 2/3 and charge —1/3 quarks; wy,
and wy contain the information about PDFs for the respective annihilation at a given Z’
mass. The translation of the experimental limits into the (¢,,cq) plane has been studied
in the context both of the NWA and taking finite widths into account. The procedures
have been shown to give the same results [60]. A further study including the effects of
interference [43] has demonstrated that with an appropriate choice of the invariant mass
window within which the cross section is calculated, this approach can still be used.
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Figure 6. Upper limits as a function of the resonance mass M on the ratio of the product of
cross section and branching fraction into lepton pairs relative to that of Z bosons, for final-state
spins of 1 (top) and 2 (bottom). The shaded bands correspond to the 68% and 95% quantiles for
the expected limits. Theoretical predictions for spin-1 resonances, Z&gy and Zil), and spin-2 RS
gravitons are shown for comparison.

In figure 7 the limits on the Z' mass are shown as lines in the (cg4, ¢,) plane intersected
by curves showing (c4,¢,) as a function of a mixing parameter for various models. In
this plane, the thin solid lines labelled by mass are contours of cross section with constant
cu+ (wq/wy)cq, where wg/wy, is in the range 0.5-0.6 for the results relevant here. In ref. [60]
a number of classes of models were defined, which are illustrated here in figure 7. The
Generalized Sequential Model (GSM) class, where the generators of U(1)r,, and U(1)g
gauge groups [60] mix with mixing angle «, includes the SM-like Z' boson where the
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Figure 7. The combined limit on Z’ boson mass for dimuon and dielectron channels at 95% CL
shown in the (c¢y,cq) plane. The solid thin black lines represent the experimental upper limits on
(cu,cq) at the masses specified in the figure. The contours representing the GSM, Left-Right, and
Eg¢ model classes are composed of thick line segments. As indicated in the legend, the segment line
styles correspond to ranges of the mixing angle.

mixing angle is a = —0.0727. The angles @ = 0 and o = 7/2 define the T3, and @
benchmarks, respectively. Also shown are contours for the Eg model (with x, ¥, n, S, and
N corresponding to angles 0, 0.57, —0.297, 0.137, and 0.427) and generalized LR models
(with R, B— L, LR, and Y corresponding to angles 0, 0.57, —0.137, and 0.257) [60].
The lower mass thresholds mﬁin that are used for setting limits in the model of large
extra dimensions are chosen to give the largest expected limits. In general, ml‘?t}i“ depends
on M,ax, the scale up to which the theory is valid as described in the Introduction. Thus
the value of m?l}m increases with increasing M.« until a plateau is reached for values of
Minax above about 3 TeV. The optimal value of mll};in is found to be 1.9 TeV for dimuons

and 1.8 TeV for dielectrons.

Limits are set using the dimuon and dielectron mass spectra both separately and
combined. Above the respective optimal values of m?}in the acceptance is 0.94 for both
dimuon and dielectron channels and the cross section limit is found to be 0.19 (0.18)fb
in the dimuon (dielectron) channel. Above a mass of 2.0 TeV the cross section for both
channels combined is 0.09fb. The resultant expected and observed limits on the ADD
model parameters within the GRW and HLZ conventions are shown in table 5, and the
observed limits are shown in figure 8.
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1.3 3.88 391 461 3.8 350 326 3.08
1.0 3.77 375 448 3.77 340 317 3.00
g observed 3.89 394 463 389 352 327  3.09
pp and ee, myy > 2.0 TeV, o5 < 0.09fb (0.10 fb expected) at 95% CL
1.0 3.99 388 474 399 360 335 3.17
g oxpected 413 413 491 413 373 347  3.28
1.0 4.00 390 475 400 361 336 3.18
g observed 4.14 415 493 414 374 348  3.30

Table 5. Observed and expected 95% CL lower limits for the ADD model in the dilepton channels
and the combination at 95% CL within GRW and HLZ conventions for truncation at My, = Mg

[HLZ] or Myax = A1 [GRW].
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Figure 9. Observed and expected 95% CL limits on A: (top) for the dimuon channel as a function
of mjr for (left) destructive interference and (right) constructive interference; (bottom) for the
dielectron channel as a function of m™" for (left) destructive interference and (right) constructive
interference.

In order to interpret the observed mass spectra in the context of the contact interaction
left-left isoscalar model described in the Introduction, a similar procedure is followed. In
this instance there are two cases to consider, namely, where the interference is positive
or negative. In each of these cases the expected limits as a function of a minimum mass
m?t}i“ are found. The value of m?l}in where the expected limit is a maximum in the dimuon
(dielectron) channel is found to be 1500 (1300) GeV for destructive interference and 1200
(1100) GeV for constructive interference. For these values of m™ the observed (expected)
limits on A for destructive and constructive interference respectively are: 12.0 (13.0) TeV
and 15.2 (16.9) TeV for dimuons; and 13.5 (12.7) TeV and 18.3 (16.5) TeV for dielectrons.

The observed limits lie almost entirely within 1o of the expected value, as shown in figure 9.
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Under the assumption that the contact interaction with quarks is independent of lepton
flavour, the dimuon and dielectron channels can be combined by summing the yields in the
two channels. Uncertainties are added in quadrature, taking into account highly correlated
sources such as the PDF variations. The observed (expected) limits for this combination are
13.1 (14.1) TeV for destructive interference and 16.9 (17.1) TeV for constructive interference.

8 Summary

A search has been performed, using proton-proton collision data collected at /s = 8 TeV,
for evidence of physics beyond the standard model in dilepton mass spectra. Data samples
correspond to integrated luminosities of 20.6 and 19.7fb~! for the dimuon and dielectron
channels, respectively. The spectra have been found to be consistent with expectations
from the standard model and 95% confidence level limits have been set in the context of
various possible new physics models.

In the search for evidence of a narrow resonance, limits have been set on the prod-
uct of the cross section and branching fraction for new boson production relative to the
standard model Z boson production. Mass limits have been set on neutral gauge bosons
as follows: a Z' with standard-model-like couplings has been excluded below 2.90 TeV and
the superstring-inspired Zﬁﬁ below 2.57 TeV; Randall-Sundrum Kaluza-Klein gravitons are
excluded below 2.73, 2.35, and 1.27 TeV for couplings of 0.10, 0.05, and 0.01, respectively.
A notable feature of the resonance analysis is that the limits may be reinterpreted in any
model predicting a resonance structure. To enable this, the limits have been calculated in
a model-independent way, and the spin-dependent acceptance times efficiency as a function
of mass has been provided.

In the search for non-resonant deviations from standard model expectations, limits
have been set on the parameters within models of extra dimensions and contact interac-
tions. Within the Arkani-Hamed-Dimopoulos-Dvali model, lower limits have been set on
Mg, which characterizes the scale for the onset of quantum gravity. These lower limits
range from 4.9 to 3.3 TeV for 3 to 7 additional spatial dimensions. Within the context of
the left-left isoscalar contact interaction model, lower limits have been set on the energy
scale parameter A. For dimuons, the 95% confidence level limit is 12.0 (15.2) TeV for de-
structive (constructive) interference. Similarly, for dielectrons the limit is 13.5 (18.3) TeV
for destructive (constructive) interference. The cross section limits provided along with the
dimuon and dielectron acceptances for the ADD model considered may be used to reinter-
pret these results in the context of other models resulting in non-resonant deviations from
SM expectations.
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