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Abstract – Weak measurements are a relevant tool for
quantum information because they allow tuning the
disturbance on the observed state and the amount of
information extracted from it. They can be used to
harness repeatedly a quantum resource from the same
state, thus boosting the performance of many proto-
cols. We verified experimentally that sequences of weak
measurements can generate correlations strong enough
to violate the CHSH inequality multiple times, and yet
can leave the state entangled enough for the next CHSH
test. This means that entanglement can be certified and
utilized more times, which is important for fundamen-
tal tests of quantum theory and above all for device-
independent quantum information.

I. INTRODUCTION

The quantum weak measurements, introduced by

Aharonov, Albert, Vaidman in 1988 [1], are an important

class of generalized measurements that have the property

of not perturbing a state as much as projections. They do so

by weakly coupling the system they observe to a measuring

device. Despite their worse precision, they are at the heart

of protocols for the amplification of feeble signals [2, 3, 4],

the investigation of quantum paradoxes [5, 6], the measure-

ment of incompatible observables [7, 8], and the tomogra-

phy of quantum states [9, 10]. Recently, they have become

relevant in the field of quantum information because they

allow careful manipulation of the states and precise tuning

of the amount of information extracted from them. This

opens the way for a broad set of protocols [11, 12, 13] that

aim to use the quantum features of individual states more

than once, overcoming the limits of projections that, in-

stead, inevitably ruin these features.

Entanglement is one of these important features and is

at the center of both foundational and applied aspects of

quantum theory [14]. It is used for cryptography [15],

metrology [16], and in general for device-independent
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Fig. 1. Visualization of the protocol.

quantum information [17]. Interestingly, it is possible to

certify the presence of entanglement without any a priori

assumption on the state or on the measurements being per-

formed on it: this happens when outcome statistics violate

a Bell inequality [18]. This result is naturally important

when the devices preparing the states or performing the

measurements cannot be trusted, for example because they

could be controlled by an adversary, a situation common in

quantum randomness extraction [19] or quantum key dis-

tribution [20]. However, a violation of a Bell inequality

attained via projections typically destroys entanglement.

Instead, weak measurements allow to repeat this step of

certification multiple times, thus harnessing the resource

of entanglement repeatedly from the same quantum state.

We experimentally verify [21] the possibility of sequen-

tially violating three times the CHSH inequality [22]. At

each step, the measurements are strong enough to violate

the inequality and yet weak enough so that entanglement

is not destroyed and can be certified again. Although we

stop at the third step, the protocol we use could in principle

continue for an unlimited sequence of measurements [23].
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II. PROTOCOL

We first summarize the theoretical protocol aimed at the

sequential certification of entanglement which was intro-

duced in Ref. [23] and that is depicted in Fig. 1. Two

parties, Alice and Bob, each hold a qubit in a maximally

entangled state

|ψ1〉 = 1√
2
(|00〉+ |11〉) , (1)

where |0〉 and |1〉 are the eigenstates of the Pauli operator

σZ . They want to exploit this entanglement for a quan-

tum information task, and they must certify its presence by

observing a violation of the CHSH inequality. However,

they want to do this repeatedly on every copy of the sys-

tem they hold. Alice randomly chooses one of two binary

observables A0 and A1:

Am(μ1) = K†
+1|m(μ1)K+1|m(μ1)−K†

−1|m(μ1)K−1|m(μ1) ,
(2)

in which m ∈ {0, 1} and the Kraus operators K±1|m are

expressed as:

K±1|m(μ1) = cos(μ1)Π
±
m + sin(μ1)Π

∓
m , (3)

Π+
0 and Π−

0 (Π+
1 and Π−

1 ) are the projectors onto the posi-

tive and negative eigenvectors of σZ (σX ). This means that

Alice is weakly measuring σZ or σX , indeed A0(μ1) =
cos(2μ1)σZ and A1(μ1) = cos(2μ1)σX . Parameter μ1 ∈
[0, π/4] labels the strength of the measurement, with the

two extrema 0 and π/4 corresponding to a projective and a

non-interactive measurement respectively. Any intermedi-

ate value corresponds to a weak measurement.

At this point, the state has the form

|ψ2〉 = UA,2 ⊗ UB,2(cos(η2)|00〉+ sin(η2)|11〉) , (4)

where UA,2 and UB,2 are unitary transformations deter-

mined by Alice’s choice of measurement and observed out-

come and η2 quantifies the entanglement remaining in the

state (the exact details of all these parameters are in [21]).

Because she knows the outcome of the first measurement,

Alice can apply U†
A,2.

After this, she can simply repeat the above operations,

with another random choice between A0 and A1, a possi-

bly different strength value, and the application of another

unitary operation. In this way, she performs a sequence of

measurements.

At any (randomly chosen) step of the sequence, Bob can

decide to measure his subsystem with the purpose of certi-

fying the presence of entanglement in the pair. He selects

his bases depending on the history of measurements and

outcomes of Alice previous to the chosen step, he applies∏k
i=1 U

†
B,i and then measures either of the two observables

Bm = (−1)m cos(θk)σX + sin(θk)σZ , (5)

where m ∈ {0, 1} and θk = arccot(sin(2ηk)). It is impor-

tant to understand that Bob requires the history of Alice’s

previous measurements and outcomes, but of course he

does not need information on the current step: in a CHSH

test, Alice and Bob’s measurements are independent. This

also means that the parties must perform separate CHSH

tests on each of Alice’s possible histories, whose number

grows exponentially with base four, because at every step

Alice chooses between two observables and each has one

of two outcomes. As a consequence of this, the number

of systems that contributes to each test decreases exponen-

tially with the number of steps, which poses a practical

limitation to the length of the sequence, which can only be

unlimited if the number of available copies of the system

also is.

Alice must not know a priori when Bob is going to act,

otherwise she could rig the certification. Hence, either she

always gives Bob her history of previous choices and out-

comes before the beginning of a new step, or she com-

municates nothing and Bob takes a guess. In this second

option, after the experiment, when the two exchange their

data, only the cases when Bob’s guess was right are post-

selected and used for the certification. From the correla-

tions between Alice and Bob’s outcomes, the CHSH quan-

tity can be calculated:

S = 〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉 − 〈A1B1〉 , (6)

and finding S > 2 certifies the presence of entanglement

at the input state of each step.

III. EXPERIMENT

We now move to our proof-of-concept experiment,

which aims at verifying that the weak measurements re-

quired by the protocol are feasible and can indeed generate

correlations strong enough to violate the CHSH inequality

repeatedly and without destroying the entanglement.

We generate polarization-entangled photon pairs at

808 nm using a custom-built source based on a PPKTP

crystal. Their polarization is manipulated with waveplates

to produce the bipartite state |ψ1〉 of Eq. (1), where |0〉 and

|1〉 label the horizontal and vertical polarizations respec-

tively. The two photons are sent to two setups which we

refer to as Alice and Bob, shown in Fig. 2.

Alice performs the weak measurements with a Mach-

Zehnder interferometer (MZI). A polarizing beam dis-

placer (PBD, Thorlabs BD40) splits the two polarization

components |0〉 and |1〉 in two separate and parallel paths.

After two half-wave plates (HWPs) placed one per path,

a third HWP that spans across both sets the strength of

the measurement through the angle of its fast axis θ1 =
π/8−μ1/2, where we chose μ1 ≈ 0.34 rad. Another PBD

closes the interferometer but only one of its exits continues

to the rest of the setup. A photon takes this exit with the

probability of obtaining outcome +1 in the measurement
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of A0 and its polarization state corresponds to the initial

state transformed by K+1|0. In other words, observing a

photon at that exit means that Alice has measured A0 and

has obtained outcome +1. HWPs before and after the MZI

can change K+1|0 into any of {K−1|0,K+1|1,K−1|1},

thus allowing Alice to perform both her measurements and

to observe any outcome.

Alice uses HWPs to apply U†
A,2 and then performs the

second measurement of the sequence by repeating the op-

erations described above with another, identical, MZI, with

strength parameter μ2 ≈ 0.19 rad in our experiment. For

practical reasons, we stop the protocol at most at the third

step, which is why the last measurement is projective and

is implemented by a linear polarizer (LP) preceded by a

HWP that sets measurement and outcome. The photons

finally reach a single photon avalanche diode (SPAD).

Bob, who also requires only projective measurements,

uses a setup identical to the third step of Alice and a SPAD.

A coincident detection in the two SPADs carries the infor-

mation of which exits have been taken by the photons and

therefore corresponds to the specific sequence of measure-

ment choices and outcomes selected by Alice in her three

steps and by Bob in his one. By rotating waveplates we it-

erate over all combinations of measurement and outcomes

and we record the number of coincident detections in a

fixed exposure time (20 s). From these, we find the corre-

lations between Alice and Bob’s outcomes and the CHSH

quantity S.

This implementation is simplified with respect to the

theoretical protocol described above and introduces some

loopholes. First, Alice and Bob should be able to observe

both measurement outcomes for each photon, whereas

in our setup only one outcome is available at any given

time and we observe only the frequency of its occurrence.

Moreover, the choice of measurement bases should be ran-

dom and not predetermined, as this could give Alice and

Bob the possibility to violate the CHSH inequality with

classical means. Finally, Alice should either give her pre-

vious history of measurements and outcomes to Bob be-

fore each step, or he should take a guess. Neither of these

options happens in our experiment, where all choices are

predetermined.

To close these loopholes in a photonic system, one

would probably require an optical setup that separates out-

comes in different paths, and an exponentially growing

number of detectors. However, our single-path setup is

sufficient for this proof-of-concept experiment, which does

not aim at excluding local-hidden-variable models with a

loophole-free Bell test, but at verifying the feasibility of

the measurements needed for the sequential Bell violation.

Indeed, it can show that weak measurements can generate

correlations that violate the CHSH inequality and at the

same time can maintain enough entanglement for subse-

quent violations.

IV. RESULTS

We observed violations of the CHSH inequality backed

by several standard deviations of statistical significance.

However, at the third step we could do so only for four of

the 16 possible input states (each corresponding to a com-

bination of measurement and outcomes at Alice’s previous

two steps). These states have the greater amount of remain-

ing entanglement, whereas in the other 12 cases it is so

small that we had to use a different measurement strategy.

Bob applies
∏k

i=1 U
†
B,i and then the two parties measure

the entanglement witness W = �⊗�−σZ⊗σZ−σX⊗σX

[24] which has negative mean value only for entangled

states. This method provides a weaker certification of en-

tanglement, but is less affected by experimental inaccura-

cies, and indeed we observed 〈W 〉 < 0 in all 12 cases.

Table 1 contains all our results.

We attribute our difficulty in violating the CHSH in-

equality to systematic alignment errors in our setup. In

particular, the phase between the arms of the MZIs must be

accurately tuned, and if the plates are not flat enough, their

rotation might deviate the photons, changing this phase or

moving them out of the detectors’ entrance, thus invalidat-

ing the polarization measurement.

Statistical uncertainties are mainly affected by the Pois-

sonian error on photon counts, as the automated rotations

of the waveplates we use are repeatable enough that their

contribution is negligible. The number of photon pairs that

contribute to our measurements is approximately 3× 104,

limited by the production rate of the source and the opti-

cal losses in the setup, dominated by the fiber couplings.

When the detections are used to certify entanglement at

the second or third step, their useful number is less than

that, because only photons that have followed a particu-

lar history of outcomes at the previous steps can be used

for each correlation. This, together with the alignment

difficulties, is the reason why we stopped the protocol at

three steps. Achieving statistically significant violations at

a fourth step would have been prohibitive.

V. CONCLUSION

This experiment proves that weak measurements can

certify entanglement without destroying it, allowing this

resource to be reutilized more times. This can boost the

performance of device-independent quantum information

protocols, for instance for randomness extraction. A weak

point of this scheme is robustness to imperfections, which,

although non-zero, seems to be small. Entanglement is still

a fragile resource, and must be manipulated carefully, even

with weak measurements that are in principle capable of

not breaking it. It would be interesting to run similar tests

with other physical systems that allow longer and more ac-

curate sequences of measurements and possibly close the

loopholes that affect our setup, without the need for an ex-

ponentially growing number of components.
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Fig. 2. Scheme of the setups that perform the measurements.

Table 1. Observed values of the CHSH quantity S and entanglement witness 〈W 〉. The second column reports the history
of measurements and outcomes that precede the one that yields the result on Alice’s side. The notation is: outcome |
measurement choice at step 1; outcome | measurement choice at step 2. The standard deviations in the last two columns
are derived from poissonian error on the counts and error propagation.

Step Alice’s history S 〈W 〉
1 / 2.15± 0.01 /

2 +1|0 2.13± 0.01 /

2 −1|0 2.07± 0.01 /

2 +1|1 2.12± 0.01 /

2 −1|1 2.09± 0.01 /

3 +1|0;+1|0 / −0.12± 0.01

3 +1|0;−1|0 2.48± 0.03 −0.75± 0.01

3 +1|0;+1|1 / −0.17± 0.01

3 +1|0;−1|1 / −0.20± 0.01

3 −1|0;+1|0 / −0.07± 0.01

3 −1|0;−1|0 2.53± 0.03 −0.79± 0.01

3 −1|0;+1|1 / −0.12± 0.01

3 −1|0;−1|1 / −0.14± 0.01

3 +1|1;+1|0 / −0.06± 0.01

3 +1|1;−1|0 2.47± 0.03 −0.78± 0.01

3 +1|1;+1|1 / −0.13± 0.01

3 +1|1;−1|1 / −0.18± 0.01

3 −1|1;+1|0 / −0.07± 0.01

3 −1|1;−1|0 2.46± 0.03 −0.68± 0.02

3 −1|1;+1|1 / −0.17± 0.01

3 −1|1;−1|1 / −0.16± 0.01
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