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Abstract: Obesity and associated insulin resistance (Ins-R) have been identified as important risk
factors for esophageal adenocarcinoma development. Elevated calories and protein consumption
are also associated with Ins-R and glucose intolerance. We investigated the effect of a 24-month
moderate calorie and protein restriction program on overweight or obese patients affected by Barrett’s
esophagus (BE), as no similar dietary approach has been attempted to date in this disease context.
Anthropometric parameters, levels of serum analytes related to obesity and Ins-R, and the esophageal
insulin/IGF-1 signaling pathway were analyzed. This study is registered with ClinicalTrials.gov,
number NCT03813381. Insulin, C-peptide, IGF-1, IGF-binding protein 3 (IGFBP3), adipokines, and
esophageal expression of the main proteins involved in insulin/IGF-1 signal transduction were
quantified using Luminex-XMAP® technology in 46 patients who followed the restriction program
(IA) and in 54 controls (CA). Body mass index and waist circumference significantly decreased
in 76.1% of IA and 35.2% of CA. IGF-1 levels were reduced in 71.7% of IA and 51.8% of CA. The
simultaneous reduction of glycaemia, IGF-1, the IGF-1/IGFBP3 ratio, and the improvement in weight
loss-dependent insulin sensitivity, were associated with the downregulation of the insulin/IGF-1
signal on BE tissue. The proposed intervention program was an effective approach to counteract
obesity-associated cancer risk factors. The improvement in metabolic condition resulted in a downreg-
ulation of the ERK-mediated mitogenic signal in 43.5% of patients, probably affecting the molecular
mechanism driving adenocarcinoma development in BE lesions.

Keywords: calorie–protein restriction; Barrett’s esophagus; insulin/IGF-1 signal transduction;
esophageal adenocarcinoma prevention; obesity
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1. Introduction

Despite the general improvement in Western countries’ living conditions in recent
decades, the incidence and prevalence of chronic diseases are increasing [1]. Obesity,
central adiposity, type 2 diabetes, and insulin resistance are widespread. Their role as
risk factors for oncological diseases is well documented [2–4], including in the context
of esophageal adenocarcinoma (EAC) and its precancerous lesion, Barrett’s esophagus
(BE) [5–7]. Barrett’s esophagus, a metaplastic change resulting from long-standing reflux
disease, is identified in 5-15% of chronic reflux-affected patients [8]. Although the rate of
EAC development in BE patients is low, its mortality rate is higher than 80% after 5 years
from diagnosis [9,10], suggesting that it is important to improve early cancer diagnosis and
prevention. BE patients are usually enrolled in expensive endoscopic follow-up programs
for early cancer diagnosis. These programs are based on endoscopic biopsies standard
protocols (four-quadrant biopsies taken at the gastroesophageal junction and 2 cm above it),
but the effectiveness of this approach is unclear [11–13]. Thus, other factors and strategies
need to be considered to reduce EAC risk.

In 2007, the World Cancer Research Fund (WCRF) and the American Institute for
Cancer Research (AICR) assessed the link between diet, nutrition, physical activity, and
cancer [14] and summarized their findings into 10 recommendations to be followed to
prevent cancer. In a large prospective study, Romaguera et al. have demonstrated the
concordance between adherence to such indications and the risk of the onset of various
types of cancer (including cancer of the esophagus) [15].

The excessive amount of weight in obese patients is correlated with insulin resistance
in different tissues, compensated for by the stimulation of pancreatic insulin secretion
that leads to chronic hyperinsulinemia [2]. Hyperinsulinemia and insulin resistance may
mediate cancer progression via the insulin/insulin-like growth factor axis [16]. Insulin
and insulin-like growth factor 1 (IGF-1) are closely related hormones that control dif-
ferent aspects of growth and metabolism in many organisms [17,18]. Insulin receptor
(IR) and IGF-1 receptor (IGF1R) transduce an intracellular signal primarily through the
phosphatidylinositol 3-kinase (PI3K) pathway and the mitogen-activated protein kinase
(MAPK) pathway [19]. It is known that IGF1R is involved in mitogenesis, transformation,
and apoptosis protection [20,21]. In our previous work, the IGF-1 signal’s pivotal role in
the onset of esophageal cancer was suggested in a duodenal-reflux-dependent esophageal
carcinogenesis mouse model, even in the absence of hyperinsulinemic conditions [22].

Several studies have shown that a moderate calorie and/or protein restriction could
reduce the risk of neoplastic disease development by bringing back the altered metabolic-
hormonal status to a physiological condition and stimulating cell autophagy [23,24]. We
performed a two-arm randomized clinical trial to assess the effect of a moderate calorie–
protein restriction program (CARE-PRO TRIAL) on overweight or obese patients with
Barrett’s esophagus. A similar approach has not been attempted in this disease context
until now. Patients were divided randomly into two arms: a control arm (CA) and an
intervention arm (IA). The control arm received information regarding the importance of a
healthy lifestyle in reducing the risk of cancer, in accordance with the cancer prevention
recommendations provided by the WCRF/AICR [14]. The intervention arm was involved
in a two-year program of moderate caloric and protein restriction associated with moderate
physical activity based on individual possibilities.

2. Materials and Methods
2.1. Trial Design

This was a single-center two-arm randomized controlled trial comparing overweight
or obese BE patients undergoing CARE-PRO intervention with overweight or obese BE pa-
tients who only received general information about correct dietary habits and lifestyle, in ac-
cordance with the cancer prevention recommendations provided by the WCRF/AICR [14].
The intervention lasted 24 months and was accompanied by normal follow-up proce-
dures [25] for both intervention and control patients. Briefly, participants in IA were
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provided with dietary advice based on the WCRF/AICR recommendations. Patients’ in-
take of total daily calories was reduced up to 600 kcal below their energy requirements,
estimated using the revised Harris–Benedict formula [26]. Each patient was involved in
sessions of culinary practice. Every session and every recipe were developed based on
the Mediterranean Diet, in accordance with the WCRF/AICR recommendations and the
Healthy Eating Plate proposed by the Harvard School of Public Health [27]. Participants in
the CA received a leaflet based on the same recommendations [14] including suggestions
to increase the consumption of fiber and vegetable proteins. The detailed intervention
program is reported in Supplementary File S1. The research team, including research
nurses, was blinded to the patient group allocation until the collection of laboratory data
was finalized, except for the principal investigator, the dietitian, and participants, given
the nature of the intervention. The latter three members of the research team were not
involved in data analysis.

2.2. Study Population: Inclusion and Exclusion Criteria

BE patients considered for inclusion were those undergoing esophageal endoscopy
surveillance at the Digestive Endoscopy Unit of the IOV-IRCCS. Participants’ confiden-
tial data were collected and held by the Digestive Endoscopy Unit. A detailed descrip-
tion of the intervention program is available at ClinicalTrials.gov (Registration Number
NCT03813381).

The primary outcome of the study was to evaluate the impact of the lifestyle-oriented
(diet, physical activity, and behavior change) intervention on (i) body mass index and waist
circumference of overweight or obese BE patients. A 7% weight loss has been shown to be
clinically effective in reducing the risk of diabetes [28]. Secondary outcomes were as follows:
(ii) to determine the variation in the levels of serum analytes related to metabolic conditions
associated with obesity (leptin and adiponectin), insulin resistance, and cancer risk (gly-
caemia, insulin, C-peptide, IGF-1, and IGF binding protein 3); (iii) to quantify the change
of the esophageal expression level of the main proteins involved in insulin/IGF-1 signal
transduction; (iv) to assess the modification of esophageal microbiota composition; (v) to
evaluate adherence to the cancer prevention recommendations (WCRF/AICR 2007) [14] us-
ing a validated score [15]; and (vi) to evaluate possible differences in CARE-PRO outcomes
between elderly (≥65 years) and younger BE patients (<65 years).

Inclusion criteria:

• Histological confirmation of Barrett’s esophagus without dysplasia or cancer;
• Aged ≥ 18 years;
• BMI ≥ 25.0 kg/m2;
• Willingness and ability to perform supervised Nordic walking sessions twice a month

and self-planned physical activity at least three times a week;
• Signed informed consent.

Exclusion criteria:

• No histological confirmation of Barrett’s esophagus;
• Cancer diagnosis within one year prior to the trial’s commencement;
• Presence of insulin-dependent diabetes;
• Refusal to sign the informed consent.

Essential clinical data pertaining to analyzed patients from the control arm and inter-
vention arm are shown in Table 1.
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Table 1. Characteristics of the population.

CA IA

n (female) 54 (5) 46 (8)
Age, mean (±SD) 59.1 (±10.6) 58.7 (±10.1)

PPI/anti-acid n (%) 54 (100) 46 (100)
NSAID n (%) 24 (44.4) 18 (39.1)

Thyroid hormone replacement therapy n (%) 4 (7.4) 6 (13.0)
Anti-hypertensive therapy n (%) 25 (46.3) 16 (34.8)

Fisher’s exact test showed no differences between groups. All patients were Caucasians; n: number; SD: standard
deviation; CA: control arm; IA: intervention arm.

2.3. Sample Size

The sample size was based on the primary outcome of a clinically significant change
in body weight at the end of the study. A 7% weight loss has been shown to be clinically
effective in reducing the risk of diabetes [28]. According to previous data [29], it is expected
that around 30% of patients enrolled in the intervention arm and 15% of those enrolled in
the control arm will achieve the weight loss within the time allotted for the trial. At least
95 patients were required for each group (power: 80%; type-1 error: 5%) in order to reveal
a statistically significant difference in the rates of achievement of a 7% weight loss between
IA and CA. It was estimated that a pool of 340 patients needed to be recruited to achieve
this sample size. This would allow an enrollment rate of 70% (n = 238), and a subsequent
dropout rate of 20% (n = 190). Due to the COVID-19 pandemic situation, the period of
enrollment, which began in November 2015, was forced to close in March 2020. Until that
date, a total of 273 patients with previously diagnosed BE underwent upper endoscopy in
our unit at the Istituto Oncologico Veneto for endoscopic surveillance: 113 of them did not
meet the inclusion criteria; 160 patients were randomized and allocated to the two arms as
scheduled by the CARE-PRO study (IA n = 80; CA n = 80). Only patients enrolled up to
February 2018 (n = 120, IA n = 60; CA n = 60) (able to complete the trial by February 2020)
were included in this analysis. Excluding dropouts, the number of subjects included in the
present analysis was n = 100 (IA n = 46; CA n = 54). The CONSORT flow diagram is shown
in Figure 1.

2.4. Randomization

At the time of enrollment, prior to group allocation, anthropometric measurements
(such as height, body weight, and waist circumference at the umbilical level) were recorded
for each patient immediately before the endoscopic procedure. Patients were randomized
to one of the two arms with a 1:1 allocation rate by the data manager, using a permuted
block balanced procedure. The data manager was not involved in the recruitment or
intervention process.

2.5. Blood and Biopsy Sample Collection

Immediately before endoscopy at both T0 and T24, blood samples were obtained
from each patient (after 10–12 h of fasting) and blood glucose was measured with a
glucometer (Abbott Laboratories®, Dallas, TX, USA). Serum was extracted, aliquoted,
and frozen in liquid nitrogen. During endoscopy, 4 quadratic esophageal biopsies every
2 cm were obtained in line with the Seattle protocol, fixed in formalin, and sent to the
Surgical Pathology Unit for histological examination to confirm the presence of Barrett’s
esophagus and exclude the presence of dysplasia or cancer. Additional target biopsies were
obtained from Barrett’s esophagus at 2 cm above the esophagogastric junction, and frozen
in liquid nitrogen. Biopsies and serum samples were stored at −80 ◦C and managed by the
Biological Bank staff who provided for their preservation in total anonymity (as prescribed
by law and already authorized by the Ethics Committee with Prot. No. P 480 2002).
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Figure 1. The trial’s CONSORT flow diagram.

2.6. Serum Analysis

Serum metabolic biomarkers such as insulin, C-peptide, total IGF-1 and its binding
protein 3, leptin, and adiponectin levels were simultaneously measured in each serum
sample with Luminex xMAP® technology (multiplexed fluorescent bead-based immunoas-
say) (Luminex Corporation, Austin, TX, USA). Each measure was performed in duplicate.
Serum analyte quantitative analyses were performed with Luminex xPONENT 3.1 Soft-
ware (Luminex Corporation, Austin, TX, USA) using a five parameter logistic curve fitting.
The insulin resistance index (HOMA-IR index) was calculated using the formula: (fasting
glucose (mg/dL) × fasting insulin (µU/mL)/405), according to the method developed
by Matthews et al. [30]. The HOMA-IR index ≥2.5 was selected as the cutoff for insulin
resistance according to Capasso et al. [31].

2.7. Esophageal Biopsy Analysis: Insulin/IGF-1 Signal Transduction

Total proteins were extracted from fresh frozen biopsies collected on distal esophageal
segments. After mechanical lysis, tissues were treated with NP40 lysis buffer with added
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protease and phosphatase inhibitors (Thermo Scientific Pierce, Rockford, IL, USA). Bicin-
choninic acid (BCA) assay (Thermo Scientific Pierce, Rockford, IL, USA) was performed
to quantify extracted total proteins; 25 µg of total protein were analyzed for each sam-
ple and each analysis. The beta-tubulin amount was used as an internal loading control.
Signaling pathways for total and phosphorylated IR/IGF1R proteins were determined
using Luminex xMAP® technology. Each measure was performed in duplicate. Both the
metabolic PI3K/Akt pathway and the mitogenic (ERK1/2) pathway were analyzed. The
quantification of a specific total protein was calculated as the ratio between each protein’s
mean fluorescence intensity (MFI) and beta-tubulin MFI. Specific phosphorylated proteins
were expressed as the ratio between each phosphorylated protein MFI and the total cor-
responding protein MFI. In the figures, data were expressed as median (Q1; Q3) and the
relative protein expression was indicated as n-fold of the protein amount detected on the
control arm measured at baseline (CA T0), which was set equal to 1 arbitrary unit (A.U.).

2.8. Statistical Analysis

The Mann–Whitney U test was used to assess differences between the two groups
of patients at baseline. Fisher’s exact test was used for the comparison of categorical
variables. The Wilcoxon matched-pairs signed-rank test was used to evaluate differences
between T0 and T24 measurements within each group. Data were expressed as median
and interquartile range (Q1; Q3). A p-value lower than 0.05 was assumed to indicate a
significant difference. Data analyses were performed with STATA 12.0 (StataCorp. 2011.
Stata Statistical Software: Release 12. College Station, TX: StataCorp LP, USA) and R
software (version 3.5.1).

3. Results
3.1. Effect of the Intervention Program on Anthropometric Measurements

Anthropometric parameters (height (m), weight (kg), and abdominal circumference
(cm)) were recorded at T0 and T24 for both IA and CA patients. Data on height and weight
were used to calculate the body mass index (BMI). The Mann–Whitney U test results
showed no differences between the two groups of patients at baseline (Table 2). The paired
test showed no differences in anthropometric measurements from the time of enrollment
to 24 months later in CA patients. To the contrary, patients in the IA group showed a
significant decrease in body weight (p = 0.001) and, as a consequence, in BMI measurement,
with a median reduction of ∆ = −0.84 kg/m2 (p = 0.001). Similarly, in the same group of
patients, waist circumference (WC) values decreased after 24 months (p = 0.002) (Table 2).

Table 2. Anthropometric measurements at baseline (T0) and at the end of 24 months of intervention (T24).

CA
n = 54

IA
n = 46

T0 ∆(T24−T0) Paired M–W T0 ∆(T24−T0) paired

Weight
(kg)

84.30
(77.93; 94.80)

+0.35
(−1.58; +2.00)

z = +0.71
p = 0.477 0.767 84.95

(78.50; 92.75)
−2.55

(−4.08; −0.28)
z = −3.31
p = 0.001

BMI
(kg/m2)

28.08
(26.55; 30.65)

+0.20
(−0.50; +0.81)

z = +1.01
p = 0.312 0.772 28.04

(26.25; 29.56)
−0.84

(−1.34; −0.09)
z = −3.21
p = 0.002

WC
(cm)

103.75
(97.63;
109.75)

+0.00
(−1.50; +1.68)

z = −0.25
p = 0.799 0.070 101.00

(94.63; 106.95)
−2.75

(−5.00; +0.80)
z = −3.13
p = 0.001

∆(T24−T0) indicates the difference between the value measured at T24 and the baseline value. Data are expressed as median (Q1; Q3).
The Wilcoxon matched-pairs signed-rank test (paired) was used to compare measurements at T0 and T24 within the same group. The
Mann–Whitney U test (M–W) was performed to evaluate differences in baseline measurements (T0) between the control arm (CA) and
intervention arm (IA).

The overall median percentage of the weight loss in the intervention arm was 3.0%.
Weight loss and BMI reduction were found in 35 IA patients out of 46 (76.1%) and 19 CA
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patients out of 54 (35.2%). The Fisher’s exact test showed a significant difference between
the groups (p < 1 × 10−4). Seven out of 46 IA patients achieved a reduction in body weight
at least equal to 7%. Conversely, no patient included in the control arm achieved this goal
(Fisher’s exact test, p = 0.003). Regardless of the extent of WC reduction, values decreased
in 69.6% and 48.1% of IA and CA patients, respectively (Fisher’s exact test, p = 0.042). At
the time of enrollment, 94.4% of CA patients (n = 51) and 89.1% of IA patients (n = 41)
(p = 0.465) were affected by central obesity (i.e., waist circumference values ≥94 cm and
≥80 cm, for European males and females, respectively, according to the International
Diabetes Federation definition [32]). At the end of the program, 2.0% of CA patients (1 out
of 51) and 21.9% of IA patients (9 out of 41) affected by central obesity achieved a decrease
in waist circumference up to the normal value (Fisher’s exact test, p = 0.004). A reduction
of both WC and BMI was observed in 65.2% of IA patients and 22.2% of CA patients
(p < 1 × 10−4).

These data suggest that providing information about the correct lifestyle and dietary
habits to be adopted to prevent the evolution of disease can produce positive effects on
about 20% of informed people. On the other hand, the substantial changes observed
in 65% of patients actively involved in the intervention program suggest the effective-
ness of the proposed multimodal nutritional intervention (intervention program details
are summarized in Supplementary File S1: Intervention Program, or fully reported at
ClinicalTrials.gov (accessed 2021 -10 -17).

3.2. Effect of the Intervention Program on Serum Parameters

In order to evaluate each patient’s metabolic status at enrollment, fasting blood glu-
cose, fasting serum insulin, C-peptide, IGF-1, its binding protein 3, leptin, and adiponectin
levels were measured. The HOMA-IR index was calculated to estimate insulin resistance
conditions. No differences were observed at baseline between CA and IA for each param-
eter considered (as indicated by Mann–Whitney U test results reported in Table 3). The
same parameters were measured after 24 months.

Table 3. Serum metabolic parameters at baseline (T0) and at the end of 24 months of intervention (T24).

CA IA

T0 ∆(T24−T0) Paired M–W T0 ∆(T24−T0) Paired

Glucose
(mg/dL)

85.5
(77.0; 96.7)

+2.0
(−2.7; +4.7)

z = +2.16
p = 0.031 0.936 89.0

(77.0; 99.0)
−2.5

(−10.5; +3.5)
z = −1.01
p = 0.314

Insulin
(pg/mL)

413.4
(282.6; 576.0)

+26.0
(−117.1; +131.2)

z = +0.60
p = 0.547 0.638 318.2

(207.2; 531.7)
−37.9

(−103.6; +66.8)
z = −1.16
p = 0.245

C-peptide
(pg/mL)

1300.5
(840.2; 1650.8)

+4.1
(−215.4; +317.9)

z = +0.73
p = 0.464 0.254 1064.8

(772.1; 1448.5)
−55.7

(−205.9; +155.5)
z = −0.63
p = 0.530

HOMA-IR 2.20
(1.47; 3.37)

+0.23
(−0.45; +0.96)

z = +1.47
p = 0.142 0.110 1.75

(0.97; 3.26)
−0.29

(−0.74; +0.40)
z = −1.28
p = 0.199

IGF-1
(nmol/L)

8.33
(6.61; 10.85)

−0.11
(−1.89; +1.10)

z = −1.67
p = 0.095 0.219 9.65

(7.80; 11.56)
−0.91

(−3.15; +0.17)
z = −3.15
p = 0.002

IGFBP3
(nmol/L)

24.74
(19.57; 27.77)

−1.00
(−4.33; +1.10)

z = −2.17
p = 0.029 0.254 25.99

(22.60; 29.23)
+0.52

(−4.21; +2.21)
z = −0.55
p = 0.585

IGF-
1/IGFBP3
molar ratio

0.37
(0.27; 0.44)

+0.01
(−0.61; +0.10)

z = +0.97
p = 0.333 0.834 0.35

(0.28; 0.44)
−0.03

(−0.13; +0.07)
z = −1.67
p = 0.096

Leptin
(ng/mL)

6.08
(3.37; 10.75)

+0.97
(−0.89; +2.09)

z = +2.18
p = 0.029 0.153 5.17

(2.61; 8.15)
+0.02

(−1.72; +1.19)
z = +0.20
p = 0.844

Adiponectin
(µg/mL)

14.50
(10.02; 25.56)

−1.08
(−7.81; +1.71)

z = −1.71
p = 0.087 0.529 18.92

(10.65; 25.45)
+0.41

(−3.02; +6.22)
z = +0.46
p = 0.642

Leptin/
Adiponectin

0.37
(0.23; 0.88)

+0.10
(−0.04; +0.39)

z = +3.10
p = 0.002 0.230 0.30

(0.12; 0.66)
−0.01

(−0.12; +0.12)
z = +0.02
p = 0.987

∆(T24−T0) indicates the difference between the value measured at T24 and the baseline value. Data are expressed as median (Q1; Q3).
The Wilcoxon matched-pairs signed-rank test (paired) was used to compare measurements at T0 and T24 within the same group. The
Mann–Whitney (M–W) U test was performed to evaluate differences on baseline measurements (T0) between the control arm (CA) and
intervention arm (IA).
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A significant reduction in IGF-1 levels was observed in IA patients at the end of the
intervention program, with a median value of variation (∆) = −0.91 nmol/L (11.2% lower
than basal values measured at the time of enrollment). Analysis showed no significant
differences in the other serum parameters considered.

Although mild in magnitude, significant increases in fasting glucose (∆= +2.0 mg/dL,
2.6% higher than basal level) and serum leptin levels (∆= +0.98 ng/mL, 15.4% higher than
basal level) were observed in CA patients. The adipokine ratio (leptin/adiponectin) was
also significantly increased in the CA group (∆= +0.10 ng/µg, 50.0% higher than baseline),
while IGFBP3 serum levels were lower (–6.3%) compared to basal levels (∆= −1.0 nmol/L).

At the time of enrollment, 37.0% of CA patients and 36.9% of IA patients were insulin
resistant (HOMA-IR index ≥ 2.5). At the end of the intervention, 20.0% of CA and 17.6% of
IA insulin-resistant patients returned to normal values (p = 0.701) (HOMA-IR index < 2.5).
Conversely, after 24 months from enrollment, 14 CA patients and 1 IA patient with a normal
HOMA-IR index at T0 increased their HOMA-IR index to reach values attributable to an
insulin resistance condition. The Fisher’s exact test result indicated significant differences
between the groups (p = 7 × 10−4).

Most of the patients with a higher reduction in waist circumference (WC reduction
≥ 4.0 cm) (Figure 2a) were in the IA group (20 out of 26 patients), while just 6 patients
were part of the CA (p = 5 × 10−4). Likewise, most of the patients with a higher re-
duction in BMI values (BMI reduction ≥ 1.11 kg/m2) belonged to the IA (17 out of
25 patients), while only 8 patients were from the CA group (p = 0.019) (Figure 2b). Pa-
tients who satisfied the identified cutoffs had also improved in a higher number of serum
parameters (an average of about 6 out of 10 parameters reported in Table 3) compared
with the rest of the patients (an average of about 4 parameters) The Mann–Whitney U test
showed significant differences in the number of improved serum parameters (p = 0.008 and
p = 0.004 for WC and BMI variations, respectively). The relationship between anthropomet-
ric and serum metabolic parameters suggests that the improvements were associated with
significant weight loss and significant central adiposity reduction. In accordance with the
improvement of anthropometric parameters, more frequently observed in the IA, the most
positive changes in serum metabolic factors were found among patients actively involved
in the supervised intervention program.
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3.3. Effect of the Intervention Program on the Insulin/IGF-1 Signal in Esophageal Biopsy Specimens

The expression and activation state of the main proteins involved in the insulin/IGF-1
signaling pathway (listed in Table 4) were measured in bioptic samples obtained from the
distal esophagus of BE patients during the upper endoscopies required by the protocol.

Table 4. Proteins involved in the insulin/IGF-1 signaling pathway, whose expression and phospho-
rylation level were analyzed in esophageal biopsy specimens from Barrett’s lesion.

Total Protein Phosphorylated Residue Phosphorylation Function

IR Tyr1162/Tyr1163 activating
IGF1R Tyr1135/Tyr1136 activating
IRS1 Ser636 inhibitory
Akt Ser473 activating

mTOR Ser2448 activating
p70S6K Thr412 activating
PTEN Ser380 inhibitory

ERK1/2 Thr185/Tyr187 activating
GSK3-beta Ser9 inhibitory

TSC2 Ser939 inhibitory

Total protein expression and phosphorylation levels were analyzed with Luminex xMAP® technology. Phospho-
rylation on specific residues promotes an active protein conformation (activating). Conversely, some phosphory-
lation events negatively regulate protein activity (inhibitory).

None of the evaluated protein expressions showed significant differences between
the two groups at the time of enrollment (Figure 3). Total protein expression in the CA
esophageal tissue was tested and showed no statistically significant differences between
the two time-points considered, except for TSC2 protein levels. At time T24, TSC2 was
overexpressed 1.42-fold higher than baseline values (p = 0.005) (Figure 3).

In terms of the phosphorylation state of the proteins in the CA group, patients showed
a significant increase in the relative phosphorylation of both the Akt and ERK1/2 (paired
test, p = 0.031 and p = 0.018, respectively) (Figure 4).

In contrast, several differences were observed in the total protein expression levels of
the IA group between T0 and T24 (Figure 3). The total IRS1 expression level at T24 was
reduced by 23.20% (p = 0.006). Furthermore, the total p70S6K and total ERK1/2 expression
decreased significantly in IA precancerous tissue after 24 months (paired test, p = 0.003 and
p = 0.003, respectively). The median downregulated expression was 27.86% for p70S6K and
22.87% for ERK1/2. No differences were observed in the other total proteins analyzed. The
analysis of the relative protein phosphorylation level in the IA group showed no significant
variation (Figure 4).

3.4. Overall Effect of the Intervention Program: Identification of Different Patient Subpopulations

The unexpected downregulation of the IRS1 protein in patients with significant weight
loss and reduced abdominal fat prompted us to perform further analyses. IRS1 downregu-
lation was observed in 31 out of 46 patients in the IA (67.4%) and 22 out of 54 in the CA
(40.7%) (53 patients were identified as the lower-IRS1 subpopulation).

The analysis of the parameters in the lower-IRS1 subpopulation allowed us to identify
two different subpopulations: the first subpopulation showed a significant BMI reduction
(median reduction = −0.90 kg/m2, z = −2.34, p = 0.019), and lower levels of several serum
parameters. Indeed, blood glucose levels were reduced (z = −4.20, p < 1 × 10−5), as well as
IGF-1 levels (z = −2.46, p = 0.014) and the IGF-1/IGFBP3 ratio (z = −2.11, p = 0.034). The
HOMA-IR index variation was close to significance (z = −1.89, p = 0.059). Figure 5 shows
the median variation of each analyte considered. The same subpopulation, together with
IRS1 downregulation (z = −4.20, p < 1 × 10−5) in esophageal tissue affected by Barrett’s
lesion, importantly showed a decreased amount of total Akt (z = −2.62, p = 0.009), total
p70S6K (z = −3.47, p = 5 × 10−4), and total ERK1/2 protein (z = −4.04, p = 1 × 10−4).
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Twenty-three patients in total (n = 20 IA and n = 3 CA patients) belonged to this lower-IRS1
and improved metabolic parameters group (Figure 5).
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Figure 5. Identification of different patient subpopulations based on the modulation of IRS1 expression after 24 months
from the start of the intervention program. Patients were divided on the basis of the downregulation (lower) or upregulation
(higher) of IRS1 expression at the end of the intervention program compared to the basal expression at the time of enrollment.
Within the lower IRS1 subpopulation, patients who had improved glycaemic control and patients who had unchanged
or worsened glycaemic control were analyzed separately. For each group of patients, data regarding anthropometric
parameters, serum analytes, total expression, and the relative phosphorylation level of proteins extracted from Barrett’s
lesion were reported. Data indicate the median variation (T24−T0) of the parameter considered, followed by a p-value
(the Wilcoxon matched-pairs signed-rank test was used to compare measurements at T0 and T24 within the same group).
A reduction in protein levels was indicated as the median of the variation expressed as a percentage (%). An increase in
protein level was indicated as n-fold of the amount detected at baseline. Parameters not included in this diagram were not
significantly modified. 1 The Fisher’s exact test was performed to assess differences between the proportions of patients
belonging to the two arms within each subpopulation identified. The up/down arrow indicates an increase/decrease
in the parameter’s measure at 24 months compared to baseline. The green arrow indicates a positive change (protective
against cancer evolution) in the parameter considered. The red arrow indicates a negative change (procancer) in the
parameter considered.

To the contrary, the second subpopulation showed no weight loss (z = +0.90,
p = 0.366), an increase in blood glucose level (z = +3.30, p = 0.001), a significant increase in
leptin secretion (z = +1.95, p = 0.050), and an important reduction in IGFBP3 (z = −2.64,
p = 0.008). This population, together with esophageal IRS1 downregulation, showed a signif-
icant increase in the phosphorylation of proteins analyzed: IRS1 relative phosphorylation
(z = +2.31, p = 0.021), TSC2 relative phosphorylation (z = +2.15, p = 0.031), and ERK
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relative phosphorylation (z = +1.98, p = 0.047). Thirty patients in total (n = 11 IA and
n = 19 CA patients) belonged to this lower-IRS1 and worsened metabolic parameters group
(Figure 5).

Taken together, the results suggest that in patients who actively followed the program,
the reduction in BMI and WC induced recovery in insulin sensitivity, with a lower IGF-1
serum level. A significant downregulation of most proteins involved in insulin-induced
molecular signal transduction occurred as a result of the new metabolic state. The downreg-
ulation of the signal seems to involve intracellular cascade proteins such as IRS1, p70S6K,
and ERK total expression. The simultaneous downregulation of the main proteins involved
in insulin/IGF-1 molecular signal transduction occurred mainly in IA patients and it was
related to weight loss and an improvement in glucose homeostasis. Notably, only 3 out of
54 of the CA patients achieved this condition at the end of the trial.

The downregulation of total IRS1 was not exclusively associated with an improvement
of the metabolic parameters. In fact, in a different lower-IRS1 subpopulation, 63.3% of
whom belonged to the CA, this alteration was found and occurred simultaneously with
the increase in IRS1 phosphorylation in serine residues, with reduced activity of the tumor
suppressor TSC2 and increased activity of ERK proteins. These molecular adjustments
suggest a reduction in insulin sensitivity, which was confirmed by a worsening of glycaemic
control associated with an increase in leptin secretion.

The remaining patients, who showed IRS1 upregulation in their esophageal tissue at
the end of the 24-month intervention program (the higher-IRS1 subpopulation), shared
some characteristics with both the populations described above, in particular, reduced
IGF-1 secretion (z = −2.46, p = 0.014) similar to the first population and a significant in-
crease in blood glucose levels (z = +2.03, p = 0.042) similar to the second. A negligible WC
reduction was observed (z = −2.11, p = 0.035), but it was insufficient to make improvements
in the regulation of adipokine release (the leptin/adiponectin ratio was 1.30-fold higher
than baseline, z = +2.40, p = 0.016). In addition to an increase in IRS1 total expression
(z = +5.97, p < 1 × 10−5), a significant increase in ERK1/2 expression (z = +2.25,
p = 0.024) was observed. Analogous with data observed in the whole group of CA patients
(Figure 3), this population showed a higher expression of TSC2 in esophageal tissue
(z = +4.57, p < 1 × 10−5). Unlike the other populations, here we observed a significant reduc-
tion in the relative inhibitory phosphorylation of IRS1 (z = −2.33, p = 0.020) and an increase
in GSK3-beta total expression (z = +2.42, p = 0.015). A total of 47 patients (n = 15 IA and
n = 32 CA patients) were in this higher-IRS1 group (Figure 5).

These data suggest that a small reduction in abdominal fat accumulation was insuffi-
cient to reverse the deficiency in the glucose homeostasis mechanism. Furthermore, a small
decrease in IGF-1 secretion could not be sufficient to inhibit the mitogenic mechanism, as
was suggested by the increase in ERK1/2 expression in esophageal tissue.

4. Discussion

Central obesity, intrinsically associated with insulin resistance and hyperinsuline-
mia, has been previously identified as an important risk factor for the development of
esophageal adenocarcinoma [5–7]. The main mechanisms involved include anatomic fac-
tors such as increased abdominal and intraperitoneal fat accumulation, as well as diseases
associated with predisposing patients to increased gastroesophageal reflux, such as hiatal
hernia formation. Moreover, obesity may mediate cancer progression through insulin
resistance via the insulin/insulin-like growth factor axis, oxidative stress, chronic systemic
inflammation, and dysregulated adipokines secretion [2,33,34]. Our group previously
reported how hyperinsulinemia can induce hyperactivation of esophageal receptors for
insulin and IGF-1, and how their impairment and the commitment of other growth factor
receptors, such as HER2, can mediate insulin’s pro-proliferative effect on precancerous and
cancerous esophageal cells [5]. The pivotal role of IGF1R signaling in esophageal cancer
onset has been exhaustively studied in our surgically induced esophageal adenocarcinoma
mouse model. Our data suggest the involvement of IGF1R in esophageal carcinogenesis,
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even in the absence of hyperinsulinemia or obesity conditions [22]. Nutrient excess, to-
gether with genetic predisposition, may play a crucial role in the development of insulin
resistance. Increased fat intake is considered to be the main cause of metabolic abnormal-
ities related to overnutrition. Although short-term trials showed that high-protein diets
have some beneficial effects on glucose homeostasis in obese and diabetic patients [35,36],
there is rising scientific evidence suggesting that elevated dietary protein consumption
(particularly of animal origin) is associated with increased insulin resistance, glucose in-
tolerance, and the risk of type 2 diabetes [37]. Long-term nutritional approaches, based
only on calorie restriction or protein restriction, showed beneficial effects on insulin and
inflammatory mediators in humans. Exclusive protein restriction was able to induce a
reduction in total and free IGF-1 levels [38], suggesting that reduced protein intake could
represent an important component of anti-cancer dietary interventions.

To our knowledge, the present study is the first to investigate the effect of a moderate
calorie and protein restriction program on overweight or obese patients affected by the
esophageal precancerous lesion called Barrett’s esophagus. The effect was evaluated on
the anthropometric parameters and levels of serum analytes related to insulin resistance.
Moreover, the insulin/IGF-1 signaling pathway was analyzed in distal esophageal biopsy
specimens obtained during an upper endoscopy. All the parameters were analyzed at the
time of enrollment and 24 months later in patients who underwent the active multimodal
restriction program, and in the control group who only received a leaflet based on the
WCRF/AICR recommendations [14]. Data on anthropometric parameters suggest that just
providing written information about the correct lifestyle and dietary habits to be followed
can produce positive effects on around 20% of informed people. Instead, the meaningful
changes observed in approximately 65% of patients from the IA group suggest that the
effectiveness of the nutritional intervention is significantly increased when specialized
personnel, besides providing information, use health coaching techniques, give patients
the opportunity to practice acquired knowledge, and plan group activities, such as cooking
classes, sharing meals, and collective involvement in physical activity.

The new lifestyle and dietary habits seem to be appropriate for reducing IGF-1 se-
cretion. The relation between anthropometric and serum metabolic parameters suggests
that most of the improvements were related to significant weight loss associated with a
significant decrease in central adiposity. In particular, the cutoff assigned to a reduction
in waist circumference (4 cm) and BMI (1.11 kg/m2) was indicative of the endpoint for
obtaining beneficial metabolic changes. According to the improvements observed in BMI
and WC, the most positive changes in serum metabolic factors were found among patients
actively involved in the supervised intervention program. In particular, adherence to the
program revealed a double positive effect: on the one hand, it improved insulin resistance
conditions and, on the other, could prevent possible deterioration, as was suggested by
the control arm trend, particularly for glycaemia, and HOMA-IR index changes, and the
reduction in the IGF-binding protein 3 in these unsupervised patients.

While lifestyle intervention was able to produce enough weight loss to improve
serum metabolic parameters, it is important to consider which parameters to alter and
the range to which they must be changed, in order to induce an appreciable improve-
ment in insulin/IGF-1 signaling directly on esophageal tissue affected by Barrett’s lesion.
Data obtained on esophageal protein expression show evidence of a new metabolic state.
This state is associated with a significant downregulation of most proteins involved in
insulin/IGF-1-induced molecular signal transduction in the BE patients participating
in the intervention program. The analysis of the whole IA group showed a reduced
amount of IRS1, p70S6K, and the extracellular signal-regulated kinase (ERK1/2) total
protein expression in esophageal BE tissue, accompanied by a significant reduction in IGF-1
serum level.

The unexpected downregulation of expression of the first substrate recruited by insulin
and IGF-1 activated receptors prompted us to investigate further. We observed that patients
showing reduced expression of IRS1 belonged to two distinct populations: the first with
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IRS1 downregulation exhibited a significant decrease in expression of the other main
proteins involved in insulin/IGF-1 signal transduction, such as Akt, p70S6K, and ERK1/2.
These patients lost body weight, showed reduced glycaemia, an improved HOMA-IR
index, decreased IGF-1 serum levels, and a lower IGF-1/Binding protein 3 molar ratio. This
subpopulation was composed of 23 patients, 87.0% of whom were from the intervention
arm. Data suggest that glucose homeostasis and insulin sensitivity improved in these
patients. Their metabolic response to the change in dietary habits, coupled with moderate
physical activity, was able to induce molecular modifications of the insulin/IGF-1 pathway
in the esophageal tissue affected by precancerous lesions. This group fully benefited from
the interventional approach that finally resulted in the inhibition of the mitogenic pathway
in precancerous lesions.

The second subpopulation with IRS1 downregulation showed a significant increase in
relative inhibitory phosphorylation of IRS1 and TSC2 anti-tumor protein and an increased
activation of the mitogenic pathway associated with ERK1/2. These patients were char-
acterized by no weight loss, increased levels of blood glucose and serum leptin, and a
decreased level of serum IGF-binding protein 3. This subpopulation was composed of
30 patients, 63.3% of whom were from the control arm. The worsening of glucose homeosta-
sis and the increase in free IGF-1 were the result of the lowest insulin sensitivity mediated
by the IRS1 downregulation. As is known, IRS1 phosphorylation on serine residues pre-
cedes its degradation. The phosphorylation is mediated by S6K1, an insulin-induced
serine/threonine kinase that negatively modulates the effect of insulin [39]. These data
highlight that this group did not reap any benefits from the program due to a worsening of
their metabolic condition that continued to induce the activation of the mitogenic pathway.

Additionally, we identified a third group with a high IRS1 expression composed of
32 patients (59.2%) enrolled in the control arm and 15 IA patients (32.6%) (higher-IRS1
subpopulation). This group had a marginal metabolic change that could be the consequence
of a negligible reduction in abdominal fat; it was manifested by a modest reduction
in IGF-1 secretion, curiously accompanied by a more marked alteration in adipokines
secretion. Furthermore, increased GSK3-beta levels were detected in these patients. This
could be responsible for the inhibition of glycogen synthesis [40], accompanied by a small
increase in glycaemia. The modification of metabolic conditions could be involved in the
activation of mitogenic pathways in these patients. The upregulation observed for the
TSC2 protein could be explained by the necessity to limit and control the events responsible
for cell transformation [41]. As previously reported by Ma et al. [42], the main cellular
function of TSC2 is to inhibit the S6K1 protein. This fact could explain the reduced relative
phosphorylation of IRS1, a specific target of S6K [43]. This population involved patients
who achieved few benefits and, therefore, the outcomes do not reflect a substantial lifestyle
change that can mitigate the activation of the mitogenic pathway.

IGF-1 is a potent mitogenic growth factor. It promotes cell proliferation and inhibits
apoptosis. We previously demonstrated the pivotal role played by IGF1R signaling in
the onset of esophageal cancer in normo-insulinemic and hyperinsulinemic surgically-
induced EAC mice [22]. Experimental and epidemiological studies suggest that IGF-1 and
its binding protein serum levels are influenced by dietary intake, and play a role in the
pathogenesis of several common cancers. Data from randomized clinical trials have shown
that calorie restriction does not reduce IGF-1 and IGF-1/IGFBP3 ratio levels, unless protein
consumption is also reduced [38]. Data from our 24-month randomized trial on patients
affected by Barrett’s esophagus suggest that a calorie and protein restriction program
together with a specialized supervised approach can affect IGF-1 serum levels, reducing
its secretion and also the IGF-1/IGFBP3 ratio. This study also suggests that a significant
reduction in IGFBP3 synthesis could occur independently of a significant alteration of
total IGF-1 levels. A decrease in IGFBP3 is a remarkably important index that underlines
the worsening of the metabolic condition and tissue procancer molecular changes. An
interesting amount of evidence points to the IGF-independent effects of IGFBP3 on cell
growth. This protein acts as a growth inhibitor and tumor suppressor [44]. Data from
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our previous retrospective study suggested a role for reduced IGFBP3 secretion in both
Barrett’s onset and the evolution toward dysplasia/adenocarcinoma [5].

When IGF-1 secretion is lower and reflects a lower free IGF-1 concentration, confirmed
by a decrease in the IGF-1/IGFBP3 ratio, combined with glycaemia reduction and weight
loss, observed in the subpopulation mostly represented by IA patients, the metabolic condi-
tion improves enough to induce substantial positive molecular changes in the esophageal
tissue affected by pretumor lesions. Adding total IGF-1 and the IGFBP3 to the routine blood
sample control could represent an inexpensive and preventive approach to monitoring the
metabolic condition trend of the patient.

Our study has some limitations. We excluded patients who were unable to complete
the trial because of the COVID-19 pandemic. In fact, many of the programmed activities
required for the intervention arm could not be carried out. For this reason, the sample
size calculated and reported by the protocol has not been reached. This study includes
the analysis of a large number of parameters. This manuscript’s focus is on the relation-
ship between weight loss and the metabolic changes that can be measured in serum. The
next step was to identify which parameters were significantly associated with the molec-
ular changes that were observed directly in esophageal lesions. All the other aspects of
this study, fully reported in the registered protocol, will be analyzed and commented
on separately.

5. Conclusions

The fundamental objective to consider in a lifestyle change program should be the
improvement of insulin sensitivity. To achieve this goal, acting only on lower calorie and
protein assumptions is not sufficient: the decreasing intake of both calories and protein, the
professional intervention of a dietician who attends each follow-up control, the cooking
classes, and moderate physical activity based on the individual characteristics, are all
important parts of the proposed intervention. Patients who responded optimally to the
approach significantly improved glycaemic control, insulin resistance, and reduced IGF-1
availability, controlling and reducing the serum concentration of markers associated with
increased risk of Barrett’s esophagus evolution towards adenocarcinoma. These important
changes prompt a significant downregulation of the insulin/IGF-1 pathway, which results
in a downregulation of the ERK-mediated mitogenic pathway directly at the esophageal
tissue level in Barrett patients. At the end of 24 months, no patients involved in this study
developed esophageal dysplasia or cancer. In order to evaluate the effectiveness of our
preventive approach on esophageal adenocarcinoma, the long-term evolution of the disease
will be monitored and associated with the parameters considered in this study.
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