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Abstract: We study a family of spheres with constant mean curvature (CMC) in the Riemannian Heisenberg
group H1. These spheres are conjectured to be the isoperimetric sets of H1. We prove several results support-
ing this conjecture. We also focus our attention on the sub-Riemannian limit.
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1 Introduction
In this paper,we study a family of sphereswith constantmean curvature (CMC) in theRiemannianHeisenberg
group H1. We introduce in H1 two real parameters that can be used to deform H1 to the sub-Riemannian
Heisenberg group, on the one hand, and to the Euclidean space, on the other hand. Even though we are not
able to prove that these CMC spheres are in fact isoperimetric sets, we obtain several partial results in this
direction. Ourmotivation comes from the sub-Riemannian Heisenberg group, where it is conjectured that the
solution of the isoperimetric problem is obtained rotating a Carnot-Carathéodory geodesic around the center
of the group, see [19]. This set is known as Pansu’s sphere. The conjecture is proved only assuming some
regularity (C2-regularity, convexity) or symmetry, see [4, 10, 16, 17, 20, 21].

Given a real parameter τ ∈ R, let h = span{X, Y , T} be the three-dimensional real Lie algebra spanned
by three elements X, Y , T satisfying the relations [X, Y] = −2τT and [X, T] = [Y , T] = 0. When τ ≠ 0, this
is the Heisenberg Lie algebra and we denote by H1 the corresponding Lie group. We will omit reference to
the parameter τ ≠ 0 in our notation. In suitable coordinates, we can identify H1 with C × R and assume that
X, Y , T are left-invariant vector �elds in H1 of the form

X = 1
ε

( ∂
∂x + σy ∂∂t

)
, Y = 1

ε

( ∂
∂y − σx

∂
∂t

)
, and T = ε2 ∂

∂t , (1.1)

where (z, t) ∈ C ×R and z = x + iy. The real parameters ε > 0 and σ ≠ 0 are such that

τε4 = σ. (1.2)

Let 〈·, ·〉 be the scalar product on hmaking X, Y , T orthonormal, that is extended to a left-invariant Rieman-
nianmetric g = 〈·, ·〉 inH1. The Riemannian volume ofH1 induced by thismetric coincideswith the Lebesgue
measure L 3 onC ×R and, in fact, it turns out to be independent of ε and σ (and hence of τ). When ε = 1 and
σ → 0, the Riemannian manifold (H1, g) converges to the Euclidean space. When σ = ̸ 0 and ε → 0+, then H1

endowedwith the distance function induced by the rescaledmetric ε−2〈·, ·〉 converges to the sub-Riemannian
Heisenberg group.
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The boundary of an isoperimetric region is a surface with constant mean curvature. In this paper, we
study a family of CMC spheres ΣR ⊂ H1, with R > 0, that foliate H1

* = H1 \{0}, where 0 is the neutral element
of H1. Each sphere ΣR is centered at 0 and can be described by an explicit formula that was �rst obtained
by Tomter [22]. We conjecture that, within its volume class and up to left translations, the sphere ΣR is the
unique solution of the isoperimetric problem in H1. When ε = 1 and σ → 0, the spheres ΣR converge to the
standard sphere of the Euclidean space. When σ ≠ 0 is �xed and ε → 0+, the spheres ΣR converge to the
Pansu’s sphere.

In Section 3, we study some preliminary properties of ΣR, its second fundamental form and principal
curvatures. A central object in this setting is the left-invariant 1-form ϑ ∈ Γ(T*H1) de�ned by

ϑ(V) = 〈V , T〉 for any V ∈ Γ(TH1). (1.3)

The kernel of ϑ is the horizontal distribution. Let N be the north pole of ΣR and S = −N its south pole. In
Σ*R = ΣR \ {±N} there is an orthonormal frame of vector �elds X1, X2 ∈ Γ(TΣ*R) such that ϑ(X1) = 0, i.e., X1
is a linear combination of X and Y. In Theorem 3.1, we compute the second fundamental form of ΣR in this
frame. We show that the principal directions of ΣR are given by a rotation of the frame X1, X2 by a constant
angle depending on the mean curvature of ΣR.

In Section 4,we link in a continuous fashion the foliationproperty of the Pansu’s spherewith the foliation
bymeridians of the round sphere in the Euclidean space. The foliationH1

* =
⋃
R>0 ΣR determines a unit vector

�eld N ∈ Γ(TH1
* ) such that N (p) ⊥ TpΣR for any p ∈ ΣR and R > 0. The covariant derivative∇N N , where

∇ denotes the Levi-Civita connection induced by the metric g, measures how far the integral lines of N are
from being geodesics of H1 (i.e., how far the CMC spheres ΣR are from being metric spheres). In space forms,
we would have∇N N = 0, identically. Instead, in H1 the normalized vector �eld

M (z, t) = sgn(t) ∇N N

|∇N N | , (z, t) ∈ Σ*R ,

is well-de�ned and smooth outside the center of H1. In Theorem 4.3, we prove that for any R > 0 we have

∇ΣRM M = 0 on Σ*R ,

where ∇ΣR denotes the restriction of ∇ to ΣR. This means that the integral lines of M are Riemannian
geodesics of ΣR. In the coordinates associated with the frame (1.1), when ε = 1 and τ = σ → 0 the inte-
gral lines ofM converge to themeridians of the Euclidean sphere.When σ = ̸ 0 is �xed and ε → 0+, the vector
�eld M properly normalized converges to the line �ow of the geodesic foliation of the Pansu’s sphere, see
Remark 4.5.

In Section 5, we prove a stability result for the spheres ΣR. Let ER ⊂ H1 be the region bounded by ΣR and
let Σ ⊂ H1 be the boundary of a smooth open set E ⊂ H1, Σ = ∂E, such that L 3(E) = L 3(ER). Denoting by
A (Σ) the Riemannian area of Σ, we conjecture that

A (Σ) −A (ΣR) ≥ 0. (1.4)

We also conjecture that a set E is isoperimetric (i.e., equality holds in (1.4)) if and only if it is a left translation
of ER. If isoperimetric sets are topological spheres, this statement would follow from Theorem A.10.

Isoperimetric sets are stable for perturbations �xing the volume: the second variation of the area is non-
negative. The spheres ΣR are in fact stable, this is proved in [24, Theorem 2.3] using Koiso’s stability criterium
[14]. The stability of ΣR in the northern and southern hemispheres can be obtained in a more elementary
way using Jacobi �elds arising from right-invariant vector �elds of H1. In these hemispheres, we can actually
prove a stronger form of stability.

Using the coordinates associated with the frame (1.1), for R > 0 and 0 < δ < R we consider the cylinder

Cδ,R =
{

(z, t) ∈ H1 : |z| < R, t > f (R − δ; R)
}
,

where f (·; R) is the pro�le function of ΣR, see (2.1). Assume that the closure of E∆ER = ER \ E ∪ E \ ER is a
compact subset of Cδ,R. In Theorem 5.1, we prove that there exists a positive constant CRτε > 0 such that the
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following quantitative isoperimetric inequality holds:

A (Σ) −A (ΣR) ≥
√
δCRτεL 3(E∆ER)2. (1.5)

The proof relies on a sub-calibration argument. This provides further evidence on the conjecture that isoperi-
metric sets are precisely left translations of ΣR. When ε = 1 and σ → 0, inequality (1.5) becomes a restricted
form of the quantitative isoperimetric inequality in [11]. For �xed σ ≠ 0 and ε → 0+ the rescaled area εA
converges to the sub-Riemannian Heisenberg perimeter and εCRτε converges to a positive constant. Thus in-
equality (1.5) reduces to the isoperimetric inequality proved in [10].

In Appendix A, we give a self-contained proof of a known result that is announced in [2, Theorem 6] in the
setting of three-dimensional homogeneous spaces with at least 4-dimensional isometry group. Namely, we
show that any topological sphere with constant mean curvature in H1 is isometric to a CMC sphere ΣR. This
result can be deduced by combining [1] and Daniel’s correspondence theorem [6]. An alternative proof can
be implicitly obtained collecting various results spread in the literature, starting from the Abresch-Rosenberg
di�erential computed in [23], [8, Theorem 2.3], or [3] and then using the rigidity theoremof [6, Theorem4.3]. A
more self-contained proof can be found in [7, Lemma 6.1]. We remark that our proof, that follows the scheme
of the fundamental paper [1], does not rely on the fact that the isometry group of H1 is four-dimensional.

2 Foliation of H1
* by concentric stationary spheres

Westart by recalling a result by Tomter [22, Theorem3]. Inwhat follows,wework in the coordinates associated
with the frame (1.1), where the parameters ε > 0 and σ ∈ R are related by (1.2). For any point (z, t) ∈ H1, we
set r = |z| =

√
x2 + y2.

Theorem 2.1 (Tomter). For any R > 0 there exists a unique compact smooth embedded surface ΣR ⊂ H1 that
is area stationary under volume constraint and such that

ΣR = {(z, t) ∈ H1 : |t| = f (|z|; R)}

for a function f (·; R) ∈ C∞([0, R)) continuous at r = R with f (R) = 0. Namely, for any 0 ≤ r ≤ R the function is
given by

f (r; R) = ε3
R∫
r

√
1 + τ2ε2s2

R2 − s2 sds = ε2

2τ
[
ω(R)2 arctan(p(r; R)) + ω(r)2p(r; R)

]
, (2.1)

where
ω(r) =

√
1 + τ2ε2r2 and p(r; R) = τε

√
R2 − r2

ω(r) .

For a proof of Theorem 2.1, we refer to [22, Theorem 3].

Remark 2.2. The function f (·; R) = f (·; R; τ; ε) depends also on the parameters τ and ε, that are omitted in our
notation. With ε = 1, we �nd

lim
τ→0

f (r; R; τ; 1) =
√
R2 − r2.

When τ → 0, the spheres ΣR converge to Euclidean spheres with radius R > 0 in the three-dimensional space.
With τ = σ/ε4 as in (1.2), we �nd the asymptotic

lim
ε→0

f (r; R; σ/ε4; ε) = σ
2

[
R2 arctan

(√R2 − r2

r

)
+ r
√
R2 − r2

]
= σ

2

[
R2 arccos

( r
R

)
+ r
√
R2 − r2

]
,

which gives thepro�le function of thePansu’s sphere, the conjectured solution to the sub-RiemannianHeisenberg
isoperimetric problem, see e.g. [17] or [16], with R = 1 and σ = 2.
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Remark 2.3. Starting from formula (2.1), we can compute the derivatives of f (·; R) in the variable R. The �rst
order derivative is given by

fR(r; R) = τε4R
[

arctan
(
p(r; R)

)
+ 1
p(r; R)

]
= σR
p(r; R)`(p(r; R)) , (2.2)

where ` : [0,∞)→ R is the function de�ned as

`(p) = 1
1 + p arctan(p) . (2.3)

The geometric meaning of ` will be clear in formula (4.1).

We now show that H1
* = H1 \ {0} is foliated by the family {ΣR}R>0, i.e.,

H1
* =

⋃
R>0

ΣR . (2.4)

Proposition 2.4. For any nonzero (z, t) ∈ H1 there exists a unique R > 0 such that (z, t) ∈ ΣR.

Proof. Without loss of generality we can assume that t ≥ 0. After an integration by parts in (2.1), we obtain
the formula

f (r; R) = ε3
{
√
R2 − r2ω(r) +

R∫
r

√
R2 − s2ωr(s)ds

}
, 0 ≤ r ≤ R.

Since ωr(r) > 0 for r > 0, we deduce that the function R 7→ f (r; R) is strictly increasing for R ≥ r. Moreover,
we have

lim
R→∞

f (r; R) = ∞,

and hence for any r ≥ 0 there exists a unique R ≥ r such that f (r; R) = t.

Remark 2.5. By Proposition 2.4, we can de�ne the function R : H1 → [0,∞) by letting R(0) = 0 and R(z, t) = R
if and only if (z, t) ∈ ΣR for R > 0. The function R(z, t), in fact, depends on r = |z| and thus we may consider
R(z, t) = R(r, t) as a function of r and t. This function is implicitly de�ned by the equation |t| = f (r; R(r, t)).
Di�erentiating this equation, we �nd the derivatives of R, i.e.,

Rr = − frfR
and Rt = sgn(t)

fR
, (2.5)

where fR is given by (2.2).

3 Second fundamental form of ΣR
In this section, we compute the second fundamental form of the spheres ΣR. In fact, we will see that H =
1/(εR) is the mean curvature of ΣR. Let N = (0, f (0; R)) ∈ ΣR be the north pole of ΣR and let S = −N =
(0, −f (0; R)) be its south pole. In Σ*R = ΣR \{±N} there is a frame of tangent vector �elds X1, X2 ∈ Γ(TΣ*R) such
that

|X1| = |X2| = 1, 〈X1, X2〉 = 0, ϑ(X1) = 0, (3.1)

where ϑ is the left-invariant 1-form introduced in (1.3). Explicit expressions for X1 and X2 are given in formula
(3.9) below. This frame is unique up to the sign ±X1 and ±X2. Here and in the rest of the paper, we denote by
N the exterior unit normal to the spheres ΣR.

The second fundamental form h of ΣR with respect to the frame X1, X2 is given by

h = (hij)i,j=1,2, hij = 〈∇XiN , Xj〉, i, j = 1, 2,
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where ∇ denotes the Levi-Civita connection of H1 endowed with the left-invariant metric g. The linear con-
nection∇ is represented by the linear mapping h×h 7→ h, (V ,W) 7→ ∇VW. Using the fact that the connection
is torsion free and metric, it can be seen that∇ is characterized by the following relations:

∇XX = ∇YY = ∇TT = 0,
∇YX = τT and ∇XY = −τT,
∇TX = ∇XT = τY ,
∇TY = ∇YT = −τX.

(3.2)

Here and in the rest of the paper, we use the coordinates associated with the frame (1.1). For (z, t) ∈ H1, we
set r = |z| and use the short notation

ϱ = τεr. (3.3)

Theorem 3.1. For any R > 0, the second fundamental form h of ΣR with respect to the frame X1, X2 in (3.1) at
the point (z, t) ∈ ΣR is given by

h = 1
1 + ϱ2

(
H(1 + 2ϱ2) τϱ2

τϱ2 H

)
, (3.4)

where R = 1/Hε and H is the mean curvature of ΣR. The principal curvatures of ΣR are given by

κ1 = H + ϱ2

1 + ϱ2

√
H2 + τ2,

κ2 = H − ϱ2

1 + ϱ2

√
H2 + τ2.

(3.5)

Outside the north and south poles, principal directions are given by

K1 = cos βX1 + sin βX2,
K2 = − sin βX1 + cos βX2,

(3.6)

where β = βH ∈ (−π/4, π/4) is the angle

βH = arctan
(

τ
H +
√
H2 + τ2

)
. (3.7)

Proof. Let a, b : Σ*R → R and c, p : ΣR → R be the following functions depending on the radial coordinate
r = |z|:

a = a(r; R) = ω(r)
rω(R) , b = b(r; R) = ±

√
R2 − r2

rRω(R) ,

c = c(r; R) = rω(R)
Rω(r) , p = p(r; R) = ±τε

√
R2 − r2

ω(r) .
(3.8)

In fact, b and p also depend on the sign of t. Namely, in b and p we choose the sign + in the northern hemi-
sphere, that is for t ≥ 0,whilewe choose the sign− in the southernhemisphere,where t ≤ 0. Our computations
are in the case t ≥ 0.

One can check that the vector �elds

X1 = −a
(

(y − xp)X − (x + yp)Y
)
,

X2 = −b
(

(x + yp)X + (y − xp)Y
)

+ cT
(3.9)

form an orthonormal frame for TΣ*R satisfying (3.1). The the outer unit normal to ΣR is given by the following
formula (which is well de�ned also at the poles):

N = 1
R

{
(x + yp)X + (y − xp)Y + p

τε T
}
. (3.10)
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We compute the entries h11 and h12. Using X1R = 0, we �nd

∇X1N = 1
R

{
X1(x + yp)X + X1(y − xp)Y + X1

( p
τε

)
T + (x + yp)∇X1X + (y − xp)∇X1Y + p

τε∇X1T
}
. (3.11)

Using the formulas X1x = −a(y − xp)/ε and X1y = a(x + yp), /ε we �nd the derivatives

X1(x + yp) = a
ε
(

2xp + y(p2 − 1)
)

+ yX1p,

X1(y − xp) = a
ε
(

2yp + x(1 − p2)
)
− xX1p.

(3.12)

Inserting the latter into (3.11), together with the fundamental relations (3.2), we obtain

∇X1N = 1
R

{[
− aε (y − xp) + yX1p

]
X +

[a
ε (x + yp) − xX1p

]
Y +

[X1p
τε + τr2a(p2 + 1)

]
T
}
, (3.13)

thus implying

h11 = 〈∇X1N , X1〉 = r2a
Rε
{
a(p2 + 1) − εX1p

}
,

where p2 + 1 = ω(R)2/ω(r)2 and X1p can be computed starting from

pr(r; R) = −τεr ω(R)2
√
R2 − r2ω(r)3

. (3.14)

Namely, also using the formula for a and p in (3.8), we have

X1p = ra
ε ppr = −τ2εr ω(R)

ω(r)3 .

By (3.3) and the fact that εHR = 1, we �nally �nd

h11 = 1
Rε

(
1 + τ2ε2r2

ω(r)2

)
= H

(
1 + ϱ2

1 + ϱ2

)
.

From (3.13) we also deduce

h12 = 〈∇X1N , X2〉 = − bR r
2pX1p + c

R

{X1p
τε + τr2a(1 + p2)

}
,

and using the formula for X1p and the formulas in (3.8) we obtain

h12 = τϱ2

1 + ϱ2 .

To compute the entry h22, we proceed in an equivalent way, starting from

∇X2N = 1
R

{
X2(x + yp)X + X2(y − xp)Y + X2(p)

τε T + (x + yp)∇X2X + (y − xp)∇X2Y + p
τε∇X2T

}
,

yielding h22 = H/(1 + ϱ2).
The principal curvatures κ1, κ2 of ΣR are the solutions to the system κ1 + κ2 = tr(h) = 2H

κ1κ2 = det(h) = H2(1 + 2ϱ2) − τ2ϱ4

(1 + ϱ2)2 .

They are given explicitly by the formulas (3.5).
Now let K1, K2 be tangent vectors as in (3.6).We identify hwith the shape operator h ∈ Hom(TpΣR; TpΣR),

h(K) = ∇KN , at any point p ∈ ΣR and K ∈ TpΣR. When ϱ ≠ 0 (i.e., outside the north and south poles), the
system of equations

h(K1) = κ1K1 and h(K2) = κ2K2

is satis�ed if and only if the angle β = βH is chosen as in (3.7). The argument of arctan in (3.7) is in the interval
(−1, 1) and thus βH ∈ (−π/4, π/4).

Remark 3.2. The convergence of the Riemannian second fundamental form towards its sub-Riemannian coun-
terpart is studied in [5], in the setting of Carnot groups. See also [18].



CMC Spheres | 115

4 Geodesic foliation of ΣR
We prove that each CMC sphere ΣR is foliated by a family of geodesics of ΣR joining the north to the south
pole. In fact, we show that the foliation is governed by the normal N to the foliation H1

* =
⋃
R>0 ΣR. In the

sub-Riemannian limit, we recover the foliation property of the Pansu’s sphere. In the Euclidean limit, we �nd
the foliation of the round sphere with meridians.

We need two preliminary lemmas. We de�ne a function R : H1 → [0,∞) by letting R(0) = 0 and R(z, t) =
R if and only if (z, t) ∈ ΣR. In fact, R(z, t) depends on r = |z| and t. The function p in (3.8) is of the form
p = p(r, R(r, t)).

Now, we compute the derivative of these functions in the normal direction N .

Lemma 4.1. The derivative along N of the functions R and p are, respectively,

N R = `(p)
ε , (4.1)

and
N p = ετ2 R2ω(r)2`(p) − r2ω(R)2

Rω(r)4p , (4.2)

where `(p) = (1 + p arctan p)−1, as in (2.3).

Proof. We start from the following expression for the unit normal (in the coordinates (x, y, t)):

N = 1
R

{ r
ε ∂r + p

ε (y∂x − x∂y) + sgn(t)ε2ω(r)
√
R2 − r2∂t

}
.

We just consider the case t ≥ 0. Using (2.5), we obtain

N R = 1
R

{ r
ε Rr + ε2ω(r)

√
R2 − r2Rt

}
= 1
RfR

{
ε2ω(r)

√
R2 − r2 − rε fr

}
.

Inserting into this formula the expression for fr computed from (2.1), we get

N R = ε2Rω(r)
fR
√
R2 − r2

,

and using formula (2.2) for fR, namely,

fR = τε4R
[

arctan(p) + 1
p

]
= τε4R
p`(p) ,

we obtain formula (4.1).
To compute the derivatives of p in r and t, we have to consider p = p(r; R) and R = R(r, t). Using the

formula in (3.8) for p and the expression (2.5) for Rr yields

pr = − τεrω(R)2

ω(r)3
√
R2 − r2

, pR = τεR
ω(r)
√
R2 − r2

, Rr = − frfR
= ε3rω(r)√

R2 − r2fR
,

and thus

∂
∂r p(r, R(r, t)) = pr(r, R(r, t)) + pR(r, R(r, t))Rr(r, t)

= τεr
ω(r)3

√
R2 − r2

[
ω(r)2`(p) − ω(R)2].

Similarly, we compute
∂
∂t p(r; R(r, t)) = pR(r; R(r, t))Rt(r, t) = τ`(p)

ε2ω(r)2 .

The derivative of p along N is thus as in (4.2), when t ≥ 0. The case t < 0 is analogous.
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In the next lemma, we compute the covariant derivative∇N N . The resulting vector �eld in H1
* is tangent

to each CMC sphere ΣR, for any R > 0.

Lemma 4.2. At any point in (z, t) ∈ H1
* we have

∇N N (z, t) = N
( p
R

)[
(y + xΦ)X − (x − yΦ)Y + 1

τε T
]
, (4.3)

where Φ = Φ(r; R) is the function de�ned as

Φ = −ω(r)2p
τ2ε2r2 ,

and the derivative N (p/R) is given by

N
( p
R

)
= −

ετ2r2(ω(R)2 − `(p)ω(r)2)
R2ω(r)4p ,

with ` as in (2.3).

Proof. Starting from formula (3.10) for N , we �nd that

∇N N = N
( x + yp

R

)
X + N

( y − xp
R

)
Y + N

( p
τεR

)
T

+ 1
R

(
(x + yp)∇N X + (y − xp)∇N Y + p

τε∇N T
)
,

(4.4)

where, by the fundamental relations (3.2), we have

(x + yp)∇N X + (y − xp)∇N Y + p
τε∇N T = 2p

εR

(
− (y − xp)X + (x + yp)Y

)
. (4.5)

From the elementary formulas

N x = 1
Rε (x + yp) and N y = 1

Rε (y − xp),

we �nd

N (x + yp) = 1
εR
(
x(1 − p2) + 2yp

)
+ yN p,

N (y − xp) = 1
εR
(
y(1 − p2) − 2xp

)
− xN p.

(4.6)

Inserting (4.5) and (4.6) into (4.4) we obtain the following expression

∇N N = 1
R2

[{
x(ε−1(1 + p2) −N R) + y(RN p − pN R)

}
X

+
{
y(ε−1(1 + p2) −N R) − x(RN p − pN R)

}
Y + 1

τε (RN p − pN R)T
]
.

(4.7)

From (4.1) and (4.2) we compute

RN p − pN R = − ετ
2r2

ω(r)4p
[
ω(R)2 − `(p)ω(r)2].

Inserting this formula into (4.7) and using 1 + p2 = ω(R)2/ω(r)2 yields the claim.

Let N ∈ Γ(TH1
* ) be the exterior unit normal to the family of CMC spheres ΣR centered at 0 ∈ H1. The

vector �eld∇N N is tangent to ΣR for any R > 0, and for (z, t) ∈ ΣR we have

∇N N (z, t) = 0 if and only if z = 0 or t = 0.
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However, it can be checked that the normalized vector �eld

M (z, t) = sgn(t) ∇N N

|∇N N | ∈ Γ(TΣ*R)

is smoothly de�ned also at points (z, t) ∈ ΣR at the equator, where t = 0. We denote by∇ΣR the restriction of
the Levi-Civita connection∇ to ΣR.

Theorem 4.3. Let ΣR ⊂ H1 be the CMC sphere with mean curvature H > 0. Then the vector �eld ∇M M is
smoothly de�ned on ΣR and for any (z, t) ∈ ΣR we have

∇M M (z, t) = − H
ω(r)2 N . (4.8)

In particular,∇ΣRM M = 0 and the integral curves of M are Riemannian geodesics of ΣR joining the north pole N
to the south pole S. (See Figure 1.)

Figure 1: The plotted curve is an integral curve of the vector �eld M for R = 2, ε = 0.5, and σ = 0.5.

Proof. From (4.3) we obtain the following formula for M :

M = (xλ − yµ)X + (yλ + xµ)Y − µ
τε T, (4.9)

where λ, µ : Σ*R → R are the functions

λ = λ(r) = ±
√
R2 − r2

rR and µ = µ(r) = τεr
Rω(r) , (4.10)

with r = |z| and R = 1/(εH). The functions λ and µ are radially symmetric in z. In de�ning λ we choose the
sign +, when t ≥ 0, and the sign −, when t < 0. In the coordinates (x, y, t), the vector �eldM has the following
expression

M = 1
ε

(
λr∂r + µ(x∂y − y∂x) − µ ε

2ω(r)2

τ ∂t
)
, (4.11)

where r∂r = x∂x + y∂y, and so we have

∇M M = (xλ − yµ)∇MX + (yλ + xµ)∇M Y − µ
τε∇M T + M (xλ − yµ)X + M (yλ + xµ)Y −M

( µ
τε

)
T . (4.12)

Using (4.11), we compute
M x = 1

ε (xλ − yµ) and M y = 1
ε (yλ + xµ), (4.13)
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and so we �nd

M (xλ − yµ) = 1
ε (xλ − yµ)λ + xM λ − 1

ε (yλ + xµ)µ − yM µ,

M (yλ + xµ) = 1
ε (yλ + xµ)λ + yM λ + 1

ε (xλ − yµ)µ + xM µ.
(4.14)

Now, inserting (4.13) and (4.14) into (4.12), we get

∇M M =
( x
ε (λ2 + µ2) + xM λ − yM µ

)
X
( y
ε (λ2 + µ2) + yM λ + xM µ

)
Y − 1

τεM µT .

The next computations are for the case t ≥ 0. Again from (4.11), we get

M λ = λr
ε ∂rλ = − Rλ

εr
√
R2 − r2

, and M µ = λr
ε ∂rµ = τrλ

Rω(r)3 . (4.15)

From (4.10) and (4.15) we have
1
ε (λ2 + µ2) + M λ = − 1

εR2ω(r)2 ,

and so we �nally obtain
∇M M = (xΛ − yM)X + (yΛ + xM)Y − Mτε T, (4.16)

where we have set
Λ = − 1

εR2ω(r)2 , M = τ
√
R2 − r2

R2ω(r)3 . (4.17)

Comparing with (3.10), we deduce that

∇M M = − 1
εRω(r)2 N .

The claim∇ΣRM M = 0 easily follows from the last formula.

Remark 4.4. We compute the pointwise limit of M in (4.9) when σ → 0, for t ≥ 0. In the southern hemisphere
the situation is analogous. By (4.11), the vector �eld M is given by

M = 1
εR

(√R2 − r2

r (x∂x + y∂y) + σr√
ε6 + σ2r2

(x∂y − y∂x) − r
√
ε6 + σ2r2∂t

)
.

With ε = 1 we have
M̂ = lim

σ→0
M =

√
R2 − r2

rR (x∂x + y∂y) − rR ∂t .

Clearly, the vector �eld M̂ is tangent to the round sphere of radius R > 0 in the three-dimensional Euclidean
space and its integral lines turn out to be the meridians from the north to the south pole.

Remark 4.5. We study the limit of εM when ε → 0, in the northern hemisphere.
The frame of left-invariant vector �elds X̄ = εX, Ȳ = εY and T̄ = ε−2T is independent of ε. Moreover, the

linear connection∇ restricted to the horizontal distribution spanned by X̄ and Ȳ is independent of the parameter
ε. Indeed, from the fundamental relations (3.2) and from (1.2) we �nd

∇X̄ X̄ = ∇Ȳ Ȳ = 0,
∇X̄ Ȳ = −σT̄ and ∇Ȳ X̄ = σT̄ .

Now, it turns out that

M̄ = lim
ε→0

εM = 1
R

[(
x
√
R2 − r2

r − y
)
∂x +

(
y
√
R2 − r2

r + x
)
∂y − σr2∂t

]
= (xλ̄ − yµ̄)X̄ + (yλ̄ + xµ̄)Ȳ ,
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where
λ̄ = λ =

√
R2 − r2

rR , µ̄ = 1
R .

The vector �eld M̄ is horizontal and tangent to the Pansu’s sphere.
We denote by J the complex structure J(X̄) = Ȳ and J(Ȳ) = −X̄. A computation similar to the one in the proof

of Theorem 4.3 shows that
∇M̄ M̄ = 2

R J(M̄ ). (4.18)

This is the equation for Carnot-Carathéodory geodesics in H1 for the sub-Riemannian metric making X̄ and Ȳ
orthonormal, see [21, Proposition 3.1].

Thus, we reached the following conclusion. The integral curves of M are Riemannian geodesics of ΣR and
converge to the integral curves of M̄ . These curves foliate the Pansu’s sphere and are Carnot-Carathéodory
geodesics (not only of the Pansu’s sphere but also) of H1.

Using (4.18) we can pass to the limit as ε → 0 in equation (4.8), properly scaled. An inspection of the right
hand side in (4.16) shows that the right hand side of (4.8) is asymptotic to ε4. In fact, starting from (4.17)we get

− lim
ε→0

H
ε4ω(r)2 N = 1

Rσ2r2
[
− (xµ̄ + yλ̄)X̄ + (xλ̄ − yµ̄)Ȳ

]
= 1
Rσ2r2 J(M̄ ). (4.19)

From (4.8), (4.18), and (4.19) we deduce that

lim
ε→0

ε−4∇M M = 1
2σ2r2∇M̄ M̄ .

5 Quantitative stability of ΣR in vertical cylinders
In this section, we prove a quantitative isoperimetric inequality for the CMC spheres ΣR with respect to com-
pact perturbations in vertical cylinders, see Theorem 5.1. This is a strong form of stability of ΣR in the northern
and southern hemispheres.

A CMC surface Σ in H1 with normal N is stable in an open region A ⊂ Σ if for any function g ∈ C∞c (A)
with

∫
Σ gdA = 0, where A is the Riemannian area measure of Σ, we have

S (g) =
∫
Σ

{
|∇g|2 −

(
|h|2 + Ric(N )

)
g2}dA ≥ 0.

The functional S (g) is the second variation, with �xed volume, of the area of Σ with respect to the in�nitesi-
mal deformation of Σ in the direction gN . Above, |∇g| is the length of the tangential gradient of g, |h|2 is the
squared norm of the second fundamental form of Σ and Ric(N ) is the Ricci curvature of H1 in the direction
N .

The Jacobi operator associated with the second variation functional S is

L g = ∆g + (|h|2 + Ric(N ))g,

where ∆ is the Laplace-Beltrami operator of Σ. As a consequence of Theorem 1 in [9], if there exists a strictly
positive solution g ∈ C∞(A) to equation L g = 0 on A, then Σ is stable in A (even without the restriction∫
A gdA = 0).

Now consider in H1 the right-invariant vector �elds

X̂ = 1
ε

( ∂
∂x − σy

∂
∂t

)
, Ŷ = 1

ε

( ∂
∂y + σx ∂∂t

)
, and T̂ = ε2 ∂

∂t .

These are generators of left-translations in H1, and the functions

gX̂ = 〈X̂,N 〉, gŶ = 〈Ŷ ,N 〉, gT̂ = 〈T̂,N 〉
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are solutions to L g = 0. By the previous discussion, the CMC sphere ΣR is stable in the hemispheres

AX̂ =
{

(z, t) ∈ ΣR : gX̂ > 0
}
,

AŶ =
{

(z, t) ∈ ΣR : gŶ > 0
}
,

AT̂ =
{

(z, t) ∈ ΣR : gT̂ > 0
}
.

In particular, ΣR is stable in the northern hemisphere AT̂ = {(z, t) ∈ ΣR : t > 0}.
In fact, the whole ΣR is stable. This is shown in [24] producing a function v un ΣR orthogonal to the kernel

of L , solving L v = 1, and with nonnegative integral on ΣR.
In the case of the northern hemisphere, we can prove the following quantitative stability. For R > 0, let

ER ⊂ H1 be the open domain bounded by the CMC sphere ΣR,

ER = {(z, t) ∈ H1 : |t| < f (|z|; R), |z| < R},

where f (·; R) is the pro�le function of ΣR in (2.1). For 0 ≤ δ < R, we de�ne the half-cylinder

CR,δ = {(z, t) ∈ H1 : |z| < R and t > tR,δ},

where tR,δ = f (rR,δ; R) and rR,δ = R − δ. In the following, we use the short notation

kRετ = ε3ω(R)
√
R,

CRετ = 1
4πεR3(RkRετ + f (0; R)) ,

DRετ = 1
12επ2R5(4Rk2

Rετ + f (0; R)2)
.

(5.1)

We denote by A the Riemannian surface-area measure in H1.

Theorem 5.1. Let R > 0, 0 ≤ δ < R, ε > 0, and τ ∈ R be as in (1.2). Let E ⊂ H1 be a smooth open set such that
L 3(E) = L 3(ER) and Σ = ∂E.

(i) If E∆ER ⊂⊂ CR,δ with 0 < δ < R then we have

A (Σ) −A (ΣR) ≥
√
δCRετL 3(E∆ER)2. (5.2)

(ii) If E∆ER ⊂⊂ CR,0 then we have

A (Σ) −A (ΣR) ≥ DRετL 3(E∆ER)3. (5.3)

The proof of Theorem 5.1 is based on the foliation of the cylinder CR,δ by a family of CMC surfaces (see
Proposition 2.4) with quantitative estimates on the mean curvature.

Theorem 5.2. For any R > 0 and 0 ≤ δ < R, there exists a continuous function u : CR,δ → R with level sets
Sλ =

{
(z, t) ∈ CR,δ : u(z, t) = λ

}
, λ ∈ R, such that the following claims hold:

(i) u ∈ C1(CR,δ∩ER)∩C1(CR,δ \ER) and the normalized Riemannian gradient∇u/|∇u| is continuously de�ned
on CR,δ.

(ii)
⋃
λ>R Sλ = CR,δ ∩ ER and

⋃
λ≤R Sλ = CR,δ \ ER.

(iii) Each Sλ is a smooth surface with constant mean curvature Hλ = 1/(ελ) for λ > R and Hλ = 1/(εR) for λ ≤ R.
(iv) For any point (z, f (|z|; R) − t) ∈ Sλ with λ > R we have

1 − εRHλ(z, f (|z|; R) − t) ≥ t2

4Rk2
Rετ + f (0; R)2 , when δ = 0, (5.4)

and
1 − εRHλ(z, f (|z|; R) − t) ≥

√
δt

RkRετ + f (0; R) , when 0 < δ < R. (5.5)
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Proof of Theorem 5.2. For points (z, t) ∈ CR,δ \ ER we let

u(z, t) = f (|z|; R) − t + R.

Then u satis�es u(z, t) ≤ R for t ≥ f (|z|; R) and u(z, t) = R if t = f (|z|; R). In order to de�ne u in the set CR,δ∩ER,
for 0 ≤ r < rR,δ, tR,δ < t < f (r; R), and λ > R we consider the function

F(r, t, λ) = f (r; λ) − f (rR,δ; λ) + tR,δ − t. (5.6)

The function F also depends on δ. We claim that for any point (z, t) ∈ CR,δ ∩ ER there exists a unique λ > R
such that F(|z|, t, λ) = 0. In this case, we can de�ne

u(z, t) = λ if and only if F(|z|, t, λ) = 0. (5.7)

We prove the previous claim. Let (z, t) ∈ CR,δ ∩ ER and use the notation r = |z|. First of all, we have

lim
λ→R+

F(r, t, λ) = f (r; R) − t > 0. (5.8)

We claim that we also have
lim
λ→∞

F(r, t, λ) = tR,δ − t < 0. (5.9)

To prove this, we let f (r; λ) − f (rR,δ; λ) = ε2

2τ [f1(λ) + f2(λ)], where

f1(λ) = ω(λ)2
[

arctan(p(r; λ)) − arctan(p(rR,δ; λ))
]
,

f2(λ) = ω(r)2
(
p(r; λ) − p(rR,δ; λ)

)
.

Using the asymptotic approximation

arctan(s) = π
2 −

1
s + 1

3s3 + o
( 1
s3

)
, as s →∞,

we obtain for λ →∞

f1(λ) = λετ(ω(rR,δ) − ω(r))) + o(1),
f2(λ) = λετ(ω(r) − ω(rR,δ)) + o(1),

and thus f (r; λ) − f (rR,δ; λ) = o(1), where o(1) → 0 as λ → ∞. Since λ 7→ F(r, t, λ) is continuous, (5.8) and
(5.9) imply the existence of a solution λ of F(r, t, λ) = 0. The uniqueness follows from ∂λF(r, t, λ) < 0. This
inequality can be proved starting from (2.2) andwe skip the details. This �nishes the proof of our initial claim.

Claims (i) and (ii) can be checked from the construction of u. Claim (iii) follows, by Theorem 3.1, from the
fact that Sλ for λ > R is a vertical translation (this is an isometry of H1) of the t-graph of z 7→ f (z; λ).

We prove Claim (iv). For any (z, t) ∈ H1 such that r = |z| < rR,δ and 0 ≤ t < f (r; R) − tR,δ, we de�ne

gz(t) = u(z, f (r; R) − t) = λ, (5.10)

where λ ≥ R is uniquely determined by the condition (z, f (r; R) − t) ∈ Sλ. Notice that gz(0) = u(z, f (r; R)) = R.
We estimate the derivative of the function t 7→ gz(t). From the identity F(r, t, u(z, t)) = 0, see (5.7),we compute
∂tu(z, t) = (∂λF(r, t, u(z, t)))−1 and so, also using (5.6), we �nd

g′z(t) = −∂tu(z, f (r; R) − t) = −1
∂λF(r, f (r; R) − t, gz(t))

. (5.11)
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Now from (2.1) we compute

∂λF(r, t, λ) = −ε3λ
rR,δ∫
r

sω(s)
(λ2 − s2)3/2 ds

≥ −ε3λω(rR,δ)
rR,δ∫
0

s
(λ2 − s2)3/2 ds

= −ε3ω(rR,δ)

 λ√
λ2 − r2

R,δ

− 1


≥ −ε3ω(R)

√
R√

λ − rR,δ
.

(5.12)

In the last inequality, we used rR,δ < R ≤ λ. From (5.11), (5.12) and with kRετ as in (5.1), we deduce that

g′z(t) ≥
1
kRετ

√
gz(t) − rR,δ . (5.13)

In the case δ = 0, (5.13) reads g′z(t) ≥
√
gz(t) − R/kRετ. Integrating this di�erential inequality we obtain

gz(t) ≥ R + t2/(4k2
Rετ), and thus

1 − εRHλ(z, f (r; R) − t) = 1 − R
gz(t)

≥ t2

4Rk2
Rετ + f (0; R)2 ,

that is Claim (5.4).
If 0 < δ < R, (5.13) implies g′z(t) ≥

√
δ/kRετ and an integration gives gz(t) ≥

√
δ t + R/kRετ. Then we obtain

1 − εRHλ(z, f (r; R) − t) = 1 − R
gz(t)

≥
√
δ

RkRετ + f (0; R) t,

that is Claim (5.5).

We can now prove Theorem 5.1.

Proof of Theorem 5.1. Let u : CR,δ → R, 0 ≤ δ < 1, be the function constructed in Theorem 5.2 and let
Sλ = {(z, t) ∈ CR,δ : u(z, t) = λ}, λ ∈ R, be the leaves of the foliation. Let∇u be the Riemannian gradient of
u. The vector �eld

V(z, t) = − ∇u(z, t)
|∇u(z, t)| , (z, t) ∈ CR,δ ,

satis�es the following properties:

i) |V| = 1.
ii) For (z, t) ∈ ΣR ∩ CR,δ we have V(z, t) = νΣR (z, t), where νΣR = N is the exterior unit normal to ΣR.
iii) For any point (z, t) ∈ Sλ, λ ∈ R, the Riemannian divergence of V satis�es

1
2 divV(z, t) = Hλ(z, t) ≤ 1

εR for λ > R,

1
2 divV(z, t) = Hλ(z, t) = 1

εR for 0 < λ ≤ R.
(5.14)

Let νΣ be the exterior unit normal to the surface Σ = ∂E. By the Gauss-Green formula and (5.14) it follows
that

L 3(ER \ E) ≥ εR2

∫
ER\E

divV dL 3

= εR
2

( ∫
ΣR\Ē

〈V , νΣR 〉 dA −
∫

Σ∩ER

〈V , νΣ〉 dA
)

≥ εR2
(
A (ΣR \ Ē) −A (Σ ∩ ER)

)
.
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In the last inequality we used the Cauchy-Schwarz inequality and the fact that 〈V , νΣR 〉 = 1 on ΣR \ Ē. By a
similar computation we also have

L 3(E \ ER) = εR
2

∫
E\ER

divV dL 3

= εR
2


∫
Σ\ĒR

〈V , νΣ〉dA −
∫

ΣR∩E

〈V , νΣR 〉dA


≤ εR2

(
A (Σ \ ĒR) −A (ΣR ∩ E)

)
.

Using the inequalities above and the fact that L 3(E) = L 3(ER), it follows that:

εR
2
(
A (ΣR \ Ē) −A (Σ ∩ ER)

)
≤ εR2

∫
ER\E

divV dL 3

= L 3(E \ ER) −
∫
ER\E

(
1 − εR2 divV

)
dL 3

≤ εR2
(
A (Σ \ ĒR) −A (ΣR ∩ E)

)
− G (ER \ E),

where we let
G (ER \ E) =

∫
ER\E

(
1 − εR2 divV

)
dL 3.

Hence, we obtain
A (Σ) −A (ΣR) ≥ 2

εRG (ER \ E). (5.15)

For any z with |z| < R − δ, we de�ne the vertical sections EzR = {t ∈ R : (z, t) ∈ ER} and Ez = {t ∈ R :
(z, t) ∈ E}. By Fubini-Tonelli theorem, we have

G (ER \ E) =
∫

{|z|<R}

∫
EzR\Ez

(
1 − εR2 divV(z, t)

)
dt dz.

The function t 7→ divV(z, t) is increasing, and thus letting m(z) = L 1(EzR \ Ez), by monotonicity we obtain

G (ER \ E) ≥
∫

{|z|<1}

f (|z|;R)∫
f (|z|;R)−m(z)

(
1 − εR2 divV(z, t)

)
dt dz

=
∫

{|z|<1}

m(z)∫
0

(
1 − R

gz(t)

)
dt dz,

where gz(t) = u(z, f (|z|; R) − t) is the function introduced in (5.10).
When δ = 0, by the inequality (5.4) and by Hölder inequality we �nd

G (ER \ E) ≥ 1
4Rk2

Rετ + f (0; R)2

∫
{|z|<R}

m(z)∫
0

t2dt dz

≥ 1
24π2R4(4Rk2

Rετ + f (0; R)2)
L 3(E∆ER)3.

(5.16)

From (5.16) and (5.15) we obtain (5.3).
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By (5.5), when 0 < δ < 1 the function gz satis�es the estimate 1 − 1/gz(t) ≥ (
√
δ/(kRετ + f (0; R)))t and we

�nd

G (ER \ E) ≥
√
δ

RkRετ + f (0; R)

∫
{|z|<R}

m(z)∫
0

t dt dz

≥
√
δ

8πR2(RkRετ + f (0; R))L 3(E∆ER)2.

(5.17)

From (5.17) and (5.15) we obtain Claim (5.2).

A Topological CMC spheres are left translations of ΣR
In this Appendix we give a self-contained proof of the rotational symmetry of CMC spheres in the Heisenberg
group. Our proof follows the scheme of the fundamental paper [1]. We remark that the same result can be
obtained, for instance by combining [1] and Daniel’s correspondence theorem [6, Theorem 5.2] applied to the
Heisenberg case [6, Example 5.7]. Nonetheless, our proof does not rely on the fact that the isometry group of
H1 is 4-dimensional.

We introduce the following notation. For an oriented surface Σ in H1 with unit normal vector N , we
denote by h ∈ Hom(TpΣ; TpΣ) the shape operator h(W) = ∇WN , at any point p ∈ Σ. The 1-form ϑ in H1,
de�ned by ϑ(W) = 〈W , T〉 for W ∈ Γ(TH1), can be restricted to the tangent bundle TΣ. The tensor product
ϑ ⊗ ϑ ∈ Hom(TpΣ; TpΣ) is de�ned, as a linear operator, by the formula

(ϑ ⊗ ϑ)(W) = ϑ(W)(ϑ(X1)X1 + ϑ(X2)X2), W ∈ Γ(TΣ),

where X1, X2 is any (local) orthonormal frame of TΣ. Finally, for any H ∈ Rwith H = ̸ 0, let αH ∈ (−π/4, π/4)
be the angle

αH = 1
2 arctan

( τ
H

)
, (A.1)

and let qH ∈ Hom(TpΣ; TpΣ) be the (counterclockwise) rotation by the angle αH of each tangent plane TpΣ
with p ∈ Σ.

De�nition A.1. Let Σ be an (immersed) surface in H1 with constant mean curvature H ≠ 0. At any point p ∈ Σ,
we de�ne the linear operator k ∈ Hom(TpΣ; TpΣ) by

k = h + 2τ2
√
H2 + τ2

qH ◦ (ϑ ⊗ ϑ) ◦ q−1
H . (A.2)

The operator k is symmetric, i.e., 〈k(V),W〉 = 〈V , k(W)〉. The trace-free part of k is k0 = k − 1
2 tr(k)Id. In

fact, we have

k0 = h0 + 2τ2
√
H2 + τ2

qH ◦ (ϑ ⊗ ϑ)0 ◦ q−1
H . (A.3)

In the following, we identify the linear operators h, k, ϑ ⊗ ϑ with the corresponding bilinear forms
(V ,W) 7→ h(V ,W) = 〈h(V),W〉, and so on.

The structure of k in (A.2) can be established in the following way. Let ΣR be the CMC sphere with R =
1/εH. From the formula (3.4), we deduce that, in the frame X1, X2 in (3.1), the trace-free shape operator at the
point (z, t) ∈ ΣR is given by

h0 = ϱ2

1 + ϱ2

(
H τ
τ −H

)
,

where ϱ = τε|z|. On the other hand, from (3.9) and (3.8), we get

ϑ(X1) = 0 and ϑ(X2) = ϱ
√
τ2 + H2

τ
√

1 + ϱ2
,
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and we therefore obtain the following formula for the trace-free tensor (ϑ ⊗ ϑ)0 in the frame X1, X2:

(ϑ ⊗ ϑ)0 = − (τ2 + H2)
2τ2

ϱ2

1 + ϱ2

(
1 0
0 −1

)
.

Now, in the unknowns c ∈ R and q (that is a rotation by an angle β), the system of equations h0 + cq(ϑ ⊗
ϑ)0q−1 = 0 holds independently of ϱ if and only if c = 2τ2/

√
H2 + τ2 and β is the angle in (A.1). We record

this fact in the next:

Proposition A.2. The linear operator k on the sphere ΣR with mean curvature H, at the point (z, t) ∈ ΣR, is
given by

k =
(
H + ϱ2

1 + ϱ2

√
τ2 + H2

)
Id.

In particular, ΣR has vanishing k0 (i.e., k0 = 0).

Remark A.3. Formula (A.2) is analogous to the one discovered in the product spaces S2 ×R andH2 ×R in [1].
In conformal parameters, the trace-less part of (A.2) coincides, up to the sign, with the formula in [8].

In Theorem A.8, we prove that any topological sphere in H1 with constant mean curvature has vanishing
k0. We need to work in a conformal frame of tangent vector �elds to the surface.

Let z = x1 + ix2 be the complex variable. Let D ⊂ C be an open set and, for a given map F ∈ C∞(D;H1),
consider the immersed surface Σ = F(D) ⊂ H1. The parametrization F is conformal if there exists a positive
function E ∈ C∞(D) such that, at any point in D, the vector �elds V1 = F* ∂

∂x1
and V2 = F* ∂

∂x2
satisfy:

|V1|2 = |V2|2 = E, 〈V1, V2〉 = 0. (A.4)

We call V1, V2 a conformal frame for Σ and we denote by N the normal vector �eld to Σ such that triple
V1, V2,N forms a positively oriented frame, i.e.,

N = 1
E V1 ∧ V2. (A.5)

The second fundamental form of Σ in the frame V1, V2 is denoted by

h = (hij)i,j=1,2 =
(
L M
M N

)
, hij = 〈∇iN , Vj〉, (A.6)

where∇i = ∇Vi for i = 1, 2. This notation di�ers from (3.4), where the �xed frame is X1, X2,N . Finally, the
mean curvature of Σ is

H = L + N
2E = h11 + h22

2E . (A.7)

By Hopf’s technique on holomorphic quadratic di�erentials, the validity of the equation k0 = 0 follows
from the Codazzi’s equations, which involve curvature terms. An interesting relation between the 1-form ϑ
and the Riemann curvature operator, de�ned as

R(U, V)W = ∇U∇VW −∇V∇UW −∇[U,V]W

for any U, V ,W ∈ Γ(TH1), is described in the following:

LemmaA.4. Let V1, V2 be a conformal frame of an immersed surface Σ in H1 with conformal factor E and unit
normal N . Then, we have

〈R(V2, V1)N , V2〉 = 4τ2Eϑ(V1)ϑ(N ). (A.8)

Proof. We use the notation

Vi = VXi X + VYi Y + VTi T, i = 1, 2,

N = N XX + N YY + N TT .
(A.9)
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Using the fundamental relations (3.2) to write 〈R(V2, V1)N , V2〉, a direct computation based on the fact that
〈V1,N 〉 = 〈V2,N 〉 = 〈V1, V2〉 = 0, and 〈V2, V2〉 = E yields the claim.

For an immersed surfacewith conformal frame V1, V2, we use the notation ViE = Ei, ViH = Hi, ViN = Ni,
ViM = Mi, ViL = Li, i = 1, 2.

TheoremA.5 (Codazzi’s Equations). Let Σ = F(D) be an immersed surface in H1 with conformal frame V1, V2,
conformal factor E and unit normal N . Then, we have

H1 = 1
E

{L1 − N1
2 + M2 − 4τ2Eϑ(V1)ϑ(N )

}
, (A.10)

H2 = 1
E

{N2 − L2
2 + M1 − 4τ2Eϑ(V2)ϑ(N )

}
, (A.11)

where L,M, N, H are as in (A.6) and (A.7).

Proof. We start from the following well-known formulas

H1 = 1
E

{L1 − N1
2 + M2 + 〈R(V1, V2)N , V2〉

}
, (A.12)

H2 = 1
E

{N2 − L2
2 + M1 + 〈R(V2, V1)N , V1〉

}
. (A.13)

Our claims (A.10) and (A.11) follow from these formulas and Lemma A.4, see e.g. [13] for the �at case.

Now we switch to the complex variable z = x1 + ix2 ∈ D and de�ne the complex vector �elds

Z = 1
2 (V1 − iV2) = F*

( ∂
∂z

)
,

Z̄ = 1
2 (V1 + iV2) = F*

( ∂
∂z̄

)
.

Equations (A.10)-(A.11) can be transformed into one single equation:

E(ZH) = Z̄
(L − N

2 − iM
)
− 4τ2Eϑ(N )ϑ(Z). (A.14)

Consider the trace-free part of b = k − h, i.e.,

b0 = 2τ2
√
H2 + τ2

qH ◦ (ϑ ⊗ ϑ)0 ◦ q−1
H

The entries of b0 as a quadratic form in the conformal frame V1, V2, with ϑi = ϑ(Vi) and cH = 2τ2

H2+τ2 , are given
by

A = b0(V1, V1) = cH
(
H ϑ

2
1 − ϑ2

2
2 − τϑ1ϑ2

)
,

B = b0(V1, V2) = cH
(
Hϑ1ϑ2 + τ ϑ

2
1 − ϑ2

2
2

)
.

(A.15)

These entries can be computed starting from qH(ϑ ⊗ ϑ)0q−1
H = q2

H(ϑ ⊗ ϑ)0, where q2
H is the rotation by the

angle 2αH that, by (A.1), satis�es cos(2αH) = H/
√
H2 + τ2 and sin(2αH) = τ/

√
H2 + τ2.

Lemma A.6. Let Σ be an immersed surface in H1 with constant mean curvature H and unit normal N such
that V1, V2,N is positively oriented. Then, on Σ we have

Z̄(A − iB) = −4τ2Eϑ(N )ϑ(Z). (A.16)

Proof. The complex equation (A.16) is equivalent to the system of real equations

A1 + B2 = −4τ2Eϑ(N )ϑ(V1),
A2 − B1 = 4τ2Eϑ(N )ϑ(V2),

(A.17)

where Ai = ViA and Bi = ViB, i = 1, 2. In order to verify (A.17), we proceed by direct computations.
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Let Σ be an immersed surface in H1 de�ned in terms of a conformal parametrization F ∈ C∞(D;H1). Let
f ∈ C∞(D;C) be the function of the complex variable z ∈ D given by

f (z) = L − N
2 − iM + A − iB, (A.18)

where L,M,M, A, B are de�ned as in (A.6) and (A.15) via the conformal frame V1, V2 and are evaluated at
the point F(z).

Proposition A.7. If Σ has constant mean curvature H then the function f in (A.18) is holomorphic in D.

Proof. From (A.14) with ZH = 0 and (A.16), we obtain the equation on Σ = F(D)

Z̄
(L − N

2 − iM + A − iB
)

= 0,

that is equivalent to ∂z̄ f = 0 in D.

Now, by a standard argument of Hopf, see [12] Chapter VI, for topological spheres the function f is iden-
tically zero. By Liouville’s theorem, this follows from the estimate

|f (z)| ≤ C
|z|4 , z ∈ C,

that can be obtained expressing the second fundamental forms in two di�erent charts without the north and
south pole, respectively. We skip the details of the proof of the next:

Theorem A.8. A topological sphere Σ immersed in H1 with constant mean curvature has vanishing k0.

In the rest of this section, we show how to deduce from the equation k0 = 0 that any topological
sphere is congruent to a sphere ΣR. In fact, unlike the theory of holomorphic quadratic di�erentials in three-
dimensional manifolds, we do not use the fact that the isometry group of H1 is four-dimensional.

Let hbe the Lie algebra ofH1 and let 〈·, ·〉be the scalar productmaking X, Y , T orthonormal.Wedenote by
S2 = {ν ∈ h : |ν| =

√
〈ν, ν〉 = 1} the unit sphere in h. For any p ∈ H1, let τp : H1 → H1 be the left-translation

τp(q) = p−1 · q by the inverse of p, where · is the group law of H1, and denote by τp* ∈ Hom(TpH1; h) its
di�erential.

For any point (p, ν) ∈ H1×S2 there is a uniqueN ∈ TpH1 such that ν = τp*N andwede�ne TνpH1 = {W ∈
TpH1 : 〈W ,N 〉 = 0}. Depending on the point (p, ν) and on the parameters H, τ ∈ R, with H2 + τ2 ≠ 0, below
we de�ne the linear operator LH ∈ Hom(TνpH1; TνS2). The de�nition is motivated by the proof of Proposition
A.9. For anyW ∈ TνpM, we let

LHW = τp*
(
HW − 2τ2

√
H2 + τ2

qH(ϑ ⊗ ϑ)0q−1
H W

)
+ (∇Wτp* )(N ),

where∇Wτp* ∈ Hom(TpH1; h) is the covariant derivative of τp* in the directionW and the trace-free operator
(ϑ ⊗ ϑ)0 ∈ Hom(TνpH1; TνpH1) is

(ϑ ⊗ ϑ)0 = ϑ ⊗ ϑ − 1
2 tr(ϑ ⊗ ϑ)Id.

The operator qH ∈ Hom(TνpH1; TνpH1) is the rotation by the angle αH in (A.1). The operatorLH is well-de�ned,
i.e., LHW ∈ h and 〈LHW , ν〉 = 0 for any W ∈ TνpH1. This can be checked using the identity |N | = 1 and
working with the formula

(∇Wτp* )(N ) =
3∑
i=1
〈N ,∇WYi〉Yi(0),

where Y1, Y2, Y3 is any frame of orthonormal left-invariant vector �elds.
Finally, for any point (p, ν) ∈ H1 × S2, de�ne

EH(p, ν) =
{

(W ,LHW) : W ∈ TνpH1} ⊂ TpH1 × TνS2.
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Then (p, ν) 7→ EH(p, ν) is a distribution of two-dimensional planes in H1 × S2. The distribution EH origins
from CMC surfaces with mean curvature H and vanishing k0.

Let Σ be a smooth oriented surface immersed in H1 given by a parameterization F ∈ C∞(D;H1) where
D ⊂ C is an open set. We denote by N (F(z)) ∈ TpH1, with p = F(z), the unit normal of Σ at the point z ∈ D.
The normal section is given by the mapping G : D → S2 de�ned by G(z) = τF(z)

* N (F(z)), and we can de�ne
the Gauss section Φ : D → H1 × S2 letting Φ(z) = (F(z), G(z)). Then Σ = Φ(D) is a two-dimensional immersed
surface in H1 × S2, called the Gauss extension of Σ.

Proposition A.9. Let Σ be an oriented surface immersed in H1 with constant mean curvature H and vanishing
k0. Then the Gauss extension Σ is an integral surface of the distribution EH in H1 × S2.

Proof. Let N be the unit normal to Σ. For any tangent sectionW ∈ Γ(TΣ), we have

W(τF* (N )) = τF* (∇WN ) + (∇WτF* )(N )

= τF* (h(W)) + (∇WτF* )(N ),

where h(W) = ∇WN is the shape operator. Therefore, the set of all sections of the tangent bundle of Σ is

Γ(TΣ) =
{(
W , τF* (h(W)) + (∇WτF* )(N )

)
: W ∈ Γ(TΣ)

}
.

The equation k0 = 0 is equivalent to h = HId − b0 where, by (A.3),

b0 = 2τ2
√
H2 + τ2

qH
(
ϑ ⊗ ϑ − tr(ϑ ⊗ ϑ)

2 Id
)
q−1
H ,

and thus the sections of Σ are of the form

(W ,LHW) ∈ Γ(TΣ) with W ∈ Γ(TΣ).

This concludes the proof.

The proof of the next theorem follows the argument in [1, Proposition 4.3] with two minor di�erences.
First, the construction of the distribution EH is easier thanks to the Lie group structure of H1. Moreover, we
do not use the fact that the isometry group of H1 is four dimensional. We instead observe that any topological
sphere has T as normal vector at some point.

Theorem A.10. Let Σ be a topological sphere in H1 with constant mean curvature H. Then there exist a left
translation ι and R > 0 such that ι(Σ) = ΣR.

Proof. Let H > 0 be the mean curvature of Σ, let R = 1/Hε, and recall that the sphere ΣR has mean curvature
H.

Let TΣ(p) ∈ TpΣ be the orthogonal projection of the vertical vector �eld T onto TpΣ. Since Σ is a topolog-
ical sphere, there exists a point p ∈ Σ such that TΣ(p) = 0. This implies that either T = N or T = −N at the
point p, where N is the outer normal to Σ at p. Assume that T = N .

Let ι be the left translation such that ι(p) = N, where N is the north pole of ΣR. At the point N the vector
T is the outer normal to ΣR. Since ι*T = T (this holds for any isometry), we deduce that ΣR and ι(Σ) are two
surfaces such that:

i) They have both constant mean curvature H.
ii) They have both vanishing k0, by Proposition A.2 and Theorem A.8.
iii) N ∈ ΣR ∩ ι(Σ) with the same (outer) normal at N.

Let M1 = ΣR and M2 = ι(Σ) be the Gauss extensions of ΣR and ι(Σ), respectively. Let ν = τN* N ∈ S2. From
i), ii) and Proposition A.9 it follows that M1 and M2 are both integral surfaces of the distribution EH . From
iii), it follows that (N, ν) ∈ M1 ∩ M2. Being the two surfaces complete, this implies that M1 = M2 and thus
ΣR = ι(Σ).
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