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ABSTRACT

The objective of this study was to evaluate the abil-
ity of mid-infrared predictions of fine milk composition 
and technological traits to serve as a tool for large-scale 
phenotyping of the Italian Simmental population. Cali-
bration equations accurately predicted the fatty acid 
profile of the milk, but we obtained moderate or poor 
accuracy for detailed protein composition, coagulation 
properties, curd yield and composition, lactoferrin, and 
concentration of major minerals. To evaluate the role 
of infrared predictions as indicator traits of fine milk 
composition in indirect selective breeding programs, 
the genetic parameters of the traits predicted using 
mid-infrared spectra need to be estimated.
Key words: infrared spectroscopy, fatty acids, protein 
composition, minerals

Short Communication

Mid-infrared (MIR) spectroscopy is a recognized 
tool for predicting novel milk traits at the population 
level for phenotyping and selective breeding purposes 
(De Marchi et al., 2014). To date, calibration equations 
have been developed using milk samples mostly from 
Holstein cows. Such models may not optimal when 
the aim is to obtain infrared predictions for samples 
from cows of other breeds (Eskildsen et al., 2014). For 
some traits, MIR predictions rely on indirect covari-
ance structures with other traits, easily quantified by 
MIR, rather than on causal relationships with specific 
MIR absorption bands. One example is the prediction 
of individual fatty acid concentrations, which is based 
primarily on covariation between fatty acid and total 
fat content, and for which the contribution of absorp-
tion signals from specific fatty acids to the prediction 
is minimal (Eskildsen et al., 2014). When such covari-
ance structures change across populations, calibration 
equations developed using milk samples from a specific 

breed may lead to biased results and generate errors 
when applied to samples from other breeds.

Multibreed calibration sets are characterized by wide 
variability in milk composition relative to single breed 
sets and, generally, by high accuracy of calibration 
models. However, accuracy may be limited when pre-
dictions are obtained for a population of samples (e.g., 
single breed) that exhibit reduced variability compared 
with that of the calibration set. The objective of this 
study was to investigate the potential application of 
MIR spectroscopy to predict fine milk composition and 
technological traits in Italian Simmental. Calibration 
models developed in this study will serve as the basis 
for evaluating the role of predicted traits as indicators 
of fine milk composition in selective breeding in the 
Italian Simmental population.

The data were obtained by analyzing individual milk 
samples collected during morning milking from 1,230 
Simmental cows in 21 herds located in northern Italy. 
Herd size ranged from 30 to 125 cows. All cows were 
fed TMR. Cows enrolled in the study were between 5 
and 484 DIM, and their parity ranged from 1 to 9. The 
final number of samples available per trait depended on 
budget constraints, analytical errors, and data editing 
(e.g., records with a trait value above 4 or below −4 
standard deviations were excluded from the analysis).

Analysis of fatty acid composition was available for 
1,040 samples. Milk fat was separated using an acceler-
ated extraction method (Thermo Scientific Dionex ASE 
350; Thermo Fisher Scientific, Rodano Milanese, Italy), 
according to the guidelines suggested in the Dionex Ap-
plication Note 345 for milk and cream (Thermo Scien-
tific Dionex, 2016). Gas chromatographic assessment of 
fatty acid concentrations in milk fat was performed as 
in Pellattiero et al. (2015).

The αS1-CN, αS2-CN, β-CN, γ-CN, glycosylated and 
unglycosylated κ-CN, β-LG, and α-LA contents of 
individual milk samples were measured using the re-
verse phase-HPLC method developed by Bonfatti et al. 
(2008) and were available for 1,137 samples. Measures 
of milk coagulation properties (MCP) were obtained 
as described by Dal Zotto et al. (2008), with minor 
modifications: 200 μL of rennet (Naturen Standard 
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215, Hansen 215 international milk clotting units/mL; 
Pacovis Amrein AG, Bern, Switzerland), diluted to 
1.2% (vol/vol) in distilled water, was added to milk, 
and the total length of the analysis was extended to 
60 min. Curd yield and composition were assessed for 
1,177 samples using a micro-cheesemaking procedure: 
25 mL of milk was heated to 40°C for 15 min, and 0.5 
mL of the same diluted rennet used in the MCP analy-
sis was added. After stirring, milk was kept at 40°C 
for 30 min, and the curd was cut using a spatula and 
healed for 15 min at 40°C. Samples were centrifuged for 
20 min at 3,220 × g at 10°C. After whey removal, the 
micro-curds were used to assess DM content (method 
926.08; AOAC International, 2003), protein content 
by Kjeldahl (method 2001.14; AOAC International, 
2002), and fat content (using an accelerated extraction 
method, following Thermo Scientific Dionex, 2016). 
Lactoferrin was measured for 558 samples as in Soyeurt 
et al. (2007). Contents of Ca, P, Mg and K were mea-
sured for 689 samples by inductively coupled plasma 
optical emission spectrometry, using a Ciros Vision 
EOP (Spectro Analytical Instruments GmbH, Kleve, 
Germany) and the procedure proposed by Soyeurt et 
al. (2009).

Spectra were collected on all samples using a 
MilkoScan FT6000 (Foss Electric A/S, Hillerød, Den-
mark). Due to the interference of water absorption, 
the O-H bending and O-H stretching regions of the 
spectra (between 1,628 and 1,658 cm−1 and between 
3,105 cm−1 and 3,444 cm−1, respectively) were removed 
(Hewavitharana and Brakel, 1997).

We developed preliminary calibration models using 
two-thirds of the samples and validated the models 
using the remaining one-third. Samples for calibration 
and validation were randomly selected. We tested 2 
methods for outlier detection: (1) only samples exhib-
iting a global Mahalanobis distance (GH) from the 
population centroid >3 were considered outliers (H 
outliers) and discarded; (2) in addition to samples with 
GH >3, samples for which the difference between the 
reference and the predicted value was >2.5 times the 
standard error of cross-validation were considered out-
liers (T outliers, Shenk and Westerhaus, 1995). In the 
latter case, we used 2 steps of outlier elimination.

We developed models by partial least squares regres-
sion with a 10-fold cross-validation, implemented in 
the R (R Development Core Team, 2013) PLS package 
(Mevik and Wehrens, 2007). Exclusion of T outliers 
(2 to 4% of the samples, depending on the trait) led 
to overestimated predictive ability in the equations 
and decreased the predictive ability in external valida-
tion (results not reported in tables). Conversely, when 
outlier identification was based exclusively on the GH 
distance (H outliers), less than 0.5% of samples were 

excluded and the predictive ability in cross-validation 
was not significantly different from that in external 
validation (results not reported in tables).

For the final models, we used only GH distance 
for outlier identification. Models were developed on 
the totality of the data, without any further external 
validation procedure, by partial least squares regression 
with a 10-fold cross-validation (Mevik and Wehrens, 
2007). We calculated the root mean squared error of 
prediction in cross-validation, the coefficient of deter-
mination between the predicted and measured values in 
cross-validation (R2

CV), and the ratio of performance 
to deviation (RPD).

The results of the partial least squares models for 
individual fatty acids are shown in Table 1. In gen-
eral, when fatty acids were expressed on a milk basis, 
R2

CV values were high for all traits and were >0.90 
for SFA, MUFA, short and medium-chain fatty acids, 
C12:0, C14:0, C16:0, Σ unsaturated C18, Σ C18:1, and 
C18:1n-7 cis-9. Other fatty acids, namely C14:1, C18:1 
trans, C18:1n-7 trans-9, Σ CLA, C18:2 cis-9,trans-11, 
and C18:3n-3, were poorly predicted by MIR spec-
troscopy (R2

CV < 0.70). In general, R2
CV values were 

in agreement with those reported by Eskildsen et al. 
(2014) and slightly lower than those obtained by Soy-
eurt et al. (2011) and Ferrand-Calmels et al. (2014). 
All of these studies were conducted on different breeds 
to guarantee a wide variability in spectra. Because our 
study was aimed at providing a tool for large-scale phe-
notyping of the Simmental population, we developed 
calibration models using samples from Simmental cows, 
but they might be further improved by taking into ac-
count milk samples from other dairy breeds to increase 
the variability of the calibration set. The accuracy of 
the MIR predictions decreased when fatty acids were 
expressed on a fat basis, and was consistent with ac-
curacy obtained by Rutten et al. (2009) and slightly 
worse than that estimated by Soyeurt et al. (2011) and 
Ferrand-Calmels et al. (2014). Two reasons for the low 
prediction accuracy obtained for fatty acid percentage 
relative to the one for fatty acid content may have 
been: (1) fatty acid measures as percentages in milk fat 
do not comply with Beer-Lambert’s law (i.e., spectra 
absorbance is proportional to the content of a molecule 
in a sample and not to its relative quantity); and (2) 
the information used to predict fatty acids derives to 
a large extent from the correlation between fatty acids 
and total fat (Eskildsen et al., 2014), but when fatty 
acids are measured as percentages in milk fat, this cor-
relation is much lower than the one between fatty acid 
content and total fat.

Parameters to evaluate the predictive performance 
of calibration models for milk technological proper-
ties, lactoferrin, and minerals are reported in Table 2. 
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Prediction accuracy was satisfactory for pH and RCT 
(R2

CV of 0.79 and 0.69, respectively), but poor for other 
MCP traits (R2

CV < 0.42). In the literature, calibra-
tion models for curd firmness at 30 min from rennet 
addition (a30) reached R2

CV values of 0.76 (De Marchi 
et al., 2013). Such inconsistency might be explained 
by the greater variability in MCP traits detected by 
those authors (e.g., the CV of a30 was almost 3 times 
that detected in our study), but also by the different 
equipment used when measuring MCP. The prediction 
accuracy of a model depends also on the accuracy of the 
reference analysis. Hence, instruments with low repeat-
ability, reproducibility, or accuracy for a trait may lead 
to models with low accuracy. In agreement with our 
results, De Marchi et al. (2013) obtained unsatisfactory 
predictions for curd firmness at 60 min from rennet 
addition (a60), and Cipolat-Gotet et al. (2012) detected 
large variability in curd firmness measured 45 min after 
rennet addition. Thus, it is reasonable to hypothesize 
that also a60 is measured with lower repeatability than 
a30.

A possible factor affecting the predictive ability of 
MCP traits might also be the correlation between MCP 
and total protein or pH. Because MCP are linked to 
rheological properties, their prediction exploits the re-
lationship between the coagulation behavior and the 

presence of specific chemical bonds. The relationship 
between MCP and chemical compounds might change 
across traits and populations. This may result in dif-
ferent predictive abilities for different MCP traits and 
may explain the inconsistency of results across studies.

Among curd yield traits, the prediction of dry matter 
curd yield showed the greatest R2

CV (0.85), followed 
by fat, raw, water, and protein curd yield, for which 
the R2

CV was 0.62. Considering that curd yield partly 
depends on rheological property of milk, raw curd yield 
was predicted with relatively high accuracy (R2

CV = 
0.67). When, in preliminary analyses, we used a 2-step 
elimination of outliers based on the difference between 
predicted and measured values, the R2

CV values of the 
calibration models were markedly higher, matching 
those obtained by Ferragina et al. (2013), who used the 
same outlier elimination method. Curd composition was 
predicted with poor accuracy, with R2

CV values ranging 
from 0.35 for fat content to 0.61 for DM content.

Models could only discriminate between high and low 
values of lactoferrin, and they were not sufficiently ac-
curate to lead to precise quantification. More promising 
results have been obtained by Soyeurt et al. (2012), 
who reported an estimated R2

CV of 0.71 for lactoferrin 
prediction using a large number (n = 2,499) of samples 
from 3 different countries. However, in that study, when 

Table 1. Descriptive statistics and calibration performances for fatty acid contents in milk and concentrations in milk fat1

Trait

Content in milk, g/dL

 

Percentage in total milk fat, %

Mean SD R2CV RMSEP RPD Mean SD R2CV RMSEP RPD

SFA 2.874 0.534 0.97 0.089 6.01 74.211 3.406 0.81 1.470 2.32
MUFA 0.847 0.189 0.93 0.051 3.72 21.709 2.688 0.78 1.264 2.13
PUFA 0.150 0.039 0.75 0.020 1.99 3.871 0.808 0.70 0.441 1.83
Short-chain fatty acids2 0.628 0.135 0.90 0.043 3.13 16.241 1.924 0.69 1.053 1.83
Medium-chain fatty acids2 1.928 0.381 0.95 0.089 4.28 49.784 3.903 0.75 1.952 2.00
Long-chain fatty acids2 0.255 0.087 0.77 0.041 2.09 6.584 1.827 0.72 0.951 1.92
n-6 0.081 0.025 0.75 0.012 2.00 2.112 0.567 0.71 0.305 1.86
n-3 0.021 0.007 0.72 0.004 1.90 0.552 0.166 0.64 0.098 1.70
C10:0 0.143 0.033 0.88 0.011 2.91 3.715 0.528 0.73 0.277 1.90
C12:0 0.171 0.042 0.90 0.013 3.20 4.432 0.701 0.77 0.337 2.08
C14:0 0.523 0.103 0.90 0.033 3.10 13.552 1.288 0.66 0.742 1.74
C16:0 1.297 0.269 0.92 0.080 3.37 33.440 3.019 0.70 1.637 1.84
C18:0 0.238 0.082 0.78 0.038 2.17 6.126 1.714 0.72 0.898 1.91
Σ C14:1 0.042 0.014 0.64 0.008 1.66 1.085 0.302 0.47 0.215 1.40
Σ C16:1 0.088 0.026 0.73 0.013 1.91 2.265 0.443 0.53 0.302 1.47
Σ unsaturated C18 0.800 0.189 0.91 0.058 3.27 20.706 3.451 0.82 1.465 2.36
Σ C18:1 0.669 0.163 0.90 0.051 3.19 17.309 3.014 0.81 1.284 2.35
Σ C18:1 trans 0.052 0.013 0.67 0.008 1.73 1.344 0.309 0.52 0.215 1.44
C18:1n-7 cis-9 0.585 0.150 0.90 0.048 3.12 15.106 2.817 0.81 1.179 2.39
C18:1n-7 trans-9 0.050 0.013 0.67 0.007 1.76 1.295 0.301 0.51 0.209 1.44
Σ C18:2 0.111 0.029 0.76 0.014 2.05 2.884 0.614 0.70 0.335 1.83
C18:2n-6 0.069 0.022 0.75 0.011 2.02 1.799 0.517 0.71 0.272 1.90
Σ CLA 0.018 0.006 0.61 0.004 1.60 0.463 0.123 0.44 0.091 1.36
C18:2 cis-9,trans-11 (CLA) 0.014 0.005 0.65 0.003 1.68 0.350 0.097 0.54 0.066 1.47
C18:3n-3 0.015 0.005 0.29 0.003 1.70 0.378 0.118 0.66 0.067 1.76
1R2CV = coefficient of determination of cross-validation; RMSEP = root mean squared error of prediction; RPD = ratio of performance to 
deviation, calculated as the ratio of trait SD to RMSEP.
2Short-chain fatty acids = fatty acids from C4 to C10; medium-chain fatty acids = fatty acids from C12 to C16; long-chain fatty acids = fatty 
acids from C18 to C24.
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the calibration was tested in external validation on 
Belgian samples only, the R2 was consistent with the 
estimate obtained in our study. Soyeurt et al. (2012) 
used samples from different countries and different 
breeds to maximize the variability in the calibration 
set. However, when the validation set included only 
samples from 1 country (i.e., when the variability in the 
validation set was lower than the one in the calibration 
set), the prediction accuracy decreased. The average 
lactoferrin content in our study was 128 ± 96 mg/L, a 
value lower than that obtained by Soyeurt et al. (2007, 
2012). This might have negatively influenced the pre-
dictive ability of the model, because the performance of 
MIR spectroscopy in predicting a compound is largely 
dependent on its content in milk (Soyeurt et al., 2006; 
Rutten et al., 2009).

Values of R2
CV for minerals ranged between 0.41 

and 0.48 Only Soyeurt et al. (2009) and Toffanin et al. 
(2015) investigated the potential of MIR spectroscopy 
to predict the major mineral content of cow milk. Soy-
eurt et al. (2009) obtained favorable results, reporting 
high accuracy for calcium and phosphorus (R2

CV up to 
0.87 and 0.85, respectively) and reasonable accuracies 
for magnesium and potassium (R2

CV = 0.65). However, 
in that study, samples used in calibration were chosen 
to maximize variability in spectra absorbances and pre-

diction accuracy was expected to be greater than one 
achievable by random sampling.

Prediction models for protein fractions are presented 
in Table 3. We obtained good predictive ability for 
overall protein and casein content, for which the R2

CV 
of models was >0.80. Values of R2

CV for the content 
of the casein fractions ranged from 0.74 for αS1-CN 
to 0.22 for unglycosylated κ-CN. Glycosylated κ-CN 
was also predicted with poor accuracy (R2

CV = 0.46). 
For whey protein fractions, as well as for most caseins, 
the R2

CV showed that models could only discriminate 
between high and low protein values. These results are 
in agreement with Bonfatti et al. (2011), but are worse 
than those reported by Ferrand et al. (2012), who used 
HPLC coupled with mass spectrometry to assess the 
content of protein fractions. When protein fractions 
were expressed on a protein basis, results were even more 
unsatisfactory and consistent with those of Bonfatti et 
al. (2011) and Rutten et al. (2011). This was likely for 
the same reasons responsible for impaired prediction of 
fatty acids measured as percentages in milk fat. The 
prediction of protein fraction content relies indirectly 
on the relationship between the content of individual 
proteins and total milk protein. This might explain the 
marked difference in predictive ability between calibra-
tion equations for contents and percentages of protein 

Table 2. Descriptive statistics and calibration performances for technological milk traits, lactoferrin, and 
mineral contents1

Trait2 Mean SD R2CV RMSEP RPD

pH 6.74 0.08 0.79 0.04 2.16
RCT, min 18.51 5.81 0.69 3.22 1.81
k20, min 7.11 0.85 0.42 0.64 1.32
t20, min 25.58 6.78 0.55 4.50 1.51
a30, mm 34.32 6.50 0.32 5.31 1.22
a45, mm 34.88 4.16 0.20 3.67 1.13
a60, mm 32.99 4.13 0.21 3.63 1.14
Curd yield, g/100 g of milk
 Raw 26.67 6.34 0.67 3.62 1.75
 DM 7.57 1.12 0.85 0.44 2.55
 Water 19.17 5.63 0.64 3.36 1.68
 Protein 2.89 0.44 0.62 0.27 1.64
 Fat 3.71 0.79 0.69 0.44 1.81
Curd composition, %
 Moisture 71.02 4.15 0.61 2.58 1.60
 Protein in DM 38.50 5.08 0.43 3.83 1.33
 Fat in DM 48.43 6.32 0.35 5.04 1.25
 Lactoferrin 4.54 0.83 0.42 0.63 1.32
Minerals, mg/L
 Ca 1,211 186 0.48 131 1.42
 P 1,007 143 0.43 108 1.33
 Mg 101 17 0.46 12 1.37
 K 1,158 239 0.41 181 1.32
1R2CV = coefficient of determination of cross-validation; RCT = rennet coagulation time; RMSEP = root 
mean squared error of prediction; RPD = ratio of performance to deviation, calculated as the ratio of traits 
deviation of a trait SD to RMSEP.
2RCT = rennet coagulation time; k20 = curd firming time; t20 = time from rennet addition to k20; a30 = curd 
firmness at 30 min from rennet addition; a45 = curd firmness at 45 min from rennet addition; a60 = curd firm-
ness at 60 min from rennet addition.
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fractions and the very poor R2
CV obtained for minor 

fractions, in analogy with fatty acid contents, which are 
seemingly predicted indirectly from total fat content 
(Eskildsen et al., 2014).

This study confirmed that MIR can predict several 
nutritional and technological milk traits, but in gen-
eral, we obtained only moderate accuracy in calibra-
tion models. Traits predicted with poor accuracy might 
benefit from the use of other techniques for spectra 
acquisition, such as dried film measurement instead of 
liquid milk measurement, as demonstrated by Afseth et 
al. (2010). However, the dried film approach has not yet 
been implemented for routine milk analysis.

According to Soyeurt et al. (2011), equations with 
R2

CV >0.95 are useful in milk payment systems, and 
equations with R2

CV >0.75 can be exploited in animal 
breeding programs. As described by Minasny and Mc-
Bratney (2013) and confirmed by our data (Figure 1), 
for a normally distributed variable and a large sample 
size, the relationship between RPD and R2

CV is RPD 
= (1 − R2

CV)−0.5. When R2
CV = 0.75, RPD = 2, which 

is the threshold upon which a calibration model is 
arbitrarily considered to have good predictive ability 
(Minasny and McBratney, 2013). Values of R2

CV and 
RPD depend on the phenotypic correlation between the 
measured traits and the infrared predictions. In selec-
tive breeding, however, the usefulness of calibration 
models depends on the genetic gain achievable for a 
trait using predictions in place of measures. As such, 
gain is affected by genetic variability in the measured 
traits and by genetic correlation between the measured 
traits and their predictions; estimates of genetic param-
eters for infrared predictions are necessary to evaluate 
the usefulness of calibration models in breeding pro-
grams as a replacement for gold standard methods of 

phenotyping. In addition, for the traits investigated in 
this study, the usefulness of calibration models depends 
on the additional information provided by the spec-
tra, independent of the one exploited in the prediction 
of milk fat or protein. Calibration models accurately 
predict milk fat and protein contents. If a trait to be 
predicted is correlated with milk fat or protein content, 
a calibration model for that trait may exhibit satisfac-
tory predictive performance even when spectra do not 
provide independent information for the trait. However, 
such a model might generate biased predictions when 

Table 3. Descriptive statistics and calibration performances for protein fraction contents in milk and concentrations in milk protein1

Trait2

Content in milk, g/L

 

Percentage in milk protein, %

Mean SD R2CV RMSEP RPD Mean SD R2CV RMSEP RPD

Protein 37.09 3.83 0.81 1.66 2.31
Casein 31.65 3.43 0.80 1.51 2.26 85.31 1.74 0.53 1.19 1.46
αS1-CN 13.48 1.42 0.74 0.72 1.98 36.42 2.26 0.26 1.95 1.16
αS2-CN 4.17 0.62 0.49 0.44 1.42 11.23 1.26 0.28 1.07 1.18
β-CN 9.77 1.84 0.58 1.13 1.63 26.24 3.61 0.43 2.72 1.33
γ-CN 0.66 0.21 0.33 0.17 1.22 1.80 0.62 0.30 0.52 1.20
κ-CN 3.58 0.74 0.39 0.57 1.29 9.62 1.63 0.25 1.42 1.15
Glycosylated κ-CN 1.69 0.48 0.46 0.35 1.37 4.53 1.10 0.38 0.87 1.26
Unglycosylated κ-CN 1.88 0.42 0.22 0.37 1.14 5.08 1.05 0.21 0.92 1.14
Whey protein 5.44 0.79 0.53 0.54 1.48
α-LA 1.33 0.24 0.24 0.21 1.16 3.62 0.65 0.27 0.56 1.17
β-LG 4.10 0.71 0.48 0.51 1.41 11.07 1.66 0.40 1.29 1.28
1R2CV = coefficient of determination of cross-validation; RMSEP = root mean squared error of prediction; RPD = ratio of performance to 
deviation, calculated as the ratio of trait SD to RMSEP.
2Protein = casein + whey protein; casein = αS1-CN + αS2-CN + β-CN + γ-CN + κ-CN; κ-CN = glycosylated κ-CN + unglycosylated κ-CN; 
whey protein = α-LA + β-LG.

Figure 1. The relationship between the coefficient of determination 
in cross-validation (R2

CV) and the ratio of performance to deviation 
(RPD).
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it is used in populations for which the correlation 
between the trait and milk fat or protein is different 
(Eskildsen et al., 2014). Theoretically, if protein frac-
tions were indirectly predicted by MIR exclusively as 
a consequence of their correlation with total protein, 
selective breeding for total protein would produce the 
same response for protein fractions as that provided by 
selective breeding for the MIR-predicted content of pro-
tein fractions. To evaluate the usefulness of calibration 
equations for selective breeding purposes, the genetic 
correlation between the newly predicted variables and 
milk fat or protein content need to be estimated.
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