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1 Introduction

As is well known, in field theory spontaneous breaking of rigid supersymmetry manifests

itself in the presence of massless fermionic spinor fields, Volkov-Akulov goldstini [1–3]. In

supergravity the goldstini generate a positive contribution to the cosmological constant
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and, upon having being “eaten” by gravitini, provide a mass to the latter [4, 5]. Mech-

anisms realizing supersymmetry breaking effects in globally and locally supersymmetric

models have been an important subject of intensive research since the very discovery of

supersymmetry and supergravity [1, 4–9]. Their understanding is indispensable for the

construction of phenomenologically relevant supersymmetric models of fundamental inter-

actions and cosmology in which the role of the goldstini has recently undergone a thorough

reconsideration, see, e.g., [10–16] and references therein.

There are two approaches to describe goldstini and their couplings to other fields in the

theory. The first one, used in the original papers by Volkov and Akulov [1–3], is the geomet-

rical method of non-linear realizations of spontaneously broken symmetries [17–19]. This

formulation is directly related to mechanisms of spontaneous symmetry breaking caused by

extended dynamical objects such as branes in string theory [20, 21]. The second approach,

in which the goldstini are considered as components of constrained superfields [22–29],

is more related to conventional superfield constructions of supersymmetric theories, since

a priori the superfields transform linearly under supersymmetry but due to constraints

their independent components, including the goldstino, transform non-linearly. The emer-

gence of the constraints may also be viewed as an effective field theory limit in which

certain mass parameters become very large and the corresponding modes decouple. The

constrained superfield description has been used in the most of recent literature on spon-

taneous supersymmetry breaking in supergravity (see e.g. [29–43] and references therein).

In [44] it has been shown how the Volkov-Akulov ideas have a natural brane incarnation

in a locally supersymmetric context. In this approach one introduces a (space-filling) brane

supporting the goldstino, henceforth dubbed goldstino brane, which couples in a manifestly

locally supersymmetric way to the ‘bulk’ supergeometry, i.e. to the gravity multiplet.

One of the main purposes of this paper is to illustrate how the goldstino brane al-

lows one to easily couple the goldstino to arbitrary matter as well. As we will discuss

in detail, one can couple the goldstino to ‘bulk’ supersymmetric matter or ‘non(linearly)-

supersymmetric’ matter1 propagating on the goldstino brane itself. In particular, we will

show how in this geometric framework one can naturally generate a supersymmetry break-

ing contribution to the gravitino mass, while the construction of such a term with the

constrained superfields requires the use of a so called special minimal (3-form) formula-

tion [45, 46] of N = 1 supergravity whose coupling to matter is more restricted.

Let us stress that the goldstino brane may have a more fundamental origin, as in

some stringy constructions with anti-D-branes in flux compactifications, but it may also be

interpreted as an auxiliary geometric object, if the microscopic origin of the supersymmetry

breaking has nothing to do with branes in a higher-dimensional theory.

Another main purpose of this paper is to clarify the inter-relation between the goldstino

brane approach and the formulations that use different constrained superfields. In the

rigid supersymmetry case, the similar question on the equivalence between the different

descriptions of the goldstino in the absence of matter was addressed in [22–26] and the

1We call matter fields non-supersymmetric if they do not form a linear supermultiplet, i.e. supersymmetry

is realised non-linearly on such fields.
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explicit form of the non-linear field redefinitions relating the different formulations were

derived in [47, 48]. We will extend these results to a more general framework of matter

coupled supergravity and show that all these formulations are equivalent to each other

(modulo the example of the gravitino mass term of section 5) and describe similar general

couplings of the goldstino to supergravity and matter, but one or another of them, like the

goldstino brane, may be more suitable for the construction of specific effective models with

spontaneously broken supersymmetry.

In particular, as we will see, the explicit non-linear relations between different forms

of the goldstino in the presence of gravity and matter are given by relations that express a

given constrained goldstino superfield in terms of any other, among which a scalar nilpotent

superfield is a direct superfield extension of the original Volkov-Akulov Lagrangian. We

will also show that the nilpotent chiral superfield studied in [27, 28] is reducible in the

sense that it is the sum of the nilpotent chiral superfield of Roček [24] and another chiral

matter superfield satisfying a generalized nilpotency constraint.

The paper is organized according to its table of Contents. We mainly use notation and

conventions similar to that in [49].

2 Brany nature of Volkov-Akulov model and its coupling to supergravity

To construct the supersymmetric action for a spin-1/2 goldstone field Volkov and Akulov

introduced [1–3], for the first time, the notion of superspace M4|4 associated with the super-

translation generators of the super-Poincaré algebra and parametrised by four bosonic

space-time coordinates xm (m = 0, 1, 2, 3) and four anti-commuting Weyl-spinor coordi-

nates θα and θ̄α̇ (α, α̇ = 1, 2). The flat superspace coordinates transform under the Poincaré

supersymmetry with parameters εα and ε̄α̇ in a conventional way

δθα = εα, δθ̄α̇ = ε̄α̇,

δxm = i(θσmε̄− εσmθ̄) . (2.1)

Next, Volkov and Akulov constructed the superinvariant Cartan one-form

Em0 = dxm + i(θσmdθ̄ − dθσmθ̄) (2.2)

and assumed that θ and θ̄ are actually fields in a four-dimensional subspace of M4|4 de-

pending on xm. In other words, they considered a map of a four-dimensional surface M4

into the M4|4 target superspace. A priori, the surface M4 can be parametrised by an in-

dependent set of four coordinates ξi such that its embedding into M4|4 is described by the

functions xm(ξ), θα(ξ) and θ̄α̇(ξ). However, assuming theM4 diffeomorphism invariance of

the embedding, one can always choose theM4 coordinate system (i.e. impose the so-called

static gauge) in such a way that

xm = δmi ξ
i. (2.3)

In what follows we will use both the diffeomorphism invariant embedding description and

the static gauge.
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From the modern perspective this model describes just a space-filling 3-brane propa-

gating in a flat N = 1, D = 4 superspace and carrying the goldstone field

χα(x) = fθα(x), (2.4)

where f is a constant parameter of dimension of mass m2 which characterizes the super-

symmetry breaking scale (and the brane tension T = f2).

Note that, at this level, such a brane can be considered as an auxiliary object which

is useful for describing the goldstino and, as we will see, for coupling it to other super-

symmetric or non-supersymmetric matter. On the other hand, this brane acquires a more

fundamental interpretation if the goldstino is associated to a physical brane in a higher-

dimensional UV completion of the theory as has been extensively discussed in the literature

(see e.g. [50–59] and references therein).

The field χα(x) has the canonical dimension of m
3
2 and transforms under the super-

symmetry variation (2.1) non-linearly as a goldstone field

δχα = fεα − δxm∂mχα = fεα + if−1(εσmχ̄− χσmε̄)∂mχα . (2.5)

It is worth noting that the commutator of these transformations closes on space-time

translations off the mass shell, i.e. without the use of the goldstino equations of motion.

This implies that there is no issue with the construction of supersymmetric couplings

of the Volkov-Akulov goldstino to other fields which would otherwise require the use of

auxiliary fields.

The supersymmetric Volkov-Akulov action is constructed as the 3-brane worldvolume

integral

SVA = −f2

∫
d4x
√
− det gmn = −f2

∫
d4x detE0m

a, (2.6)

where

gmn = E0m
aηabE0n

b (2.7)

is the induced worldvolume metric and

E0m
a = δam + i(θσa∂mθ̄ − ∂mθσaθ̄) = δam + if−2(χσa∂mχ̄− ∂mχσaχ̄) (2.8)

are the components of the pullback on the brane worldvolume of the Volkov-Akulov one-

form (2.2).

The leading terms in the action (2.6) are

SVA = −
∫

d4x(f2 + iχσm∂mχ̄− i∂mχσ
mχ̄+ . . .). (2.9)

From the above expression we see that the overall sign in the Volkov-Akulov action is chosen

in such a way that the goldstino kinetic term has the correct sign, then the first (constant)

term in (2.9) becomes a positive (de Sitter) cosmological constant when the Volkov-Akulov

action couples to supergravity. This explains the origin of the positive contribution to the

cosmological constant in supergravity theories with spontaneously broken supersymmetry.
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The action (2.6) is written in the static gauge (2.3). Its worldvolume diffeomorphism

invariant counterpart is

SVA = −f2

∫
d4ξ detE0 i

a(x(ξ), θ(ξ), θ̄(ξ)) . (2.10)

Using the interpretation of the Volkov-Akulov action as that of the space-filling 3-

brane, the goldstino brane, it is straightforward to couple it to N = 1, D = 4 supergravity,

for instance to the old minimal one, using the superfield approach [44].2 In the superfield

formulation of supergravity the flat superspace vielbein (2.2) gets generalized to a curved

superspace one

Ea(z) = dzMEaM (z) = dxmEam + dθµEaµ + dθ̄µ̇Eaµ̇, zM = (xm, θµ, θ̄µ̇), (2.11)

where a = 0, 1, 2, 3 are vector tangent-space indices. The vector supervielbein Ea(z) and

its spinorial partners

Eα(z) = dzMEαM (z), Ēα(z) = dzM Ēα̇M (z) (2.12)

are subject to certain torsion constraints. As components in their (θ, θ̄)-expansion the

supervielbeins contain the fields of the supergravity multiplet, the graviton eam(x), the

gravitino ψαm(x), ψ̄α̇m(x), the complex scalar auxiliary field R(x) and the auxiliary vector

field Ga(x). The auxiliary fields are the leading components of the chiral scalar supergravity

superfield R(z) and the vector superfield Ga(z), respectively.3 An explicit form of (2.11)

and (2.12) in a Wess-Zumino gauge was computed to all orders in θs and θ̄s in [44].

The coupling of the goldstino brane to supergravity is described by the following ac-

tion [44]

S = − 3

κ2

∫
d8zBerE − m

κ2

(∫
d6ζL E + c.c.

)
− f2

∫
d4ξ detEai (z(ξ)) , (2.13)

where κ2 is the gravitational coupling constant, the first term is the N = 1, D = 4

supergravity action given as the volume of the full curved superspaceM4|4 with BerE being

the superdeterminant of the supervielbein matrix EAM (2.11)–(2.12),4 the second term is a

chiral superspace volume with a measure E , m is the gravitino mass which also defines the

value of the supersymmetry preserving AdS cosmological constant λ = −3m2

κ2 , and the third

term describes the dynamics of the goldstino brane in curved superspace. Geometrically,

the latter is the direct generalization of the flat space Volkov-Akulov action (2.10) with

Eai (z(ξ)) being the pullback of the supervielbein (2.11) on the 3-brane worldvolume, namely

Eai (z(ξ)) = ∂ix
m(ξ)Eam(z(ξ)) + ∂iθ

α(ξ)Eaα(z(ξ)) + ∂iθ̄
α̇(ξ)Eaα̇(z(ξ)) . (2.14)

2In this paper we will restrict the consideration to the old minimal N = 1 supergravity (except for a

brief discussion of special minimal supergravity in section 5), but it can be straightforwardly extended to

other off-shell supergravity multiplets by choosing appropriate sets of superfield supergravity constraints.
3For details on the superfield description of N = 1, D = 4 supergravity see e.g. [60–66] and [49]. The

earliest references on this subject are [67–72].
4Ber stands for Berezenian, the name for the superdeterminant which is used to give credit to Felix

Berezin, the founder of ‘supermathematics’.
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The third term in (2.13) is invariant under the worldvolume diffeomorphisms ξ
′i = f i(ξ)

which, as we have already mentioned, can be used to identify the worldvolume parameters

ξi with the space-time coordinates xm by imposing the static gauge (2.3).

The local supersymmetry transformations of the goldstino field θ(x) = f−1χ(x) derived

in [44] in the Wess-Zumino gauge have the following form

δθα = εα(x) + i
(
εσmθ̄ − θσmε̄

) [
ψαm +∇mθα − i

(
θσnψ̄m − ψmσnθ̄

)
(ψαn +∇nθα)

]
− 1

16

(
εσaθ̄ − θσaε̄

) [
2θαGa + (θσab)

αGb + 2(θ̄σ̃a)
αR
]

+ . . . ,

(2.15)

where ∇m = ∂m + ωm(x) is a covariant derivative containing a spin connection ωabm (x)

and . . . stand for higher order terms in the fields. Equation (2.15) reduces to (2.5) in the

flat space limit.

3 Description of the goldstino in terms of constrained superfields

An alternative way to describe the goldstino is to use a superfield in which the only in-

dependent component is the goldstino itself while its superpartners are composites of the

goldstino. So the goldstino superfield is constrained. A priori, the superfield transforms

linearly under supersymmetry. The non-linear transformation of the goldstino is obtained

by solving the superfield constraints. This construction is based on the general relation

between linear and non-linear realizations of supersymmetry put forward in [22, 23, 73]

(see [74] for a recent review).

3.1 Spinor goldstino superfields

The goldstino may be embedded in a spinor superfield as its lowest component in the

expansion in powers of the Grassmann variables. In order for such a superfield to possess

no additional degrees of freedom, its spinor covariant derivatives must be some functions

of this superfield and its spacetime derivatives.

A direct way of obtaining a constrained spinor superfield containing the goldstino is

to act on the latter with a finite supersymmetry transformation whose parameters depend

on the superspace coordinates [22, 23, 26]

Ξα(x, θ, θ̄) = ei(θβQβ+θ̄β̇Q̄
β̇)χα(y) , xm ≡ ym + if−2χ(y)σmχ̄(y) , (3.1)

where ym are complex coordinates, Qα and Q̄α̇ are the supersymmetry generators, and

ξα(x) ≡ χα(y) is a “chiral” goldstino whose supersymmetry variation involves only this

field itself and not its complex conjugate

δξα = fεα − 2if−1ξσmε̄ ∂mξα(x) . (3.2)

This realisation for the goldstino was introduced by Zumino [75], and later it was exploited

in [22–24, 26]. The superfield Ξα obeys the constraints [26]

DαΞβ = −fεαβ , D̄α̇Ξβ = −2if−1Ξα∂αα̇Ξβ . (3.3)

– 6 –
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This superfield was introduced for the first time by Ivanov and Kapustnikov [23] although

without technical details. It was further elaborated by Samuel and Wess [26], including its

coupling to supergravity.

Alternatively, one can construct a spinor superfield directly from the original Volkov-

Akulov goldstino [23] (see [66, 74] for reviews)

Λα = ei(θβQβ+θ̄β̇Q̄
β̇)χα(x) . (3.4)

It obeys the constraints

DαΛβ = −fεαβ − if−1Λ̄α̇∂αα̇Λβ , D̄α̇Λβ = −if−1Λα∂αα̇Λβ . (3.5)

One can also consider a chiral spinor goldstino superfield Ψα [23, 76] subject to the

constraints [76]

DαΨβ = −fεαβ + 2if−1Ξ̄α̇∂αα̇Ψβ , D̄α̇Ψβ = 0 . (3.6)

It may be shown that Ξα and Ψα are related to each other, and hence DαΨβ can be

expressed solely in terms of the superfields Ψγ and Ψ̄β̇ . However such an expression is less

compact than the first relation in (3.6).

The spinor fields ξα(x) := Ξα|θ=θ̄=0 and ψα(x) := Ψα|θ=θ̄=0 naturally originate if one

makes use of the coset parametrisation [76]

g
(
x, ξ(x), ψ̄(x)

)
= ei(−xaPa+f−1ξα(x)Qα) eif−1ψ̄α̇(x)Q̄α̇ (3.7)

in the framework of nonlinear realisations of N = 1 supersymmetry described in [22, 23, 26].

The fields ξα and ψ̄α̇ are related to the goldstino χα and χ̄α̇ by

ξα(x) = χα(y) , ψ̄α̇(x) = χ̄α̇(y) , ym = xm − if−2χ(y)σmχ̄(y). (3.8)

Conversely,

χα(x) = ξα(ŷ) , χ̄α̇(x) = ψ̄α̇(ŷ) , ŷm = xm + if−2ξ(ŷ)σmψ̄(ŷ). (3.9)

These relations imply that the three different descriptions of the goldstino in terms of Ξα,

Λα and Ψα are equivalent. Given one of them, say Ξα, the other superfields, Λα and Ψα,

may be realised as composites of Ξα, Ξ̄α̇ and their covariant deirvavtives. For instance, the

chiral spinor superfield Ψα is expressed in terms of Ξα and its conjugate in a remarkably

simple way:

Ψα = − 1

4f2
D̄2(ΞαΞ̄2) . (3.10)

3.2 Scalar goldstino superfields

There are three standard scalar superfields to describe the goldstino. The oldest of them

is the nilpotent chiral scalar X introduced in [23, 24]. It obeys the constraints5 [24]

D̄α̇X = 0 , X2 = 0 , −1

4
XD̄2X̄ = fX . (3.11)

5The factor −1/4 in the last expression of (3.11) is chosen for convenience, since in our conventions

− 1
4
D̄2 θ̄2 = 1 and hence − 1

4
D̄2X̄|θ̄=0 = F̄x singles out the auxiliary field component of X̄.

– 7 –
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Another option, which is naturally related to Roček’s construction [24], is the real scalar

superfield V introduced in [25]. It is constructed as the composite

V =
1

f2
X̄X (3.12)

and obeys the constraints

V2 = 0,
1

16
VDαD̄2DαV = V , (3.13)

as well as some additional constraints which will be discussed in more detail around

eqs. (3.23). As will be shown in section 3.6, the scalar superfield V is nothing but a

superfield extension of the original Volkov-Akulov Lagrangian.

Equation (3.12) expresses V as a descendant of X and X̄. In its turn, X can be thought

of as a descendant of V, namely

X = −f
4
D̄2V . (3.14)

The third realisation is a modified complex linear superfield introduced in [29]. It

satisfies the following constraints

− 1

4
D̄2Σ = f , Σ2 = 0 , −1

4
ΣD̄2DαΣ = fDαΣ . (3.15)

The goldstino superfields X and V can both be read off from Σ and Σ̄ as follows:

fX = −1

4
D̄2(Σ̄Σ) , V =

1

f2
Σ̄Σ . (3.16)

These relations show that, in a sense, Σ is the simplest scalar goldstino superfield.

The first constraint in (3.15) defines the so-called modified complex linear superfield.

In fact, the goldstino can also be embedded in a standard complex linear superfield Γ

(D̄2Γ = 0), subject to additional constraints. Such a goldstino superfield was constructed

in 2011 by Tyler, as explained in [77]. Later it was discussed, albeit in an incomplete form,

in [78]. The complete set of the constraints is

D̄2Γ = 0 , Γ2 = 0 , −1

4
ΓD̄2Γ̄ = fΓ , (3.17)

where the last constraint was not given in [78]. This goldstino superfield is naturally

expressed in terms of Σ and its conjugate as follows [77]:

Γ = Σ̄− 1

4f
(D̄α̇Σ)D̄α̇Σ̄ . (3.18)

3.3 Equivalence of the goldstino superfields

As one might already deduce from the discussion in the previous two subsections, all the

spinor and scalar goldstino superfields considered therein are equivalent to each other.

Given one of them, e.g., the complex linear superfield Σ (3.15), the other goldstino su-

perfields may be realiased as composites constructed from Σ, its conjugate Σ̄ and their

– 8 –
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covariant derivatives. The equations (3.16) provide such relations for the goldstino super-

field X and V. We also can readily express the spinor goldstino superfield Ξα defined by

the constraints (3.3) in terms of Σ and Σ̄. The corresponding relations were given in [29].

They are

Ξα =
1

2
DαΣ̄ , Ξ̄α̇ =

1

2
D̄α̇Σ , (3.19)

On the other hand, the superfield Σ is constructed from Ξ̄α̇ by the rule [29]

fΣ = Ξ̄α̇Ξ̄α̇ . (3.20)

It is worth comparing this simple result with the expression for X in terms of the chiral

spinor goldstino superfield Ψα, eq. (3.6), which was derived in [76]:

fX = ΨαΨα . (3.21)

The above composites, which express one goldstino superfield in terms of a different

one, are polynomial. A rational expression emerges if one wishes to express, e.g., Ξα via

X. Making use of an observation in [79], we obtain

Ξα = −2f
DαX

D2X
. (3.22)

The relations (3.20) and (3.22) allow us to express Σ in terms of X, X̄ and their covariant

derivatives, or in terms of V with the use of eq. (3.14), and so on and so forth.

The following comment is in order. As one could have noticed from the above relations,

all the nilpotent scalar superfields are composites of spinor superfields. This just reflects a

simple fact that in the physical theory in which (due to the spin statistics-correspondence)

the spinor components form a basis of the odd elements of the Grassmann algebra, the

even (e.g.) scalar nilpotent quantities should be composed of Grassmann-odd spinors in

a Lorentz-covariant way. With this assumption, for instance the nilpotency constraint

in (3.13) for the real scalar superfield V is solved by the ansatz V = zαzαz̄α̇z̄α̇ = CC̄,

where zα is an arbitrary Grassmann-odd spinor superfield and C = z2 is a nilpotent

complex scalar superfield of even Grassmann parity.

On the other hand, the constraint V2 = 0 is also solved by V = ηη̄, where η is a

Grassmann-odd complex scalar superfield (η2 ≡ 0). To exclude such unphysical solutions

from the consideration one should impose additional constraints on V, which are identically

satisfied by the physical solution V = CC̄ and are not satisfied by V = ηη̄. These are

VDADBV = 0 , VDADBDCV = 0 , (3.23)

where DA = (∂a, Dα, D̄α̇). Then, the constraints (3.13) accompanied by (3.23) single out

V which is expressed in terms of the other goldstino superfields as discussed above. One

may check that the constraints (3.13) and (3.23) allow one to express all the components

of V in terms of the goldstino field identified with −1
4D̄

2DαV|θ=0.
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Making use of the constrains (3.13) and (3.23), one may show that

V =WαWαW̄α̇W̄ α̇ , Wα = −1

4
D̄2DαV . (3.24)

The constraint, which one has to use in order to prove this result, is

VWα = 0 , (3.25)

which is a special case of (3.23).

The relations between the different constrained superfields can be used to find in a

straightforward way the non-linear field redefinitions from one realization of the goldstino

to another. A general form of such field redefinitions was obtained in [47, 48] in a different

way by comparing all the known component versions of the Volkov-Akulov action. Such

a procedure can hardly be directly generalized to the case of couplings of the goldstini to

supergravity and matter multiplets. On the other hand the use of the relations between

the constrained superfields still allows one to get such relations. One should only properly

generalize the constraints to the curved superspace [25, 26, 29] as will be reviewed in

section 3.4.

In spite of the fact that all the goldstino superfields are equivalent, some of them turn

out to be preferable when one is interested, e.g., in their couplings to supergravity and

supersymmetric matter. In this respect, the scalar goldstino superfields are more suitable

than the spinor ones, as was already noticed in [26]. The goldstino superfields X and V
were coupled to pure supergravity in [25], and their simple couplings to supersymmetric

matter were given in [26]. The goldstino superfield Σ has been coupled both to supergravity

and chiral matter superfeilds [29, 35]. We will consider these couplings in more detail in

sections 3.4 and 4.2.

To conclude our review of the known goldstino superfields, we give three different, but

equivalent forms of the goldstino action:

S = −f2

∫
d4xd2θd2θ̄ V (3.26a)

= −
∫

d4xd2θd2θ̄ Σ̄Σ (3.26b)

= −1

2

∫
d4xd2θΨαΨα −

1

2

∫
d4xd2θ̄ Ψ̄α̇Ψ̄α̇ . (3.26c)

The action (3.26a), introduced in [25], has the form of the N = 1 Fayet-Iliopoulos term.

The action (3.26b), introduced in [29], coincides with the kinetic term for a complex linear

superfield. Finally, the action (3.26c), introduced in [76], has the form of a mass term for

the chiral spinor superfield [80].

As a final comment, let us mention that a simple generalization of the spinor goldstino

superfield Ξα to N ≥ 2 spontaneously broken supersymmetry was carried out in [81]. A

more general class of constrained N = 2 goldstino superfields was studied in [76]. Other

aspects of N ≥ 2 cases have been recently considered in [79].
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3.4 Constrained goldstino superfields in supergravity

When coupling the goldstino superfields to supergravity one should appropriately modify

their rigid supersymmetry constraints and the relations between the different superfields

discussed in the previous sections. The ‘general’ rule, which works in most cases, is to

replace flat superspace covariant derivatives with their curved superspace counterparts

and the chiral projector D̄2 with D̄2 − 4R, namely

∂a → Da, Dα → Dα D̄α̇ → D̄α̇, D̄2 → D̄2 − 4R , (3.27)

where (Da,Dα, D̄α̇) are supercovariant derivatives and R(z) is the chiral scalar curvature

superfield. In this way Lindström and Roček [25] coupled to supergravity the superfields

X and V:

D̄α̇X = 0 , X2 = 0 , −1

4
X(D̄2 − 4R)X̄ = fX ; (3.28)

V2 = 0 ,
1

16
VDα(D̄2 − 4R)DαV = V . (3.29)

Note that, like in flat superspace, the left hand side of the second expression in (3.29) is

equal to its complex conjugate.

The relation (3.14) between X and V take the following form

X = −f
4

(D̄2 − 4R)V . (3.30)

The local supersymmetry modification of the constraints for the spinor goldstino su-

perfield (3.3) is as follows

D̄α̇Ξ̄β̇ = εα̇β̇

{
f − f−1R Ξ̄2

}
, (3.31a)

DαΞ̄β̇ = f−1
{

2iΞ̄γ̇DaΞ̄β̇ − δ
γ̇

β̇
GaΞ̄

2
}
σaαγ̇ . (3.31b)

These constraints6 were obtained by Samuel and Wess [26] as a result of a nontrivial guess

work. A straightforward way to get them is to make use of the relation (3.19) between

Ξα and the complex linear superfield Σ, and the constraints (3.15) satisfied by the latter,

which in the supergravity case are modified as follows [29]

Ξα =
1

2
DαΣ̄ , Ξ̄α̇ =

1

2
D̄α̇Σ , (3.32)

with Σ obeying the constraints

− 1

4
(D̄2 − 4R)Σ = f , Σ2 = 0 , −1

4
Σ(D̄2 − 4R)DαΣ = fDαΣ . (3.33)

6The R-dependent term in (3.31a) and the G-dependent term in (3.31b) are examples of the non-minimal

contributions that cannot be obtained by making use of the minimal prescription (3.27).
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3.5 Reducible goldstino superfields

All the goldstino superfields considered so far are irreducible in the sense that they contain

only one independent component field — the goldstino itself, while the remaining compo-

nent fields are simply composites constructed from the goldstino. There also exist reducible

goldstino superfields that contain several independent fields, one of which is the goldstino.

A given reducible goldstino superfield can always be represented as an irreducible one plus

a “matter” superfield, which contains all the component fields except for the goldstino.

As an example of reducible goldstino superfields, here we consider the nilpotent chiral

scalar S studied in [27, 28]. It only satisfies the constraint

D̄α̇S = 0 , S2 = 0 =⇒ S(x, θ, θ̄) = eiθσaθ̄∂a

{
λ2
s

4Fs
+ θλs + θ2Fs

}
, (3.34)

and thus differs from the superfield X in (3.11). In addition to the goldstino field7 λs
α it

has the independent auxiliary field Fs(x) = −1
4D

2S|θ=θ̄=0, which is required to be nowhere

vanishing, and hence D2S 6= 0. It follows from (3.34) that S can be written in the form

S = −(DαS)(DαS)

D2S
. (3.35)

It was shown in [28, 48] that, for the pure goldstino model, the superfield S coincides

with X on the mass shell when Fs(x) − f is expressed in terms of the goldstino and its

derivatives. As we will see, this connection can be understood and generalised by expressing

S in terms of X and an additional auxiliary chiral superfield.

We start by showing, in the supergravity framework, that the nilpotent covariantly

chiral scalar S,

D̄α̇S = 0 , S2 = 0 (3.36)

can be represented as a sum of two covariantly chiral superfields,

S = X + Y (3.37)

of which X is the nilpotent goldstino superfield (3.28) and Y is a chiral matter superfield

satisfying a generalized nilpotency constraint

2XY + Y 2 = 0 . (3.38)

This condition extends the class of the nilpotent superfield constraints studied so far [28, 82–

85] and briefly discussed in section 4.3.

It can be directly checked that the spinor λy and the auxiliary field Fy of Y which

solves (3.38) are independent, while its scalar component φy is expressed in terms of the

goldstino λx of X, its derivatives and the fields λy and Fy.

7Upon elimination of the auxiliary field Fs, the goldstino field λαs is related to the Volkov-Akulov goldstino

χα, eq. (2.4), by a nonlinear field redefinition [47, 48].
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The arbitrariness of λy in Y can be fixed in terms of Fy and λx by expressing X in

terms of S as follows. Let us first introduce the composite superfield

Ξ̄α̇ = −2f
D̄α̇S̄
D̄2S̄

, (3.39)

which reduces to the one constructed in [79] in the flat superspace limit. It proves to obey

the constraint (3.31).

We are now in a position to introduce the chiral scalar X as a function of (3.39) by

the standard rule

f3X = −1

4
(D̄2 − 4R)(Ξ2Ξ̄2) . (3.40)

Thus, modulo supergravity fields, the independent goldstino λx in X is expressed in terms

of the λs goldstino, the auxiliary field Fs of S and their derivatives. The relation for λx can

be inverted in the sense that λs can be expressed in terms of λx, Fs and their derivatives.

Then the components of the chiral superfield Y in (3.37) and (3.38) are univocally defined

in terms of λx and Fs = Fx + Fy by Y = S − X. As a result, the only independent

component of Y is the auxiliary field.

Another way to relate the superfields S and X is to notice that the nilpotency con-

straint in (3.34) is invariant under arbitrary rescaling of S with an unconstrained chiral

superfield parameter, let us call it again Y . Then we can always represent the superfield

S as follows

S = Y X. (3.41)

Note that the superfield Y is determined modulo a gauge transformation

Y → Y + ∆Y, (3.42)

where ∆Y is a chiral superfield satisfying the constraint X∆Y = 0.

Consider now the action for the superfield S [27, 28]

S =

∫
d4xd2θd2θ̄ SS̄ −

(∫
d4xd2θ f S + c.c.

)
. (3.43)

We see that, assuming that the superfield S be the composite (3.41), the action (3.43)

describes the coupling of the nilpotent superfield X to the auxiliary chiral superfield Y with

the Kähler potential K = Y Ȳ XX̄ and the superpotential W = −fY X. The superfield Y

can be easily integrated out by solving its equation of motion

− 1

4
XD̄2(Ȳ X̄) = fX . (3.44)

Multiplying the above equation by Y we see that S = Y X satisfies the same constraint as

X, eq. (3.11). Therefore, as one can directly check, the general solution of (3.44) is

Y = 1 + C, (3.45)

where the chiral superfield C is constrained by the condition CX = 0. Thus, on the mass

shell Y is equal to unity modulo the gauge transformation (3.42).
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Upon substituting this solution into (3.43) the action reduces to that for the irreducible

nilpotent superfield X [24]. This demonstrates from yet another perspective the relation

between the two descriptions of the goldstino.

In [27, 28] the nilpotent superfield S was regarded to be the most suitable for the

description of couplings of the goldstino to matter and supergravity multiplets, since if one

deals with the other constrained superfields these couplings require modifications of their

constraints, as was discussed in section 3.4. So, though the coupling of the constrained

superfields X (3.11), V (3.13) and Ξα (3.1) to supergravity was considered already in [25,

26, 73, 86] and their quite general couplings to matter in [26], the most of recent work

on the description of spontaneous supersymmetry breaking in a generic matter-coupled

N = 1, D = 4 supergravity uses the nilpotent chiral superfield S of [27, 28] (see e.g. [30–

34, 36–38, 40–42] and references therein). A complication one should deal with in this

case is the necessity to perform a non-Gaussian integration of the auxiliary field F (or

the superfield Y ) when deriving the component actions that only involve physical fields

(see [32, 33, 40, 41] and references therein).

3.6 Goldstino brane Lagrangian and goldstino superfields

To complete the discussion of the equivalence of the different formulations, we will now

show that the nilpotent scalar superfield V (3.13) is nothing but a superfield extension of

the original Volkov-Akulov Lagrangian (2.6) or its goldstino brane extension to supergrav-

ity (2.13). To this end, let us remind that the different forms of the component goldstino

action associated to one or another constrained superfield are obtained from the superfield

action (3.26a) where V is either considered as the constrained real scalar superfield (3.13),

or as the composite constructed from other constrained superfields, e.g. (3.12) or (3.16).

When coupled to supergravity, the action (3.26a) takes the form

S = −f2

∫
d8zBerE V . (3.46)

Now we notice that also the original worldvolume diffeomorphism invariant Volkov-

Akulov action (2.10) can be rewritten as an integral in the bulk superspace with the

use of the Dirac delta-finction and the delta-functions of the Grassmann-odd coordinates

δ2(θ − θ0) ≡ (θ − θ0)2 and δ2(θ̄ − θ̄0) ≡ (θ̄ − θ̄0)2

SVA = −f2

∫
d8z

[ ∫
d4ξ (θ − θ(ξ))2(θ̄ − θ̄(ξ))2 δ4(x− x(ξ)) detE0 i

a(z(ξ))

]
. (3.47)

Upon integrating the above expression over the worldvolume coordinates, which effectively

picks up a static gauge, we get

SVA = −f2

∫
d8z (θ − f−1χ(x))2(θ̄ − f−1χ̄(x))2 detE0m

a(χ, χ̄) ≡
∫

d8z V (3.48)

in which we made the substitution

θ(ξ(x)) = f−1χ(x), θ̄(ξ(x)) = f−1χ̄(x). (3.49)
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In N = (1, 1), D = 2 case the Volkov-Akulov action was written in a form similar to (3.48)

in [24] and in the D = 4 case the form of V defined in (3.48) was discussed in [87].

The generalization of (3.47) and (3.48) to the curved superspace goldstino brane ac-

tion (2.13) has the same form as (3.46), where

V =

∫
d4ξ δ8(z − z(ξ))

detE(z(ξ))

BerE(z(ξ))
. (3.50)

Finally, upon integrating (3.50) over the worldvolume and using (3.49) we get

V = (θ − f−1χ(x))2(θ̄ − f−1χ̄(x))2 detE(z(x))

BerE(z(x))
, z(x) = (x, f−1χ(x), f−1χ̄(x)) . (3.51)

By construction (3.50) (or (3.51)) transforms as a scalar superfield which can thus be

identified with the constrained scalar superfield in (3.46). Indeed, one can directly check

(e.g. in the flat case (BerE = 1)) that the nilpotent superfield V taken in the form (3.51)

satisfies the constraints (3.29) and the relations to all the other constrained superfields

discussed above. For instance, given (3.51) one gets the chiral nilpotent superfield X =

−1
4(D̄2−4R)V satisfying (3.28). So, working with the goldstino brane, or equivalently with

V in the form (3.51), simplifies the construction since in this formulation all the superfield

constraints are solved and one does not need to care about them when considering a general

coupling of the goldstino to supergravity in the presence of matter in the bulk (see [42] for

the discussion on the incorporation of the superfield constraints into the goldstino actions

as Lagrange multiplier terms). In addition, as we will discuss in the following sections, one

can directly couple the goldstino to fields propagating in the brane worldvolume such as

Born-Infeld vector fields, and scalar and fermion modes associated with extra dimensions.

This should be useful for establishing a more direct relation of brane constructions in string

theory with four-dimensional effective field theory models of spontaneous supersymmetry

breaking, which is a topic of a great interest and importance (see e.g. [12, 50–59]).

4 Coupling the goldstino to old minimal supergravity with matter

We will now consider how the goldstino couples to old minimal N = 1, D = 4 supergravity

and matter supermultiplets in different descriptions of the former and show that these

different descriptions result in similar supersymmetry breaking terms. In subsection 5 we

will also briefly discuss couplings of goldstino to a so called special minimal (three-form)

supergravity [45, 46, 88–90].

Every off-shell N = 1 supergravity-matter system may be reformulated as a super-

Weyl invariant theory at the cost of introducing a superconformal compensator, which

is a nowhere vanishing covarantly chiral scalar superfield Y in the case of old minimal

supergravity. This non-trivial statement has its origin from the prepotential formulation

of minimal supergravity [61, 62, 91] (see [49] for a review). The resulting action is in-

variant under the following super-Weyl transformation of the supervielbein EAM and the
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compensator Y [92, 93]:

EaM → eΥ+ῩEaM ,

EαM → e2Ῡ−Υ

(
EαM −

i

2
EaMσ

αα̇
a D̄α̇Ῡ

)
,

Y → e−2ΥY.

(4.1)

At the classical level, the practical virtue of the super-Weyl invariant reformulation

of supergravity-matter systems is that it allows one to couple supergravity to matter in a

Kähler-invariant manner and considerably simplifies the reduction to component fields by

imposing suitable super-Weyl gauge conditions on the components of the chiral compen-

sator Y . The idea goes back to the work by Kugo and Uehara [94], and its systematic use

was made in [88] for four-dimensional N = 1 supergravity-matter systems and also in [95]

for three-dimensional N = 2 supergravity-matter theories. The power of this approach

is that it allows one to automatically obtain canonically normalised component actions

in the Einstein frame without going through a tedious procedure described, e.g., in [66].

The super-Weyl invariant reformulation of supergravity-matter systems is also useful at

the quantum level, see, e.g., [96].

The super-Weyl- and Kähler-invariant superfield action describing the coupling of old

minimal N = 1, D = 4 supergravity to chiral matter ΦI and non-Abelian gauge superfields

V = V AtA (with tA being the generators of a gauge symmetry algebra) has the following

form [60, 66, 97]

Sbulk = − 3

κ2

∫
d8zBerE e−

1
3
K(Φ̄,Φ,V ) Y Ȳ (4.2)

−m
κ2

(∫
d6ζL E Y 3

[
W (Φ) + gAB(Φ)WAαWB

α

]
+ c.c.

)
,

where K(Φ, Φ̄, V ) is a gauge invariant extension of the Kähler potential K(Φ, Φ̄) of a

manifold Mchiral parametrised by the lowest components of the chiral superfields8 ΦI ,

W (Φ) is a gauge invariant superpotential, which is a holomorphic section of the complex

line bundle LK on Mchiral. Finally, Wα ≡ WA
α tA = −1

4(D̄2 − 4R)e−VDαeV is the gauge

field strength superfield and gAB(Φ) are locally holomorphic functions which transform

appropriately under the action of the gauge group and whose transition functions along

Mchiral may involve non-trivial dualities of the vector multiplets.

The action is invariant under Kähler transformations and super-Weyl transformations.

A general Kähler transformation acts on the Kähler potential, the superpotential and the

conformal compensator as follows (for simplicity in what follows we skip the dependence

of K on V )

K(Φ, Φ̄)→ K(Φ, Φ̄) + F (Φ) + F (Φ) ,

W (Φ)→ e−F (Φ)W (Φ) ,

Y → e
1
3
F (Φ)Y,

(4.3)

8Globally, Mchiral is a Hodge-Kähler manifold. This means that eK(Φ,Φ̄) can be identified with a well

defined metric of a complex line bundle LK onMchiral with even first Chern class. Note that, in comparison

with the Wess-Bagger book [66] we have absorbed he gravitational constant κ2 to the definition of the Kähler

potential (K = κ2KWB).
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where F (Φ) is a holomorphic function of Φ. The matter chiral superfields ΦI and the gauge

superfields V A are inert under the super-Weyl transformations.

The conformal compensator Y is a pure gauge field. By gauge fixing the Weyl sym-

metry it can be reduced e.g. to

Y = 1 . (4.4)

This gauge is invariant under the residual combined Kähler-Weyl transformation with

F = 6Υ.

However, in general the gauge (4.4) does not lead to a component supergravity action

that is canonically normalised in the standard Einstein frame. The latter is recovered by

performing a further Weyl re-scaling of the vielbein

eam(x) → eam(x) e
1
6
K(Φ,Φ̄,V )|ϑ=0

accompanied by an appropriate re-scaling of the fermionic fields (see e.g. [66]).

More practically, one can directly obtain the Einstein frame description by fixing the

gauge [94, 96]

log Y + log Ȳ =
1

3
K(Φ, Φ̄)|harm (4.5)

where |harm selects the components of K(Φ, Φ̄) that can be written as the sum of a chiral

and anti-chiral superfield. This is similar to the Wess-Zumino gauge in the case of the

Abelian gauge pre-potential superfield V whose lowest components are removed by an

appropriate gauge transformation V ′ = V − Λ− Λ̄.

4.1 Reducible nilpotent chiral superfield couplings

A general coupling of the nilpotent chiral goldstino superfield S (3.34) to old minimal

supergravity and unconstrained matter and gauge multiplets is described by the action [33,

37, 38, 40] which we present in the superfield form9

Sbulk+S = − 3

κ2

∫
d8zBerE e−

1
3
K̂(Φ̄,Φ,S,S̄) Y Ȳ (4.6)

−m
κ2

(∫
d6ζL E Y 3

[
Ŵ (Φ, S) + ĝAB(Φ, S)WAαWB

α + ΛS2
]

+ c.c.

)
,

where Λ is the Lagrange multiplier taking care of the constraint S2 = 0, and K̂, Ŵ and ĝ

includes S (and S̄). Due to the nilpotency constraint, they have the following most general

form [40]

K̂(Φ, Φ̄, S, S̄) = K(Φ, Φ̄) +Ks(Φ, Φ̄)S + K̄s̄(Φ, Φ̄)S̄ +Kss̄(Φ, Φ̄)SS̄ , (4.7)

Ŵ (Φ, S) = W (Φ) +Ws(Φ)S , (4.8)

ĝAB(Φ, S) = gAB(Φ) + gsAB(Φ)S . (4.9)

9In [33, 37, 38, 40] the component counterpart of this action was constructed using the superconformal

tensor calculus reviewed in [98].
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It is instructive to see, following [28] in the flat case, how the equations of motion of the

superfield S produce modified constraints of the nilpotent superfield X of [24, 25]. The

variation of (4.6) with respect to the Lagrange multiplier produces the nilpotency condition

S2 = 0 and the variation with respect to S gives the equation of motion

−1

4
(D̄D̄ − 4R)

(
e−

1
3
K

(
Kss̄ −

1

3
KsK̄s̄

)
S̄Y Ȳ

)
=

1

4
(D̄D̄ − 4R)

(
e−

1
3
KKsY Ȳ

)
(4.10)

+m(Ws + gsABWAWB + 2ΛS)Y 3 .

Multiplying the both sides of (4.10) by S and taking into account its nilpotency we get

−1

4
S(D̄D̄ − 4R)

(
e−

1
3
K

(
Kss̄ −

1

3
KsK̄s̄

)
S̄Y Ȳ

)
= S

[
1

4
(D̄D̄ − 4R)

(
e−

1
3
KKsY Ȳ

)
+m(Ws + gsABWAWB)Y 3

]
. (4.11)

Comparing eq. (4.11) with the third constraint in (3.28) we see that the former can be

regarded as a modification of the Roček superfield constraint in the presence of the matter

fields thus providing the relation between the two realizations of the goldstino in which the

auxiliary field FS is on the mass shell.

The component structure of the action (4.6), especially its non-linear dependence on

the goldstino field χ(x) is very complicated [40]. However the contribution into the action

of the goldstino sector drastically simplifies in the unitary gauge in which, using the local

supersymmetry transformation, one sets the goldstino to zero10,11

χα(x) = 0 = χ̄α̇(x). (4.12)

In this gauge the nilpotent superfield (3.34) reduces to S = θ2Fs. So one can easily integrate

the part of the action (4.6) containing S over θ, θ̄, Fs and F̄s̄ getting

Sbulk+S = − 3

κ2

∫
d8zBerE e−

1
3
K(Φ̄,Φ,V ) Y Ȳ (4.13)

−m
κ2

(∫
d6ζL E Y 3

[
W (Φ) + gAB(Φ)WAαWB

α

]
+ c.c.

)
−
∫

d4x (det e)US ,

where det e ≡ det eam(x) and US is the supersymmetry breaking potential produced by the

nilpotent goldstino superfield couplings which (upon gauge fixing the conformal compen-

sator as in (4.5)) has the following form

US =
|14(D̄D̄ − 4R)Ks +me

K
2 (Ws + gsABWAαWB

α )|2

Kss̄ − 1
3KsK̄s̄

|θ=θ̄=0 . (4.14)

10Note that, in general, χ(x) is not exactly the physical goldstino, since the latter is a combination χ̂ of

χ with other spinorial fields in the theory defined by the form of the gravitino mixing term ψmγ
mχ̂ in the

action (4.2).
11In appendix A we will remind the well known fact that it is consistent to use the unitary gauge and set

the goldstone fields to zero directly in the locally symmetric actions. This does not result in the loss of the

goldstone field equations, since they are not independent, but are consequences of physical field equations.

This can also be seen at the path-integral level, since from (2.15) it follows that the Faddeev-Popov measure

associated with (4.12) is a constant determinant and hence does not require the introduction of ghosts.
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We see that since Kss̄ is an arbitrary real and Ks is an arbitrary complex gauge invariant

function of Φ and Φ̄, and Ws and gsAB are arbitrary complex holomorphic functions of

the matter fields (more precisely one should speak of a section of complex line bundle, see

paragraph below eq. (4.2)), the potential (4.14) gives rise to a very wide class of supergravity

models exhibiting spontaneous supersymmetry breaking.

The action (4.6) can be further generalized by considering some of Φ be constrained su-

perfields themselves [23, 28, 82]. When searching for phenomenologically relevant effective

field theory models the use of additional constrained superfields amounts to an effective

removal from the consideration of extra heavy mass modes in an infinite mass limit (see

e.g. [28, 82–85] for more details and references). A “master” constraint, proposed in [84],

which generates all known examples of the constrained superfields, except for (3.38), has

the following form

S̄S Q = 0, S2 = 0 , (4.15)

where Q is a generic complex superfield which may carry external Lorentz indices.

A characteristic example is a chiral superfield T = φ + ib + θλ + θ2FT satisfying the

constraint [28]
1

2i
S(T − T̄ ) = 0, S2 = 0. (4.16)

The superfield T appears in interesting inflationary models [85, 99, 100] as an inflaton

supermultiplet in which sinflaton b(x), sinflatino λ(x) and the auxiliary field FT (x) are

composites of the goldstino multiplet and the inflaton φ(x). In the unitary gauge χ(x) = 0

all the components of T vanish except for the inflaton.

4.2 Couplings of the irreducible constrained superfields

The constrained superfield approach to spontaneously broken N = 1 supergravity was

introduced by Lindström and Roček in 1979 [25]. They considered the action

S = −
∫

d8zBerE

(
3

κ2
+ X̄X

)
−
{
m

κ2

∫
d6ζL E + c.c.

}
, (4.17)

which describes the coupling of the old minimal N = 1 supergravity to the goldstino

superfield X constrained according to (3.28). They also used the equivalent form for

the action, which is obtained by replacing X̄X with f2V, with V constrained according

to (3.29). In the unitary gauge, the cosmological constant was shown to be equal to

Λ = f2 − 3
m2

κ2
, (4.18)

which coincides with the value obtained by Deser and Zumino [9] in their study of the cou-

pling of the pure N = 1 supergravity without auxiliary fields to the Volkov-Akulov action.

As was already mentioned, the positive contribution f2 to the cosmological constant (4.18),

which comes from the goldstino superfield X, is universal for all superfield models of spon-

taneously broken N = 1 supergravity including those advocated in [32, 33, 35, 44].

The super-Weyl invariant reformulation of (4.17) is described by the action

S = −
∫

d8zBerE Ȳ Y

(
3

κ2
+ X̄X

)
−
{
m

κ2

∫
d6ζL E Y 3 + c.c.

}
, (4.19)
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where X is chosen to be inert under the super-Weyl transformation. The goldstino super-

field X now obeys the super-Weyl invariant constraints

X2 = 0 , −1

4
X(D̄2 − 4R)(X̄Ȳ Y ) = fY 3X . (4.20)

Lindström and Roček [25] did not discuss matter couplings for the goldstino superfield.

To introduce such couplings, it suffices to deform the constraints (4.20) as follows:

X2 = 0 , −1

4
X(D̄2 − 4R)(X̄F Ȳ Y ) =W Y 3X , D̄α̇W = 0 . (4.21)

Here F and W are composite real and covariantly chiral scalars, respectively, which are

constructed from matter superfields. They both are chosen to be super-Weyl inert. The

goldstino-dependent part of the action (4.19) should also be deformed,∫
d8zBerE Ȳ Y X̄X =⇒

∫
d8zBerE Ȳ Y FX̄X . (4.22)

Note that the constraint (4.11) is of the type (4.21) with specially chosen composites F
andW. This means that the two formulations in terms of the different goldstino superfields

S and X are equivalent.

To obtain a super-Weyl invariant formulation for the complex linear goldstino super-

field coupled to supergravity, the first and third constraints in (3.33) have to be deformed

as follows [35]

−1

4
(D̄2 − 4R)Σ = fY 2 , −1

4
Σ(D̄2 − 4R)Dα

(
Σ

Ȳ

)
= fY 2Dα

(
Σ

Ȳ

)
, (4.23)

while keeping the condition Σ2 = 0 intact. The super-Weyl transformation of Σ is chosen12

to be

Σ → e−2ῩΣ . (4.24)

The action for supergravity coupled to this goldstino superfield is obtained from (4.19) by

replacing Ȳ Y X̄X → Σ̄Σ,

S = −
∫

d8zBerE

{
3

κ2
Ȳ Y + Σ̄Σ

}
−
{
m

κ2

∫
d6ζL E Y 3 + c.c.

}
. (4.25)

This action, whose form is an obvious corollary of the analysis carried out in [29], was

explicitly given in [35]. It describes the minimal coupling of the complex linear goldstino

superfield to supergravity (compare with the action (3.26b) describing the dynamics of the

complex linear goldstino superfield in Minkowski superspace).

The complex linear goldstino superfield can also be coupled to supersymmetric mat-

ter [29]. The corresponding constraints are obtained by deforming (4.23) to the form

−1

4
(D̄2 − 4R)Σ = WY 2 , (4.26a)

Σ2 = 0 , −1

4
Σ(D̄2 − 4R)Dα

(
Σ

Ȳ

)
= WY 2Dα

(
Σ

Ȳ

)
. (4.26b)

12Applying a field redefinition Σ → Y nΣ leads to a different super-Weyl transformation law of Σ and

modifies the explicit form of constraints (4.23).
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where W is a composite covariantly chiral scalar chosen to be inert under the super-Weyl

transformations.13 As the goldstino-dependent part of the supergravity-matter action, we

may choose

SΣ =

∫
d8zBerE

{
− Σ̄F−1Σ + Y Σ C + Ȳ Σ̄ C̄

}
, (4.27)

where F and C are real and complex composite scalars, respectively, which are chosen to

be inert under the super-Weyl transformations.

If (4.26a) is the only constraint imposed on (non-nilpotent) Σ, the theory with ac-

tion (4.27) possesses a dual formulation given by

SS =

∫
d8zBerE Ȳ Y (S̄ + C̄)F(S + C)−

{∫
d6ζL E Y 3SW + c.c.

}
. (4.28)

Here the dynamical variable S is a covariantly chiral scalar, D̄α̇S = 0, chosen to be inert

under the super-Weyl transformations. This action with S constrained to be nilpotent,

S2 = 0, is analogous to the part of (4.6) containing the goldstino superfield S subject to

the constraint S2 = 0. The duality between (4.27) and (4.28) indicates that, upon imposing

the constraints (4.26b), the goldstino-matter coupling described by (4.27) is analogous to

the one generated by the chiral action (4.6).

It is of interest to look at the properties of the spinor goldstino superfield Ξ̄α̇ defined

by (3.32) in the case of the deformed constraints (4.26). To simplify explicit expressions,

we will temporarily choose the super-Weyl gauge Y = 1. Making use of the condition

Σ2 = 0 gives

Σ =
1

W
Ξ̄α̇Ξ̄α̇ . (4.29)

From (4.26a) we deduce

D̄α̇Ξ̄β̇ = εα̇β̇

{
W − R

W
Ξ̄2

}
, (4.30)

which is a generalisation of (3.31a). Making use of (4.26b) one may work out a generali-

sation of (3.31b). In the flat superspace limit, it is given by eq. (6.3.125) in [101].

There exist more general deformations of the constraints on Σ than those given

by (4.26). We will not pursue this topic in the present paper.

Finally, in the case of the real scalar superfield V of the Weyl weight 2, i.e.

V → e2(Υ+Ῡ)V

which, as we have seen, is related to the Volkov-Akulov Lagrangian in the most direct way,

the coupling of the goldstino to supergravity with matter is described by the action

SVA = −f2

∫
d8zBerE F Ȳ 2Y 2 V, (4.31)

13As discussed in [101], the most general expression for the composite W is as follows: W = f +G1(Φ) +

G2(Φ)tr(WαWα), where the matter chiral superfields Φ and Wα were introduced at the beginning of this

section.
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where V satisfies the constraints

V2 = 0 , (4.32)

VDADBV = 0 , VDADBDCV = 0 , (4.33)

1

16
VDαD̄2DαV = V . (4.34)

As we discussed in section 3.3, the constraints (4.33) generalizing eqs. (3.23) single out the

nilpotent V of the form (3.24) which is directly related to the goldstino brane construction

(see (3.51)). The constraints (4.33) are super-Weyl invariant due to V2 = 0 and imply

that also (4.34) is super-Weyl invariant. So the coupling of this goldstino superfield to

matter does not require the modification of its constraints by including matter superfields,

in contrast to the other cases of the irreducible goldstino superfields considered above.14

4.3 Goldstino brane couplings

We will now show in detail that in the geometric framework of the non-linear realizations,

one gets a similar general class of models of spontaneously broken matter-coupled super-

gravity as the ones discussed in the previous subsections, as well as new couplings which

have not been discussed in the literature so far.

A general coupling of the goldstino brane to supergravity with matter proposed in [44]

is described by the following action

Sbulk+brane = Sbulk + Sbrane

≡ Sbulk − f2

∫
d4ξ det

[
E(z(ξ))

]
F̂Φ,Φ̄,V,ϕ(ξ) ,

(4.35)

where Sbulk is as in (4.2), the goldstino appears only in Sbrane (as in eqs. (2.13)–(2.14)) and

F̂Φ,Φ̄,V,ϕ(ξ) ≡ F̂ [Φ(z(ξ)), Φ̄(z(ξ)), V (z(ξ)), ϕ(ξ)] (4.36)

is a real supersymmetric, gauge and worldvolume diffeomorphism invariant function of the

pull-backs of bulk superfields and their derivatives, as well as of purely brane worldvolume

fields ϕ(ξ) such as scalar, spinor or Born-Infeld vector fields, which may be regarded as

those of a dimensionally reduced (anti)-D-brane of type II string theory as we will discuss

in mored detail in sections 6 and 7.

The goldstino brane term in (4.35) can be extended to the integral over the curved

superspace as in (3.46), (3.50), (3.51) or (4.31), but this is not necessary, and actually

redundant, for the analysis that follows.

The invariance of (4.2) under the transformations (4.3)–(4.1) ensures that

Sbulk is globally well defined along the target space Mchiral of the chiral fields. This

property should also be satisfied by the brane action Sbrane in (4.35). Namely, since under

the super-Weyl transformations (4.1) the brane density det
[
E(z(ξ))

]
has weight 4, the

function (4.36) should contain the compensating factor Y 2Ȳ 2 whose Kähler variation (4.3)

14Note that for the nilpotent superfield which does not obey (4.33) the Weyl and Kähler invariant coun-

terpart of the constraint (4.34) is 1
16
VDα(D̄2 − 4R)Dα(F Ȳ Y V) = F Ȳ Y V.
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should be in turn compensated by the variation of e−
2
3
K . We thus re-write (4.36) in the

following form

F̂Φ,Φ̄,V,ϕ(ξ) = Y 2Ȳ 2 e−
2
3
K(Φ,Φ̄,V )F [Φ(z(ξ)), Φ̄(z(ξ)), V (z(ξ)), ϕ(ξ)] , (4.37)

where F is a gauge-invariant function of bulk and worldvolume fields.

We are now in a position to compare the coupling of the goldstino brane to supergravity

and matter with that of the chiral nilpotent superfield of section 4.1. A straightforward

way to do this is to impose the static gauge xm = ξiδmi , the unitary gauge (4.12) and gauge

fix the super-Weyl invariance by choosing Y as in (4.5). Then the goldstino brane term in

the action (4.35) reduces to

Sbrane = −f2

∫
d4x (det e)F [Φ, Φ̄, V, ϕ(x)]|θ=θ̄=0 . (4.38)

Comparing (4.38) with (4.13) and (4.14) we see that the two actions produce the same

supersymmetry breaking potentials when

f2F [Φ, Φ̄, V, ϕ(x)]|θ=θ̄=0 =
| 1
4

(D̄D̄−4R)Ks+me
K
2 (Ws+gsABWAαWB

α )|2

Kss̄− 1
3
KsK̄s̄

|θ=θ̄=0 . (4.39)

If the brane worldvolume fields ϕ(x) are switched off, we see from eq. (4.39) that the two

descriptions of the goldstino couplings easily match for properly chosen functions of the

bulk fields.

As we have already mentioned, in addition to the constrained goldstino superfield there

may be other constrained superfields involved into the construction of effective models. In

the goldstino brane formulation there are different ways of including into consideration the

other constrained superfields, like (4.15) and (4.16). For instance, one can use constraints

similar to (4.15) and (4.16) but with the nilpotent goldstino superfield S replaced by X

constructed as in (3.30) with V defined in (3.51).

Or one can include into the function F goldstino brane terms which give large masses

to certain components of matter superfields and take an infinite mass decoupling limit. For

instance, in the case of the inflaton superfield T the corresponding terms in F which lead

to the constraint (4.16) have the following form

FT (T, T̄ ) = c1(T − T̄ )2 + c2(DT )2 + c̄2(D̄T̄ )2 + c3|DDT |2, c1, |c2|, c3 →∞ . (4.40)

One can also include the contribution to the effective theory of brane worldvolume

fields. We we will consider examples of these in the forthcoming sections. Their effect is

similar to that of constrained matter superfields in accordance with a recent consideration

of [58, 59]. Before passing to the discussion of these couplings, let us indicate one more

feature of the goldstino brane.

– 23 –



J
H
E
P
1
1
(
2
0
1
6
)
1
0
9

5 Brane contribution to the gravitino mass and special minimal super-

gravity

The brane may also naturally produce supersymmetry breaking gravitino mass terms in a

form similar to the one appeared in [4]

∆m

4iκ2

∫
d4ξ εijkl (EiσabEj)Eak Ebl + c.c. (5.1)

which in the unitary gauge (4.12) and the Einstein frame reduces to

− ∆m

2κ2

∫
d4x(det e)ψaσ

abψb + c.c. (at χ = χ̄ = 0, ξm = xm). (5.2)

With the use of the pullbacks of the compensator superfields and a chiral superpotential

the action (5.1) can be made super-Weyl and Kähler invariant

∆m

4iκ2

∫
d4ξ εijkl (Êiσab Êj)Eak Ebl Ȳ 3(z(ξ)) W̄(Φ(z(ξ)) + c.c. (5.3)

where

Êαi = Eαi −
i

6
Eai σαα̇a D̄α̇ log

(
Ȳ 3W̄

)
. (5.4)

We stress that in general W does not need to coincide with the superpotential defining the

F-term in the supersymmetric matter sector of the Lagrangian. It should just transform

in the same way under Kähler transformations or, in other words, it must be a section of

the same line bundle.

The presence of terms like (5.1) in the effective action may be of phenomenological

relevance. As far as we know, manifestly supersymmetric terms like this have not been

constructed so far by using constrained superfields.15 A possibility of getting such terms

in the constrained superfield approach is as follows.

We first notice that the integrand of (5.2) is the worldvolume pullback of a part of the

four-superform

Ω4 =
i

4
Eα ∧ (σba)αβE

β ∧ Ea ∧ Eb +
1

32
R(z)Ea ∧ Eb ∧ Ec ∧ Edεdcba, (5.5)

which is closed when one takes into account the N = 1, D = 4 supergravity constraints [46,

88–90, 102])

dΩ4 = 0 . (5.6)

This gives rise to a so called 3-form or special minimal off-shell formulation of N = 1, D = 4

supergravity [45, 46, 88–90] tracing roots back to [103] and [61, 64]. In this formulation a

real part of (5.5) is assumed to be an exact form

Ω4 + Ω̄4 = dC3.

15We thank F. Farakos for discussions of this issue.
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where C3 is a real three-superform whose variation under the supersymmetry transforma-

tions is a total derivative. Hence

1

32

[
R(z) + R̄(z)

]
Ea ∧ Eb ∧ Ec ∧ Edεdcba = dC3 −

i

4

(
Eα ∧ (σba)αβE

β ∧ Ea ∧ Eb − c.c.
)
,

(5.7)

From eq. (5.7) it follows that in the special minimal supergravity the real part of the scalar

curvature superfield R(z) takes the form

R(z) + R̄(z) = −2

9
εabcdEMa E

N
b E

P
c E

Q
d ∂[MCNPQ)(z), (5.8)

where EMa (z) are components of the vielbein inverse of EAM (z). In particular, the real part

of the auxiliary field R(x) which is the leading component of (5.8) is expressed in terms of

the stress tensor of C3(x) and the gravitino mass terms

R(x) + R̄(x) = − 2

9 e
εklmn∂kClmn(x) +

2

3
(ψaσ

abψb + ψ̄aσ̃
abψ̄b) (5.9)

(e = det eaµ(x)). So in the special three-form supergravity formulation we can re-

place (5.1) with

− 3∆m

4κ2

∫
d4ξ

[
R(z(ξ)) + R̄(z(ξ))

]
detE. (5.10)

Note that in flat superspace the term (5.10) vanishes, and so does (5.1) which becomes an

integral of a total derivative [104], hence the gravitino mass term (5.1) does not have rigid

supersymmetry counterparts.

We can now lift (5.10) to the complete superspace integral writing down

− 3∆m

4κ2

∫
d8zBerE(z)

[
R(z) + R̄(z)

]
V(z), (5.11)

where V(z) was defined in (3.51). In view of the relations between different constrained

superfields discussed in section 3, V(z) can be replaced e.g. with its solution in terms of

the chiral superfields XX̄ or the complex linear superfields ΣΣ̄, or with the bilinear of the

nilpotent superfields SS̄ (3.34).

The super-Weyl invariant form of (5.11) is

3∆m

16κ2

∫
d8zBerE(z)P 2

[
Y −2

(
D̄D̄ − 4R(z)

)
Ȳ + Ȳ −2

(
DD − 4R̄(z)

)
Y
]
V(z), (5.12)

where Y are the compensators of special minimal supergravity [88] constructed as the chiral

projection of a real pre-potential P

Y 3 = (D̄D̄ − 4R)P , Ȳ 3 = (DD − 4R̄)P , P = P̄ . (5.13)

The scaling properties of Y under the Weyl transformations (4.1) are determined by the

following transformations of P [88]

P 7→ Pe−2(Υ+Ῡ) (5.14)
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and of the chiral projector

(D̄D̄ − 4R) . . . → e−4Υ(D̄D̄ − 4R)e2Ῡ . . . . (5.15)

The power of the pre-potential P in (5.12) is fixed by the super-Weyl weight of the Volkov-

Akulov brane superfield V (3.50),

V → Ve2(Υ+Ῡ) . (5.16)

By appropriately choosing the power of P one can consider the action (5.12) with the real

superfield V of an arbitrary Weyl weight.

We have thus constructed the Weyl invariant spontaneous supersymmetry breaking

contribution to the gravitino mass with the use of a constrained superfield. This con-

struction requires to couple the goldstino superfield to the special minimal supergravity.

Further generalization of (5.12) which would include Kähler-invariant matter coupling as

in (5.3) encounters an obstacle related to the fact that in the minimal special supergravity

it is not directly possible to assume that the compensator Y transforms under the Kähler

transformations, as in (4.3), since the expression of Y in terms of P (5.13) does not allow

this. So in this version of supergravity matter coupling is more restrictive than in the old

minimal one. Further discussion of this issue is beyond the scope of this paper.

To summarize, the goldstino brane can provide the contribution to the gravitino mass

in matter-coupled old minimal supergravity, while the constrained superfield counterpart

of this term requires coupling to the special minimal supergravity whose interactions with

matter superfields are quite restricted. This example may imply that the goldstino brane

and the constrained superfield descriptions are actually not completely equivalent.

6 Adding matter fields on the brane worldvolume

In the context of four-dimensional model building one can consider rather general couplings

of brane worldvolume fields to goldstino and bulk fields.

The worldvolume fields to which the goldstino may be coupled in the supersymmetry

invariant way [1–3] transform non-linearly under spontaneously broken supersymmetries

and hence do not form supermultiplets. They can however be promoted to constrained

superfields following the general procedure of [22, 23] recently applied to an anti-D3-brane

case in [58, 59].

The form of the supersymmetry variations of the worldvolume matter fields can be

deduced as follows. Consider, for simplicity, a single worldvolume scalar field ϕ(ξ) which

is a priori inert under the bulk supersymmetry transformations. The only requirement is

that it couples to the goldstino in a worldvolume diffeomorphism invariant way, e.g.

Sφ = −1

2

∫
d4ξ
√
−g (gij∂iϕ∂jϕ+ V (ϕ)) (6.1)

where gij = ηabEaiEbj is the induced worldvolume metric and Eai was defined in (2.14). Note

that, by construction, this action is also manifestly invariant under the bulk superdiffeo-

morphisms.
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If we impose the static gauge (2.3), the symmetry which preserves this gauge is a com-

bination of the worldvolume diffeomorphism and the target-space superdiffeomorphisms

δxm = δmi δξ
i. Thus, in the static gauge the worldvolume fields undergo the following

target-space supersymmetry transformations

δεϕ(x) = −δεxm∂mϕ(x) , (6.2)

where in the Wess-Zumino gauge (see e.g. [44])

δεx
m = if−1 (χσnε̄− εσnχ̄)

(
δn
m − if−1χσmψ̄n + if−1ψnσ

mχ̄
)

+O(χ3) . (6.3)

A class of effective four-dimensional models with matter fields ϕ(ξ) can be narrowed

if the goldstino brane originates from an (anti) D-branes of string theory propagating in

a compactified ten-dimensional space-time. The form of the D-brane action (which is of

a Dirac-Born-Infeld type) and hence the structure of the terms involving the worldvolume

fields are fixed by the worldvolume and target-space symmetries [105–108]. The relation

between the Volkov-Akulov model and superbrane effective actions has been comprehen-

sively discussed in the literature, see e.g. [20, 21, 53, 57–59] to which we address the reader

for further details and references. We only note that, in the case of an anti-D3-brane

(D3-brane), these fields may include six scalar fields yp(ξ) (p = 1, . . . , 6) associated with

brane embedding coordinates of the compactified internal space, a U(1) Born-Infeld gauge

field Ai(ξ) and extra 3 fermionic (D = 4 spinor) fields ψI(ξ) (I=1,2,3). When in a given

D = 10 background the kappa-symmetry of the D3-brane action is appropriately fixed

and the static gauge (2.3) is imposed, the fields yp(x), Am(x) and ψI(x) transform under

spontaneously broken N = 1, D = 4 supersymmetry similar to (6.2) (see e.g. [58, 59, 109])

δεy
p = −δεxm∂myp , δεAm = −δεxnFnm − ∂m(δεx

nAn) , δεψ
I = −δεxµ∂µψI . (6.4)

The presence of fluxes and orientifold planes, e.g. when the D3-brane sits in a strongly

warped region of a type IIB flux compactification discussed in the next section, can remove

part of the D3-brane fields from the low-energy spectrum (see e.g. [53, 59, 110] and refer-

ences therein for a detailed discussion of this case) and significantly affect the contribution

of the D3-brane to the effective theory.

Let us consider a general situation (not necessarily associated with anti-D-branes in

string compactifications) in which worldvolume bosons yp(ξ), fermions ψI and a U(1) gauge

field Ai(ξ) are part of the spectrum of the low-energy effective theory. Then, to the second

order in derivatives, the function F̂ in the goldstino brane term of the action (4.35) may

have the following generic form

F̂ =U [Φ(z(ξ)), Φ̄(z(ξ)), V (z(ξ)), y(ξ), ψ(ξ)]

+
1

4
g[Φ(z(ξ)), Φ̄(z(ξ)), V (z(ξ)), y(ξ), ψ(ξ)] gik(ξ)gjl(ξ)Fij(ξ)Fkl(ξ)

+ C[Φ(z(ξ)), Φ̄(z(ξ)), V (z(ξ)), y(ξ), ψ(ξ)]FijF
∗ ij

+
1

2
Gpq[Φ(z(ξ)), Φ̄(z(ξ)), V (z(ξ)), y(ξ), ψ(ξ)] gij(ξ)∂iy

p(ξ)∂jy
q(ξ)

+
1

2
GIJ [Φ(z(ξ)), Φ̄(z(ξ)), V (z(ξ)), y(ξ), ψ(ξ)]ψI /∇ψJ ,

(6.5)
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where ∇ is a covariant derivative constructed with an induced spin connection, Fij =

∂iAj − ∂jAi, F ∗ ij = 1√
−gε

ijklFkl and all the superfunctions are gauge invariant. For this

choice of F̂ , in the static and unitary gauge the goldstino brane action (4.38) takes the form

Sbrane = −f2

∫
d4x det e

[
U(Φ, Φ̄, V, y, ψ) +

1

4
g(Φ, Φ̄, V, y, ψ)FmnF

mn

+C[Φ, Φ̄, V, y, ψ]FmnF
∗mn +

1

2
Gpq(Φ, Φ̄, V, y, ψ)gmn∂my

p∂ny
q

+
1

2
GIJ(Φ, Φ̄, V, y, ψ)ψI /∇ψJ

]
|χ=χ̄=0. (6.6)

This illustrates the generality of the goldstino brane approach to the construction

of locally-supersymmetric actions which describe couplings of a supersymmetry breaking

sector to a supersymmetric bulk theory. To reduce the range of possible models one should

therefore resort to the 4D effective field theory description of concrete phenomenologically

relevant scenarios, such as e.g. flux compactifications with D-branes and anti-D-branes in

string theory. This has been a subject of a significant interest over the years.

7 4D effective action for a D3-brane in flux compactifications of type

IIB string theory

Let us briefly review a particular form of (6.6) which corresponds to well known examples

of flux compactifications with branes in string theory, namely the KKL(MM)T models [111,

112] whose key ingredients are D3-branes.

In the framework of the simplest KKL(MM)T setups [111, 112], it is assumed that there

is one D3-brane confined at the bottom of a strongly warped region [113], for instance the

one similar to the Klebanov-Strassler solution [114]. As a further simplification, it is often

assumed that there is just one bulk (universal) Kähler modulus plus, possibly, the moduli

describing the position of (supersymmetric) mobile D3-branes. The supersymmetrization of

this setting has been discussed with the use of constrained superfields (see e.g. [58, 59] and

references therein). Here we would like to revisit this problem and show how the goldstino

brane allows for a natural solution of it in the framework of section 6. In passing, by using

the warped effective supergravity of [115, 116], we will rederive and extend the formulas

obtained in [111, 112] for describing the contribution of the D3-brane to the potential.

7.1 Type IIB compactification background

In order to identify the contribution of the D3-brane to the 4D effective theory in the

KKL(MM)T scenarious [111, 112], we first briefly recall the structure of the warped com-

pactifications in type IIB string theory described in [113] (partially) following the notation

of [115, 116]. The ten-dimensional Einstein-frame metric of a tree-level vacuum is

dŝ2
10 = `2s M

2
P e

2A(y)|Y |2ds2
4(x) + `2s e

−2A(y)ds2
X6

(y) (7.1)

where ls is a string length scale, MP = 1
κ is the effective 4D Plank mass, ds2

4 =

g(4)mn(x)dxmdxm is a 4D metric around which the 4D effective field theory is constructed,
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e2A(y) is the warping factor which non-trivially depends on the coordinates yp of an internal

space endowed with a Kähler metric ds2
X6

= gpq(y)dypdyq (p, q, . . . = 1, . . . , 6). In (7.1) we

have factorised the string-length dependence `2s = (2π)2α′ in order to work in natural string

units along the internal space. Finally Y is associated with the lowest component of the

auxiliary compensator superfield introduced in section 4 to single out the D = 4 Einstein

frame by fixing a specific value of Y determined by the Kähler potential as in (4.5).

The general form of the warping is

e−4A = a+ e−4A0(y) with e−4A0(y) =
1

`4s

∫
X6

G(y; y′)Q6(y′) , (7.2)

where a is an arbitrary parameter, the so called universal modulus which in the absence

of e−4A0(y) is associated with the overall volume of the internal space X6, G(y; y′) is a

Green’s function associated with the internal space metric and Q6(y) is the six-form D3-

charge density which encodes the contribution of ND3 mobile D3-branes, H3 and F3 fluxes,

O3-planes and, possibly, other localised sources:

Q6 = F3 ∧H3 + `4s
∑
I∈D3’s

δ6
I −

1

4
`4s

∑
O∈O3’s

δ6
O + . . . . (7.3)

In this background there is also a self-dual RR five-form flux

F5 = `4s M
4
P |Y |4dvol4 ∧ de4A + `4s ∗6 de−4A , (7.4)

For simplicity, we assume that the axion-dilaton is constant, i.e.

τ ≡ C0 + ie−φ = c0 +
i

gs
. (7.5)

Furthermore, we assume that its value as well as the complex structure moduli are fixed

dynamically by the fluxes.

The bosonic fields of the effective four-dimensional theory describing excitations around

the vacuum under consideration include, in addition to the four-dimensional metric g(4)mn,

a set of complex fields ρa(x) which parametrize the X6 Kähler structure and C4 moduli,

and complex fields ziI(x) that describe the position of the mobile D3-branes (in some local

complex coordinate zi in the internal space X6 and I = 1, . . . , ND3). The fields ρa and ziI
are the lowest components of chiral superfields, which we denote with the same symbols.

There may be additional fields contributing to the effective four-dimensional theory but

for simplicity we neglect them.

The four-dimensional effective field theory is specified by a superpotential and a Kähler

potential for these fields. In [115] it is shown that the Kähler potential K(ρ, ρ̄, z, z̄) is

implicitly defined by the following simple formula

K = −3 log a , (7.6)

where the universal modulus a is considered as a function of the chiral moduli ρ and ziI .

To describe the effective theory in the D = 4 Einstein frame in what follows we set

Y = e
K
6 , (7.7)

which is just the bosonic part of the full superfield gauge-fixing condition (4.5). Notice

that the specific choice (7.6) explicitly breaks the Kähler invariance of the effective theory.

– 29 –



J
H
E
P
1
1
(
2
0
1
6
)
1
0
9

7.2 D3-brane contribution: bosonic fields

Let us now add an anti-D3-brane to the above configuration. As in [111, 112] we consider

the D3-brane as a probe, i.e. we work in the approximation in which its backreation on

the background is neglected. This means, in particular, that we neglect the (negative)

contribution of the D3-brane to the charge density (7.3), keeping in it only supersymmetry

preserving sources. In fact, since X6 is compact, this contribution would modify the tadpole

condition
∫
X6
Q6 = 0, which gives the global consistency of the configuration. Hence, the

ten-dimensional backreaction of the D3-brane should be taken into account along the lines

of [117, 118], at least to accommodate for such an effect, but we will not try to do it here.16

The potential felt by the D3-brane in the background under consideration can be

extracted from the standard bosonic D3-brane effective action in the D = 10 Einstein frame

SD3 = −2π

`4s

∫
d4ξ

√
− det

[
ĝij + e−

φ
2Fij

]
− 2π

`4s

∫
C ∧ eF (7.8)

where ĝij = ∂ix
m∂jx

ngmn(x, y) + ∂iy
p∂jy

qgpq(y) is the induced metric, Fij ≡ `2s
2πFij − Bij

with Fij = 2∂[iAj](ξ) being the D3-brane Born-Infeld field and Bij being the pull-back of the

NS-NS two-form. The second (Wess-Zumino) term describes the couplings of the D3-brane

to Ramond-Ramond potentials C0, C2 and C4, and
∫
C∧eF =

∫
C4+

∫
F∧C2+ 1

2

∫
C0F∧F .

In our conventions the overall minus sign of the WZ terms signals that we deal with the

anti-D3-brane rather than the D3-brane.

Upon fixing the static gauge ξi = δimx
m, from (7.8) one can read that in the bulk under

consideration — see (7.1), (7.2), (7.4), (7.6) and (7.7) — the D3-brane at a point yp feels

the effective potential

UD3(y) = 4πM4
P |Y |4e4A(y) = 4πM4

P

e
2K
3

e−
K
3 + e−4A0(y)

. (7.9)

Notice that the DBI and the WZ part of the D3-brane action give equal contributions into

UD3. These contributions would cancel each other in the D3-brane case in which the sign of

the WZ term is opposite. For fixed ρa and ziI moduli, this potential attracts the D3-brane

to the regions of the internal space in which e4A(y) has a minimum or, equivalently, where

e−4A0(y) has a maximum.

Suppose that e−4A0(y) is maximised at an isolated point yp
D3

and that around it the

potential is very steep. We can then integrate out the field describing the position of the

D3-brane and get the following contribution to the low-energy 4D effective action

−
∫

d4x
√
− det g4 UD3 = −4π

κ4

∫
d4x
√
− det g4

eK

1 + e
K
3 e−4A0(yD3)

. (7.10)

The potential (7.10) agrees with those of [111, 112] in particular simplifying limits. This

is discussed in appendix B. Having integrated out the D3 embedding fields yp(x), the

only low-energy bosonic world-volume field which remains is the gauge field Ai (unless it

16There exists the so-called ‘complete but gauge fixed’ Lagrangian description of supergravity-superbrane

interacting systems [119–121], which can also be applied to study the D3-brane backreaction.
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is removed by an orientifold projection). Its leading two-derivative contributions to the

effective action are obtained by expanding (7.8) (in the static gauge)

SU(1) = − 1

8πgs

∫
d4x
√
− det g4 FmnF

mn − c0

4π

∫
F ∧ F . (7.11)

Note that in the simplest case of constant axion c0 the second term is purely topological.

One can also consider situations in which the minimum of (7.9) is degenerate, as for

instance along the S3 at the bottom of the Klebanov-Strassler throat [114]. Then the

fluctuations of the D3-brane ϕA(x) (A = 1, 2, 3) along the S3 are massless dynamical

fields in the low-energy effective action. At the two-derivative level they are described by

the action

SϕA = −πM2
P

∫
d4x
√
− det g4 e

K
3 e2AGAB(ϕ)gmn∂mϕ

A∂nϕ
B , (7.12)

Comparing (6.6) with (7.10), (7.11) and (7.12) we see that the latter three actions are

particular examples of the generic goldstino brane construction.

7.3 D3-brane contribution: goldstino and other fermions

To include into consideration the D3-brane fermionic modes one should promote all the

background fields of the action (7.8) to supefields in D = 10 type IIB superspace [105–108].

Then, as usual, the fermionic worldvolume fields appear as brane embedding coordiantes

along the Grassmann-odd directions of the superspace (see the corresponding discussion

in section 2). The explicit form of the fermionic part of the D-brane actions in generic

D = 10 backgrounds is known only to the second order in the fermionic fields [122]. In the

case of our interest the quadratic fermionic action has the following schematic form

Sfermi = − iπ

`4s

∫
d4ξ

√
− det

[
ĝij + e−

φ
2Fij

]
Θ̄ /DΘ , (7.13)

where (upon gauge fixing κ-symmetry) Θ(ξ) describes 16 dynamical fermionic degrees of

freedom of the D3-brane and /D is a generalized Dirac operator whose form depends on the

pull-back of the background fields and the worldvolume BI field Fij .

By dimensionally reducing this action in the background of our interest to four di-

mensions, one finds that the supersymmetric bulk fluxes generate masses for 12 of the

16 dynamical fermions Θ(ξ), as discussed in detail in [53], leaving only four massless real

fermionic fields, which are identified with the four-dimensional goldstino. One can see that

in the static gauge ξi = δimx
m the action (7.13) is a particular case of the fermionic part

of the generic action (6.6).

This illustrates how the general approach for coupling the goldstino to supergravity

and to other supersymmetric or non-supersymmetric matter discussed in the present pa-

per naturally includes the four-dimensional effective models obtained by the dimensional

reduction of D-brane actions in string theory. Notice that this matching can be in principle

extended to all higher order terms in the expansion of the D-brane action, by appropri-

ately generalising the four-dimensional brane action (6.6) to the Dirac-Born-Infeld-like one,

along the general lines described in the previous sections.
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8 Conclusion

We have shown that different ways of describing the goldstino in N = 1, D = 4 super-

symmetric theories coupled to supergravity, either in terms of the constrained superfields

or as the original Volkov-Akulov brane-like construction, are equivalent to each other and

lead to similar very general effective field-theoretical models. The choice of one or another

formulation may depend on the choice of the setup for model building. In particular, as we

have demonstrated, the use of the goldstino brane provides a more geometrically intuitive

way of constructing the couplings of the goldstino to matter supermultiplets, supergravity

and single (‘non-supersymmetric’) matter fields, which is related in a more direct way to

stringy phenomenological model building with flux compactification and branes.

We have shown that goldstino brane couplings to supergravity naturally produce an

additional contribution to the gravitino mass which may be relevant in concrete phe-

nomenological setups. On the other hand, getting such terms in the constrained superfield

approaches and especially coupling them to matter is less straightforward. It would be

of interest to understand whether and how such terms might arise from the dimensional

reduction of a D-brane action in ten-dimensional superbackground.
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A Classical consistency of the unitary gauge

Let us show that in any generic matter-coupled supergravity in which spontaneous breaking

of local supersymmetry is manifested by the presence of goldstini (as e.g. the action (4.35)),

the equations of motion of the latter are not independent, but are consequences of equations

of motion of all the physical fields which couple to the goldstini. This property manifests a

well known generic fact that the goldstone fields in the theories with spontaneously broken

local symmetries are completely auxiliary Stueckelberg-like fields and can be removed by

fixing a so called unitary gauge.
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The proof is as follows. Let S0(ϕ) be an action for a set of fields possessing a local

symmetry. In the case of our interest we deal with local supersymmetry and ϕ stands for

the fields of the supergravity multiplet and all possible physical matter fields. In particular,

the action S0(ϕ) is invariant under the infinitesimal transformations of the fields ϕ with

local symmetry parameters ε(x) which have the following generic form

δεϕ = ε(x)a(ϕ) +Dε(x), (A.1)

where a(ϕ) is a field-dependent function, while a covariant derivative D of the symmetry

parameters appears in the symmetry transformations of the gauge fields, like gravitino.

The invariance of the action implies that (schematically)

δεS0 =

∫
δεϕ(x)

δS0

δϕ(x)
=

∫
ε(x)

(
a(ϕ)

δS0

δϕ
−D δS0

δϕ

)
= 0 , (A.2)

where (modulo total derivatives) δS0
δϕ stand for the (left-hand sides of the) equations of

motion of the fields ϕ. Since the parameters ε(x) are arbitrary the invariance of the action

implies that the following combinations of the field equations are identically zero (without

the use of the equations of motion themselves)

a(ϕ)
δS0

δϕ
−D δS0

δϕ
≡ 0 . (A.3)

These are the well-known Noether identities whose number is equal to the number of the

local symmetry parameters, the property that constitutes the second Noether theorem.

Let us now add to the action S0 a spontaneous symmetry breaking term S1(χ, ϕ)

containing a generic coupling of physical fields to goldstone fields χ

S = S0 + S1 . (A.4)

By construction S1(χ, ϕ) is invariant under the local symmetry transformations (A.1)

accompanied by non-linear transformations of the goldstone fields encoded in the func-

tion b(χ, ϕ)

δχ = ε(x)(1 + b(χ, ϕ)). (A.5)

Namely,

δεS1 =

∫ [
δεϕ(x)

δS1

δϕ(x)
+ δεχ(x)

δS1

δχ(x)

]
=

∫
ε(x)

[
a(ϕ)

δS1

δϕ
−D δS1

δϕ
+ (1 + b(χ, ϕ))

δS1

δχ

]
= 0 .

(A.6)

Notice that δS1
δχ = 0 gives the goldstone field equations of motion. On the other hand,

from (A.6) we see that the invariance of S1 requires that the following equality holds off

the mass shell
δS1

δχ
= − 1

1 + b(χ, ϕ)

(
a(ϕ)

δS1

δϕ
−D δS1

δϕ

)
. (A.7)

Now, the equations of motion of the physical fields get contributions from S1 and take

the form
δS0

δϕ
= −δS1

δϕ
, (A.8)
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while the Noether identities (A.3) do not change and still hold. Comparing (A.3) and (A.8)

we see that on the mass shell, for consistency, the following combination of the terms on

the right-hand side of (A.8) should be equal to zero on its own

a(ϕ)
δS1

δϕ
−D δS1

δϕ
= 0 . (A.9)

Comparing (A.9) with (A.7) we see that the goldstone field equations are identically sat-

isfied if the physical fields obey their equations of motion (A.8). In other words, the

goldstone fields do not have independent field equations and hence are completely auxil-

iary Stueckelberg-like fields. As such, the consistency of (A.9) and (A.7) also implies that

we can always choose the unitary gauge and put χ = 0 directly in the action S1, which

then however loses the gauge invariance.

Similar discussion of the properties of the Lagrangian description of interactions of

super-p-branes with dynamical supergravity provided the basis for the ‘complete but gauge

fixed description’ of these systems [119–121].

B The D3-brane potential: some explicit cases

Suppose that all the embedding fields yp
D3

of the anti-D3-brane are massive and that the

bulk sector contains only the universal modulus a = 2π
3 (ρ+ ρ̄) depending on a single chiral

field ρ, as in [111]. In this case the position of ym
D3

is determined by the extremisation of

e−4A0(yD3), which does not depend on the universal modulus. Hence, at the minimum of

the potential e−4A0(yD3) takes a fixed value e−4Amin
0 . From (7.6) we get K = −3 log(ρ +

ρ̄)− 3 log 2π
3 and then the potential (7.10) becomes

UD3(ρ, ρ̄) =
27M4

P

π(ρ+ ρ̄)2
· 1

2π(ρ+ ρ̄) + 3e−4Amin
0

(B.1)

This potential has two limiting behaviours. If the warping felt by the D3-brane is weak, so

that e−4Amin
0 � π(ρ+ ρ̄), we have UD3 ∼M4

P(ρ+ ρ̄)−3 as in [111]. If the warping is strong,

e−4Amin
0 � π(ρ+ ρ̄), then we have UD3 ∼M4

Pe
4Amin

0 (ρ+ ρ̄)−2 as in [112]. In particular, one

needs strong warping if ρ is only moderately large and one wants a strong suppression of

the contribution of the D3-brane potential. Then we can approximate the potential as

UD3(ρ, ρ̄) '
9M4

P e
4Amin

0

π(ρ+ ρ̄)2
. (B.2)

Still assuming that all the embedding fields yp
D3

are massive, we can also include additional

bulk chiral fields ziI describing mobile D3-branes. In this case ρ + ρ̄ = 3a
2π +

∑
I k(zI , z̄I),

where k(z, z̄) is the Kähler potential of the internal (non-dynamical) metric ds2
X6

.

From (7.6) one then gets

K = −3 log[ρ+ ρ̄−
∑
I

k(zI , z̄I)]− 3 log
2π

3
, (B.3)
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as first proposed in [123], which should be used in (7.10) together with

e−4A0(y) =
∑
I

G(y; yI) + e−4Ã0(y) , (B.4)

where e−4Ã0(y) comes from the non-dynamical D3-charge entering Q6 in (7.2) and does

not depend on any modulus. As already mentioned above, the extremisation of (7.10) is

equivalent to the extremisation of e−4A0(y). If the mobile D3-branes are far enough from

the D3-brane, in a first approximation we can neglect the contribution of
∑

I G(y; yI) to

e−4A0(y) in the determination of the minimum yp
D3

, so that

e−4A0(yD3) '
∑
I

G(yD3; yI) + e−4Ãmin
0 (B.5)

As above, let us also assume that D3-brane sits at a strongly warped point, e−4Ãmin
0 � 1.

Then (7.10) gives

UD3(ρ, ρ̄) '
9M4

P e
4Ãmin

0

π [ρ+ ρ̄−
∑

I k(zI , z̄I)]
2

[
1− e4Ãmin

0

∑
I

G(yD3; yI)

]
. (B.6)

In this formula the Green’s function encodes the D3-D3 Coulomb interaction. This kind of

contribution was identified in [112] in the case of conical geometries in which G(yD3; yI) ∼
1/r4

I , where r is the radial coordinate.
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