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Abstract

Growth factors such as EGF, bFGF and GDNF play an essential role in the

ENS development and homeostasis. In vivo conditions which provide a

reduction or absence of these factors promote the development of diseases

such as intestinal agangliosis. Thus two models of in vitro culture that

simulate the physiological condition (SM) and that of agangliosis (BM) was

evaluated. ENS-derived cells (ENSc) were isolated from the myenteric plexus

of the Sprague Dawley rats [Schaefer et al., 1997]. Particular attention was

given to the regulation mechanisms mediated by TLR4 and Wnt signalling. At

time of isolation, immunophenotypical characterization by flow cytometry

showed the expression of stem cell (SOX2, NANOG, and CD34), neuronal

and glial (p75, Nestin, GFAP) markers. Culturing in SM and BM showed a

specific modulation of neuronal and glial differentiation and a greater

responsiveness mediated by Frizzled 9 (SM) and TLR4 (BM) was observed.

Moreover, a neuronal subpopulation co-expressed the receptors TLR4 and

Frizzled-9  suggesting that this  cell population may be involved in the

maintenance of homeostasis and in the regulation of inflammatory processes.

Furthermore, only SM cultures formed neurosphere-like structures. Wnt3a

stimulation activated the canonical Wnt pathway through Frizzled-9 and qRT-

PCR analysis demonstrated anti-inflammatory activity. In addition, a cross-

talk between LPS/TLR4 and Wnt pathway was demonstrated by western

blotting. Differentiation processes are also influenced by the extracellular

matrix (ECM). In this study, the modulatory effect induced by ECM was

evaluated assessing an in vitro model: ENS-derived cells cultured on a

decellularized ECM of adult rat jejunum. Acellular matrixes (AMs) were

provided using a modified enzyme detergent decellularization protocol

[Meezan et al., 1975]. Histological study, SEM and quantification of residual

DNA verified the complete decellularization. Immunofluorescence and

western blotting demonstrated that the structural proteins such as collagen I,

III , IV and laminin were preserved. After culturing ENSc on AMs for 7 and 14
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days, the ECM demonstrated to influence the ENSc spatial organization,

exerting a synergic effect with the factors present in the culture medium. In

fact, only the AM cultures with SM, showed ganglion-like structures partially

interconnected and positive for βIII tubulin. ENSc cultured on acellular matrix

may represent a useful in vitro model for toxicological and pharmacological

studies as well as a possible tissue scaffold in regenerative medicine.
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Riassunto

E’ noto che i fattori di crescita quali EGF, bFGF e GDNF giocano un ruolo

essenziale nello sviluppo e nell’omeostasi del sistema nervoso enterico

(SNE). Condizioni in vivo che prevedono un calo o un’assenza del loro

apporto, favoriscono lo sviluppo di patologie quali agangliosi intestinale. In

questo lavoro di tesi, allestendo due modelli di coltura in vitro che simulano la

condizione fisiologica (SM) e quella di agangliosi (BM) mediante coltura in

presenza (SM) o meno di fattori di crescita (BM) è stata oggetto di studio la

risposta differenziativa di cellule isolate da plesso mienterico di ratto Sprague

Dawley (ENSc) [Schaefer et al., 1997]. In particolare, veniva prestata

attenzione ai meccanismi di regolazione della risposta cellulare mediata dal

segnale TLR4 e Wnt. Lo studio di caratterizzazione dell’immunofenotipo

mediante citofluorimetria evidenziava nelle popolazioni estratte l’espressione

di marcatori di staminalità (SOX2, Nanog e CD34) e di linea neuronale e

gliale (p75, Nestina, GFAP). Inoltre, si evidenziava la presenza di una

sottopolazione con caratteristiche neuronali che co-esprimeva i recettori

TLR4 e Frizzled-9, suggerendo un ruolo nella regolazione del processo

infiammatorio. La coltura in terreno SM e BM dimostrava di modulare in

maniera specifica il differenziamento neuronale e gliale delle ENSc e di

conferire una maggiore reattività mediata dal Frizzled 9 (coltura SM) e dal

TLR4 (coltura BM). Inoltre, l’analisi di microscopia ottica evidenziava la

formazione di strutture del tipo neurosfere solo nelle colture trattate con

terreno standard. Lo stimolo indotto dal Wnt3a risultava efficace nell’attivare

la via di segnale canonica di Wnt attraverso il recettore Frizzled 9 e, all’analisi

di espressione genica mediante qRT-PCR, dimostrava un’attività di tipo anti-

infiammatorio. Inoltre, mediante uno studio di western blotting, si dimostrava

che la via pro-infiammatoria del TLR4 cross-reagiva con il segnale Wnt

attivandolo. E’ noto che il processo differenziativo è fortemente condizionato

dalla matrice extracellulare. In questo studio l’effetto modulatorio indotto dalla

matrice sulla risposta differenziativa delle cellule ENSc è stato valutato
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utilizzando matrice acellularizzata (AM) di tessuto intestinale di ratto. La

preparazione dello scaffold ha previsto 5 cicli ripetuti di decellularizzazione

del trattamento modificato detergente enzimatico di Meezan [1975]. La

completa decellularizzazione del tessuto veniva verificata mediante studio

istologico, analisi di microscopia elettronica a scansione (SEM) e

quantificazione del contenuto di DNA residuo. All’analisi di

immunofluorescenza e western blotting, le proteine strutturali quali collagene

I, III, IV e laminina risultavano preservate al termine della decellularizzazione.

Dopo coltura per 7, 14 giorni delle cellule ENSc sulla matrice, AM dimostrava

di condizionare l’organizzazione spaziale delle cellule ENSc esercitando un

effetto specifico differenziativo in sinergia con i fattori di crescita. Infatti, solo

le matrici mantenute in terreno SM mostravano una caratteristica

organizzazione delle cellule ENSc in strutture interconnesse di tipo simil-

gangliare esprimenti il marcatore neuronale βIII tubulina. Le colture di ENSc

su matrice acellulare possono rappresentare un valido modello in vitro per

studi tossicologici ed un possibile sostituto tessutale nella medicina

rigenerativa.
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1 Introduction

1.1 Stemness and lifelong plasticity of enteric nervous system cells
The enteric nervous system (ENS) is the most complex division of the

peripheral nervous systems (PNS) in vertebrates. It controls key aspects

of gut functionality including the motility, secretion of gastric acid, water

and electrolytes and the regulation of blood flow [Furness, 2012]. It is

composed of several neurons and glial cells, organized into

interconnected ganglia, embedded in the wall of the gastrointestinal tract

(Figure 1.1).

Figure 1.1. The organization of the ENS. The myenteric plexus between the longitudinal
and circular layers of the external musculature and the submucosal plexus that is located
between the circular muscle and the muscularis mucosae. Nerve fiber bundles connect
the ganglia and also form plexuses that innervate the longitudinal muscle, circular
muscle, muscularis mucosae, intrinsic arteries and the mucosa. Adapted from [Furness,
2012].

During embryogenesis, ENS development derives from the migration of

neural crest cells (NCCs) and involves highly dynamic processes such as

proliferation and neuronal and glial differentiation. These mechanisms are

under the molecular control of numerous signaling pathways, transcription

factors, neurotrophic factors, and the interactions among NCCs and

extracellular matrix components [Sasseli et al., 2012]. Undifferentiated
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NCCs are initially characterized by high expression of Sox10 (SRY-related

HMG-boxgene) [Paratore et al., 2002; Kim et al., 2003]. During the

progressing gut colonization an increasing number of NCCs start to

upregulate a panel of progenitor marker genes, such as Mash1, Ret, p75,

nestin, Phox2b and in some cases of committed neurons (positive for β-

tubulin III, PGP9.5, HuC/D) or, with slight delay, glial cells (positive for B-

FABP, S100, Sox10) [Young et al., 2003; Ruhl, 2005] (Figure 1.2).

Figure 1.2. The development of the ENS in mice. Vagal neural crest cells migrate,
proliferate and differentiate through the entire length of the developing gut. Sacral neural
crest cells colonize the distal hindgut. The table summarizes the expression of different
marker genes at different developmental stages. Adapted from [Sasseli et al., 2012].

Since the newborn ENS is not yet fully developed at birth an appropriate

supply of neurotrophic factors is needed during the first postnatal weeks

[Gershon et al., 1997; Schäfer et al., 1999]. Not all NCCs within the ENS
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differentiate during development: a small pool of enteric neural crest stem

cells persist in the postnatal and adult gut [Kruger et al., 2002]. Whether

these cells could possess the same potential of NCCs is not clear: they

are probably more restricted to a gut phenotype and more appropriately

termed enteric neuronal precursors (ENPs). Several strategies have been

developed in the last few decades to isolate and characterize ENPs due to

their enormous therapeutic potential, regarding gastrointestinal motility or

dysganglionic disorders (e.g. Hirschsprung´s disease) or even

neurodegenerative diseases (e.g. Alzheimer´s and Parkinson´s disease).

Moreover, the easy accessibility of this stem cell source, as well as the

possibility of an autologous transplantation, make ENPs a feasible and

valuable option for regenerative medicine. In fact, mucosal gut biopsies

from human postnatal gut, obtained via minimally invasive endoscopic

techniques, were demonstrated as a viable source of ENPs [Metzger et

al.,2009; Rauch et al., 2006]. Such precursor cells have been isolated

from the embryonic and postnatal gut of rats using antibodies to specific

markers of enteric neural crest-derived cells such as RET, the tyrosine-

kinase receptor for the glial cell-derived neurotrophic factor (GDNF) [Lo

and Anderson, 1995], and the low-affinity nerve growth receptor p75

[Kruger et al., 2002]. In particular, Kruger and colleagues have isolated

NCCs using flow cytometry sorting considering the expression of p75 and

α4-integrin. The characteristic properties of neural stem cells, such as self-

renewal and differentiative potential, were observed. In contrast, postnatal

cells isolated using the same protocol revealed significant changes in self-

renewal capacity and neuronal subtype potential (loss of serotonergic and

noradrenergic potential) [Maslov et al., 2004]. ENPs isolated from the gut

without using these markers and culturing with high concentrations of

epithelial growth factor (EGF) and/or fibroblast growth factors (FGF),

showed colonies called neurospheres, containing proliferating progenitor

cells, neurons, and glia [Bondurand et al., 2003; Schafer et al., 2003;

Suarez-Rodriguez and Belkind-Gerson, 2004; Metzger et al., 2009]. About

3-4% of the cells within neurospheres are actually true stem cells, able to

generate all three neural lineages either in vivo or in vitro when induced to

differentiate. Moreover, as in earlier studies also smooth muscle-like cells
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were identified, it is still unclear if these cells arise from a common neural

stem cell or from another, still unidentified myogenic progenitor [Kruger et

al., 2002; Suarez-Rodriguez and Belkind-Gerson, 2004; Anitha et al.,

2008; Metzger et al., 2009]. Nevertheless, the identification of the ENS

stem cell niche, the involved signal pathways as well as cell-cell and cell-

matrix interactions remains to be further characterized. The ENS has the

ability to adapt itself to changing environmental cues under physiologically

conditions; responding to diet, aging or injury throughout the entire

lifespan of the organism. Several clinical and experimental observations

suggest that gut homeostasis may be controlled by enteric ganglia

[Thompson 1997]. Numerous ‘‘players’’ should be taken into account when

considering adaptive changes in the enteric microenvironment (Figure

1.3): neurons, enteric glial cells, smooth muscle cells, interstitial cells of

Cajal (ICCs) and immune cells. Moreover, putative mediators

(neurotransmitters, growth factors, cytokines) are involved in the

differentiation and adaptation of enteric neurons and glia.

Figure 1.3. The enteric microenvironment. Schematic representation of different cell
populations and putative mediators of their cross-talk. The interplay among different
mediators is crucial to the regulation of ENS plasticity. Adapted from [Giaroni et al., 1999]
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1.2 Cellular compartment
The main cell types constituting ENS are glial cells and neurons. The

enteric glial cells are numerically larger than enteric neurons. They

resemble to central nervous system (CNS) astrocytes and their cellular

extensions cover the most of the enteric neuronal cell surface. The enteric

glial cells produce interleukins and express MHC class II antigens in

response to stimulation with specific cytokines [Cornet et al., 2001],

suggesting a role of enteric glia in the modulation of gut inflammatory

response. The enteric neurons can be divided into three types :

- Type I: innervating the smooth muscles , are highly excitable and

are responsible for the nicotinic ganglionic synaptic transmission. Acting

as motor neurons, they regulate the peristaltic gut.

- Type II: can be considered as sensory neurons  receiving

mechanical, thermal and chemical stimuli.

- Type III: similar to Type I, after being stimulated they generate

postsynaptic excitatory potential.

However, ENS microenviroment is represented by other cell types such as

smooth muscle cells, ICCs and immune cells.

Anatomically, ENS and, in particular, the myenteric plexus is embedded

between the outer longitudinal and inner circular muscle layers. Recent

evidences also suggest cross-talk between smooth muscle cells and

dorsal root ganglion cells [Ennes et al., 1997]. Moreover, as previously

described, an unique neural stem cell generating either neurons, glia and

smooth muscle is hypothesized.

The ICCs lie in the plane of the myenteric plexus between the circular and

longitudinal muscle layer. They are considered pacemaker cells controlling

and modulating the electrical activity that give origin to the gut muscle

contraction. These cells have been isolated and characterized by Sanders

[1999] and colleagues using a surface glycoprotein CD34, functioning as a

cell-cell adhesion factor. During differentiation ICCs co-express CD34 and

the tyrosine-protein kinase Kit or CD117 [Maeda et al., 1992]. The

expression of Kit has been used widely as marker of ICCs in a variety of
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species [Sanders et al 1999], but its expression alone does not distinguish

between the different classes of ICCs.

The gut-associated lymph tissue (GALT) contains about 70-80% of the

body’s immune cells and is the largest immune effector organ of the

human body [Furness et al., 1999]. The GALT includes a high number of

lymphocytes, specialized epithelial cells distributed on the surface, but

also mast cells, macrophages and granulocytes. The lymphocytes,

depending on their state of maturation, can be localized in the gut

epithelium or in the lamina propria, influencing differently the response to

neuropeptides and cytokines. Finally, mast cells may also play an

important role in mediation of neuroimmune interactions [Buéno et al.,

1997]

1.3 Soluble factors
Among soluble factors regulating the homeostasis of adult gut, important

roles are played by GDNF, nerve growth factor (NGF), FGF, EGF,

leukemia inhibitory factor (LIF) and Wnt proteins.

GDNF, a member of the TGF-b-superfamily [Lin et al., 1993], is a very

important growth factor for the development and more importantly

neuronal survival of the ENS. The lack of GDNF leads to a nearly

complete loss of all enteric neurons [Moore et al., 1996]. In vitro studies of

dissociated myenteric plexus from newborn rats have shown that GDNF

improved neurite outgrowth and survival [Schäfer et al., 1999].

NGF has important developmental actions in both central and peripheral

nervous systems. It has been demonstrated to promote neuroprotection

[Friedman et al., 1999] and neuronal differentiation in primary cultures

isolated from neonatal guinea pig myenteric plexus [Mulholland et al.,

1994]. Loss or altered production of this factor are observed in enteric

colitis correlating with postinflammatory irritable bowel syndrome (IBS) [Lin

et al., 2005] and in aganglionic diseases such as Hirschsprung’s [Kuroda

et al., 1994].

Basic fibroblast growth factor (bFGF) is a mitogen for a variety of

mesodermal and neuroectodermal derived cells [Gospodarowicz, 1986c].

It has been found in many tissues [Gospodarowicz et al., 1986a,b;
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Gonzalez et al., 1990] and acts upon several types of cells [Baird and

Klagsbrun, 1991]. The diverse source of bFGF raised the possibility that

this neurotrophic factor also plays a role in the PNS. bFGF has been found

in neurons and glia of the esophageal and colic myenteric plexus [Chadi et

al., 2004]. Knockout model for bFGF showed specific neuronal cell loss in

the ENS and abnormal development [Hagl et al., 2013]. These evidences

suggest that this factor participates in the maintenance and plasticity of

ENS.

Members of the EGF family growth factors are involved in mucosal

protection and repair after injury and in tumor growth. Experimental

evidences have demonstrated a protective effects of EGF-family members

modulating epithelial cell migration [Dignass et al., 1993], mucosal blood

flow [Hui et al., 1993], gastrointestinal motility [McLeay et al., 1990],

mucous production and secretion [Kelly et al., 1990], and gastric acid

secretion [Rhodes et al., 1986].

LIF has been shown to stimulate the generation of sensory neurons in

cultures of mouse neural crest [Murphy et al. 1991]. Furthermore, LIF

promotes the development of enteric neurons in vitro, particularly when it

is given together with neurotrophin-3 (NT-3) [Chalazonitis et al. 1998].

These findings suggest a possible role for LIF in the development of the

ENS. LIF also acts as a survival molecule in cultures of postnatal dorsal

ganglion root ganglia [Murphy et al. 1991]. Deficiency of this factor has

been reported in aganglionic bowel of Hirschsprung’s patients suggesting

an important role in survival of the enteric neurons [Wester and Olsen,

2000].

1.4 Wnt signaling in the gut
Wnt signaling has been implicated in the control of different types of stem

cells, including hematopoietic [Reya et al., 2003] intestinal [Scoville et al.,

2008] and neural stem cells in the CNS [Kléber et al., 2005; Ikeya et al.,

1997] where it acts as a niche factor to maintain them in an

undifferentiated and self-renewing state. The treatment of embryonic stem

cells (ESCs) with an inhibitor of glycogen synthase-kinase-3β (GSK3β)

activates the canonical Wnt pathway and sustains pluripotency and self-
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renewal, as indicated by the expression of pluripotency factors such as

Oct-3/4 and Nanog [Sato et al., 2004]. Wnt signaling has already been

proven to be essential for the development and migration of NCCs [Kléber

et al., 2004; Stuhlmiller et al., 2012]. Furthermore, the presence of Wnt

and its role in the development of the gut has been shown [Gregorieff et

al., 2005; Theodosiou et al., 2003]. Wnt proteins bind specific surface

receptors known as Frizzled. To date, 19 members of the Wnt family have

been identified along with 10 members of the Frizzled family [Rao et al.,

2010; Logan et al., 2004]. The binding of Wnt ligands to Frizzled receptors

activates several distinct intracellular signaling pathways. These pathways

include the Wnt/β-catenin (or canonical) pathway, the Wnt/Ca2+ pathway

and the non-canonical pathway. The canonical pathway is activated by

Wnt-1 class ligands (Wnt1/2/3/3a/8 and 8a), whereas the non-canonical

pathways is activated by Wnt 5a class ligands (Wnt4/5a/5b/6/7a and 11)

[Michaelidis et al., 2008]. This study has focused on the canonical

pathway (Figure 1.4) which implies the presence of an extracellular Wnt1

class ligand, such as Wnt3a, interacting with one of its Frizzled receptors

(FZD 1/3/9) and co-receptors for low density lipoproteins 5 and 6 (LRP5 or

LRP6). This activation leads to the recruitment of the cytoplasmic

components Dishevelled (Dvl) and Axin. Consequently, the key modulator

of this pathway, GSK-3β, is inactivated by phosphorylation, thus resulting

in accumulation of unphosphorylated β-catenin that translocates into the

nucleus. Inside the nucleus, β-catenin forms complexes with different

transcription factors, such as T-cell factor (TCF) and lymphocyte enhancer

factor (LEF) families leading to the expression of Wnt target genes such

as c-myc, cyclin and c-jun, which are involved in cell proliferation

[Overview of β-catenin target genes is showed on:

http://www.stanford.edu/~rnusse/wntwindow.html]. In the absence of a

Wnt signal, free cytoplasmic β-catenin is recruited in a large “scaffolding”

complex consisting of Axin, adenomatous polyposis coli (APC), casein

kinase 1 (CK1) and the serine/threonine kinase GSK-3β. This cytoplasmic

complex phosphorylates β-catenin allowing the ubiquitination, mediated by

β-transducin repeat-containing protein (β-TrCP), and subsequent β-

catenin cleavage by proteasome.
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Figure 1.4. Wnt/β-catenin pathway (A) In the absence of a Wnt signal,cytoplasmic β-
catenin forms a complex with Axin, APC, GSK3 and CK1 and subsequentially GSK3.
Following ubiquinitation by β-Trcp, phosphorylated β-catenin is degradaded by the
proteasome (B) When the  Wnt ligand bind to its receptors Fz and LRP, Dvl binds to Fz
leading to LRP phosphorylation and Axin recruitment. This disrupts Axin-mediated
phosphorylation/degradation of β-catenin, allowing β-catenin to accumulate in the nucleus
where it serves as a co-activator for TCF to activate Wnt responsive genes. Adapted from
[MacDonald et al., 2010].

1.5 Influence of bacteria to ENS plasticity
The gastrointestinal microbiota consists of more than 1014 bacteria, which

is 10 times the number of somatic cells in the human body [Luckey et al.,

1972]. Under physiological conditions, the relationship between host and

microbiota is a homeostatic symbiosis, in which the host provides the

microbiota with nutrients and the microbiota contributes to the

maintenance of the intestinal barrier and gut homeostastis Thus, the

presence of commensal bacteria are important and have to be considered

part of enteric microenviroment. In fact, lipopolysaccharides (LPS), an

essential component of the outer membrane of gram-negative bacteria,

have also been considered as important player in enteric plasticity; in

conjunction with the previously described Wnt signals, LPS are key

proteins involved in several processes such as proliferation and stem cell

maintenance. LPS is released from luminal microflora and has been

specifically linked to the Toll-like receptor 4 (TLR4) [Lien et al., 2000]. The

LPS molecule consists of a polysaccharide, a core oligosaccharide, and a

highly conserved lipid-A portion which triggers the inflammatory reaction
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properties of LPS. Binding to TLR activates different intracellular signaling

pathways ultimately leading to production of proinflammatory cytokines,

chemokines and type 1 interferon [Kawai et al., 2006]. In pathological

conditions, when these functions are deregulated, it may lead to

inflammatory pathologies [Cario et al., 2005; Harris et al., 2006].

Inflammatory bowel diseases (IBD) such as Crohn’s disease and

ulcerative colitis are chronic inflammatory disorders of the gastrointestinal

tract (GIT) and occur as a result of complex interactions between the

immune system and environmental factors such as luminal bacterial flora.

Abnormalities in the structure of the ENS of IBD patients are frequently

noted [Geboes et al., 1998; Villanacci et al., 2008], and gastrointestinal

functions, such as motility and secretion that are controlled by the ENS

have also been reported to be altered in IBD patients [Villanacci et al.,

2008; Lomax et al., 2005; Vasina et al., 2006]. Recently, it has been

shown that TLR4 is expressed on cells of the myenteric and submucosal

plexus [Rumio et al., 2006; Barajon et al., 2009], highlighting the presence

of a TLR-based direct neural response system to bacterial LPS in the

ENS. Stimulation of myenteric neurons with LPS resulted in neuronal cell

death [Arciszewski et al., 2005], whereas in another in vitro study, an

increase in the proliferation of enteric glia has been observed [Cirillo et al.,

2011]. LPS stimulation leads to intracellular activation of mitogen-activated

protein kinase (MAPK) and nuclear factor-κB (NF-κB) that are responsible

for the gene transcription of proinflammatory cytokines such as tumor

necrosis factor-α (TNF-α), interleukin 6 (IL-6), IL-1b, IL-12 and Interferon β

(IFN-β) [Akira et al., 2004]. Previous studies have shown that LPS

stimulation also acts on the  phosphatidylinositol 3 kinase (PI3K) pathway,

which is closely related to cell cycle regulation. In particular, it has been

shown that LPS stimulation of TLR4 activates a cascade of PI3K leading

to the phosphorylation of a protein kinase B (Akt), which in turn

phosphorylates GSK-3β [Monick et al., 2001]. This protein, as described

above, plays an important role in the Wnt canonical signaling. Similarly

growth factors, such as EGF, bFGF2, GDNF, NGF and LIF, are also

reported to interact with the β-catenin signaling pathway as demonstrated
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in other studies [Ojeda et al., 2011; Srinivasan et al., 2005; Higuchi et al.,

2003; Graf et al., 2011] (Figure 1.5).

Figure 1.5. Schematic representation of hypothesized cross-talk between LPS/TLR4 and
WNT/β-catenin signaling as well as involvement of growth factors.

1.6 Extracellular environment of ENS
Besides soluble factors, extracellular matrix (ECM) provide an important

framework to the enteric microenvironment, during the enteric neural

differentiation process, as well as the establishment and maintenance of

the stem cell niche. The ECM is a network of different macromolecules

mainly produced, secreted and assembled locally by cells, filling the

extracellular spaces. The ECM is composed by a network of

heteropolysaccharides, called glycosaminoglycans (GAGs), and fibrous

proteins. GAGs are a family of polymers, consisting of disaccharide units,

and divided into four groups according to their properties and chemical

composition: hyaluronan, chondroitin, dermatan sulphate, heparan
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sulphate and keratan sulphate. The last three groups differ from

hyaluronan for two main aspects: they are generally shorter and covalently

linked to specific proteins, thus forming proteoglycans. Proteoglycans are

a heterogeneous group of molecules acting as tissue organizers,

influencing the development of tissues and regulating the activity of

secreted proteins. The major fibrous proteins present in the ECM are

collagen, elastin, fibronectin and laminin, which form a complex network

with proteoglycans giving strength and mechanical resistance to the matrix

[Nelson D.L. and Cox M.M., Lehninger Principles of Biochemistry]. Among

other functions, proteoglycans bind secreted proteins (e.g. FGFs and

TGF-β) and regulate their activity [Quarto et al., 1994]. ECM is implicated

in the regulation of cellular phenotype contributing to maintain the distinct

cellular environments, including the stem cell niches. There are at least

three mechanisms by which the ECM can adjust the cell behavior. The first

is through its composition, the second is due to synergistic interactions

between growth factors and matrix molecules, and the third is mediated by

cell receptors interacting with ECM components. These integrated proteins

tether the cell to the ECM network and activate intracellular signaling

pathways. The principal ECM receptors on cells, involved in cell adhesion,

are integrins but also non-integrin receptors, like syndecan, CD36 and

certain laminin binding proteins, such as CD133 [Rauch et al., 2003]. The

ECM composition varies depending on the type of tissue and according to

the different developmental stages. The ECM composition is not static:

during development there are changes in the expression patterns of the

individual components, demonstrating that ECM provides to cells specific

microenvironmental information (Figure 1.6)
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Figure 1.6. Schematic representation of ECM components interacting with cell protein
such as integrins. [© Pearson Prentice Hall]

In the gut the ECM is composed principally by type I collagen, and by type

III, IV, V and VI, fibronectin, laminin, decorin, biglycan, entactin, heparin,

heparan sulfate and GAGs, including hyaluronic acid [Badilak et al., 2009].

During gut development, ECM molecules are necessary for NCC migration

and cell differentiation. The cells respond to the heterogeneity of the ECM

that forms their migration substrate. This continuous cell-cell and cell-

matrix interactions are the main driving forces involved in morphogenesis

and differentiation, not only during intestinal development but also in adult

cell renewal [Simon-Assmann et al., 1995]. Fibronectin, for example, is

expressed at high levels at sites of cell migration during ENS

development. The role of laminin and other ECM components in cell

migration has been shown in various cell culture studies [Adams et al.,

1993] and also neurite outgrowth is supported by ECM components like

laminin [Sanes et al., 1989], thrombospondin and vitronectin [Neugebauer

et al., 1991]. Antibodies against β1 integrins blocked NCC adhesion to

fibronectin, laminin and collagens, suggesting that these are the primary

mediators of NCC attachment [Lallier et al., 1991; 1994]. ECM micro-

environmental signals are necessary for the formation of enteric ganglia
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[Pomeranz et al., 1993] and promote the ability of NCCs to give rise to

neurons [Chalazonitis et al., 1997].

1.7 ECM application in tissue engineering
Tissue engineering is a multidisciplinary science that seeks to repair,

maintain or enhance vital organs and tissues with diseases or

dysfunctions [Langer et al., 1993]. The primary application of tissue

engineering is in regenerative medicine.  Preclinical and clinical studies

have demonstrated that the use of biological materials, derived from

extracellular matrices, facilitates the tissue remodelling. These

biomaterials are organized in a three-dimensional structure containing

tissue specific molecules [Badylak et al. , 2009]. The three-dimensional

architecture of the biomaterial is essential and has to simulate in vivo

situation. Microscopic and ultrastructural characteristics of the matrix

modulate and control the cell migration and organization [Gong et al. ,

2008; Sellaro et al. , 2007]. The biomaterials may be biological or synthetic

matching essential ECM properties, such as biocompatibility,

biodegradability, appropriate macro and micro structure, porosity, and

chemical composition. The biological scaffolds do not contain synthetic

materials and, depending on their origin, they may be prepared by

chemical treatments. However, synthetic scaffolds are frequently

composed by polymeric materials mimicking as much as possible the

characteristics of the wild-type biological scaffolds. Biological scaffolds

stimulate adhesion, proliferation and cell differentiation. Due to their origin,

the high cost of production and the possible inflammatory responses as

well as the difficulties to modulate the mechanical properties or the

degradation, represent negative aspects. Synthetic scaffolds, obtainable

by chemical synthesis, have low cost and controlled production, and it is

possible to modulate the mechanical characteristics. However,

inflammatory responses and often not adequate cell adhesion have been

observed using these materials.

Decellularized or acellular matrices (AMs) have been used, as three-

dimensional scaffold, to engineer several organs such as small intestinal

submucosa [Badylak et al., 1989], heart [Ott et al., 2008], liver [Uygun et
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al., 2010], esophagus [Macchiarini et al., 2008], and trachea [Conconi et

al., 2005]. These organs are decellularized with different techniques that

allow the preservation of the ECM ultrastructure. Depending on the type of

tissue or organ, it is necessary to find a proper decellularization agent. The

choice should take into account the type of tissue, the cell density, lipid

content, and thickness [P. M Crapo et al. , 2011]. Decellularization agents

may be chemical, biological, physical or mixed. An example of a chemical

agent is given by the acids and bases that catalyze the hydrolytic

degradation of biomolecules, or by hypotonic or hypertonic solutions which

respectively cause cell osmotic lysis without changing the matrix structure

[Xu et al., 2007; Cox et al., 2006]. Several protocols have used detergents,

that may be ionic , non-ionic and zwitterionic. These chemical agents

solubilize membranes and dissociate DNA from proteins leading to a

removal of cellular material from the tissue [Cox et al., 2006; Giusti et al.,

2009]. Finally, alcohols, such as glycerol, can be used to dehydrate and

lyse the cells [Prasertsung et al., 2008 ]. With regard to the category of

biological agents, enzymes, such as nucleases, trypsin, collagenase,

lipase, dispase, thermolysin and α-galactosidase have been used.

Enzymes can provide high specificity to remove residual cells or specific

proteic components of the ECM [Crapo et al. , 2011]. There are also non-

enzymatic agents, such as ethylenediaminetetraacetic acid (EDTA) and

etilenglicoletetracetic acid (EGTA), which help the cell dissociation from

ECM proteins by binding metal ions [Klebe et al., 1974; Gailit et al., 1988].

Instead, the physical agents include temperature, force and pressure. The

processes of freezing and thawing lead to cell lysis whereas membranes

and the remaining cell contents must be removed by other agents.

1.8 In vitro models of ENS
Developmental processes, differentiation and plasticity studies using 2-

dimensional cell cultures cannot properly mimic the in vivo situation. Given

the importance of the ECM in these processes, new three-dimensional in

vitro models need to be developed. Schäfer and colleagues [2000] have

shown that culturing ENS cells in an ECM gel leads to the development of

an enteric neurons and glial network similarly to in vivo situation. ECM gel,
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supplemented with collagen II, has been used to established a three-

dimensional co-culture model, evaluating the interactions between the

enteric neural compartment and enterocytes [Holland-Cunz et al., 2004].

Intestinal AM could serve as a three-dimensional in vitro model to study

several cellular processes since it mirrors the composition and structure of

the actual organ.
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2. Aims of the study

This study was focalized to further characterize the ENS cell population

isolated from the small intestine of neonatal rats and evaluate the

influences of microenviromental stimuli such as: soluble factors, cell-cell

interaction and extracellular matrix. In vivo conditions which provide a

reduction or absence of these factors promote the development of

diseases such as intestinal agangliosis. Thus, two models of in vitro

culture that simulate the physiological condition (SM) and that of

agangliosis (BM) was considered. Particular attention was given to ENPs

within the ENS and the involvement of specific pathways such as the

WNT/ß-catenin dependent signaling. Moreover, due to the continual

presence of commensal and pathological bacteria within the gut, the

interaction between LPS/TLR4 and Wnt signaling was investigated.

Finally, extracellular matrix contribute to maintenance of ENS homeostasis

and differentiation was evaluated assessing an in vitro model

represented by ENS-derived cells cultured on a decellularized ECM of

adult rat jejunum.
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3. Materials and Methods
3.1 Isolation, culture and stimulation of ENS-derived cells
All animal procedures were performed under the guidelines of the local

ethic committee and according to Italian laws for animal protection.

Sprague Dawley rats (3 days old, P3), were sacrificed by decapitation.

Briefly, the smooth muscle layer was stripped from the mucous one and

incubated in a digestion medium at 37°C, according to previously

described protocols [Schäfer et al., 1997]. The digestion medium was

composed of Hank`s balanced salt solution (PAN, Aidenbach, Germany),

50 ng/ml trypsin-chymotrypsin inhibitor (Sigma-Aldrich, Milan, Italy), 1

mg/ml collagenase type 2 (Worthington, Lakewood, USA) and 200 µg/ml

deoxyribonuclease (DNAse) (Roche, Mannheim, Germany). Myenteric

nets were collected and treated with accutase (PAA, Pasching, Austria) for

10 min. After the digestion, cells were dissociated by aspiration through a

27G needle. The preparation yield per animal was approximately 1x106

cells. The cells were seeded at a density of 2x105 cells/cm². The isolated

cells were either cultured in standard conditions [Schaefer et al., 1997] or

under basal conditions for 7 days before morphological analysis by optical

microscopy, immunophenotypical characterization by flow cytometry

(FCM) and Wnt signalling study by transfection, gene expression, western

blotting (WB) and immunofluorescence (IF).

Basal conditions (BM): The basal medium was composed of Neuronal

Base P (PAA) supplemented with 1% L-glutamin (Sigma-Aldrich) and 1%

of penicillin/streptomycin (Invitrogen, Milan, Italy).

Standard conditions (SM): The complete medium contained  Neuronal

Base P (PAA) supplemented with 2% neuronal stem cell supplement

(PAA), 1% bovine serum albumin (Sigma-Aldrich), 0.1% β-

mercaptoethanol (Invitrogen), 1% penicillin/streptomycin (Invitrogen) and

1% L-glutamine (Sigma-Aldrich), 10 ng/ml EGF (ImmunoTools, Friesoythe,

Germany), 20 ng/ml b-FGF (ImmunoTools) and 10 ng/ml GDNF

(ImmunoTools).
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3.2 Immunophenotypical characterization of primary cultures by Flow
Cytometry (FCM)
ENS cells were characterized at different time points (T0 and T7 days)

using the primary antibodies reported in Table 1.

Primary antibody Manufacture’s company

Mouse anti-rat NG2 FITC Santa Cruz

Goat anti-rat Nanog-PE BD Bioscience

Mouse anti-rat CD34 PE-Cy7 BD Biosciences

Rabbit anti-rat Sox2 Millipore

Rabbit anti-rat Sox10 Santa Cruz

Rabbit anti-rat TLR4 Santa Cruz

Goat anti-rat Frizzled 1 Santa Cruz

Goat anti-rat Frizzled 3 Santa Cruz

Goat anti-rat Frizzled 9 Santa Cruz

Goat anti-rat Nestin Santa Cruz

Mouse anti-rat GFAP Millipore

Mouse anti-rat Pan neuronal antigen Millipore

Rabbit anti-rat p75 Millipore

Mouse anti-rat Tuj-1 Millipore

Table 1. Primary and secondary antibodies used for the characterisation of ENS cells by
FCM

For indirect staining, FITC- and PE- conjugated secondary antibodies

(Santa Cruz, Dallas, USA) were considered. Samples labelled with isotypic

or secondary conjugated antibodies were prepared as negative controls.

Data were acquired using flow cytometer FACSCanto II (BD Biosciences,

Milan, Italy) and then analyzed with the Substruction tool of Summit 4.3

software (DAKO-Beckman Coulter).
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3.3 Wnt signalling analysis
A. Transfection

In order to study the activation of Wnt canonical pathway, a cell

transfection procedure was performed using Roti®-Fect PLUS delivery

system (Carl ROTH, Karlsruhe, Germany) and GFP Wnt reporter plasmid

(ΔTop_EGFP3a), kindly provided by Prof. Oliver Müller (University of

Applied Sciences, Kaiserslautern, Germany) and designed with a LEF1

motif linked to an inducible promoter upstream of GFP gene (Figure 3.1).

Sub-confluent (70-80%) ENS cells  were transfected with 2 μg of DNA-

ΔTop_EGFP3a (ΔTop cells), while GFP Reporter Plasmid (EGFP) and

empty vector were used to prepare positive and negative transfection

controls, respectively.  The transfection efficiency was determined

detecting GFP positive cells by FCM and optical fluorescence microscopy

(Cell Observer Z1, Zeiss Germany).

Figure 3.1 . Delta-Top-EGFP3a plasmid design scheme.

B. Stimulation

After 24h, transfected cells were stimulated with 20 ng/mL rhWnt3a (R&D

system, Wiesbaden-Nordenstadt Germany). In order to define the

correlation between Wnt signalling and LPS/TLR4 pathway, ΔTop cells
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were stimulated with 5 μg/mL LPS (Sigma-Aldrich) and then studied for

GFP expression and cytoplasmic β-Catenin accumulation by FCM.

C. β-Catenin nuclear translocation

At different time points (T24h-T96h), the transfected cells were fixed with

BD Cytofix solution (BD Biosciences) for 20 min, at 4°C. For intracellular

antigens, permeabilization and aspecific site blocking step were performed

using 0.5% Triton (Sigma-Aldrich) and 1% BSA solution, respectively. All

samples were then  double stained with primary mouse anti-rat  β-Catenin

(Santa Cruz) –PE indirectly conjugated and mouse anti-rat LEF1-PE Cy7

conjugated (Cell Signaling, Danvers, USA) antibodies. As negative

controls, specimens stained only with secondary PE-conjugated and

isotypic antibodies were prepared. After mounting with Fluoro-gel II

solution containing DAPI (EMS, Hatfield, USA), slices were observed

using  a Leica SP5 TCS confocal microscope (Leica, Wetzlar, Germany).

D. Interaction of Wnt signalling with LPS pathway

As previous studies reported a molecular intersection between

components of the Wnt and PI3K/Akt signaling pathways in enteric

epithelial cells [Scoville et al, 2008], we investigated the downstream

crosstalk  of LPS and Wnt3a stimulus in ENS-derived cells treated with 5

μg/mL LPS or 20 ng/mL rhWnt3a under standard (SM) or basal conditions

(BM) for 24h. At different intervals (0.5-12, 24h),  nuclear and cytoplasmic

proteins were extracted using  NER-PER Nuclear and Cytoplasmic

Extraction Reagents kit and quantified by BCA Protein Assay Reagent Kit

(Thermo Fisher Scientific, Waltham, USA) according to the manufacturer`s

instructions. Proteins were separated by reducing sodium dodecyl sulfate/

polyacrylamide gel electrophoresis (SDS⁄PAGE) (BioRad, Milan, Italy) and

then electrophoretically transferred onto polyvinylidene difluoride (PVDF)

(Millipore, Billerica, USA) by overnight incubation at 4°C with rabbit anti-rat

p-GSK-3β, mouse anti-rat-pAkt (Cell signaling), -β-Catenin, -p-β-Catenin

and rabbit-anti rat NF-κB (Santa Cruz) primary antibodies. After washing

with phosphate buffer (PBS) containing 0.25% Tween-20, the membranes
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were incubated for 1h with peroxidase-conjugated secondary goat anti-

rabbit and goat anti-mouse antibodies (BioRad) and then developed using

an enhanced chemiluminescence substrate (ECL) (Sigma-Aldrich).

Immunoreactivity was visualized by VersaDoc Imaging System (BioRad)

and protein expression was normalized to housekeeping protein GAPDH

(Millipore) and lamin B (Santa Cruz) for cytoplasm or nuclear extract,

respectively. Quantification of protein expression was performed using the

image processing software ImageJ. Data were reported as ratio within

target protein and relative housekeeping protein expression. Statistical

significance, calculated by t-Test,  compared to control: p-value ≤ 0.05: *,

p-value ≤ 0.01: ** .

3.4 Co-immunoprecipitation: Wnt3a and Frizzled-9 binding assay
In order to determine the interaction between Frizzled-9 and Wnt3a, total

protein extraction was performed on ENS cells cultured for 7 days using

RIPA lysis buffer. Recombinant Wnt3a protein (R&D System) was added

(200 ng/mL) to total cells protein extracts and incubated overnight at 4° C.

Immunoaffinity purification was performed using goat anti-rat Frizzled 9

(Santa Cruz) and rabbit anti-rat Wnt3a (Cell signaling) antibodies

immobilized onto Protein A-Sepharose (Sigma-Aldrich). Western blot

analysis was carried out using 4-15% Mini-PROTEAN® TGXTM Precast

Gel (BioRad) and goat anti-rat Frizzled 9 (Santa Cruz) and rabbit anti-rat

Wnt3a (Cell signaling) antibodies were used for immunoblot detection.

3.5 Immunofluorescence
ENS cells cultured for 7 days with BM or SM were fixed with BD Cytofix

solution (BD Biosciences) for 20 min, at 4°C. All samples were double

stained with primary goat anti-rat Frizzled-9, rabbit ant-rat TLR4 (Santa

Cruz) and rabbit ant-rat Wnt3a (Cell Signalling) antibodies.

Immunodetection was evaluated indirectly with –PE and –FITC conjugated

antibodies respectively. As negative controls, specimens stained only with

secondary antibodies were prepared. After mounting with Fluoro-gel II
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solution containing DAPI (EMS, Hatfield, USA), slices were observed

using a Leica SP5 TCS confocal microscope (Leica, Wetzlar, Germany).

3.6 Gene expression study
At 24h, 72h and 7 days from stimulation with rhWnt3a and LPS, total

cellular RNA was extracted using TRIzol® (Invitrogen), quantified by

measuring the absorbance at 260 nm and stored at -80 °C until use. RNA

(10 ng) was reverse transcribed and amplified in a iCycler iQ ™ (BioRad

Laboratories, Hercules, CA, USA), using a Qiagen One Step RT–PCR Kit

(Venlo). Primer pairs for target genes and the housekeeping gene

Hypoxanthine phosphoribosyltransferase (HPRT) were designed (Table 2)

and purchased from Invitrogen Life Technology. RT–PCR products were

electrophoresed on a 2% agarose gel (Invitrogen) and visualized using a

UV-transilluminator Gel Doc 2000 Gel Documentation System (BioRad).

Table 2. Oligonucleotides used for the One Step RT-PCR analysis (F=Forward;
R=Reverse).

For genes reported in Table 3, the analysis of gene expression was

conducted by qPCR. In particular, the reverse transcription was done

using Thermoscript ™ RT-PCR System kit (Invitrogen) and the

amplification reaction was performed using Platinum ® SYBR ® Green

qPCR SuperMix-UDG kit (Invitrogen) and   DNA Engine Opticon ® Real-

Time Thermal Cycler (MJ Research, St. Bruno, Canada). Amounts of each

gene product were calculated using linear regression analysis from

standard curves, demonstrating amplification efficiencies ranging from 90

to 100%. The term “fold induction” was defined as the cDNA ratio between

target gene and reference gene (HPRT) normalized to untreated control.

Statistical significance, calculated by t-Test, compared to untreated
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samples: p-value ≤ 0.05: *, p-value ≤ 0.01: **; compared to LPS treated

cells: p-value ≤ 0.01: ▲▲.

Table 3. Oligonucleotides used for the Real-Time PCR analysis (F=Forward;
R=Reverse).

3.7 Preparation of gut acellular matrix
The decellularization protocol for adult rat jejunum was adapted from

previous decellularization protocols of tracheas [Conconi et al., 2005].

Briefly, the adult rat was sacrified by cervical dislocation and the intestine

was removed and rinsed several times with PBS and Amuchina (Angelini,

Roma, Italy). Subsequently, the luminal surface was treated with 2U/ml

Dispase II (Roche) at 37°C for 1h. Afterwards, the tissue underwent

decellularization cycle composed of: steriled Milli-Q water supplemented

1% of antibiotic solution for 72h, 4% sodium deoxycholate (Sigma-Aldrich)

for 4h, and 2000 kU DNase-I (Sigma-Aldrich) in 1 M NaCl (Sigma-Aldrich)

for 3 h. Cycle was repeated until the tissue was completely decellularized

(Figure 3.2). The absence of cellular elements was verified by Toluidine

blu staining, DAPI staining and scanning electron microscopy (SEM).

Acellular matrices (AMs) were stored in PBS supplemented with 1%

antibiotic solution at 4°C until use. Untreated jejunum served as a control.
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Figure 3.2. Schematic diagram representing the decellularization process

3.8 Morphological and protein characterization of AM
A. Histochemistry

AMs were opened and pieces of about 5 mm2 were embedded in cryostat

embedding medium (Killik) (Bio-Optica, Milano, Italy). Then, the samples

were cut (7 µm) using Cryostat DM2000 (Leika,) and put onto microscope

slides (Thermoscientific). After fixation with cold acetic acid for 5 min,

toluidine blue staining was performed and sections were mounted with

Pertex solution (Leika). In parallel, after fixation cryosections were

mounted in Fluoro-gel II containing DAPI (EMS).

B. SEM

Surface morphology was evaluated by SEM. After fixing, the samples

were dehydrated through a graded series of ethanol-water mixtures from

10% to 100% ethanol. The samples were kept in absolute alcohol until

analysis and then subjected to Critical Point Drying and metalized with

gold. The images were acquired using the scanning electron microscope

(JSM 6490) (JEOL, Peabody, USA).

C. Immunofluorescence

The AM were characterized for the presence of specific ECM proteins.

Cryosections (7 µM) were permeabilized with Triton X-100 (Sigma) for 30
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min and nonspecific sites were blocked with 1% BSA (Sigma) in PBS. AMs

were stained with rabbit anti-rat -laminin, - collagene I and -collagene III

(CosmoBio, Tokyo, Japan) antibodies and incubated overnight at RT.

Thenafter, the sections were treated for 1h at RT with secondary antibody

goat anti-rabbit-FITC (Santa Cruz). AM sections treated with only

secondary antibody were considered as negative control. Samples were

mounted with Fluoro-gel II (EMS) and examined using a fluorescence

microscope (Leica SP2).

D. Quantification of DNA and RNA from AM

AM samples (5 mm ² and 0,020g), after III, IV and V cycles, were

processed for DNA and RNA extraction using Trizol® Reagent (Sigma-

Aldrich) following manufacture’s protocol. The untreated sample was

considered as positive control. Quantification was performed using the

NanoDrop 2000 spectrophotometer (Thermo Scientific).

E. Western blot

Collagene I and IV expression were evaluated by western blotting

following the protocol described previously. Briefly, total proteins extracted

from AMs (20 μg) were separated by SDS/PAGE and electrophoretically

transferred onto PVDF membranes. Rabbit anti-rat –collagene I and –

collagene IV (CosmoBio) antibodies were used for immunoblot detection.

Immunoreactivity was visualized by VersaDoc Imaging System (BioRad).

3.9 In vitro cultures of ENS cells on AM
Primary ENS cells, isolated from postnatal (P3) rat guts were seeded on

top of the outer layer of decellularized jejunum, either directly after

isolation (T0) or after seven days of culture (T7) in BM or SM. The

decellularized tissue was opened and cut into pieces of 5 mm2. The matrix

was stretched on sterile coverslip glass, transferred into 24 well plates

(BD, Falcon) and fastened with metal rings. Cultures were fixed after

different time points (3, 7, 14 days) with 4% glutaraldehyde for SEM

analysis or with Cytofix solution (BD Biosciences) for wholemount staining.
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A. Whole mount immunofluorescence staining

For wholemount staining, the specimens were fixed in Cytofix (BD

Bioscience) for 2h and permeabilized with 0.5% triton X-100 (Sigma-

Aldrich) for 30 min following a blocking step with 1% BSA (Sigma-Aldrich)

for 2h at 4°C. Primary antibodies against ß-III tubulin (Millipore) and α-

sma-FITC (Abcam, Cambridge, UK) were incubated overnight at RT.

Visualization resulted from a secondary antibody anti-mouse PE (Santa

Cruz) which was incubated for 3h at RT. Samples were mounted with

Fluoro-gel II containing DAPI (EMS) and examined using a fluorescence

microscope (Leica SP2).

B. Gene expression

After 3, 7 and 14 days of cultures, repopulated AMs were treated with

TRIzol® (Invitrogen Life Technology, Carlsbad, CA, USA), total RNA was

quantified by measuring the absorbance at 260 nm and stored at -80 °C

until use. RNA (30 ng) was reverse transcribed and amplified in a iCycler

iQ ™ (BioRad Laboratories, Hercules, CA, USA), using a Qiagen One

Step RT–PCR Kit (Venlo). Primer pairs for target genes and the

housekeeping gene Hypoxanthine phosphoribosyltransferase (HPRT)

were designed (Table 4) and purchased from Invitrogen Life Technology.

RT–PCR products were electrophoresed on a 2% agarose gel (Invitrogen)

and visualized using a UV-transilluminator Gel Doc 2000 Gel

Documentation System (BioRad).
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4. Results and Discussion

4.1 ENS-derived cells cultured in basal condition does not generate
neurospheres.
It is known that growth factors, such as EGF, bFGF and GDNF play an

essential role in the development and homeostasis of the ENS. In vivo

conditions which provide a reduction or absence of these factors promote the

development of diseases such as intestinal agangliosis. Thus, two models of

in vitro culture that simulate the physiological condition (SM) and that of

agangliosis (BM) were evaluated. After 7 days of culture in SM, typical

neurosphere formation with some adherent cells was visible, whereas no

neurospheres were observed in BM. However, the culture showed several

colonies resembling fibroblastic colon-forming units (CFU-F) (Figure 4.1)

Figure 4.1. Phase contrast microscopy of ENS-derived cells cultured for 7 days in SM (A)
and BM (B).

4.2 Basal culture condition stimulates Frizzled 9-expressing cells
against TLR4 positive subpopulations
As demonstrated by flow cytometrical analysis,  primary ENS cultures were

heterogeneous presenting characteristic stemness grade (Figure 4.2), as

suggested at T0 by the expression of Nanog (26.9 ± 0.6%), SOX2 (64.9

±1.4%), SOX10 (17.7 ± 0,4%) and p75 (2.2 ± 0.4%). Multidifferentiative

potential of freshly isolated rat ENS cells was confirmed by the expression of
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chondroitin sulphate NG2 (51.9 ± 4.3%), a proteoglycan tipically observed on

the membrane of pericyte-like cells [Corselli et al., 2010], circulating

multipotent blood-derived cells [Traktuev et al., 2008], specific glial cells

[Richardson et al., 2001; Trotter et al., 2011] and multipotent neural stem

cells [Nishiyama et al., 2009]. Moreover, the presence of Nestin (24.0 ± 3.3%)

and CD34 (35.9 ± 1.2%) was correlated to the presence of neural precursor

cells [Belkind-Gerson et al., 2013], ICCs [Sanders et al., 1999] as well as

stem-like cells [Holyoake et al., 1994; Asahara et al., 1997; Zvaifler et al.,

2000], respectively. Frizzled 9, present in brain and neural crest, was

expressed by 17.5 ± 3.0%, while Frizzled 1 and 3, that are known to be

expressed in central nervous system [Wang et al., 1997; Lee et al., 2012;

Deardorff et al., 2001]  were not significantly detected at T0. The presence of

differentiated glial cells was revealed by the expression of GFAP (22.5 ±

0.6%), whereas the responsiveness of ENS populations to LPS stimulus was

suggested by TLR4 receptor (19.5 ± 0.7%).

Figure 4.2. FCM analysis of rat ENS cells after 7 days in either SM or BM. Data are
expressed as percentage ± SD of positive cells (blue profile) with respect to controls (grey
profiles) prepared using isotopic or secondary antibodies.
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After 7 days of culturing, a different immunophenotypical expression was

observed in cultures treated with standard and basal medium (Figure 4.3).

Figure 4.3. Flow cytometry analysis of rat (P3) ENS cells after 7 days in either SM or BM.
Data are expressed as percentage ± SD of positive cells (blue profile) with respect to controls
(grey profiles) prepared using isotopic or secondary antibodies.

As previously reported [Graham et al., 2003], SOX2 showed to be

downregulated in cells cultured in SM (27.2 ± 2.3%) and in BM (47.8 ± 2.9%).

In contrast, a significant increase of positivity for the pluripotency marker
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Nanog (31.0 ± 1.9% in SM; 34.2 ± 9.6% in BM) and SOX10 (41.0 ± 1.4% in

SM; 23.0 ± 3.1% in BM) was detected. SOX2, a transcription factor important

for the maintenance of self-renewal [Heanue et al., 2011], was reduced

whereas SOX10, considered also as a glial committed cell marker [Britsch,

2001], increased. The significantive higher reduction and increase of SOX2

and SOX10, respectively, in SM in comparison with BM, demonstrate that

factors present in the culture medium induce differentiation. Moreover, ENS-

derived cells showed to be enriched of cells positive for p75 (40.5 ± 3.7% in

SM; 29.6 ± 2.9% in BM),  Frizzled 1 (24.7 ±1.9% in SM; 28.0 ± 3.4% in BM),

Frizzled 3  (6.6 ± 0.4%  in SM; 16.0± 2.9% in BM) and Frizzled 9 (35.8 ± 0.9%

in SM; 55.1 ± 0.1% in BM). Frizzled 3 is reported to be involved in neural

crest development [Deardorff et al., 2001] and Frizzled 9 is expressed on

neural precursors [Van Raay et al., 2001].  Frizzled 1 is known to be localized

in the neural stem cells niche of subventricolar zone (SVZ) and interact with

Wnt3a [Lee et al., 2012]. The percentage of Frizzled 9+ cells was significantly

increased in both conditions but with a higher portion in basal compared to

standard conditions. This evidence suggests that BM may enrich stem-like

cells, which are responsive to Wnt ligands. Moreover, it is possible to

hypothesize that up-regulation of Frizzled 9 receptor may compensate the

absence of growth factors in the maintenance of homeostasis. The low-affinity

neurotrophins receptor p75, has been associated to neural progenitors

[Kruger et al., 2002]. On the other hand, it is also expressed in glial lineage

committed cells [Young et al., 2003; Sasselli et al., 2012]. Its expression was

higher in SM than in BM cultures, suggesting that similar to SOX10

expression, the increase of p75 could be ascribed not only to a glial

commitment but also to an expansion of neuronal progenitors. In order to

better identify the neuronal subpopulation, PAN neuronal antigen expression

was evaluated demonstrating to be present only in smaller cells (22.6 ± 3.1%

in SM; 40.2 ± 3.5% in BM) (Figure 4.4). Although an increased number of

total positive cells for TLR4 was detected in SM (40.8 ± 2.3%) respect to BM

(26.8  ± 3.0%), a higher expression level of TLR4 was detected only in ENS
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cultures unstimulated with growth factors (BM). This evidence suggest that

the absence of growth factors, which simulate an agangliosis condition, up-

regulates a cell population highly responsive to inflammatory stimuli. It has

been reported that enteric neurons express TLR4 [Rumio et al., 2006]

highlighting the presence of a TLR-based neural surveillance system in the

intestinal wall [Barajon et al., 2009]. The in vitro simulation of a pathological

condition, emphasizes this evidence suggesting that viral and bacterial

agents could directly activate intestinal neural responses. No significative

alterations of CD34 (31.3 ± 1.3% in SM; 33.7 ± 1.6%  in BM) and Nestin (20.0

± 1.8% in SM; 15.0 ± 1.7% in BM) expression were identified. Cells

expressing CD34 are normally found in the umbilical cord and bone marrow

as hematopoietic stem cells, a subset of mesenchymal stem cells, endothelial

progenitor cells but also in a subset of differentiated endothelial cells

[Holyoake et al., 1994; Asahara et al., 1997; Zvaifler et al., 2000]. As shown

by Sanders and colleagues, the CD34 protein is expressed by stem cells of

ICCs, considered as the pacemaker of the GIT, mediating the inputs of the

ENS [Sanders et al., 1999]. The percentage of CD34+ cells was maintained

over in vitro culture, independently from medium conditions, suggesting that

this population may represent the stem-like cell pool. In fact, an important

characteristic of stem cells is the maintenance of undifferentiated state.

However, it is important to consider that CD34 can be associated either as a

stem cell or ICCs and glial marker [Vanderwinden  et al., 2000]. In order to

better elucidate the presence of these CD34+ subpopulation further analysis

considering co-expression with specific ICC and glial markers will be carried

out. A slight increase of NG2 expression was observed in BM cultures (60.0 ±

3.8%) compared to SM (43.1 ± 0.8%). In vitro studies have suggested that

NG2 participates in growth factor activation directly binding growth factors,

such as bFGF and EGF [Goretzki et al., 1999]. These evidences suggest that

NG2 may play an important role in organizing and presenting some types of

mitogenic growth factors at the cell surface, and in condition of reduced

availability of these factors an up-regulation of NG2 may be due to a
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compensatory process. Although GFAP expression level unchanged  in SM

(15.3 ± 4.7%), a significative decrease (3.0 ± 0.4%) was detected in samples

under basal conditions. If we consider GFAP as enteric glia marker, culturing

under basal conditions showed to prevent differentiation.

Figure 4.4 . Pan neuronal antigen expression of ENS cells cultured for 7 days in SM or BM.
Data are reported as FSC vs Fluorescence dot plot using for R1 and R2 subsets blue and
black colour, respectively. Positive expression of target markers is detected in gate G1 with
respect to staining control; it is expressed as percentage (%) ± SD as measured manually or
using the substraction/overlay statistics option of Summit 4.3 software (Beckman Coulter).

4.3 GFP Wnt reporter plasmid is a valuable tool for the detection of Wnt
canonical pathway in ENS-derived cells
In order to define a useful system to detect by immunofluorescence canonical

Wnt signalling-activated cells, a GFP Wnt reporter plasmid, named

ΔTop_EGFP3a, was experimented on ENS primary cultures. Since 24h from

transfection, the expression of GFP was observed by optical fluorescence

microscopy analysis in ΔTop cells unstimulated and stimulated with rhWnt3a

and LPS  (Figure 4.5C-E) as well as in positive controls transfected with

EGFP plasmid (Figure 4.5B). No signal was detected in controls prepared

with empty vector (Figure 4.5A), demonstrating that auto-fluorescence did not

occur. High transfection efficiency was observed by FCM at 96h (Figure

4.5G). In particular, GFP positive cells were about 80% and showed a

decreased size (P1 population) in FCS/SSC dot plot (Figure 4.5F), as GFP is
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reported to interact with cytoskeleton leading to cell size reduction [Agbulut et

al., 2007]. A gradual accumulation of β-catenin was observed in ΔTop cells

and negative controls from 24 to 72h (Figure 4.6A). The analysis by

immunofluorescence showed a membrane (Figure 4.6B) and cytoplasmic

(Figure 4.6C) localization of β-catenin in ENS cells untransfected and

transfected negative controls, respectively. This data suggest that a release

of β-catenin from plasma membrane to the cytoplasm was likely to be also

induced in all samples by the transfection method. However, β-catenin

regulation by rhWnt3a (26.7 ± 0.72%) and LPS (39.6 ± 0.6%) stimuli was

observed at 24h respect to negative control (55.9 ± 0.7%) and unstimulated

ΔTop cells (44.2 ± 0.4%) (Figure 4.6A), demonstrating an activation of Wnt

signaling either by Wnt3a than LPS. In parallel, the analysis by confocal

microscopy confirmed this activation, showing a nuclear localization of β-

catenin in ΔTop cells (Figure 4.7) with coexpression of plasmid motif LEF1 in

cytoplasm.
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Figure 4.5. Transfections were performed using an empty vector (A), either EGFP positive
control (B) and a Wnt reporter plasmid (C-E). ΔTop cells were stimulated with 20 ng/ml
rhWnt3a (D) and 5 µg/ml LPS (E). FCM analysis of  transfection efficiency was carried out in
a time range between 24 and 96h. Data are expressed as percentage ± SD of positive cells
with respect to controls prepared using isotopic or secondary antibodies (F). By FCM analysis
two cell populations were displayed, characterized by different size and surface complexity
(FCS vs SSC): the smaller population expressed GFP (population P1 green, F).
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Figure 4.6.  FCM analysis of β-catenin accumulation in the time range 24-72h. Data are
expressed as percentage ± SD of positive cells with respect to controls prepared using
isotopic or secondary antibodies (A). Immunofluorescent staining of β-catenin of
untransfected (B) and transfected (C) cells indicated the release of β-catenin into the
cytoplasm due to the transfection method. Bar: 25 µm.
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Figure 4.7. Confocal microscopy showing β-catenin shuttling into the nucleus at 24h

detected in transfected cells  unstimulated (A), treated with rhWnt3a stimulated (B) and LPS

stimulated (C). The staining was performed using β-catenin (yellow) and  LEF1(red) GFP

expression (green) was observed in transfected cells. Bars: 5µm.
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4.4 Wnt3a binds Frizzled-9 which is co-express with  TLR4 on ENS
subset
TLR4 and Frizzled-9 immunofluorescence staining performed on ENS

cultured cells for 7 days in basal or standard conditions showed that a small

size ENS subset co-express these two markers (Figure 4.8A, arrows). As

previously demonstrated by FCM, small size cells can be referred to neuronal

lineage cells (Figure 4.4). The immunofluorescence staining, showing an ENS

subpopulation responsive to LPS and Wnt3a, suggests that a neuronal

subset may represent a “key” cell in the maintenance of homeostasis and in

the regulation of inflammatory processes. Moreover, co-immunoprecipitation

demonstrated, for the first time, that Wnt3a specifically binds Frizzled-9 as

shown by the 107 kDa western blot band (Figure 4.8B). Immunofluorescence

staining shows also that big size ENS cells produce Wnt3a (Figure 4.8C).

These data demonstrate that a controlled and specific cross-talk between the

ENS subpopulations occurs.
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Figure 4.8. A) Confocal microscopy shows co-expression of TLR4 and Frizzled-9 (arrows)
either in basal and standard medium cultured cells. B) Wnt3a and Frizzled-9 interaction is
demonstrated by western blotting of co-immunoprecipitates performed on total protein
extracts of ENS cells cultured for 7 days in BM or SM. Immunoaffinity purification was carried
out using goat anti-rat Frizzled-9 and rabbit anti-rat wnt3a antibodies immobilized onto
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Protein A-Sepharose. Western blot analysis was carried out with a 4-15% gradient precast
gel. C) Immunofluorecence performed on ENS cells stained with rabbit ant-rat Wnt3a
antibody. Arrows are showing vescicles containing Wnt3a. Bar: 15 µm.

4.5 Canonical Wnt pathway is active in ENS cells and is continuously
stimulated under standard culture conditions
The canonical pathway of Wnt signalling and LPS/TLR4 pathway play

important role in controlling the enteric plasticity. To evaluated the cross-talk

between these two pathways, a western blot analysis of pAkt, pGSK-3β and

phosphorilation/traslocation of β-catenin was carried out using the

unstimulated ENS cells as reference and a time course ranging from 0 to 24h.

Under SM conditions, the detection of p-GSK-3β, p-Akt and nuclear β-catenin

at T0 and their variable expression within 24h demonstrated an important

modulation by growth factors on Wnt and LPS pathways (Figure 4.9 and

Figure 4.10). In contrast, no activation of Wnt and LPS signalling was

detected in BM-treated samples at T0 (Figure 4.9) suggesting that BM

condition was more useful to discriminate the specific effects of Wnt3a and

LPS on ENS cells. The presence of p-Akt and the traslocation of β-catenin

and Nf-κB were observed in unstimulated BM-samples  from 30’ to 24h

(Figure 3.9A and Figure 4.11). Under stimulation with rhWnt3a, a regulation

of p-β-catenin, p-Akt  and p-GSK-3β at early phase (1-2h) was observed

(Figure 4.9B). Moreover, a cyclic regulation of p-β-catenin through GSK-3β

was detected at intervals of 4h (Figure 4.11) and the delayed traslocation of

Nf-κB at 2h suggested a negative regulation by Wnt stimulus (Figure 4.9B).

As the nuclear traslocation of Nf-κB was detected at 30’ and a similar

expression panel of Wnt signaling components was observed after treatment,

LPS was hypothesized to interact early with Wnt pathway probably involving

p-Akt (Figure 4.9C), as previously demonstrated by Fang et al [2007].
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Figure 4.9. Western blot analysis at T0, 0.5-2h using antibodies specific for cytoplasmatic
phosphorylated form of Akt, GSK-3β, β-Catenin and nuclear localization of β-Catenin and Nf-
κB in unstimulated cells (A), cells treated with rhWnt3a (20 ng/mL) (B) and LPS (5 µg/mL) (C)
in SM and BM. GAPDH and lamin B were considered as cytoplasmatic and nuclear
housekeeping protein, respectively. Quantification of protein expression was performed using
the image processing software ImageJ. Data are reported as ratio within target protein and
relative housekeeping protein expression. Statistical significance, calculated by t-Test,
compared to control: p-value ≤ 0.05: *, p-value ≤ 0.01: **.
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Figure 4.10. Western blot analysis from 3h to 24h using antibodies specific for cytoplasmatic
phosphorylated form of Akt, GSK-3β, β-Catenin and nuclear localization of β-Catenin and Nf-
κB in unstimulated (A), rhWnt3a (20 ng/mL) (B) and LPS (5 µg/mL) (C)  stimulated ENS cells
in SM. GAPDH and lamin B were considered as cytoplasmatic and nuclear housekeeping
protein, respectively.
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Figure 4.11. Western blot analysis from 3h to 24h using antibodies specific for cytoplasmatic
phosphorylated form of Akt, GSK-3β, β-Catenin and nuclear localization of β-Catenin and Nf-
κB in unstimulated (A), rhWnt3a (20 ng/mL) (B) and LPS (5 µg/mL) (C) stimulated ENS cells
in basal medium. GAPDH and lamin B were considered as cytoplasmatic and nuclear
housekeeping protein, respectively.

4.6 Exogenous Wnt3a exerts anti-inflammatory activity on ENSc
The effects of Wnt3a and LPS on gene expression of ENS cells cultured

under BM were evaluated using One Step® RT-PCR and qPCR. As

suggested by the expression of specific mRNAs (Figure 4.12), a basal

expression of GDNF, EGF, FGF2, NGF and LIF was observed in all samples

without any strong modulation by culture and stimulation conditions. As

reported previously, these factors may interfere with LPS and Wnt signaling.

For this reason, it is important to consider that after 7 days, the effect of

Wnt3a and LPS might be not specifically defined as a cross-talk of both
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signalling systems. Interference to the pathways by released endogenous

factors could not be excluded. Thus, the real effect of Wnt3a and LPS can be

observed at 24h from stimulation.

Figure 4.12. RT-PCR, performed using Qiagen One Step RT–PCR Kit, of rhWnt3a (20
ng/mL) and LPS (5 µg/mL) stimulated cells after  24h and 7 days compared to unstimulated
cells (Crtl) and T0. Total RNA considered for the analysis was 10 ng and RT–PCR products
were electrophoresed on a 2% agarose gel. GDNF, EGF, FGF2, NGF and LIF were
considered as target gene compared to housekeeping HPRT expression.

As reported in Figure 4.13, the role of Wnt3a and LPS in ENS Wnt pathway

was elucidated by qPCR. As AXIN-2, c-jun, c-myc are reported as target

genes of β-catenin transcriptional activity, the upregulation (p≤0.01) of their

expression at 24h was considered dependent on the activation of Wnt

signaling in comparison with control. Interestingly, LPS treatment increased

the expression of c-jun (p≤0.01) and AXIN-2 (p≤0.05), which are under the

control of β-catenin, demonstrating a cross-talk between LPS and Wnt

pathways. After 7 days these β-catenin transcriptional genes were

upregulated in LPS-treated cells (c-myc and c-jun p≤0.05; AXIN-2 p≤0.01). C-

myc has been reported to be also regulated by Nf-κB [Duyao et al., 1990].

When ENS cultures were treated with LPS, at 24h downregulation of TLR4

(p≤0.05) was observed whereas rhWnt3a up regulated this receptor either

alone (p≤0.05) than in combination with LPS (p≤0.01). FZD9 mRNA
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expression was increased with both stimuli (p≤0.05). LPS treatment, alone or

together with rhWnt3a, increased the expression of Wnt3a (p≤0.01) (Figure

4.13A), suggesting a role of this ligand in the regulation of immune response.

Liu and colleagues [2012] demonstrated that Wnt2 contributes to host

protection in response to enteric bacteria in the intestine epithelial cells.

Compared to control, at 24h an up-regulated LPS-induced expression was

observed for CCL3 (p≤0.01), IL-1β (p≤0.01), IL-6 (p≤0.01) and TNF (p≤0.01)

demonstrating an acute inflammatory effect mediated by Nf-κB. In contrast, a

downregulation of these markers occurred in Wnt3a-stimulated cells (IL-6

p≤0.01; IL-1β p≤0.01; CCL3 p≤0.01). Moreover, anti-inflammatory IL-10 was

up-regulated by rhWnt3a stimulation (p≤0.01), whereas a significative

(p≤0.05) downregulation was observed in LPS-treated cells. Anti-

inflammatory effect of Wnt3a was observed also in double treated cells as

demonstrated by the down regulation of IL-1β (p≤0.01), the significant

reduction of IL-6 respect to LPS-treated cells (p≤0.01) and the up-regulation

of IL-10 (p≤0.01). This anti-inflammatory effect was maintained after 7 days

as demonstrated by IL-1β (rhWnt3a p≤0.01 and double treated p≤0.01) and

by IL-10 up regulation in double treated cells (p≤0.01). No effect of Wnt3a

was observed on CCL3 expression in double treated cells, suggesting that

LPS stimulation may be more effective for the mRNA regulation of this

marker. After 7 days, no expression of IL-6 and CCL3 was observed,

probably due to a differential expression time. RT–PCR products of CCL3

separated by electrophoresis showed a mRNA alternative splicing regulation

represented by about 400 bp bands [AceView, 2006] (Figure 4.13B). This

alternative splicing regulation generates a non-coding mRNA suggesting that

Wnt3a may contrast the inflammatory chemokine CCL3 at transcriptional

level.
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Figure 4.13. Gene expression study by Real-Time PCR in ENS cells treated with rhWnt3a
(20 ng/mL) and LPS (5 µg/mL). Amounts of each gene product were calculated using linear
regression analysis from standard curves, demonstrating amplification efficiencies ranging
from 90 to 100%. The term “fold increase” is defined as the cDNA ratio between target gene
and reference gene (HPRT) normalized to untreated control. A) mRNA expression of β-
catenin target gene (AXIN-2, CMYC and C-JUN), receptors (TLR4 and FZD9), WNT3A ligand
and pro and anti-inflammatory target genes (CCL3, IL-1β, IL-6, TNFα and IL-10). B) RT–PCR
products of CCL3 were electrophoresed on a 2% agarose gel showing an alternative splicing
regulation (400bp bands). Quantification of mRNA expression was performed using the
image processing software ImageJ. Data are reported as ratio within target band density and
relative housekeeping band. Statistical significance, calculated by t-Test, compared to
untreated: p-value ≤ 0.05: *, p-value ≤ 0.01: **. Significance compared to LPS treated cells: p-
value ≤ 0.01: ▲▲.
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4.7 Small bowel completely decellularizes after 5 cycles of detergent-
enzymatic treatment.
In order to completely remove the cells present in the small intestine of adult

rat, 5 cycles of decellularization were performed. The morphological changes

were observed by toluidine blue staining, while the successful

decellularization was verified by quantification of nucleic acids (RNA and

DNA) and staining of nuclei with DAPI. The decellularization process reduced

principally the thickness of luminal layer, resulting in the loss of the

characteristic intestinal mucosa villi. After 4 cycles of decellularization still few

nuclei were observed in the luminal side, while a further cycle determined a

complete tissue decellularization (Figure 4.14A). The quantification of nucleic

acids confirmed the progressive cells loss as the number of cycles increased

(Figure 4.14B).

Figure 4.14. A) Morphological analysis by toluidine blue and DAPI staining of untreated
bowel and AM decellularized by four and five cycles. Bar: 25 pm. B) RNA and DNA
quantification (ng / µl ± SD) of AMs (III, IV, V cycles) compared to untreated tissue.
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The morphological analysis by scanning electron microscope (SEM) was

performed both on the outer than the luminal side (Figure 4.15). Not treated

outer layer showed a flat and homogeneous surface, while the luminal side

was characterized by the presence of villi and crypts. Following treatment with

dispase II, cell loss in both sides was observed. In particular, the crypts were

partially covered by cellular debris and the fibrillar structures of the

extracellular matrix began to be evident in the outer side. After five cycles,

these structures were more obvious and the crypts appeared deeply clear.

Figure 3.15. SEM of native and decellularized bowel tissue.

The protein content of the acellular matrix obtained after 5 cycles of

decellularization was assessed by immunofluorescence and western blot

(Figure 4.16). The type I collagen appeared diffuse throughout the AM as
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precursor (130 kDa) and mature form (90 kDa), whereas Collagen III was

distributed mainly in the luminal side. The AM contained components of the

basal membrane, such as laminin, localized in both sides but not into the

inner portion, and type IV collagen, present as a 90 kDa isoform.

Figure 4.16. Protein characterization of AM (5 cycles) by immunofluorescence and western
blot. Bar: 25 pm.

4.8 The acellular matrix modulates the organization of ENS-derived cells
The cells cultured for 7 days in SM or BM were seeded on AMs. After 3, 7

and 14 days, the morphology and the expression of specific differentiation

markers were evaluated by SEM, immunofluorescence and RT-PCR,

respectively. The AM cultures, maintained in BM, had flattened and partially

stratified cellular elements (Figure 4.17). Neuronal differentiation did not

occur, as demonstrated by the absence of βIII tubulin. However, α-SMA, a

glial and smooth muscle cell marker, was expressed and increased with time

in culture.
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Figure 4.17. SEM and immunofluorescence analysis of neuronal markers (βIII
tubulin, red) and glial / muscle (α-SMA, green) performed on AM cultures with ENS-
derived cells cultured in BM. Bar: 25 µm.

In contrast, after 7 days with standard medium, AM cultures were composed

of different cells: flattened elements that formed a monolayer and, on the

latter, small clusters of cells characterized by small size and round shape. In

particular, after 14 days, these aggregates evolved in ganglion-like structures,

suggesting a neuronal differentiation. Furthermore, these structures were

connected by tubular formations simulating enteric neural network (Figure

4.18).
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Figure 4.18. SEM analysis of AM cultures with ENS-derived cells cultured in SM.

The neuronal differentiation was confirmed by the presence of βIII tubulin,

whose expression increased with time in culture coinciding with the ganglion-

like structures and their connections. In contrast, cells that formed the

monolayer were α-SMA-positive and did not express βIII tubulin (Figure

4.19A). Similarities were observed comparing the expression of βIII tubulin

and α-SMA in native myenteric plexus and AM cultures (Figure 4.19B).
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Figura 4.19. A) Immunofluorescence analysis of neuronal markers (βIII tubulin, red) and
glial/muscle (α-SMA, green) of AM (V cycles) repopulated with ENS cells cultured in SM.
B) Comparison of βIII tubulin (red) and α-SMA (green) expression in native myenteric
plexus and in AM cultures after 14 days in culture in SM. Bar: 25 µm.

The expression of glial (S100B), neuronal (βIII tubulin) and undifferentiated

state (SOX2) markers was evaluated by RT-PCR.  No modulation of these

markers was observed in AM cultured with SM, whereas basal conditions

showed a decreased expression of these markers, mainly at 7 and 14 (Figure

4.20). These results showed that the matrix is able to induce a more complex

cellular organization compared to that observed in cultures on polystyrene. In

fact, even in the presence of complete medium which, as mentioned above
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provides a greater amount of differentiation stimuli, the cells seeded on

polystyrene formed isolated neurospheres. In contrast, the AM cultures were

organized in ganglion-like structures partially interconnected and lying on a

substrate of cells which may function as support. In fact, as demonstrated by

immunofluorescence, these cells were positive for α-SMA, a glial and smooth

muscle marker. Several studies, performed on cell cultures, have emphasized

the crucial role of the various components of the ECM, including laminin, both

in cell migration and in the development of neurites. Moreover,

microenvironment signals are necessary for the formation of enteric ganglia

promoting NCCs differentiation into neurons [Sanes, 1989; Neugebauer et al.,

1991; Lallier et al., 1991].

Figura 4.20. RT-PCR analysis performed on ENS-derived cells cultured in BM or SM on AM
or polystyrene. Total RNA considered for the analysis was 10 ng and RT–PCR products were
electrophoresed on a 2% agarose gel. SOX2, S100B and βIII tubulin (TBBIII) were
considered as target gene compared to housekeeping HPRT expression.
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5. Conclusion

Microenvironmental stimuli plays an important role in the development,

homeostasis maintenance and differentiation. The influences of soluble

factors, Wnt signaling as well as ECM interaction have been well

characterized and studied in the ENS development. Little is known about the

role of these microenvironmental factors in the adult ENS. Taken together,

our data showed that ENS-derived cells respond to different culturing

conditions modulating their immunophenotype. Moreover, Wnt signaling was

active in post-natal ENS and a cross-talk with LPS/TLR4 pathway was

demonstrated. Furthermore, a neuronal population, co-expressing the

receptors Frizzled-9 and TLR4, was characterized and may represent a “key”

cell population involved in the maintenance of homeostasis and in the

regulation of inflammatory processes. The stimulus with Wnt3a demonstrated

to be anti-inflammatory, and the autologous production by ENS glial-like cells

of this ligand suggested a fine interaction between ENS-derived cells aimed

to control inflammation. The extracellular matrix affected the spatial

organization of the ENS cells and exerted a synergic effect with the factors

present in the culture medium. Finally, ganglion-like structures partially

interconnected suggest that ENS cells cultured on AM may represent a useful

in vitro model for toxicological and pharmacological studies as well as a

possible biomaterial in regenerative medicine.
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6. List of Abbreviations

The following abbreviations have been used in this thesis

APC Adenomatous polyposis coli

AM Acellular matrix

B-FABP Brain Fatty Acid Binding Protein

BM Basal medium

β-TrCP β-transducin repeat-containing protein

CCL3 Chemokine (C-C motif) ligand 3

ChAT Choline acetyltransferase

CFU Colony forming unit

CK1 casein kinase 1

CNS Central nervous system

CPM Complete proliferation medium

DAPI 4',6-diamidino-2-phenylindole

DSH Dishevelled

ECM Extracellular matrix

EGF Epidermal growth factor

ENS Enteric nervous system

ENCC Enteric neural crest cell

ESC Embryonic stem cell

FITC Fluorescein isothiocyanate

FGF Fibroblast growth factor

GAG glycosaminoglycans

GDNF Glial cell‐line derived neurotrophic factor

GIT Gastro-intestinal tract

GFAP Glial fibrillary acidic protein

GSK3β Glycogen synthase kinase 3

IBD Inflammatory bowel disease

IL Interleukin
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ICC Interstitial cells of Cajal

LEF Lymphocyte enhancer factor

LIF Leukaemia inhibitory factor

LPS Lipopolysaccharides

Mash1 Mammalian achaete‐scute homologue‐1
MAPK mitogen-activated protein kinase

mRNA Messenger ribonucleic acid

NC Neural crest

NF-κB nuclear factor-κB

P3 Postnatal day 3

PBS Phosphate Buffered Saline

PI3K phosphatidylinositol 3 kinase

PCR Polymerase chain reaction

PGP 9.5 Protein gene product 9.5

PNS Peripheral nervous system

RET Receptor tyrosine kinase gene

SMA Smooth muscle actin

SOX Transcription factor containing an SRY‐related HMG‐box

SVZ Subventricular zone

TCF T-cell factor

TLR4 Toll-like receptor 4

TNF-α tumor necrosis factor-α

LBP Lipopolysaccharide binding protein

TIRAP Toll-interleukin 1 receptor domain containing adaptor protein

MyD88 Myeloid differentiation primary response 88

IRAK Interleukin-1 receptor-associated kinase 1

RIP2 Receptor-interacting serine/threonine-protein kinase 2

AKT or PKB Protein Kinase B

NGF Neural growth factor

NCCs Neural crest cells
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