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“From a long view of the history of mankind - seen from, say, ten thousand years from now - 

there can be little doubt that the most significant event of the 19th century will be judged as 

Maxwell's discovery of the laws of electrodynamics. The American Civil War will pale into 

provincial insignificance in comparison with this important scientific event of the same decade” 

Richard Phillips Feynman 
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Abstract (italiano) 
Durante il mio periodo di dottorato in Scienza e Tecnologia dell’Informazione l’attività di ricerca 

principale è stata focalizzata sulla caratterizzazione, simulativa e sperimentale, dei plasmoni di 

superficie. 

I plasmoni di superficie sono onde elettromagnetiche evanescenti che si propagano 

all’interfaccia tra un mezzo metallico ed un mezzo dielettrico. Il loro vettore d’onda è più elevato 

rispetto a quello della luce nel mezzo dielettrico. Per poter quindi generare l’eccitazione si 

devono utilizzare particolari tecniche di accoppiamento. I due metodi più diffusi sono 

l’accoppiamento Kretschmann e l’accoppiamento tramite reticolo. 

Una volta raggiunte le condizioni di accoppiamento dei plasmoni di superficie, si realizza il 

fenomeno della risonanza plasmonica, la quale si manifesta attraverso brusche variazioni nelle 

componenti della luce riflessa o trasmessa dalla superficie. Tipicamente si può registrare un 

minimo della riflettanza in funzione dell’angolo di incidenza della luce sulla superficie. Esistono, 

tuttavia, anche altre modalità per registrare e misurare queste risonanze, come ad esempio 

monitorando intensità, polarizzazione o fase della luce trasmessa e riflessa dalla superficie, in 

funzione della sua lunghezza d’onda o dei sui angoli di incidenza. 

Le variazioni chimico/fisiche che avvengono all’interfaccia metallo/dielettrico, modificando la 

costante di accoppiamento plasmonica, cambiano le condizioni di risonanza. Nel caso in cui le 

variazioni all’interfaccia siano dovute ad un processo di riconoscimento molecolare è possibile 

rilevare le molecole d’interesse valutando i cambiamenti della risonanza plasmonica, fornendo 

così l’opportunità per l’implementazione di sensori specifici. 

L’attività di dottorato è stata focalizzata innanzitutto sullo studio teorico del comportamento 

della risonanza plasmonica, utilizzando varie tecniche di simulazione numerica: il metodo RCWA 

(Rigorous Coupled Wave Analysis), Il metodo di Chandezon ed il metodo agli elementi finiti, 

implementato tramite Comsol v3.5. 

Ho poi affrontato lo studio, tramite simulazioni, delle risonanze di superficie in configurazione 

Kretschmann, sia per interfacce metallo/dielettrico piane sia per interfacce nano-strutturate. 

Considerando una configurazione conica, ho simulato le risonanze di superficie per nano-

strutture reticolari e per nano-strutture bi-dimensionali periodiche. Inoltre ho analizzato il 

legame tra le modalità di accoppiamento grating e Kretschmann. 

Tramite queste simulazioni mi è stato possibile valutare e studiare la sensibilità delle varie 

risonanze plasmoniche alla variazione di indice di rifrazione, quando essa avviene all’interfaccia 

metallo/dielettrico. È stato così possibile identificare un nuovo parametro per descrivere la 

risonanza plasmonica e la sua sensibilità, ossia l’angolo azimutale, definito come l’angolo tra il 

vettore del grating ed il piano di scattering della luce. Considerando questo particolare angolo, la 

sensibilità del sensore può essere controllata con un’opportuna regolazione degli altri parametri 

coinvolti nell’eccitazione plasmonica, consentendole di raggiungere valori molto elevati. 

Successivamente, grazie all’utilizzo di due banchi, uno per la configurazione Kretschmann ed uno 

per la misura di reticoli nano-strutturati in configurazione conica, ho realizzato delle campagne 
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di misure sperimentali. E’ stato così possibile confrontare i risultati sperimentali con le 

simulazioni numeriche per le seguenti condizioni: 

 Interfaccia piana, configurazione Kretschmann 

 reticolo nano-strutturato, configurazione Kretschmann 

 reticolo nano-strutturato, configurazione conica 

L’attività sperimentale si è particolarmente focalizzata sul reticolo nano-strutturato, sia per 

l’innovativa modalità di caratterizzazione delle sue risonanze plasmoniche (valutazione del 

segnale trasmesso in funzione dell’angolo di incidenza e dell’angolo azimutale), sia per l’elevata 

sensibilità ottenuta valutando la variazione dell’angolo azimutale. La caratterizzazione è stata 

effettuata sia per il reticolo esposto all’aria che per il reticolo immerso in un liquido (tipicamente 

acqua). 

Per poter verificare il comportamento della sensibilità azimutale ho variato l’indice di rifrazione 

del liquido in contatto con la superficie utilizzando soluzioni miste di acqua e glicerolo. Inoltre, 

tramite tecniche di funzionalizzazione della superficie, ovvero applicando delle molecole thiolate 

che vengono adsorbite sulla parte metallica dell’interfaccia, mi è stato possibile variare le 

costanti di accoppiamento plasmonico, in modo da verificare la capacità del dispositivo di 

rilevare l’avvenuta creazione di uno strato molecolare sulla superficie. Inoltre ho positivamente 

verificato la capacità di immobilizzare uno strato di anticorpi sulla superficie plasmonica. 

Tutte le misure sperimentali che ho svolto in questa tesi sono state effettuate su sensori con 

superfici piane o nano-strutturate prodotte dallo spin-off universitario Next Step Engineering, 

con il quale ho collaborato durante il percorso di ricerca. 

 

Abstract (English) 

My research activity during the Ph. D. period has been focused on the simulation and the 

experimental characterization of Surface Plasmon Polaritons (SPP). 

Surface Plasmon Polaritons are evanescent electromagnetic waves that propagate along a 

metal/dielectric interface. Since their excitation momentum is higher than that of the photons 

inside the dielectric medium, they cannot be excited just by lighting the interface, but they need 

some particular coupling configurations. Among all the possible configurations the Kretschmann 

and the grating are those largely widespread. 

When the SPP coupling conditions are reached, abrupt changes of some components of the light 

reflected or transmitted at the metal/dielectric interface appear. Usually this resonances are 

characterized by a minimum of the reflectance acquired as a function of the incident angle or 

light wavelength. Several experimental methods are available to detect these SPP resonances, 

for instance by monitoring the light intensity, its polarization or its phase. 

Changes in the physical conditions of the metal/dielectric interface produce some changes of the 

SPP coupling constant, and consequently a shift in the resonance position. If these changes 



9 
 

derive from a molecular detection process, it is possible to correlate the presence of the target 

molecules to the resonance variations, thus obtaining a dedicated SPP sensor. 

I focused the first part of my Ph.D. activity on the simulation of SPP resonances by using several 

numerical techniques, such as the Rigorous Coupled Wave Analysis method, the Chandezon 

method, and the Finite Element Method implemented through Comsol v3.5. 

I simulated the SPP resonance in the Kretschmann coupling configuration for plane and nano-

grating structured metal/dielectric interfaces. Afterward, I calculated the SPP resonance 

behaviour for grating and bi-dimensional periodic structures lighted in the conical configuration. 

Furthermore, I analysed the correlations between the grating coupling method and the 

Kretschamann coupling method. 

Through all these simulations, I studied the sensitivity of the different SPP resonances to the 

refractive index variation of the dielectric in contact with the metal. In this way, I was able to 

find a new parameter suitable for describing the SPP resonance, i.e., the azimuthal angle. By 

considering this particular angle, the sensitivity of the SPP resonances could be properly set 

according to the experimental needs and, even more important, noticeably increased to high 

values. 

Experimentally I used two opto-electronic benches, one for the Kretschmann configuration and 

one for the conical mounting configuration. I have performed experimental measurements, in 

order to compare the experimental data with the simulations. In particular the following 

conditions were tested: 

 Plane interface, Kretschmann configuration 

 Nanostructured grating, Kretschmann configuration 

 Nanostructured grating, Conical configuration 

I focused my attention on the nano-structured grating in conical mounting configuration. I found 

an innovative way to characterize its SPP resonances, by measuring the transmitted signal as a 

function of the incident and azimuthal angles. The transmittance and the azimuthal sensitivities 

were characterized with the gratings in both air and water.  

In order to study the experimental azimuthal sensitivity, I changed the liquid refractive index in 

contact with the grating by using different water/glycerol solutions. Moreover, I functionalized 

the surface by using thiolated molecules that form Self Assembled Monolayer onto the metallic 

layer. In this way, I was able to change the SPP coupling constants and detect the corresponding 

azimuthal resonance shifts. I also detected the immobilization of an antibody layer onto the 

metallic surface of the plasmonic interface.  

All the devices I used in the experimental measurements were produced by the University spin 

off Next Step Engineering. 
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Introduction 

In the last three decades we witness to a growing interest in the biosensor field since methods 

for fast accurate and reliable detection of analytes, such as biological molecules, pathogens, 

toxins, and chemicals, are highly desired especially for applications such as medical diagnostic, 

drug discovery, food safety and environmental monitoring. 

Among all the possible sensors types, one attracts more interest, i.e. the affinity sensor. This 

sensor is characterized by the presence of a molecular recognition element, which is able to 

selectively bind a target analyte, affecting the sensors output. Affinity sensor could be based on 

different transducing principles. They could be summarized in electrochemical, piezoelectric, 

fluorescence, and optical sensors. 

Among the optical transducing techniques, Surface Plasmon Resonance (SPR) achieved, over the 

years, a growing use and interest. This technique exploits the excitation of Surface Plasmon 

Polaritons (SPP) which are charge density waves travelling along a metal/dielectric interface. The 

electric field associated with these waves decays exponentially in the direction perpendicular to 

the propagation one. Most of the energy is then confined to the metal surface which explains 

the remarkable sensitivity of SPR to changes in optical parameters at the metal/dielectric 

interface. 

Even if the early pioneering works on the SPP excitation through the Total Internal Reflection 

(TIR) method dates back to the ‘60s, and the first applications to gas sensing and organic 

monolayer assemblies detection appears between the ‘70s and ‘80s, the interest in this research 

field is still considerably high and involves different groups all around the world. The main 

features currently under improvement regard three main themes: reaching high throughput 

analysis, enhancing the method sensitivity, and simplifying the SPP coupling scheme. 

Since the SPPs momentum is greater than the light one in the dielectric medium, it is not 

possible to excite them by simply lighting the metal/dielectric interface. In order to overcome 

this problem different coupling configurations techniques were developed over the years. The 

most used one is the Kretschmann configuration, where the light passes through an high 

refraction index prism increasing in this way its incident momentum and allowing its coupling 

with the SPPs. A similar method where the increasing in the light momentum is performed 

taking advantage of an high refractive index medium is the waveguide one. The last main 

method is called Grating Coupling SPR (GCSPR). In this configuration the difference between SPP 

momentum and the light one is provide by exploiting the grating periodic momentum. 

Even if the fabrication of a nanostructured surface is more challenging respect to the fabrication 

of a flat surface required in the Kretschmann configurations, GCSPR configuration has one more 

degrees of freedom i.e. the azimuthal angle (𝜙). 𝜙 is defined as the angle between the light 

scattering plane and the grating momentum. 

In this work we will analyse, by means of simulations, how 𝜙 affects the SPR excitation in one-

dimensional and two-dimensional periodic structures. Then by using a silver unidimensional 
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grating, provided by Next Step Engineering s.r.l., we will prove that the sensitivity of the method 

could be enhanced by a factor of 20 respect to the Kretschmann configuration. We will also 

consider the Figure of Merit (FOM) of this detection method and we will compare it to the 

Kretschmann one. 

The work is organized as follow: 

Chapter 1 Surface Plasmon Polaritons. First we derive the expression for the SPP momentum by 

using the Maxwell’s equations, supposing that the electromagnetic wave is confined at the 

metal/dielectric interface and propagates along the surface. Then we analyse the SPP 

polarization mode, propagation length, and its penetration depth. Furthermore we illustrate 

what happens to these parameters if different metals are used in the interface. Then we 

introduce the Kretschmann and the Grating coupling configuration methods. Finally we describe 

the main feature of a SPR sensing system; we illustrate the main analyte detection method and 

some applications of these technologies. 

Chapter 2 Surface Simulation methods. In this chapter we depict three different simulation 

methods that could be used to simulate the light diffracted by a periodical structured surface. 

The first method we describe is the Rigorous Coupled Wave Analysis (RCWA). The second one is 

the differential or Chandezon Method (CM). The last one is the Finite Element Method (FEM) 

implemented through Comsol Multiphysics® version 3.5a. We use these methods to calculate 

the diffraction efficiencies of a unidimensional grating in conical mounting configuration with 

null azimuthal angle. The simulation results will be compared as well as the pros and cons of the 

methods. Finally we generalize the simpler vector model method in order to apply it to the 

calculations of the resonance in the two dimensional case. 

Chapter 3 Simulation Results. In this chapter the grating total transmittance Ttot and zero order 

reflectance R0 for the grating in conical mounting configuration will be simulated through the 

RCWA method. Moreover we perform the same study by using bidimensional periodic structures 

simulated through the FEM method. In both cases the resonances we found are well reproduced 

by the vector model calculations. After this we simulate the response of a flat and 

nanostructured surface lighted in the Kretschmann configurations. We also depict the link 

between the Kretschmann and grating configuration when the SPP are excited. Finally the 

sensitivity for both configurations are extensively studied through RCWA method. For the 

Kretschmann configuration we analyse the incident angle and wavelength sensitivity meanwhile 

for the grating configuration we also analyse the polarization and the azimuthal angle sensitivity. 

Finally we describe in detail this new sensing method i.e. the azimuthal one, and we notice that 

the sensitivity enhancement obtained is due to an almost parabolic shape of the plasmonic 

resonance. 

Chapter 4 Experimental Results. In this chapter we describe the optical benches we used to 

evaluate the SPR in grating and Kretschmann configurations and a brief description of the 

developed software will be reported. After this we show our experimental results regarding the 

characterization of the Grating transmittance. We also report the order zero reflectance in the 

Kretschmann configurations we found by using flat and unidimensional grating surfaces. Then 

we characterize the sensitivity and FOM of the azimuthal detection method by changing the 

buffer refractive index. We achieve this goals by using a custom microfluidic cell where different 
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glycerol/water solutions were flushed. We also check the ability of the method to detect the 

presence of Self Assmbled Monlayer (SAM) of different thickness and we monitor the adsorption 

kinetic of these molecules onto the silver metal surface. Finally, we compare the resonance 

shifts caused by the immobilization of an antibody layer onto the silver flat and nanostructured 

surfaces. The flat one are evaluated in the Kretschmann configurations meanwhile the 

nanostructured one are measured by using the azimuthal method. 
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1 Surface Plasmon Polaritons 

The first observation of Surface Plasmon Polaritons was performed by Wood [1] in 1902, who 

reported anomalies in the spectrum of light diffracted on a metallic diffraction grating. But only 

in 1941 Fano [2] proved that these anomalies are associated with the excitation of 

electromagnetic surface waves on the surface of the diffraction grating. Later, in 1968, the work 

of Otto [3] demonstrated that the drop in reflectivity in the attenuated total reflection method is 

due to the excitation of SPPs. In the same year, Kretschmann and Raether [4] observed 

excitation of SPPs in another configuration of the attenuated total reflection method. These 

pioneering works established a convenient method for the excitation and investigation of SPP, 

before modern nanofabrication technique allowed nanostructured gratings realization. 

The first application of the SPR as a sensing tool was performed in 1974 by Reather. He 

monitored the surface roughness of thin films [5].A few years later in 1977 Gordon detect a SPR 

shift induced by the formation of an organic monolayer films onto the metallic layer [6]. Later in 

1980, the group headed by Lundstrom reported the detection of gaseous analyte and 

biomolecules and stared the new era of this label free techniques [7], [8]. Starting from these 

pioneering works, a lot of studies have been done in order to improve both the excitation and 

detection method of the plasmonic resonance as well as its sensitivity, resolution, and reliability. 

Thanks to all these efforts SPR sensors are currently used in the analytical chemistry, material 

science and biological fields. The great impact of this field is also attested by several reviews and 

books [9]–[17] that describe the advance in the SPR sensor as well as the existence of 

commercial instruments already available since the early ‘90s [18], [19]. 

In this chapter we will describe the main features of SPP starting from Maxwell’s equations. We 

will derive the SPP dispersion law, which shows the typical non radiative character of these 

surface waves. The evanescent nature of SPPs will be then highlighted together with their 

surface propagation characteristics. We will then describe how to excite SPP by means of light. 

Finally we will introduce some basic features of a biosensor device. 

1.1 Theory of Surface Plasmon Polaritons 

In order to achieve the condition for the SPP wave excitation we can start from Maxwell’s 

equations in a continuous media without charge or current sources [15]: 

 ∇𝑫 = 0 (1.1) 

 ∇ × 𝑬 = −
𝜕𝑩

𝜕𝑡
 (1.2) 

 ∇𝑩 = 0 (1.3) 

 𝛻 ×𝑯 = 
𝜕𝑫

𝜕𝑡
 (1.4) 

We considered also these constitutive relations: 

 𝑫 = ε(𝒓)𝑬 (1.5) 
 𝑩 =  μ(𝒓)𝑯 (1.6) 
where ε(𝒓) = 𝜀0 𝜀(𝒓) and, μ(𝒓) = 𝜇0 𝜇(𝒓), 𝜀, 𝜇 are respectively the relative dielectric 

permittivity and the relative magnetic permeability of the medium meanwhile 𝜀0, 𝜇0 refers to 
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their values in vacuum, respectively. In this specific case, since we are interested in study time 

harmonic wave propagation, the fields can be written as follow: 

 𝑬(𝑥, 𝑦, 𝑧, 𝑡) = 𝑬(𝑥, 𝑦, 𝑧)𝑒−𝑖𝜔𝑡 (1.7) 
 𝑯(𝑥, 𝑦, 𝑧, 𝑡) = 𝑯(𝑥, 𝑦, 𝑧)𝑒−𝑖𝜔𝑡 (1.8) 
For simplicity and practical purposes (since we will use Silver as metal) we will consider only non-

magnetic material. This implies that 𝜇 =1 in all our domains. 

Taking the curl of (1.2) and using (1.4) and (1.2) we obtain this equation: 

 ∇2𝑬 − ε(𝒓)μ
𝜕2𝑬

𝜕𝑡2
= ∇(−

1

ε(𝒓)
𝑬 ∙ ∇ε(𝒓)) (1.9) 

In a similar way, for the magnetic field: 

 ∇2𝑯− ε(𝒓)μ
𝜕2𝑯

𝜕𝑡2
= (∇ × 𝐇) × (

∇ε(𝒓)

ε(𝒓)
) (1.10) 

 

Figure 1.1 Surface Plasmon Polaritons fields at the metal/dielectric interface. 

Figure 1.1 schematically shows the system under analysis. We have a metal/dielectric interface 

along the 𝑧=0 plane. The uniform metal region is confined in the 𝑧<0 region meanwhile the 

uniform dielectric one is defined by the 𝑧>0 region. In each one of these two regions the value of 

the dielectric permittivity is constant and uniform therefore in equations 1.9 and 1.10 can be 

simplified becoming two typical Helmholtz equations: 

 𝛻2𝑬+ 𝜀𝑘0
2𝑬 = 0 (1.11) 

 𝛻2𝑯+ 𝜀𝑘0
2𝑯 = 0 (1.12) 

where we have extracted the time harmonic propagation term and define 𝑘0 = 𝜔 𝑐⁄ . 

Since we want the wave to be guided along the interface, we can assume that the wave is 

travelling in the 𝑥-direction since the system is symmetric for 𝑧-axis rotation. Finally taking into 

account that the system is also symmetric for 𝑦-axis translations we can assume that the general 

form of the magnetic fields is described by: 

 
𝑬(𝑥, 𝑦, 𝑧) = 𝑬(𝑧)𝑒𝑖𝑘𝑥𝑥 
𝑯(𝑥, 𝑦, 𝑧) = 𝑯(𝑧)𝑒𝑖𝑘𝑥𝑥 

(1.13) 
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Applying this field assumptions into the Helmholtz equations (1.11) and (1.12) we obtain: 

 

 
𝜕2𝑯(𝑧)

𝜕𝑧2
+ (𝜀𝑘0

2 − 𝑘𝑥
2)𝑯(𝑧) = 0 (1.14) 

 𝜕2𝑬(𝑧)

𝜕𝑧2
+ (𝜀𝑘0

2 − 𝑘𝑥
2)𝑬(𝑧) = 0 (1.15) 

These equations are the starting point for the study of electromagnetic modes in waveguides, 

and more specifically for the analysis of SPP’ dispersion relation. 

If we try to solve the above equations with the constraints coming from the Maxwell equations 

1.2 and 1.4 we will find two independent solutions: the Transverse Magnetic (TM) propagation 

mode, where only the 𝑦-component of magnetic field is present, and the Transverse Electric (TE) 

propagation mode where only the y-component of electric field is present. 

Both the dielectric and metallic medium can be described by a dielectric constant 𝜀𝑑 = 𝜖𝑑
′ + 𝑖𝜖𝑑

′′  

and 𝜀𝑚 = 𝜖𝑚
′ + 𝑖𝜖𝑚

′′  , respectively. As we can see in this case we separate the real and imaginary 

part of the dielectric constant. Now with these definition we can write the matching conditions 

at the interface: 

 
𝑬𝒅
∥ = 𝑬𝒎

∥  

𝜀𝑑𝑬𝒅
⊥ = 𝜀𝑚𝑬𝒎

⊥  
(1.16) 

 

 
𝑯𝒅
∥ = 𝑯𝒎

∥  

𝜇𝑑𝑯𝒅
⊥ = 𝜇𝑚𝑯𝒎

⊥  
(1.17) 

If we assume that a possible solution for the Maxwell’s equations in the TM mode has this form  

 
𝑯𝑗 = (0,𝐻𝑗

𝑦
, 0) 𝑒𝑖(𝑘𝑥,𝑗𝑥±𝑘𝑧,𝑗𝑧) 

𝑬𝑗 = (𝐸𝑗
𝑥 , 0, 𝐸𝑗

𝑧) 𝑒𝑖(𝑘𝑥,𝑗𝑥±𝑘𝑧,𝑗𝑧) 
(1.18) 

Where j stands for dielectric (d) or metal (m) part of the wave guide. 

In this case if we want to find a solution confined at the interface we have to assume 𝑘𝑧,𝑗  purely 

imaginary and so we have to take the plus sign if z > 0 and the minus sign for z < 0 . 

Immediately the boundary conditions 1.16 and 1.17 implies that  

 𝑘𝑥,𝑑 = 𝑘𝑥,𝑚 = 𝑘𝑥 (1.19) 
Inserting these fields in equation 1.14 we obtain the following algebraic relations: 

 
𝑘𝑧,𝑑
2 = 𝑘𝑥

2 − 𝑘0
2𝜀𝑑 

𝑘𝑧,𝑚
2 = 𝑘𝑥

2 − 𝑘0
2𝜀𝑚 

(1.20) 

Taking the curl relationship (1.4) for the TM case we found other conditions that has to be 

satisfied 
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𝛁 ×𝑯𝑗 = (

∓𝐻𝑗
𝑦
𝑖𝑘𝑧,𝑗𝑒

𝑖(𝑘𝑥𝑥±𝑘𝑧,𝑗𝑧−𝜔𝑡)

0
𝐻𝑗
𝑦
𝑖𝑘𝑥𝑒

𝑖(𝑘𝑥𝑥±𝑘𝑧,𝑗𝑧−𝜔𝑡)
) = 𝜀𝑗

𝜕𝑬

𝜕𝑡

= (

−𝑖𝜀𝑗𝜔𝐸𝑗
𝑥𝑒𝑖(𝑘𝑥𝑥±𝑘𝑧,𝑗𝑧−𝜔𝑡)

0
−𝑖𝜀𝑗𝜔𝐸𝑗

𝑧𝑒𝑖(𝑘𝑥𝑥±𝑘𝑧,𝑗𝑧−𝜔𝑡)
) 

(1.21) 

Considering the 𝑥-component and applying the boundary conditions 1.16 and 1.17 we obtain 

the system:  

  {

𝑘𝑧,𝑑
𝜖𝑑

𝐻𝑑
𝑦
+
𝑘𝑧,𝑚
𝜖𝑚

𝐻𝑚
𝑦
= 0

𝐻𝑑
𝑦
− 𝐻𝑚

𝑦
= 0

  (1.22) 

Which admits solution only if its determinant vanishes: 

 
𝑘𝑧,𝑑
𝜀𝑑

+
𝑘𝑧,𝑚
𝜀𝑚

= 0 (1.23) 

If we now consider the case 𝜖𝑑
′′  ≈  𝜖𝑚 

′′ ≈ 0 we can see that in order to solve the equation the 

metallic nature of the lower part of the wave guide is crucial for the existence of surface waves. 

In fact for a metallic material 𝑅𝑒(𝜀𝑚) < 0 hence 1.23 has solution. 

Inserting this equation into (1.20) we obtain the Surface Plasmon Polaritons dispersion relation  

 𝑘𝑥 =  
𝜔

𝑐
√
𝜖𝑑
′ 𝜖𝑚

′

𝜖𝑑
′ + 𝜖𝑚

′  (1.24) 

SPP can exist only if we consider the incident light in TM mode. If the TE mode is considered the 

previous calculations get the following equation instead of the 1.23: 

 (𝑘𝑧,𝑑 + 𝑘𝑧,𝑚)𝐸𝑗
𝑦
= 0 (1.25) 

 

But in order to have a confined solution  Re[𝑘𝑧,𝑗] = 0 and Im[𝑘𝑧,𝑗] > 0, this implies that the 

only solution for equations 1.25 is 𝐸𝑗
𝑦
= 0; hence no SPP propagates in TE mode. 

We will now analyse the propagation length and the penetration depth of the SPPs. The 

propagation length can be derived by considering the SPP propagation constant we found in 

1.24. Taking into account the complete metal dielectric constant the modulus of its real part is 

much larger than its imaginary part |𝜖𝑚
′ | ≫ 𝜖𝑚

′′  and the expression can be developed in a Taylor 

series: 

 𝑘𝑥 = 𝛽 = 𝛽
′ + 𝑖𝛽′′ =   

𝜔

𝑐
√
𝜖𝑑
′ 𝜖𝑚

′

𝜖𝑑
′ + 𝜖𝑚

′ + 𝑖
𝜖𝑚
′′

2(𝜖𝑚
′ )2

𝜔

𝑐
(
𝜖𝑑
′ 𝜖𝑚

′

𝜖𝑑
′ + 𝜖𝑚

′ )

3
2⁄

 (1.26) 

The imaginary part of the propagation constant represents the SPP wave attenuation by the 

metal adsorption. This Implies that the field intensity decays with a characteristic length of 

𝐿 = 1 2𝛽′′⁄ . 
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Metal: 𝜀𝑚 @ 𝜆 = 635 𝑛𝑚 𝐿𝑎𝑖𝑟[𝜇𝑚]; 𝜀𝑑 = 1 𝐿𝑤𝑎𝑡𝑒𝑟  [𝜇𝑚]; 𝜀𝑑 = 1.78  

Gold  -10.7 + 𝑖1.3 7.8 2.9 

Silver -17.0 + 𝑖0.7 3.8 1.5 

Aluminium -51.7 + 𝑖18.6 14.1 5.8 
Table 1.1: Values of SPP propagation length calculated for three different metals both in air and in water obtained 

by stimulating the surface with a light having a 635 nm wavelength. 

In Table 1.1 we report the different values of the of SPP propagation length calculated for three 

different metals: gold, silver, and aluminium. The calculations were performed for both air and 

water dielectric. A 635 nm wavelength was supposed to excite the SPP. As we can see in air we 

obtain a decay length between 3.8 μm and 14.1 μm meanwhile this range is almost halved if 

water is considered as the dielectric medium. 

Another important physical factor is the penetration length of the SPP inside the metal and 

dielectric domain. These spatial extension is due to the fact that the electric field exponentially 

decreases in the direction perpendicular to the interface plane 𝐸 = 𝐸0exp (−|𝑘𝑧,𝑗𝑧|), see 

equation 1.18. The penetration length is defined as the value of z where the electric field 

intensity decays of a factor 1/𝑒: 

 𝑑𝑧,𝑗 =
1

𝑘𝑧,𝑗
= 
𝜆0
2𝜋
√|
𝜖𝑑
′ + 𝜖𝑚

′

(𝜖𝑗
′)
2 | (1.27) 

Where 𝜆0 is the vacuum wavelength of the light used for excite the SPP, and the subscripts 𝑗 = 𝑑 

or 𝑚 stand for the quantities calculated in the dielectric and metallic medium, respectively. This 

parameter gives a geometrical idea of the region where the SPP energy is confined. The 

following table 1.2 reports these quantities for some special cases: 

Metal: 𝜀𝑚@𝜆 =
635 𝑛𝑚 

𝑑𝑧,   𝑎𝑖𝑟  [𝑛𝑚]; 𝜀𝑑 = 1 𝑑𝑧,   𝑤𝑎𝑡𝑒𝑟  [𝑛𝑚]; 𝜀𝑑 = 1.78 

  dielectric metal dielectric metal 

Gold  -10.7 + 𝑖1.3 314 29 169 28 

Silver -17.0 + 𝑖0.7 404 23 221 23 

Aluminium -51.7 + 𝑖18.6 719 13 402 13 
Table 1.2 Values of fields penetration deep calculated for three different metals both in air and in water obtained 
by stimulating the surface with a light having a 635 nm wavelength 

As we can see inside the metal layer the electric field rapidly decays having a penetration depth 

ranging from 30nm and 10 nm. On the contrary, the SPP penetration depth is always higher than 

314 nm for the air case and 169 nm for the water case. We will see in section 3.4.1 how this 

penetration depth can be used in order to predict the effect of a thin dielectric films onto the 

metal layer as proposed by Jung [20] in the Effective Medium Approximation (EMA). 
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1.2 Excitation of Surface Plasmon Polaritons 

In the previous sections we saw how to retrieve the SPP coupling constant but we did not 

explain how to excite these electromagnetic guided modes. The excitation problems arise from 

the fact that the light momentum in the dielectric is always lower than the SPP one, hence these 

modes cannot be excite just by lighting the metal/dielectric interface. 

In order to calculate the SPP dispersion relation an expression for the metal dielectric constant 

has to be found. The simpler model for its the description is the plasma model. In this model the 

free electrons of the metal are described as a gas of free electron that moves around a fixed 

background of positive ion cores. The effect of the metallic lattice influences this model by 

modifying the effective electron mass used and its validity extends until the lowest visible 

frequencies. Below these wavelengths some interactions between the atom bounded electrons 

and the light appear. We can consider that the electron gas responds to an applied electric field 

following the sequent equation: 

 𝑚𝒙̈ = −𝑚𝛾𝒙̇ − 𝑒𝐄 (1.28) 
Where 𝒙 is the displacement from the equilibrium position, 𝛾 represents a damping 

contribution, 𝑚 and 𝑒 are the electron effective mass and charge. 

Assuming now an harmonic time dependency the equation 1.28 can be algebraic solved and the 

displacement becomes: 

 𝒙(𝑡) =
𝑒

𝑚(𝜔2 + 𝑖𝛾𝜔)
𝐄(𝑡) (1.29) 

Subsequently the polarization of the metal atoms becomes: 

 𝐏 = −𝑒𝑛𝒙 = −
𝑛𝑒2

𝑚(𝜔2 + 𝑖𝛾𝜔)
 𝐄 (1.30) 

Where 𝑛 is the density of the free electrons. 

Relating this polarization filed with the relative dielectric constant, we obtain: 

 𝜀(𝜔) = 1 − 
𝜔𝑝
2

𝜔2 + 𝑖𝛾𝜔
 (1.31) 

In this equation 𝜔𝑝 = 
𝑛𝑒2

𝜖0𝑚
 is the plasma frequency for the free electron gas and it is related to 

the frequency of the longitudinal oscillations of the free electron gas. 

The dielectric function can be divided into its real and imaginary part as follow: 

 𝜖′(𝜔) = 1 − 
𝜔𝑝
2𝜏2

1 +𝜔2𝜏2
;  𝜖′′(𝜔) = 

𝜔𝑝
2𝜏

𝜔(1 + 𝜔2𝜏2)
 (1.31) 

Here 𝜏 = 1 𝛾⁄  represents the time occurring between dumping collisions, and it is known as the 

relaxation time;  𝛾 represents therefore the collision frequency. 

Typical value for gold are 𝜔𝑝 = 12.1 × 1015 sec-1 (corresponding to a photon of 8 eV or 155 

nm) and  𝜏 = 2.7 × 10−14 sec (corresponding to a photon of 25 meV or 49 μm if the 

corresponding frequency 𝛾 is considered) [21]. 
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If we consider 𝜔𝜏 ≫ 1 for (635 nm 𝜔 ~ 3 1015 Hz ) the damping is negligible and the dielectric 

function is predominantly real: 

 𝜖(𝜔) = 1 − 
𝜔𝑝
2

𝜔2
 (1.32) 

Inserting the above expression for the metal dielectric function in the SPP momentum (eq 1.24) 

we obtain the dispersion curves plotted in figure 1.2. 

 

Figure 1.2 dispersion curves for the SPP propagating between air and a metal having the dielectric constant 
obtained from the plasma model (blue curve) and the light one in air (red curves). 

We see that the dispersion curve of a SPP lies always on the right side of the dispersion relation 

of light in vacuum. This implies that SPP cannot be directly excited by lighting the surface but 

and additional momentum to the incoming photon must be added. 

The coupling of the SPP at a metal dielectric interface is substantially determined by the 

morphology of the metal dielectric interface. If the surface is flat the coupling method requires 

to enhance the momentum of the coupling photon. Meanwhile if the surface is nanostructured 

the photon momentum is enhanced by exploiting the grating momentum. We will describe in 

detail the two cases in the following section. 

1.2.1 Flat Surfaces 

The most used method for the excitation of SPP along a flat metal/dielectric interface is the 

Attenuated Total Internal Reflection (ATR). A typical scheme for ATR method is a three layers 

system consisting on a thin metal film sandwiched between two dielectric media, for instance a 

glass prism and air or water, with their dielectric constant respectively 𝜖𝑝,  𝜖𝑑 where the relation 

𝜖𝑝 >  𝜖𝑑  must be satisfied. The 𝑥-component of the light momentum on the metal/glass 

interface is 𝑘𝑥 =  𝑘0√𝜖𝑝  sin𝜃 where 𝜃 is the incident angle. This momentum is not sufficient to 

excite SPP at the metal/glass interface. Nevertheless if we are in Total Internal Reflection (TIR) 

condition an evanescent wave propagates parallel to the glass interface and if the metal film has 

the correct thickness (~50 nm) this wave excite the SPP at the metal/air interface 

In this case the condition that must be satisfied is: 
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 𝑘0√𝜖𝑝  sin 𝜗 =   𝑘0√
𝜀𝑑𝜀𝑚

𝜀𝑑 + 𝜀𝑚
 (1.33) 

This relation tells us that there is a cross point between the curve of light dispersion in prism and 

the curve of SPP dispersion at metal/air interface. 

This idea has been implemented into two different excitation configurations: the Kretschmann 

and the Otto one[3], [4]. 

 

Figure 1.3 a) Schematic of the Kretschmann coupling method b) dispersion curves of the methods 

In figure 1.3a we report the typical Kretschmann configuration. The light incoming from the 

prism impinges the metal films with an angle 𝜃. Then when the correct incident angle is reached, 

SPP is excited at the metal/dielectric interface. If the intensity of the reflected ray is plotted as a 

function of 𝜃 a minimum appears when the SPP is excited. In figure 1.3b we report the 

dispersion curves of this system. As we can see the curve that represented the SPP at the 

metal/air interface is intersected by the dispersion relation of light inside the prism. This 

intersection point represents the SPP excitation. This is allowed by the fact that for the same 

frequency the photon momentum inside the prism is higher by factor √𝜀𝑝 reducing the slope of 

the dispersion relation respect to the one in air, and intersecting, in this way the SPP curve. 

The Otto configuration (Figure 1.4a) is similar to the Kretschmann one but in this case the metal 

layer is not in contact with the prism and there is a thin dielectric air layer between the prism 

and the metal layer. As well as the previous case the SPP excitation happens when the system is 

in TIR condition and the excitation manifest as a reflectance minimum. Obviously the gap 

between the prism and the metal must be correctly set in order to obtain a good coupling. 
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Figure 1.4 a) Otto configuration, b) waveguide confguration 

The last method that could be used for the excitation of the SPP on flat surfaces is the 

waveguide method [22] shown in Figure 1.4b. In this case a region of the waveguide is modified 

by inserting a finite metal film between the waveguide core and the dielectric medium. When 

the light passes through the modified part of the waveguide, it can excite SPP causing a drop in 

the waveguide transmittance. 

Nowadays the Kretschmann configuration is the most used for the SPP excitation and study. This 

is due to the fact that the flat metal/dielectric interface is easy to fabricate, and this 

methodology is the one implemented in the most SPR commercial instruments. 

1.2.2 Nanostructured surfaces 

In Order to excite the SPP a nanostructured surface can also be used. In these structures the 

ability to control the light and the SPP at the nanoscale offered a new kind of prospective such as 

plasmonic lens, and vortex [23], [24]. 

Nevertheless we are interested here in periodic nano-structures where the grating momentum 

can be described by a vector 𝑮 constant in all the space. Hence the missing momentum for the 

excitation of the SPP is supplied by the grating itself (See Figure 1.5), satisfying this simple vector 

equation: 

 𝒌𝑆𝑃𝑃 = 𝒌||
(𝑖𝑛)

+𝑚𝑮 (1.33) 

where 𝒌𝑆𝑃𝑃  is the plasmonic momentum, 𝒌||
(𝑖𝑛)

 is the projection onto the grating plane of the 

incoming light momentum and  𝑚 ∈ ℤ is the grating diffraction order that allow the coupling. 

This equation can be simplified to a scalar form if all the three vectors are aligned: 

 𝑘𝑆𝑃𝑃 =   𝑘0√𝜖𝑑  sin 𝜃 +𝑚|𝑮| =  𝑘𝑥,𝑛  (1.34) 

where |𝑮| =
2𝜋

Λ
 is the modulus of the grating momentum and Λ is the grating period. 

When this resonance condition is satisfied by the n-th diffraction order the diffraction the input 

light power is delivered to the SPP and experimentally a minimum in the reflectance or a 

maximum in the grating transmittance are observed. 
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Figure 1.5.Grating coupling scheme. 

Figure 1.5 reports the simplified version of the grating coupling mode. In this case 𝒌||
(𝑖𝑛)

reduces 

to 𝑘𝑖,𝑥 and the momentum of the diffracted rays differs from the incoming light momentum by 

multiples of the grating coupling momentum. 

In section 2.4 we will analysed more in details the Grating coupling configurations applying it to 

the more general case of two-dimensional periodic structures in conical mounting 

configurations. Moreover we will see in chapter 3 how this method, based on a vector equation, 

correctly predicts the SPR position.  
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1.3 Surface plasmon resonance sensors 

Surface Plasmon Resonance sensors can measure small changes in the refractive index occurring 

at a metal/dielectric interface thanks to their evanescent field that penetrates in the dielectric 

medium [12], [16]. A change in the dielectric refractive index configuration gives rise to a change 

in the propagation constant of the SPP condition. These variations modify measurable quantities 

like resonance angles, coupling wavelength, phase or intensity of the light reflected or 

transmitted by the interface as reported in Figure 1.6. 

 

Figure 1.6: Concept of surface plasmon resonance sensor 

The core of SPP resonance biosensor is composed by a bio-recognition layer, an analyte target 

molecule, and a transducer. The bio-recognition layer is immobilized over the metal film 

supporting the SPP and it is able to recognize and bind some selected analytes. These analytes 

are usually immersed in a liquid buffer solution that flows over the bio-recognition layer. The 

binding of the analytes to the bio recognition layer increases the effective refractive index. This 

increase changes the SPP coupling constant, hence affecting the SPR. 

1.3.1 Performances  

The performances of a SPR biosensor can be described by using some parameters such as 

sensitivity, resolution, linearity, accuracy, reproducibility and limit of detection. The sensor 

response 𝑌 to a given value of the measurand 𝑋 can be predicted by the sensor transfer 

function 𝐹, 𝑌 = 𝐹(𝑋) determined from a theoretical sensor model or by a sensor calibration 

curve. In our case the measurand 𝑋 refers to the chemical or biological analyte concentrations 

that causes the changes in the surface refractive index configuration [9], [12], [16]. 

Sensitivity: 

The sensor sensitivity is the ratio of the change in sensor output to the change in the measurand 

(or slope of the calibration curve): 

 𝑆 =
𝜕𝑌

𝜕𝑋
 (1.35) 

We can also define a refractometric sensitivity that describes the sensitivity of the SPR sensor to 

the refractive index 𝑛 and can be written as  
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 𝑆𝑅𝐼 =
𝜕𝑌

𝜕𝑛
 (1.36) 

and similarly a sensitivity of an SPR biosensor to the concentration of analyte 𝑐  

 𝑆𝑐 =
𝜕𝑌

𝜕𝑐
 1.37 

The sensitivity of a SPR biosensor to the concentration of the analyte can be decomposed into 

two main factors: 

 
 𝑆𝑐 =

𝜕𝑌

𝜕𝑐
=
𝜕𝑌

𝜕𝑛

𝑑𝑛(𝑐)

𝑑𝑐
=  𝑆𝑅𝐼𝑆𝑛𝑐  (1.38) 

where 𝑆𝑛𝑐  is derived from the refractive index change caused by the binding of analyte 

concentration 𝑐 to the biorecognition layer. 

The sensitivity of a SPR sensor to a refractive index 𝑆𝑅𝐼  is given by two contributions: 

 𝑆𝑅𝐼 =
𝜕𝑌

𝜕𝑛𝑒𝑓𝑓

𝛿𝑛𝑒𝑓𝑓
𝛿𝑛𝑏

= 𝑆𝑅𝐼1𝑆𝑅𝐼2  (1.39) 

The first term 𝑆𝑅𝐼1 depends on the method of excitation of surface plasmons and it represents 

an instrumental contribution. The second term 𝑆𝑅𝐼2 describes the sensitivity of the effective 

index of a surface plasmon to the refractive index and it is independent respect to the SPP 

excitation method. These last term mainly depends on the profile of the refractive index (for 

instance a bulk or surface refractive index changes). 

Resolution: 

The resolution of a SPR biosensor is defined as the smallest change in the bulk refractive index 

that produces a detectable change in the sensor output and it is strictly related to the level of 

uncertainty of the sensor output. The resolution 𝜎𝑅𝐼  is typically expressed in terms of the 

standard deviation of the sensor output noise, 𝜎𝑠𝑜, translated to the refractive index of bulk 

medium,  𝜎𝑅𝐼 =  𝜎𝑠𝑜/𝑆𝑅𝐼  . 

Dominant sources of noise are the fluctuations in the light intensity emitted by the light source, 

the laser in our case, the shot noise associated with photon statistics, associated to the 

conversion of the light intensity into electric signal. 

Noise in the intensity of light emitted by the light source is proportional to the intensity and its 

standard deviation 𝜎𝐿  can be given as 𝜎𝐿 = 𝜎𝑟𝐿𝐼  where 𝜎𝑟𝐿  is relative standard deviation and 𝐼 

is the measured light intensity. 

Shot noise is associated to random arrival of photons on a detector and the corresponding 

random production of photoelectrons. Photon flux usually obeys Poisson statistics and produces 

a shot noise 𝜎𝑆 which is directly proportional to the square root of the detected light intensity: 

𝜎𝑆  =  𝜎𝑟𝑆√𝐼 where 𝜎𝑟𝑆 is  relative standard deviation. Detector noise consists of several 

contributions that originate mostly in temperature noise and its standard deviation 𝜎𝐷  is 

independent on the light intensity. 

The resulting noise of a measured light intensity 𝜎𝐼  is a statistical superposition of all the noise 

components and it is expressed as: 
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 𝜎𝐼(𝐼) =  √𝐼2𝜎𝑟𝐿
2  + 𝐼𝜎𝑟𝑆 

2 + 𝜎𝐷 
2   (1.40) 

 

Linearity, accuracy, and reproducibility: 

Sensor linearity defines the extent to which the relationship between the measurand and the 

sensor output is linear over the working range. Linearity is usually specified in terms of the 

maximum deviation from a linear transfer function over the specified dynamic range. Sensors 

with linear transfer function are desirable as they require fewer calibration points to produce an 

accurate sensor calibration. However, response of SPR biosensors is usually a non-linear function 

of the analyte concentration and therefore calibration needs to be carefully considered.  

The sensor accuracy describes the agreement between a measured value and a true value of the 

measurand i.e. the analyte concentration. 

The sensor reproducibility refers to the ability of the sensor to return the same output when 

measuring the same value of measurand. 

Limit of detection (LOD) 

LOD is the concentration of analyte 𝑐𝐿derived from the smallest measure 𝑌𝐿  that can be 

detected with reasonable certainty. The value is given by  

  𝑌𝐿𝑂𝐷 = 𝑌𝑏𝑙𝑎𝑛𝑘 +𝑚 𝜎𝑏𝑙𝑎𝑛𝑘  (1.41) 

where 𝑌𝑏𝑙𝑎𝑛𝑘  is the mean of the blank (sample with no analyte) measures, 𝜎𝑏𝑙𝑎𝑛𝑘  is the standard 

deviation of the blank measures, and 𝑚 is a numerical factor chosen according to the confidence 

level desired (typically 𝑚 = 2 or 3).  

As 𝑐𝑏𝑙𝑎𝑛𝑘 =  0, the LOD concentration 𝑐𝐿𝑂𝐷  can be expressed as: 

 

 

  

  𝑐𝐿𝑂𝐷 = 
𝑚 𝜎𝑏𝑙𝑎𝑛𝑘

𝑆𝑐(𝑐 = 0)
⁄  (1.42) 
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1.3.2 Detection techniques 

 

Figure 1.7 Main detection formats used in SPR biosensors: A) direct detection; B) sandwich detection 
format; C) competitive detection format; D) inhibition detection format. 

In the previous section (eq 1.38) we have seen that the SPP sensitivity to some analyte 

concentrations is governed by two factors one due to the detection method 𝑆𝑅𝐼  and the other 

one due to the ability of the analyte to cause a change in the refraction index 𝑆𝑛𝑐. 

If only the detection method is considered 𝑆𝑅𝐼  we can defined a resolution of the instrument by 

defining the small refractive index variations that can be detected. This value seems to have 

reached an intrinsic limit of 10-7 RIU [25] even if some authors claims it could be reduced until 

10-8 RIU [26]–[30]. Nevertheless this seems to be an ultimate limits for this detection technique 

and therefore in order to increase the resolution and the LOD for an analyte concentration 

several detection formats were developed. We report the main ones in Figure 1.7 [12]. 

The detection format is chosen on the basis of analyte target molecules size, interaction with the 

bio-recognition layer, and range of concentrations. 

The simplest detection scheme is the direct one reported in Figure 1.7a. In this case the direct 

binding between the analyte and the biorecognition layer is able to produce a sufficient 

response of the sensor in the desired analyte concentrations range. The specificity and LOD can 

be improved by using the sandwich detection format (Figure 1.7b). Here a second antibody 

attaches to the bound analyte layer enhancing in this way the SPP response, proportionally to 

the bounded analytes. 
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Small analytes (molecular weight < 5000) often does not generate a sufficient change in the 

refractive index. This is due to the fact that the analyte molecules usually are captured by a bio 

recognition layer that acts as a spacer between them and the metal surface. This spacer 

decreases the molecular sensitivity 𝑆𝑛𝑐, due to the evanescent nature of the SPP electric field 

inside the dielectric. Thanks to the competitive or inhibition detection format one can overcome 

this low 𝑆𝑛𝑐  value. 

The competitive detection format is reported in Figure 1.7c. Here the surface is coated with 

fixed number of binding sites i.e. antibody. In the solution both analytes and bigger conjugate 

analyte molecules are present. Since the two species compete for the same binding site, and 

only if the large conjugate molecules bound we can detect a signal, the SPR variations is 

inversely proportional to the analyte concentration. 

The inhibition method is presented in Figure 1.7d. Here fixed concentration of antibodies is 

mixed in a solution with an unknown concentration of their affinity analyte. On the surface 

sensors the same analytes were previously immobilized. When the solution containing both 

antibodies and analytes flows over the surface the free antibodies bind with the immobilized 

analyte. Also in this case the response is inversely proportional to the analyte concentration 

since the greater is the SPR signal the more antibodies are free to bind and this means a low 

analyte concentration. 
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1.3.3 Applications 

The fields where SPR biosensors find application can be divided into three main categories: 

medical diagnostic, environmental monitoring, and food safety[12].  

Regarding the medical area SPR biosensors proved to be useful tools to detect: viruses [31], [32], 

cancer markers [33], [34], myocardial infarction [35], allergy markers[36], ageing correlated 

diseases[37], and some other as antibodies drugs and hormones [38]. In the following table 1.3 

some applications of the SPR for the identification of medical analytes are listed: 

 

Table 1.3 Medical applications of SPR sensing 

There are also several application in the environmental monitoring fields. The analytes taken 

into consideration by these fields are pesticides[39], aromatic hydrocarbons [40], [41], heavy 

metals [42], phenols [43], and dioxins [44]. In the following table 1.4 some applications of the 

SPR for the identification of environmental quantities are listed: 
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Table 1.4 Environmental applications of SPR 

SPR sensors finds applications also in food analysis. In these fields they are used to monitor 

pathogens [45], toxins[46], drug residues [47], vitamins, hormones, antibodies [48], chemical 

contaminants, allergens, and proteins [49]. Some applications of the SPR for the identification of 

different bacteria in foods are listed in table 1.5: 
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Table 1.5 Food safety application of SPR. 

Many other examples of SPR sensing applications could be listed here but this goes far beyond 

our goal. In fact, since SPR detection is nowadays accepted as a standard laboratory tools used 

to monitor the interaction kinetics between probe and analyte, it is almost impossible list all its 

application. For a complete review of this sensing field, update to the year 2008, the reader is 

reminded to the Homola work [12]. 
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2 Surfaces Simulation Methods 

In this chapter we will exploit different methods used for the reflectance and transmittance 

simulation from a nanostructured surface. The first two methods i.e. the Rigorous Coupled Wave 

Analysis Method (RCWA) [50]–[54]and the Chandezon Method (CM) [55]–[57], are currently 

widely used by the scientific community to analyse both unidimensional and bidimensional 

periodical structures[58]–[62]. Even if the first description of these two methods dates back to 

the 1980, they are constantly studied for improving their efficiency and applications. 

The Finite Element Method (FEM) is nowadays one of the most widespread numerical 

techniques for the simulation of structures with applications that reach electromagnetic [63], 

thermal, chemical and mechanical fields. Since its implementation is very complex, dedicated 

software were developed over the years. In our case we used the radio frequency package 

implemented in Comsol v3.5 in order to solve both unidimensional and bidimensional periodic 

structures. 

Finally we will generalize the vector model introduced in section 1.2.2. This method is the easiest 

way to predict where Surface Plasmon Resonance will occur when periodic structured surface is 

used. Nevertheless it does not give any information about their shape in relation with the 

periodic geometrical structure. 

Our developed simulation methods will reproduce the behaviour of periodic structures lighted in 

conical mounting configuration. The general scheme is reported in Figure 2.1. 

 
Figure 2.1 Conical mounting configuration scheme. 

Figure 2.1 represents a unidimensional grating (yellow lines) lighted in conical configuration. The 

grating surface lays in the 𝑥, 𝑦 plane. The incident wave vector 𝜂𝑑𝑘0⃗⃗⃗⃗  along with the vector 

normal to the grating plane defines the scattering plane (cyan transparent layer). The incoming 

light electric field 𝐸⃗  lays on the polarization ellipse (red coloured ellipse). 

Three main angles described this configuration: the incident angle 𝜃; the polarization angle 𝜓, 

and the azimuthal angle 𝜙. As we can see 𝜙 is defined as the angle between the grating 

momentum 𝐺  (In figure2.1 it coincides with the 𝑥- axis) and the scattering plane. When 𝜓 =  0° 

we will refer to the transverse magnetic polarization mode (TM) meanwhile when 𝜓 =  90° we 

will refer to the Transverse Electric polarization mode (TE). 
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Looking at this reference system the incoming light wave vector can be written as: 

 𝜂𝑑𝑘0⃗⃗⃗⃗ = 𝜂𝑑 {

𝑘0𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙
𝑘0𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙
−𝑘0𝑐𝑜𝑠𝜃

 (2.1) 

And the electric field as: 

 𝐸⃗ = 𝐸0 {

𝑐𝑜𝑠𝜓 𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜙 + 𝑠𝑖𝑛𝜓 𝑠𝑖𝑛𝜙
𝑐𝑜𝑠𝜓 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜙 − 𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜙

𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜃
 (2.2) 

 

The unidimensional periodic grating structures can be simulated in the conical mounting 

configuration by using the RCWA and the FEM methods we developed, meanwhile we restricted 

the CM to light incoming with 𝜙=0° and in TM or TE polarization mode. The simulation of the 

two dimensional periodic structures in conical mounting configuration will be performed by 

using only the FEM method. 

2.1 Rigorous Coupled Wave Analysis Method 

The RCWA method or Fourier Modal Method (FMM) was developed over the ‘80s and ‘90s. Its 

aim is to rigorously solve the electromagnetic fields problem inside a periodic structure, and 

therefore calculate the light diffraction coefficients. One of the first paper on the subject dates 

back to 1981 [50] but the true success of this method arrived in 1995 were the work of M.G. 

Moharam [51], [52]and P. Lalanne[64] improved the convergence of this method. 

Here we will briefly describe this method and the modifications that must be introduced to 

improve the method convergence and stability. Here we will strictly follow the formulation 

proposed in [52], where only the TM lighting mode for φ = 0° is considered. Nevertheless we 

implemented a full model to perform the simulation in conical mounting configuration. 

 

 

Figure 2.2 Geometry for the study of diffraction grating using the RCWA method 

Figure 2.2 shows how a general grating profile is treated by the RCWA method. There is an 

upper continuum medium where an incident plane wave along with the grating reflected rays 
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propagate. The incident light incomes with an angle 𝜃 respect to the normal of the grating plane. 

The transmitted rays propagate in a lower medium that also acts as the grating substrate. 

The region between the upper and lower medium is the grating region and it is characterized by 

a periodic distribution of the dielectric constant along the x-direction. Is therefore possible to 

develop it in a Fourier series: 

 𝜀(𝑥, 𝑧) =  ∑𝜀ℎ(𝑧)

ℎ

exp (𝑗
2𝜋ℎ

Λ
 𝑥) (2.3) 

Here 𝜀ℎ(𝑧) is the ℎ-th Fourier component which incorporates the z-dependence of the dielectric 

function. In order to apply the RCWA method we need to eliminate the z-dependency of the 

Fourier component. We can achieve this by dividing the grating region in an arbitrary number of 

slabs having a definite height as shown in figure 2.2. It is obvious that increasing the number of 

layers every grating profile can be describe with the desired accuracy; and it is also evident that 

this method well describe the case of a digital grating. In this way the dielectric constant inside 

the grating region acquires this mathematical formulation: 

 𝜀𝑙(𝑥) =  ∑𝜀𝑙,ℎ
ℎ

exp (𝑗
2𝜋ℎ

Λ
 𝑥) ;   𝐷𝑙 − 𝑑𝑙 < 𝑧 < 𝐷𝑙 ;  𝐷𝑙 =∑𝑑𝑙

𝑙

𝑝=1

   (2.4) 

where 𝑑𝑙 represent the thickness of the 𝑙-th layer. The field in the upper region of the grating is 

represented by: 

 𝐻𝐼,𝑦 = 𝑒𝑥𝑝{−𝑗𝑘0𝜂𝐼[sin(𝜃) 𝑥 + cos(𝜃) 𝑧]} +∑𝑅𝑖𝑒𝑥𝑝{−𝑗[𝑘𝑥𝑖𝑥 − 𝑘𝐼,𝑧𝑖𝑧]}

𝑖

 (2.5) 

where the first term represents the incident field meanwhile the second term represents the 

reflected component of the field. 

In the lower medium we got the transmitted rays: 

 𝐻𝐼𝐼,𝑦 =∑𝑇𝑖𝑒𝑥𝑝{−𝑗[𝑘𝑥𝑖𝑥 − 𝑘𝐼𝐼,𝑧𝑖(𝐷𝐿 − 𝑧)]}

𝑖

 (2.6) 

In all the fields expression we hide the temporal dependency 𝑒𝑖𝜔𝑡. The quantity 𝑘𝑥𝑖, 𝑘𝐼𝐼,𝑧𝑖 , and 

𝑘𝐼,𝑧𝑖  are determined from the Rayleigh-Floquet field expansion: 

 
𝑘𝑥𝑖 = 𝑘0[𝜂𝐼 sin(𝜃) − 𝑖 (𝜆0 Λ)⁄ ] 

𝑘𝑙,𝑧𝑖 = √𝑘0
2𝜂𝑙

2 − 𝑘𝑥𝑖
2 ; 𝑙 = 𝐼, 𝐼𝐼 

(2.7) 

The tangential magnetic and electric field in the 𝑙-th grating layer are expressed through a 

Fourier expansion: 

 

𝐻𝑙,𝑔𝑦 =∑𝑈𝑙,𝑦𝑖
𝑖

(𝑧) exp(−𝑗𝑘𝑥𝑖𝑥) 

𝐸𝑙,𝑔𝑥 =  𝑗√
𝜇0
𝜀0
∑𝑆𝑙,𝑥𝑖
𝑖

(𝑧)exp (−𝑗𝑘𝑥𝑖𝑥) 

(2.8) 

By using the Maxwell’s equations: 

 ∇ × 𝐻 =  
𝜀0𝜀𝜕𝐸

𝜕𝑡
   ;    ∇ × 𝐸 = −

𝜇0𝜇𝜕𝐻

𝜕𝑡
 (2.9) 
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The three following useful equations can be obtained: 

 

𝜕𝐻𝑦
𝜕𝑧

= −𝑗𝜔𝜀0𝜀(𝑥, 𝑧)𝐸𝑥 

𝜕𝐻𝑦
𝜕𝑥

=  𝑗𝜔𝜀0𝜀(𝑥, 𝑧)𝐸𝑧 

𝜕𝐸𝑥
𝜕𝑧

= −𝑗𝜔𝜇0𝜇𝐻𝑦 + 
𝜕𝐸𝑧
𝜕𝑥

 

(2.10) 

By solving the equations 2.10 inside each grating slab, and taking into account that in our case 

𝜇 = 1 we get the following relation: 

 
𝜕2𝐻𝑙,𝑔𝑦
𝜕𝑧2

=  [−𝑘0
2 𝜀(𝑥) +  𝜀(𝑥)

𝜕

𝜕𝑥

1

𝜀(𝑥)

𝜕

𝜕𝑥
]𝐻𝑙,𝑔𝑦  (2.11) 

Since the grating is periodic, we assume that the fields 𝐻𝑙,𝑔𝑦, and the dielectric constant inside 

each slab can be written as a Fourier sum. Hence the equation 2.11 can be solved considering 

the functions exp (−𝑗𝑘𝑥𝑖𝑥) as a base. Therefore it assumes the sequent matrix form: 

 
𝜕2𝐔𝑙,𝑦
𝜕(𝑧′)2

= [𝐄𝑙][𝐊𝑥𝐄𝑙
−1𝐊𝑥 − 𝐈]𝐔𝑙,𝑦 (2.12) 

where 𝑧′ = 𝑘0𝑧, 𝐈 is the unitary matrix, 𝐊𝑥 is a diagonal matrix with diagonal element 𝑘𝑥𝑖 𝑘0⁄ , 

and 𝐄𝑙  is the matrix with its 𝑖, 𝑝-th element 𝜀𝑙,𝑖−𝑝. 

Being the functions 𝑈𝑙,𝑦𝑖(𝑧) only a function of 𝑧, they can be solved assuming a finite number 𝑛 

for the Rayleigh expansion of the fields, since the matrix equation 2.12 represents a standard 

eigenvalue problem. Therefore the analytical expression for 𝑈𝑙,𝑦𝑖(𝑧) becomes: 

 
𝑈𝑙,𝑦𝑖(𝑧) =  ∑ 𝑤𝑙,𝑖,𝑚

𝑛

𝑚=1

{𝑐𝑙,𝑚
+ exp[−𝑘0𝑞𝑙,𝑚(𝑧 − 𝐷𝑙 + 𝑑𝑙)]

+ 𝑐𝑙,𝑚
− exp[𝑘0𝑞𝑙,𝑚(𝑧 − 𝐷𝑙)]} 

(2.13) 

where 𝑤𝑙,𝑖,𝑚 are the elements of the eigenvector matrix 𝐖𝑙 and 𝑞𝑙,𝑚 are the square root with 

positive real part of the eigenvalues of the matrix [𝐄𝑙][𝐊𝑥𝐄𝑙
−1𝐊𝑥 − 𝐈]. The coefficients 𝑐𝑙,𝑚

+  and 

𝑐𝑙,𝑚
−  are unknown constant that will be determined by imposing the adequate boundary 

conditions between each grating layer. 

In order to fully solve the system we need also to find the condition for the tangential 

component of the electric field 𝐸𝑥 which are expressed in a matrix form by the equation:  

 𝐒𝑙,𝑥 = [𝐄𝑙]
𝜕𝐔𝑙,𝑦
𝜕(𝑧′)

 (2.14) 

Imposing the boundary conditions between the input region and the first grating layer (𝑧=0) we 

obtain: 

 [
𝛿𝑖0

𝑗𝛿𝑖0𝑐𝑜𝑠(𝜃)/𝜂𝐼
] + [

𝐈
−𝑗𝐙𝐼

]𝐑 = [
𝐖1 𝐖1𝐗1
𝐕1 −𝐕1𝐗1

] [
𝐜1
+

𝐜1
−] (2.15) 

By applying it at the boundary between the 𝑙 − 1 and 𝑙 grating layers we have: 

 [
𝐖𝑙−1𝐗𝑙−1 𝐖𝑙−1

𝐕𝑙−1𝐗𝑙−1 −𝐕𝑙−1
] [
𝐜𝑙−1
+

𝐜𝑙−1
− ] = [

𝐖𝑙 𝐖𝑙𝐗𝑙
𝐕𝑙 −𝐕𝑙𝐗𝑙

] [
𝐜𝑙
+

𝐜𝑙
−] (2.16) 

At the boundary between the last grating layer and the substrate region (𝑧 = 𝐷𝐿) we get: 
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 [
𝐖𝐿𝐗𝐿 𝐖𝐿

𝐕𝐿𝐗𝐿 −𝐕𝐿
] [
𝐜𝐿
+

𝐜𝐿
−] = [

𝐈
𝑗𝐙𝐼𝐼

]𝐓 (2.17) 

 

In this cases 𝐕𝑙 = 𝐄𝑙
−1𝐖𝑙𝐐𝑙 with 𝐐𝑙 a diagonal matrix with the diagonal elements 𝑞𝑙,𝑚, 𝐗𝐿 is a 

diagonal matrix with the diagonal elements exp(−𝑞𝑙,𝑚𝑑𝑙); 𝐙𝐼 and 𝐙𝐼𝐼 are diagonal matrix with 

the element 𝑘𝐼,𝑧𝑖 𝜂𝐼
2⁄ 𝑘0 and 𝑘𝐼𝐼,𝑧𝑖 𝜂𝐼𝐼

2⁄ 𝑘0 respectively. 𝐑 and 𝐓 are column matrixes with the 

reflection and transmission coefficient respectively meanwhile 𝛿𝑖0 is the usual Kronecker 

function. All these boundary condition can be summarized in an easy formulation: 

 [
𝛿𝑖0

𝑗𝛿𝑖0𝑐𝑜𝑠(𝜃)/𝜂𝐼
] + [

𝐈
−𝑗𝐙𝐼

]𝐑 = ∏[
𝐖𝑙 𝐖𝑙𝐗𝑙
𝐕𝑙 −𝐕𝑙𝐗𝑙

] [
𝐖𝑙𝐗𝑙 𝐖𝑙

𝐕𝑙𝐗𝑙 −𝐕𝑙
]
−1

[
𝐈
𝑗𝐙𝐼𝐼

]𝐓

𝐿

𝑙=1

 (2.18) 

This expression may appear simple but it cannot be solved straightforwardly due to the 

numerical error that will be produce in the matrix inversion. This errors are due to the very small 

number produced by exp(−𝑞𝑙,𝑚𝑑𝑙) in the diagonal element of the matrix 𝐗𝑙. In order to avoid 

these numerical errors we implemented in our code the full solution approach described in [52]. 

Once the coefficients 𝐑 and 𝐓 are found the reflectance and transmittance of the diffracted ray 

can be found by using these two equations:  

 
𝐷𝐸𝑟𝑖 =  𝑅𝑖𝑅𝑖

∗Re[𝑘𝐼,𝑧𝑖 𝑘0𝜂𝐼 cos(𝜃)⁄ ] 

𝑇𝐸𝑟𝑖 = 𝑇𝑖𝑇𝑖
∗Re[𝑘𝐼𝐼,𝑧𝑖 𝜂𝐼 𝑘0𝜂𝐼𝐼

2 cos (𝜃)⁄ ] 
(2.19) 

The accuracy of the solution returned by this method depends on the number of the retained 

harmonics in the field expansion. Nevertheless the convergence rate of the diffraction efficiency 

parameters as a function of the number of retained harmonics depends on the light polarization 

i.e. it is slower for the TM mode respect to the TE one. A straight forward solution of this 

problems comes from the work of Lalanne [64] that propose to substitute the matrix equation 

2.12 with this one: 

 
𝜕2U𝑙,𝑦
𝜕(𝑧′)2

= [A𝑙
−1][K𝑥E𝑙

−1K𝑥 − I]U𝑙,𝑦 (2.20) 

Being 𝐴 the matrix formed by the inverse permittivity harmonic coefficient. He also further 

developed this technique and give the complete reformulation for the conical mounting 

problem. 

Our standard grating description is performed by the model reported in figure 2.3 which shows 

the grating periodic cell cross section. 
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Figure 2.3 Standard grating geometrical description. 

As we can see from Figure 2.3 our grating is a five layers system. The polycarbonate substrate is 

described by the blue area, the grey area represents the silver layer and the green layer that 

covers all the upper interface describes the functionalization layer. The dashed lines represent 

the interface between each of the grating layer where boundary conditions must be imposed. In 

most of the grating slabs the dielectric constant is described by a rectangular function. For 

example, if we consider the fifth layer, that corresponds to the silver-polycarbonate-silver layer, 

its Fourier transform coefficients are: 

 𝜀5,𝑚 = 𝜀𝑝𝑜𝑙𝑦𝑠𝑖𝑛𝑐(𝑚) + (𝜀𝑝𝑜𝑙𝑦 − 𝜀𝐴𝑔)𝑓𝑑𝑜𝑤𝑛(𝑠𝑖𝑛𝑐(𝑚𝑓𝑑𝑜𝑤𝑛)) (2.21) 

The layer that needs a particular description is the second one (from the upper interface of the 

grating), where we have three different materials that describe the dielectric constant. In this 

case the Fourier coefficients becomes:  

 
𝜀2,𝑚 = 𝜀𝑎𝑖𝑟𝑠𝑖𝑛𝑐(𝑚) + (𝜀𝑓𝑢𝑛𝑐 − 𝜀𝑎𝑖𝑟)𝑓𝑓𝑢𝑛𝑐 (𝑠𝑖𝑛𝑐(𝑚𝑓𝑓𝑢𝑛𝑐))

+ (𝜀𝐴𝑔 − 𝜀𝑓𝑢𝑛𝑐)𝑓𝑢𝑝(𝑠𝑖𝑛𝑐(𝑚𝑓𝑢𝑝)) 
(2.22) 

In order to test the implemented method we consider in figure 2.4 the diffraction coefficients 

obtained by using the Moharam and Lalanne implementations. We performed the calculations 

for both the TM and TE polarization, considering an incident angle of 15° and an azimuthal angle 

of 0°. In reference to figure 2.3 the geometrical parameters used in this simulation are 

respectively: 

λ Λ fup fdown hdown hup hslab hfunc 𝜀𝑎𝑖𝑟  𝜀𝐴𝑔 𝜀𝑓𝑢𝑛𝑐  𝜀𝑝𝑜𝑙𝑦 

635 
nm 

740 
nm 

0.45 0.3 20 
nm 

20 
nm 

35 
nm 

1.5 
nm 

1 -17-
0.7i 

1 2.4964 

Table 2.1 Parameters used for the digital grating cross section description 
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Figure 2.4 A comparison between the diffraction efficiency convergence by using the old and new method for: (a) 

TM, and (b) TE polarization 

In figure 2.4 we reported the Diffraction efficiency of the R-1 reflected ray as a function of the 

number of retained Rayleigh orders  in the field expansion (2N+1). The continuous red line refers 

to the Moharam formulation meanwhile the blue circles refers to the Lalanne formulation. As 

we can see the method quickly converge in both the formulation for the TE polarization (Figure 

2.4b), while for the TM (Figure 2.4a) we get an enormous improvement of the convergence rate 

by adding the Lalanne modifications. Also the oscillatory behaviour is completely suppressed. 

A complete explanation of the numerical problem of the different rate convergence can be 

found in the work of L. Li [65] and further developed for the two dimensional periodic structures 

case by Schuster [54]. The treatment of this topics goes far beyond our purpose here; 

nevertheless we can see from figure 2.4 that our implemented code well converge if a number N 

= 100, that corresponds to 2N+1 retained harmonics, is used. 

2.2 Chandezon method 

The first Implementation of the Chandezon or curvilinear, or differential method dates back to 

1982 [55]. The difference between CM and RCWA it is well explained by figure2.5 [66]. 

 

Figure 2.5 Difference in the grating profile treatment between the RCWA and Chandezon Method. 

Starting from the grating profile describe in the central panel of figure 2.5, the RCWA method 

divides the grating region in a huge amount of layers each one with a particular step dielectric 

function profile 𝜀(𝑥) (left panel of figure 2.5), while the Chandezon method, through a change in 

the coordinates system, transforms the grating profile in a planar interface, eliminating in this 

way the 𝑧-dependency of the dielectric function inside the grating region. In the new coordinate 

0 50 100 150
0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

0.032

0.034

number of retained order

D
if
rr

a
c
ti
o

n
 e

ff
ic

e
n

t 
o

f 
R

1

TM polarization

 

 

Moharam

Lalanne

0 50 100 150
0.01190

0.011925

0.01195

0.011975

0.01200

number of retained order

TE polarization

 

 

Moharam

Lalanne

b)a)



40 
 

system the problem is reduced to the calculations of transmission and reflection of light passing 

through a set of planar interfaces. 

For briefly illustrate the method we will follow the derivation showed by Li [67]. Nevertheless we 

generalized the Li method description allowing a multilayer coating for the grating, hence we 

can describe the thin silver film, and the functionalization coating layer. The method we 

implemented reproduces the behaviour of the grating lighted by the TM polarization mode, and 

with the grating slits perpendicular to the scattering plane, i.e. 𝜙= 0°. It is also suited for the 

description of discontinuous grating profile such as a trapezoidal or triangular one because it 

uses the same electromagnetic formulation introduced in [58], [68]. 

 

Figure 2.6 schematic for the CM implementation. 

We considered a periodically corrugate interface, invariant in the 𝑧-direction between two 

homogeneous isotropic media with refractive index 𝜂𝐼 , 𝜂𝐼𝐼 respectively. The grating period and 

amplitude are denoted by 𝛬 and 𝑑. The incident angle is 𝜃 and the scattering plane is 

perpendicular to the grating slits. The harmonic time convention exp (−𝑖𝜔𝑡) is assumed. In 

figure 2.6 the grating is described by a function 𝑦 = 𝑎(𝑥) that splits the space into two regions 

called 𝐷+ , 𝐷−. 

The space could be also further divided into three regions by using the dashed lines: 𝐷1, 𝐷2, 𝐷0. 

In the domains 𝐷1,and 𝐷2 the field can be written as in eq. 2.5 and 2.6 by using the Ryleigh - 

Floquet expansion: 

 𝐹 =  ∑𝐴𝑚
(𝑝)±

𝑚

exp(𝑗𝛼𝑚𝑥 ± 𝑖𝛽𝑚
(𝑝)
𝑦 ) , 𝑝 = 1,2 (2.23) 

where 𝐹 = 𝐻𝑧, 𝛼𝑚 =  𝜂1𝑘0 sin(𝜃) + 𝑚𝐾, 𝐾 =  2𝜋 Λ⁄ , 𝛽𝑚
(𝑝)

= (𝜂𝑝
2𝑘0

2 −𝛼𝑚
2 )

1 2⁄
 with    

Re [𝛽𝑚
(𝑝)
] + Im[ 𝛽𝑚

(𝑝)
] > 0, and 𝐴𝑚

(𝑝)±
 are constant amplitudes. Since no reflected wave could 

propagate in the 𝐷1 domain backward the y-direction, except for the incoming light ray, and no 

transmitted wave could propagate in the substrate along the y direction we can simplify the 

notation saying that 𝐴0
1− = 1; 𝐴𝑚

(1)+
= 𝐴𝑚

(1)
; 𝐴𝑚

(2)−
= 𝐴𝑚

(2)
. 

This grating problem is therefore reduced to solve the Helmholtz equation in 𝐷+ and 𝐷−, 

conditioned by the previously described boundary conditions at infinity, and along the grating 

profile. 

 [
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
+ 𝑘0

2𝜇𝜀(𝑥, 𝑦)] 𝐹 = 0 (2.24) 
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If we consider the above equation 2.24 in the domains 𝐷+ or 𝐷− for the change of variable: 

 {
𝑣 = 𝑥

𝑢 = 𝑦 − 𝑎(𝑥) (2.25) 

The differential operators become: 

 

{
 

 
𝜕

𝜕𝑥
=
𝜕

𝜕𝑣
− 𝑎̇  

𝜕

𝜕𝑢
𝜕

𝜕𝑦
= 

𝜕

𝜕𝑢

 (2.26) 

where 𝑎̇ =  d𝑎 d𝑥⁄ . Substituting these expressions into the Helmholtz equation 2.24 we obtain 

this differential operator: 

 𝐿(𝜕𝑢, 𝜕𝑣 , 𝑥) =  
𝜕2

𝜕𝑣2
− 2𝑎̇

𝜕

𝜕𝑣

𝜕

𝜕𝑢
− 𝑎̈

𝜕

𝜕𝑢
+ (1 + 𝑎̇2)

𝜕2

𝜕𝑢2
+ 𝑘0

2𝜇𝜀𝑝 (2.27) 

For convenience we will use 𝑥 insteadof 𝑣 to label the spatial variable since 𝑥 =  𝑣. In this 

coordinate system if 𝑥 varies and 𝑢 is kept constant, the point (𝑥, 𝑢) traces curves parallel to the 

grating profile, therefore 𝜀 remains constant. 

The second order equation 2.27 can be rewritten as a pair of first order equations: 

 [𝑘0
2𝜇𝜀𝑝 +

𝜕2

𝜕𝑣2
0

0 1

](
𝐹
𝐹′
) = [𝑖 (

𝜕

𝜕𝑣
𝑎̇ + 𝑎̇

𝜕

𝜕𝑣
) 1 + 𝑎̇2

1 0

]
𝜕

𝑖𝜕𝑢
(
𝐹
𝐹′
) (2.28) 

Taking into account that the fields 𝐹 must respect the same periodicity of the grating and since 

the wave in 𝐷+ and 𝐷− can be treated as plane waves we can write the differential operator: 

 
𝜕 

𝜕𝑣
→ 𝑖𝜶,

𝜕 

𝜕𝑢
 → 𝑖𝜌 (2.29) 

where 𝜶 is a diagonal matrix formed by 𝛼𝑚. 
By inserting this consideration into the equation 2.28 we obtain an eigenvalue problem: 

 [
−

1

𝜷(𝑝)
2 (𝜶𝒂̇ + 𝒂̇𝜶)

1

𝜷(𝑝)
2 (1 + 𝒂̇𝒂̇)

𝟏 𝟎

] (
𝑭
𝑭′
) = 

1

𝜌
(
𝑭
𝑭′
) (2.30) 

where 𝜷(𝑝) is a diagonal matrix formed by 𝛽𝑚
(𝑝)

 and 𝒂̇ is the matrix formed by the Fourier 

coefficients of 𝑎̇: 

 (𝒂̇)𝑚𝑛 = (𝑎̇)𝑚−𝑛 = 
1

Λ
∫ 𝑎̇(𝑥)𝑒𝑥𝑝[−𝑖(𝑚 − 𝑛)𝐾𝑥]
Λ

0

𝑑𝑥 (2.31) 

If each block of the previous 2 × 2 matrix (eq.2.30) is truncated to 𝑁 × 𝑁, the 2𝑁 eigenvalues 

obtained could be divided into two sets. The first set Σ+ contains the positive real eigenvalues 

and the eigenvalues that have a positive imaginary part. The second set Σ−  contains the negative 

real eigenvalues and the eigenvalues that have a negative imaginary part. In the domain 𝐷+ all 

the eigensolutions in Σ− except the one corresponding to the incident plane wave should be 

discarded. Conversely in domain 𝐷− all the eigensolutions in Σ+ must not be considered since 

we want our problem to be confined at 𝑢 =  ∞. 

Now we can write the z-component of the magnetic field in the domains 𝐷+  and 𝐷−. 
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𝐹+ = exp [𝑖𝛼0𝑥 − 𝑖𝛽0
(1)
𝑦]+ ∑ exp [𝑖𝛼𝑛𝑥 + 𝑖𝛽𝑛

(1)
𝑦]

𝑛∈𝑈+

𝐴𝑛
(1)

+∑exp(𝑖𝛼𝑚𝑥)

𝑚

∑ 𝐹𝑚𝑞
+

𝑞∈𝑉+

exp(𝑖𝜌𝑞
+𝑢)𝐶𝑞

+ 

𝐹− = ∑ exp [𝑖𝛼𝑘𝑥 − 𝑖𝛽𝑘
(2)
𝑦]

𝑘∈𝑈−

𝐴𝑘
(2)

+∑exp(𝑖𝛼𝑚𝑥)

𝑚

∑ 𝐹𝑚𝑟
−

𝑟∈𝑉−

exp(𝑖𝜌𝑟
−𝑢)𝐶𝑟

− 

(2.32) 

where 𝐴𝑛
(𝑝)

 and 𝐶𝑞
± are the unknown diffraction amplitudes, 𝐹𝑚𝑞

±  are the elements of the 𝐹 part 

of the 𝑞-th eigenvector and 𝑈± and 𝑉± denote the sets of the indices for the propagating and 

evanescent orders in domains 𝐷± respectively. 

As we can note the expression for the total field is written in a mixed variables system. It is 

therefore convenient to write everything as a function of 𝑥 and 𝑢 since 𝑦 = 𝑢 − 𝑎(𝑥). This 

substitution allows to expand the exponential function of 𝑎(𝑥) in a Fourier series and then to 

regroup the Fourier coefficients. In this way we obtain: 

 

𝐹+ =  ∑exp(𝑖𝛼𝑚𝑥)

𝑚

{𝐿𝑚 (−𝛽0
(1)
) exp [−𝑖𝛽0

(1)
𝑢]

+ ∑ 𝐿𝑚−𝑛 (𝛽𝑛
(1)
)exp [𝑖𝛽𝑛

(1)
𝑢]

𝑛∈𝑈+

𝐴𝑛
(1)

+ ∑ 𝐹𝑚𝑞
+

𝑞∈𝑉+

exp(𝑖𝜌𝑞
+𝑢)𝐶𝑞

+} 

𝐹− = ∑exp(𝑖𝛼𝑚𝑥)

𝑚

{+ ∑ 𝐿𝑚−𝑘 (−𝛽𝑘
(2)
) exp [−𝑖𝛽𝑘

(2)
𝑢]

𝑘∈𝑈−

𝐴𝑘
(2)

+ ∑ 𝐹𝑚𝑟
−

𝑟∈𝑉+

exp(𝑖𝜌𝑟
−𝑢) 𝐶𝑟

−} 

(2.33) 

where 𝐿𝑚(𝛾) is: 

 𝐿𝑚(𝛾) =  
1

Λ
∫ exp [𝑖𝛾𝑎(𝑥) − 𝑖𝑚𝐾𝑥]
Λ

0

𝑑𝑥 (2.34) 

Matching the boundary conditions at 𝑢 = 0 is equivalent to satisfy the following matrix 
equation: 

 [𝐹𝑚𝑛
𝑅+ 𝐹𝑚𝑞

+ −𝐹𝑚𝑘
𝑅− −𝐹𝑚𝑟

− ]

[
 
 
 
 𝐴𝑛
(1)

𝐶𝑞
+

𝐴𝑘
(2)

𝐶𝑟
− ]
 
 
 
 

=  [−𝐹𝑚0
𝑅,𝑖𝑛

] (2.35) 

where 𝐹𝑚𝑛
𝑅+ = 𝐿𝑚−𝑛 (𝛽𝑛

(1)
), 𝐹𝑚𝑘

𝑅− = 𝐿𝑚−𝑘 (−𝛽𝑘
(2)
), and 𝐹𝑚0

𝑅𝑖𝑛 = 𝐿𝑚 (−𝛽0
(1)
) 

The superscript R is associated to the terms of the Rayleigh solution. The equation 2.35 still 

cannot be solved since it contains N equations and 2N unknowns. The other N equations are 

provided by the boundary condition of the electric field that lies in the 𝑥, 𝑦 plane. The electric 

field component tangential to the grating profile is described by the function 𝐺 =  𝐸𝑥 + 𝑎̇𝐸𝑦 . By 

expressing 𝐸𝑥 and 𝐸𝑦 in terms of 𝐻𝑧 we get the following expression for 𝐺: 
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 𝐺 =  
𝑍0
𝑖𝑘0𝜀

[𝑎̇
𝜕𝐹

𝜕𝑣
− (1 + 𝑎̇2)

𝜕𝐹

𝜕𝑢
] (2.36) 

By using this fields expression we obtain the complete system:  

 [
𝐹𝑚𝑛
𝑅+ 𝐹𝑚𝑞

+ −𝐹𝑚𝑘
𝑅− −𝐹𝑚𝑟

−

𝐺𝑚𝑛
𝑅+ 𝐺𝑚𝑞

+ −𝐺𝑚𝑘
𝑅− −𝐺𝑚𝑟

−
]

[
 
 
 
 𝐴𝑛
(1)

𝐶𝑞
+

𝐴𝑘
(2)

𝐶𝑟
− ]
 
 
 
 

=  [
−𝐹𝑚0

𝑅,𝑖𝑛

−𝐺𝑚0
𝑅,𝑖𝑛

] (2.37) 

where the matrix elements are defined as follow: 

 

𝐺𝑚𝑛
𝑅+ =  

𝑍0
𝑘0𝜀1

∑[𝑎̇𝑚−𝑠𝛼𝑠 − (𝟏 + 𝒂̇𝒂̇)𝑚𝑠𝛽𝑛
(1)
]

𝑠

𝐿𝑠−𝑛 (𝛽𝑛
(1)
) 

𝐺𝑚𝑘
𝑅− = 

𝑍0
𝑘0𝜀2

∑[𝑎̇𝑚−𝑠𝛼𝑠 + (𝟏 + 𝒂̇𝒂̇)𝑚𝑠𝛽𝑘
(2)
]

𝑠

𝐿𝑠−𝑘 (−𝛽𝑘
(2)
) 

𝐺𝑚0
𝑅𝑖𝑛 =  

𝑍0
𝑘0𝜀1

∑[𝑎̇𝑚−𝑠𝛼𝑠 + (𝟏 + 𝒂̇𝒂̇)𝑚𝑠𝛽0
(1)
]

𝑠

𝐿𝑠 (−𝛽0
(1)
) 

𝐺𝑚𝑞
+ = 

𝑍0
𝑘0𝜀1

∑[𝑎̇𝑚−𝑠𝛼𝑠 − (𝟏 + 𝒂̇𝒂̇)𝑚𝑠𝜌𝑞
+]

𝑠

𝐹𝑠𝑞
+ 

𝐺𝑚𝑟
− = 

𝑍0
𝑘0𝜀2

∑[𝑎̇𝑚−𝑠𝛼𝑠 + (𝟏 + 𝒂̇𝒂̇)𝑚𝑠𝜌𝑟
−]

𝑠

𝐹𝑠𝑟
− 

(2.38) 

Once the system in eq. 2.37 is solved, the field coefficients 𝐴𝑛
(1)

 and 𝐴𝑘
(2)

 can be used for the 

calculus of the diffraction amplitudes by using: 

 

𝐷𝐸𝑟𝑖 =
𝛽𝑛
(1)

𝛽𝑛
(0)
|𝐴𝑛
(1)
|
2
 

𝑇𝐸𝑟𝑖 =  
𝜀1𝛽𝑘

(2)

𝜀2𝛽𝑛
(0)
|𝐴𝑘
(2)
|
2
 

(2.39) 

Now we will consider the generalization of the above method to a multicoated layer. 

 

Figure 2.7 Schematic of the Chandezon method applied to the multicoated layer case 

Figure 2.7 shows a four media system with three interfaces. The four media are the 

polycarbonate substrate, the silver layer, the functionalization layer, and the upper medium. 

The formulation for the eigenvalues problem in the upper media and in the substrate media 

follows the previous description, and also in this case only the eigenvalue that respect the 

bounding conditions at ∞ must be retained in the calculations. Nevertheless, in this case, the 
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matching of the tangential fields for the silver/polycarbonate interface needs to be evaluate for 

𝑢 =  −𝑑2, therefore 𝐹𝑚𝑘
𝑅− becomes: 𝐹𝑚𝑘

𝑅−(−𝑑2) = 𝐹𝑚𝑘
𝑅−exp (𝑖𝑑2𝛽𝑘

(2)
) and 𝐹𝑚𝑟

− (−𝑑2) =

𝐹𝑚𝑟
− exp (−𝑖𝑑2𝜌𝑟

−). The same considerations applies to the 𝐺− factor. 

Inside the silver and functionalization layers all the eigenvalues and eigenvectors returned by the 

equation 2.30 must be retained in the calculations, since they represents reflected and 

transmitted waves inside the layer. We will call 𝐹𝑚𝜏,1
± , 𝜌𝜏,1

± and 𝐹𝑚𝜏,2
±   , 𝜌𝜏,2

±  the eigenvectors and 

eigenvalues and we found inside the functionalization and silver layer, respectively.  

Each of the three equations refers to a boundary condition inside the grating. 

The first stands for 𝑢 =  0: 

 [
𝐹𝑚𝑛
𝑅+ 𝐹𝑚𝑞

+

𝐺𝑚𝑛
𝑅+ 𝐺𝑚𝑞

+ ] [
𝐴𝑛
(1)

𝐶𝑞
+
] + [

𝐹𝑚0
𝑅,𝑖𝑛

𝐺𝑚0
𝑅,𝑖𝑛] = [

𝐹𝑚𝜏,1
±

𝐺𝑚𝜏,1
± ] [𝐶1] (2.40) 

The second stands for 𝑢 =  −𝑑1: 

 [
𝐹𝑚𝜏,1
± (−𝑑1)

𝐺𝑚𝜏,1
± (−𝑑1)

] [𝐶1] = [
𝐹𝑚𝜏,2
± (−𝑑1)

𝐺𝑚𝜏,2
± (−𝑑1)

] [𝐶2] (2.41) 

And the third stands for 𝑢 =  −𝑑2: 

 [
𝐹𝑚𝜏,2
± (−𝑑2)

𝐺𝑚𝜏,2
± (−𝑑2)

] [𝐶2] = [
𝐹𝑚𝑘
𝑅−(−𝑑2) 𝐹𝑚𝑟

− (−𝑑2)

𝐺𝑚𝑘
𝑅−(−𝑑2) 𝐺𝑚𝑟

− (−𝑑2)
] [
𝐴𝑘
(2)

𝐶𝑟
−
] (2.42) 

where the matrixes are calculated as follow: 

 

𝐹𝑚𝜏,1;2
± (−𝑑) = 𝐹𝑚𝜏,1;2

± exp (−𝑖𝑑𝜌𝜏,1;2
± ) 

𝐺𝑚𝜏,1;2
± (−𝑑) =

𝑍0
𝑘0𝜀𝑓𝑢𝑛𝑐;𝐴𝑔

∑[𝑎̇𝑚−𝑠𝛼𝑠 + (𝟏 + 𝒂̇𝒂̇)𝑚𝑠𝜌𝑟
−]

𝑠

𝐹𝑚𝜏,1;2
± (−𝑑) (2.42) 

and 𝜀𝑓𝑢𝑛𝑐;𝐴𝑔 represent the dielectric constant of the functionalization layer and silver layer, 

respectively. 

This matrix systems can be easily solved, since it can be reduced to a form of eq. 2.37. In this 

way the diffraction coefficients for the multilayer case can be calculated. 

We applied this method to the calculation of a grating with a trapezoidal shape and we compare 

the results with the one obtained by using the RCWA analysis. The grating we used in this 

example has a trapezoidal shape described by the parameters shown in figure 2.8 

In reference with figure 2.8 we used the following geometrical parameter for the grating 

description: 

λ Λ fup fdown h dAg dfunc 𝜀𝑎𝑖𝑟  𝜀𝐴𝑔 𝜀𝑓𝑢𝑛𝑐  𝜀𝑝𝑜𝑙𝑦 

635 nm 740 nm 0.6 0.75 20 nm 58 nm 1.5 nm 1 -17-0.7i 1 2.4964 
Table 2.2 Parameters used for the trapezoidal grating cross section description 

For the RCWA calculations we retained 150 Rayleigh orders in the field expansion and we 

divided the trapezoidal shape in 10 layers. Regarding the CM only 20 Rayleigh orders were used 

since its convergence proved to be very fast. 
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Figure 2.8 Schematic of a trapezoidal cross section for the grating description. 

The trapezoidal shape reported in figure 2.8 is described by the following function: 

 𝑎(𝑥) =

{
 
 
 

 
 
 

0, 0 < 𝑥 < 𝛼
ℎ

𝛽 − 𝛼
(𝑥 − 𝛼), 𝛼 < 𝑥 < 𝛽  

ℎ, 𝛽 < 𝑥 < 𝛾  
ℎ

𝛿 − 𝛾
(−𝑥 + 𝛿), 𝛾 < 𝑥 < 𝛿 

0, 𝛿 < 𝑥 < Λ

 (2.43) 

Considering this function it is easy to calculate the entries of the matrix 𝑎̇ and the parameters 

𝐿𝑚, since it is a case function. The numerical parameter 𝛼, 𝛽, 𝛾, 𝛿 can be calculate by considering 

that we used a isosceles trapeze. 

 

Figure 2.9 Total grating transmittance as a function of 𝜽 calculated for the trapezoidal grating using TM polarized 
light and 𝝓=0°; blue circle RCWA, red continuous line CM. 

The figure 2.9 compares the grating total transmittance as a function of 𝜃 calculated by using the 

RCWA (blue circle) and the CM (red line) methods. We can see a good agreement between the 

results obtained by using the two simulation methods, with exception of some small differences 

in the maximum. These differences are due to the fact that the CM method we implemented is 

well suited for the solutions of this trapezoidal shape grating and it is faster respect to the RCWA 
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where an huge number of layers is used in order to accurately reproduce the grating cross 

section geometry. 

In the general case the CM has some limitations. For example it is not suited for describing the 

digital grating case since the grating profile derivative is always zero except along the 

rectangular sides of the grating where it is infinite. Moreover this CM implementation fixes the 

multilayer profile even if a great number of layers is used. In most of the cases this is not the 

correct description for the experimental samples since a smooth effect onto the grating profile is 

usually expected increasing the number of the coating layers. 

2.3 Finite Element Method 

The finite element method (FEM) is based on the numerical approximation of the 

electromagnetic field inside a geometrical domain with imposed boundary conditions. In order 

to reproduce the behaviour of a grating in conical mounting configuration we used a full three 

dimensional electromagnetic solver, implemented with the software Comsol v3.5. It is not our 

goal to describe in details how the FEM method works but we will give some information about 

its implementation for the grating case simulation. 

The first step consist on specify the geometry of the periodic cell. In order to achieve this goal 

we must add a fictitious dimension to the grating: the one along the slits. This dimension permits 

to solve the system since it can be describe inside a finite domain. The geometry and the 

parameters of the grating we implemented in this simulation is described in figure 2.10. 

 

Figure 2.10 Schematic of the grating cross section used for the comparison between the RCWA and FEM method. 

The grating cross section is described In figure 2.10 and it is similar to the one reported in figure 

2.3 but without the functionalization layer. The parameters used in this formulation are reported 

in the following table 2.3. 

λ Λ fup fdown hdown hup hslab hfunc 𝜀𝑎𝑖𝑟  𝜀𝐴𝑔 𝜀𝑓𝑢𝑛𝑐  𝜀𝑝𝑜𝑙𝑦 

635 nm 740 nm 0.6 0.4 20 nm 20 nm 25 nm -- 1 -17-0.7i -- 2.25 
Table 2.3 Geometrical parameters for the grating cross section description. 
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The Comsol corresponding model is showed in figure 2.10 where the blue part represent the 

silver layer. The domains above the silver layer represent the air meanwhile the ones below 

represent the polycarbonate substrate. 

In order to correctly solve the FEM model the incoming light polarization mode must be 

specified. If the TM polarization mode is used the model has to be solved for 𝐻𝑥, 𝐻𝑦 since the 

component perpendicular to the grating plane 𝐻𝑧 = 0. In each domain the refractive index must 

be specified and the equation that will be solved is the Helmholtz equation for the Magnetic 

field components: 

 ∇ × (
1

𝜀𝑟
∇ ×𝑯)− 𝑘0

2𝑯 = 0 (2.44) 

The upper and the lower domain are set as Perfectly Matched Layer adsorbing in the 𝑧-direction 

since we want to avoid reflection due to the boundary condition. Along the sides of the periodic 

cell we impose periodic boundary condition of Floquet type. 

 𝑯𝑑𝑠𝑡 = 𝑯𝑠𝑟𝑐exp (−𝑗𝒌(𝒓𝑑𝑠𝑡 − 𝒓𝑠𝑟𝑐)) (2.45) 
This equation means that the Magnetic field in the destination boundary 𝑯𝑑𝑠𝑡  must be the same 

of the source 𝑯𝑠𝑟𝑐, except for a phase factor. Equation 2.45 forces the solution to be periodic 

inside the unitary cell. In our case the periodicity momentum is defined by the vector 𝒌, 

described in eq. 2.1. 

We specify the input field by using the port boundary condition with a wave excitation of unitary 

input power. The magnetic field has only the x, y component since we want to solve the problem 

for a TM wave: 

 𝑯𝑖𝑛 = {

𝑠𝑖𝑛(𝜙)exp(−𝑗(𝑘𝑥𝑥 + 𝑘𝑦𝑥))

−𝑐𝑜𝑠(𝜙)exp(−𝑗(𝑘𝑥𝑥 + 𝑘𝑦𝑥))

0

 (2.46) 

And the propagation constant was set to 𝑘𝑧. 

Inside the cell we impose continuity boundary condition. These ensure the continuity of the 

tangential components of the electric and magnetic fields. 

This method solves the magnetic field without using any Rayleigh development of the field. This 

implies that the power of the various diffracted rays need to be directly calculated by using a 

Fourier transform of the simulated fields. 

The field in the substrate 𝑯𝒔 can be described as an expansion in the Rayleigh series as we have 

already seen for the RCWA (eq. 2.6 ) and CM (eq. 2.23) methods. In fact:  

 

𝑯𝒔(𝑧) =∑𝑯𝑚𝑛,𝑠 exp(−𝑖 [(𝑘𝑥 +𝑚
2𝜋

Λ𝑥
)𝑥

𝑚,𝑛

+ (𝑘𝑦 + 𝑛
2𝜋

Λ𝑦
)𝑦])exp (−𝑖𝑘𝑚𝑛,𝑠𝑧𝑧) 

(2.47) 

While in the upper region, ranging from the silver layer and the port boundary condition, the 

upper field 𝑯𝒖 assumes the following form:  
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𝑯𝒖(𝑧) =∑𝑯𝑚𝑛,𝑢 exp (−𝑖 [(𝑘𝑥 +𝑚
2𝜋

Λ𝑥
)𝑥

𝑚,𝑛

+ (𝑘𝑦 + 𝑛
2𝜋

Λ𝑦
)𝑦])exp(−𝑖𝑘𝑚𝑛,𝑢𝑧𝑧)

+ 𝑐𝑯𝑖𝑛 exp (−𝑖𝑘𝑧(𝑧 − ℎ)) 

(2.48) 

where 𝑐 = √
2

Λ𝑥Λ𝑦

𝜀0

𝜇0

cos (𝜃)

𝜂𝑢
  is a constant that imposes the unitary power to the port, ℎ is the 𝑧-

quote of the port interface, Λ𝑥, and Λ𝑦 are the dimension of the unitary periodic cell. The 𝑧 

component of the diffracted ray momentum is:  

 𝑘𝑚𝑛,𝑢;𝑠𝑧 = √(𝜂𝑢;𝑠𝑘0)
2
− (𝑘𝑥 +𝑚

2𝜋

Λ𝑥
)
2

− (𝑘𝑦 + 𝑛
2𝜋

Λ𝑦
)

2

 (2.49) 

with the subscript 𝑢, 𝑠 referring to the upper medium and to the substrate, respectively. After 

performing the Fourier transform of the 𝑯𝒔 or 𝑯𝒖 (subtracting the incident field component) we 

can retrieve the component 𝑯𝑚𝑛,𝑠;𝑢 and use them in order to evaluate the diffracted rays 

power: 

 𝑃𝑚𝑛,𝑠;𝑢 =  
Λ𝑥Λ𝑦
2𝜂𝑢;𝑠

|𝑯𝑚𝑛,𝑠;𝑢|
2
√
𝜇0
𝜀0
Re[cos (𝜃𝑚𝑛,𝑢;𝑠)] (2.50) 

Where 𝜃𝑚𝑛,𝑢;𝑠 is the light output angle: 

 
𝜃𝑚𝑛,𝑢;𝑠 = tan

−1

√(𝑘𝑥 +𝑚
2𝜋
Λ𝑥
)
2

+ (𝑘𝑦 + 𝑛
2𝜋
Λ𝑦
)
2

𝑘𝑚𝑛,𝑢;𝑠,𝑧
 

(2.51) 

Some physical quantities, such as total reflectance, total transmittance, and absorptance of 

silver layer, can be calculated by directly using Comsol built-in tools. With such tools, the net 

power flows through any boundary can be easily calculated. This allows an immediate 

calculation of the grating total transmittance and reflectance. The power dissipate by the silver 

layer can be easily evaluated by means of Comsol integration tools by applying this formula: 

 𝑄 = ∫
𝜔

2

 

𝑠𝑖𝑙𝑣𝑒𝑟 𝑑𝑜𝑚𝑎𝑖𝑛𝑠

 𝐼𝑚(𝜀)|𝐸|2𝑑𝑉 (2.52) 

We compared this FEM method with the RCWA one by calculating the diffraction efficiencies for 

a grating with the cross section reported in figure 2.10. 
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Figure 2.11 Comparison between the reflectance parameters calculated by using the RCWA method (continuous 
line) and the FEM method (circle): (a) as a function of 𝜽, with 𝝓=0° and (b) as function of 𝝓, with 𝜽=45°. Both 

calculated in the TM mode. 

In Figure 2.11 we reported the comparison between the reflectance parameters Rtot, R0, and R-1 

calculated by using the RCWA method (continuous line) and the FEM method (circle). In figure 

2.11a we report the reflectance as a function of 𝜃, with 𝜙=0° meanwhile in figure 2.11b we 

report the reflectance as function of 𝜙, with 𝜃=45°. As we can see there is a perfect agreement 

between the RCWA and the FEM method. 

We performed the same analysis for the transmittance of diffracted rays as can be seen in Figure 

2.12. we compared the transmittance parameters Ttot, T0, and T-2 calculated by using the RCWA 

method (continuous line) and the FEM method (circle). In figure 2.11a we report the reflectance 

as a function of 𝜃, with 𝜙=0° meanwhile in figure 2.11b we report the reflectance as function of 

𝜙, with 𝜃=45°. Also in this case we can see that there is a perfect agreement between the RCWA 

and the FEM method.  

 

Figure 2.12 Comparison between the Transmittance parameters calculated by using the RCWA method (continuous 
line) and the FEM method (circle): (a) as a function of 𝜽, with 𝝓=0°; (b) as function of 𝝓, with 𝜽=45°. Both 

calculated in the TM mode. 

Even if the simulation are the same for the RCWA and the FEM method, the latter is more 

powerful because we can simulate every desired periodic structure, as we will see in section 
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3.1.2. Moreover, thanks to the Comsol implemented tools, the fields inside the nanostructured 

surface can be easily calculated. As already specified in the introduction of this chapter, two - 

dimensional simulations can be performed also by using the RCWA and CM methods. 

Nevertheless their codes implementation and convergence need a careful and dedicated 

approach that will not be treated here. 

2.4 Vector model method 

We already introduced the vector model (VM) in section 1.2.2 applying it to the unidimensional 

grating in the conical mounting configuration with 𝜙=0°. Here we want to generalize it to the 

bidimensional periodic structure case, considering the conical mounting configuration. 

 

Figure 2.13 schematic for the generalization of the Vector Model 

A general bidimensional periodic structure, like a tilted chessboard, is reported in Figure 2.13. 

The surface is invariant for every translation along any of the lattice vectors 𝑅⃗ = 𝑛1𝑎1⃗⃗⃗⃗ + 𝑛2𝑎2⃗⃗⃗⃗  is 

performed. Being 𝑎1⃗⃗⃗⃗  , and 𝑎2⃗⃗⃗⃗  in reference to figure 2.13: 

 𝑎1⃗⃗⃗⃗ =  {
Λ1

Λ1tan (𝜓)
0

 ; 𝑎2⃗⃗⃗⃗ =  {
0

Λ2cos (𝜓)
0

   (2.53) 

The reciprocal lattice vectors could be found straight forward [69] by considering: 

 𝑔1⃗⃗⃗⃗ =  
2𝜋(𝑎2⃗⃗⃗⃗  ×  𝑒3⃗⃗  ⃗)

𝑎1⃗⃗⃗⃗ ∙ (𝑎2⃗⃗⃗⃗  ×  𝑒3⃗⃗  ⃗)
;  𝑔2⃗⃗⃗⃗ =  

2𝜋(𝑒3⃗⃗  ⃗  ×  𝑎1⃗⃗⃗⃗ )

𝑎1⃗⃗⃗⃗ ∙ (𝑎2⃗⃗⃗⃗  ×  𝑒3⃗⃗  ⃗)
 (2.54) 

where 𝑒3⃗⃗  ⃗ is the unitary vector along the 𝑧-axis. This implies that the two dimensional plasmonic 

equations 1.33 in the grating plane 𝑥, 𝑦 becomes: 

 𝑘⃗ 𝑠𝑝𝑝 = 𝜂𝑑𝑘⃗ 0;𝑔.𝑝. + [
cos (𝜙) −sin (𝜙)
sin (𝜙) cos (𝜙)

] (𝑚1𝑔1⃗⃗⃗⃗ + 𝑚2𝑔2⃗⃗⃗⃗ ) (2.55) 

This equation is satisfied when: 

 sin(𝜃) =  −𝜌𝑔 cos(𝜙 − 𝛽) ± √𝜌𝑠𝑝𝑝
2 − 𝜌𝑔

2 sin2(𝜙 − 𝛽) (2.56) 

where 𝜌𝑔 = 
|𝑚1𝑔1⃗⃗⃗⃗  ⃗+𝑚2𝑔2⃗⃗⃗⃗  ⃗|

𝜂𝑑𝑘0
; 𝜌𝑠𝑝𝑝 = 

𝑘𝑠𝑝𝑝

𝜂𝑑𝑘0
, meanwhile 𝛽 = cos−1 [

(𝑚1𝑔1⃗⃗⃗⃗  ⃗+𝑚2𝑔2⃗⃗⃗⃗  ⃗)𝑥

|𝑚1𝑔1⃗⃗⃗⃗  ⃗+𝑚2𝑔2⃗⃗⃗⃗  ⃗|
]. 
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We can notice that the resonance has the same analytical form for one-dimensional or a bi-

dimensional periodic grating is used. In fact the one - dimensional grating is described by 

equation 2.56 imposing 𝑚1 or 𝑚2 = 0. Moreover we underline that 𝛽 depends only on the 

geometrical parameters, and not on the surface condition. 

In the next chapter we will use this model to fit the plasmonic resonances obtained from the 

periodic nanostructured surfaces simulation. Then we will see how this method can be used to 

predict the sensitivity of various plasmonic configurations. 
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3 Simulation Results 

In this chapter we will show the main results obtained by using the simulation tools previously 

described. First we will analyse the results we obtained by lighting a nanostructured surface in 

conical mounting configuration. We will start from the RCWA simulation of the one dimensional 

grating [70]–[72]. Then, by means of the FEM method, we will analyse two-dimensional 

nanostructures that can be considered as a superposition of two or three one dimensional 

gratings. We will also see that the SPRs resonances are well fitted by the Vector Model. 

Then we will study the characterization of the SPRs in the Kretschmann configuration for flat and 

grating surfaces. 

Moreover since the Kretschmann and grating coupling configurations excite the same surface 

modes, we will undercover and discuss their common features. 

Finally we will study the theoretical sensitivity of the SPRs. In each case the sensitivity will be 

calculated by changing the refractive index of the dielectric medium, and by modeling a 

dielectric thin layer that covers the metal part of the interface. We will perform this analysis 

considering as possible variables: the wavelength, the incident angle, the polarization angle, and 

the azimuthal angle. 

3.1 Nanostructured surfaces in conical mounting 

configuration 

 

3.1.1 Grating 

First of all we will study the behaviour of the grating in the conical mounting configuration by 

considering the zero order reflectance (R0) and the total grating transmittance (Ttot). These are 

the experimental quantities we can measure with our experimental set up. All the grating 

simulations that we will show in this section are computed via the RCWA method. In reference 

to figure 2.10 we will use the following grating cross section parameters: 

λ Λ fup fdown hdown hup hslab hfunc 𝜀𝑎𝑖𝑟  𝜀𝐴𝑔 𝜀𝑓𝑢𝑛𝑐  𝜀𝑝𝑜𝑙𝑦 

635 
nm 

740 
nm 

0.45 0.3 20 
nm 

20 
nm 

35 
nm 

-- 1 -17-
0.7i 

-- 2.4964 

Table 3.1. Grating model parameters used in this section. 
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Figure 3.1 SPRs for a unidimensional grating in conical mounting configuration: (a) pairs (𝜽, 𝝓) calculated by using 
the VM, (b) R0 and (c) Ttot calculated by using the RCWA method, as a function of 𝜽 and 𝝓 for the TM polarization 

mode 

In figure 3.1a we report the resonance curves calculated via the vector model by using the 

parameters reported in table 3.1. In figure 3.2b and 3.2c we report the parameters R0 and Ttot 

calculated by lighting the grating in the TM mode. In all these figures the calculated quantities 

are shown only for the positive azimuthal angles since they are symmetric respect to 𝜙 = 0° 

axis. 

As we can see the resonances shape follows the vector model curves and they are characterized 

by a minima in R0, and a maxima in Ttot. If a cross section at 𝜙 = 0° of the total transmittance 

map is considered, two maxima appear, corresponding to the SPR 𝑚=1 and 𝑚=-2, respectively. 

Let us call these two critical points (𝜃𝑐,1; 𝜙𝑐,1) and (𝜃𝑐,−2; 𝜙𝑐,−2). If we analyse a 𝜃-cross 

section of the Ttot map for 5° < 𝜃 < 𝜃𝑐,1, Ttot show only a maximum at 𝜙 = 0°. The value of this 

maximum increases while 𝜃 becomes closer to 𝜃𝑐,1 and for 𝜃 = 𝜃𝑐,1 it reaches the highest value. 

If a similar cross section is considered for 𝜃𝑐,1 < 𝜃 < 35.7° the two symmetric peaks at ±𝜙𝑟,1 

appear. The absolute values of this resonance position 𝜙𝑟,1 increases augmenting 𝜃, and we can 

also see that the peak transmittance decreases until it disappears for 𝜙 = 90°. A similar 

behaviour of the azimuthal resonance can be noticed for the SPR 𝑚=-2; if a 𝜃-cross section of 

the map for 35.7° < 𝜃 < 𝜃𝑐,2 the azimuthal transmittance has three maxima two a ±𝜙𝑟,−1  due 

to the excitation of the SPR 𝑚=-1, and one at 𝜙 = 0° due to the 𝑚=-2 SPR. Considering now only 

the resonances due to 𝑚=-2, if a cross section of the map is taken for 𝜃 > 𝜃𝑐,2, two azimuthal 

resonances ±𝜙𝑟,−2  appear. 

By comparing the R0 map with the Ttot map, and in particular the R0 minima and Ttot maxima, the 

plasmonic resonances present the same behaviour. Nevertheless, fixed 𝜃, the azimuthal 

resonance angle 𝜙𝑟, found as a minimum of the reflectance, is not exactly the found as a 

maximum of the transmittance [73], [74]. We report in table 3.2 the azimuthal resonance angles 

found through R0 and Ttot for the SPR 𝑚=1 and 𝑚=-2.  

𝜙𝑟 SPR 𝑚=1; 𝜃 = 10.5° SPR 𝑚=-2; 𝜃 = 43.0° 

R0 10.55° 4.00° 

Ttot 10.30° 4.60° 
Table 3.2 Azimuthal resonance position found by using R0 and Ttot parameters for the SPR 𝒎=1 and 𝒎=-2. 
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As we can see from table 3.2 for the SPR 𝑚=1 the resonance angle found by using the R0 

parameter is 0.25° greater than the one found considering the Ttot parameter. Conversely for the 

SPR 𝑚=-2 𝜙𝑟 calculated through R0 is 0.6° lower than 𝜙𝑟 calculated by using Ttot. 

 

Figure 3.2: (a) R0 and (b) Ttot calculated by using the RCWA method as a function of 𝜽 and 𝝓 for the TE polarization 

mode 

In figure 3.2a and 3.2b we report the parameters R0 and Ttot calculated for the grating lighted in 

the TE mode as a function of 𝜃 and 𝜙, respectively. As for the TM case, the reported maps are 

symmetric with respect to 𝜙 = 0° axis. 

Also in this case the resonances follow the vector model and increase their amplitude with the 

increasing their azimuthal angle, being strongest at 𝜙 = 90°. This behaviour is the opposite 

respect to the resonances found in the TM mode. The SPR 𝑚=-2 resonance weakly excited 

through this polarization mode, since it is confined for |𝜙| < 40°; in fact it is difficult to identify 

it by looking at figure 3.2. 

In conclusion, the plasmonic resonances for the unidimensional grating case appear as maxima 

(minima) if Ttot (R0) parameter is plotted as a function of 𝜃 and 𝜙. The resonances shape follows 

the curves predicted by using the Vector Model, and they appear as a sort of parabolic curve 

𝜃(𝜙). This ⊂-shaped curves follow the analytical equation 2.56 of the vector model. The critical 

points of the curves, i.e. the parabola vertexes, are represented by (𝜃𝑐,1;  0) and (𝜃𝑐,−2;  0) since 

the azimuthal angle 𝛽 of the VM is geometrically forced to 0° (eq. 2.56, with 𝑚2=0). For each 

resonance, the critical point strongly affects the azimuthal resonance behaviour. One single 

azimuthal resonance is found at 𝜙= 0° if 𝜃 ≤ 𝜃𝑐 meanwhile two symmetric azimuthal resonance 

can be identified for 𝜃 > 𝜃𝑐. 

In the next section we will analyse two dimensional crossed gratings. They will produce 

resonances described by the same analytical curves found for the one-dimensional grating case, 

but with a critical point 𝜙𝑐 ≠  0. 
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3.1.2 Two-dimensional nanostructures 

The first Two-dimensional nanostructure we simulated through the FEM method is the one 

showed in figure 3.3b. It is composed by two unidimensional gratings of 740 nm period rotated 

by an angle of 20°. The nanostructure is therefore similar to an equilateral rhombus. The grey 

areas describe the silver continuous layer which separates the substrate medium (glass, 

𝜂𝑑 = 1.5) from the upper medium (air, 𝜂𝑑 = 1).The silver film thickness is set to 45 nm and the 

nanostructure amplitude is 20 nm. We simulated the nanostructure with a TM polarized light 

having a wavelength of 635 nm. 

In figure 3.3a we report the total transmittance of the nanostructure and the position of the 

resonances calculated by using the vector model (white dashed line). As we can see all the 

different resonances due to the different SPR excitation orders, which in this case are described 

by the two coupling number 𝑚1, and 𝑚2, are well reproduced in the region near the critical 

point (𝜃𝑐;  𝛽). When two different orders should be excited for the same (𝜃,𝜙), some 

plasmonics bandgap occurs and huge discontinuities in the transmittance map can be noted, 

such as for 𝜃=16°  and 𝜙= -55°. 

 

Figure 3.3 (a) Ttot map as a function of 𝜽 and 𝝓 calculated for the bi-dimensional nanostructured surfaces by using a 

635 nm light in the TM polarization mode. (b) schematic of the nanostructured surface. 

As we can see the VM well reproduces the resonances calculated by means of the FEM method. 

Hence the VM is the quickest and accurate instrument to use for calculate the angular position 

of the SPR, when resonance shape and intensity are not required parameters. Also we can see 

that the shape of the resonance does not change significantly if a more complex structure than 

the one-dimensional grating, is used; we always obtain ⊂-shaped curves that follow the 

analytical equation 2.56 of the vector model. 

In the previous example, we compared the Ttot parameter calculated by the FEM method with 

the curves produced by the VM. We found a good agreement between the two simulation 

methods, being the transmittance maxima well fitted by the VM analytical curves. Nevertheless 

the SPRs produced considering the previous case have a maximum coupling order |𝑚1,2|𝑚𝑎𝑥=2. 

Hereafter we will study what happens when a coupling order up to |𝑚1,2|𝑚𝑎𝑥=6 could, in theory, 
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be excited and how the structure inside the periodic cell can affect the resonance coupling 

strength. 

In order to depict this aspect we calculated the transmittance map produced by the 

nanostructures reported in figure 3.4 

 

Figure 3.4 Different nanostructured surfaces implemented with the FEM method 

Figure 3.4a represents the base bi-dimensional periodic structure we considered. In this case we 

use two different periods being the shorter one 740 nm, meanwhile the longest one equals 

2*1.3*740 nm. The other structures reported (3.4b, 3.4c, and 3.4d) are obtained by adding 

another grating to the first nanostructure. For the structure reported in figure 3.4b, a grating is 

added in the middle of the periodic cell halving the longest period that becomes in this case 

1.3*740 nm. In figure 3.4c we added a grating parallel to the diagonal that goes from the upper 

left corner down to the lower right corner. The opposite diagonal were used to add the grating 

as it is reported in figure 3.4d. Like in the previous case the total film thickness was set to 45 nm 

and the height of the nanostructure to 20 nm. 

In figure 3.5 we report the Ttot maps found for the four different nanostructures (a, b, c, d) 

shown in figure 3.4 as a function of (𝜃,𝜙) calculated using a 635 nm light in TM polarization 

mode. White circles refers to the critical points (𝜃𝑐;  𝛽) we found by applying the VM to the 

basic periodic cell described in figure 3.4a, since this is the cell that could be considered as the 

unitary periodic cell for all the four cases here considered. As we can see from figure 3.5a, for 

the simplest model considered, not all the critical points correspond to a vertex for a 

transmittance ⊂-shaped resonance as conversely happens for the case reported in figure 3.3a. 

This behaviour is typical also for the others nanostructured surfaces considered. 
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Figure 3.5 Ttot calculated for the nanostructured surfaces showed in Figure 3.4 the association follows the respective 
letters. The white circles refers to the critical points (𝜽𝒄;  𝜷) calculated by using the VM. 

The total transmittance map noticeably changes If some geometrical features are added inside 

the periodic cell, such as another grating with a fixed direction. This boosts some excitation 

orders and weakens some others, e.g. the resonance that occurs at 𝜃𝑐=42.9° and 𝜙𝑐=0° of figure 

3.5, corresponding to  𝑚1=2; 𝑚2=0, is stronger for the (a) and (b) geometries then it is weakened 

by the (d) geometry and it disappears in the (c) geometry. There are also some resonances that 

never appear such as the one at 𝜃𝑐=37.9°, 𝜙𝑐=70° which in this case corresponds to the 

excitation order 𝑚1=0; 𝑚2=5, or the one at 𝜃𝑐=63.6°, 𝜙𝑐=-53.4° corresponding to 𝑚1=2; 𝑚2=5. 

Where 𝑚1 and 𝑚2 were calculated by considering the structure of figure 3.4a as the unitary cell. 

Nevertheless regarding the geometry (b) if we use the smallest possible periodic cell for the VM 

calculations, all the resonance that appear are well fitted. In fact by considering the smallest 

periodic cells the maximum excitation order allowed by the vector model is |𝑚1,2|𝑚𝑎𝑥=2 as it 

happens in the case of figure 3.3a 

In this study we learn that also complicated structures show the usual plasmonic resonance 

effect described, If present, by the vector model analytical equation 2.56. The change of the 

periodic cell geometrical features can lead to an enhancement of certain resonances whose 

shape and intensity can be evaluate through the FEM method. 
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3.2 Kretschmann configuration 

Among all the configurations for SPP excitation, the Kretschmann one is the most used and it is 

also implemented in numerous commercial instruments (section 1.2.1). In this configuration 

SPPs are excited by lighting the metal/dielectric interface from an high refractive medium, i.e. a 

glass prism, see figure 3.6. When the condition of total internal reflection is satisfied, an 

evanescent wave penetrates the metallic film and it couples with the SPP at the metal/air 

interface, producing the resonance. 

In this case no rays are transmitted since we are in total internal reflection (TIR) condition and 

the resonance can be only monitored by looking at the properties of the zero order reflected 

ray; i.e. the reflectance as a function of the light incident angle or wavelength is measured. 

Conversely when a grating structured surfaces is mounted in this configuration some rays could 

be transmitted since they coupled with the grating momentum. In this case the plasmonic 

equation that needs to be satisfied is eq. 1.33, here reported:  

 𝑘𝑠𝑝𝑝 =  𝜂𝑝𝑘0sin (𝜃) (3.1) 

 

Figure 3.6 Schematic of the Kretschmann configuration 
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3.2.1 Flat surfaces  

We adopted the RCWA method to simulate the Kretschmann resonances, but we implemented a 

simplified version of it, i.e. the one reported in the first part of Moharam work [52]. For the 

characterization of this type of resonance we used a two layers system. The first layer represents 

the silver film (yellow layer in Fig 3.6) and it is in contact with the polycarbonate substrate. The 

second layer is placed between the silver metallic film and the air buffer (green layer in Fig 3.7). 

This layer simulates the presence of a functionalization layer that will account for the biological 

modification of the surface. The light, obviously, incomes from the polycarbonate substrate. 

Initially we simulated the R0 map as a function of the incoming light incident angle and 

wavelength. The parameters used in the simulation are:  

𝜂𝑝=1.58 𝜂𝑎𝑖𝑟=1 𝜂𝑓𝑢𝑛𝑐=1 𝑑𝐴𝑔= 50 nm 𝑑𝑓𝑢𝑛𝑐= 1 nm 
Table 3.3 physical parameters used in the simulations 

where 𝜂𝑝 is the polycarbonate refractive index which was assumed to be constant for all the 

light wavelenght. Conversely the silver dielectric permittivity was considered as a function of the 

wevelenght by using the values measured by Rakić [75].  

We report in figure 3.7a R0 as a function of the incident light wavelength and the incident angle 

found for a flat silver surface lighted in the TM mode. The SPR is clearly seen as the dark band 

inside the map that represent the reflectance minima. In figure 3.8b we report R0 as a function 

of 𝜃 for 𝜆 = 633 nm calculated with the same previous conditions. Here the resonance is a 

represented by a sharp minimum in the R0 parameter. The experimental characterization of this 

minimum will be discussed in section 4.2.2 

 

Figure 3.7 R0 parameter calculated as a function of 𝜽 and 𝝀. (b) R0 as a function of 𝜽 for 𝝀=633 nm. Both figures 
were calculated for a flat silver surfaces lighted in the Kretschmann configuration with TM polarized light. 
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3.2.2 Grating surfaces 

In the previous section we saw what happens when a flat metal/dielectric interface is lighted in 

Kretschmann configuration. Now we want to study what happens when instead of flat surfaces 

we light a unidimensional nanostructured surface. This field has been studied in other works in 

order to understand the excitation of the SPP in the upper and lower interface [76], [77], and to 

enhance the Kretschmann sensitivity [78], [79]. Nevertheless all these studies refer to the 

condition where the grating is oriented perpendicular to the scattering plane i.e. 𝜙=0°. Here we 

will study the complete system as a function of the 𝜃 and 𝜙 angles and we will show what 

happens at the nanostructured metal/substrate interface and at the metal/dielectric one. 

 

Figure 3.8 (a) Schematic of the excitation of SPP in the Kretschmann configuration using a nanostructured surface. 
(b) R0 as a function of 𝜽 and 𝝓 calculated using a unidimensional grating lighted in a Kretschmann configuration by 

using a 633 nm light wavelength in TM polarization mode. 

We schematized the results in figure 3.8a. The light was incoming from the grating 

polycarbonate substrate and it was reflected from the silver yellow layer. The intensity of this 

reflected ray is reported as a function of 𝜃 and 𝜙 in figure 3.8b, and were calculated assuming 

that the grating is lighted with a 633 nm laser and in TM polarization mode. The grating 

parameters were the ones reported in table 3.1. The Kretschmann plasmonic excitation 

corresponds to the dark vertical band in figure 3.9b, fitted by the grey line. It relates to the 

excitation of the SPP at the metal/air interface and it is independent from the azimuthal angle 

since its excitation follows eq. 3.1. 

At the polycarbonate/metal interface another SPP can be excite. This coupling could be related 

to the 𝑚=-3 (red dashed line) or 𝑚=1 (red continuous line) orders. Also in these cases the SPP 

excitation is represented by the classical vector model (eq. 2.56) considering the polycarbonate 

refractive index 𝜂𝑑=1.58. As we can see, from figure 3.8b, shallow minima are present along the 

red dashed line. Hence the weak coupling of the SPP at this interface should follow the SPR 𝑚=-3 

order. We measured these plasmonic resonances in section 4.2.3 and we found that, despite 

these simulations results, the most pronounced SPP excitation order is the 𝑚=1 one. 
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The other two blue lines reported in figure 3.8b are related to the Wood-Rayleigh anomalies. 

These anomalies happen when the 𝑧-component of a diffracted ray becomes zero and, 

therefore, it is related to the number of grating transmitted rays. These resonances divide the 

plane (𝜃, 𝜙) in four regions, each one with a specific number of diffracted rays, as reported in 

table 3.4:  

Region Transmitted ray. 

1 T-1, T-2 

2 T-1 

3 T0, T-1,  

4 T0, T-1 T-2 
Table 3.4 Rays transmitted by the grating in each numbered region as reported in Figure 3.8b 

As we can see the T-1 ray is always present, the T-2 ray is present under the dashed blue line 

while the T0 order is present at the left of the vertical blue line. The T-1 and T-2 rays are directly 

related to the grating presence. They have a transmittance maximum when the Kretschmann 

Plasmon is fully excited. Moreover their output angles pairs (𝜃𝑜𝑢𝑡 , 𝜙𝑜𝑢𝑡) at the resonance, are 

the same angles that must be used to excite the SPP at the metal/air interface if the grating is 

lighted from the air in a conical mounting configuration. This fact was already pointed out in the 

work of Park [73], [80], [81] for the special case of 𝜙=𝜙𝑜𝑢𝑡=0°. 
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3.3 Relationship between the Kretschmann and grating 

configurations 

The main difference between the Kretschmann and the grating configuration is the excitation 

medium. In the grating configuration the light incomes from the upper dielectric medium while 

in the Kretschmann configuration it incomes from an high refractive index medium. Previously, 

we showed that if the flat interface of the Kretschmann configuration is replaced with a 

nanostructured surface there are also some transmitted rays that propagate in the dielectric 

medium. When the Kretschmann plasmon is excited, these rays are transmitted with an angle 

respect to the normal which is the same one that must be used to excite the SPP if the same 

nanostructured surface is lighted in conical configuration [74]. 

Nevertheless the picture is not yet complete; here we will explain what happen to the grating 

transmitted rays in the substrate when the grating is lighted in the conical configuration. We will 

see that among all the four transmitted rays, propagating in the grating substrate, there is only 

one that carries the major information about the SPR transmittance. At the maximum of the 

excitation this ray propagates into the substrate with an angle that is equal to the one that must 

be used to excite the SPP in the Kretschmann configuration [74]. Here we will analyse two 

different cases: the transmitted ray when SPR 𝑚=1 in air is excited (figure 3.9 and following), 

and when SPR 𝑚=-2 in water is excited (figure 3.10 and following). 

We have already seen that in order to excite the SPP through a grating in the conical mounting 

configuration the equation 2.56 must be satisfied. The equation is reported here for the simply 

case of a unidimensional grating: 

 
𝑠𝑖𝑛(𝜃𝑖𝑛) =  

−𝑚𝐺𝑐𝑜𝑠(𝜙𝑖𝑛) ± √−𝑚
2𝐺2 sin2(𝜙𝑖𝑛) + 𝑅𝑒

2(𝑘𝑠𝑝𝑝)

𝑘0𝜂𝑑
 

(3.2) 

where 𝑘0 = 2𝜋/𝜆 is the vacuum light momentum and 𝜆 the vacuum wavelength, 𝜂𝑑 is the 

refraction index of the dielectric medium (air or water), 𝑘𝑠𝑝𝑝 =  𝑘0√
𝜀𝑑𝜀𝑚

𝜀𝑑+𝜀𝑚
 is the modulus of the 

SPP coupling constant, 𝜀𝑑 = 𝜂𝑑
2 is the relative dielectric constant of the dielectric medium and 

𝜀𝑚 is the metal dielectric constant, 𝐺 = 2𝜋/Λ, and Λ is the grating period. We add the subscript 

𝑖𝑛 since we want to underline that these are the light incident angles in conical configuration 

when the light propagates in the upper medium. 

The output angle pair (𝜃𝑜𝑢𝑡,𝑛, 𝜙𝑜𝑢𝑡,𝑛) of the transmitted ray could be calculated through the 

RCWA since their momenta components are:  

 

{
 
 

 
 𝑘𝑥,𝑛 =  𝑘𝑜[𝜂𝑑 sin(𝜃) cos(𝜙) + 𝑛(𝜆 Λ⁄ )]

𝑘𝑦 =  𝑘𝑜𝜂𝑑 sin(𝜃) sin(𝜙)

𝑘𝑧,𝑛,𝐼𝐼 = √(𝑘𝑜𝜂𝑝)
2 − 𝑘𝑥,𝑛

2 − 𝑘𝑦
2

 (3.3) 

Where 𝜂𝑝 is the refraction index of the polycarbonate grating substrate, and 𝑛 is the subscript 

that corresponds to the Rayleigh - Floquet expansion order of the diffracted ray. The output 

angle pairs is therefore: 
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 𝜃𝑜𝑢𝑡,𝑛 = tan
−1 (√𝑘𝑥,𝑛

2 + 𝑘𝑦
2 𝑘𝑧,𝑛,𝐼𝐼⁄ ) ;  𝜙𝑜𝑢𝑡,𝑛 =  tan

−1(𝑘𝑦 𝑘𝑥,𝑛⁄ ) (3.4) 

In the two cases considered: air, and water, four transmitted rays T-2, T-1, T0, T1 are always 

present. 

 

Figure 3.9 (a) Ttot as a function of 𝜽𝒊𝒏 𝝓𝒊𝒏. (b) T-2, (c) T-1, (d) T0, (e) T1 as a function of 𝜽𝒐𝒖𝒕 𝝓𝒐𝒖𝒕, calculated for a 

trapezoidal grating lighted in TM mode for the SPR 𝒎=1 in air. The black lines refer to the VM calculations 

In figure 3.9a we report the Ttot as a function of 𝜃𝑖𝑛 and 𝜙𝑖𝑛. Here the same resonance of figure 

3.1c can be seen and also in this case it is well fitted from the vector model considering 𝑚=1 as 

the coupling constant. The transmittance values are slightly different because we use a 

trapezoidal grating cross section. In reference to figure 2.8 the parameters used are reported in 

table 3.5. 

λ Λ fup fdown h dAg dfunc 𝜀𝑎𝑖𝑟  𝜀𝐴𝑔 𝜀𝑓𝑢𝑛𝑐  𝜀𝑝𝑜𝑙𝑦 

635 nm 740 nm 0.75 0.93 20 nm 58 nm -- 1 -17-0.7i -- 2.4964 
Table 3.5 Parameters used in the trapezoidal grating simulation 

The other four figures 3.9b, 3.9c, 3.9d, and 3.9e show the ray transmittance T-2, T-1, T0, and T1 

plotted as a function of their output angles (𝜃𝑜𝑢𝑡 , 𝜙𝑜𝑢𝑡), respectively. As we can see in all these 
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four figures a resonance appears and it is well fitted by the black dotted curves. These curves 

represents the solution of this equation: 

 
𝑠𝑖𝑛(𝜃𝑜𝑢𝑡) =  

−𝑚𝑝𝐺𝑐𝑜𝑠(𝜙𝑜𝑢𝑡) ± √−𝑚𝑝
2𝐺2 sin2(𝜙𝑜𝑢𝑡) + 𝑅𝑒

2(𝑘𝑠𝑝𝑝)

𝑘0𝜂𝑝
 

(3.5) 

which is similar to the equation 3.2 with the exception that we substitute 𝜂𝑑  with 𝜂𝑝, and 𝑚 

with 𝑚𝑝 (𝑘𝑠𝑝𝑝 remains the same). We will refer to 𝑚𝑝 calling it: the decoupling constant. 

The maps reported in figure 3.9 show that every ray carries a different part of the SPR 

information. We can see that for T-2, and T-1 the resonance is represented by a transmission 

enhancement and it is well fitted by the decoupling constant 𝑚𝑝=3 and 𝑚𝑝=2, respectively. 

Nevertheless their contribution to the total transmittance is negligible since their values reach a 

maximum of about 7 × 10-4 a.u. while the Ttot maximum is slightly greater than 0.08 a.u. 

The T0 ray follows the Snell law and its resonance it is well fitted by using the decoupling order 

𝑚𝑝= 1. Its resonance is not represented by an enhancement in the transmittance but it has a 

step like shape. The value of T0 varies in a narrow range of values from 0.013 a.u. to 0.016 a.u. 

and regarding the Ttot map this values represent the baseline of the resonance. Further we will 

refer to this ray as “the baseline ray”. 

The most interesting output ray is the T1 ray. As we can see its transmittance values go from 0 

a.u. to a maximum of 0.065 a.u.. This means that at the resonance it carries about the 87 % of 

the total transmittance. As we can see from figure 3.9e the resonance is represented by a 

maximum well fitted by the decoupling constant 𝑚𝑝= 0 and it is independent from 𝜙𝑜𝑢𝑡. The 

angle 𝜃𝑜𝑢𝑡  where this resonance happens is the same one that must be used to excite the SPP at 

the silver/air interface if the surface is mounted in Kretschmann configuration. We will refer to 

this ray as “the Kretschmann ray”. 

Figure 3.10 reports the behaviour the SPR 𝑚=-2 in water (𝜂𝑑= 1.333).In figure 3.10a we report 

the Ttot map as a function of 𝜃𝑖𝑛 and 𝜙𝑖𝑛 while the figures 3.10b, 3.10c, 3.10d, and 3.10e report 

the transmittance of the four diffracted rays T-2, T-1, T0, and T1 as a function of their output 

angles (𝜃𝑜𝑢𝑡 , 𝜙𝑜𝑢𝑡), respectively. All these maps were calculated by using the previously 

described trapezoidal grating parameters (table 3.5). As expected the resonance presents in the 

Ttot map is well fitted by the VM considering 𝑚=-2 as the SPP coupling order, proving the 

effectiveness of our analysis if water is used as dielectric medium. 

The rays behaviour is very similar to the SPR 𝑚=1 in air, previouslydescribed. This time the role 

of the Kretschmann ray is played by T-2 as can be seen from figure 3.10b. Its resonance as a 

function of the output angles is 𝜙𝑜𝑢𝑡-independent and it is well fitted by the decoupling 

constant 𝑚𝑝= 0. As previously seen at the resonance this ray carries the 60 % of the total 

transmittance. Its output incident angle is the same that must be used in the Kretschmann 

configuration for exciting the SPP at the silver/water interface. Again T0 assumes the role of the 

baseline ray since its transmittance is comprised between 0.013a.u. and 0.016 a.u. and it is 

almost constant for all the considered angles (figure 3.10d). Its shallow resonance is fitted here 

by using 𝑚𝑝=-2. The other two rays, T-1, and T1 become the negligible rays since their 
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transmittance reaches a value of 2.2 × 10-4 a.u. meanwhile the Ttot maximum is slightly greater 

than 0.06 a.u.. Their resonances are fitted by using 𝑚𝑝=-1 and 𝑚𝑝=-3, respectively. 

 

Figure 3.10 (a) Ttot as a function of 𝜽𝒊𝒏 𝝓𝒊𝒏. (b) T-2, (c) T-1, (d) T0, (e) T1 as a function of 𝜽𝒐𝒖𝒕 𝝓𝒐𝒖𝒕 , calculated for a 

trapezoidal grating lighted in TM mode for the SPR 𝒎=-2 in water. The black lines refer to the VM calculations 

The analysis we performed here can be summarized in the following table for the SPR 𝑚=1 and 

SPR 𝑚=-2, and it is valid for every dielectric medium in contact with the metal layer: 

 SPP 𝑚 = 1  SPP 𝑚 = -2 

n mp DR  mp DR 

1 0 k  -3 -- 

0 1 b  -2 b 

-1 2 --  -1 -- 

-2 3 --  0 k 
Table 3.6 role of the n-th Rayleigh Floquet transmitted rays for the 𝒎 =1 and 𝒎 = -2 SPP coupling orders. 

Table 3.6 summarizes the relation between the n-th diffracted order and the decoupling 

constant mp we previously analyzed for the SPP excitation 𝑚=1 at the silver/air interface and for 

the SPP 𝑚=-2 at the silver/water interface. Among all the transmitted rays, the Kretschmann ray 

(mark in the table using “k”) carries most of the transmittance at the resonance condition. T0 is 
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the other important transmitted ray that influences the baseline transmittance value (has been 

indicated with the “b”). The other two rays can be neglected due to the fact that their 

transmittance is two orders of magnitude smaller respect to the transmittance carried by “k” 

and “b” rays and they are marked in table with “--”. 

The results reported in this table can be extended for other coupling orders but the main 

features remains the same: the baseline ray follows the Snell law and carries the baseline 

information having a shallow imprint of the resonance, meanwhile the Kretschmann ray carries 

the greater part of the resonance information. In order to sense the transmittance of this ray 

two possible methods could be experimentally pursued. In the first one the ray must be 

extracted from the grating substrate by using an optically matched prism and then analyzed by a 

light detector. In the second one optical medium continuity between the substrate and the 

detector must be ensure. If these solutions are not implemented the Kretschmann ray will 

undergo to TIR and it will not be sensed, losing the greater part of the SPR information. If this is 

the case the only ray that will be sensed is the baseline one; nevertheless the resonance can still 

be monitored as in Hiller’s work [82], [83]. 
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3.4 Simulated sensitivity 

In this section we will analyse how the SPR shifts can be exploited for sensing purpose in 

different configurations. For each configuration we will see how these shifts are affected by a 

dielectric refractive index (𝜂𝑑) increasing from 1 RIU to 1.02 RIU in step of 0.001 RIU. We will 

also see how different thicknesses of a dielectric layer affect the resonance. Usually this 

dielectric layer is used to simulate the presence of an organic layer (molecules, proteins, or 

antibodies). We will simulate this functionalization layer by assuming that it is formed by a 

dielectric having a refractive index of 1.5 RIU [20], [82], [84]. Its thickness will be varied from 0 

nm to 10 nm in step of 0.5 nm. 

Initially we will consider the wavelength and incident angle sensitivity for both the grating (𝜙=0°) 

and Kretschmann configurations [16]. In the grating case we will also analyse how an azimuthal 

rotation of the grating affect the 𝜃-sensitivity. In particular we will recall the azimuthal rotated 

method introduced by Romanato [85]–[88], but we will also point out that an enhancement in 

the 𝜃-sensitivity can be obtained exploiting the plasmonic excitation when the resonance curves 

are almost parallel to the 𝜃-axis, i.e. for 𝜃>70° in figure 3.1. 

Next, we will analyse the polarization sensitivity in the grating configuration applying it to the 

case reported by Romanato [28], [89], [90] and to a condition adapts to our experimental 

constrictions (light wavelength and grating geometry). Nevertheless we will see that the two 

cases reach the same polarization sensitivity values. 

Finally, we will introduce the azimuthal sensitivity which is one of the main parameters 

developed in this work [91]. We will see that this sensitivity behaves like the double deep 

incident angle sensitivity. Next we will improve this parameter by optimizing the shape of the 

SPR curves. 

For all the grating simulations we will use the digital grating cross section with the parameters 

reported in table 3.1, meanwhile for the Kretschmann configurations we will use the parameters 

of table 3.3. In all the figures reported seven different colours (from dark blue to brown) will 

reproduce the curves we found for the different functionalization parameters. The colours will 

refer to 𝜂𝑑  starting from 1.000 to 1.018 in step of 0.003 RIU if the buffer refractive index is 

changed. If the functionalization study is performed the colours will refer to the functionalization 

thickness going from 0 nm to 9 nm increasing in step of 0.15 nm. 
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3.4.1 Wavelength sensitivity 

Grating configuration: 

 

Figure 3.11 R0 map as a function of 𝜽 and 𝝀 calculated for 𝝓 = 0° lighting a grating in TM polarization mode. Black 

and grey dashed curves refers to the VM calculation for 𝒎=-2 and 𝒎=1, respectively. 

In figure 3.11 we report the R0 map as a function of 𝜃 and 𝜆 calculated for 𝜙=0° lighting the 

grating with a TM polarized light. As we can see there are two intersecting dark bands. The one 

marked with the black dashed line refers to the SPR 𝑚=-2 and the one marked with the grey 

dashed line refers to the SPR 𝑚 =1. We can see that, when the two resonance cross each other, 

a plasmonic bandgap appears similarly to what happens in the work of Alleyne [78]. Now we will 

fix 𝜃 = 14° and we will analyse the behaviour of the 𝑚=1 SPR. In particular we will see what 

happens to the plasmonic resonance when the dielectric medium refractive index 𝜂𝑑  (see figure 

3.12a),or the functionalization layer thickness ℎ𝑓𝑢𝑛𝑐  (see figure 3.12b), increase. 

 

Figure 3.12 Grating configuration: (a) R0 as a function of 𝝀 calculated increasing 𝜼𝒅, the inset shows the minimum 
position as a function of 𝜼𝒅, (b) R0 as a function of 𝝀 calculated increasing 𝒉𝒇𝒖𝒏𝒄, the inset shows the minimum 

position as a function of 𝒉𝒇𝒖𝒏𝒄; both calculated with 𝜽 = 14°, 𝝓 = 0°, and in TM mode. 

We report in figure 3.12a the curves R0 as a function of 𝜆 for 𝜃 = 14° and 𝜙 = 0° in TM mode 

calculated for different values of 𝜂𝑑  as specified in the introduction of this section; going from 0 

RIU to 0.018 RIU in step of 0.003 RIU. The reflectance minimum shifts toward higher values of 𝜆 

with the increasing of the 𝜂𝑑  value. This shift is underline in the inset of figure 3.12a where we 
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report the position of the minimum as a function of 𝜂𝑑 . The minima simulated with the RCWA 

model is well fitted by the VM using 𝑚=1 and also a good linear relation between the minimum 

position and the refractive index can be noted. The slope of this linear curve defined as 𝜕𝜆 𝜕𝜂𝑑⁄  

= 660 nm/RIU is the wavelength sensitivity to the buffer variations and its value is similar to the 

one of other grating coupling device as reported in [92]–[94]. 

Similarly we report in figure 3.12b the curves R0 as a function of 𝜆 calculated for different values 

of ℎ𝑓𝑢𝑛𝑐as specified in the introduction of this section. The linear correlation between the 

reflectance minima and the functionalization thickness is reported in the inset of figure 3.12b. 

The slope of this linear curve defined as 𝜕𝜆 𝜕ℎ𝑓𝑢𝑛𝑐⁄ = 1.77 nmλ/nmfunc is the wavelength 

sensitivity to the functionalization thickness variations. 

Also in this case we can see a good correlations between the VM 𝑚=1 and the values simulated 

by the RCWA code. In this case the relation between the two simulation methods is not well 

specified as in the case of the buffer variation 𝜂𝑑 . In fact the parameter 𝜂𝑑  could be directly 

inserted into the vector model, and its effect onto the plasmonic coupling 𝑘𝑠𝑝𝑝 constant is taken 

into account by the definition of 𝜀𝑑 = 𝜂𝑑
2 (eq 1.24). When we consider a functionalization layer 

adsorbed onto the metallic surface we cannot change the buffer refractive index 𝜂𝑑but we must 

change only the plasmonic coupling constant by changing 𝜀𝑑 =  𝜂𝑒𝑓𝑓
2. The new defined 

parameters 𝜂𝑒𝑓𝑓  is the effective refractive index and it considers the modification introduced by 

the functionalization layer [20] since it is defined as: 

 𝜂𝑒𝑓𝑓 = 𝜂𝑑 +
2ℎ𝑓𝑢𝑛𝑐
𝑑𝑧

(𝜂𝑓𝑢𝑛𝑐 − 𝜂𝑑) (3.6) 

where 𝜂𝑓𝑢𝑛𝑐  = 1.5 RIU is the refraction index of the functionalization layer and 𝑑𝑧 is the plasmon 

penetration depth inside the dielectric medium defined in equation 1.27. In each case we will 

consider 𝑑𝑧 as the parameter that allow us to reproduce the RCWA simulated resonance with 

the Vector model. 

We perform the same analysis for the SPR m = -2 taking 𝜃 = 33.5°. We found that 𝜕𝜆 𝜕𝜂𝑑⁄ =625 

nm/RIU meanwhile 𝜕𝜆 𝜕ℎ𝑓𝑢𝑛𝑐⁄ = 0.9 nmλ/nmfunc, as reported in table 3.7. 
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Kretschmann configuration: 

 

Figure 3.13 Kretschmann configuration: (a) R0 as a function of 𝝀 calculated increasing 𝜼𝒅, the inset shows the 
minimum position as a function of 𝜼𝒅, (b) R0 as a function of 𝝀 calculated increasing 𝒉𝒇𝒖𝒏𝒄, the inset shows the 

minimum position as a function of 𝒉𝒇𝒖𝒏𝒄; both calculated with 𝜽 = 40.8° and in TM mode. 

We perform the same analysis considering a flat surface in the Kretschmann configuration. In 

figure 3.13a we report different curves of R0 as a function of 𝜆 for 𝜃 = 40.8° calculated for 

different values of 𝜂𝑑 . A shift of the resonance as a function of the wavelength is clearly present 

and it is reported in the inset of figure3.13a. As we can see the simulated minima are well 

reproduced by the VM if used in the Kretschmann configuration (eq. 3.1). Nevertheless the 

relation between the minima position and 𝜂𝑑  it is no longer linear and the buffer sensitivity goes 

from 1.0 × 105 nm/RIU to 3.9 × 105 nm/RIU. 

In figure 3.13b we report the curves of R0 as a function of 𝜆 calculated for different values of 

ℎ𝑓𝑢𝑛𝑐. Again the minimum of the reflectance shifts toward higher values with ℎ𝑓𝑢𝑛𝑐  increasing, 

as it is reported in the inset of the figure 3.13b. In this case the RCWA simulated reflectance 

minima are not well reproduced by the vector model and 𝜕𝜆 𝜕ℎ𝑓𝑢𝑛𝑐⁄ = 12.7 nmλ/nmfunc. This 

mismatch could be ascribed to the fact the parameter 𝑑𝑧 is considered constant in our 

calculations. This assumption well represent the grating case, where the total shift of the 

functionalization is ~15 nm, but not this one, where a huge shift of ~150 nm is registered. 
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SPR m =1 6 660 110 1.77 0.295 

SPR m = -2 3 625 208 0.9 0.3 

Kretschmann 70 2.5 × 105 3570 12.7 0.18 
Table 3.7 Overview of the FWMH, Sensitivity, and FOM parameters found using 𝝀 as sensing parameter. 

In the table 3.7 we summarize the sensitivity parameters evaluated using the R0 minima 

wavelength as sensing parameter. We also introduce the Full Width Medium Height (FWMH) 

parameter of the resonance. The FWMH is evaluated as the R0 deep width at the medium of its 

amplitude value. Obviously, the sharper is the resonance, the smaller is the FWMH and more 

easy will be the SPR shift detection. This fact could be described evaluating the Figure of Merit 

(FOM) which is defined as the resonance sensitivity over its FWMH [16]. 
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We can see from the table 3.7 that if only the sensitivity is considered, the Kretschmann is the 

best configuration since it has the highest sensitivity to 𝜂𝑑  and ℎ𝑓𝑢𝑛𝑐 . Otherwise, if the FOM is 

taken into consideration, the Kretschmann configuration results the best choice for sensing 𝜂𝑑  

variations, while the grating becomes the most appropriate configuration for detecting ℎ𝑓𝑢𝑛𝑐  

changes. 

3.4.2 Incident angle sensitivity 

In this section we will study the incident angle sensitivity of the grating and Kretschmann 

configurations. Exploiting the 𝜙-angle in the grating configuration we will see that the 𝜃-

sensitivity parameter can be enhanced reaching very high values. 

Common configuration: grating with 𝜙=0°. 

In figure 3.14a, and 3.14b we report the curves of R0 calculated as a function of 𝜃 for different 

values of 𝜂𝑑  in the range 1 to 1.018 RIU, with a step of 0.003 RIU, calculated for the SPR 𝑚=1 

and 𝑚=-2, respectively. In this case the grating is lighted by using 𝜆=635 nm, 𝜙=0° and TM 

polarization. As we can see the two resonances have an opposite behaviour. In fact the 

resonance shifts towards larger incident angles for SPR 𝑚=1, while it shifts towards lower angles 

for the SPR 𝑚=-2. In both cases these shifts as a function of 𝜂𝑑  are well reproduced by the vector 

model (see the corresponding insets). The same resonances shift behaviour is found if the 

increasing of the functionalization thickness ℎ𝑓𝑢𝑛𝑐  is considered. The corresponding sensitivity 

parameters, the FWMH, and the FOM are reported in table 3.8. 

We want to underline that, since the SPR 𝑚=-2 (𝜃−2) shifts towards lower angles and the SPR 

𝑚=1 (𝜃1) shifts to higher angles, the angular difference between the two dips Δ𝜃 = 𝜃−2 − 𝜃1 

varies more than the singular resonance for the same 𝜂𝑑  variation. Effectively this method 

enhance the angular sensitivity by adding the sensitivity values of the two resonance, since 

𝜕Δ𝜃 𝜕𝜂𝑑⁄ = 𝜕𝜃−2 𝜕𝜂𝑑⁄ − 𝜕𝜃1 𝜕𝜂𝑑⁄ . This very simple method is already discussed in literature by 

Cai [95] and it is referred as Double Dip Method (DDM). 

 

Figure 3.14 Grating configuration: (a),(b) R0 as a function of 𝜽 calculated increasing 𝜼𝒅, the inset shows the 
minimum position as a function of 𝜼𝒅; both calculated with 𝝀 = 635 nm, 𝝓 = 0°, and in TM mode for the SPR 𝒎=1 

and 𝒎=-2, respectively. 
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Figure 3.15 Kretschmann configuration: (a) R0 as a function of 𝜽 calculated increasing 𝜼𝒅, the inset shows the 
minimum position as a function of 𝜼𝒅, (b) R0 as a function of 𝜽 calculated increasing 𝒉𝒇𝒖𝒏𝒄, the inset shows the 

minimum position as a function of 𝒉𝒇𝒖𝒏𝒄; both calculated with 𝝀=633 nm and in TM mode. 

In Figure 3.15a and 3.15b we report the R0 curves as a function of 𝜃 calculated by increasing the 

parameter 𝜂𝑑  and ℎ𝑓𝑢𝑛𝑐, respectively. Both these figures were obtained by lighting the flat 

surface in the Kretschmann configuration a λ = 633 nm light in TM polarization mode. We can 

see that an increasing of the parameters 𝜂𝑑  or ℎ𝑓𝑢𝑛𝑐  causes a resonance minimum shift towards 

higher incident angles likewise the 𝑚=1 SPR calculated in the grating configuration. The 

sensitivity we found in this configuration is reported in table 3.8 and its values are very similar to 

the one obtained for the SPR 𝑚=1. 

Double Dip Azimuthally rotated method: grating with 𝜙 ≠0°. 

Previously we exploited how the DDM can enhance the 𝜃-sensitivity. Nevertheless another 

method to increase the 𝜃-sensitivity has been studied by the Romanato [85]–[87]. Since this 

method is directly related to the azimuthal rotation of the grating respect to the light scattering 

plane we will call this method Double Dip Azimuthally Rotated Method (DDARM). 

 

Figure 3.16 (a) R0 as a function of 𝜽 and 𝝀 for 𝝓=63° lighted with a polarization angle 𝝍=140°. (b) R0 as a function of 

𝜽 and 𝝓 lighted with 𝝀=855 nm in TM polarization mode (𝝍=0°). The grey dashed line refer to the VM calculations. 

In figure 3.16a we report the R0 map as a function of 𝜆 and 𝜃 for the grating in conical mounting 

configuration with 𝜙=63° and a polarization angle 𝜓 = 140°. The resonance is represented by a 

dark band in the map and it is well reproduced by the VM 𝑚=1 (grey dashed line). The resonance 
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assumes a parabolic shape of 𝜃 as a function of 𝜆 and therefore if a cross section of the parabola 

is considered for a fixed wavelength 𝜆<860 nm, two R0 minima at two different incident angles 𝜃 

can be found. The light polarization angle (𝜓 = 140°) was chosen in order to obtain the same R0 

values of these minima. 

In figure 3.16b we report the R0 map as a function of 𝜃 and 𝜙 for the grating in conical mounting 

configuration with 𝜆 = 855 nm. Here we can see that the main difference with the map reported 

in figure 3.1b is that the resonance does not reach 𝜙=90° and neither the coupling order 

changes its sign. This is due to the fact that the wavelength of the incident light is greater than 

the grating period (740 nm). 

The sensitivity enhancement of this method relays on the fact that the entire parabolic 

resonance shape shifts towards higher values of lambda with the increasing of 𝜂𝑑  or ℎ𝑓𝑢𝑛𝑐 . The 

effects of this shift is well explained by figure 3.17a and 3.17b where we report the curves of R0 

as a function of 𝜃 for 𝜆=862 nm and 𝜓=140° obtained varying 𝜂𝑑  and ℎ𝑓𝑢𝑛𝑐, respectively. Since 

we are lighting the grating with 𝜆>860 nm R0 has one single dip both for 𝜂𝑑=1 RIU and ℎ𝑓𝑢𝑛𝑐=0 

nm. By increasing the parameter 𝜂𝑑  or ℎ𝑓𝑢𝑛𝑐  two dips appear and then their angular difference 

increases. 

We reported in the inset of the figures 3.17a and 3.17b the position of the minima (the ones at 

higher angular position) as a function of 𝜂𝑑  and ℎ𝑓𝑢𝑛𝑐, respectively. As we see the vector model 

well reproduces the resonances position, and the relation between 𝜃𝑚𝑖𝑛 and 𝜂𝑑  (or ℎ𝑓𝑢𝑛𝑐) is not 

linear. Being the sensitivity represented by the slope of these curves, it diverges approaching the 

condition where the two dips merge into a single one. This sensitivity behaviour as a function of 

the parameters 𝜂𝑑  or ℎ𝑓𝑢𝑛𝑐  clearly depends on the fixed 𝜆. For example, if we want to tune the 

high sensitivity region at higher values of 𝜂𝑑  (ℎ𝑓𝑢𝑛𝑐), we must increase the wavelength used. 

This behaviour of the resonance sensitivity typically appears when a parabolic resonance shape 

is exploited for sensing purpose. We will describe it in more details when we will discuss the 

azimuthal sensitivity. 

Even if the sensitivity diverge we reported in table 3.5 the maxima an the minima values we 

found. In this case as FWMH we will use the width of the resonance considering its baseline 

values the one it assumes at 𝜃=33°; nevertheless for a full description of the FOM problems in 

this parabolic resonance case the reader can look to the experimental results in section 4.3. 
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Figure 3.17 DDARM method: (a) R0 curves as a function of 𝜽 calculated increasing 𝜼𝒅, the inset shows the minimum 
position at higher incident angle as a function of 𝜼𝒅, (b) R0 curves as a function of 𝜽 calculated increasing 𝒉𝒇𝒖𝒏𝒄, the 

inset shows the minimum position at higher incident angle as a function of 𝒉𝒇𝒖𝒏𝒄; both were calculated with 𝝀=862 

nm and with 𝝍=140°. 

Single Deep Azimuthally rotated method: grating with 𝜙 ≠0°. 

 

Figure 3.18 SDARM method: (a), (b) R0 curves as a function of 𝜽 calculated increasing 𝜼𝒅, the insets show the 

minimum position at higher incident angle as a function of 𝜼𝒅, for the SPR 𝒎=-1 and 𝒎=-2, respectively. 

In figure 3.18a and 3.18b we report the R0 curves as a function of the incident angle for 

increasing values of the parameter 𝜂𝑑  for the SPR order 𝑚=-1 and 𝑚=-2, respectively. Also in this 

case the grating was azimuthally rotated respect to the scattering plane using 𝜙=69° for the SPR 

𝑚=-1 and 𝜙=32° for 𝑚=-2. The insets of the figure show the relation between the simulated 

position of the resonance minimum and 𝜂𝑑 . Also in this case an excellent agreement between 

the VM and the RCWA calculations can be noted. As we found for the case at 𝜙=0°, the two 

resonances behave in two ways. For the SPR 𝑚=-1 the resonance angle increases with the 

increasing of 𝜂𝑑; on the contrary for the SPR order 𝑚=-2 the minimum angle position decreases 

with the increasing of 𝜂𝑑 . We can also notice that the relation between the minima position and 

the 𝜂𝑑  is not perfectly linear, in particular for the SPR 𝑚=-2 case. If the parameter ℎ𝑓𝑢𝑛𝑐  is 

0 10 20 30 40 50 60 70 80 90

0.5

0.6

0.7

0.8

0.9

1

 [deg]

R
0
 [
a
.u

.]

1 1.01 1.02
30

35

40

45

50


d
 [RIU]


m

in
 [
d

e
g

]

 

 

0 10 20 30 40 50 60 70 80 90

0.5

0.6

0.7

0.8

0.9

1

 [deg]

0 5 10
30

35

40

45

h
func

 [nm]


m

in
 [
d

e
g

]

 

 

simulated

VM m = 1

simulated

VM m = 1

h
func


d

b)a)

70 75 80 85 90

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

 [deg]

R
0
 [
a
.u

.]

60 65 70 75 80 85 90
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

 [deg]

1 1.01 1.02
73

74

75

76

77

78


d
 [RIU]


m

in
 [
d

e
g

]

 

 

simulated

VM m = -1

1 1.005 1.01 1.015 1.02
60

65

70

75


d
 [RIU]


m

in
  
[d

e
g

]

 

 simulated

VM m = -2

b)
 =69°,  = 635 nm,  = 0°  =32°,  = 635 nm,  = 0°

a)


d


d



76 
 

varied, instead of 𝜂𝑑 , the resonance behaviour is the same, and the sensitivity values we found 

are reported in table 3.8. 

The sensitivity enhancement obtained with this Single Deep Azimuthal Rotated Method 

(SDARM) is also based on the parabolic resonance shape that can be seen in figure 3.1. These 

resonances refers to the ∪ or ∩-shaped curves 𝜙(𝜃) that can be noticed for the SPR 𝑚=-1 and 

𝑚=-2 if 𝜃>60°. In this case only half of the parabolic curves is present since 𝜃 cannot exceed 90°, 

hence we are dealing with a single deep resonance. The resonance vertex has 𝜃=90° and its 𝜙 

angle depends on the plasmonic resonance order being 68° for 𝑚=-1 and 33° for 𝑚=-2. Since the 

resonance has a semi-parabolic shape its sensitivity can be enhanced by tuning the parameter 𝜙 

assuming here the same role of 𝜆 in the DDARM. In this case a functionalization of the surface 

causes a shift upward (downward) of the azimuthal coordinate of the parabolic vertex for the 

SPR 𝑚=-2 (𝑚=-1). By accurately fixing 𝜙 one can tune the angular sensitivity. Nevertheless the 

highest sensitivity configuration coincides with 𝜃=90° but this configuration is experimentally 

unachievable. 

 
FWMH 
[deg] 

𝜕𝜃

𝜕𝜂𝑑
 

[deg/RIU] 

𝜕𝜃

𝜕𝜂𝑑𝐹𝑊𝑀𝐻
 

[1/RIU] 

𝜕𝜃

𝜕ℎ𝑓𝑢𝑛𝑐
[deg/nm] 

𝜕𝜃

𝜕ℎ𝑓𝑢𝑛𝑐𝐹𝑊𝑀𝐻
[1/nm] 

SPR 𝑚=1  0.6 55 91.6 0.14 0.23 

SPR 𝑚=-2  0.8 -135 -168 -0.18 -0.23 

Kretschmann 0.4 54 135 0.10 0.25 

DDARM Max 2.5 2000 800 3 1.2 

DDARM Min 5 500 100 1 0.2 

SDARM 𝑚=-1 2 175 87 0.80 0.4 

SDARM 𝑚=-2 3 -500 -166 0.74 0.24 
Table 3.8 Overview of the FWMH, Sensitivity, and FOM parameters found using 𝜽 as sensing parameter. 

Table 3.3 summarized the sensitivity parameters we found for the four different configurations 

we simulated, considering 𝜃 as the sensing parameter. 

As we can see, if 𝜙=0° (first three rows), the 𝜂𝑑  sensitivity for the SPR 𝑚=-2 is twice the one 

retrieved for both the SPR order 𝑚= 1 and Kretschmann configurations. The sensitivity to the 

parameter ℎ𝑓𝑢𝑛𝑐  is almost the same for all the three configurations. 

A great improvement on the ℎ𝑓𝑢𝑛𝑐  and 𝜂𝑑  sensitivity is obtained by using the DDARM in its 

region of sensitivity maximum. Here the sensitivity reaches values up to 2000 deg/RIU. 

Considering also the FOM, this method seems to be the most suitable for plasmonic detection. 

Also by using the SDRAM the sensitivity can be three times greater respect to the grating 

measured at 𝜙=0°. 

Both in the DDARM and SDARM methods the ability to enhance and tune the sensitivity 

parameter is supported by the parabolic shape of the plasmonic resonance. This aspect will be 

deeply analysed in section 3.4.4 and experimentally in section 4.3. 
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3.4.3 Polarization sensitivity 

Another parameter that can be considered for sensing purpose is the polarization angle as 

previously done by Romanato [28], [89], [90]. In this case the parameters 𝜆, 𝜃, 𝜙 will be fixed 

and the only varying parameter will be the polarization angle 𝜓. 

 

Figure 3.19: (a) R0 curves as a function of 𝝍 calculated increasing 𝜼𝒅, the inset shows the phase parameter 𝜶 as a 
function of 𝜼𝒅, (b) R0 curves as a function of 𝝍 calculated increasing 𝒉𝒇𝒖𝒏𝒄, the inset shows the inset shows the 

phase parameter 𝜶 as a function of 𝒉𝒇𝒖𝒏𝒄; both were calculated with 𝝀=848 nm, 𝜽=43°, and with 𝝓=63°. 

In figure 3.19a and 3.19b we will see how the curves of R0 as a function of 𝜓  are affected by the 

increasing of the parameters 𝜂𝑑  and ℎ𝑓𝑢𝑛𝑐 , respectively. The incoming light parameters used 

are:  𝜆=848 nm, 𝜃=43° and 𝜙= 63°. We notice that the shape of the curves is a classical harmonic 

function: 

 𝑅0 = 𝐴 sin(
2𝜋

180
(𝜓 + 𝛼)) + 𝛿 (3.7) 

Where 𝐴 represent the amplitude, 𝛿 the baseline, and 𝛼 the phase of the reflectance oscillation. 

The relation between the curve phase 𝛼 and the parameter 𝜂𝑑  or ℎ𝑓𝑢𝑛𝑐  is reported in the insets 

of the figure 3.19a and 3.19b. In this case the VM cannot reproduce these curve since the 

incoming light polarizations is not considered in this model. Also in this case the relation is not 

linear and in order to evaluate the 𝛼-sensitivity parameter we fitted the RCWA results with a 

linear curve that will roughly reproduce the phase shift as a function of 𝜂𝑑  or ℎ𝑓𝑢𝑛𝑐. Usually for 

low values of 𝜂𝑑  and ℎ𝑓𝑢𝑛𝑐  the 𝛼-sensitivity is almost 0 deg/RIU and then it increases. These 

initial parameters (𝜆=848 nm, 𝜃=43° and 𝜙= 63°) were chosen in reference to figure 3.16a by 

supposing that the initial grating condition 𝜂𝑑=1 RIU (ℎ𝑓𝑢𝑛𝑐=0 nm) lies on the parabolic 

plasmonic resonance. The same analysis were performed considering different initial parameters 

belonging to this parabolic 𝑚=1 SPR. The phase sensitivity results are reported in table 3.9. 

Nevertheless the polarization sensing method does not need to be performed necessarily when 

a parabolic shape of the resonance is present. In order to verify this we simulated the 𝛼-

sensitivity for our grating when:  𝜆=635 nm, 𝜃=59.5° and 𝜙= 74° as reported in figure 3.20. These 

parameters were chosen in reference to figure 3.1b in order to exploit the polarization 

behaviour of the order 𝑚=-1 SPR. 
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Figure3.20 (a) R0 curves as a function of 𝝍 calculated increasing 𝜼𝒅, the inset shows the phase parameter 𝜶 as a 
function of 𝜼𝒅, (b) R0 curves as a function of 𝝍 calculated increasing 𝒉𝒇𝒖𝒏𝒄, the inset shows the inset shows the 

phase parameter 𝜶 as a function of 𝒉𝒇𝒖𝒏𝒄; both were calculated with 𝝀=635 nm, 𝜽=59.5°, and with 𝝓=74°. 

In figure 3.20a and 3.20b we report the curves R0 as a function of 𝜓 for different values of 𝜂𝑑  

and ℎ𝑓𝑢𝑛𝑐, respectively. From the insets of the figures 3.20a and 3.20b, that report 𝛼 as a 

function of 𝜂𝑑  and ℎ𝑓𝑢𝑛𝑐 , we can notice the same behaviour registered in the precedent case, 

even if this time the starting condition of the SPP excitation relays on the SPR 𝑚=-1 (see Figure 

3.1b). Again, the behaviour of 𝛼 is not linear as a function of the functionalization parameters 𝜂𝑑  

and ℎ𝑓𝑢𝑛𝑐  and a linear fit were used to roughly reproduce the resonance behaviour. Also in this 

case we studied different initial conditions applied to this sensing technique. 

The other cases we studied were chosen, in reference to figure 3.1. We selected the pairs: 

𝜃=15.5° 𝜙=54°, 𝜃=51° 𝜙=22°, and 𝜃=64.5° 𝜙=30°, always with 𝜆=635 nm. The first pair refers to 

the order 𝑚=1 SPR while the last two pairs refers to the order 𝑚=-2 SPR. We found that the 𝑚=-

2 SPR is not suited for this kind of sensing method, because the parameter 𝛼 as a function of 𝜂𝑑  

and ℎ𝑓𝑢𝑛𝑐  is represented by a not-monotonic function. This implies that two different 

functionalization parameters produce the same phase preventing the discrimination between 

the two different surface conditions. For this reason we do not reported the results obtained for 

SPR 𝑚=-2 in table 3.9. 

𝜆 [nm] 𝜙 [deg] 𝜃 [deg] 𝑚 𝜕𝛼

𝜕𝜂𝑑
 [deg/RIU] 

𝜕𝛼

𝜕ℎ𝑓𝑢𝑛𝑐
[deg/nm] 

848 63 20 1 -480 -0.29 

856 63 24.5 1 -765 -0.43 

860 63 32 1 -1380 -0.82 

856 63 39.5 1 -1670 -1.16 

848 63 43 1 -1830 -1.54 

635 54 15.5 1 -144 -0.25 

635 74 59.5 -1 -2100 -5.50 
Table 3.9 Phase polarization sensitivity found for different configurations 

This sensing technique is possible only if 𝜙 ≠0° since the maximum excitation of the SPPs must 

not happen in the TM polarization mode. An analytical expression for the polarization angle that 

maximizes the excitation of the SPR resonance 𝜓𝑜𝑝𝑡  can be found in [28], [96] and it is: 
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 𝑡𝑎𝑛(𝜓𝑜𝑝𝑡) =  𝑡𝑎𝑛(𝜙)cos (𝜃𝑟𝑒𝑠) (3.8) 

where 𝜃𝑟𝑒𝑠 is the angle where the SPR resonance happen. From this equation we can guess that 

a changes in the values of 𝜃𝑟𝑒𝑠  , due to a functionalization process, affect also the  𝜓𝑜𝑝𝑡  

parameter which is proportional to 𝛼. This expression states also that if 𝜙 = 0° a change in the 

𝜃𝑟𝑒𝑠 will not influence the  𝜓𝑜𝑝𝑡  parameter, hence this sensing method could be performed only 

if 𝜙 is exploited. 

As we can see from table 3.9 the sensitivity increases with the increasing of the light incident 

angle. The sensitivity to the parameter 𝜂𝑑  reaches the same values (1830 ÷ 2100 deg/RIU) even 

if the SPR coupling order 𝑚 change from 1 (5-th row) to -1(7-th row). Otherwise the sensitivity to 

the parameter ℎ𝑓𝑢𝑛𝑐  is five time higher if 𝑚 is varied from 1 to -1 going from a value of -1.54 

deg/nm to -5.50 deg/nm, respectively. The FOM and FWMH of these resonance were not taken 

into consideration due to the harmonic shape of the function. 

These results show that even if this method does not directly monitor the resonance position its 

sensitivity could be comparable with the one found by using the DDARM. An exceptional high 

sensitivity to the ℎ𝑓𝑢𝑛𝑐  parameter is found using the SPR 𝑚=-1 order. 
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3.4.4 Azimuthal angle sensitivity 

The SPR shift can be analysed by monitor the 𝜙 angle once fixed the incident wavelength 𝜆 and 

𝜃 [91]. In fact the resonance assumes a parabolic ⊂-shaped form if 𝜃 is considered as a function 

of 𝜙, as we already seen in figure 3.1, both for the order 𝑚=1 and 𝑚=-2. Due to the parabolic 

resonance shape this detection method has almost the same features we analysed for the 

DDARM and SDARM methods. 

 

Figure 3.21 Azimuthal method: (a)and (b) R0 curves as a function of 𝝓 calculated increasing 𝜼𝒅, the insets shows the 
minimum as a function of 𝜼𝒅, for the SPR 𝒎=1 and 𝒎=-2 respectively; both figures were calculated with 𝝀=635 nm 

in TM polarization, and 𝜽=11° for the SPR 𝒎=1 and 42.5° for the SPR 𝒎=-2. 

In figure 3.21a and 3.21b we report the curves of R0 as a function of the 𝜙 angle for different 

values of 𝜂𝑑  and for the SPR 𝑚=1 and 𝑚=-2, respectively. We are lighting the grating with 

𝜆 = 635 nm, and 𝜃 was set to 11° and 42.5° for the SPR 𝑚=1 and 𝑚=-2, respectively. Since in 

this case we assumed TM polarized light the curves result symmetric respect to 𝜙=0°, hence we 

report only the positive 𝜙 angles. The insets of the two figures report the position of the 

resonance as a function of 𝜂𝑑 . We can notice a nonlinear relation between azimuthal resonance 

position and 𝜂𝑑  nevertheless the simulated points are excellently fitted by the VM.  

Noticeably, for the SPR 𝑚=1, if 𝜂𝑑  increases the azimuthal resonance position decreases, until 

the two dips merge into a single one. Conversely for the SPR 𝑚=-2 a single large minimum is 

initially present and then two dips appear with 𝜂𝑑  increasing. The azimuthal position of these 

dips increases with the increasing of 𝜂𝑑 . In both cases the modulus of the sensitivity 𝜕𝜙 𝜕𝜂𝑑⁄  

diverge as the azimuthal resonance approaches 𝜙=0°. 

The same resonance behaviour is found if we increase the parameter ℎ𝑓𝑢𝑛𝑐. These features of 

the resonances are very similar to the ones found for the DDARM and it is common when a 

parabolic shape resonance is exploited for sensing purpose. Also in this case in order to analyse 

the main features of this sensing method we reported in table 3.10 the maximum and minimum 

sensitivity values we simulated. 
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FWMH 
[deg] 

𝜕𝜙

𝜕𝜂𝑑
 

[deg/RIU] 

𝜕𝜙

𝜕𝜂𝑑𝐹𝑊𝑀𝐻
 

[1/RIU] 

𝜕𝜙

𝜕ℎ𝑓𝑢𝑛𝑐
[deg/nm] 

𝜕𝜙

𝜕ℎ𝑓𝑢𝑛𝑐𝐹𝑊𝑀𝐻
[1/nm] 

𝑚 =1 Max 3 -5750 -1920 -10.5 -3.5 

𝑚 =1 Min 7.5 -1000 -133 -2 -0.27 

𝑚 =-2 Max 1.5 3250 2170 3 2 

𝑚 =-2 Min 2 500 250 1 0.5 
Table 3.10 Overview of the FWMH, Sensitivity, and FOM parameters found using 𝝓 as sensing parameter 

In the Table 3.10 we report the maximum and minimum values of sensitivity, we found by using 

this detection technique. As we can see the sensitivity along with the FOM reaches very high 

values, if considered in the region of the sensitivity maximum near 𝜙=0°. The maximum 

sensitivity values reported are slightly higher than the one reported in Table 3.8 for the DDARM 

model. Also in this case for a complete discussion of the FOM and FWMH behaviour the reader 

should see section 4.3. 

The features we will analyse hereinafter can be always applied when a parabolic resonance 

shape is found i.e. for the DDARM, for the SDARM, for this azimuthal case and even for the V-

shaped resonance that can be seen in figure 3.11. We will take the azimuthal sensitivity as 

example since it is the main argument of this work. In particular we will see how it is possible to 

tune and enhance the sensitivity just by changing the light incident angle. 

 
Figure 3.22 (a) Shift of the SPR m=1 curves in the 𝜽, 𝝓 plane increasing the 𝜼𝒅. (b) 𝝓 resonance position calculated 

as a function of 𝜼𝒅 for fixed incident angles. 

We report in Figure 3.22a what happens to the SPR m = 1, calculated with the VM, in the plane 

𝜃, 𝜙 increasing the parameter 𝜂𝑑 . As we can see, increasing 𝜂𝑑 , the resonances curves shift to 

higher 𝜃 values respect to the curve having 𝜂𝑑=1, changing in this way the 𝜃-coordinate of the 

vertex position. Fixed an incident angle 𝜃 (vertical black dashed lines) the 𝜙-position of the 

resonance is represented by the intersection between the vertical black dashed lines and the 

resonance curves. The 𝜙-resonance as a function of 𝜂𝑑  are reported in figure 3.22b for the five 

different 𝜃 angles. If a measurement with 𝜃 = 11.5° is performed the 𝜙-position of the 

resonance decrease augmenting the parameter 𝜂𝑑 . Changing 𝜃 the 𝜙-position of the resonance 

for each 𝜂𝑑  conditions changes and as well as the azimuthal variation Δ𝜙 between two 

consecutive values of 𝜂𝑑 . This variation is maximized when the fixed 𝜃 corresponds exactly the 

SPR parabola vertex. For example, if one consider the azimuthal variation between 𝜂𝑑=1.015 and 

𝜂𝑑=1.020 for 𝜃 = 11.5° a ∆𝜙=-5° is achieved meanwhile if 𝜃 = 11.2° the ∆𝜙 is improved to -12°, 
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since 𝜃=11.2° is the parabola vertex calculated for the 𝜂𝑑=1.020 SPR curve (brown line in figure 

3.22a). 

The azimuthal sensitivity parameter 𝑆𝜙 =
𝜕𝜙

𝜕𝜂𝑑
 is related to the slope of the curves reported in 

figure 3.22b. As we can see the slope is always negative and tends to diverge as the 𝜙-resonance 

approaches 0°. 

 
Figure 3.23 (a) Shift of the SPR m=-2 curves in the 𝜽, 𝝓 plane increasing the 𝜼𝒅. (b) 𝝓 resonance position calculated 

as a function of 𝜼𝒅 for fixed incident angles. 

The behaviour for the SPR 𝑚=-2 is reported in figure 3.23a. In this case the VM resonances 

calculated in the plane 𝜃, 𝜙 shift to the left with the increasing of the parameter 𝜂𝑑 . This implies 

that the 𝜃-coordinate of the parabolic vertex position decreases with the increasing of 𝜂𝑑 , 

contrarily to what happen for the SPR 𝑚=1 case. The 𝜙-resonance as a function of 𝜂𝑑  are 

reported in figure 3.23b for the five different 𝜃-angles (black dashed line in figure 3.23a). If a 

measurements with 𝜃 = 44.0° is performed the 𝜙-position of the resonance increases 

augmenting the parameter 𝜂𝑑 . Also in this case changing 𝜃, the resonance 𝜙-position for each 

𝜂𝑑  conditions changes as well as the azimuthal variation Δ𝜙 between each consecutive values of 

𝜂𝑑 . This variation is maximized when the fixed 𝜃 is exactly the SPR parabola vertex. For example, 

the azimuthal variation calculated considering 𝜂𝑑=1.000 and 𝜂𝑑=1.005 for 𝜃 = 44.0° is ∆𝜙=2°, 

while if 𝜃=43.3° the ∆𝜙 is improved to 5.5°, since 𝜃=43.3° is the parabola vertex calculated for 

the 𝜂𝑑=1.000 SPR curve (the dark blue curve in figure 3.23a). 

The azimuthal sensitivity parameter 𝑆𝜙 is always positive and tends to diverge as the 𝜙-

resonance approaches 0°. 

In conclusion, if a plasmonic resonance has a parabolic shape it can be used for enhance and 

tune the sensitivity. In the general case, the parabolic resonance could be approximated in its 

vertex by the following curve: 

 𝜌(𝜎)~ 𝜌𝑐 + 𝐾(𝜎 − 𝜎𝑐)
2 +ℴ[(𝜎 − 𝜎𝑐)

4] (3.8) 
 

where the parameter 𝜎𝑐  does not change as a consequence of a functionalization process while 

the parameter 𝜌𝑐  is affected by the resonance. Fixed 𝜌, the resonance is monitored as a function 

of 𝜎 and the sensitivity 𝑆𝜎 =
𝜕𝜎

𝜕𝜂𝑑
 can be maximized imposing 𝜎 = 𝜎𝑐. 
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Method  𝝆 𝝈 

DDARM 𝜆 𝜃 

SDARM 𝜙 𝜃 

Azimuthal 𝜃 𝜙 

-- 𝜆 𝜙 
Table 3.11 Different configurations where a parabolic resonance shape can be used. 

In table 3.11 we report some different configurations where a parabolic resonance shape cab be 

used in order to enhance and tune the sensitivity. The one represented in the last row was not 

treated here but it is a possible configuration, since solving the VM as a function of 𝜆 and 𝜙 one 

can find a parabolic shape resonance. 

Even if 𝑆𝜎, in the case of parabolic resonance shape could diverge, this method applied to a 

functionalization event can produce a maximum shift of the resonance condition: 

 |𝛥𝜎|𝑚𝑎𝑥 = √|
𝛥𝜌

𝐾
| (3.9) 

where 𝛥𝜌 = 𝜌𝑓𝑢𝑛𝑐 − 𝜌𝑏𝑎𝑟𝑒  and 𝛥𝜎 = 𝜎𝑓𝑢𝑛𝑐 − 𝜎𝑏𝑎𝑟𝑒  and the subscript bare and func represent 

the unmodified metallic surface and the functionalized metallic surface. If 𝐾 → 0 the parameter 

|𝛥𝜎|𝑚𝑎𝑥  diverges. Obviously it is not possible to reach 𝐾~0 conditions since some optical effect 

will prevent this i.e. the appearances of some Wood-Rayleigh modes. 

If we consider the azimuthal method case the parameter 𝐾~𝑡𝑎𝑛( 𝜃𝑐) directly depends on the 𝜃-

vertex position. We found through simulation that to detect a refractive index variation 

Δ𝜂𝑑=0.001 RIU, 𝜃𝑐 ≥0.8 must be used and a maximum shift of the azimuthal resonance of 20° is 

calculated, reaching a sensitivity up to 2 × 104 deg/RIU. 
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4 Experimental Results 

In this chapter we will see some main results we obtained in plasmonic sensors characterization. 

We will describe the two optical benches we used to excite the SPP for the grating and the 

Kretschmann configurations.  

Afterwards we will characterize the grating transmittance parameter Ttot when the 

nanostructure is lighted in conical mounting configuration, and the parameter R0 if the same 

nanostructured grating is mounted in Kretschmann configuration. Also the flat surface will be 

characterized in Kretschmann configuration and the experimental results will be compared with 

the simulated ones. 

Then we will focus on the grating azimuthal sensitivity, changing the parameter 𝜂𝑑  and 

ℎ𝑓𝑢𝑛𝑐.The parameter  𝜂𝑑 will be varied by using different water/glycerol solutions while for 

increasing the ℎ𝑓𝑢𝑛𝑐  parameter, functionalization layers of different thicknesses adsorbed onto 

the surface will be used. 

Finally we will see the SPR shift produced when an antibody layer is immobilized onto the 

grating surface exploiting both the 𝜙-sensitivity in the grating configuration and the 𝜃-sensitivity 

in the Kretschmann configuration. 

4.1 Experimental methods 

In this section we describe the two optoelectronic benches we used to perform the 

characterization of the SPRs. We illustrate the optoelectronic components we used and the 

Labview© v8.6 implemented algorithms for the data acquisition. 

4.1.1 Conical mounting configuration bench 

 

Figure 4.1 Optoelectronic bench used for the excitation of the grating coupled SPR in conical mounting 
configuration, R0 sensing configuration. Upper inset Ttot sensing configuration, Lower inset: grating with the 

microfluidic cell. 
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Figure 4.1 shows the opto-electronical bench for the conical mounting configuration [74]. This 

optical bench allows to change both 𝜃 and 𝜙. 

The light source is a solid-state laser diode (VHK model, Edmund Optics) with 635 nm 

wavelength. The incident angle 𝜃 is fixed using a rotation stage (SL 20 model, Thorlabs) with a 

full 360° angular sweep and a resolution of 2°. In order to accurately vary 𝜃, the laser is mounted 

on a goniometer (GNL18 model, Thorlabs) with a range of 10° and a resolution of 10’.The laser 

beam is polarized in the Transverse Magnetic (TM) mode. In order to vary the φ-angle a 

motorized rotation stage (PRM1Z8 model, Thorlabs), mounted on a x-y translation stage 

(ThorlabsDT25/M, Edmund Optics 56-795) is used. The photodiodes we used is an Hamamatsu 

S1337 1010BR. We choose this photodiode because it has an high photosensitive area of 10 x 10 

mm2, an high photosensitivity of 0.4 A/W, and a low dark current 200 pA.  

If we want to monitor the R0 parameter the photodiode is mounted above the grating device as 

we can see from figure4.10. When the transmittance is monitored, a photodiode is mounted on 

a custom socket as can be seen in the upper right inset of figure 4.1. Measuring the two 

quantities simultaneously, does not bring any advantage in term of the SPR detection 

improvement since for a fixed 𝜃 the azimuthal resonance does not occur at the same 𝜙 as 

previously discussed in section 3.1. When the Ttot parameter is measured the grating substrate 

must be optimally coupled with the photodiode window through an optical matching oil (Cargille 

Immersion Oil Type A) with 1.51 refraction index. This allows the correct propagation of the 

Kretschmann ray from the polycarbonate substrate to the photodiode sensitive are, and hence 

the correct detection of the plasmonic resonance, as we analysed in section 3.3. 

In order to read the transmitted light signal intensity the photodiodes are connected to a 

parameter analyzer (HP 4156B), which applies a constant bias of -2V to the photodiodes and 

acquires the modulated current. By using this instrumental configuration we obtain a linear 

relation between the measured current and the light intensity. We also used this optical bench 

to monitor the kinetic behaviour of the azimuthal signal when the grating surface is exposed to 

different liquid solutions. We achieved this by applying a microfluidic cell on the top of the 

grating surface (lower right inset of figure 4.1) and connecting it with a peristaltic pump in order 

to control the solution flux. 

Our typical measurement consists in the acquisition of the current as a function of 𝜙, with a 

fixed 𝜃. The currents measured when the grating is present are normalized by the current 

measured when the laser directly hits the photodiode, in order to calculated Ttot or R0 

parameters. We implemented two software for measuring the SPR resonance. The first one is 

optimized for the acquisition of the complete resonance curve, acquiring the Ttot or R0 

parameters while 𝜙 is continuously varied through the motorized rotation stage. The second 

one is optimized for the measurement of the resonance kinetics due to functionalization 

modifications that occurs at the metal/dielectric interface. We will briefly describe the 

developed software by mean of their block diagrams and interface. 

We report the block diagram of the first software in figure 4.2, left part, and a screenshot of the 

software in the right part. First of all, the users must insert the start (𝜙𝑠), and stop (𝜙𝑒) angles of 

the measurement. Then the angular velocity 𝜔 of the motorized stage and a parameter 𝛿 must 

be inserted; usually they are set to 1 deg/sec and 0.05 deg. When the procedure starts, the 
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software sets the motorized rotation stage at 𝜙 < 𝜙𝑠 and then the rotation starts. When 𝜙𝑠 is 

reached, the motorized rotation stage completes its acceleration process, and its angular 

velocity is now constant. When the motorized rotation stage moves, we continuously measure 

its position 𝜙𝑚, and if it satisfies the first condition block |𝜙𝑚 − 𝜙𝑠| < 𝛿, the current 

measurement starts. The current measurement ends when |𝜙𝑚 − 𝜙𝑒| < 𝛿. Hence 𝛿 defines the 

angular interval where the measurement starts and stops. 

 

Figure 4.2 Block diagram and software interface for the acquisition of the complete resonance curve for the grating 

lighted in conical mounting configuration. 

When the motorized rotation stage stops we retrieve the current measured from the parameter 

analyzer and we relate these values to the corresponding angular position, by using the 

following formula: 

 𝜙 =  𝜙𝑠 +
(𝜙𝑒 − 𝜙𝑠)

𝑁
[0: 1:𝑁 − 1] (4.1) 

where 𝑁 is the number of measurement performed by the parameter analyzer. Obviously, the 

angular sampling frequency depends on the angular velocity of the motorized stage, if the 

parameter analyzer one is fixed. For 𝜔 = 1 deg/sec we obtain an angular sampling frequency of 

25 samples/deg. The instrument sampling frequency is fixed because we decided to use for each 

measured current values an integration time of 20 ms which is equal to the power supply grid 

period. In this way we avoide to pick up the 50 Hz noise coming from external sources. 

As we can see from the software panel in figure 4.2 the measurements are not symmetric 

respect to the zero of the motorized angle due to a sample misalignment respect to the 

scattering plane that occurs during its positioning onto the socket. Nevertheless this error is 

easily corrected exploiting the peak symmetry respect to 𝜙=0°. A shift of the measured curve in 

order to obtain two opposite azimuthal peaks must be performed. The shape of the resonance 

could appear wrong, but this is due to the fact that the current is reported with its sign. If the 

modulus of the current is taken into consideration, the resonance appears as minima for the 

reflectance, and as maxima for the transmittance. 
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We have also taken into account the effect of a possible delay between the validation of the 

start and stop conditioning blocks and the effectively start and stop of the HP4156 

measurement. Effectively this seem to be negligible for low 𝜔 as it is in our case but needs to be 

considered for 𝜔 > 5 deg/sec. 

We also include this software in a cycle that allows to repeat the measurement for the desired 

number of times. The resonances measured for each different acquisition are reported by yellow 

and blue curves reported in the lower panel of the software interface. The yellow and blue 

curves refer to the azimuthal resonance as a function of the acquisition time calculated by using 

the Ttot and R0 signals, respectively. As already found in our simulation (section 3.1) a constant 

bias of 0.2° is found between the two measured resonance angles. 

 

Figure 4.3 Block diagram and software interface for the acquisition of the SPR kinetics for the grating lighted in 
conical mounting configuration. 

We developed a second software optimized for the kinetics measurement of the plasmonic 

resonance as a function of the time (Figure 4.3). This software records the azimuthal peak 

position meanwhile the condition of the metal/dielectric interface changes allowing to monitor 

the molecular adsorption (see figure 4.24 and following) or the bio-recognition process. 

Initially the motor angle of the azimuthal resonance peak 𝜙𝑠 must be inserted and 𝛿 is fixed 

to0.2°. The motor moves at step of 𝛿 starting from an angular position of 𝜙𝑠 − 5𝛿 until it 

reaches 𝜙𝑠 + 5𝛿. In the meantime during the motor movement the current is measured 

producing a step like functions that could be seen in the two upper panels of the software 

interface. Then, from the measured currents and the motor angular sweep, the new angular 

resonance position 𝜙𝑟 is retrived. If the new resonance 𝜙𝑟 lies in the centre of the previous 

sampling interval (|𝜙𝑠 −𝜙𝑟| < 3𝛿), the parameter 𝛿 is halved; if not, it is doubled. This allows 

the software to follow the resonance if it is moving, and also to measure it accurately if a new 

stable condition of the surface is reached. Nevertheless 𝛿 could not exceed the value of 0.4° or 

be lower than 0.0125°. The software registers the resonance position and the current until the 

user stops the software execution. Moreover the users need to choose which parameter, R0 or 

Ttot, will be used to evaluate the resonance since, as we previously seen, they have a slightly 

different azimuthal positions.  
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4.1.2 Kretschmann configuration bench 

In figure 4.4 is reported a schematic of the Kretschmann bench we used [97], and in the inset its 

picture. The laser source is an Helium-Neon laser HLN100LR (Thorlabs) of 10 mW power. The 

laser spot is spatially filtered and polarized in the TM mode. The light enters into an NBK7 right 

angle prism which is mounted on a motorized rotation stage. The reflected light is collected by a 

photodiode (PDA-100-A-EC). The photodiode support is connected to another motorized stage 

which is coaxial with the prism one. When the prism stage moves of a step Δ𝜃 the photodiode 

stage moves of a 2Δ𝜃 step in order to capture the reflected ray power. The flat surface is 

mounted on the hypotenuse of the prism and here it is optically coupled by using optical 

matching oil (Cargille Immersion Oil Type A) with 1.51 refraction index. 

 

Figure 4.4 (left) schematic of the optoelectronic bench used for Kretschmann configuration, (right) picture of the 

optoelectronic bench. 

The correct position of the prism relatively to the centre of the motorized rotation stage is 

ensured by the white socket that holds the prism. This socket minimizes the area of the 

metal/dielectric interface explored by the laser spot during an angular scan. 

 

Figure 4.5 (a) Schematic of the ray propagation inside the prism and polycarbonate substrate, supposing that the 
prism rotation axis is R (star marked point) . (b) Maximum sweep of the parameter dA as a function of the rotation 

axis position (Rx, Ry). 
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The calculus of optimal axis position in order to minimize the spot laser sweep (dA) as a function 

of the prism angle was already treat by Qui [98] and we applied it to our case. The schematic of 

the prism along with the polycarbonate substrate is reported in figure 4.5a. For simplicity, we 

neglect the presence of the optical matching oil. Fixed the rotation axis position R=(Rx, Ry), 

marked in the figure4.5a with a star, and the angle of the motorized stage 𝜃4 it is possible to 

perform the geometrical ray tracing. In this way we can calculate the position of the point A as a 

function of 𝜃4. Our goal is to find the position R that minimizes the maximum sweep of dA 

calculated for 𝜃4 going from -30° to 30° in step of 5°. 

The results are reported in figure 4.5b where we can see that for some Rx and Ry the minimum 

sweep of dA reaches 0.4 mm. 

 

Figure 4.6 Ray tracing of the light inside the prism and polycarbonate substrate: (a) not optimized case R = (13.8,11) 
mm; (c) optimized case R = (13.8, 7.5) mm. Behaviour of the point A respect to its mean position: (b) not optimized, 

(d) optimized. 

To see what happens during the prism rotation we graphically reproduce the ray tracing for two 

different positions of the rotation axis. In figure 4.6a R = (13.8, 11) mm was placed in a not 

optimized condition, on the prism hypotenuse. In the second case figure 4.6c, R = (13.8, 7.5) mm 

was placed in an optimized position. As we can see in figure 4.6c all the black rays inside the 

prism converge to almost the same point on the polycarbonate surface while for the figure 4.6a 

they are spread over all the interface. This is remarked in figure 4.6b and 4.6d where there is 

reported the sweep of dA respect to its mean point, calculated by using the not optimized and 

the optimized prism rotation axis, respectively. As we can see for the optimized one a maximum 

sweep of 0.4 mm is found while for the not optimized one a sweep of 6.5 mm. This sweep 

reduction is a noticeable improvement. 

By using the white socket, which ensures the correct position of the prism respect to the motor 

rotation axis, a huge shrink of the spot sweep is performed. We also tried to measure 

experimentally this improvement. We found that the maximum sweep of dA goes from 6.5 mm 
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to 2 mm passing from the not optimized to the optimized rotation axis position. Nevertheless it 

is very difficult to define the spot position when the light experience the TIR condition, even if in 

this case we used the grating device in order to extract the ray and localize the spot. 

The software used to characterize this type of resonance is reported in figure 4.7. The software 

is implemented straightforward following the reported block diagram. First of all the user needs 

to insert the  start 𝜃𝑠, and stop 𝜃𝑒 angles, along with the angular step δ of the measurement. 

Then the motorized stages set their positions and the photodiode current is measured. The 

software repeats this sequence until the motor angle 𝜃𝑚 reaches 𝜃𝑒. Then it saves the 

photodiode measured currents as a function of the motor angle. 

 

Figure 4.7 Block diagram and software interface for the acquisition of the SPR in Kretschmann configuration 

4.1.3 Grating and flat surface, Atomic Force Microscope characterization 

The surfaces we used were fabricated by Next Step Engineering s.r.l. a Spin-Off of the University 

of Padova specialized in design and fabrication of sensors based on plastic substrates. 

The fabrication process is based on the replica molding process of the plastic substrate on a flat 

or nanostructured stamper. The plastic substrate consists in polycarbonate and the stamper 

used is fabricated through interferential lithography. The silver thin film deposition is made by a 

physical vapor deposition (PVD). Further fabrication details are omitted because they are 

intellectual property of the Spin-Off. 
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Figure 4.8 Atomic Force Microscope (AFM) characterization of (a) flat surface (b) grating surface 

We have characterized the surface through the Atomic Force Microscope (AFM). As we can see 

from Figure 4.8a the flat surface has only one level which is represented by the Gaussian 

distribution of the pixel height (low inset of figure 4.8a). The surface roughness is 1.5 nm. The 

grating AFM characterization is reported in figure 4.8b. This time, the distribution of the pixel 

height (low inset of figure 4.8b) presents two separated maxima that corresponds to the valleys 

and peaks of the grating profile. The difference between the position of these two maxima 

represents the grating amplitude and it is almost 20 nm. Also the period can be roughly 

estimated and it is about 740 nm. Moreover, we can note that the lower maximum distribution 

is more spread than the higher one. This means that the valley roughness (1.5 nm) is greater 

than the peak one (0.5 nm). 

 

Figure 4.9 3D view of the grating profile. 

In figure 4.9 we report a three dimensional view of our grating profile in order to provide a 

better view of our nanostructured surface profile.  
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4.2 SPR Characterization 

In this section we will characterize the SPR in the grating and Kretschmann configuration. We 

will measure the grating parameter Ttot considering both air and water as dielectric buffer. And 

for each condition we will consider both the 𝑚=1 and 𝑚=-2 SPR. Then we will characterize, by 

means of the R0 parameter, the SPR of a flat surface and nanostructured surface mounted in the 

Kretschmann configuration. 

4.2.1 Grating, Ttot in conical mounting configuration 

 
Figure 4.10 (a) Ttot map as a function of 𝜽 and 𝝓 (b) azimuthal resonance as a function of 𝜽 for the SPR 𝒎=1, 

experimental (black circles), and VM (green dots). (c) Ttot map as a function of 𝜽 and 𝝓 (d) azimuthal resonance as a 
function of 𝜽 for the SPR 𝒎=-2, experimental (black circles), and VM (red dots). Both calculated for the grating 

exposed in air. 

In Figure 4.10a and 4.10c we show the experimental values of Ttot for the grating in air, as a 

function of 𝜃 and 𝜙 for the 𝑚=1 and 𝑚=-2 SPR respectively. Figure 4.10b and 4.10d report the 

experimental azimuthal peak position as a function of 𝜃 (black circles) while the continuous lines 

report the vector model simulation. Both the resonances reported in these maps assume a 

parabolic shape as already discussed in section 3.1. Considering one of the two maps we can see 

that the transmittance map cross-section at 𝜙=0° produces a maximum in transmittance at 𝜃𝑐 

when it satisfies the condition: 

 𝑅𝑒(𝑘𝑠𝑝𝑝) = 𝜂𝑎𝑖𝑟𝑘0sin (𝜃𝑐) + 𝑚𝐺 (4.1) 

The critical point (𝜃𝑐 , 0) corresponds to the absolute maximum value of the transmittance map, 

as expected, since we are using a TM polarization mode. A cross section of the transmittance 

map at a fixed incident angle 𝜃 < 𝜃𝑐 shows a maximum in transmittance at 𝜙 = 0°, whose 

intensity decreases as 𝜃 decreases.. A cross section of the transmittance maps at 𝜃 > 𝜃𝑐   shows 

two maxima at 𝜙 = ±𝜙𝑟 . In the maps only +𝜙𝑟 is reported since the maps are symmetric in 𝜙. 

As we can notice the azimuthal peak intensity decreases as 𝜃 increases for the case SPR 𝑚=1 

while it remains almost constant for the SPR 𝑚=-2. 

For both the plasmonic orders the peaks behavior is well described by the vector model, i.e. no 

resonance occurs for 𝜃 < 𝜃𝑐 and over this critical value two maxima are present at ±𝜙𝑟. Figure 

4.10b and 4.10d also show that the experimental positions of the azimuthal maxima match the 
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ones calculated from the vector model with an excellent correlation factor of 0.9991 and 0.9996 

for the SPR 𝑚=1 and 𝑚=-2, respectively. Nevertheless it is more difficult to find the correct 

grating geometry that well reproduces the experimental transmittance. This is due to the fact 

that changes in the grating cross section geometry affect the simulated transmittance values. A 

geometry that well reproduces the experimental values for the SPR m=1 both in air and in water 

is the trapezoidal one, reported in table 3.5 [74]. 

 

Figure 4.11 (a) Ttot map as a function of 𝜽 and 𝝓 (b) azimuthal resonance as a function of 𝜽 for the SPR m=1, 
experimental (black circles), and VM (green dots). (c) Ttot map as a function of 𝜽 and 𝝓 (d) azimuthal resonance as a 

function of 𝜽 for the SPR m=-2 experimental (black circles), and VM (red dots). Both calculated for the grating 

exposed in water. 

In Figure 4.11a and 4.11c we show the experimental values of Ttot as a function of 𝜃 and 𝜙 

measured when the dielectric medium in contact with the grating is water (𝜂𝑑=1.333), for the 

𝑚=1 and 𝑚=-2 SPR, respectively. Figure 4.11b and 4.11d report the experimental azimuthal peak 

position as a function of 𝜃 (black circles) meanwhile the continuous lines report the results 

obtained from the vector model. In this case 𝜃 is the incident angle in water. This angle is 

retrieved from the one measured on the optical bench goniometer, just by applying the Snell law 

at the air/water interface. 

Analogously to the air case, both resonances here assume the typical parabolic shape well 

described by the vector model. The correlation factors we found are 0.9991 and 0.9984 for the 

SPR 𝑚=1 and 𝑚=-2, respectively. Moreover we can see also a tail of the SPR 𝑚=-2 in figure 4.11a 

and 4.11b. In the Ttot map this tail is represented by an enhancement in the transmittance 

located between 40° and 50° azimuthal degrees; while it is represented by the continuous red 

line in figure 4.11b. 

In conclusion the grating we used produces SPRs that can be sensed both in air and water if only 

the incident angle is properly set [82], [99] and an excellent agreement with the VM is found for 

both cases. 
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4.2.2 Flat, R0 in Kretschmann configuration 

 

Figure 4.12 R0 as a function of 𝜽 measured for the flat surfaces having different metallic layer thickness (thick 

coloured curves: measurements, red curves: simulations), in Kretschmann configuration 

In figure 4.12 we report R0 as a function of 𝜃 measured for flat surfaces having different silver 

film thicknesses (thick coloured curves) along the simulated ones (red curves). The thickness of 

the film is described by the Optical Density (DO) parameter and the incident angle 𝜃 refers to the 

one inside the polycarbonate substrate. As expected the resonance shape and position is 

affected by the thickness and the behaviour of the experimental curves is well reproduced by 

the simulations. The device that produces the best minimum is the one with DO 1500. By 

simulation we also found the sequent corresponding table between the fabrication parameter 

DO and the film thicknesses. 

OpticalDensity DO 500 1000 1500 2000 2500 

Silver film thickness [nm] 13 24 37 50 61 
Table 4.1 relation between the DO and the silver thickness 

The minimum in the best configuration (DO 1500) appears for 𝜃=40.7° which is almost the same 

angle we calculated in section 3.2.1 
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4.2.3 Grating, R0 in Kretschmann configuration 

 

Figure 4.13 (a) R0 as a function of 𝜽 measured for the grating surface mounted in Kretschmann configuration for 
different values of the azimuthal angle 𝝓. (b) Measured minima (black circles) as a function of 𝜽 along with the VM 

calculated resonances (red lines) 

In Figure 4.13a we report the curves R0 as a function of 𝜃, measured when a grating device with 

an optical density of 2500 is mounted in the Kretschmann configuration for five different 𝜙 

angles. The minimum due to the excitation of the SPP at the silver/air interface appears for 

𝜃=41° and, as expected from simulations (section 3.2.2), and its angular position and intensity do 

not depend on the azimuthal angle. Nevertheless another deep is present before the 

Kretschmann one, and this is due to the excitation of a SPP at the polycarbonate/silver interface. 

This minimum shifts to higher 𝜃 as 𝜙 increases. Unfortunately the measured curves are quite 

noisy, but the minimum azimuthal positions as a function of 𝜃 (figures 4.13b) follow the SPR 

𝑚=1, rather than the SPR 𝑚=-3 as predicted by the simulations reported in section 3.2.2. This 

suggests that the plasmonic coupling with SPR 𝑚=-3 is not as strong as predicted by the 

simulations. Nevertheless its weak presence could be hide by the curves noise. 

As already anticipate the peak due to the grating is not subject to the surface modifications that 

happen at the air/metal interface and in this way it can be used as reference peak. A more 

complete and noise free study of this resonance need to be performed in order to completely 

characterize this behaviour. 
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4.3 Detection of bulk refractive index variations 

Here we will study how a change in the buffer refractive index (𝜂𝑑) affects the azimuthal position 

of the resonance. In order to achieve this goal we used different water/glycerol (Sigma Aldrich) 

solutions having different refractive index. We changed the solution into the microfluidic cell by 

using the peristaltic pump and then we measured the Ttot parameter as a function of 𝜙 for fixed 

incident angles 𝜃. The water/glycerol solution we used are reported in the following table 4.2. 

The refractive index of the different solutions were calculated using the values reported by Lide 

et Al. [100]. 

Solution  # Glycerol % wt Milli-q %wt 
 

𝜂𝑑  [𝑅𝐼𝑈] Δ𝜂𝑑  [𝑅𝐼𝑈] 

1 0 100 1,333 0,0000 

2 2 98 1,3353 0,002 

3 5 95 1,3388 0,006 

4 10 90 1,3448 0,012 

5 20 80 1,3572 0,024 

6 30 70 1,3703 0,037 

7 40 60 1,3841 0,051 

8 50 50 1,39825 0,065 

9 60 40 1,4129 0,080 

Table 4.2 Water/glycerol solution and their 𝜼𝒅 

 

Figure 4.14 (a) Ttot as a function of 𝝓 measured for different 𝜼𝒅 having fixed 𝜽𝟏=39.4°; (b) 𝝓-peak positions found for 
the different solutions changing the 𝜽𝟏, lines and circles represent the VM and experimental results, respectively; 

all the results were obtained using the TM polarization mode and the SPR 𝒎=1. 

In figure 4.14a we reported the curves Ttot as a function of 𝜙 measured for the different 

solutions with 𝜃1= 39.4°. 𝜃1 is the incident angle of the light in air, before it passes through the 
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upper window of the microfluidic cell. This angle does not change with the parameter 𝜂𝑑 . Since 

the light incident angle inside the liquid is subject to the snell law: 𝜃 = asin(𝜂𝑎𝑖𝑟 sin(𝜃1) 𝜂𝑑⁄ ). 

All the simulations reported hereafter are corrected considering this effect. As we can see from 

the figure 4.14a the azimuthal peak position decreases as 𝜂𝑑  increases. untill the two peaks 

merge into a single one for Δ𝜂𝑑  = 0.08 RIU. It can also be seen that the second weaker 

maximum, due to the SPR 𝑚=-2, has an opposite behaviour: the azimuthal peak position 

increases increasing 𝜂𝑑 . 

We perform the same measurements by using different incident angles 𝜃1 and the results are 

reported in figure 4.14b. As we can see the experimental azimuthal peaks (circles) as a function 

of the Δ𝜂𝑑  are well reproduced by the vector model (continuous line). Since the sensitivity of the 

method is described by 𝑆𝜙 = 𝜕𝜙 𝜕𝜂𝑑⁄  it corresponds to the slope of the continuous curves 

reported in figure 4.14b. As can be noticed this parameter is negative in this case and it is not 

constant since it diverges as 𝜙 aproaches 0°, as previously illustred in section 3.4.4. We can also 

see that in order to tune and maximize the sensitivity parameter for a specific Δ𝜂𝑑 , the 

parameter 𝜃1 must be changed exploiting the parbolic shape of the resonance. 

 

Figure 4.15 (a) Ttot as a function of 𝝓 measured for different 𝜼𝒅 having fixed 𝜽𝟏=19.2°; (b) 𝝓-peak positions found 
for the different solutions changing the 𝜽𝟏, lines and circles represent the VM and experimental results, 

respectively; all the results were obtained using the TM polarization mode and the SPR 𝒎=-2. 

We perform exactly the same experiment for the SPR 𝑚=-2. The curves Ttot as a function of 𝜙 for 

different parameters 𝜂𝑑  having 𝜃1= 19.2° are reported in figure 4.14a. As we can see in this case 

the azimuthal resonance peak position increases as 𝜂𝑑  increases. 

Also in this case we perform the same measurements by changing the 𝜃1 angle. The 

experimental position of the azimuthal peak (circles) with the vector model calculated ones are 
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reported in figure 4.14b. Also in this case  𝑆𝜙 is always positive and again it diverges as 𝜙 

approaches 0°. Also in this case its values can be set just by changing the 𝜃1 angle. 

Now we will analyse the sensitivity reached by this method and its Figure of Merit (FOM). We 

will define three different FOMs and we will discuss which one best describe the resonance 

proprieties. We will always compare our experimental results with the simulated behaviour. 

 

Figure 4.16 |𝑺𝝓| plotted as a function of 𝝓𝒑𝒆𝒂𝒌. The marker represent the experimental points meanwhile the 

shades areas represent the interval values calculated from the simulation using different incident angles. Blue 

refers to the SPR 𝒎=1 and red to the SPR 𝒎=-2 

In figure 4.16 we report |𝑆𝜙| as a function of the 𝜙 angle. We perform this analysis since we 

noticed from figure 4.14b and 4.15b that if an azimuthal angle is taken into consideration the 

slope of the curves 𝜙𝑝𝑒𝑎𝑘(𝜂𝑑) is almost the same regardless of the 𝜃1 used. In fact the curves 

𝜙𝑝𝑒𝑎𝑘(𝜂𝑑) are almost parallel since them cannot intersect each other. The markers represent 

the sensitivity values calculated by using the experimental results. The shaded areas represent 

the interval values of sensitivity as a function of 𝜙𝑝𝑒𝑎𝑘 , we calculated by using the RCWA 

method for different 𝜃1 angles. The different 𝜃1 were obtained by solving the equations 4.1 for 

different values of 𝜂𝑑 . For the SPR 𝑚=1, 𝜃1 ranges from 33° to 40° while for SPR 𝑚=-2 it goes 

from 14° to 19°. The blue colour refers to the SPR 𝑚=1 while the red one to the SPR 𝑚=-2. In the 

RCWA method the parameter 𝜂𝑑  was varied in step of 0.0005 RIU in order to accurately retrieve 

the sensitivity parameters. 

As we can see the simulated curves do not have a huge dependence on 𝜃1 since the shaded area 

are well confined in the plot. Nevertheless the sensitivity values of the SPR 𝑚=-2 appear more 

affected by the 𝜃1 variations respect to the SPR 𝑚=1 since the red shaded area is wider than the 

blue one. If an initial 𝜙𝑝𝑒𝑎𝑘=10° is set 𝑆𝜙  for the SPR 𝑚=-2 lays between 1000 deg/RIU and 1500 

deg/RIU meanwhile for the SPR 𝑚=1 it is almost fixed to -1100 deg/RIU. This is due to the fact 

that the parabolic shape factor 𝐾 introduced in eq. 3.8 varies quickly for the SPR 𝑚=-2 since for 

low values of 𝜃1 the vertex 𝜃𝑐 of the resonance parabola shifts to lower incident angles with the 

𝐾 parameter increasing. 
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The experimental sensitivity well agrees with the simulated one and in both cases it diverges 

approaching 𝜙=0°. Hence, if we want to measure with an high sensitivity we need to have set an 

initial azimuthal resonance having 𝜙𝑝𝑒𝑎𝑘 < 7°. We also notice that the maximum experimental 

measured sensitivity reaches 3280 deg/RIU and 2280 deg/RIU for the SPR 𝑚=1 and 𝑚=-2, 

respectively. If the initial resonance angle is set to 𝜙𝑝𝑒𝑎𝑘 > 20° the sensitivity has a value of 320 

deg/RIU which slowly decreases with the increasing of 𝜙𝑝𝑒𝑎𝑘 . Even if the sensitivity diverges at 

𝜙𝑝𝑒𝑎𝑘=0° it is very difficult to set the resonance at this azimuthal angle since the amplitude of 

the peaks is very low and their position is strongly affected by small changes in 𝜃1. 

In order to analyse the figure of merit of this azimuthal method, we define three different FOMs 

as follows: 

 𝐹𝑂𝑀0 =
|𝑆𝜙|

𝐹𝑊𝑀𝐻0
;  𝐹𝑂𝑀𝑏 =

|𝑆𝜙|

𝐹𝑊𝑀𝐻𝑏
;  𝐹𝑂𝑀𝑇 =

|𝑆𝜙|Δ𝑇

𝐹𝑊𝑀𝐻0
 (4.2) 

where 𝑆𝜙 is the azimuthal sensitivity, Δ𝑇 is the difference between the azimuthal peak 

transmittance and the transmittance at 𝜙=0°. 𝐹𝑊𝑀𝐻0 is calculated considering the 

transmittance at 𝜙=0° as the peak baseline while  𝐹𝑊𝑀𝐻𝑏 is calculated by using the 

transmittance at 𝜙=90° as the peak baseline. 

 
Figure 4.17 Schematic of the parameters used to calculate the FOMs and the two main cases that can appear. 

Figure 4.17 shows a schematic of the two main cases that can appear and how we calculated the 

FWMH. In the first case, the blue one, the two azimuthal peaks are well split and the  𝐹𝑊𝑀𝐻0 is 

slightly lower than the  𝐹𝑊𝑀𝐻𝑏 since the transmittance at 𝜙 = 0° is slightly higher than the one 

at 𝜙=90°. In the second case, the black one, the resonance peaks approach to 𝜙=0°. In this case 

the 𝐹𝑊𝑀𝐻0 is smaller than the  𝐹𝑊𝑀𝐻𝑏 since the first one is related to the local azimuthal 

peak shape and not to the total shape of the resonance curve, as it happens for  𝐹𝑊𝑀𝐻𝑏. 

In figure 4.18a, 4.18b, and 4.18c we reported the values calculated for 𝐹𝑂𝑀0, 𝐹𝑂𝑀𝑏, and  𝐹𝑂𝑀𝑇 

as a function of 𝜙𝑝𝑒𝑎𝑘. The points represent the values calculated from the experimental results, 

while the shaded areas report the simulated results changing the incident angle 𝜃1 as previously 

illustrated for the sensitivity case. The blue and red colours refer to the SPR 𝑚=1 and 𝑚=-2, 

respectively. 

In these cases the shaded areas are confined, hence the simulated FOMs as a function of 𝜙𝑝𝑒𝑎𝑘 

do not depend on the 𝜃1 angle. Moreover the experimental behaviour is well reproduced by the 

simulations. 𝐹𝑂𝑀0 starts from a values of 40 RIU-1 and grows up to 680 RIU-1 as 𝜙 approaches 
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0°. This parameter diverges as  𝜙𝑝𝑒𝑎𝑘 approaches 0° for two reasons. The first one is that |𝑆𝜙|  

diverges and the second one is that the 𝐹𝑊𝑀𝐻0, for its definition, tends to 0° as 

 𝜙𝑝𝑒𝑎𝑘approaches 0°. Since it is at the denominator of 𝐹𝑂𝑀0 it contributes to its divergence. 

The 𝐹𝑂𝑀𝑏 parameter starts from 35 RIU-1 and grows up to 90 RIU-1 as  𝜙𝑝𝑒𝑎𝑘 approaches 0°. We 

can see that these values are lower than 𝐹𝑂𝑀0 and this is due to the fact that for definition 

𝐹𝑊𝑀𝐻0 < 𝐹𝑊𝑀𝐻𝑏. The biggest difference between these two parameters is found at  𝜙𝑝𝑒𝑎𝑘 

approaching 0° since the 𝐹𝑊𝑀𝐻0 tends to 0° while 𝐹𝑊𝑀𝐻𝑏 reaches an almost constant values 

of 30°. Still this parameter diverges for 𝜙=0° because |𝑆𝜙| diverges. We can also notice some 

discontinuities of the curves around 𝜙=15°~20°. These are due to the fact that here the peaks 

merge and we effectively jump from a situation described by the blue curve, to a situation 

described by the black curve of figure 4.17. This implies a discontinuous decreases in the 

𝐹𝑊𝑀𝐻𝑏 even though this discontinuity has not an important physical meaning. 

 

Figure 4.18 (a) 𝑭𝑶𝑴𝟎, (b) 𝑭𝑶𝑴𝒃, (c) 𝑭𝑶𝑴𝑻, plotted as a function of 𝝓𝒑𝒆𝒂𝒌. The marker represent the experimental 

points meanwhile the shades areas represent the interval values calculated from the simulation using different 

incident angles. Blue refers to the SPR 𝒎=1 and red to the SPR 𝒎=-2 

The most interesting parameter 𝐹𝑂𝑀𝑇  is reported in figure 4.18c. It is calculated by multiplying 

the 𝐹𝑂𝑀0 with Δ𝑇. This parameter tends to 0 a.u./RIU as 𝜙𝑝𝑒𝑎𝑘  approaches 0° and it removes 

the divergence caused from both the parameter |𝑆𝜙| and 𝐹𝑊𝑀𝐻0. In detail 𝐹𝑂𝑀𝑇=0 a.u./RIU 
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when 𝜙𝑝𝑒𝑎𝑘  = 0° and then it increases reaching a maximum at 𝜙𝑝𝑒𝑎𝑘=20° for both the plasmonic 

orders. After this maximum it slowly decreases as 𝜙𝑝𝑒𝑎𝑘  increases. This parameter is the one 

that correctly describes the azimuthal behaviour of the plasmonic resonance. This is due to the 

fact that the parameter Δ𝑇 takes into account how challenging is the SPR detection when 𝜙𝑝𝑒𝑎𝑘  

approaches 0°. The 𝐹𝑂𝑀𝑇  parameter for the SPR 𝑚=1 (~1.7 a.u./RIU at its maximum) is higher 

than the one for the SPR 𝑚=-2 (~0.7 a.u./RIU at its maximum) since the first resonance is better 

than the second one. The experimental behaviour is well reproduced by the simulated data even 

if for the SPR 𝑚=1 a shift to lower angles of the maximum seems to appear. 

From this analysis we can conclude that if a peak starting position is chosen in the 

10°<𝜙𝑝𝑒𝑎𝑘<20° interval |𝑆𝜙| is higher than 500 deg /RIU and the parameter 𝐹𝑂𝑀𝑇  has already 

reached at least the 50 % of its maximum value. Obviously the SPR order has to be chosen on 

the base of the experimental needs e.g. if the functionalization process is expected to increase 

(decrease) the SPR coupling momentum then 𝑚=1 (𝑚=-2) must be prefer since in this case the 

azimuthal angle resonance shifts to lower values, increasing in this way the method sensitivity. 

We suspect that 𝐹𝑂𝑀𝑇  is the most correct parameter to apply in the study of the plasmonic 

resonance sensitivity when it is enhanced by exploiting a parabolic shape resonance. 

Nevertheless more studies need to be done in order to confirm this. 

The resolution of this method depends on the accuracy of the bench azimuthal angle 

positioning. In our case, it is related to the motorized rotation stage, being 0.01°. Considering 

this value, we obtain a minimum resolution of 5 × 10-6 RIU, which is only fifty times larger than 

the lowest reported resolution, i.e., 10-7 RIU [25]. 
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4.4 Detection of Alkanethiols Self Assembled Monolayers 

In this section we will see how the same azimuthal method, applied for sensing different 𝜂𝑑  

values, can be adopted for sensing different Self Assembly Monolayer (SAM) adsorbed onto the 

metallic grating surface. These SAMs are dielectric layers with the same refractive index 𝜂𝑑=1.45 

but with a different thickness. By using them we will evaluate the sensitivity of the azimuthal 

method respect to ℎ𝑓𝑢𝑛𝑐. We will measure this sensitivity considering both air and water as the 

dielectric medium. In air we will sense the azimuthal shift produced by SAM created by different 

alkanethiols molecules. In water we will monitor the adsorption onto the grating surface of the 

6-mercapto-1-hexanol molecules taking advantage of our microfluidic setup. 

4.4.1 Functionalization protocols 

To create different type of SAM onto the grating surface we used five different types of 

molecules. For the air sensitivity test we used alkanethiols molecules with different number of 

methylene groups in their chain. These molecules are known in literature to form SAM with 

different thickness [20], [82], [91], [101].This affect the SPP coupling constant since the thicker is 

the SAM the greater is the SPP coupling momentum. 

In particular we dipped five different grating samples into 1 mM ethanol solution of exanethiols 

(C6), octanethiols (C8), dodecanethiols (C12), and octadecanethiols (C18). The chemical formula 

of these molecule is CN = CH3(CH2)N-1SH, where N is the number of carbon atoms in their chain. 

The thiol group S-H, known as head of the molecule, is the one that allows the link with the 

metal layer losing its hydrogen atom and becoming an S-Ag group. The CH3 is the methyl 

terminal group which is the one in contact with the buffer medium; (CH2)N-1 are the methylene 

groups contained in the chain as schematically reported in figure 4.19. 

 

Figure 4.19 Schematic of a SAM [102] 

In order to test the sensibility in water we use another molecule: the 6-mercapto-1-hexanol or 

MCH. Its chemical formulae is SH(CH2)5CH2OH. Again its head is a thiol and the tail is a primary 

alcohol group. In order to functionalize the surface we used the MCH diluted in10 mM solution 

of milli-q water. 

We will refer to the surface without functionalization as bare condition. 
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4.4.2 Incident angle sensitivity 

We start our evaluation of the SAM by measuring the shift of the transmittance peak as a 

function of the light incident angle due to the C12 surface functionalization. 

 

Figure 4.20 Ttot/Tpeak as a function of 𝜽 measured for the bare grating (red) and C12 (cyan) surface condition. 

In figure 4.20 we report the grating transmittance normalized at the peak value as a function of 

𝜃 for the bare grating condition and for the C12 functionalized grating. As we can see a shift of 

the peak towards higher incident angles is measured and its value is 0.6°, which is consistent 

with the increasing of the SPP coupling momentum introduced by the functionalization. 

4.4.3 Azimuthal sensitivity 

In the previous section We proved the correct functionalization behaviour measured as a 

function of 𝜃,now we will focus onto the azimuthal sensing method [91]. 

 

Figure 4.21 Ttot/Tpeak as a function of 𝝓 measured for the five different conditions of the surface for four different 

incident angles. 

In figure 4.21 we report the Ttot normalized at the peak transmittance as a function of 𝜙 

measured for four different 𝜃 and exploiting the SPR 𝑚=1. Only the 𝜙>0° part of the curves is 

reported since they are symmetric respect to 𝜙= 0°. The curves reported are obtained taking the 

media of five different grating samples measured for each grating condition. The bare condition 

is the one with no adsorbed molecules on the surface and it coincide with the grating immersed 

in pure ethanol nevertheless its peaks are the same ones of the air exposed grating. 
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As we already seen for glycerol/water solution case, the incident angle allows us to change the 

azimuthal shift between the different conditions. As we can see, for 𝜃= 10.8° an azimuthal peak 

 𝜙 ≠ 0° can be detected for all the five different conditions, while, for 𝜃= 10.3°, only an 

azimuthal peak at 𝜙=0° can be seen for the C18 condition. Taking this particular case the shift 

between the C12 condition and the C18 goes from 3.88° for 𝜃= 10.8° to 7.55° for 𝜃 = 10.3° 

doubling its value. Similar considerations can be performed for 𝜃= 10.1° where the C12 condition 

produces a single peak, and for 𝜃= 9.8° where the C8 and C6 azimuthal peaks are merged at 

𝜙=0°. 

The azimuthal peak position for the four different incident angles and for all the five conditions 

measured are reported in figure 4.23a. It is obvious that when two functionalization conditions 

have one single peak at 𝜙=0° it is impossible to distinguish them by this azimuthal method. 

We perform the same experiment taking into consideration the 𝑚=-2 SPR condition. 

 

Figure 4.22 Ttot/Tpeak as a function of 𝝓 measured for the five different conditions of the surface for four different 
incident angles. 

In figure 4.22 we report the Ttot normalized at the peak transmittance as a function of 𝜙 

measured for four different 𝜃 and for the 𝑚=-2 SPR. Only the 𝜙>0° part of the curves is reported 

since they are symmetry respect to 𝜙= 0°. 

Also in this case the figure 4.22 well shows how different 𝜃 affects the shift between the 

conditions. For 𝜃=46.5° all the surface conditions have an azimuthal peak 𝜙 > 0°, meanwhile for 

𝜃 = 43.7° the bare conditions shows a peak slightly above 𝜙=0°. In this case the shift between 

the C6 and bare condition is amplified from 0.98° to 3.99° by using the bare optimized incident 

angle. Decreasing again the incident angle also the C6 and the C12 conditions has only a 

maximum at 𝜙 = 0°. The azimuthal peak position and the incident angle for all the five conditions 

measured are reported in figure 4.23b. 
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Figure 4.23 Comparison between experimental data (points with error bars) and Vector Model simulations (solid 
lines) for the peak azimuthal angles as a function of the refractive effective index variation. Values of 𝜟𝜼𝒆𝒇𝒇 =(0, 

4.9,5.8,8.2,11.4)×10-3 correspond to the different surface grating conditions. (a) SPR order 𝒎=1; (b)SPR 𝒎=-2. 

In Figure 4.23a and 4.23b we show the azimuthal angle position of the SPR, for various incident 

angles, as a function of the effective refractive index variations 𝛥𝜂𝑒𝑓𝑓 for 𝑚 = 1 and 𝑚 = −2, 

respectively. The continuous lines correspond to the VM simulation results, while the 

experimental points are reported with their error bars for each grating condition. The parameter 

 𝛥𝜂𝑒𝑓𝑓  only affects the SPP coupling constant modifying eq. 1.24 into: 

  𝑘𝑠𝑝𝑝 = 𝑘0√
(1+ 𝛥𝜂𝑒𝑓𝑓)

2
𝜀𝑚

(1 + 𝛥𝜂𝑒𝑓𝑓)
2
+ 𝜀𝑚

 (4.3) 

𝛥𝜂𝑒𝑓𝑓  takes into account the modifications introduced by the surface functionalization on the 

SPR behaviour. Hence the different surface conditions are represented in the x−axis by the 

different values of 𝛥𝜂𝑒𝑓𝑓 . For reference, 𝛥𝜂𝑒𝑓𝑓  is set to 0 RIU for the bare grating, while it was 

calculated for the other conditions by using the effective medium approximation model as 

previously illustrated in eq. 3.5 and in the following one. 

 𝜂𝑒𝑓𝑓 = 𝜂𝑑 +
2ℎ𝑓𝑢𝑛𝑐
𝑑𝑧

(𝜂𝑓𝑢𝑛𝑐 − 𝜂𝑑) (4.4) 

To perform the calculations we used 0.6 nm, 0.9 nm, 1.5 nm, and 2.2 nm as the thickness values 

ℎ𝑓𝑢𝑛𝑐  for the four different SAMs and 𝜂𝑓𝑢𝑛𝑐=1.45 RIU; these values are similar to the one 

reported in [82]. For the plasmon penetration length 𝑑𝑧 we used 160 nm. It is evident that the 

sensitivity parameter is defined in this case as 𝑆𝜙 = 𝜕𝜙/𝜕𝜂𝑒𝑓𝑓  and corresponds to the slope of 

these curves. Its experimental values as a function of 𝜃 are shown in table 4.3. Considering now 

figure 4.23a for 𝑚 = 1, we see that the curves slope is always negative and tends to diverge as ϕ 

approaches 0°. In the same way we can notice that the sensitivity for 𝑚 = −2 is always positive 

and diverges for ϕ = 0° as already seen for the measurements performed by using the 

glycerol/water solutions. 
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SPR 𝑚 = 1 SPR 𝑚 = -2 

𝜃 [𝑑𝑒𝑔] 𝑆𝜙  [𝑑𝑒𝑔]/[𝑅𝐼𝑈]; C6-Bare 𝜃 [𝑑𝑒𝑔] 𝑆𝜙  [𝑑𝑒𝑔]/[𝑅𝐼𝑈]; C18-C12 

10.8 -930 46.5 180 

10.3 -1220 43.7 390 

10.1 -1570 43.2 460 

9.8 -2180 42.9 1180 
Table 4.3 Sensitivity measured at different incident angles. 

In table 4.3 we report the experimental sensitivity values calculated by using the surface 

condition pairs that allow the sensitivity evaluation for each incident angle tested. These pairs 

correspond to the C6 and the bare condition for 𝑚 = 1, and to the C18 and the C12 conditions 

for 𝑚 = −2. A clear sensitivity enhancement of a factor 2.4 is reached for 𝑚 = 1, while it grows up 

to 6.5 for 𝑚 = −2 SPR. The sensitivity reaches values up to 2180 deg/RIU, and 1180 deg/RIU in 

the two cases, being twenty times higher than the 80 deg/RIU evaluated using the incident angle 

shift reported in figure 4.20, which is a noticeable improvement. 

Regarding the sensitivity in water we measured the kinetic adsorption of the MCH molecules 
onto the silver metal layer. 

 
Figure 4.24 (a) Azimuthal peak as a function of the time. (b) Vector model simulation for the two measured surface. 

(c) Azimuthal angle variations ∆𝝓 as a function of the initial peak condition 𝝓𝒃𝒂𝒓𝒆  

In figure 4.24a we report the azimuthal peak as a function of the time. For the first 20 minutes 

we fluxed milli-q water inside the microfluidic cell. Then we changed the solution with the 10 

mM MCH one and we waited 15 minutes, then we fluxed again milli-q water. All the process 

were performed having a fixed flux of 50 μL/min. After the introduction of the MCH solution the 

azimuthal peak position dropped. This is due to the fact that the molecules present in the 

solutions have quickly formed a SAM on the silver surface. When we inserted again the milli-q 

water the 𝜙 angle did not change again confirming that the decrease of the resonance azimuthal 
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position was due to the SAM formation rather than a change of the MCH refractive index 

solution. 

In figure 4.19b we report the two azimuthal resonances one for the bare grating condition and 

one for the MCH grating condition calculated by using a 𝛥𝜂𝑒𝑓𝑓= 2.3 x 10-3 RIU. In figure 4.19c we 

report the 𝛥𝜙 =  𝜙𝑀𝐶𝐻 − 𝜙𝐵𝑎𝑟𝑒 plotted as a function of the 𝜙𝐵𝑎𝑟𝑒  condition. The red circles 

refers to the experimental values and can be calculated by measuring the height of the 

azimuthal steps reported in figure 4.19a while the continuous line refer to the VM calculations 

that can be retrieved by the curves reported in figure 4.19b.  

Also in this case we can see a good agreement between the experimental points and the vector 

model predicted behaviour. As usual we also notice that 𝛥𝜙 increases as 𝜙𝐵𝑎𝑟𝑒  approaches to 

6°. For 𝜙𝐵𝑎𝑟𝑒  <6° the parameter 𝛥𝜙 decreases because the functionalization condition always 

produces a peak at 𝜙=0°. 
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4.5 Detection of an antibody layer 

In the previous section we illustrated how to implement an azimuthal sensing method to 

evaluate both the change in the buffer refractive index (𝜂𝑑) and in the SAM formation. Here we 

want to apply this method to detect the surface variations induced by two subsequent 

functionalization processes. The first one will produce a cross link SAM by using a 

carboxymethyl-polyethylene glycol-thiol (PEG). This SAM will exposed a carboxylic group that 

will be modified in order to immobilized an antibody layer exploiting the ammine groups 

available on the antibody surface. We will study how the concentration of the PEG and the 

presence of the antibody will affect the resonance both in the Kretschmann and grating 

configurations. 

4.5.1 Functionalization protocols 

In order to perform this experiment we used a drop casting method. The drops (30 μL) were 

applied on our device by means of a socket (Grace Bio-Labs ProPlate® microarray system, 64). 

The carboxymethyl-PEG-Thiol with a molecular weight of 3400 Dalton were purchased by 

(laysanBio). We used N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide (EDC) and sulfo-N-

Hydroxysuccinimide (s-NHS) in MES buffer (sigma Aldrich) in order to activate the carboxylic 

group of the PEG and link it to an ammine group of the antibody anti (E. Coli) (Virostat). 

For the antibodies immobilization, the surface was immersed in a 1 mM PEG/milli-q solution 

overnight and then rinsed with milli-qwater and dried under nitrogen flux. The PEG carboxylic 

group was activated through EDC and sulfo-NHS 5 mM each in MES buffer pH 6 for 15 minutes 

(MES buffer: 0.1M 2-(N-morpholino) ethanesulfonic acid (MES), 0.5M NaCl).After the activation 

the surface were again rinsed with milli-q water and dried under nitrogen flux. 

The anti E. coli antibody at the concentration of 1 mg/mL is then applied to the surface through 

a printing buffer: Na2PO4 0.1 M, NaCl 0.3 M, Triton X-100 0,01%, pH 7.2. Then surface, with the 

immobilized antibodies, is rinsed in milli-q water and dried in air. 

We functionalized our devices as reported in these schemes of table 4.4: 

PEG study Antibody study 

Orange spot PEG 1 mM 
Yellow spot  PEG 0.1 mM or 0.5 
mM 
Cyan spot     milli-q  

Orange spotPEG 1 
mM 
Yellow spot PEG + Ab 
Cyan spot    milli-q 

Table 4.4 schematic of the functionalization protocols. 

Our standard device is a rectangular array of spots, where only the internal ones were used. For 

the measurements in Kretschmann configuration we will used a flat surface while for the one in 

grating configuration we will used the nanostructured surface. We will report different test 

referring to different devices. For each test the experimental points report the average value of 

the plasmonic resonance position performed over all the same coloured spots. 
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4.5.2 Incident angle sensitivity (Kretschmann configuration) 

We will start by analysing the signals we obtained in the Kretschmann configuration. 

 

Figure 4.25 (a) Angular shift of the plasmonic resonance respect to the milli-q plotted as a function of the PEG 
concentration. (b) R0 as function of the motor angle for the different PEG concentrations 

In Figure 4.25a we report the average shift of the SPR from the milli-q condition as a function of 

the Peg concentrations. In figure 4.25b we report the parameter R0 as a function of the 

motorized angle obtained in the first test. As we can notice from figure 4.25a an angular shift up 

to 1.1° for the SPR minimum position is obtained increasing the PEG concentration. Nevertheless 

we can also noticed that a huge difference of 0.5° is found between the two test regarding the 

same 1mM concentrations. In figure 4.25b we can also see how the plasmonic response is 

affected by the PEG functionalization. Besides the shift of the resonance minimum we notice a 

slight enhancement of its value. Unfortunately, we cannot increase the PEG concentration to 10 

mM because this will damage the silver metal layer. Since we want to create a SAM over the 

silver layer a 1 mM PEG/milli-q solution will be used in the antibodies immobilization test. 

 

Figure 4.26 (a) Angular shift of the plasmonic resonance respect to the milli-q plotted as a function of the surface 

condition. (b) R0 as function of the motor angle for the different surface conditions. 

In Figure 4.26a we reported the results obtained for four different functionalization tests. The y-

axis reports the shift from the SPR position in the milli-q spot respect to the SPR position 

measured for the other two surface cases i.e. surface with PEG and antibodies (Δ𝜃 = 𝜃𝑓𝑢𝑛𝑐 −

𝜃𝑚𝑖𝑙𝑙𝑖−𝑞); meanwhile the x-axis label represents the spot condition. As we can see always the 



111 
 

1mM PEG induced a shift between 0.6° and 1.1° as previously noticed; but not always the 

antibodies seem to bind with the PEG i.e. the shift between PEG and PEG+antibodies is 0.4° for 

the first and second tests, while it is almost undetectable for the third and fourth test. In figure 

4.22b we report the parameter R0 as a function of the motorized angle, for the three different 

surface conditions measured in the second test. 

The antibodies sometimes do not produce the expected resonance shift. This behaviour suggests 

that the antibodies immobilization protocol we used needs to be tuned in order to ensure the 

results reliability. Another uncertainty factor is the use of silver as metal, in fact it is more 

instable than gold which is the standard in this type of application. 

4.5.3 Azimuthal angle sensitivity 

The same experimental test were performed by using the grating configuration. 

 

Figure 4.27(a) Angular shift of the plasmonic resonance respect to the milli-q plotted as a function of the 

concentration. (b) Ttot/Tpeak as function of 𝝓 for the different PEG concentrations 

In Figure 4.27a we report the average position of the azimuthal SPR respect to the milli-q 

condition as a function of the PEG concentrations. In figure 4.27b we report the parameter Ttot 

normalized at the peak transmittance as a function of the azimuthal angle for the different PEG 

concentrations, as obtained in the first test. A noticeable shift of the transmittance maximum is 

registered as a function of the PEG concentration. As we can notice from figure 4.27a, an angular 

shift up to 5° of the SPR maximum position is obtained increasing the PEG concentration. Since 

the metal layer we used is silver, it is not possible to further increase the PEG concentration up 

to 10 mM; for this reason in the next test we will used the 1mM PEG/milli-q solution in order to 

form the initial SAM. 

In Figure 4.28a we report the results obtained for four different functionalization tests. As in the 

previous case, the y-axis reports the difference between the average functionalized SPR position 

and the milli-q, meanwhile the x-axis labels represent the condition of the spot. As we can see 

the 1mM PEG induced a shift between 3.5° and 5°. Also in this case, not always the antibodies 

seem to bind with the PEG layer as we can see for the test 3. The shifts between PEG and 

PEG+antibody reaches 3° for the second test while it is almost 1° for the first and fourth test. 

Regarding the third test we cannot detect a clear shift induced by the antibodies. In figure 4.28b 
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we report the parameter R0 as a function of the azimuthal angle, for the three different grating 

surface conditions measured in the second test. 

 

Figure 4.28(a) Angular shift of the plasmonic resonance respect to the milli-q plotted as a function of the surface 

condition. (b) R0 Ttot/Tpeak as a function of 𝝓 for the different surface conditions. 

In the following table we summarized the shift obtained between the milli-q treated spots and 

the ones with the PEG and antibodies both for the Kretschmann and the grating configuration. 

 Kretschmann ∆𝜃𝐾[deg] Grating ∆𝜙𝐺[deg] Ratio ∆𝜙𝐺/∆𝜃𝐾 

|𝑆𝑃𝑅𝑃𝐸𝐺 − 𝑆𝑃𝑅𝑚𝑖𝑙𝑙𝑖−𝑞| 0.6 ÷ 1.1 3.5 ÷ 5 4.5 ÷ 5.8 

|𝑆𝑃𝑅𝐴𝑏 − 𝑆𝑃𝑅𝑚𝑖𝑙𝑙𝑖−𝑞| 1 ÷ 1.5 5 ÷ 6.5 4.3 ÷ 5.0  
Table 4.5 Comparison between the shift variations found in Kretschmann and Grating configuration and the ration 

of their shift. 

As we can see from table 4.5 the ratio of the shifts calculated by using the two configuration is 

between 4.3 and 5.5. This is consistent with our simulation since the sensitivity of the 

Kretschmann configuration is 54 deg/RIU (see table 3.8) while the sensitivity for the azimuthal 

configuration having an initial peak at 48° is almost 240 deg/RIU (see figure 4.16). The ratio 

between these two sensitivities is 4.4 which is in the range of the experimental one. Hence 

similar functionalizations of the two surface types similarly affect the SPP coupling constant. 

Moreover comparing the two different detection techniques i.e. the Kretschmann one and the 

azimuthal one we retrieved almost the same information: 

 The shifts caused by the PEG functionalization always produces a SPR shift but its value 

could be subject to huge variations: from 0.6° to 1.1° for the Kretschmann configuration 

and from 3.5° to 5° for the grating configuration. 

 The antibody binding protocol needs to be tuned in order to improve the reliability of 

the method since in some cases we have not detected any plasmonic resonance 

variation. 
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5 Conclusions 

In this work we showed how different excitation and detection methods of the Surface Plasmon 

Resonance phenomenon can be exploited for general sensing purposes. We reached this goal by 

using both simulations and experimental measurements. 

Regarding the simulations, we implemented three different methods: the Rigorous Coupled 

Wave Analysis, the Chandezon, and the Finite Element method. We compared their results and 

briefly discussed their properties and applications. Nevertheless another simpler method was 

analysed: the vector model. By using these tools we were able to compute the intensities of all 

the light rays diffracted by a periodic, one or two dimensional, nanostructured surface. We also 

showed how the vector model well reproduces the simulated resonances even if it did not 

provide qualitative information about their shape. 

Applying these simulations methods to the nanostructured surface in conical mounting 

configuration we noticed that the plasmonic resonance has a fixed parabolic shape and hence 

there are no great benefits in having a two dimensional periodic surface instead of a one 

dimensional grating. The result we found adding a further periodicity dimension is that the 

azimuthal position of the plasmonic vertex 𝜙𝑐  can be different from 0°. We have also shown how 

the relative intensities of the resonances can be changed by adding some features inside the 

periodic cell. 

Through the simulation methods we analyzed what happens in the Kretschmann configuration 

when a grating is considered. In this case two SPPs seem to be excited. The first one it is related 

to the metal/air interface and its excitation does not depend on the grating itself since this 

plasmon is excited exploiting the Kretschmann excitation scheme. The second one is related to 

the SPP at the metal/polycarbonate interface and it is excited through the grating. This SPP is 

not affected by the refractive index variation at the silver/air interface, hence it can be used as a 

reference in a Kretschmann measurements. The presence of these two plasmonic resonances 

were also experimentally confirmed. 

Furthermore we depicted the link between Kretschmann and grating configuration. The rays 

transmitted by the grating when it is lighted in conical mounting configuration did not carry the 

same amount of information. We saw that only two rays are significant: the baseline ray and the 

Kretschmann ray and we generalized this aspect for both the SPR 𝑚=1 and 𝑚=-2 orders. 

The simulations were used also for the evaluation of the bulk sensitivity to the buffer refractive 

index 𝜂𝑑 , and functionalization thickness ℎ𝑓𝑢𝑛𝑐  parameters. In particular we analyzed the 

sensitivity considering as sensing parameters the wavelength, the incident angle, the 

polarization angle and the azimuthal angle. We also showed that an almost parabolic shape of 

the plasmonic resonance allows a sensitivity enhancement and we revealed the main common 

features of this detection method taking the azimuthal case as example. 

Experimentally we optimized two optical benches for the detection of the SPR. One for the 

grating in conical mounting configuration and the other for the Kretschmann configuration. We 
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implemented the measurement software and performed the calculations for the optimization of 

the prism position. 

Through the conical mounting configuration bench we experimentally studied in detail the 

azimuthal resonance detection method. Initially we showed its parabolic resonance shape 

measuring the SPR 𝑚=1 and 𝑚=-2 both in air and in water. Then we applied the method for 

enhance and tune the sensitivity of both the 𝜂𝑑 , and ℎ𝑓𝑢𝑛𝑐  parameters. The first one was 

investigated by using different glycerol/water solutions meanwhile the second one was 

investigated by using SAM formed by different molecules. In both cases we reached a maximum 

angular sensitivity slightly greater than 2000 deg/RIU which is a state of the art value for the 

plasmoinc resonance based methods. The resolution reaches 5×10-6 RIU which is only fifty times 

larger than the lowest resolution value largely accepted by the scientific community. In addition 

to the sensitivity we also studied the figure of merit of the method. We found that 𝐹𝑂𝑀𝑇  is the 

best parameter suitable for its description because it takes into account that the closer are the 

resonances, the higher is the sensitivity, but the hardest is their detection. 

Finally we saw how both the Kretschmann and grating configurations report the same 

information when similar functionalization process is applied on the metallic surface. 

Nevertheless an higher angular shift was recorded in the grating conical mounting configuration 

hence the sensitivity this case is higher than the Kretschmann one. 

Further research on the SPR excitation needs to be done in order to improve the sensitivity and 

the detection/excitation method. Key features in this research field, already chased by several 

groups all over the world, are the development of high throughput, reliable, and portable 

detection benches as well as the integration of this technique with other ones such as 

fluorescence and Raman spectroscopy, scanning probe microscopy, and electrochemistry. 

Another field that could introduce several improvements in the art of the plasmonic sensing 

could be the development of special metamaterials that allows an engineering of the metallic 

dielectric constant and the handling of the diffracted rays output angle. Moreover the 

applications and improvements that can outcome from the plasmonic field are limitless and 

could have a huge impact on the everyday life since the control of the light at the nanoscale 

seems nowadays to be the building block for the next technological revolution. 
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List of abbreviations and acronyms 

Ab Antibodies 

ATR Attenuated Total internal Reflection 

C6 exanethiols 

C8 octanethiols 

C12 dodecanethiols 

C18 octadecanethiols 

CM Chandezon Method 

DDARM Double Dip Azimuthal Rotated Method 

DDM Double Dip Method 

DO Optical Density 

FEM Finite Element Method 

FOM Figure Of Merit 

FWMH Full Width Medium Height 

LOD Limit Of Detection 

GCSPR Grating Coupling Surface Plasmon Resonance 

MCH 6-mercapto-1-hexanol 

PEG carboxymethyl-PolyEthylene Glycol-thiol 

RCWA Rigorous Coupled Wave Analysis 

R0 Zero Order Reflectance 

RIU Refractive Index Unit 

SAM Self-Assembled Monolayer 

SDARM Single Dip Azimuthal Rotated Method 

SPP Surface Plasmon Polariton 

SPR Surface Plasmon Resonance 

TIR Total Internal Reflection 

TE Transverse Electric 

TM Transverse Magnetic 

Ttot Total grating Transmittance 

VM Vector Moedel 

 


