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2 RIASSUNTO 

L’attività di ricerca di questo Dottorato ha avuto come obiettivo quello di sviluppare test genetici 

di interesse commerciale nell’ambito della medicina personalizzata. 

 

La prima parte di questo progetto ha riguardato lo sviluppo di due saggi per la discriminazione 

allelica di due polimorfismi a singolo nucleotide (SNP) vicini al locus di IL28B che svolgono un 

ruolo fondamentale nella gestione dei pazienti con epatite C cronica. L’epatite C è uno dei 

maggiori problemi di salute pubblica a livello globale; si stima infatti che vi siano circa 170 

milioni di individui affetti da epatite C al mondo. Per molti anni la terapia definita come 

“standard of care” (SOC) per la cura dell’epatite C si è basata sulla somministrazione combinata 

di interferone alfa peghilato e ribavirina (PEG-IFN/RBV). Con questa terapia, però, circa l’80% 

dei pazienti infettati dai genotipi 2 e 3 di HCV e solo il 50% di quelli infettati dai genotipi 1 e 4 

erano in grado di raggiungere una risposta virologica sostenuta (SVR) con l’eradicazione 

completa del virus. Negli ultimi anni, diversi studi hanno dimostrato in modo indipendente che 

fattori genetici legati all’ospite, quali il genotipo dei polimorfismi rs12979860 e rs8099917 a 

monte del gene IL28B, sono correlati alla probabilità di raggiungere SVR. Si è infatti osservato 

che i pazienti omozigoti per l’allele favorevole in entrambi i polimorfismi (CC per rs12979860 e 

TT per rs8099917) raggiungevano una clearance virale spontanea nelle infezioni acute oppure 

una SVR dopo il trattamento in quelle croniche, con una probabilità 2-3 volte maggiore rispetto 

ai pazienti eterozigoti o omozigoti per l’allele sfavorevole (CT o TT per rs12979860 e TG o GG 

per rs8099917). Recentemente, l’uso di nuovi agenti antivirali ad azione diretta (DAA) che 

inibiscono le proteasi coinvolte nel ciclo replicativo di HCV, in combinazione con la terapia 

standard ha permesso di ottenere un aumento significativo dei tassi di SVR nei pazienti 

indipendentemente dal genotipo virale dell’infezione. Due di questi, boceprevir e telaprevir, 

sono stati approvati dall’FDA nel 2011 e molti altri sono attualmente in fase di sviluppo per 

arrivare a definire una nuova terapia SOC non più basata sull’utilizzo di interferone. Nonostante 

l’effetto dei genotipi dei polimorfismi di IL28B sulla cinetica virale sembri risultare indebolito 

dall’uso di questi potenti agenti antivirali nella terapia, dati sperimentali indicano che le varianti 

genetiche di questi SNP rimarranno fortemente informative anche nel contesto dei futuri regimi 

IFN-free. Pertanto, la genotipizzazione degli SNP di IL28B prima della terapia è fondamentale 

allo scopo di evitare un trattamento inefficace caratterizzato non solo da tempi lunghi e costi 

elevati ma soprattutto da pesanti effetti collaterali (come ad esempio sindrome di tipo 

influenzale, anormalità ematologiche ed eventi avversi neuropsichiatrici). 

Lo scopo di questo studio è stato quindi sviluppare due test per la genotipizzazione di 

rs12979860 e rs8099917 basandosi sul metodo della real-time PCR con sonde TaqMan®. Sono 

stati disegnati i primer e le sonde per l’ibridazione specifica con la sequenza target di DNA. Le 

sonde sono state marcate con fluorofori specifici per ciascun allele. La specificità 

dell’appaiamento dei primer alla sequenza genomica di interesse è stata verificata mediante il 
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tool bioinformatico di allineamento Blast mentre l’assenza di strutture secondarie o folding 

indesiderati è stata confermata con il programma mfold. Utilizzando campioni clinici con 

genotipo noto degli SNP di IL28B, i controlli positivi di entrambi i saggi sono stati preparati 

mediante clonaggio della regione target all’interno di un vettore plasmidico. La corretta 

inserzione della sequenza target nel plasmide è stata accertata mediante sequenziamento di 

Sanger. Il protocollo di reazione è stato ottimizzato confrontando tra loro diverse condizioni 

sperimentali con cui sono state testate diverse master mix di amplificazione e concentrazioni di 

primer e sonde. I protocolli di reazione sono stati ottimizzati per funzionare con i seguenti 

strumenti: Applied Biosystems StepOne™ e StepOnePlus™ Real-Time PCR System, Applied 

Biosystems 7500 Fast e 7500 Fast Dx Real-Time PCR Systems, Applied Biosystems 7300 Real-

Time PCR System, Bio-Rad Dx Real-Time System e Bio-Rad CFX96™ Real-Time PCR Detection 

System. Sensibilità e specificità diagnostiche sono state calcolate analizzando per ciascun saggio 

circa 200 campioni precedentemente genotipizzati con un IVD di riferimento, e sono risultate 

rispettivamente pari al 99,50% per rs12979860 e al 99,48% per rs8099917. Il range di 

concentrazioni del DNA entro il quale le performance del test rimangono invariate è stato 

determinato usando campioni di DNA a diverse concentrazioni. Si è visto che entrambi i saggi 

assegnano correttamente il genotipo a campioni con concentrazioni di DNA comprese tra 2 e 

250 ng/µL. In seguito ad uno studio di stabilità durante il quale sono state misurate le 

performance del test a vari intervalli di tempo, è stato possibile attribuire ai reagenti di entrambi 

i saggi una shelf-life di 12 mesi. 

I test messi a punto in questo studio, REALQUALITY RS-IL28B rs12979860 e REALQUALITY RQ-

IL28B rs8099917, sono stati infine notificati al Ministero della Salute e immessi nel mercato 

come kit commerciali CE-IVD. 

Questi dispositivi, permettendo la genotipizzazione dei due SNP di IL28B nella stessa seduta, 

rappresentano uno dei sistemi commerciali più completi per la gestione dei pazienti con HCV. 

Inoltre, entrambi i kit hanno dimostrato di essere molto sensibili ed affidabili anche in 

condizioni non ottimali (ad esempio dopo ripetuti cicli di gelo-scongelo della mix di 

amplificazione oppure utilizzando campioni degradati). 

 

La seconda parte di questo progetto ha avuto come scopo lo sviluppo di due saggi, uno per la 

rilevazione delle mutazioni note nell’esone 9 di CALR, l’altro per la rilevazione e la semi-

quantificazione delle due mutazioni più frequenti di MPL (W515L e W515K). Le mutazioni 

somatiche nel gene codificante per la calreticulina (CALR) scoperte recentemente, assieme a 

quelle nei geni JAK2 e MPL, sono ritenute essere le mutazioni “driver” alla base della sottoclasse 

di neoplasie mieloproliferative (MPN) BCR-ABL1-negative. La policitemia vera (PV), la 

trombocitemia essenziale (ET) e la mielofibrosi primaria (PMF) fanno parte di questo gruppo di 

MPN. Le mutazioni in JAK2, CALR e MPL, pur non essendo specifiche per la malattia, sono 



4 RIASSUNTO 

presenti nella maggior parte dei pazienti con tali neoplasie in modo mutuamente esclusivo. La 

mutazione V617F nell’esone 14 di JAK2 è la più frequente in tutte le patologie considerate, 

essendo presente nella quasi totalità dei pazienti con PV (nei rimanenti casi si riscontrano 

mutazioni nell’esone 12 di JAK2) e nella maggior parte dei pazienti con ET o PMF. Le mutazioni 

di CALR sono presenti con una frequenza inferiore rispetto a JAK2 V617F nelle ET e PMF. Infine, 

le mutazioni nel codone 515 dell’esone 10 di MPL sono quelle presenti con la minor frequenza 

nelle ET e PMF. Le mutazioni in questi tre oncogeni, oltre che per la diagnosi e la prognosi, 

vengono anche utilizzate per monitorare la progressione della malattia verso forme più 

aggressive, quali leucemia e mielofibrosi. I criteri della WHO (World Health Organization) per la 

diagnosi delle MPN BCR-ABL1-negative, in particolare ET e PMF, sono attualmente in stato di 

revisione a seguito della proposta avanzata nel 2014 per l’inserimento delle mutazioni di CALR 

tra i criteri diagnostici maggiori accanto alle mutazioni di JAK2 (V617F) e MPL già presenti. È 

stato inoltre osservato che le mutazioni di CALR, rispetto a JAK2 V617F e alle mutazioni di MPL, 

sono associate ad un fenotipo caratterizzato da livelli inferiori di emoglobina, minor numero di 

leucociti, maggior numero di piastrine e maggiore sopravvivenza priva di trombosi. 

Siccome AB ANALITICA ha già sviluppato dei test per l’identificazione, la semi-quantificazione e 

la quantificazione assoluta dell’allele JAK2 V617F, questo studio aveva l’obiettivo di sviluppare 

due test per la rilevazione delle mutazioni in CALR ed MPL al fine di completare il pannello delle 

principali mutazioni associate alle MPN BCR-ABL1-negative. Dovendo rilevare mutazioni di tipo 

diverso (inserzioni e/o delezioni in CALR e due mutazioni puntiformi in MPL), si è scelto di usare 

per i due saggi due differenti tecnologie, vale a dire end-point PCR con elettroforesi in gel 

d’agarosio per le mutazioni di CALR e real-time PCR per le mutazioni W515L e W515K di MPL. 

Seguendo il modello descritto in precedenza, sono stati disegnati i primer di entrambi i test e le 

sonde TaqMan® MGB per il saggio di MPL W515L/K ed è stato verificato il loro appaiamento 

specifico alla regione target. I controlli positivi plasmidici di entrambi i sistemi sono stati 

preparati utilizzando kit commerciali per il clonaggio. Il protocollo del saggio per la rilevazione 

delle mutazioni di CALR è stato ottimizzato dopo aver testato diverse condizioni sperimentali sia 

per la reazione di amplificazione (variando master mix, concentrazione dei primer, numero di 

cicli di amplificazione) che per la visualizzazione (variando tipo di agarosio, densità del gel, 

agente intercalante del DNA, volumi da caricare nel gel). Una fase preliminare di messa a punto 

del saggio per la rilevazione delle mutazioni di MPL è stata effettuata sullo strumento 

StepOnePlus™ (Applied Biosystems) testando diverse master mix e concentrazioni di primer e 

sonde. 

Sensibilità e specificità diagnostiche del saggio delle mutazioni di CALR sono state calcolate 

utilizzando un totale di 65 campioni clinici di cui 36 wild-type e 29 mutati. Tutte le mutazioni 

analizzate in questo studio (Tipo-1, Tipo-2 e mutazioni rare) sono state precedentemente 

determinate mediante sequenziamento bidirezionale con cui si è visto che alterano la lunghezza 
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della sequenza di almeno 4 paia di basi rispetto alla sequenza wild-type. Il saggio ha dimostrato 

di saper discriminare correttamente lo status di tutti i campioni testati (mutato vs wild-type), 

perciò gli è stata attribuita un’accuratezza (osservato/atteso) del 100%. Testando diluizioni 

seriali di allele mutato in un background di allele wild-type è stato identificato il limite di 

rilevabilità del saggio pari al 10% di allele mutato. Il test ha inoltre dimostrato di discriminare 

correttamente campioni con concentrazioni di DNA tra 25 e 100 ng/reazione. Nonostante lo 

studio di stabilità sia attualmente in corso, è stata attribuita ai reagenti una shelf-life di 6 mesi 

secondo la norma europea EN 13640:20021. I primer per il sequenziamento di Sanger 

(facoltativo) che consente l’identificazione della mutazione sono risultati altamente specifici per 

la regione target. 

Nelle prove preliminari del saggio per la rilevazione delle mutazioni W515L/K di MPL, è stato 

stabilito un cut-off dell’ 1,5% di allele mutato con cui sono stati correttamente discriminati 

11/11 campioni wild-type. Il saggio è stato in grado di rilevare e semi-quantificare correttamente 

1/1 campione con la mutazione W515K e 4/4 campioni con la mutazione W515L. Utilizzando 

però campioni con una mutazione diversa nel codone 515 o nelle sue vicinanze non è stato 

riscontrato alcun segnale di amplificazione relativo alla sequenza mutata, indice di una elevata 

specificità delle sonde per le due mutazioni W515L e W515K. 

In conclusione, questo studio ha portato allo sviluppo del dispositivo GENEQUALITY CALR 

MUTATION che è stato notificato al Ministero della Salute ed è il primo kit CE-IVD che permette 

di rilevare ed identificare le mutazioni nell’esone 9 del gene CALR. 

Per quanto riguarda il saggio di MPL W515L/K, è stato deciso ed è attualmente in corso il 

disegno di nuove sonde per la rilevazione di tutte le mutazioni nel codone 515 di MPL. 
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The research during this doctorate focused on the development of commercial genetic tests in 

the context of personalized medicine. 

 

In the first part of this project two assays were developed that allow allelic discrimination of two 

informative single nucleotide polymorphisms (SNPs) near the IL28B locus, which are useful for 

the management of patients with chronic hepatitis C infection. Hepatitis C is a significant health 

problem worldwide, with approximately 170 million infected people. For many years the 

standard of care (SOC) for HCV therapy has consisted in the administration of pegylated 

interferon α and ribavirin (PEG-IFN/RBV). With this therapy, however, around 80% of patients 

infected by genotype 2 or 3 of HCV and only 50% of those infected by genotype 1 or 4 reached a 

sustained virological response (SVR), which indicates complete eradication of the virus.  In the 

last years, several studies have demonstrated that, among others, host genetic factors, such as 

different genotypes of rs12979860 and rs8099917 SNPs located upstream of the IL28B gene, 

determine the probability of attaining SVR. Patients homozygous for the favorable allele in both 

SNPs (CC for rs12979860 and TT for rs8099917) had a two- to three-fold higher likelihood to 

achieve spontaneous viral clearance in acute infections or SVR after treatment compared to 

patients heterozygous or homozygous for the unfavorable alleles (CT or TT for rs12979860 and 

TG or GG for rs8099917). Recently developed direct-acting antiviral agents (DAAs) inhibiting 

proteases involved in viral replication have been shown to significantly increase SVR rates in 

patients independently of the viral genotype, when combined with standard therapy. Two of 

those DAAs, boceprevir and telaprevir, were approved by the FDA in 2011 and many others are 

currently under investigation in order to develop an IFN-free SOC. Although the IL28B SNP 

genotype may have less effect on viral kinetics in the new combination therapies, there is 

evidence that it will continue to be relevant also in the context of IFN-free regimens. Therefore, 

genotyping of IL28B SNPs prior to therapy will remain fundamental to avoid ineffective 

treatments that are not only long and costly but, most importantly, are associated with 

significant side effects (e.g., flu-like syndrome, hematologic abnormalities and adverse 

neuropsychiatric events). 

The objective of this study was the development of two real-time PCR based tests for 

rs12979860 and rs8099917 genotyping using TaqMan® probes. Primers and probes that 

specifically bind the target region were designed. Probes were labeled with different 

fluorophores for each allele. Primer specificity to the target genomic sequence was determined 

using Blast and the probability of unwanted folding and secondary structures was checked with 

mfold. Starting from samples with a known genotype, positive controls for both assays were 

prepared by cloning the targeted gene region into a plasmid vector. Correct insertion of the 

target sequence into the plasmid was checked with Sanger sequencing. The reaction protocol 

was optimized by testing and comparing several amplification conditions with different master 
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mixes and primer/probe concentrations. The reaction protocols were optimized to run on the 

following real-time PCR systems: Applied Biosystems StepOne™ and StepOnePlus™ Real-Time 

PCR System, Applied Biosystems 7500 Fast and 7500 Fast Dx Real-Time PCR Systems, Applied 

Biosystems 7300 Real-Time PCR System, Bio-Rad Dx Real-Time System and Bio-Rad CFX96™ 

Real-Time PCR Detection System. Both IL28B diagnostic devices were demonstrated to have 

high diagnostic specificity and sensitivity, 99.50% and 99.48% for rs12979860 and rs8099917, 

respectively, by analyzing around 200 samples that had been previously genotyped with a 

reference IVD. Using different concentrations of clinical samples, the assays were shown to work 

with DNA concentrations of 2 to 250 ng/µL. A reagent shelf-life of 12 months was determined 

following a stability study that assessed assay performances at different time points. 

At the end of this study, the final assays REALQUALITY RS-IL28B rs12979860 and 

REALQUALITY RQ-IL28B rs8099917 were notified with the Ministry of Health and placed on the 

market as CE-IVD commercial kits. By allowing simultaneous genotyping of both IL28B SNPs, 

these devices represent one of the most complete systems available for HCV patients 

management. Moreover, both kits have been shown to be highly sensitive and robust even under 

suboptimal conditions (after several freeze-thaw cycles of the amplification mix and with 

degraded DNA samples). 

 

The second part of this project focused on the development of two assays for the detection of the 

complete panel of mutations found in exon 9 of the CALR gene and for the detection and semi-

quantification of the two most frequent mutations (W515L and W515K) in the MPL gene. 

Recently discovered somatic mutations in the gene encoding for calreticulin (CALR) have been 

demonstrated – together with JAK2 and MPL mutations – to be the driver mutations responsible 

for a subclass of myeloproliferative neoplasms (BCR-ABL1-negative MPN). To this group of 

MPNs belong polycythemia vera (PV), essential thrombocytemia (ET) and primary myelofibrosis 

(PMF). Although mutations in these three genes are not disease-specific, they have been shown 

to be mutually exclusive and present in the vast majority of patients with these types of 

neoplasms. According to relative mutation frequencies the V617F mutation in exon 14 of JAK2 is 

at the first place, being present in almost all PV cases (the remaining cases carry mutations in 

exon 12 of this gene) and in most cases of ET and PMF. CALR mutations are the second most 

common genetic alterations in ET and PMF, whereas the mutations in codon 515 of exon 10 of 

the MPL gene are the third most frequent mutation encountered in ET and PMF. Mutations in 

JAK2, CALR and MPL are considered to have high diagnostic and prognostic value, and are used 

to monitor disease progression towards myelofibrosis and leukemia. In 2014, a new revision of 

the World Health Organization (WHO) criteria for diagnosis of BCR-ABL1-negative MPNs has 

been proposed including CALR mutations as major criterion for ET and PMF together with the 

above-mentioned JAK2 (V617F) and MPL mutations. Compared to patients with JAK2 V617F and 
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MPL mutations, carriers of CALR mutations have lower hemoglobin levels, lower leukocyte 

counts, higher platelet counts and improved thrombosis-free survival. 

Since tests for the identification, semi-quantification and absolute quantification of the JAK2 

V617F allele are already available at AB ANALITICA, this study focused on the development of 

tests for detection of mutations in the CALR and MPL genes. Different molecular biology 

technologies were used for these two assays. The test for CALR mutations detection was based 

on end-point PCR and agarose gel electrophoresis, whereas the assay for analysis of the two 

most common MPL mutations (W515L and W515K) used real-time PCR. Primers for both assays 

and TaqMan® MGB probes of the MPL W515L/K assay were designed and checked as described 

above. Plasmid positive controls were prepared using commercial cloning kits. The protocol of 

the CALR MUTATION assay was optimized by testing several amplification settings and 

conditions, different master mix, primer concentration and number of amplification cycles, as 

well as by refining the visualization step (variation of agarose type, agarose density, DNA-

intercalating agent, loading volumes). The MPL W515L/K assay was tested on the Applied 

Biosystems StepOnePlus™ Real-Time PCR System with different master mixes and 

concentrations of primers and probes. 

The diagnostic specificity and sensitivity of CALR MUTATION assay were determined on a total 

of 65 clinical samples: 36 wild-type samples and 29 mutated samples containing the two most 

common CALR mutations (Type-1 and Type-2) as well as the so-called rare CALR mutations with 

a sequence length that differs by at least 4 base pairs from the wild-type sequence. The assay 

was able to correctly discriminate all samples tested, hence the test was assigned a diagnostic 

specificity and sensitivity of 100%. In addition, the assay correctly typed samples in a DNA 

concentration range of 25 to 100 ng/reaction and the measured detection limit was 10% of 

mutated allele on wild-type background. Although the stability study is still on-going, a shelf-life 

of 6 months was assigned to the device according to the European Standard EN 13640:20021. 

The primers for optional Sanger sequencing included with the device were shown to be highly 

specific for the target region. 

During the development of the assay for detection of W515L/K mutations in MPL, a cut-off of 

1.5% of mutated allele was established. This cut-off allowed the correct identification of all 

tested wild-type samples (11 in total). The assay was able to detect and correctly semi-quantify 

1/1 sample with the W515K mutation and 4/4 samples with the W515L mutation. When using 

samples with other mutations in or close to codon 515, no amplification signal of the mutated 

sequence was generated, due to the high specificity of the probes for the W515L and W515K 

mutations.  

As a conclusion of this study, the completed device GENEQUALITY CALR MUTATION was 

notified with the Ministry of Health and placed on the market as the first commercial CE-marked 

IVD device for detection and identification of mutations in exon 9 of the CALR gene. 
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Concerning the MPL W515L/K assay, the design of new probes for the detection of all mutations 

in codon 515 of MPL was decided and is currently on going. 
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 PERSONALIZED MEDICINE 3.1
Over the last decades, the traditional “one-drug-fits-all” approach of medicine based on the 

clinical practice of “trials-and-errors” has rapidly given way to the “personalized medicine” 

approach based on the evidence that patients with similar symptoms respond differently to the 

same treatment according to information encoded by the individual’s genetic makeup (Fig. 1). 

The concept of personalized medicine is not new, but dates back many hundreds of years: 

“It’s far more important to know what person the disease has than what disease the person 

has” (Hippocrates). 

However, only in the 19th century, thanks to developments in chemistry, histochemistry and 

microscopy, scientists began to understand the causes underlying disease. From here, advances 

in science and technology increasingly influenced health care decisions. In the 20th century, the 

growth of the pharmaceutical and medical devices industry ushered in the age of genetics, 

imaging, and data mining. In the middle of the century, the focus on identifying key enzymes that 

play a role in inter-individual variation in drug metabolism and response laid the foundation for 

pharmacogenetics. Sequencing of the human genome at the turn of the 21st century triggered 

the transformation of personalized medicine from an idea to practice. Rapid developments in 

genomics, together with advances in a number of other areas, such as computational biology, 

medical imaging, and regenerative medicine, are creating the possibility for scientists to develop 

tools to truly personalize diagnosis and treatment. Despite the huge progress that has been 

made in medical fields, we are still far from understanding the biological mechanisms leading to 

inter-individual differences in response to treatment2. 

Encompassing many scientific disciplines, personalized medicine is a concept that can be 

described with definitions that range from the extremely broad to the very narrow. Over time, 

several definitions of “personalized medicine” have been proposed: 

• “The use of new methods of molecular analysis to better manage a patient’s disease or 

predisposition to disease.”– Personalized Medicine Coalition 

• “Providing the right treatment to the right patient, at the right dose at the right time.” – 

European Union 

• “The tailoring of medical treatment to the individual characteristics of each patient.” – 

President’s Council of Advisors on Science and Technology 

• “Health care that is informed by each person’s unique clinical, genetic, and environmental 

information.” – American Medical Association 

• “A form of medicine that uses information about a person’s genes, proteins, and environment 

to prevent, diagnose, and treat disease.” – National Cancer Institute, NIH 

The goal of personalized medicine is to streamline clinical decision-making by selecting those 

patients that most likely will benefit from a certain treatment according to their genomic 
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information. The effects of personalized medicine consist of the reduction of healthcare costs for 

ineffective treatments and the minimization of drug-related adverse events with the increase of 

patient adherence to therapy. 

Terms like “precision medicine”, “stratified medicine”, “targeted medicine” and 

“pharmacogenomics” are synonyms of “personalized medicine”. “Precision medicine”, defined by 

the National Academy of Sciences (NAS) as “the use of genomic, epigenomic, exposure and other 

data to define individual patterns of disease, potentially leading to better individual treatment”3, 

is the concept closest to “personalized medicine”. “Stratification” of patients, with a particular 

disease and that will benefit from a certain treatment or have low risk to develop side effects 

into subgroups for determined characteristics, is a fundamental aspect of personalized medicine. 

“Pharmacogenomics” (PGx) – the study of variations of DNA and RNA characteristics as related 

to drug response – is a relatively recent and highly dynamic area of personalized medicine. 

Pharmacogenomics spawned from the convergence of advances in pharmacology and genomics 

and its worldwide diffusion takes advantage of the new high-throughput sequencing 

technologies that dramatically reduced the cost of sequencing. Pharmacogenomics, in a wider 

sense than pharmacogenetics that correlates the variations in a single candidate gene to a 

treatment response, seeks to explain interindividual differences in drug metabolism 

(pharmacokinetics) and physiological drug response (pharmacodynamics), identifying 

responders and non-responders to a therapy and predicting the efficacy and/or toxicity of a 

drug. 
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Fig. 1: Representation of the “one-dose-fits-all” approach versus “personalized medicine”. The left panel shows a 
situation in which everyone gets the same dose of a drug, regardless of genotype. The right panel shows a 
personalized medicine approach in which the dose of the drug is selected based upon genotypical, and 
therefore phenotypical, variability of the metabolizing enzyme (Source:2). 

 

The success of personalized medicine relies on the identification of predictive biomarkers and 

the development of diagnostic devices that allow their accurate detection and measuring. Many 

of the diagnostic tests used in personalized medicine are in vitro diagnostic devices (IVDs), 

which test human matrices for genetic alterations (e.g. mutations in oncogenes, allelic variations 

of SNPs related to drug response). IVD kits are developed by a device manufacturer and sold to 

labs, hospitals and physicians offices where the test kit is used to run the tests. In clinical 

practice, for example, many diagnostic tests are used to identify appropriate patients for a given 

therapy or patients who should not receive a particular therapy because of an increased risk of a 

serious side effect. Other commonly used tests help to characterize a disease or condition, such 

as cancer, to determine what type of treatment is potentially most appropriate. 

To date, the FDA (Food and Drug Administration) has contributed to the purpose of 

personalized medicine with the introduction of information on genomic biomarkers (including 

gene variants, functional deficiencies, expression changes, chromosomal abnormalities, and 

others) in the label of more than 100 approved drugs2. 

The increasing number of published gene-disease association studies over the last years and the 

thousands of new drug targets unveiled by DNA sequencing and characterization of the human 

genome are effective indicators of the success of personalized therapeutics that has become part 

of routine clinical practice. 

However, the beginning of the “personalized medicine era” has opened new issues that must be 

considered: 
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1) Limited understanding of the intrinsic biology of disease that is the most important 

limiting factor of this field; 

2) Common conditions involving multiple genes/biomarkers that are complex to correlate 

and require huge investments in clinical research; 

3) An outdated disease classification system and the need of a “new taxonomy” that 

describes diseases on the basis of the new biological insights in addition to traditional 

signs and symptoms; 

4) Lack of infrastructure that serves to collect, analyze, integrate, share and mine the huge 

amount of information deriving from the new high-throughput sequencing methods; 

5) Clinical implementation of new diagnostics in clinical practice with the need of tools that 

would help clinicians to adopt the appropriate test and to interpret the results 

afterwards; 

6) Investment uncertainties due to smaller size of the targeted population; 

7) Access to personalized therapeutics for patients that do not have the targeted biomarker 

and do not benefit from this therapy; 

8) Intellectual property rights concerning patent protection for diagnostic tools, genes and 

biomarkers; 

9) Reimbursement policies that have to be redefined to fit the changes that personalized 

medicine will bring to the healthcare system; 

10) Patient privacy and confidentiality concerning the protection of patient genetic data. 
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 HEPATITIS C VIRUS INFECTION 3.2

3.2.1 HCV EPIDEMIOLOGY AND TRANSMISSION 
Hepatitis C is a disease with a significant global impact; according to the World Health 

Organization 130-170 million people are infected with the hepatitis C virus (HCV), 

corresponding to 2-2.5% of the world’s total population. In Europe, it is estimated that there are 

2-5 million HCV-positive persons with chronic hepatitis C being the most common chronic liver 

disease and the major cause of liver transplants. Since the vast majority of acute cases of 

hepatitis C are asymptomatic4, it is difficult to determine the number of new HCV infections as 

well as the age of infection upon diagnosis. Nevertheless, it has to be assumed that the number of 

new infections has considerably decreased over the past decades thanks to the introduction of 

routine testing for HCV before blood transfusions in the early 1990s, soon after HCV discovery. 

In addition to blood transfusion other possible routes of infection exist: 

− injection drug use with up to 70% of drug users showing seroprevalence of anti-HCV 

antibodies5; 

− organ transplantation; 

− sexual habits with particular attention to risk factors like male homosexual intercourses, 

a high number of sex partners and unprotected intercourses; 

− perinatal transmission in HCV RNA-positive mothers with an estimated risk lower than 

5%6; 

− hemodialysis with particular attention to risk factors like blood transfusions, duration of 

hemodialysis, prevalence of HCV infection in the dialysis unit and type of dialysis; 

− other rare transmission routes like needlestick injury for healthcare workers, tattooing 

and body piercing7. 

 

3.2.2 CLINICAL MANIFESTATIONS 
HCV infection may be present in acute or chronic form. About 80% of acute HCV infections 

evolve into chronic disease that slowly progresses from an asymptomatic state to cirrhosis and 

hepatocellular carcinoma over many years. 

ACUTE HEPATITIS C 

During the first weeks after infection (incubation period), HCV RNA in blood cannot be detected 

by PCR. In this time period the level of aminotransferases begin to increase to 10-30 times the 

upper limit of normal (800U/L). Over the first months of infection, the majority of patients show 

no clinical sign of the disease4 and only 25% of cases present jaundice at this stage. Other 

possible symptoms are malaise, nausea and right upper quadrant pain. After some weeks, 
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spontaneous viral clearance occurs in about 20% of cases. Fulminant hepatic failure in acute 

hepatitis C is a rare event, usually associated with concurrent chronic HBV infection8. 

CHRONIC HEPATITIS C 

Hepatitis C becomes chronic after persistence of more than 6 months, which occurs in 80-100% 

of HCV infections4,9. Long-lasting establishment of the virus in the human body may be due to the 

ability of the HCV genome to rapidly mutate, which protects the virus from immune recognition. 

Host factors that have been associated with successful HCV clearance are HCV-specific CD4 T cell 

responses, high titers of neutralizing antibodies against HCV structural proteins, IL28B gene 

polymorphisms and specific HLA-DRB1 and -DQB1 alleles10–12. However, once chronic infection 

is established, there is a very low rate of spontaneous clearance. A common symptom in this 

phase of the disease is fatigue but also nausea, weakness, myalgia, arthralgia and weight loss 

may occur. Aminotransferase levels are usually slightly above the upper limit of normal 

(between 2 and 5 times)13 but no correlation between concentrations of aminotransferases and 

liver histology has been observed14. 

EXTRAHEPATIC MANIFESTATIONS 

Around 30 to 40% of patients with chronic hepatitis C have an extrahepatic manifestation of 

HCV15. There is a wide variety of extrahepatic manifestations described as being associated with 

HCV: 

– hematologic manifestations (essential mixed cryoglobulinemia, lymphoma) 

– autoimmune disorders (thyroiditis, presence of various autoantibodies) 

– renal disease (membranoproliferative glomerulonephritis) 

– dermatologic disease (porphyria cutanea tarda, lichen planus) 

– diabetes mellitus 

 

3.2.3 NATURAL HISTORY 
Survival of chronic hepatitis C patients is generally not impaired until cirrhosis has developed. 

Chronic infection does not always lead to liver damage but the risk to develop chronic active 

hepatitis, cirrhosis and hepatocellular carcinoma is certainly enhanced (respectively by 23%, 

51% and 5% more than 20 years after transfusion16). 

CIRRHOSIS AND HEPATIC DECOMPENSATION 

Complications of hepatitis C like decompensation and hepatocellular carcinoma occur almost 

exclusively in patients who have developed cirrhosis. Cirrhotic patients generally present 

asymptomatic hepatomegaly and/or splenomegaly, elevated serum bilirubin concentration, 

hyperalbuminemia or low platelet count. Less than half of cirrhosis cases are associated with 
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spider angioma, caput medusae, palmar erythema, testicular atrophy, or gynecomastia. The risk 

of progression to hepatic decompensation is estimated to be close to 5% per year in cirrhotics17 

and leads to ascites, followed by variceal bleeding, encephalopathy and jaundice. Roughly half of 

the patients survive over a 5-year period at this stage of the disease18 and liver transplantation is 

the only effective therapy. The risk to develop hepatocellular carcinoma in cirrhotics is lower 

than 3% per year19,20 and usually has a very poor outcome. 

DISEASE PROGRESSION 

Individual differences in disease progression may be associated with the following factors: 

– age and gender: acquisition of HCV infection after the age of 40 to 55 and male gender 

may be associated to more rapid progression of liver injury21. In contrast, children have a 

relatively low risk of disease progression22; 

– ethnicity: disease progression appears to be slower and changes in liver histology less 

severe in African-Americans23; 

– HCV-specific cellular immune response; 

– alcohol intake increases HCV replication, enhances the progression of chronic HCV, and 

accelerates liver injury24; 

– other host factors: genetic polymorphisms of certain genes might influence the fibrosis 

progression rate25; 

– viral coinfection: disease progression is faster in HCV patients coinfected with either HIV 

or HBV infections13; 

– geography and environmental factors; 

– use of steroids that increases the HCV viral load; 

– viral factors: infections with more genotypes have worse outcome as compared to 

monoinfection. 
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3.2.4 HCV VIRUS 
HCV is a small-enveloped virus of the Flaviviridae family with a RNA-based genome (one single-

stranded positive-sense molecule) of approximately 9.6 kb. Despite the huge genetic variability 

of this virus, which is able to rapidly mutate in response to environmental changes, six major 

genotypes have been described, each with a large number of subtypes26,27. Determination of the 

HCV genotype plays an important role for the initiation of anti-HCV treatment since the patient 

response to an antiviral drug regimen varies significantly with regard to the specific viral 

genotype of infection. For example, a patient infected with genotype 1 (GT1) of HCV is less 

responsive (i.e. HCV GT1 is more resistant) to standard therapy based on the combination of 

pegylated interferone α and ribavirin (PEG-IFN/RBV)28,29. 

In the bloodstream HCV virions may be present in various forms such as bound to very low 

density lipoproteins (VLDL), bound to low density lipoproteins (LDL), complexed with 

immunoglobulins, and free circulating30–34. It is possible that binding LDL serves HCV to enter 

hepatocytes33,35 or as protection against neutralization by HCV-specific antibodies36. 

VIRAL STRUCTURE 

HCV is a spherical virus of approximately 50 to 55 nm37–39 with an outer layer comprising E1 and 

E2 proteins39. This outer layer surrounds the lipid bilayer that contains the viral nucleocapsid 

consisting of the HCV core (C) protein. An inner spherical structure with a diameter of 

approximately 30-35 nm has been observed38 representing the nucleocapsid that harbours the 

genomic viral RNA40. 

The HCV genomic RNA molecule serves as mRNA for translation of viral proteins and contains a 

single open reading frame (ORF) coding for a precursor polypeptide of about 3000 amino acid 

residues (Fig. 2 A). During viral replication the polypeptide is cleaved by viral and host enzymes 

into 3 structural (C, E1, E2) and 7 non-structural proteins (p7, NS2, NS3, NS4A, NS4B, NS5A, 

NS5B). The structural genes are located at the 5’ terminus of the ORF and the coding regions for 

the non-structural proteins follow downstream. Structural proteins are essential components of 

HCV virions, whereas non-structural proteins are involved in RNA replication and virion 

morphogenesis. The ORF is flanked by 5’ and 3’ non-translated regions (NTR) containing highly 

conserved regions involved in the regulation of viral replication that make them perfect targets 

for antiviral therapeutics13. Both NTRs appear to work together in a long-range RNA-RNA 

interaction possibly resulting in temporary genome circularization41. 

The translation process leads to a precursor polyprotein (Fig. 2 B) with the C, E1, E2 and p7 

proteins at the N-terminus that are subsequently cleaved by signal peptidases42. Non-structural 

proteins are processed by two virus-encoded proteases (NS2/NS3 and NS3/NS4A). 
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Fig. 2: HCV structure. A) ORF with nucleotide positions in the viral genome. NTR, non-translated region. B) HCV 
precursor polyprotein with cleavage sites for the signal peptide peptidase (SPP) and the viral peptidases 
(NS2/NS3 and NS3/NS4A). (Source:13) 

 

Core  

The core protein has a molecular weight of 21 kilodalton (kDa) and consists of homo-multimers 

located mainly at the endoplasmic reticulum (ER) membrane43. It has both structural and 

regulatory functions; beside formation of the viral capside, it serves for particle assembly, viral 

RNA binding and regulation of RNA translation44,45. 

E1 and E2  

After cleavage from the precursor polyprotein these proteins are N-glycosilated inside the ER 

lumen46. E1 and E2 are type I transmembrane proteins with a large hydrophilic ectodomain and 

a short transmembrane domain (TMD) of 30 amino acids (aa). The TMD is responsible for 

anchoring of the envelope proteins in the ER membrane47–50 and contributes to the formation of 

E1-E2 heterodimers51. The E1-E2 complex is involved in LDL receptor binding. Two 

hypervariable regions have been identified within the coding region of E2 (HVR1 and HVR2) 

with a sequence variability of up to 80% in their aa sequences52,53. Such high variability of HVRs 

reduces the activity of neutralizing antibodies targeting them54. 

p7 protein 

The p7 protein is a membrane protein localized in the ER where it forms an ion channel55–57 and 

plays an essential role in the formation of infectious virions55,58. 

NS2  

The non-structural protein 2 interacts with viral factors (E1-E2 glycoprotein and NS3/NS4A 

complexes) during early stages of virion assembly and morphogenesis59, and with host factors 

(liver-specific pro-apoptotic CIDE-B protein) inhibiting apoptosis60. Other functions of HCV NS2 
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include inhibition of cell growth, induction of cell cycle arrest in the S phase61 and inhibition of 

cellular IFN-β production involved in the unspecific antiviral cellular response62. 

NS3  

The non-structural protein 3 with its ATPase/helicase activity plays an important role during 

viral replication63,64. However, it is the combination with the NS4A cofactor forming the 

NS3/NS4A protease that is essential for viral infectivity. This protein complex was demonstrated 

to be a promising target for antiviral therapies after the approval by FDA and EMA (European 

Medicines Agency) in 2011 of two potent NS3/NS4A inhibitors, boceprevir65 and telaprevir66 to 

be used in combination with IFN-α and ribavirin. 

NS4A  

The non-structural protein 4A, beside its role as cofactor of the NS3 serine protease, increases 

the binding stability of NS3 to the ER67. 

NS4B  

The non-structural protein 4B is an ER integral protein with a central function in the formation 

of the HCV RNA replication complex68 through its nucleotide- and RNA-binding capability69,70 

and the induction of the ER-derived replication platform71. 

NS5A  

The non-structural protein 5A is a membrane-associated phosphoprotein with an important role 

during viral replication72. Moreover, it contains the IFN-α sensitivity-determining region (ISDR) 

that plays a significant role in the response to IFN-α-based therapy73,74. 

NS5B  

The non-structural protein 5B is a HCV RNA-dependent RNA polymerase75 that is essential for 

viral replication. Using the genomic HCV RNA as a template, the NS5B promotes the synthesis of 

minus-strand RNA that then serves as a template for the synthesis of genomic positive-strand 

RNA by the polymerase. It is a non-proofreading error-prone enzyme that incorporates wrong 

ribonucleotides at a rate of approximately 10-3 per nucleotide per generation. Considering the 

high rate of viral replication, this protein is responsible of the pronounced intra-patient as well 

as inter-patient HCV differentiation. 

F protein (ARFP) 

The F (frameshift) or ARF (alternate reading frame) protein is the result of a ribosomal 

frameshift within the core protein-encoding region. It is localized in the cytoplasm and short-

lived76 but its functions in the viral life-cycle are still unknown. However, detection of anti-F 
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protein antibodies in the serum of HCV-positive subjects indicates that the protein is expressed 

during infection in vivo77,78. 

 

VIRAL LIFECYCLE 

Adsorption and viral entry  

Virus entry into the target cell is a complex mechanism involving several host factors that is not 

yet fully understood. Viral binding to the cell surface may occur through the binding of HCV E2 

envelope glycoprotein and the glycosaminoglycan heparan sulfate79–81 or via LDL receptor 

binding, as previously described33,35,82–84. After attachment to the cell, the HCV E2 glycoprotein 

binds to several host factors in a cascade of interactions: SR-BI85, CD8186,87, claudin-188, claudin-6 

and claudin-989,90, occludin91,92, two receptor tyrosine kinase and the Niemann–Pick C1-like 1 

cholesterol uptake receptor93,94. After binding to different host membrane factors, HCV enters 

target cells by clathrin-mediated endocytosis95–98 followed by a fusion step of the viral envelope 

with the endosome membrane triggered by the acidic endosomal compartment97,99,100 (Fig. 3). 

HCV can also spread via cell-to-cell transmission101 with different mechanisms that however 

seem to involve CD81 as shown by in vitro studies102. 

 

Translation and post-translational processes  

After viral envelope fusion with the endosomic membrane, the genomic HCV RNA is released 

into the cell cytoplasm. Its 5’ NTR allows ribosome-binding and the following cap-independent 

initiation of translation103–106. After assembly of the translational active complex, the HCV 

polypeptide precursor is produced and post-translationally cleaved to form the 10 functional 

viral proteins. Cleavage is carried out by two cellular and two viral peptidases. The cellular 

peptidases are the signal peptidase (SP) that is involved in the formation of the immature 

protein including the core protein, E1, E2 and p7107, and the signal peptide peptidase (SPP) that 

is responsible for the cleavage of the E1 signal sequence leading to the core mature form42. The 

two viral enzymes responsible for cleavage of the non-structural proteins NS2 to NS5B are the 

NS2/NS3 protease that autocatalytically cleaves the junction between NS2 and NS3108, and the 

NS3/NS4A protease that cleaves the remaining functional proteins109–113. The E1 and E2 proteins 

remain within the ER lumen where they are subsequently N-glycosylated46. 

 

HCV RNA replication  

The complex process of HCV RNA replication is poorly understood. As previously mentioned, the 

principal actors of viral RNA replication are NS5B, an RNA-dependent RNA polymerase (RdRp) 
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of HCV75 and NS4B that induces an ER-derived membranous web containing most of the 

nonstructural HCV proteins71 necessary for replication. The RdRp uses the previously released 

genomic positive-strand HCV RNA as a template for the synthesis of an intermediate minus-

strand RNA assisted by the NS3 helicase that unwinds putative secondary structures of the 

template RNA63,64. The newly synthesized antisense RNA molecule serves as a template for the 

synthesis of several plus-strand RNAs that are used as genomic RNA for HCV progeny. 

 

Assembly and release  

The precise mechanisms for the formation and release of infectious HCV particles are still 

unknown, but it is possible that viral assembly takes place within the ER114 and lipid droplets 

(LD) are involved in infectious viral particle formation115–119. 

 

 

Fig. 3: HCV lifecycle. Cellular components are in red. HCV +ssRNA, single stranded genomic HCV RNA with positive 
polarity; rough ER, rough endoplasmic reticulum; PM, plasma membrane. (Source:13) 
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3.2.5 HCV THERAPY 
Before HCV discovery, the first treatment for non-A, non-B hepatitis was based on interferon α 

(IFN) monotherapy as it had been observed to normalize transaminase levels and improve liver 

histology in some patients120. With the identification of HCV as the infectious agent, clinicians 

started to measure the success of a therapy in terms of long-lasting disappearance of HCV RNA 

from serum, the so-called “sustained virological response” (SVR) (Tab. 1). Combination therapy 

of IFN and ribavirin (RBV), a nucleoside inhibitor, increased SVR rates from 5-20% (with IFN 

monotherapy) to 40-50%121,122. Distinct HCV genotypes (HCV GT) were found to correlate with 

different SVR rates. Patients with the most frequent HCV genotype, GT1, require longer 

treatment and show lower SVR rates compared to patients with HCV GT2 and HCV GT3. The 

development of pegylated interferon α (PEG-IFN) improved IFN pharmacokinetics, allowing 

more convenient dosing intervals and resulting in higher SVR, especially for HCV GT1. Two PEG-

IFN α are available and equally effective in regard to SVR123: PEG-IFN α-2b (peg-Intron®, Merck) 

and PEG-IFN α-2a (PEGASYS®, Roche). In 2011, two inhibitors of the HCV protease (PI), 

boceprevir (Victrelis®, Merck) and telaprevir (Incivek®, Vertex; Incivo®, Johnson & Johnson) 

were the first direct antiviral agents (DAA) to be approved by FDA and EMA for the treatment of 

patients with HCV GT1. It was observed that triple therapy (DAA/PEG-IFN/RBV) improved SVR 

rates up to 75% in naïve HCV GT1 patients124,125 and up to 88% in treatment-experienced HCV 

GT1 patients126,127. The combination of these PIs with standard therapy is required since DAA 

monotherapy results in rapid emergence of drug resistance. Both boceprevir (BOC) and 

telaprevir (TLV) can be combined with PEG-IFN α-2a or PEG-IFN α-2b128. 

 

Abbreviation Term Description 

SVR Sustained Virological Response HCV RNA negative 6 months after the end of 
therapy 

RVR Rapid Virological Response HCV RNA negative after 4 weeks of therapy 
EVR Early Virological Response HCV RNA decline ≥2 log10 at week 12 
cEVR Complete Early Virological Response HCV RNA negative at week 12 

NR (BOC) Non-response (boceprevir) HCV RNA ≥100 IU/mL at week 12; or HCV RNA 
positive at week 24, futility rule for BOC 

NR (TLV) Non-response (telaprevir) HCV RNA ≥1000 IU/mL at week 4 or week 12; or 
HCV RNA positive at week 12, futility rule for TLV 

BT Breakthrough HCV RNA was LLD but increased to ≥100 IU/mL or 
increase of HCV RNA ≥1 log10 during therapy 

RL Relapse HCV RNA negative at EOT and recurrence of HCV 
RNA during the follow-up of 6 months 

PR Partial Response HCV RNA decline ≥2 log10 at week 12 but positive 
at week 24 during PEG-IFN/RBV 

NULR Null response HCV RNA decline <2 log10 at week 12 during PEG-
IFN/RBV 

LI Lead-In 4 weeks PEG-IFN/RBV before adding a PI 

Tab. 1: Relevant definitions for HCV treatment. LLD, lower limit of detection (<10-15 IU/mL; here indicated as 
negative); EOT, end of treatment; RGT, response-guided therapy. (Modified from 13) 
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DOUBLE THERAPY (PEG-IFN/RBV) 

Until recently, the double therapy with PEG-IFN/RBV was considered the standard of care (SOC) 

for patients with chronic HCV infection. The innate immune response to viral infections is 

primarily mediated by IFN through regulation of hundreds of IFN-stimulated genes (ISGs) with 

anti-viral effect. IFNs induce ISG transcription by activating the JAK-STAT pathway129. Type I and 

Type III IFNs bind to specific cell surface receptors (Type I IFNs to IFNAR, Type III IFNs to the 

receptor complex formed by IL10R2 and IFNLR1) and activate the receptor-associated tyrosine 

kinases JAK1 and TYK2. The kinases then phosphorylate and activate STAT1 and STAT2. 

Activated STATs translocate to the nucleus, where they bind specific DNA elements in promoters 

of IGSs130. The capacity of HCV to interfere with the IFN pathway at many different levels seems 

to be the mechanism underlying HCV success to establish a chronic infection131. Patients not 

responding to the therapy with PEG-IFN/RBV showed pre-activation of their IFN system in 

hepatocytes, indicating defects downstream of ISG expression that render these patients 

refractory to IFN therapy130. By contrast, in patients without a pre-activated IFN system, PEG-

IFN induces robust up-regulation of many ISGs in the liver within 4 hours130. A possible 

explanation is that injection of exogenous IFN-α during treatment in patients without pre-

activated IFN system would very rapidly induce an antiviral state in contrast to a slow buildup of 

the antiviral state due to pre-activation of the IFN system. A rapid activation of antiviral defenses 

would not allow the virus to escape and adapt, making it resistant to therapy130. Moreover, it 

was observed that pre-activation of the endogenous IFN system occurred more frequently in 

patients infected with HCV GT1 and GT4 than in those with HCV GT2 or GT3, thus accounting for 

the different SVR rates in patients infected by different HCV genotypes (SVR <50% in GT1 and 

SVR >80% in GT2 and GT3)130. It is possible that HCV GTs 2 and 3 are more prone to actively 

prevent the activation of the innate immunity in the liver resulting in higher susceptibility to 

IFN-α-based therapies130. 

 

TELAPREVIR 

Telaprevir (TLV) is a selective peptidomimetic NS3/NS4A PI that forms a covalent but reversible 

enzyme-inhibitor complex. Its efficacy in combination with PEG-IFN/RBV in both treatment-

naïve and treatment-experienced patients with HCV GT1 was established by multicenter studies 

that introduced the new concept of “response-guided therapy” (RGT), in which treatment 

duration is determined by viral response early in the course of therapy. According to the 

prescribing information, the three-drug regimen is given for 12 weeks, followed by RGT of either 

12 or 36 additional weeks PEG-IFN/RBV depending on both viral response and previous 

treatment status132. Stopping rules for discontinuation of the entire regimen include HCV RNA 

greater than 1000 IU/mL at weeks 4 or 12 or detectable HCV RNA at week 24133. The two major 
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adverse effects of TLV are rash and anemia (PROVE 1, PROVE 2, PROVE 3 trials). As TLV is a 

potent CYP3A inhibitor, its use is contraindicated in those patients concurrently taking 

medications that are also highly dependent on CYP3A clearance or that strongly induce 

CYP3A133. 

 

BOCEPREVIR 

Like telaprevir, boceprevir (BOC) is a selective peptidomimetic NS3/NS4A PI that forms a 

covalent but reversible enzyme-inhibitor complex. According to the prescribing information, all 

patients with HCV GT1 should receive a 4-week lead-in of PEG-IFN/RBV, and BOC three times a 

day in combination with PEG-IFN/RBV thereafter. Duration of therapy is determined by RGT 

based on HCV RNA level at treatment weeks 8, 12 and 24134. A uniform therapy discontinuation 

rule is based on HCV RNA of 100 IU/mL or greater at week 12 of treatment. A modest increment 

in neutropenia of unclear clinical significance and dysgeusia were noted with BOC133. As is the 

case with TLV, BOC is contraindicated for concurrent use of medications that either are highly 

dependent on CYP3A for clearance or induce CYP3A133. 

 

TRIPLE THERAPY 

The high replication rate and the error-prone nature of viral RNA polymerases generate a viral 

quasispecies from which variants resistant to viral inhibitors can be selected135. It was 

demonstrated that the use of DAA, especially in monotherapy, constitutes a selective pressure 

that can favor the emergence of resistance-associated amino acid variants (RAV)136,137. It seems 

that the development of RAVs is associated with the emergence of HCV quasispecies, since they 

occur more frequently in genotype 1a as opposed to genotype 1b patients, indicating that the 

latter have a higher genetic barrier to resistance138,139. RAVs are usually less fit in terms of 

replication and/or infectious virus production and, therefore, present in much smaller quantities 

than wild-type virus140. Over weeks to months after cessation of DAA therapy, RAVs tend to 

regress allowing wild-type virus to re-emerge141,142. Concomitant ribavirin administration, 

fundamental to reduce the risk of virological breakthrough (PROVE 2 study), as well as strict 

adherence to stopping rules are essential to minimize RAV emergence in patients undergoing 

treatment133. 
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NOVEL THERAPEUTIC AGENTS 

Beyond the two approved agents, there are many other antiviral agents targeting both viral and 

host factors in clinical trials: 

– second-generation protease inhibitors binding the active site of the protease 

(asunaprevir [BMS-650032], danoprevir [ITMN191/R7227], vaniprevir [MK-7009], 

simeprevir [TMC435]); 

– Clemizole hydrochloride that blocks RNA binding to the NS4B in cell culture70; 

– Daclatasvir (BMS-790052), the major inhibitor of NS5A; 

– two classes of NS5B inhibitors including nucleoside analogues (Nuc), which are active 

site inhibitors mimicking the natural polymerase substrate and causing chain 

termination (mericitabine [R7128]), and non-nucleoside inhibitors (NNI) that bind at 

four different sites outside of the polymerase active center; 

– Alisporivir that inhibits HCV replication by preventing cellular cyclophilin A to induce 

NS5A isomerization during viral replication143; 

– Miravirsen (SPC3649), a locked nucleic acid-modified oligonucleotide that targets miR-

122, making it unavailable for HCV RNA replication144; 

– ITX-5061, the first-in-class HCV entry inhibitor. 

The availability of numerous drugs belonging to different classes is currently stimulating 

multiple DAA and host targeting agent (HTA) combination trials. The goal is to have a novel all-

oral HCV therapy with lower chance of resistance development compared with PEG-IFN/RBV145. 
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3.2.6 PREDICTORS OF TREATMENT RESPONSE 
Predictors of IFN-based HCV treatment outcome have to be sought within viral and host factors. 

Viral factors include viral genotype, baseline viral load and amino acid substitutions in the 

core146 as well as in the NS5A protein (containing the IFN-α sensitivity-determining region)74 in 

patients infected with HCV GT1. On the other hand, host factors associated to treatment failure 

include older age, ethnicity (lower SVR rates in African-American population)147–149, insulin 

resistance, advanced fibrosis and hepatic steatosis123,150. 

In 2009, four groups12,151–153 independently demonstrated a positive association between SVR on 

treatment with PEG-IFN/RBV in patients infected with HCV GT1 and the genetic variants of two 

single nucleotide polymorphisms (SNPs) near the IL28B locus on chromosome 19. In their 

genome-wide association studies (GWAS) the rs12979860151 and the rs809991712,152,153 SNPs, 

respectively located 3 and 8 kb upstream of the IL28B gene, were found to be the strongest host-

associated genetic predictors of SVR in HCV GT1 patients. These SNPs are in linkage 

disequilibrium except in patients of African ancestry, where a lower frequency of the favorable 

IL28B genotype was found, which partially explains their lower response rates to the PEG-

IFN/RBV therapy compared to other ethnicities147–149,154,155. Further studies indicated that the 

favorable genotype (CC) of IL28B rs12979860 in HCV GT1-infected patients correlates with 

improved early viral suppression (EVR) and SVR in those patients who did not previously 

experience RVR (rapid virological response)155. The same predictive value of these IL28B 

polymorphisms has also been observed in HIV/HCV coinfected patients156 and in recipients and 

donors before liver transplant157,158. Regarding patients with HCV strains other than genotype 1, 

studies indicate that the correlation of the IL28B SNP genotype with the SVR might be weaker, 

except for HCV GT412,159–164. However, since patients with genotypes 2 and 3 of HCV normally 

show much higher SVR rates compared to patients infected by genotypes 1 and 4 (70-85% and 

40-50%, respectively165) and considering the very low number of studies on HCV genotypes 5 

and 6 infections, this lower correlation does not pose a serious problem. 

In addition to treatment-induced viral clearance in CHC patients, independent studies showed a 

strong association between the presence of favorable genotypes of the two IL28B 

polymorphisms (CC and TT) and an elevated immune response during the acute phase of HCV 

infection resulting in higher frequency of spontaneous clearance11,166. Therefore genotyping 

patients for the IL28B polymorphisms also during acute HCV infection is recommended for an 

early therapeutic intervention167,168. 

The clinical significance of the rs12979860 and rs8099917 genetic variants on the progression 

of the disease (liver fibrosis, hepatocarcinogenesis) is still controversial and matter of debate169. 
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REGIMENS INCLUDING DAA 

Several trials for the first-generation protease inhibitors boceprevir and telaprevir showed that 

the favorable genotype of IL28B SNP rs12979860 was associated with higher SVR rates 

regardless of the patient’s therapeutic status (treatment-naïve or treatment-experienced)170. In 

addition to the IL28B SNP rs12979860 genotype, liver fibrosis severity is another predictive 

factor for SVR in TLV/PEG-IFN/RBV therapy127. For this reason, the FDA has recently approved 

genetic testing for IL28B rs12979860 genotyping prior to therapy with boceprevir, telaprevir, 

peginterferon α-2b and simeprevir. This recommendation has been included in the labels of the 

above mentioned drugs. 

Ongoing studies argue against the importance of IL28B polymorphisms169 since combination 

therapies with next-generation DAAs have shown very high SVR rates (90%) in PEG-IFN/RBV 

null responders171. IFN-free therapy is expected to become the future standard of care, especially 

in IFN-resistant patients. However, IL28B polymorphisms have been reported to affect viral 

kinetics even in the context of IFN-free regimens172,173, suggesting that genotypes of IL28B 

polymorphisms will continue to affect treatment efficacy in future regimens169. 

 

IL28B IN HCV THERAPY 

IL28B encodes IFN-λ3, which belongs to the type III IFN-λ family consisting of IFN-λ1, IFN-λ2 

and IFN-λ3 (formerly IL29, IL28A and IL28B, respectively). Type-I (IFN-α and IFN-β) and type-

III IFNs (IFN-λs) induce antiviral activity and suppress HCV replication in vitro174,175 and in 

vivo176 by activating the JAK/STAT pathway and upregulating the interferon-stimulated genes 

(ISGs)174,177,178. ISGs together with Toll-like receptor 3 and retinoic acid-inducible gene I 

signaling pathways of IFN-β induction of the immune system, represent the host antiviral 

defense against HCV infection169. Intrahepatic ISG stimulation by exogenous IFN during therapy 

is more pronounced in patients reaching SVR179, whereas high expression before IFN 

administration correlates with poor response to PEG-IFN/RBV therapy130,180. Recent studies 

have revealed an association between the genotype of the two IL28B polymorphisms and 

expression levels of intrahepatic ISGs181,182. It was observed that HCV infection primarily induces 

type III IFNs (but not type I)183 and that larger amounts of IFN-λs were produced in the liver of 

patients with a favorable IL28B genotype on treatment with IFN-α184. Moreover, IFN-α directly 

stimulated IFN-λ production by dendritic cells (DC)185. Therefore, a model explaining the role of 

the IL28B genotype in predicting the outcome of IFN-α therapy would have to consider the 

higher IFN-λ production by DC and/or HCV-infected hepatocytes induced by exogenous IFN-α in 

patients with the favorable IL28B genotype during PEG-IFN/RBV therapy169 (Fig. 4). 
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Fig. 4: Potential role of IL28B 
SNP in the response to IFN-α 
therapy. The favorable IL28B 
genotype induces DCs and 
infected hepatocytes to produce 
larger amounts of IFN-λ after 
IFN-α stimulation during 
therapy through upregulation of 
ISGs. (Source: 169) 

IL28B, interleukin-28B; 
IFN, interferon; DCs, dendritic 
cells; ISGs, IFN-stimulated 
genes. 
 

 

 

 

 
Recently, a new polymorphism (ss469415590) located upstream of IL28B and in linkage-

disequilibrium with rs12979860 was found to be strongly associated with treatment-induced 

HCV clearance186 in patients infected with HCV viral genotype 1/4 or 2/3187. The ΔG dinucleotide 

variant of ss469415590 is a frameshift that creates a novel gene, IFNL4, encoding the type III 

IFN-λ4 protein, similar to IFN-λ3 (Fig. 5). Compared to rs12979860, ss469415590 is more 

strongly associated with spontaneous and treatment-induced HCV clearance in patients of 

African ancestry169, probably due to a lower level of linkage-disequilibrium between the two 

polymorphisms in this ethnicity186. 

 

 

Fig. 5: IFN-λ3 and IFN-λ4 polymorphisms on chromosome 19 with predictive value of genotypes regarding 
treatment outcome. 
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 MYELOPROLIFERATIVE NEOPLASMS (MPN) 3.3
The World Health Organization (WHO) classification system for hematopoietic tumors 

recognizes five categories of myeloid malignancies including acute myeloid leukemia (AML), 

myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), MDS/MPN overlap, 

and PDGFR/fibroblast growth factor receptor 1 (FGFR1)-rearranged myeloid/lymphoid 

neoplasm with eosinophilia. MPNs are further classified into eight subcategories, including the 

BCR-ABL1-defined chronic myeloid leukemia (CML) and the so-called “BCR-ABL1-negative 

MPN”: polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis 

(PMF). Belonging to the MPN category are also: chronic neutrophilic leukemia (CNL), systemic 

mastocytosis (SM), chronic eosinophilic leukemia, not otherwise specified (CEL-NOS) and 

unclassifiable MPN (MPN-U)188 (Tab. 2). 

 

 
Tab. 2: WHO (World Health Organization) classification of myeloid malignancies. a AML-related precursor 

neoplasms include “therapy-related MDS” and “myeloid sarcoma”; b Either mono- or bi-cytopenia; c Genetic 
rearrangements involving platelet-derived growth factor receptor α/β (PDGFRA/PDGFRB) or fibroblast 
growth factor receptor 1 (FGFR1). (Source:188) 

 

A unifying model of the pathophysiology of BCR-ABL1-negative MPNs entails constitutive 

activation of the JAK-STAT pathway in megakaryocytes, resulting in initial thrombocytosis and 

bone marrow fibrosis in the long term189. Platelet formation is known to occur in the bone 

marrow environment following fragmentation of proplatelets, long filaments of megakaryocytes 

that cross the vascular endothelium and protrude into the sinusoid lumen190–193. Under normal 

conditions megakaryocytes contribute to the bone marrow-matrix environment by expressing 

fibronectin, type IV collagen and laminin194. In BCR-ABL1-negative MPNs driver mutations 
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appear to alter megakaryocyte differentiation, migratory ability and proplatelet formation, 

leading to increased platelet production195. The natural history of BCR-ABL1-negative 

myeloproliferative neoplasms is characterized not only by occurrence of thromboembolic 

complications but also by a tendency toward progression to more aggressive disease, including 

post–polycythemia vera myelofibrosis or post–essential thrombocythemia myelofibrosis and 

acute myeloid leukemia or blast-phase disease196. Disease progression is also associated with the 

acquisition of somatic mutations in driver genes responsible for subclonal evolution197–200. 

 

3.3.1 SOMATIC MUTATIONS IN MPN 
In 2005, a unique “gain-of-function mutation” in exon 14 of the Janus kinase 2 gene (JAK2) was 

found in patients with PV, ET and PMF201,202. A valine-to-phenylalanine (V617F) alteration 

within the autoinhibitory pseudokinase domain of JAK2 was shown to constitutively activate the 

JAK2 tyrosine kinase, resulting in increased phosphorylation of its substrates and heightened 

cytokine responsiveness of myeloid cells201–203 (Fig. 6). The JAK2 V617F mutation is present in 

approximately 95% of patients with PV and in 50 to 60% of those with ET or PMF204. Somatic 

mutations in exon 12 of JAK2 were found in JAK2 V617F-negative PV patients205,206. Soon after, in 

2006, activating mutations in exon 10 of the thrombopoietin receptor gene MPL were reported 

in approximately 5% to 10% of ET and PMF patients with non-mutated JAK2207,208. 

Overexpression of the mutant MPL W515L allele in cell lines leads to cytokine-independent 

growth, thrombopoietin hypersensitivity, and activated JAK-STAT signaling209 (Fig. 6). In a 

murine bone marrow transplant assay, expression of MPL W515L resulted in marked 

thrombocytosis, splenomegaly, and reticulin fibrosis, but not erythrocytosis207. MPL W515L/K 

mutations were not found in PV or other myeloid disorders such as MDS, chronic 

myelomonocytic leukemia, or AML208. 
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Fig. 6: The JAK-STAT pathway. Normally, cytokines bind to their receptors, which results in JAK2 phosphorylation 
and recruitment of STAT signaling proteins. JAK2 phosphorylates the STAT proteins and results in activation 
of downstream signaling pathways. The JAK2 V617F and JAK2 exon 12 mutant kinases bind cytokine 
receptors which are phosphorylated in the absence of cytokine ligand thus leading to cytokine-independent 
activation of downstream signaling pathways. The MPL W515L/K mutant thrombopoietin receptor is able to 
phosphorylate wild-type JAK2 in the absence of thrombopoietin and results in the activation of signaling 
pathways downstream of JAK2. JAK2 signaling is normally negatively regulated by SOCS proteins, most 
notably SOCS1 and SOCS3. LNK also serves as a negative regulator by inhibiting JAK-STAT signaling. Cbl 
proteins function as multifunctional adaptor proteins and ubiquitin ligases are involved in trafficking and 
degradation of tyrosine kinases. JAK2, Janus kinase 2; LNK, lymphocyte adaptor protein; SOCS, suppressor of 
cytokine signaling; STAT, signal transducer and activator of transcription; TPO, thrombopoietin. (Source:209) 

 

In December 2013, two groups independently reported the results of their whole-exome 

sequencing studies demonstrating the occurrence of somatic mutations in the CALR gene 

encoding for calreticulin in most of JAK2/MPL-unmutated PMF or ET210,211 (Fig. 7 and Tab. 3). 

CALR is a multi-functional Ca2+-binding protein chaperone that is mostly localized in the ER. 

Located on chromosome 19p13.2, the CALR gene contains nine exons. The protein consists of 

three domains: the N-terminal lectin-binding domain, the proline-rich P-domain and the 

unstructured C-terminal acidic domain containing multiple calcium-binding sites. All observed 

CALR mutations were somatic insertions and/or deletions in exon 9 of the gene (Fig. 7 and Tab. 

3) that shift the reading frame by one base pair. In contrast to the wild-type protein, the mutant 

protein mostly contains positively charged amino acids in its C-terminal domain and lacks the 

KDEL motif. The KDEL amino acid sequence (Lys-Asp-Glu-Leu) is found in some resident ER 

proteins enabling retrieval of these proteins from the Golgi apparatus to the ER211. CALR 

mutations were found in hematopoietic progenitors and did not appear to affect the intracellular 

localization of the mutant protein211. Two variants are present in more than 80% of observed 

CALR mutations: Type 1 (p.L367fs*46), stemming from a 52 base pair (bp) deletion, and Type 2 

(p.K385fs*47), which results from a 5-bp TTGTC insertion. Most of these mutations are present 

in a heterozygous state and only three cases (all of which carrying the Type 2 mutation) of 

homozygous CALR mutations were reported210. Both groups found the CALR, JAK2 and MPL 
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mutations to be mutually exclusive. Since then, several papers reported mutational frequencies 

for JAK2, CALR and MPL and the percentage of “triple-negative” patients (64%, 15%, 4% and 

16%, respectively, with CALR mutations accounting for 49% of JAK2/MPL-unmutated cases)212–

214. Compared to patients with JAK2-mutations, CALR mutations were associated with male 

gender, younger age, lower hemoglobin level, lower leukocyte count, higher platelet count and 

higher chance of thrombosis-free survival212,214. 

Somatic mutations in other genes, such as ASXL1, TET2, CBL, EZH2, IDH1/IDH2, TP53, DNMT3A 

and SRSF2 are present in a number of cases of myeloproliferative neoplasms, but may occur 

together with JAK2, MPL or CALR mutations and are not restricted to a certain type of myeloid 

cancers. 

 

 

Fig. 7: Genomic positions of the 36 mutation types detected by Klampfl et al., 2013210. Red bars indicate deletions, 
blue letters inserted nucleotide sequences, and orange letters somatically acquired substitutions. Black lines 
connecting deletions or insertions with substitutions indicate their occurrence on the same allele. The most 
frequent mutations, Type 1 and Type 2, are marked. UTR, untranslated region. (Source:210) 
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Somatic mutation type Mutant CALR genomic annotation 
Type 1 chr19:12915565_12915616del 
Type 2 chr19:12915627_12915628insTTGTC 
Type 3 chr19:12915568_12915613del 
Type 4 chr19:12915575_12915608del 
Type 5 chr19:12915564_12915615del 
Type 6 chr19:12915567_12915612del 
Type 7 chr19:12915575_12915626del 
Type 8 chr19:12915577_12915610del 
Type 9 chr19:12915613del 

Type 10 chr19:12915627delinsTGTGTC 
Type 11 chr19:12915565G>C; chr19:12915568_12915613del 
Type 12 chr19:12915571_12915604del 
Type 13 chr19:12915573_12915607delinsA 
Type 14 chr19:12915574_12915607del 
Type 15 chr19:12915575_12915608del; chr19:12915618C>G 
Type 16 chr19:12915575_12915610delinsCA 
Type 17 chr19:12915577_12915610del; chr19:12915621A>T 
Type 18 chr19:12915577_12915628del 
Type 19 chr19:12915583_12915613del 
Type 20 chr19:12915591_12915609del 
Type 21 chr19:12915591_12915618delinsCGTTTA 
Type 22 chr19:12915593_12915596del 
Type 23 chr19:12915593_12915604delinsTGCGT 
Type 24 chr19:12915593_12915611del 
Type 25 chr19:12915595_12915614delinsA 
Type 26 chr19:12915595del 
Type 27 chr19:12915596_12915598delinsTGTTT 
Type 28 chr19:12915604_12915625del 
Type 29 chr19:12915608_12915625delinsCCTCCTCTTTGTCT 
Type 30 chr19:12915610_12915627delinsCCATCCTTGTC 
Type 31 chr19:12915624A>G; chr19:12915627_12915628insTTGTC 
Type 32 chr19:12915626_12915627delinsTGTC 
Type 33 chr19:12915627_12915628insATGTC 
Type 34 chr19:12915627delinsCTTGTC 
Type 35 chr19:12915627delinsTTTGTC 
Type 36 chr19:12915628_12915629insATGTC 

Tab. 3: Genomic annotation of the 36 mutation types detected by Klampfl et al., 2013210. (Modified from 210) 
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3.3.2 DIAGNOSTIC CRITERIA FOR PV, ET AND PMF 
After the discovery of JAK2 and MPL mutations, the WHO (2008) officially included JAK2 

mutations as well as other clonal markers into their diagnostic criteria for BCR-ABL1-negative 

MPN. JAK2 V617F was classified as major criterion for all three neoplasms. Beyond JAK2 V617F, 

the presence of cytogenetic abnormalities or MPL mutations was considered for ET and PMF 

diagnosis188. Bone marrow (BM) morphology was included as a minor criterion in PV and a 

major criterion in both ET and PMF188 (Tab. 4). Contextually, the WHO committee recognized the 

fact that neither JAK2 nor MPL mutations were disease-specific and sufficient to distinguish 

between the three variants of BCR-ABL1-negative MPN. 

 

 

Tab. 4: 2008 World Health Organization (WHO) diagnostic criteria for myeloproliferative neoplasms. a PV diagnosis 
requires meeting either both major criteria and one minor criterion or the first major criterion and two 
minor criteria. ET diagnosis requires meeting all four major criteria. PMF diagnosis requires meeting all 
three major criteria and two minor criteria. b Hgb or hematocrit >99th percentile of reference range for age, 
sex or altitude of residence or red cell mass >25% above mean normal predicted or Hgb >17 g/dL (men) and 
>15 g/dL (women), if associated with a sustained increase of ≥2 g/dL from baseline that cannot be 
attributed to correction of iron deficiency. c Small to large megakaryocytes with aberrant 
nuclear/cytoplasmic ratio and hyperchromatic and irregularly folded nuclei and dense clustering. d In the 
absence of reticulin fibrosis, the megakaryocyte changes must be accompanied by increased marrow 
cellularity, granulocytic proliferation and often decreased erythropoiesis (i.e., prefibrotic PMF). BM, bone 
marrow; CML, chronic myelogenous leukemia; LDH, lactate dehydrogenase; MDS, myelodysplastic syndrome 
(Source:188). 

 

With the recent discovery that CALR mutations are present in about 49% and 74% of ET and 

PMF patients, respectively212,213, a new revision of the WHO criteria has been proposed that 

includes the CALR mutation as a major diagnostic criterion for ET and PMF188 (Tab. 5). However, 

since CALR mutations do not entirely fill the molecular gap in JAK2/MPL-unmutated disease and 

do not allow distinction between ET and PMF, the use of these clonal markers for diagnosis must 

be accompanied by assessment of BM morphology, which is another major diagnostic criterion 

for both ET and PMF188 (Tab. 5). According to the proposed revision, for ET diagnosis is required 

the accomplishment of the four major diagnostic criteria or, in “triple negative” cases (JAK2 

V617F/CALR/MPL-negative), of the first three major criteria and the minor criterion. For PMF 
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diagnosis, it is necessary to meet the three major criteria - 1) typical BM morphology; 2) absence 

of evidence for another myeloid malignancy as CML, PV and ET; 3) presence of JAK2, CALR or 

MPL mutations. In triple-negative PMF cases, meeting the first two major criteria together with 

the three minor criteria is required - 1) exclusion of reactive bone marrow fibrosis; 2) presence 

of clinical and 3) laboratory features that are typical of PMF188. 

Concerning the diagnosis of PV and its discrimination from “masked PV”, which is characterized 

by JAK2 mutations as well as hemoglobin levels of 16-18.5 g/dL for men and 15-16.5 g/dL for 

women, it has been suggested to lower the hemoglobin level (16.5 g/dL in men and 16 g/dL in 

women) compared to the 2008 criteria (>18.5 g/dL in men and >16.5 g/dL in women)188. 

However, morphologic confirmation through determination of BM morphology is required as a 

second major criterion for PV diagnosis, except for clinically overt cases (i.e. JAK2-mutated 

patients with hemoglobin levels of >18.5 g/dL in men and >16.5 g/dL in women). In rare JAK2-

unmutated cases, fulfillment of the minor criterion – subnormal erythropoietin level – is 

required for diagnosis188. 

 

 

Tab. 5: 2014 proposed revision for WHO diagnostic criteria for BCR-ABL1-negative myeloproliferative neoplasms. a 

PV diagnosis requires meeting either all three major criteria or the first two major criteria and one minor 
criterion. b ET diagnosis requires meeting all four major criteria or first three major criteria and one minor 
criterion. c PMF diagnosis requires meeting all three major criteria or the first two major criteria and all 
three minor criteria. d Small-to-large megakaryocytes with aberrant nuclear/cytoplasmic ratio and 
hyperchromatic and irregularly folded nuclei and dense clustering. e In the absence of reticulin fibrosis, the 
megakaryocyte changes must be accompanied by increased marrow cellularity, granulocytic proliferation 
and often decreased erythropoiesis (that is, prefibrotic PMF). f Degree of abnormality can be borderline or 
marked and institutional reference range should be used for lactate dehydrogenase level. BM, bone marrow; 
CML, chronic myelogenous leukemia; MDS, myelodysplastic syndrome (Source:188). 

 

In summary, for clinical practice, the iter for PV, ET or PMF diagnosis must include the following 

steps to assess MPN type: 

1) Detection of JAK2 V617F mutation: indicates PV. 

2) Detection of JAK2 exon 12 mutations in the absence of JAK2 V617F mutation and in the 

presence of subnormal serum erythropoietin level: indicates PV. 

3) Detection of CALR mutations in JAK2-unmutated cases: indicates ET or PMF. 
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4) Detection of MPL mutations in JAK2- and CALR-unmutated cases: indicates ET or PMF. 

3.3.3 RISK STRATIFICATION AND THERAPY 
Stratification of patients according to the prognostic model of the International Working Group 

for MPN Research and Treatment (IWG-MRT) is necessary for decision-making in therapy. 

DIPSS-plus is the current prognostic model that follows DIPSS (Dynamic International 

Prognostic Scoring System) which, in turn, is an evolution of ISSP (International Prognostic 

Scoring System). ISSP, developed in 2009 by the IWG-MRT215, was the first prognostic model 

that included five independent predictors of reduced survival: age >65 years, hemoglobin <10 

g/dL, leukocyte count >25 × 109/L, circulating blasts ≥1%, and presence of constitutional 

symptoms215. The presence of 0, 1, 2, and ≥3 adverse factors defines low, intermediate-1, 

intermediate-2, and high-risk disease. DIPSS uses the same prognostic variables but can be 

applied at any time during the course of the disease216. In addition, DIPSS-plus introduced three 

independent risk factors: platelet count <100 × 109/L, need of red cell transfusion and 

unfavorable karyotype217. The four DIPSS-plus risk categories are: low (no risk factors), 

intermediate-1 (one risk factor), intermediate-2 (two or three risk factors), and high (four or 

more risk factors)218. Recent studies showed that CALR/ASXL1 mutational status is predictive of 

leukemic transformation, with CALR+/ASXL1– being associated with the longest survival and 

CALR–/ASXL1+ with the shortest219,220. 

 

At present there is no curative therapy for PMF or post-PV/ET MF that can prolong survival. 

Allogenic stem cell transplant (ASCT) represents the only potential curative treatment but is 

very dangerous, with transplant-related deaths or severe morbidity occurring in about half of 

the cases221. DIPSS-plus risk categories must be taken into account before administration of 

therapy. For example, patients with low or intermediate-1 risk disease or low risk molecular 

profile (CALR+/ASXL1-) can be observed without any therapeutic intervention. Specific therapy 

is considered only in the presence of symptoms (e.g. androgens for anemia, hydroxyurea for 

symptomatic splenomegaly)218. For the management of patients with intermediate-2 or high-risk 

disease, investigational drug therapy and ASCT are considered. The latter is also indicated in the 

presence of CALR-/ASXL1+ mutational status218. Investigational drugs currently include 

pomalidomide, JAK-inhibiting ATP mimetics and mTOR inhibitors, while JAK2 inhibitors have 

not shown to display disease-modifying activity, including reversal of bone marrow fibrosis or 

induction of remission222,223. Pomalidomide is a second generation immunemodulatory drug that 

was shown to induce platelet response in a phase-3 study224. 

JAK inhibitor ATP mimetics include: 

− ruxolitinib, a JAK1/JAK2 inhibitor, which was seen to reduce spleen size, improve 

constitutional symptoms through reduction in proinflammatory cytokines and weight 
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gain, now FDA approved for use in MF225. Adverse events include thrombocytopenia, 

anemia, and a “cytokine rebound reaction” upon drug discontinuation, characterized by 

acute relapse of symptoms and splenomegaly226. 

− fedratinib, a selective JAK2 inhibitor, which was seen to reduce spleen size, improve 

constitutional symptoms, normalize platelet and leukocyte count, decrease JAK2 V617F 

allele burden227. Adverse events are encephalopathy (that caused its withdrawal from 

further development), anemia, thrombocytopenia and diarrhea228. 

− momelotinib, a JAK1/JAK2 inhibitor, which was seen to induce anemia and spleen 

response and to improve constitutional symptoms229. Adverse events include 

thrombocytopenia, hyperlipasemia, elevated liver transaminase levels, headache, 

peripheral neuropathy. 

− pacritinib, a JAK2/FLT3 inhibitor, which was seen to induce spleen, symptoms and 

anemia responses230. The most common adverse event is diarrhea. 

Since mTOR is part of the JAK-STAT pathway, it is tested as a potential drug target. Up to now, 

mTOR inhibitors have been demonstrated to reduce splenomegaly, to induce constitutional 

symptoms response and to lead to pruritus resolution231. 
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 ASSAY METHODS 3.4
The most widely used molecular techniques for genetic investigations include: 

1) Conventional (end-point) PCR 

2) Real-time PCR 

3) Sanger sequencing 

4) Next-generation sequencing 

 

3.4.1 CONVENTIONAL (END-POINT) PCR 
The PCR (polymerase chain reaction) method was developed by Kary Mullis in the 1980s and is 

based on the ability of the DNA polymerase enzyme to synthesize a new strand of DNA that is 

complementary to a template strand. The DNA polymerase adds nucleotides to the free 3'-OH 

group of a primer, a short DNA fragment that is complementary to a short stretch of the target 

region. As the PCR progresses, with each new replication cycle the generated DNA itself is used 

as a template for replication, resulting in a chain of replications during which the DNA template 

sequence is exponentially amplified. 

Amplification products can be analyzed with different visualization methods: 

 Agarose gel electrophoresis is a process which enables the sorting of molecules based on 

size. Using an electric field, DNA molecules move through an agarose gel containing a DNA 

intercalating agent (e.g. ethidium bromide). After the electrophoresis step, the DNA can be 

visualized using ultraviolet light that causes the intercalating agent that is bound to the DNA 

to fluoresce. 

 Reverse allele-specific hybridization is an oligonucleotide-based DNA array method. Most 

commonly, a biotinylated DNA amplification product is incubated with specific 

oligonucleotide probes immobilized on a membrane (often in parallel lines on a membrane 

strip). DNA fragments that contain sequences complementary to a probe remain bound to 

the membrane. After this hybridization step, streptavidine-labeled alkaline phosphatase is 

added and binds to any hybrid of probe and biotinylated DNA. After washing, the 

membranes are incubated with the chromogenic substrate BCIP/NBT, which is converted 

into a purple/brown precipitate where alkaline phosphatase is bound. 

 

LIMITATIONS OF CONVENTIONAL PCR 

The exponential phase of an end-point PCR is cycle-limited due to several factors like PCR 

inhibitors in the sample, reagent limitation, pyrophosphate accumulation, and self-annealing of 

the accumulating PCR product. At this point the polymerase chain reaction ceases to amplify the 
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target sequence at an exponential rate and enters the "plateau phase", which makes end-point 

quantification of PCR products unreliable. 

 
3.4.2 REAL-TIME PCR 
Real-time PCR allows an accurate quantification of the starting amounts of target molecules. 

Fluorescence is measured during each cycle, which greatly increases the dynamic range of the 

reaction, since the amount of fluorescence is proportional to the amount of PCR product. PCR 

products can be detected using either fluorescent dyes that bind to any double-stranded DNA 

(dsDNA) or fluorescently labeled sequence-specific probes. 

DNA BINDING DYES 

DNA binding dyes are fluorescent dyes that bind dsDNA molecules. When stimulated by light, 

these dyes emit a fluorescent signal of a defined wavelength. Detection takes place during the 

extension step and the intensity of the fluorescent signal is correlated to the cycle number due to 

the accumulation of PCR product. The use of dsDNA dyes allows analysis of many different 

targets without having to synthesize target-specific labeled probes. However, non-specific PCR 

products and primer–dimers also contribute to the fluorescent signal. Therefore, high PCR 

specificity is required when using dsDNA dyes. 

FLUORESCENTLY LABELED PROBE  

Fluorescently labeled probes provide a highly specific method of detection, as only the desired 

PCR product is detected. However, PCR specificity is also important when using sequence-

specific probes. Amplification artifacts such as non-specific PCR products and primer–dimers 

may result in reduced yields of the desired PCR product. Competition for reaction components 

between the specific product and PCR artifacts can compromise assay sensitivity and efficiency. 

The following probe chemistries are frequently used: 

Hydrolysis (TaqMan®) probes 

Hydrolysis assays (TaqMan or 5' nuclease assays) include a sequence-specific, fluorescently 

labeled oligonucleotide probe in addition to a sequence-specific PCR primer. Hydrolysis assays 

exploit the 5' to 3' exonuclease activity of Taq polymerase. The hydrolysis probe is labeled with 

a fluorescent reporter at the 5' end and a quencher at the 3' end. When the hydrolysis probe is 

intact, the reporter fluorescence is quenched due to its proximity to the quencher (Fig. 8). The 

amplification reaction includes a combined annealing/extension step during which the probe 

hybridizes to the target, and the dsDNA-specific 5' to 3' exonuclease activity of Taq cleaves off 

the reporter. As a result, the reporter is separated from the quencher, resulting in a fluorescence 

signal that is proportional to the amount of amplified product in the sample. 
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Fig. 8: Mechanism of action of hydrolysis (TaqMan®) probes. (Source:232) 

 

 

MGB Eclipse® and TaqMan® MGB® probes 

These assays use two DNA primers and a sequence-specific oligonucleotide probe. The Eclipse® 

probe (Fig. 9) has a fluorescent reporter molecule at the 3' end combined with a quencher and a 

DNA minor-groove binder (MGB®) at the 5' end. The TaqMan® probe has an opposite orientation 

to the Eclipse® probe, with the MGB® moiety at the 3’ end and the reporter at the 5' end. With 

the Eclipse® technology, quenching occurs as the nonhybridized probe adopts a random coil 

conformation that brings the reporter and quencher together. During annealing of the DNA 

primers, the probe also hybridizes to the target with the help of the minor-groove binder. The 

probe thus becomes linearized, separating the reporter and quencher. The resulting 

fluorescence signal is proportional to the amount of amplified product in the sample. With the 

TaqMan® technology, fluorescence is emitted after cleavage of the probe by the 5’ exonuclease 

activity of Taq polymerase during the primer extension step. 
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Fig. 9: Mechanism of action of MGB Eclipse® probes. (Source:232) 
 

 

Molecular Beacons 

Molecular beacon assays include a sequence-specific, fluorescently labeled oligonucleotide 

probe called a molecular beacon. A molecular beacon is a dye-labeled oligonucleotide (25–40 

nucleotides [nt]) that forms a hairpin structure with a stem and a loop (Fig. 10). The 5' and 3' 

ends of the probe have complementary sequences of 5–6 nt that form the stem structure. The 

loop portion of the hairpin is designed to specifically hybridize to a 15–30 nt section of the target 

sequence. A fluorescent reporter molecule is attached to the 5' end of the molecular beacon, and 

a quencher is attached to the 3' end. Formation of the hairpin therefore brings the reporter and 

quencher together, hence no fluorescence is emitted. During the annealing step of the 

amplification reaction, the loop portion of the molecular beacon binds to its target sequence, 

causing the stem to denature. The reporter and quencher are thus separated, quenching is 

abolished, and the reporter fluorescence is detectable. Because fluorescence is emitted from the 

probe only when it is bound to the target, the amount of fluorescence detected is proportional to 

the amount of target in the reaction. 
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Fig. 10: Mechanism of action of Molecular Beacons. (Source:232) 
 

 

Scorpions® PCR primers 

In these assays one of the PCR primers also serves as a probe containing a stem-loop structure 

with a 5' fluorescent reporter and 3' quencher. The loop of the Scorpions® probe includes a 

sequence that is complementary to an internal portion of the target sequence (Fig. 11). During 

the first amplification cycle, the Scorpions® PCR primer is extended also generating the sequence 

complementary to the loop sequence (internal target sequence). After subsequent denaturation 

and annealing, the loop of the Scorpions® probe hybridizes to the internal target sequence, and 

the reporter is separated from the quencher. The resulting fluorescence signal is proportional to 

the amount of amplified product in the sample. The Scorpions® probe contains a PCR blocker, 

just downstream (in the 3' direction) of the quencher, to prevent read-through during the 

extension of the opposite strand. 
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Fig. 11: Mechanism of action of Scorpions® PCR primers. (Source:232) 

 

 

Dual hybridization probes 

These assays use two sequence-specific oligonucleotide probes in addition to two sequence-

specific DNA primers. The two probes are designed to bind to adjacent sequences in the target 

(Fig. 12). The probes are labeled with a dye pair performing fluorescence resonance energy 

transfer (FRET). The donor dye is attached to the 3' end of the first probe, while the acceptor dye 

is attached to the 5' end of the second probe. During real-time PCR, excitation is performed at a 

wavelength specific to the donor dye, and the reaction is monitored at the emission wavelength 

of the acceptor dye. In the annealing step, the probes hybridize to their target sequences in a 

head-to-tail arrangement. This annealing brings the donor and acceptor dyes into proximity, 

allowing FRET to occur, resulting in fluorescent emission by the acceptor. The increasing 

amount of acceptor fluorescence is proportional to the amount of PCR product present. 
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Fig. 12: Mechanism of action of dual hybridization probes. (Source:232) 
 

 

Various fluorescent dyes are available for real-time PCR with sequence-specific probes, each 

with its own excitation and emission maxima. The wide variety of dyes makes multiplex real-

time PCR possible (detection of 2 or more targets in the same reaction), provided the dyes are 

compatible with the excitation and detection capabilities of the real-time cycler, and the 

emission spectra of the chosen dyes are sufficiently distinct from one another. Therefore, when 

carrying out multiplex PCR, it is best practice to use dyes with the widest channel separation 

possible to avoid any signal crosstalk. 

PCR QUANTIFICATION 

Nucleic acids can be quantified using either absolute quantification or relative quantification. 

Absolute quantification determines the absolute amount of target (expressed as copy number or 

concentration), whereas relative quantification determines the ratio between the amounts of 

target and a control (e.g. an endogenous reference, usually a suitable housekeeping gene). 

Subsequently, this normalized value can then be used to compare, for example, differential gene 

expression in different samples. 

Absolute quantification 

Use of external standards enables the amount or concentration of a target to be given based on 

the absolute copy number. A standard curve (plot of CT values or crossing points of different 

standard dilutions against the log value of the copy numbers contained in the standards) is 

generated using a dilution series with different known concentrations (standards). For precise 

quantification, the standards should cover the range of expected values (copy numbers) for test 

samples. Since the CT values of standard samples are known, the amount of target in the sample 

can be determined comparing the CT value of the sample to the standard curve. 
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Standards should have the following characteristics: 

− primer and probe binding sites identical to the target to be quantified; 

− sequence between primer binding sites identical or highly similar to the target sequence;  

− sequences upstream and downstream from the amplified sequence identical or similar to 

the “natural” target;  

− equivalent amplification efficiencies of standard and target molecules. 

DNA standards for absolute quantification 

Plasmid DNA: The most convenient way to create a DNA standard is to clone a PCR product into 

a standard vector. Advantages of this method are that large amounts of standard can be 

produced, its identity can be verified by sequencing and DNA can easily be quantified by 

spectrophotometry. Plasmid standards should be linearized upstream or downstream of the 

target sequence, rather than using supercoiled plasmid for amplification. This is because the 

amplification efficiency of a linearized plasmid often differs from that of the supercoiled 

conformation and more closely mimics the amplification efficiency of genomic DNA or cDNA. 

After spectrophotometric determination of the concentration of plasmid DNA, the copy number 

of DNA molecules in the standard can be calculated using the following formula: 

(X g/µL DNA / [plasmid length in base pairs × 660]) × 6.022 × 1023 = Y molecules/µL 

PCR fragment: A PCR product containing the target sequence can also be used as a DNA 

standard. The copy number is calculated using the formula for plasmid DNA (see above), 

replacing “plasmid length” with the length of the PCR product. 

Relative quantification 

For relative quantification, the ratio between the amounts of a target and a control gene (e.g., an 

endogenous reference gene present in all samples) is determined. This normalized value is 

determined for each sample and can be used, for example, to compare differential expression of 

a gene in different tissues. 

 

REAL-TIME PCR GLOSSARY 

Background: non-specific fluorescence (noise) in the reaction, for example, due to inefficient 

quenching of the fluorophore or the presence of large amounts of double-stranded DNA 

template when using DNA binding dyes. The background component of the signal is subtracted 

by the software algorithm of the real-time cycler (see Baseline below). 

Baseline: noise level (background) measured in early cycles, typically between cycles 3 and 15, 

where there is no detectable increase in fluorescence by amplification products. The average 

fluorescence of these early cycles is subtracted from the fluorescence value obtained for the 

amplification products. 
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Reporter signal: fluorescent signal that is generated during the real-time PCR by either a DNA 

binding dye or a fluorescently labeled sequence-specific probe. 

Passive reference dye: on some real-time cyclers, the fluorescent dye (e.g., ROX) serves as an 

internal reference for normalization of the fluorescent signal. It allows correction of well-to-well 

variation due to pipetting inaccuracies, well position, and fluorescence fluctuations. 

dUTP/UNG system: a common method to minimize cross-contamination that is based on 

incorporation of deoxyuridine triphosphate (dUTP) into any PCR product instead of 

deoxythimidine triphosphate (dTTP). Before the amplification, uracil-containing DNA is 

selectively degraded by uracil-DNA N-glycosylase (UNG). 

Normalized reporter signal (Rn): emission intensity of the reporter dye divided by the 

emission intensity of the passive reference dye measured in each cycle. 

Delta Rn (ΔRn): the normalization of Rn obtained by subtracting the baseline (ΔRn = Rn – 

baseline). 

Threshold: adjusted to a value above the background and significantly below the plateau of an 

amplification plot. It must be placed within the region of the amplification curve that represents 

the phase of exponential amplification (linear range, if viewed in logarithmic scale). 

Threshold cycle (CT): the cycle at which the amplification plot crosses the threshold (i.e., there 

is a significant detectable increase in fluorescence). CT allows calculation of the starting template 

amount. 

Positive control: control reaction using a known template. A positive control is usually used to 

check whether the primer set or primer–probe set works and the reaction has been set up 

correctly. 

No template control (NTC): control reaction that contains all essential components of the 

amplification reaction except the template. This enables detection of contaminations in the PCR 

reagents or by foreign DNA. 

 

Fig. 13:  Real-time PCR amplification plot in linear scale. 
Some basic concepts of the real-time PCR method 
are represented. 
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3.4.3 SANGER SEQUENCING 
Sanger sequencing is a method of DNA sequencing developed by Frederick Sanger and 

colleagues in 1977233. The method is based on selective incorporation of chain-terminating 

dideoxynucleotides by DNA polymerase during in vitro DNA replication, and has been the most 

widely used sequencing method for about 25 years. During Sanger sequencing, DNA polymerase 

copies single-stranded DNA templates by adding nucleotides to a growing chain (extension 

product) by the formation of a phosphodiester bridge between the 3'-hydroxyl group of a primer 

and the 5'-phosphate group of the incoming deoxynucleotide in 5' to 3' direction. In addition to 

normal deoxynucleosidetriphosphates (dNTPs), the reaction also contains modified di-

deoxynucleotidetriphosphates (ddNTPs) that lack the 3'-OH group required for the formation of 

the phosphodiester bond between two nucleotides, causing the DNA polymerase to cease 

extension of DNA when incorporated. The ddNTPs may be radioactively or fluorescently labeled 

for detection in automated sequencing machines. 

SEQUENCING WITH DYE PRIMERS 

When using dye primer-based sequencing chemistry, four separate reactions are performed. 

Each reaction contains a primer labeled at its 5' end with one of 4 different fluorescently-labeled 

dyes corresponding to each of the 4 nucleotides–A, C, G or T. ddNTPs are also present in each 

reaction mix and randomly terminate DNA synthesis, creating DNA fragments of varying lengths. 

Since a fluorescently-labeled primer is used for extension, all terminated fragments are 

fluorescently labeled. Following a sufficient number of cycles to allow for optimal generation of 

extended products, the products of the four reactions are pooled and analyzed on a capillary 

electrophoresis-based genetic analyzer (Fig. 14). 

 

Fig. 14: One cycle of dye primer cycle sequencing. (Source:234) 
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 SEQUENCING WITH DYE TERMINATORS  

Fluorescent DNA sequencing can also be performed by directly attaching a different dye to each 

of the four ddNTPs, thereby requiring only one reaction tube per sample instead of four. DNA 

template, unlabeled primer, buffer, the four dNTPs, the four fluorescently-labeled ddNTPs and 

DNA polymerase are added to the reaction tube. Fluorescently-labeled fragments are generated 

by incorporation of the dye-labeled ddNTPs that stop DNA strand elongation. Therefore, all 

terminated fragments contain a dye at their 3' end and are then separated by capillary 

electrophoresis (Fig. 15). 

 

Fig. 15: One cycle of dye terminator cycle 
sequencing. (Source:234) 

 

 

 

 

CAPILLARY ELECTROPHORESIS 

During capillary electrophoresis, the products of the cycle sequencing reaction are injected 

electrokinetically into capillaries filled with polymer. High voltage is applied so that the 

negatively-charged DNA fragments move through the polymer in the capillaries toward the 

positive electrode. Capillary electrophoresis can resolve DNA molecules that differ in molecular 

weight by only one nucleotide. Shortly before reaching the positive electrode, the fluorescently-

labeled DNA fragments, separated by size, move through the path of a laser beam that causes the 

dyes on the fragments to fluoresce. An optical detection device on a genetic analyzer detects the 

fluorescence signal (Fig. 16). The data collection software converts the fluorescence signal to 

digital data that are recorded in a file. Because each dye emits light at a different wavelength 

when excited by the laser, all four colors, and therefore, all four bases, can be detected and 

distinguished in one capillary injection (Fig. 16). 

  

Fig. 16: DNA fragments pass through a laser 
beam; emitted fluorescence signals 
are detected by an optical detector 
and converted to digital data by 
software. (Source:234) 
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3.4.4 NEXT-GENERATION SEQUENCING 
Since completion of the first human genome sequence in 2003, demand for cheaper and faster 

sequencing methods has greatly increased. This demand has driven the development of second-

generation or next-generation sequencing (NGS) methods. NGS platforms perform massively 

parallel sequencing, during which millions of DNA fragments from a single sample are 

sequenced. Massively parallel sequencing technology facilitates high-throughput sequencing, 

which allows an entire genome to be sequenced in less than one day. In the past decade, several 

NGS platforms were developed and provided low-cost, high-throughput sequencing. The 

creation of such platforms has made sequencing accessible to more labs, thus rapidly increasing 

the amount of research and clinical diagnostics being performed with nucleic acid sequencing235. 

Three major NGS systems are routinely used in many laboratories today. In 2005, the first 

system to become commercially available was the Genome Sequencer 454 from Life Sciences 

(later acquired by Roche), in 2006 Illumina launched the Genome Analyzer and in 2007, the 

SOLiD system was introduced by Applied Biosystems (now part of Life Technologies). The key 

steps of a sequencing workflow are the same for all of these technologies, i.e. template 

preparation (DNA library preparation, amplification of DNA fragments, distribution of templates 

on a solid support), sequencing and imaging, and data analysis (quality control, base calling, 

alignment with a reference sequence for resequencing applications) (Fig. 17). 

Template preparation 

Template preparation consists of building a nucleic acid (DNA or complementary DNA [cDNA]) 

library and amplifying that library on a solid support. Sequencing libraries are constructed by 

fragmenting the DNA (or cDNA) sample and ligating adapter sequences (synthetic 

oligonucleotides of a known sequence) onto DNA fragments ends. Once constructed, libraries 

are clonally amplified using two different methods: a water-in-oil emulsion PCR after 

hybridization of library fragments onto microbeads (454 and SOLiD) or a bridge amplification 

that forms template clusters on a flow cell (Illumina)236,237. 

Sequencing and imaging 

The Illumina and 454 technology is based on a sequencing-by-synthesis principle where a DNA 

polymerase is used to extend a sequencing primer by incorporating nucleotides that form a 

growing sequence complementary to the template DNA. As nucleotides incorporate into the 

growing DNA strand, they are digitally recorded as sequences. Detection of nucleotide sequence 

information may be performed through detection of pH changes induced by the release of a 

hydrogen ion upon the incorporation of a nucleotide into a growing strand of DNA (454) or 

detecting fluorescence that is generated by the incorporation of fluorescently labeled 

nucleotides (Illumina)236,237. The SOLiD technology is based on sequencing-by-ligation, where a 
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DNA ligase is used to add fluorescently labeled probes to a growing oligonucleotide chain. 

Probes are labeled according to the first two bases using a scheme for two-base encoding with 

four fluorophores. After imaging, the fluorescent label and the three universal bases of the probe 

are cleaved off, and a new set of probes is added236. 

Data analysis 

Once sequencing is complete, raw sequence data must undergo several analysis steps. A 

generalized data analysis pipeline for NGS data includes preprocessing the data to remove 

adapter sequences and low-quality reads, mapping of the data to a reference genome or de novo 

alignment of the sequence reads, and analysis of the compiled sequence. Sequence analysis 

includes a wide variety of bioinformatics assessments, including genetic variant calling for 

detection of SNPs or indels (i.e., the insertion or deletion of bases), detection of novel genes or 

regulatory elements, and assessment of transcript expression levels238. 

 

 

Fig. 17: Workflow of next-generation sequencing with Ion torrent (Life Technologies), which is similar to the 454, 
and MiSeq (Illumina) Genome Analyzers. (Source: 235). 
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 GUIDELINES FOR GENETIC TESTS (CE-IVD) 3.5
“‘in vitro diagnostic medical device’ means any medical device which is a reagent, reagent 

product, calibrator, control material, kit, instrument, apparatus, equipment, or system, 

whether used alone or in combination, intended by the manufacturer to be used in vitro for 

the examination of specimens, including blood and tissue donations, derived from the human 

body, solely or principally for the purpose of providing information: 

— concerning a physiological or pathological state, or 

— concerning a congenital abnormality, or to determine the safety and compatibility with 

potential recipients, or 

— to monitor therapeutic measures.” 

Cited from Article 1 of Directive 98/79/EC239 

 

Development and commercialization of a genetic test as IVD requires the following steps: 

1. Determination of clinical utility 

2. Development using harmonized standards 

3. Evaluation of conformity to essential requirements of Directive 98/79/EC 

4. CE marking and placing on the market 

5. Registration and notification with the Competent Authority 

 

3.5.1 DETERMINATION OF CLINICAL UTILITY 
Before a genetic test can be generally accepted in clinical practice, data must be collected to 

demonstrate the benefits and risks that accrue from both positive and negative results. The 

balance between benefits and risks of a genetic test determine its clinical utility. In its narrower 

sense, clinical utility is the ability of a screening or diagnostic test to prevent or ameliorate 

adverse health outcomes such as mortality, morbidity, or disability through the adoption of 

efficacious treatments on the basis of test results. In its broader sense, it refers to any use of test 

results to influence clinical decision-making240. 

In oncogenomics, a genetic test contributes to the diagnosis and the prognosis of a disease, often 

indicating the best-therapeutic strategy to adopt, and helps monitoring the progression of the 

disease during/after treatment. In pharmacogenomics, a genetic test provides pre-therapeutic 

guidance for drug and dose selection and in post-therapeutic monitoring allows dose 

optimization and evaluation of possible adverse drug reactions or therapeutic failure. 

Pharmacogenetic tests are usually indicated in the labels of FDA-approved drugs. 

  



56 INTRODUCTION 

3.5.2 DEVELOPMENT USING HARMONIZED STANDARD 
A harmonized standard is a European standard that provides guidelines to meet the essential 

requirements of the European Union legislation (Directive 98/79/EC239, transposed by the GD 

332/2000 in Italy). Manufacturers and conformity assessment bodies can use harmonized 

standards to demonstrate that products comply with relevant EU legislation. The use of these 

standards remains voluntary. Manufacturers are free to choose any other technical solution that 

provides compliance with the mandatory legal requirements. 

ISO 13485:2012 is the harmonized standard that applies to the “Quality management systems for 

medical devices ― Requirements for regulatory purposes”. Among others, it defines the quality 

management system, management responsibilities and all parts of product realization. 

In Directive 98/79/EC239 (Annex I “Essential requirements”) is stated that: 

“The devices... must achieve the performances, in particular, where appropriate, in terms of 

analytical sensitivity, diagnostic sensitivity, analytical specificity, diagnostic specificity, 

accuracy, repeatability, reproducibility, including control of known relevant interference, 

and limits of detection, stated by the manufacturer”. 

Therefore, it is of relevant importance to establish the performances of the genetic test in terms 

of analytical and diagnostic specificity and sensitivity. Analytical specificity is the capacity of an 

assay to exclusively detect the marker. Analytical sensitivity corresponds to the limit of 

detection of the assay, which is the minimum quantity of the marker the assay is able to 

precisely detect. Diagnostic specificity is the number of samples that resulted “negative” with the 

assay (no marker detected) on the total number of samples not presenting the marker; high 

diagnostic specificity of a test corresponds to low risk of “false positive” results. Diagnostic 

sensitivity is the number of samples that resulted “positive” with the assay (marker detected) on 

the total number of samples presenting the marker; high diagnostic sensitivity of a test 

corresponds to low risk of “false negative” results. Analytical validation of a genetic test always 

requires testing the assay performances with a positive control (synthetic construct or sample 

containing the marker), a negative control (synthetic construct or sample not containing the 

marker) and a reaction control (no sample). Diagnostic performances must be established with 

clinical samples that have already been analyzed with a reference method for the test marker. 

The reference method is the gold standard method currently used for the investigational 

purpose of the assay and should be referred to in any phase of the analytical validation. Blind 

repeat testing and comparison of results with other laboratories is required to evaluate 

repeatability and robustness of the assay. 
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3.5.3 EVALUATION OF CONFORMITY TO ESSENTIAL REQUIREMENTS OF 
DIRECTIVE 98/79/EC 

“Essential requirements” (Annex I of Directive 98/79/EC239) establish the general requirements 

of a device and the specific requirements for design and manufacturing. 

General requirements concern: 

– safety and health of patients and users; 

– risk analysis and solutions to reduce the risk associated with the use of the device; 

– performances evaluation in terms of analytical sensitivity, diagnostic sensitivity, 

analytical specificity, diagnostic specificity, accuracy, repeatability, reproducibility, 

including control of known relevant interference and detection limits; 

– maintenance of the performances during the whole device lifetime as indicated by the 

manufacturer; 

– maintenance of the performances and characteristics during transport and under the 

recommended storage conditions. 

 

Design and manufacturing requirements include: 

– chemical and physical properties (concerning quality of materials used to produce the 

device); 

– infection and microbial contamination (concerning sterile devices and the risk of 

contamination during selection and handling of raw materials, manufacture, storage and 

distribution); 

– manufacturing and environmental properties (concerning the risk derived from 

intrinsic or environmental physical features); 

– devices which are instruments or apparatus with a measuring function (concerning 

precision and accuracy of devices having a primary analytical measuring function); 

– protection against radiation (concerning devices that emit potentially hazardous, visible 

and/or invisible radiation); 

– requirements for medical devices connected to or equipped with an energy source 

(concerning devices incorporating electronic systems, including software to reduce 

electromagnetic, electric, mechanical and thermal risks); 

– requirements for devices for self-testing (to ensure that the device is easy to use by lay 

users and reduce the risk of user error); 

– information supplied by the manufacturer (concerning the data on the label and in the 

instruction for use). Information supplied with the device must include: the name and 

address of the manufacturer; identification of both the device and the contents of the 

packaging; batch code or serial number; expiration date; where appropriate, a 
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statement indicating the in vitro use of the device; storage and/or handling conditions; 

warning and/or precautions to take. 

 

Directive 98/79/EC239 groups in vitro diagnostic medical devices into two main product classes, 

denominated List A and List B. To List A belong reagents and reagent products, including related 

calibrators and control materials, for determining the blood groups ABO system, rhesus (C, c, D, 

E, e) and anti-Kell, and for the detection, confirmation and quantification in human specimens of 

markers of HIV infection (HIV 1 and 2), HTLV I and II, and hepatitis B, C and D. To List B belong 

reagents and reagent products, including related calibrators and control materials, for 

determining: the blood groups anti-Duffy and anti-Kidd, irregular anti-erythrocytic antibodies, 

the human infections cytomegalovirus and chlamydia, the HLA tissue groups DR, A, B, the tumor 

marker PSA, the risk of trisomy 21. In this list are also included reagents and reagent products 

for the detection and quantification in human samples of the congenital infections rubella and 

toxoplasmosis, for diagnosing the hereditary disease phenylketonuria and the self-diagnosing 

device for the measurement of blood sugar. 

Since the large majority of in vitro diagnostic medical devices do not belong to the above 

mentioned lists, do not constitute a direct risk to patients and provide results that can often be 

confirmed by similar methods, relative conformity assessment procedures can be carried out 

under the sole responsibility of the manufacturer. According to Directive 98/34/EC and national 

regulations, the intervention of notified bodies in this phase is necessary only for the devices, of 

which the correct performance is essential to medical practice and the failure can cause a 

serious risk to health (List A and List B). 

 

3.5.4 CE MARKING AND PLACING ON THE MARKET 
In order to affix the CE marking and before placing the device on the market, the manufacturer 

draws up the EC declaration of conformity (Annex III of Directive 98/79/CE239). It states that 

manufacturer must prepare the technical documentation that includes: 

– product description (intended use, functional properties, typology, variants planned, 

eventual combination with other products or optional); 

– documentation of the quality system (regulation adopted by the manufacturer to 

guarantee the quality system in the form of industrial strategies and written procedures 

like programs, schemes, manuals, reports); 

– design information (the characteristics of the basic materials, characteristics and 

limitations of the performance of the devices, methods of manufacture); 

– information about the manufacturing method (schemes and descriptions of used 

technologies, product components and quality control procedures); 
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– risk analysis and solution adopted to reduce the risk; 

– adequate performance evaluation data (performances claimed by the manufacturer and 

supported by reference measurement systems, the reference methods, the reference 

materials, the known reference values, the accuracy and measurement units used; such 

data should originate from studies in a clinical or other appropriate environment or 

result from relevant biographical references); 

– design calculations and of the inspections carried out; 

– test reports; 

– labels and instructions for use; 

– stability studies. 

 

3.5.5 REGISTRATION AND NOTIFICATION WITH THE COMPETENT 
AUTHORITY 

For placing a medical device on the European Economic Area (EEA) market, Directive 

98/79/EC239 requires manufacturers to provide certain information to the Competent 

Authorities in the EEA Member State where they have a registered place of business. These 

requirements have been transposed into national laws of the EEA Member States (GD 332/2000 

in Italy). After the receipt of the notification/registration, the Competent Authorities shall 

process the data and inform the Commission of the European Communities and the other States 

Party to the Agreement on the EEA, upon request. Data required by law are made available to 

the Competent Authorities and stored in the European database. The following data shall be 

submitted: 

− on registration of manufacturers 

− relating to certificates issued, amended, suspended, withdrawn or refused 

− obtained in accordance with the vigilance procedure 

− on clinical investigations. 
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Aim of this doctorate project was the development of CE-IVD diagnostic kits for: 

1. Detection and genotyping of the IL28B polymorphisms rs12979860 and rs8099917 

2. Detection and, if possible, semi-quantification of CALR mutations and the MPL W515L/K 

mutations. 

The field of this project was personalized medicine with real-world applications. The final 

objective was to promote the use of personalized medicine by the National Healthcare System by 

reducing the costs of diagnostic tests, which are the main limiting factor to the widespread use 

of personalized medicine in routine clinical practice. 

To optimize the test cost-effectiveness, the following issues should be considered: 

− the test should be completely informative for the management of a disease, that explains 

the increasing diffusion of gene panel testing in the last years; 

− the technology used in the test should allow customization of reagents and sample 

number processed in a run. 

 

On these grounds, we aimed to develop fully informative tests supporting clinical decision-

making in chronic hepatitis C infection and BCR-ABL1-negative myeloproliferative neoplasms. 

For the latter, we did not investigate the most common JAK2 V617F mutation because tests for 

the detection, semi-quantification and absolute quantification of this mutation are already 

available from AB ANALITICA. 

The process of assay development applied during this study is summarized in the flowchart 

below (Fig. 18). Development of an IVD test includes the following steps: 

1) Definition of objectives and requirements 

2) Selection of assay method 

3) Acquisition of clinical samples, preparation of positive controls, design of components 

4) Optimization of protocol via testing different reaction conditions and preparation of a 

prototype assay 

5) Validation on different instruments (for instrument type-dependent assays) 

6) Determining and validating the performance of the assay 

7) Notification with the Ministry of Health and marketing as CE-IVD diagnostic kit. 

Each step of this process was subjected to accurate verification in order to assess whether the 

established requirements were met. External validation of the prototype in a partner laboratory 

is optional but can be useful to obtain information on the use of the assay in the “real practice” 

e.g. in terms of comparison with other methods in use and different operators performing the 

test.  
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Fig. 18: Flowchart for IVD test development. Each step of the process must be verified and meet the specific 
requirements in order to pass to the next. Dashed lines indicate an alternative course to follow in case a 
problem persists even after several rounds of optimization (solid line). 
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 SAMPLES 5.1

5.1.1 IL28B ASSAYS 
We used samples of genomic DNA provided by different Italian institutes and analysis 

laboratories (Tab. 6). Genomic DNA was extracted from peripheral whole blood with the 

systems routinely used by the providing laboratory. We isolated DNA from blood samples that 

had been treated with an anticoagulant using the automated extraction system EZ1 Advanced XL 

System (Qiagen) with the EZ1 Advanced DSP DNA Blood Card (Qiagen). All samples were 

genotyped with a reference IVD system (GENEQUALITY IL28B-ITPA TYPE, AB ANALITICA). 

GENEQUALITY IL28B-ITPA TYPE is an in vitro diagnostic tool based on Reverse Line Blot (RLB) 

that allows genotyping by allele-specific hybridization of the PCR product to a membrane and 

colorimetric analysis (“strip”). This system permits simultaneous detection and genotyping of 

the polymorphisms rs12979860 and rs8099917 in the IL28B gene and genotyping of rs7270101 

and rs1127354 in the ITPA gene (Inosine Triphosphatase). Genotyping data provided from our 

two main partner laboratories (Department of Medicine of the University of Padua, DIMED and 

Laboratory of Molecular Hepatology of the Venetian Institute of Molecular Medicine of Padua, 

VIMM) respectively using TaqMan Allelic Discrimination Assay (Life Technologies) and LightMix 

Kit IL28B (Roche), fully confirmed the results obtained with the above mentioned reference IVD 

system. 

 
Sample 
number Extraction systems Genotyping reference systems 

4 MagNA Pure (Roche) GENEQUALITY IL28B-ITPA TYPE  
(AB ANALITICA) 

3 QuickGene-Mini80 and QuickGene-810 (Fujifilm) GENEQUALITY IL28B-ITPA TYPE  
(AB ANALITICA) 

4 BioRobot EZ1 with EZ1 DSP Blood (Qiagen) GENEQUALITY IL28B-ITPA TYPE  
(AB ANALITICA) 

5 Maxwell 16 Blood DNA Purification Kit (Promega) GENEQUALITY IL28B-ITPA TYPE  
(AB ANALITICA) 

4 NucleoSpin® Blood (Mackerey-Nagel) GENEQUALITY IL28B-ITPA TYPE  
(AB ANALITICA) 

3 chemagic Prepito®-D (PerkinElmer) GENEQUALITY IL28B-ITPA TYPE  
(AB ANALITICA) 

106 QIAamp DNA Blood Mini Kit (Qiagen) 
GENEQUALITY IL28B-ITPA TYPE  

(AB ANALITICA) and TaqMan Allelic 
Discrimination Assay (Life Technologies) 

71 High Pure PCR Template Preparation Kit (Roche) GENEQUALITY IL28B-ITPA TYPE  
(AB ANALITICA) and LightMix Kit IL28B (Roche) 

Tab. 6: List of samples used for development of IL28B assays. 
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5.1.2 CALR MUTATION AND MPL W515L/K ASSAYS 
All mutated samples for CALR and MPL genes and part of the wild-type samples used in this 

study were provided by the partner laboratory of the Department of Experimental and Clinical 

Medicine, University of Florence (Tab. 7 and Tab. 8). In this laboratory, genomic DNA was 

extracted from peripheral whole blood or isolated granulocytes using QIAsymphony DSP DNA 

Midi Kit (Qiagen) or ReliaPrep™ Blood gDNA Miniprep System (Promega). To increase the panel of 

tested extraction systems, we also isolated genomic DNA from known wild-type blood samples 

using different commercial extraction systems and following the manufacturer’s instructions. All 

samples were sequenced with the Sanger method, which is the gold standard for determination 

of individual mutational profile. 

 

CALR MUTATION 

 

Sample 
number Extraction systems Reference system 

1 QIAamp DNA Blood Mini Kit (Qiagen) Bidirectional sequencing 

6 BioRobot EZ1 with EZ1 DSP Blood (Qiagen) Bidirectional sequencing 

3 MagNA Pure (Roche) Bidirectional sequencing 

6 Mag maxi Kit (LGC) Bidirectional sequencing 

49 QIAsymphony DSP DNA Midi Kit (Qiagen) and 
ReliaPrep™ Blood gDNA Miniprep System (Promega) Bidirectional sequencing 

Tab. 7: List of samples used for CALR MUTATION assay. 
 

 

MPL W515L/K 

 

Sample 
number Extraction systems Reference system 

11 BioRobot EZ1 with EZ1 DSP Blood (Qiagen) Bidirectional sequencing 

6 QIAsymphony DSP DNA Midi Kit (Qiagen) Bidirectional sequencing 

4 ReliaPrep™ Blood gDNA Miniprep System (Promega) Bidirectional sequencing 

Tab. 8: List of samples used for MPL W515L/K assay. 
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 PREPARATION OF CONTROLS 5.2

5.2.1 IL28B rs12979860 ASSAY 
As positive controls for the assay for analysis of IL28B polymorphism rs12979860 we designed 

two MiniGeneTM Synthetic Genes (IDT). A minigene is a compact version of a gene in which 

regions that do not affect protein function have been removed. IDT minigenes are usually 

50 to 500 bp long and are inserted into a pIDTBlue vector ampicillin resistant (Fig. 19). This high 

copy vector is based on the pBluescript II SK (+) phagemid. The plasmid contains the thef1 

intergenic region that allows cis-activated single-strand DNA replication of the sense strand and 

packaging when co-expressed with a helper phage. T3 and T7 promoters that flank the insertion 

site enable in vitro transcription on either strand. The pUC-based, double-stranded origin of 

replication begins at base 1143. 

pIDTBlue vectors containing the two sequences were resuspended (see “resuspension protocol” 

below) and chemically transformed into One Shot® TOP10 Chemically Competent E. coli (Life 

Technologies; see “chemical transformation protocol” below) . Plasmid DNA was then isolated 

with the QIAprep Spin Miniprep Kit (Qiagen), quantified with the NanoDrop 2000 

Spectrophotometer (Thermo Scientific) and diluted in UltraPure™ Salmon Sperm DNA Solution 

of 20 ng/µL (Life Technologies). 

 

Fig. 19: pIDTBlue vector. 
 

 

 

 

 

 

 

 

RESUSPENSION PROTOCOL 

− Centrifuge the tube containing the pIDTBlue vector for few seconds to pellet the material 

− Add 40 µL of Tris-EDTA (TE) 

− Vortex for 20 seconds 

− Incubate for 30 minutes at room temperature 

− Centrifuge for 1 minute 
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CHEMICAL TRANSFORMATION PROTOCOL 

− Add 2 µL of resuspended pIDTBlue vector into a vial of One Shot® Chemically Competent E. coli 

and mix gently 

− Incubate on ice for 15 minutes 

− Heat-shock the cells for 30 seconds at 42°C without shaking 

− Immediately transfer the tubes to ice 

− Add 250 µL of room temperature S.O.C. Medium 

− Shake the tubes horizontally at 37°C for 1 hour 

− Spread 25 µL and 50 µL from each transformation on a pre-warmed selective plate with 

ampicillin and incubate over-night (ON) at 37°C 

− Pickup 2-6 white colonies and culture them overnight (ON) in lysogeny broth (LB) medium 

containing 50 µg/mL ampicillin. 
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5.2.2 IL28B rs8099917 ASSAY 
As positive controls for the assay for analysis of IL28B polymorphism rs8099917 we cloned two 

clinical samples carrying the two polymorphic variants using the pGC™ Blue Cloning & 

Amplification Kits (Lucigen). The pGC Blue vector contains a high-copy replication origin and the 

kanamycin resistance gene. Strong transcription terminators flank the lacZ gene to protect the 

vector from fortuitous transcription from cloned inserts. The vector is supplied pre-cut with 

single 3’-C overhangs and dephosphorylated 5’ ends. The copy number is similar to that of pUC 

plasmids (~300 copies/cell). Insert DNA that contains 3’-G tails and 5’-phosphate groups was 

ligated to the pGC Blue vector, transformed into competent cells, and spread on plates containing 

kanamycin plus XGAL and IPTG241 (Fig. 20). 

 

 

Fig. 20: Protocol of pGC™ Blue Cloning & Amplification Kits. (Source:241) 
  



MATERIALS AND METHODS 71 

1. PRIMER PHOSPHORYLATION 

Use T4 Polynucleotide Kinase (PNK) to add 5´ phosphates to PCR primers before performing 

the PCR reaction. 

Primer Kinase Reaction: 

2 µL of Forward primer (100µM) 

2 µL of Reverse primer (100µM) 

1 µL of Primer Kinase Buffer 

1 µL of T4 PNK (10U/µL) 

4 µL of H2O 

10 µL total 

 

Incubate at 37°C for 10 minutes. 

 

2. PCR 

A standard PCR using a non-proofreading polymerase was performed. The non-proofreading 

polymerase adds a single G nucleotide to the 3’ end of the PCR product that is necessary for 

the ligation. 

 

3. QUANTIFICATION OF DNA INSERT 

Approximate quantification of the DNA insert was performed using the DNA-Marker 

pUC19/Msp I (Carl Roth) on an agarose gel. 

Comparing the intensity of the amplicon band with the marker bands, it is possible to 

approximate the amount of PCR product with the following equation: 

Y : 2686 bp = X : 200 ng 

Y is the size of the marker band closest to the intensity of the amplicon band; X is the 

quantity (in ng) of the DNA used for electrophoresis; 2686 bp is the total length of the 

marker; 200 ng is total quantity of marker DNA. 

 

4. LIGATION 

Ligation reaction: 

x µL of Insert DNA (10-400 ng) 

2.5 µL of 4X pGC Blue Vector Premix 

1 µL of CloneSmart® DNA Ligase (2 U/µL) 

y µL of H2O 

10 µL total 

 

The reaction mixture was incubated at room temperature for 90 minutes. 
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The ligation reaction was heat denatured at 70°C for 15 minutes. 

 

5. TRANSFORMATION  

Protocol: 

− Add 4 µL of denatured product of the ligation reaction to a vial of competent E. coli cells 

on ice and incubate for 30 minutes 

− Heat shock cells by placing them in a 42°C water bath for 45 seconds 

− Return the cells to ice for 2 minutes 

− Add 260 µL of room temperature Recovery Medium to the cells in the culture tube 

− Place the tubes in a shaking incubator at 37°C for 1 hour 

− Plate 50-100 µL of transformed cells on nutrient agar plates containing 30 µg/mL 

kanamycin plus XGAL and IPTG and incubate the plates ON at 37°C. 

 
6. COLONY SCREENING AND EXPANSION 

The pGC Blue vector uses the standard blue/white colony screen based on lacZα 

complementation. Up to 10 white colonies were picked and checked for the presence of the 

DNA insert using a standard PCR. Transformants were grown ON in LB medium containing 

30 µg/mL kanamycin. 

 

7. DNA ISOLATION AND DILUTION OF CONTROLS 

Plasmid DNA was isolated using QIAprep Spin Miniprep Kit (Qiagen). After quantification of 

the plasmid solution, the copy number concentration [c/µL] was determined (see 

“Conversion of molar concentration to copy number concentration” below) and the plasmid 

diluted in UltraPure™ Salmon Sperm DNA Solution of 20 ng/µL (Life Technologies). 

 

CONVERSION OF MOLAR CONCENTRATION TO COPY NUMBER CONCENTRATION 

Molar concentration of the isolated DNA plasmid (ng/µL) was converted into copy number 

concentration [c/µL] using the formulas: 

Ci = ci × NA       (1) 

ci = ni/V       (2) 

ni = g/MW       (3) 

 

ni is the amount [mol]; V is the volume [L]; Ci is the copy number concentration; ci is the molar 

concentration; NA is the Avogadro constant; MW is the molar weight of double-stranded DNA, 

which can be approximated by 650 Da × number of base pairs (Da = Dalton). 
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5.2.3 CALR MUTATION AND MPL W515L/K ASSAYS 
As positive controls for the assays for detection of CALR and MPL mutations we cloned clinical 

samples with wild-type and mutated sequences using the TOPO TA Cloning®242 (Life 

Technologies). 

TOPO® Cloning is a one-step cloning strategy for the direct insertion of Taq polymerase-

amplified PCR products into a plasmid vector (Fig. 21). 

 

 
Fig. 21: Protocol of TOPO TA Cloning®. (Source:243) 
 

The plasmid vector is supplied in linearized form with: 

− Single 3´-thymidine (T) overhangs for TA Cloning® 

− Topoisomerase I covalently bound to the vector ("activated" vector, Fig. 22) 

Taq polymerase has a non-template-dependent terminal transferase activity that adds a single 

deoxyadenosine (A) to the 3´ ends of PCR products. The linearized vector has single, 

overhanging 3´ deoxythymidine (T) residues. This allows PCR inserts to ligate efficiently with 

the vector. Topoisomerase I from Vaccinia virus binds to duplex DNA at specific sites and cleaves 

the phosphodiester backbone after 5’-CCCTT in one strand244. The energy from the broken 

phosphodiester backbone is conserved by formation of a covalent bond between the 3’ 

phosphate of the cleaved strand and a tyrosyl residue (Tyr-274) of topoisomerase I. The 

phospho-tyrosyl bond between the DNA and enzyme can subsequently be attacked by the 5’ 

hydroxyl of the original cleaved strand, reversing the reaction and releasing topoisomerase245. 

 

Fig. 22: Topoisomerase I of TOPO TA Cloning®. (Source:242) 
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1. PCR 

An amplification reaction of the samples containing the target regions was set up with a 

master mix based on Taq polymerase. 

Amplification reaction: 

x µL of DNA template (10-100 ng) 

12.5 µL of Master Mix  

250 nM primers 

y µL of H2O 

50 µL total 

 

Cycling parameters suitable for this reaction mix were used, which included a final extension 

step of 10 minutes at 72°C to ensure that all PCR products were full length and 

3’-adenylated. The PCR product was checked by agarose gel electrophoresis. 

 

2. LIGATION 

TOPO® Cloning Reaction: 

4 µL of fresh PCR product 

1 µL of Salt Solution 

1 µL of TOPO® vector 

6 µL total 

 

The TOPO® Cloning Reaction was incubated for 5 minutes at room temperature. 

 

3. TRANSFORMATION 

2 µL of the TOPO® Cloning Reaction were transformed into One Shot® TOP10 Chemically 

Competent E. coli (see “Chemical transformation protocol” of IL28B rs12979860 assay). 

 

4. COLONY SCREENING AND EXPANSION 

TOPO TA Cloning® uses the standard blue/white colony screen based on lacZα 

complementation. Up to 10 white colonies were picked and checked for the presence of the 

DNA insert using a standard PCR. Transformants were grown ON in LB medium containing 

50 µg/mL ampicillin. 

 

5. DNA ISOLATION AND DILUTION OF CONTROLS 

Plasmid DNA was isolated using QIAprep Spin Miniprep Kit (Qiagen). After quantification of 

the plasmid solution, the copy number concentration [c/µL] was determined (see 
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“Conversion of molar concentration to copy number concentration” above) and the plasmid 

diluted in Lambda DNA (Promega) of 10 ng/µL. 

 

SEQUENCING 

The positive controls were checked with Sanger sequencing to confirm that the target sequences 

were cloned in the correct orientation. Sanger sequencing by capillary electrophoresis is the 

gold-standard technique that is used in a number of experimental workflows for DNA sequence 

determination. We also used Sanger sequencing as reference method for determination of the 

performance of the MPL W515L/K and CALR MUTATION assays and confirmation of sample 

genotypes in case of non-corresponding results (IL28B assays). Samples were prepared for 

sequencing through amplification of the target region with specific primers. A total of 10 µL of 

PCR product and the same volume of DNA-Marker pUC19/Msp I (Carl-Roth) were loaded into an 

agarose gel. The fluorescence intensity of the PCR product bands and the DNA-ladder (200 

ng/µL) were compared to approximate the amount of DNA in the sample. A quantity of PCR 

product corresponding to 2 to 4 ng per 100 bp for each sample and 12.8 pmol of primer were 

dried at 65°C for 40 min. The dried PCR products and primers were delivered to a sequencing 

service (BMR Genomics, Padua). 
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 DESIGN AND ANALYSIS OF PRIMERS AND PROBES 5.3
Design and analysis of primers and probes can be divided into three phases: 

1. Selection of the target region 

2. Design of primer pairs and probes 

3. Analysis of primers specificity 

5.3.1 SELECTION OF THE TARGET REGION 
The genomic target sequence was identified using GenBank and dbSNP. These are open access 

databases of the NCBI (National Center for Biotechnology Information) containing a collection of 

publicly available nucleic acid and protein sequences and their genetic variations within and 

across different species. 

The following NCBI genomic reference sequences were used: NG_007525.1 for MPL, 

NG_029662.1 for CALR and NC_000019.10 for IL28B. “NG” refers to an incomplete genomic 

region while “NC” refers to a complete genomic region, usually a reference assembly. 

The UCSC Genome Browser is a web-based graphical viewer that allows locating DNA sequences 

in the whole genome (Fig. 23). It provides a fast display of any requested portion of the genome 

at any scale, together with dozens of aligned annotation tracks (known genes, predicted genes, 

ESTs, mRNAs, CpG islands, assembly gaps and coverage, chromosomal bands, mouse 

homologies, and more) to recognize other possibly relevant features present in such a region. 

 

 

Fig. 23: UCSC screenshot of the chromosome 19 containing rs12979860 and rs8099917 SNPs. 
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5.3.2 DESIGN OF PRIMER PAIRS AND PROBES 
The primers for the qualitative assay were designed using Primer-BLAST, a web software for 

primer design that combines features of both Primer3 and BLAST. 

General guidelines for primer design are: 

− primer length: 18-30 bp 

− amplicon length: 100-150 bp 

− no more than 3 nucleotides, dinucleotide repeats or long stretches of guanosine (G) 

− less than 3 bp difference in length between primer pairs 

− primer melting temperatures (Tm):  65-75°C 

− difference in melting temperature of primers less than 5°C  

− GC content between 40 and 60% with the 3' of a primer ending in C or G to promote 

binding 

− balanced distribution of GC-rich and AT-rich domains 

− no intra-primer homology (more than 3 bases that complement within the primer) or 

inter-primer homology (forward and reverse primers having complementary sequences) 

to avoid self-dimers or primer-dimer formation 

− primers designed and ordered in the correct orientation (5' to 3') 

− primers for cloning outside of the amplified sequence. 

 

The primers and the probes for the real-time PCR based assays were designed using the Primer 

Express® Software v3.0.1 (Life Technologies), an oligo designing tool for gene quantitation and 

allelic discrimination. This software supports the following platforms for real-time PCR: 

StepOne™, StepOnePlus™, 7300, 7500, 7500 Fast, 7900HT by Applied Biosystems (Life 

Technologies) and ViiA™ 7 and QuantStudio™ by Life Technologies. 

We designed oligos according to the recommended guidelines listed in Tab. 9. The sequences of 

the primers and probes designed are a proprietary of AB ANALITICA and therefore cannot be 

reported here. 
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 Quantification Assay Allelic Discrimination Assay 
 Primer Probe Primer Probe 

Primer Length (bases) 20 13-30 20 13-30 
Amplicon length (bases) 50-150 50-150 50-150 50-150 

Tm 58-60°C 68-70°C 58-60°C 65-67°C 

GC content 30-80% 30-80% 30-80% 30-80% 

Other features: 

No G residue at the 5′ and 3’ ends  X  X 

No repeated oligonucleotides and long 
stretches of G X X X X 

No more than two CC dinucleotides in 
the middle of the probe  X  X 

No G in the second position on the 5′ 
end of FAM™ dye-labeled probes  X  X 

No more  than two G + C residues at the 
3’ end X  X  

Tm difference between probes  not 
greater than 1°C    X 

SNP site in the middle third of sequence 
or toward 3′ end but not in the last two 
bases of 3′ end (Fig. 24) 

   X 

No consecutive A residues  X  X 

Tab. 9: Guidelines for primer and probe design in real-time PCR assays. 
 

 

Fig. 24: Guidelines for probe design in assays based on SNPs detection. 
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5.3.3 ANALYSIS OF PRIMER SPECIFICITY 
After designing primers, a BLAST search was performed to determine their specificity. Both the 

forward and the reverse primer of a primer pair need to match to get a positive result. 

We tested for secondary structures using Mfold. This is a versatile folding program for use in 

analysis of amplification products, linear probes over 30 nucleotides, and Molecular Beacons. 

The assessment of secondary structures is important as they could affect the efficiency of the 

reaction. 

For any real-time PCR application it is desirable to obtain a 100% amplification efficiency, which 

means that each time a cycle is completed, the amount of amplicons has exactly doubled. If a 

secondary structure is thermodynamically more stable than the primer-target hybrid, formation 

of the latter will be disfavored. In addition, secondary structures can also prevent a read through 

of the polymerase. 

To determine whether certain structures are favored, the change in Gibbs Free Energy (ΔG) 

must be calculated. Structures with negative ΔG are favored (ΔG= –10 are strongly favored), 

whereas a positive ΔG indicates disfavored structures (ΔG=10 strongly disfavored). For each 

assay the primer pair producing the amplicon with minimal secondary structure was chosen. In 

cases that secondary structures could not be avoided, the annealing temperature was increased. 

In thermodynamics, ΔG is a parameter related to the stability of a system. The transition from 

one state to another results in a change of the energy of the system. This can be represented by 

the formula: 

[Oligo1] + [Oligo2] ↔ [Duplex] 

[Oligo1] and [Oligo2] represent the concentration of the two single stranded oligos in the system 

and [Duplex] represents the concentration of the hybridization product (duplex) formed by the 

two oligos. 

The change in Gibbs Free Energy (ΔG, [kcal/mol]) is the net exchange of energy between the 

system and its environment and can be described by the equation: 

ΔG = ΔH – T × ΔS 

ΔH (Enthalpy difference) represents the total energy exchange between the system and its 

surrounding environment [kcal/mol], ΔS (Entropy difference) represents the energy spent by 

the system to organize itself [cal/K × mol] and T represents the absolute temperature of the 

system. 

This equation indicates that ΔG is temperature dependent. So, at a given temperature, a positive 

ΔG value indicates that the system will go in the direction of denaturation, while a negative value 

indicates that the system will go in the direction of hybridization. 

 





 

6 RESULTS 
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 METHOD 6.1

6.1.1 IL28B ASSAYS 
For the identification of allelic variants of the two IL28B polymorphisms rs12979860 and 

rs8099917 we chose to develop multiplexed (more than one target assayed in the same 

reaction) end-point (data is collected at the end of a PCR) assays for allelic discrimination (AD). 

For each assay we used two primer pairs and specific probes that allow recognition of the two 

most common variants of each SNP (single-nucleic polymorphism) site. The actual quantity of 

the target sequence is not determined. Each assay employed a dye-labeled TaqMan® probe that 

was a perfect match for the major allele of the SNP (allele 1) and one dye-labeled TaqMan® 

probe that was a perfect match for the minor allele of the SNP (allele 2). 

The allelic discrimination assay classifies unknown samples as: 

− Homozygous (samples having only allele 1 or only allele 2) 

− Heterozygous (samples having both allele 1 and allele 2) 

The allelic discrimination assay measures the change in fluorescence of the dye-labeled probes.  

In both assays and for all validated PCR instruments we used the FAM™-dye for the major allele 

and the JOE™-dye for the minor allele. 

Fig. 25 illustrates the mechanism of identifying different SNP alleles through specific probes in 

TaqMan® SNP genotyping assays. 

 

Fig. 25: Mechanism for identification of the allelic variant of the two IL28B SNPs through specific TaqMan® probes. 
(Modified from 246) 

 

Tab. 10 shows the correlation between fluorescence signals and the genotype. 

 
A substantial increase in… The sample is… 
JOE™ fluorescence only Homozygous for the minor allele 
FAM™ fluorescence only Homozygous for the major allele 
Both fluorescence signals Heterozygous 

Tab. 10: Correlation between fluorescence signals and the genotype.  
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6.1.2 CALR MUTATION ASSAY 
For the detection of CALR mutations we used a conventional multiplex end-point PCR. This 

method was chosen due to the fact that, up to date, all described CALR mutations are insertions, 

deletions or complex indels found in a relatively short sequence in exon 9 of CALR. All known 

CALR mutations generate sequences that differ in length from the wild-type sequence and, 

therefore, can be detected using conventional PCR and visualization of the amplification 

products by agarose gel electrophoresis. 

6.1.3 MPL W515L/K ASSAY 
For assessment of the mutant allele burden concerning the MPL gene we chose to develop a 

semi-quantitative assay based on a multiplexed real-time PCR that specifically detects variants 

of a single-nucleotide mutation site. In contrast to the allelic discrimination assays utilized for 

the IL28B analysis, the semi-quantitative assay allows to determine the quantity ratio between 

the mutated and the wild-type allele. However, the absolute quantity of target sequences cannot 

be obtained. The assay utilized three specific TaqMan® MGB (minor groove binder) probes 

labeled with fluorescent dyes. The probe specific for the wild-type MPL allele was labeled with 

the VIC®-dye, whereas the probes specific for the mutated alleles (MPL W515K and MPL W515L) 

were labeled with the FAM™-dye. Each probe was designed to be a perfect match for its target 

sequence. The protocol of the assay would utilize two different reaction mixes for analysis of the 

two mutations (MPL W515L and W515K). The mixes would share the PCR primers and the 

probe that recognizes the wild-type MPL, but each mix would only contain one of the mutation-

specific probes. Each sample would be tested with both mixes. As controls, we prepared serial 

dilutions of the mutated allele on a wild-type allele background247. Semi-quantitative analysis 

was performed comparing the amplification curves of the samples with the amplification curves 

obtained for the positive controls. The ratio between the ΔRn values (ΔRn = fluorescence 

intensity corrected for the background) of the targets (mutated and wild-type allele) was used to 

determine the cut-off of the assay (cut-off = threshold value below which samples are 

considered negative for the analyzed mutation). 
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 OPTIMIZATION 6.2

6.2.1 IL28B ASSAYS 
Amplification mixes of IL28B assays were optimized testing different conditions (master mixes 

and concentrations of primers and probes) with samples of known genotype. 

We optimized the amplification reaction step by step, evaluating several parameters of the 

amplification plot in the linear scale. The requirements for the assay were: 

− high separation of the target specific fluorescence signals in homozygous samples (high 

ΔRn difference) and curves overlap (similar CT and ΔRn) in heterozygous samples 

− balanced fluorescence signals for the two probes in terms of CT and ΔRn (fluorescence 

intensity) 

− correct genotyping with the automatic call of the instrument 

Since the output signals may be substantially different depending on the cycler that is used, 

optimization of both IL28B assays was performed separately on different Real-Time PCR 

Systems: Applied Biosystems 7300 (ABI 7300), Applied Biosystems 7500 Fast Dx (ABI 7500 Fast 

Dx), Applied Biosystems 7500 Fast (ABI 7500 Fast), Applied Biosystems StepOnePlus™ (ABI 

StepOnePlus™), Applied Biosystems StepOne™ (ABI StepOne™), Dx Real-Time System (Bio-Rad 

Dx), CFX96™ Real-Time PCR Detection System (Bio-Rad CFX96™). 

 

Fig. 26 and Fig. 28 show two examples of the optimization process for the IL28B rs12979860 

assay on ABI 7500 Fast/Fast Dx (Fig. 26) and for the IL28B rs8099917 assay on ABI 

StepOne™/StepOnePlus™ (Fig. 28). 

For optimization of the IL28B rs12979860 assay we first compared two different master mixes 

with the same concentration of primers and probes. Both mixes gave similar results (ratio of 

fluorescence intensity) but amplification signals differed in fluorescence intensity by one log 

unit (Fig. 26 a, b). The mix exhibiting the higher fluorescence intensity was selected for further 

optimization. In the next step, we aimed to balance the fluorescence intensity of the two probes 

by increasing the concentration of the probe labeled with JOE™ (Fig. 26 c). Although this led to 

more similar specific amplification signals of the two probes, it also increased the background of 

the JOE™ signal. To this point, the amplification curves did not show the ideal S-shape, indicating 

an inhibition of the PCR. Since too high primer concentrations may inhibit the PCR, we reduced 

the total primer concentration in the amplification mix. As expected, by this we obtained curves 

that were closer to the ideal S-shape (Fig. 26 d). The final amplification mix showed balanced 

fluorescence signals for the two probes in terms of CT, well separated curves in homozygous 

samples and similar curves (similar CT and ΔRn) in heterozygous samples (Fig. 26 e).  

Fig. 27 (A and B) shows the results of optimization of IL28B rs12979860 assay on ABI 

StepOne™/StepOnePlus™, Bio-Rad Dx/CFX96™ and ABI 7300. 
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For optimization of the IL28B rs8099917 assay we proceeded in a similar manner, except for 

testing different master mixes due to the similar nature of both IL28B assays. The initial 

condition we tested showed lower intensity of JOE™ signal compared to the FAM™ signal. This 

phenomenon was most probably due to a higher base fluorescence of the JOE™ dye (Fig. 28 a). 

We tried to increase the fluorescence intensity of the JOE™ labeled probe using a higher probe 

concentration. Since results were not satisfactory (Fig. 28 b), we also tested the mix with a lower 

concentration of the FAM™ probe. In this case the fluorescent signals of the two probes were 

more balanced in terms of CT and ΔRn (Fig. 28 c). Increasing primer concentration led to 

inhibition of the PCR (Fig. 28 d). For the final mix we selected the conditions that best balanced 

the signals of the two probes (Fig. 28 e). 

Fig. 29 (A and B) shows the results of optimization of IL28B rs8099917 assay on ABI 7500 

Fast/Fast Dx, Bio-Rad Dx/CFX96™ and ABI 7300. 

  



86 RESULTS 

IL28B rs12979860 assay 

  

  

 

 

 

  

Fig. 26: Steps for development of IL28B rs12979860 assay on ABI 7500 Fast/Fast Dx. Double arrows show ΔRn 
difference between curves of each sample.  a) initial mix, b) different master mix, c) condition “a” with higher 
concentration of JOE™ probe, d) condition “a” with lower primers concentration, e) IL28B rs12979860 assay 
on ABI 7500 Fast/Fast Dx. At the bottom right corner are shown the details of amplification plot “e” divided 
by genotype and the respective allelic discrimination scatter plot. 
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Fig. 27A: IL28B rs12979860 assay on ABI StepOne™/StepOnePlus™ and Bio-Rad Dx/CFX96™. Left: amplification 
curves of three samples with the different genotypes. ΔRn difference between curves of each sample is 
shown. Top right corner: details of amplification plot divided by genotype. Bottom right corner: allelic 
discrimination scatter plot of the same samples. 
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Fig. 27B: IL28B rs12979860 assay on ABI 7300. Left: amplification curves of three samples with the different 
genotypes. ΔRn difference between curves of each sample is shown. Top right corner: details of amplification 
plot divided by genotype. Bottom right corner: allelic discrimination scatter plot of the same samples. 
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IL28B rs8099917 assay 

  

  

 

 

 Fig. 28: Steps for development of IL28B rs8099917 assay on ABI StepOne™/StepOnePlus™. Double arrows show ΔRn 
difference between curves of each sample. a) initial mix, b) condition “a” with higher concentration of JOE™ 
probe, c) condition “b” with lower concentration of  FAM™ probe, d) condition “c” with higher primers 
concentration, e) IL28B rs8099917 assay on ABI StepOne™/StepOnePlus™. In the bottom right corner are 
shown the details of amplification plot “e” divided by genotype and the corresponding allelic discrimination 
scatter plot.  
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Fig. 29A: IL28B rs8099917 assay on ABI 7500 Fast/Fast Dx and Bio-Rad Dx/CFX96™. Left: amplification curves of 
three samples with the different genotypes. ΔRn difference between curves of each sample is shown. Top 
right corner: details of amplification plot divided by genotype. Bottom right corner: the allelic discrimination 
scatter plot of the same samples. 
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Fig. 29B: IL28B rs8099917 assay on ABI 7300. Left: amplification curves of three samples with the different 
genotypes. ΔRn difference between curves of each sample is shown. Top right corner: details of amplification 
plot divided by genotype. Bottom right corner: the allelic discrimination scatter plot of the same samples. 

 

To summarize, IL28B rs12979860 and IL28B rs8099917 mixes conditions were different for 

each instrument. The exact composition of the mixes cannot be reported here, as they constitute 

proprietary reagents of AB ANALITICA. Both IL28B assays have the same amplification protocol 

(Tab. 11) and thermal profile (Tab. 12) for all real-time PCR systems used in this study. 

 

Amplification protocol 

Amplification reagents Volume 
IL28B amplification mix 24 µL 

Positive controls/ DNA/ no template control 1 µL 
Total 25 µL 

Tab. 11: Amplification protocol of IL28B rs12979860 and IL28B rs8099917 assays. 
 

 

Thermal profile 

PCR phase Temperature Time Cycles 
UNG activation 50°C 2 minutes 1 
Taq activation 95°C 10 minutes 1 
Denaturation 95°C 10 seconds 

50 
Annealing/Extension 60°C 45 seconds 

Tab. 12: Thermal profile of the amplification reaction of IL28B rs12979860 and IL28B rs8099917 assays. 
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POSITIVE CONTROLS 

For each assay, several clones of the three control plasmids were prepared. The heterozygous 

control was prepared as a 1:1 mixture of the two homozygous controls. Different dilutions of 

these controls were tested with samples on the real-time PCR systems. Since positive controls 

must mimic clinical samples, we selected as controls those plasmids that produced signals that 

were closest (similar CT and ΔRn) to the signals of clinical samples. Two examples are shown in 

Fig. 30 for IL28B rs12979860 assay and in Fig. 31 for IL28B rs8099917 assay, respectively. 

 

IL28B rs12979860 assay 

 

  
 

Fig. 30: Amplification and allelic discrimination plots of two plasmid clones and one clinical sample on ABI 7300. 
Amplification plots show very similar CT and ΔRn values of controls and sample curves for the three 
genotypes: C/C (a), C/T (b), T/T (c). Scatter plot (d) shows very similar genotyping results of controls and 
sample for three genotype groups.  

 

IL28B rs8099917 assay 

 

  
 

Fig. 31: Amplification and allelic discrimination plots of two plasmid clones and one clinical sample on ABI 7500 
Fast/Fast Dx. Amplification plots show very similar CT and ΔRn values of controls and sample curves for the 
three genotypes: T/T (a), T/G (b), G/G (c). Scatter plot (d) shows very similar genotyping results of controls 
and sample for three genotype groups. 
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6.2.2 CALR MUTATION ASSAY 
We tested different experimental conditions to optimize the CALR MUTATION assay. We tested 

samples of known mutational status with different master mixes (Fig. 32 a, b, c), different 

concentrations of primers (Fig. 32 d, e, f) and different number of amplification cycles (Fig. 32 g, 

h). The visualization of the PCR products by gel electrophoresis was optimized testing different 

types of agarose (Fig. 32 i, j, k), gels of varying densities (Fig. 32 l, m), different DNA-

intercalating agents (Fig. 32 n, o) and loading different volumes of PCR product into the gel (Fig. 

32 p, q). Step by step, we compared the different conditions considering both brightness and 

resolution of bands and selected those allowing higher discrimination of the specific bands 

(orange rectangles in Fig. 32). 

 

 

 

 

Fig. 32: Gels showing steps of CALR MUTATION assay optimization. Step 1: testing different master mixes (a, b, c); 
Step 2: testing different primers concentrations (d, e, f); Step 3: testing different number of amplification 
cycles (g, h); Step 4: testing different types of agarose (i, j, k); Step 5: testing gels of varying densities (l, m); 
Step 6: testing different DNA-intercalating agents (n, o); Step 7: testing different volumes of PCR product to 
load in the gel (p, q). Orange rectangles indicate the condition chosen step by step. M, DNA marker. 
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The positive controls were optimized testing different dilutions of the DNA plasmids (Fig. 33). 

We selected the higher dilution of plasmids because it allowed the discrimination of the two 

bands specific for Type-2 mutation (Fig. 33 b). 

 

Fig. 33: Two dilutions of plasmids with the wt, Type-2 and Type-1 
sequences. The orange square indicates the condition chosen. M, 
DNA marker. 
 

 

Our final amplification protocol uses 20 µL of reaction mix and 5 µL of DNA (Tab. 13). For the 

thermal profile of the amplification reaction see Tab. 14. The final composition of the 

amplification mix is proprietary of AB ANALITICA and cannot be reported here. 

 

Amplification protocol 

Amplification reagents Volume 
CALR Master Mix 20 µL 

Positive controls / DNA / no template control 5 µL 
Total 25 µL 

Tab. 13: Amplification protocol of CALR MUTATION assay. 
 

Thermal profile 

Steps Temperature Time Cycles 
Taq activation 95°C 2 minutes 1 
Denaturation 95°C 30 seconds 

35 Annealing 60°C 30 seconds 
Extension 72°C 30 seconds 

Final extension 72°C 10 minutes 1 

Tab. 14: Thermal profile of the amplification reaction of CALR MUTATION assay. 
 

To increase specificity we established an additional step (post-PCR treatment) that has to be 

performed after the PCR. After the amplification reaction, each PCR product was divided into 

two aliquots. One aliquot of each sample was treated with a post-PCR reagent and denatured at 

95°C for 5 minutes. The composition and mechanism of action of this post-PCR reagent are 

proprietary of AB ANALITICA and for this reason cannot be discussed here. For the visualization 

of PCR products, we prepared a 4% agarose with 1X TAE and 0.5 µg/mL of ethidium bromide. A 

volume of 5 µL of the treated and untreated PCR products was loaded into the gel, together with 

2 µL of a loading buffer containing bromophenol blue. As molecular weight reference we loaded 

10 µL of a DNA ladder. Selected visualization conditions and post-PCR treatment allowed 

identification and discrimination of mutated samples with a sequence length very close to the 

M          a                M          b 
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wild-type (wt) sequence (e.g., insertions or deletions of only 4 bp, data not shown) and analysis 

of homozygous mutated samples (100% of mutant allele, Fig. 34). 

 

 
 

Fig. 34: Gel visualization of positive controls (2, 3, 4), a wt sample (5) and a Type-2 mutated sample (6, 7, 8). 
Treatment of PCR product with post-PCR reagent and denaturation at 95°C for 5 minutes allow identification 
of 100% mutated samples with a sequence length ± 5 bp (8) compared to the wt sequence. 
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6.2.3 MPL W515L/K ASSAY 
The MPL W515L/K assay was based on two multiplex mixes for the specific amplification of the 

wild-type MPL sequence and the MPL sequence containing the mutations W515L or W515K. We 

carried out a preliminary optimization on the Applied Biosystems StepOnePlus™ Real-Time PCR 

System. To optimize the amplification mix, we started testing different master mixes for the MPL 

W515L target (Fig. 35 a, b, c, d). We selected the master mix that showed curves with higher 

similarity in terms of CT and ΔRn between the wild-type control (0%) and a wild-type sample 

and between the wild-type and mutated (100%) controls (Fig. 35 d). Using the selected master 

mix, we tested different primer and probe concentrations with the 100%, 1% and 0% controls 

for both the MPL W515L (Fig. 35 e, f, g) and the MPL W515K (Fig. 35 h, i, j) specific mixes. We 

selected the conditions that produced the highest difference in ΔRn ratios (ΔRnMUT/ΔRnWT) 

between the 0% and 1% controls (Fig. 35 g, j). Furthermore, the selected condition for the MPL 

W515K amplification mix (Fig. 35 j) did not show inhibited curves compared to the other 

conditions tested (Fig. 35 h, i). 

 

    

 

   

MPL W515L 

 

   

MPL W515K 

Fig. 35: Amplification plots showing steps for optimization of the MPL W515L/K amplification mixes. Step 1: testing 
different master mixes (a, b, c, d); Step 2: testing different primer and probe concentrations for MPL W515L 
mix (e, f, g) and MPL W515K mix (h, i, j). Amplification plots with conditions chosen step by step are 
highlighted in black squares. 
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We prepared serial dilutions of the 100% MPL W515L and MPL W515K controls on background 

of the wild-type control to obtain positive controls with 70%, 50%, 30%, 10%, 1.5%, 1% of the 

mutated allele positive controls. In order to determine the appropriate plasmid concentration 

for controls, we tested the 100%, 1.5%, 1% and 0% controls at two different concentrations and 

calculated the ΔRn ratio of the two targets in the reaction (ΔRnMUT/ΔRnWT). We decided to use 

the higher concentration for the positive controls as it showed a larger difference (Δ(ΔRn) X–0%) 

between the ΔRn ratios of the the low positive controls (1% and 1.5% ) and the 0% (wild-type) 

control for MPL W515K (orange rectangle in Tab. 15). The two concentrations of controls 

showed comparable results with the MPL W515L mix (Tab. 15). 

 
 ΔRn ratio 

W515K/WT 
W515K 

Δ(ΔRn) X–0% 
ΔRn ratio 

W515L/WT 
W515L 

Δ(ΔRn) X–0% 

100% 11.165  3.093  

1.5% higher 
concentration 0.903 0.174 0.123 0.027 

1% higher 
concentration 0.841 0.112 0.110 0.014 

1.5% lower 
concentration 0.817 0.088 0.120 0.024 

1% lower 
concentration 0.776 0.047 0.113 0.017 

0% 0.729  0.096  

Tab. 15: Comparison between two concentrations of positive controls (higher and lower) calculated using the low 
positive controls 1.5% and 1% (possible cut-offs of the assay) for both target mixes. Δ(ΔRn)X-0% is the 
difference between ΔRn of the positive control and ΔRn of the wild-type control (0%). An assay with high 
Δ(ΔRn)CUTOFF-0% values presumably has high diagnostic specificity, too. The highest values were obtained 
with controls at higher concentrations using the MPL W515K mix (orange rectangle). 

 
 
We developed a prototype of the MPL W515L/K assay based on amplification of 5 µL of DNA in a 

total reaction volume of 25 µL (Tab. 16). The amplification mix is a proprietary reagent of 

AB ANALITICA and therefore cannot be discussed here. The thermal profile of the amplification 

reaction is reported in Tab. 17. 

 
Amplification protocol 

Amplification reagents Volume 
MPL W515L/K amplification mix 20 µL 

Positive controls/ DNA/ no template control 5 µL 
Total 25 µL 

Tab. 16: Amplification protocol of MPL W515L/K prototype. 
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Thermal profile 

Steps Temperature Time Cycles 
UNG activation 50°C 2 minutes 1 
Taq activation 95°C 10 minutes 1 
Denaturation 95°C 15 seconds 

50 
Annealing/Extension 60°C 1 minute 

Tab. 17: Thermal profile of the amplification reaction of the MPL W515L/K prototype. 
 
 
The prototype showed ΔRn values proportional to the dilution of the positive controls (100%, 

70%, 50%, 30%, 10%, 1.5%, 1% and 0%). Larger intervals between the ΔRn values were 

obtained for the controls with higher percentages of the mutated allele (Fig. 36). This translates 

into a higher resolution in the range of 10 to 100% compared to the range of 0 to 1.5% of 

mutated allele. 

 

    

 
 

 
 

Fig. 36: Amplification and allelic discrimination plots of the 100%, 70%, 50%, 30%, 10%, 1.5%, 1%, 0% positive 
controls with the MPL W515L/K prototype. 
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 PERFORMANCES 6.3

6.3.1 IL28B ASSAYS 

ANALYTICAL SPECIFICITY 

To ensure a high specificity of the assays for analysis of the IL28B polymorphisms rs12979860 

and rs8099917, highly specific amplification primers and probes were selected and the protocol 

established with stringent reaction conditions. To test the specificity, the primer and probe 

sequences were aligned in public genome databases (NCBI Blast). The sequences showed no 

non-specific sequence pairing. Primer specificity was demonstrated by real-time PCR using a 

DNA binding dye that showed no unspecific amplification signals. The specific amplification was 

additionally confirmed by Sanger sequencing (an example is given in Fig. 43). Amplicons 

exclusively contained the target sequence and the sequencing produced a well-defined 

electropherogram with sharp peaks separated by even spaces and little background interference 

at the peak baseline. This indicates the absence of competing amplification products and a 

specific amplification of the target sequence. 

ANALYTICAL SENSITIVITY 

Analytical sensitivity of the IL28B rs12979860 and IL28B rs8099917 assays was tested using 

two clinical samples for each genotype at a DNA concentration of 2 ng/µL on ABI 

StepOne™/StepOnePlus™, ABI 7500 Fast/Fast Dx and Bio-Rad Dx/CFX96™. In all cases the 

samples were correctly genotyped (Tab. 18). 

 
   Real-Time PCR System 

 Sample 
(2 ng DNA) Genotype ABI StepOneTM/ 

StepOnePlusTM 
ABI 

7500 Fast/Fast Dx Bio-Rad Dx/CFX96TM 

IL
28

B
 rs

12
97

98
60

 RQ00081 C/C    

RQ00086 C/C    

RQ00104 C/T    

RQ00301 C/T    

RQ00079 T/T    

RQ00084 T/T    

IL
 2

8B
 rs

80
99

91
7 

RQ00086 T/T    

RQ00104 T/T    

RQ00100 T/G    

RQ00101 T/G    

RQ00084 G/G    

RQ00594 G/G    

Tab. 18: Both IL28B assays correctly detected 2 ng/ µL DNA in samples with the three genotypes on ABI 
StepOne™/StepOnePlus™, ABI 7500 Fast/Fast Dx and Bio-Rad Dx/CFX96™. 
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With both assays, 2 ng of DNA per reaction (ng/rx) could still be analyzed (curves above 

threshold) and correctly genotyped by automatic genotype call on instruments that support this 

function (Fig. 37 and Fig. 38). 

IL28B rs12979860 assay Real-
Time 
PCR 
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Fig. 37: Example of detection and allelic discrimination of 2 ng/rx DNA samples with the 3 rs12979860 genotypes. 
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IL28B rs8099917 assay Real-
Time 
PCR 

System RQ00086 (T/T) RQ00101 (T/G) RQ00084 (G/G) 
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Fig. 38: Example of detection and allelic discrimination of 2 ng/rx DNA samples with the 3 rs8099917 genotypes. 
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RANGE OF DNA QUANTITY 

To assess the compatibility of the assays with extraction systems that produce high DNA yields 

and to evaluate assay performances when using high concentrations of DNA, we tested clinical 

samples at a concentration of 250 ng. Both the IL28B rs12979860 and the IL28B rs8099917 

assays were able to correctly assign the genotype of these samples. 

DIAGNOSTIC SENSITIVITY AND SPECIFICITY 

We determined the diagnostic sensitivity and specificity of the assays testing 200 (IL28B 

rs12979860) and 193 (IL28B rs8099917) clinical samples on Bio-Rad Dx/CFX96™. Overall, 199 

of 200 samples (IL28B rs12979860) and 192 of 193 samples (IL28B rs8099917) were correctly 

genotyped. All correctly genotyped samples showed well-separated curves (“bundle of curves”, 

Fig. 39 and Fig. 41) and could unequivocally be assigned to the correct genotype group by 

automatic call (Fig. 40 and Fig. 42). Based on these data, diagnostic sensitivity and diagnostic 

specificity were calculated (IL28B rs12979860: 99.50%; IL28B rs8099917: 99.48%). The assays 

failed to correctly analyze samples RQ00616 (rs12979860 C/T, identified as T/T) and RQ00613 

(rs8099917 T/G, identified as T/T) probably due to sample degradation. The DNA sequence of 

these samples was checked by Sanger sequencing (RQ00613 sequence is reported in Fig. 43). 

At the same time, we validated the assays on ABI 7300, ABI 7500 Fast/Fast Dx, ABI 

StepOne™/StepOnePlus™ using around 50 clinical samples (Fig. 39, Fig. 40, Fig. 41, Fig. 42). 
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IL28B rs12979860 assay Real-
Time PCR 

System C/C C/T T/T 

 
  

ABI StepO
ne

TM/ 
StepO

nePlus
TM 

 

  

ABI 7500 Fast/Fast D
x 

 
  

Bio-R
ad D

x/C
FX96

TM 

 

  

ABI 7300 

Fig. 39: Example of amplification plots of clinical samples with the three genotypes of rs12979860 on ABI 
StepOne™/StepOnePlus™, ABI 7500 Fast/Fast Dx, Bio-Rad Dx/CFX96™ and ABI 7300. Samples with the same 
genotype show the characteristic bundle of curves. 
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Allelic Discrimination Plot Real-Time 
PCR System 
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Fig. 40: Allelic discrimination plots of the same samples of Fig. 39 (rs12979860) on ABI StepOne™/StepOnePlus™ 
(a), ABI 7500 Fast/Fast Dx (b), Bio-Rad Dx/CFX96™ (c) and ABI 7300 (d). Genotype was correctly assigned 
by the automatic call of the instrument that formed three well-separated groups. 
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IL28B rs8099917 assay Real-Time 
PCR 

System T/T T/G G/G 
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Fig. 41: Example of amplification plots of clinical samples with the three genotypes of rs8099917 on ABI 
StepOne™/StepOnePlus™, ABI 7500 Fast/Fast Dx, Bio-Rad Dx/CFX96™ and ABI 7300. Samples with the same 
genotype show the characteristic bundle of curves. 
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Allelic Discrimination Plot Real-Time 
PCR System 
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Fig. 42: Allelic discrimination plots of the same samples of Fig. 41 (rs8099917) on ABI StepOne™/StepOnePlus™ (a), 
ABI 7500 Fast/Fast Dx (b), Bio-Rad Dx/CFX96™ (c) and ABI 7300 (d). Genotype of samples was correctly 
assigned by the automatic call of the instrument that formed three well-separated groups. 

 

 

 

 

 

 

Fig. 43: Electropherogram of RQ00613 by Sanger sequencing. The rs8099917 locus clearly presents two overlapping 
peaks (in the rectangle). 
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STABILITY STUDY 

We performed a stability study to determine the shelf-life of the reagents of the IL28B 

rs12979860 and IL28B rs8099917 assays. During this study aliquots of freshly prepared 

reagents were stored at the recommended storing conditions and were/will be tested at 

different points in time. Results were/will be compared to the data obtained at the starting point 

(T0). We prepared three batches of amplification mixes with reagents from different stock 

solutions and the positive controls for each genotype. We divided the mixes and the controls into 

aliquots in order to avoid that any reagent undergoes more than two freeze-thaw cycles, which 

might lead to degradation of the components due to excessive temperature variations. The 

aliquots were stored at -20°C/-30°C. Each batch of the amplification mixes was tested on the Dx 

Real-Time System (Bio-Rad) directly after preparation (T0) and at the following points in time: 

T3, T8, T12, T14, T16, T18 and T20 (months after preparation) (IL28B rs12979860); T6, T10 

and T14 (months after preparation) (IL28B rs8099917). The stability study of the IL28B 

rs8099917 assay is in progress (T18 and T20 still need to be tested). We included larger time 

intervals for the IL28B rs8099917 assay evaluation, owing to the robustness observed for the 

IL28B rs12979860 reagents. At each data point we evaluated the obtained CT and RFU values 

based on our experience with similar IVDs according to the European Standard EN 13640:20021. 

We did not observe any significant variation of the CT values at T20 and T14 (months) for the 

IL28B rs12979860 assay and the IL28B rs8099917 assay, respectively (Fig. 44). Although we 

detected fluctuations in the RFU values (Fig. 45), these are unlikely to result from mix 

degradation. A degradation of reagents would cause the RFU values to gradually decrease over 

time. In contrast, the observed variations include decreased and increased RFU values. This, in 

combination with the fact that all batches and both assays show the same course of variation, 

indicates that the fluctuations are probably caused by varying performance of the real-time PCR 

machine over time. Therefore, we assigned both assays, IL28B rs12979860 and IL28B 

rs8099917, a shelf-life of 1 year. 
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IL28B rs12979860 assay 
C/C C/T FAMTM C/T JOETM T/T 

    
IL28B rs8099917 assay 

T/T T/G FAMTM T/G JOETM G/G 

    

Fig. 44: CT values of fluorescence signals of IL28B rs12979860 and IL28B rs8099917 assays at T0, T3, T8, T12, T14, 
T16, T18, T20 (rs12979860) and at T0, T6, T10, T14 (rs8099917) on Bio-Rad Dx. 

  
IL28B rs12979860 assay 

C/C C/T FAMTM C/T JOETM T/T 

    
IL28B rs8099917 assay 

T/T T/G FAMTM T/G JOETM G/G 

    

Fig. 45: RFU values of fluorescence signals of IL28B rs12979860 and IL28B rs8099917 assays at T0, T3, T8, T12, 
T14, T16, T18, T20 (rs12979860) and at T0, T6, T10, T14 (rs8099917) on Bio-Rad Dx. 
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6.3.2 CALR MUTATION ASSAY 

ANALYTICAL SPECIFICITY 

To ensure a high specificity of the CALR MUTATION assay, highly specific amplification primers 

were selected and the protocol established with stringent reaction conditions. To test the 

specificity, primer sequences were aligned in public genome databases (NCBI Blast). The 

sequences showed no nonspecific sequence pairing. In addition, the assay showed no 

nonspecific bands and primer-dimers by gel electrophoresis. This was also confirmed by Sanger 

sequencing of PCR products. The tested amplicons exclusively contained the target sequence and 

the sequencing produced well-defined electropherograms with sharp peaks separated by even 

spaces and little background interference at the peak baseline (Fig. 51), which indicates absence 

of competing amplification products and specific amplification of the target sequence. Mutation-

specific detection was confirmed by the post-PCR treatment of samples, the optimized 

visualization on a 4% agarose gel and the presence of specific controls: 

− post-PCR treatment allowed identification of mutations with a sequence length very 

similar to the wild-type sequence (± 4-5 bp); 

− 4% agarose gels allow proper band separation; 

− comparison with positive controls facilitates discrimination of various sample sequences 

(wild-type/insertions/deletions). 

  



110 RESULTS 

ANALYTICAL SENSITIVITY 

We determined the limit of detection (LOD) of the CALR MUTATION assay by testing serial 

dilutions of a plasmid containing a mutated sequence on the background of a plasmid with the 

wild-type sequence. We tested the ratios 100%, 70%, 50%, 25%, 10% and 5% for the 

Type-1/Type-2 mutations and a rare mutation (sequence length -4 bp than the wild-type 

sequence). The LOD was 5% of mutated allele for the Type-2 and the rare mutation and 10% for 

the Type-1 mutation (Fig. 46). Therefore, we assigned the CALR MUTATION assay a final LOD of 

10% of mutated allele. 

 

Type-1 mutation 

 

1) DNA Marker 

2) wt control 

3) Type-2 control 

4) Type-1 control 

5) 100% 

6) 70% 

7) 50% 

8) 25% 

9) 10% 

10) 5% 

Type-2 mutation 

   

Rare mutation  

(-4 bp) 

 

Fig. 46: Gels with positive controls (2, 3, 4) and serial dilutions (5, 6, 7, 8, 9, 10) of plasmids containing a mutated 
sequence (Type-1/Type-2 mutations and a rare mutation). The two specific bands are visible till the 5% 
(Type-2 and rare mutation) and the 10% (Type-1 mutation) dilution of mutated allele in a wild-type 
background. Therefore, the LOD of the assay was established at 10% of mutated allele. 
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DETECTABLE RANGE OF DNA 

To confirm the correct detection of samples with different DNA concentrations using the CALR 

MUTATION assay, we tested the 50% and 25% dilutions of the Type-1 and Type-2 mutation 

controls and the wild-type (wt) plasmid control at 3 different concentrations (5 ng/µL, 10 ng/µL 

and 20 ng/µL of total DNA). Similar to the dilutions used to determine the LOD, the 50% and 

25% dilutions were prepared on background of the wt plasmid control. The CALR MUTATION 

assay clearly detected samples in the concentration range between 5 ng/µL (corresponding to 

25 ng/rx) and 20 ng/µL (100 ng/rx). Specific bands were well visible for both 50% and 25% 

dilutions (Fig. 47). 

 

Type-1 mutation 

 

1) DNA Marker 

2) wt control 

3) Type-2 control 

4) Type-1 control 

5) 20 ng/µL of 50% 

6) 20 ng/µL of 25% 

7) 20 ng/µL of wt 

8) 10 ng/µL of 50% 

9) 10 ng/µL of 25% 

10) 10 ng/µL of wt sample 

11) 5 ng/µL of 50% 

12) 5 ng/µL of 25% 

13) 5 ng/µL of wt sample 

14) NTC 

Type-2 mutation 

   

Fig. 47: Gels with positive controls (2, 3, 4), 25% and 50% mutated plasmids (Type-1 and Type-2 mutations) and wt 
plasmid at different concentrations (5 ng/µL, 10 ng/µL and 20 ng/µL) of total DNA (5 to 13). All 
target-specific bands are visible in this range of DNA concentration. 
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DIAGNOSTIC SENSITIVITY AND SPECIFICITY 

We determined diagnostic sensitivity and specificity of CALR MUTATION assay testing a total of 

34 clinical samples (21 wild-type samples, 5 samples with Type-1 mutation, 5 samples with 

Type-2 mutation, 3 samples with rare mutations). The CALR MUTATION assay correctly 

detected all tested samples (Fig. 48). According to these results, the diagnostic sensitivity and 

specificity of the assay were 100%. Additionally, we received results from the partner lab of the 

University of Florence testing the CALR MUTATION assay (external evaluation) on additional 31 

clinical samples (15 wild-type samples, 6 samples with Type-1 mutation, 5 samples with Type-2 

mutation and 5 samples with rare mutations). All tested samples were correctly detected by the 

CALR MUTATION assay, confirming the diagnostic sensitivity and specificity (Fig. 49). In 

addition, simultaneous testing of samples with and without the post-PCR reagent allowed 

identification of all samples that carried CALR mutations, which cause only a slight shift in CALR 

sequence length (red rectangle in Fig. 49), as well as of all 100% mutated samples (all rectangles 

in Fig. 49). 

 

 
1) DNA Marker 

2) wt control 

3) Type-2 control 

4) Type-1 control 

WT) wt samples 

Type-1)  Type-1 mutated samples 

Type-2)  Type-2 mutated samples 

Rare)  Samples with rare mutations (in order: -4bp, +4bp, -23bp) 

Fig. 48: Gel with positive controls (2, 3, 4) and 11 wt samples (WT), 5 samples with Type-1 mutation (Type-1), 5 
samples with Type-2 mutation (Type-2) and 3 samples with rare mutations (Rare). Target-specific bands in 
all samples are detected. 
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1) DNA Marker 

2) wt control 

3) Type-2 control 

4) Type-1 control 

5)  NTC 

WT) wt samples (with and without post-PCR treatment) 

Type-1)  Type-1 mutated samples (with and without post-PCR treatment) 

Type-2)  Type-2 mutated samples (with and without post-PCR treatment) 

Rare)  Samples with rare mutations (in order: -44bp, -12bp, -32bp, -64bp, -4bp -32bp 

with and without post-PCR treatment) 

Fig. 49: Gels with positive controls (2, 3, 4), 4 wt samples (WT), 8 samples with Type-1 mutation (Type-1), 6 samples 
with Type-2 mutation (Type-2) and 6 samples with rare mutations (Rare). Target-specific bands in all 
samples are detected. Non-corresponding results of a sample with and without post-PCR treatment 
(rectangles) indicate 100% mutated sample. 100% mutated sample with Type-2 mutation (red rectangle) 
would be difficult to distinguish from wt control (2) without this treatment. 
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STABILITY STUDY 

We started a stability study to determine the shelf-life of the reagents of the CALR MUTATION 

assay. During this study aliquots of freshly prepared reagents were stored at the recommended 

storing conditions and were/will be tested at different points in time and the results compared 

to the data obtained at the starting point (T0). The stability study was divided into two parts. On 

the one side, the shelf-life of the amplification mix, the controls (wt/Type-1/Type-2 mutation) 

and the post-PCR reagent were determined. On the other side, the shelf-life of the sequencing 

primers was assessed. To test the amplification mix, the controls and the post-PCR reagent, we 

prepared three batches of the amplification mix, each with reagents from different reagent stock 

solutions. At the same time, we prepared the three positive controls (wt/Type-1/Type-2) and 

the post-PCR reagent. To test the sequencing primers, we prepared three batches of 

amplification mixes containing the primers. We divided mixes and controls into aliquots in order 

to avoid that any reagent undergoes more than two freeze-thaw cycles, which might lead to 

degradation of the components. The aliquots were stored at -20°C/-30°C.  Each batch of 

amplification mix was tested with the three positive controls. Only for testing the amplification 

mix, we treated an aliquot of each control with the post-PCR reagent followed by denaturation at 

95°C for 5 minutes. At the end, we loaded in the gel both treated and untreated controls. So far, 

we have tested each batch of amplification mix at T0 (preparation date) and T3 (after 3 months, 

approximately 90 days). Further data points will be collected at T6, T10, T12 and T14 (months). 

However, before conclusion of this study we could assign a shelf-life of 6 months on the basis of 

the similarity of the reagent composition with other IVDs developed at AB ANALITICA, according 

to the European Standard EN 13640:20021. The assay results at each data point were evaluated 

for the presence/absence of specific and nonspecific bands/products, band intensity and 

separation. At data point T3 (3 months) we neither observed any nonspecific bands nor 

variation in intensity and separation of specific bands for all three batches of the reagents (Fig. 

50 Assay reagents). The amplification mixes with the sequencing primers also did not show any 

sign of degradation over time (Fig. 50 Primers for sequencing). 

  



RESULTS 115 

Time 
interval Assay reagents 

T0 

 

T3 

 

 Primers for sequencing  

T0 

 

1) DNA Marker 

2) wt control 

2’) wt control with post-PCR treatment  

3) Type-2 control 

3’) Type-2 control with post-PCR treatment 

4) Type-1 control 

4’) Type-1 control with post-PCR treatment 

5) NTC  

 

T3 

 

Fig. 50: Gels of T0 and T3 points in the stability study of CALR MUTATION assay. This study is performed with the 
three positive controls to assess the shelf-life of the sequencing primers. The controls were loaded 
after/without the post-PCR treatment to assess the shelf-life of the assay reagents. 
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SANGER SEQUENCING 

We designed primers for use in Sanger sequencing of PCR products. Sequencing is required for 

precise identification of the mutation in a sample. The sequencing primers of the CALR 

MUTATION assay are specific for the target sequence and showed well defined peaks and little 

background in the electropherogram. This allows rapid identification of the mutation position in 

the sequence. Since a mutated DNA sequence overlaps with the wild-type sequence, the location 

of the mutation site in the sequence may be easily identified (Fig. 51). 

 
 

 

Type-1 
Mutation 

 

Type-2 
mutation 

 

Rare 
mutation 

(-4bp) 

 

Rare 
mutation 

(+4bp) 

 

Rare 
mutation 
(-23bp) 

Fig. 51: Electropherograms of samples with Type-1 mutation, Type-2 mutation and three rare mutations. Mutation 
start is highlighted. 
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6.3.3 MPL W515L/K ASSAY 

ANALYTICAL SPECIFICITY 

To ensure a high specificity of the MPL W515L/K assay, highly specific amplification primers 

were selected and the protocol established using stringent reaction conditions. To test 

specificity, the primer and probe sequences were aligned in public genome databases (NCBI 

Blast). The sequences showed no non-specific sequence pairing. To check for possible crosstalk 

reactions between MPL W515K and MPL W515L (the respective sequences differing by only two 

nucleotides) we simultaneously tested each target specific amplification mix with positive 

controls for the two mutations (5%, 2.5% and 1% of mutated allele). We did not observe any 

crosstalk between probes for MPL W515K and MPL W515L (Fig. 52). Analytical specificity of the 

assay was confirmed by Sanger sequencing of eight PCR products. The tested amplicons 

exclusively contained the target sequence. The sequencing produced a well-defined 

electropherogram with sharp peaks separated by even spaces and little background interference 

at the peak baseline (Fig. 56). This indicates the absence of competing amplification products 

and a specific amplification of the target sequence. 

 

 

Fig. 52: Allelic discrimination plots of 5%, 2.5%, 1% mutated controls for MPL W515K and MPL W515L mutations 
using the mix for amplification of the W515K target (on the left) and the mix for amplification of the W515L 
target (on the right). Non-specific target reaction controls are detected as wild-type (below 0%, blue circles). 
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ANALYTICAL SENSITIVITY 

We determined the cut-off value for the MPL W515L/K assay comparing the ΔRn ratios of 

positive controls and clinical samples with wild-type MPL (Tab. 19). For both targets, the ΔRn 

ratios of the tested wild-type samples were below the corresponding 1.5% positive control. 

Therefore, we assigned a cut-off value of 1.5% (of mutated allele). 

 
 ΔRn ratio 

W515K/WT 
Results 
W515K 

ΔRn ratio 
W515L/WT 

Results 
W515L 

100% 7.587  2.367  

1.5% 0.786  0.134  

1% 0.684  0.103  

0% 0.684  0.092  

Sample 1 0.681 <0% 0.090 <0% 

Sample 2 0.676 <0% 0.089 <0% 

Sample 3 0.686 <1.5% 0.091 <0% 

Sample 4 0.679 <0% 0.090 <0% 

Sample 5 0.676 <0% 0.093 <1% 

Sample 6 0.699 <1.5% 0.094 <1% 

Sample 7 0.690 <1.5% 0.091 <0% 

Sample 8 0.718 <1.5% 0.093 <1% 

Sample 9 0.683 <0% 0.090 <0% 

Sample 10 0.694 <1.5% 0.088 <0% 

Sample 11 0.668 <0% 0.088 <0% 

Tab. 19: Assessment of the assay cut-off value comparing ΔRn ratios (ΔRnMUT/ΔRnWT) of positive controls and clinical 
samples with wild-type MPL. For both targets, the ΔRn ratios of the tested wild-type samples were below the 
corresponding 1.5% positive control (cut-off). 
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RANGE OF DNA QUANTITY 

To identify the DNA concentration range, in which optimal results can be obtained with the MPL 

W515L/K assay, we tested different dilutions of two wild-type samples (5 ng/µL, 10 ng/µL, 16 

ng/µL, 20 ng/µL). For the whole concentration range tested (5 to 20 ng/µL corresponding to 25 

to 100 ng/rx), the correct mutation status (wild-type) was assigned to the samples (Tab. 20). 

 
 ΔRn ratio 

W515K/WT 
Results 
W515K 

ΔRn ratio 
W515L/WT 

Results 
W515L 

100% 10.035  2.345  

1.5% 0.712  0.110  

0% 0.633  0.092  

Sample 1 (20 ng/µL) 0.658 WT 0.085 WT 

Sample 1 (16 ng/µL) 0.645 WT 0.085 WT 

Sample 1 (10 ng/µL) 0.640 WT 0.087 WT 

Sample 1 (5 ng/µL) 0.648 WT 0.094 WT 

Sample 2 (20 ng/µL) 0.669 WT 0.087 WT 

Sample 2 (16 ng/µL) 0.665 WT 0.087 WT 

Sample 2 (10 ng/µL) 0.669 WT 0.088 WT 

Sample 2 (5 ng/µL) 0.648 WT 0.092 WT 

Tab. 20: Genotyping of two wild-type known samples at different DNA concentrations (5 ng/µL, 10 ng/µL, 16 ng/µL, 
20 ng/µL) with the MPL W515L/K assay. 
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DIAGNOSTIC SENSITIVITY AND SPECIFICITY 

As a preliminary analysis of the diagnostic sensitivity and diagnostic specificity of the MPL 

W515L/K assay, we analyzed 19 clinical samples (11 with wild-type MPL and 8 with mutated 

MPL). All wild-type samples were correctly identified. As expected, these samples showed ΔRn 

ratios below the assay cut-off (Fig. 53). One W515K and four W515L mutated samples were 

correctly identified by the assay and the calculated allele concentrations were within or close to 

the correct range (Fig. 54). Three samples carrying mutations other than or in addition to 

W515K and W515L were not correctly identified by the assay. These atypical mutations 

(W515K+c.1542G>A, W515R and W515S) had to be identified by Sanger sequencing (Fig. 56). 

With the W515K+c.1542G>A mutated sample the assay had shown no amplification signal while 

the W515R and W515S alleles were detected as wild-type (Fig. 55). This result represents a 

further confirmation of the high analytical sensitivity of the assay, but, at the same time, 

indicates a limited diagnostic sensitivity. 
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Fig. 53: Amplification and allelic discrimination plots of 11 wild-type samples and the 1.5% positive control (cut-off). 
ΔRn values of wild-type samples are higher for the wild-type allele and lower for the mutated allele 
compared to the cut-off (below the cut-off in the scatter plot). 
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MPL W515L/K mutated samples 

Sample Amplification Plot Allelic Discrimination Plot 

W515K 
(100%) 

  

W515L 
(70%) 

  

W515L 
(25%) 

  

W515L 
(90%) 

  

W515L 
(50%) 

  

Fig. 54: Amplification and allelic discrimination plots of MPL W515L/K mutated samples with known concentration 
of mutated allele correctly identified by the MPL W515L/K assay. Mutated allele concentration of samples 
was assigned in/close to the correct concentration range. 
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Samples with other mutations 

W515K + 
c.1542 G>A 

 

 

W515R 

 

 

W515S 

 

 

Fig. 55: Amplification of samples with other mutations not correctly identified by the MPL W515L/K assay. The 
sample with the W515K+c.1542G>A mutations showed no amplification signals, samples with the W515R 
and W515S mutations were identified as wild-type. The amplification mix is indicated in brackets. 
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Fig. 56: Electropherograms of the three mutated samples not correctly identified by the MPL W515L/K assay. Two of 
these sequences contain rare MPL W515 mutations (W515R and W515S) and the third has the MPL W515K 
mutation together with a nucleotide substitution in codon 514 (W515K+c.1542G>A). 
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 CE MARKING 6.4
Both IL28B assays and the CALR MUTATION assay fulfilled the “essential requirements" of 

safety, health, design and manufacture (Annex I of the Directive 98/79/EC239, transposed by GD 

332/2000), which must be met by in vitro diagnostic medical devices when they are 

manufactured and licensed. 

For devices other than those covered by Annex II of the Directive, the manufacturer shall, in 

order to affix the CE marking, draw up the EC declaration of conformity (Annex III of the 

Directive 98/79/EC239) before placing the devices on the market. 

As required, we prepared the technical documentation for the conformity of the product with 

the requirements of the Directive, including: 

− general descriptions of the products 

• Kit for detection and genotyping of polymorphism rs12979860 in the human gene coding 

for Interleukin 28B by real-time PCR 

• Kit for detection and genotyping of polymorphism rs8099917 in the human gene coding for 

Interleukin 28B by real-time PCR 

• Kit for detection of mutations in exon 9 of the CALR gene; 

− documentation of the quality system (requirements and regulations followed by the 

manufacturer, documented as industrial strategies and procedures are part of the 

product dossier); 

− design information, including the determination of the characteristics of the basic 

materials, characteristics and limitation of the device performance and manufacturing 

methods; 

− descriptions and explanations necessary to understand the above mentioned 

characteristics; 

− risk analysis; 

− performance evaluation data (the reference methods, materials and measurement units 

used); 

− design calculations; 

− test reports; 

− labels and instructions for use; 

− stability studies. 
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6.4.1 REALQUALITY RS-IL28B rs12979860 

 
Fig. 57: Declaration of conformity of the manufacturer for the in vitro diagnostic device REALQUALITY RS-IL28B 

rs12979860, product codes RQ-87-48 and RQ-87-96. The declaration of conformity includes information on 
the manufacturer, data for identification and classification of the device (commercial name) and data 
concerning CE conformity (Annex III).  
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Fig. 58: Presentation of the kit REALQUALITY RS-IL28B rs12979860, product code RQ-87-48, comprising BOX RG, 
BOX PC and instructions for use.  
− BOX RG contains: IL28B rs12979860 Real time mix (amplification mix) 
− BOX PC contains: PC IL28B C/C (positive control for C/C genotype), PC IL28B C/T (positive control for 

C/T genotype), PC IL28B T/T (positive control for T/T genotype) 
The label on each box includes the following information: intended use, batch number, expiration date, 
included reagents (with corresponding batch number, expiration date, quantity), storage temperature, 
number of tests, R/S statements or symbol according to the EN980:2003 (if required), CE mark, IVD symbol, 
manufacturer information. 
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6.4.2 REALQUALITY RQ-IL28B rs8099917 

 
Fig. 59: Declaration of conformity of the manufacturer for the in vitro diagnostic device REALQUALITY RQ-IL28B 

rs8099917, product codes RQ-91-48 and RQ-91-96. The declaration of conformity includes information on 
the manufacturer, data for identification and classification of the device (commercial name) and data 
concerning CE conformity (Annex III). 
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Fig. 60: Presentation of the kit REALQUALITY RQ-IL28B rs8099917, product code RQ-91-48, comprising BOX RG, 
BOX PC and instructions for use.  
− BOX RG contains: IL28B rs8099917 Real time mix (amplification mix) 
− BOX PC contains: PC IL28B T/T (positive control for T/T genotype), PC IL28B T/G (positive control for 

T/G genotype), PC IL28B G/G (positive control for G/G genotype) 
The label on each box includes the following information: intended use, batch number, expiration date, 
included reagents (with corresponding batch number, expiration date, quantity), storage temperature, 
number of tests, R/S statements or symbol according to the EN980:2003 (if required), CE mark, IVD symbol, 
manufacturer information. 
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6.4.3 GENEQUALITY CALR MUTATION  

 

Fig. 61: Declaration of conformity of the manufacturer for the in vitro diagnostic device GENEQUALITY CALR 
MUTATION, product codes 04-40A-50 and 04-40R-50. The declaration of conformity includes information on 
the manufacturer, data for identification and classification of the device (commercial name) and data 
concerning CE conformity (Annex III). 
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Fig. 62: Presentation of the kit GENEQUALITY CALR MUTATION, product code 04-40A-50, comprising: BOX RG, BOX 
PC, BOX F, BOX A, instructions for use.  
− BOX RG contains: CALR Master Mix (amplification mix), Primer CALR F 10 µM (forward primer for 

sequencing), Primer CALR R 10 µM (reverse primer for sequencing)  
− BOX PC contains: PC CALR WT (wild-type positive control), PC CALR DEL (Type-1 mutation positive 

control), PC CALR INS (Type-2 mutation positive control), Post-PCR Reagent (reagent for post-PCR 
treatment)  

− BOX F contains: Bromophenol Blue (agarose gel loading buffer), Ethidium bromide (DNA-intercalating 
agent), MW Marker (Molecular Weight Marker)  

− BOX A contains: Agarose, 50X TAE (buffer solution containing Tris base, acetic acid and EDTA, pH=8).  
The label on each box includes the following information: intended use, batch number, expiration date, 
included reagents (with corresponding batch number, expiration date, quantity), storage temperature, 
number of tests, R/S statements or symbol according to the EN980:2003 (if required), CE mark, IVD symbol, 
manufacturer information. 
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The general objective of this doctorate project was to develop commercial tests for personalized 

medicine in two different contexts: pharmacogenomics and oncogenomics. Pharmacogenomic 

targets in this study were two single nucleotide polymorphisms near the locus of the IL28B gene 

that are important predictors for the outcome in chronically infected HCV patients treated with 

the standard therapy (PEG-IFN/RBV). The oncogenomic targets addressed in this study were 

mutations in the oncogenes MPL and CALR that are relevant for the diagnosis and prognosis of 

BCR-ABL1-negative myeloproliferative neoplasms. 

During the three years of the doctorate, the studies on IL28B SNPs and CALR mutations were 

completed with the development of commercial CE-IVD marked kits. Unfortunately, the research 

on the MPL W515L/K assay could not be completed, because new molecular targets were added 

as test requirements (all W515 mutations instead of just W515L/K) in order to improve the 

assay diagnostic sensitivity. 

All four assays employed standard methods that have a number of advantages including: 

− highly diffused technologies present in the vast majority of clinical labs; 

− simple technology that does not require expertise for results interpretations; 

− cost reduction by using inexpensive reagents; 

− cost reduction by allowing processing of high sample numbers in a single run (up to 96 

for IL28B polymorphisms and up to 50 for CALR mutations) 

All these aspects make these tests highly affordable and easy-to-use for the majority of 

laboratories. 

Therefore, the IVD tests developed during this doctorate represent a valuable contribution to the 

diffusion of personalized medicine in health care. 
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 REALQUALITY RS-IL28B rs12979860 AND REALQUALITY 7.1
RQ-IL28B rs8099917 

The Hepatitis C virus (HCV) represents a significant health problem worldwide with 

approximately 170 million infected persons. Over 70% of individuals with an acute HCV 

infection develop the chronic form (CHC) and are at significant risk of progressive liver disease 

and subsequent liver cirrhosis and hepatocellular carcinoma (HCC). Until 2011, the standard 

treatment for chronic HCV infection was weekly administration of pegylated interferon α (PEG-

IFN) in combination with daily doses of ribavirin (RBV). However, less than 50% of patients 

infected with HCV genotype 1 (HCV GT1) undergoing this treatment achieve a sustained 

virological response (SVR)29,248. The likelihood of attaining SVR is influenced by both viral (HCV 

genotype, baseline viral load) and host factors (age, sex, degree of fibrosis). In 2009, genome-

wide association studies (GWAS) uncovered the pivotal role of host genetic factors, i.e. two 

single nucleotide polymorphisms (SNPs) located near the interleukin-28B (IL28B) gene 

(encoding for IFN-λ3) in the response to PEG-IFN/RBV therapy, especially in patients infected 

with HCV GT111,12,151–153. Patients carrying the favorable IL28B genotypes (CC for rs12979860 

and TT for rs8099917) are associated with two-fold higher SVR rates compared to patients with 

the risk alleles for both SNPs (T and G, respectively). As a result, prediction of the treatment 

outcome, especially non-responsiveness to PEG-IFN/RBV therapy, has been greatly improved by 

genotyping for IL28B SNPs, enabling personalization of CHC therapy. Newly developed 

treatments involving direct-acting antivirals (DAAs), like non-structural 3/4A protease 

inhibitors (PIs), have shown promising results in terms of higher SVR rates in HCV GT1 patients 

(>70%)124,127,249 but at the same time have raised concerns on the generation of resistant viral 

variants and significant side effects250. Furthermore, PIs are expensive and not yet available in 

many countries251. Although IL28B testing offers just minimal additional information to help 

clinician’s decisions due to the availability of DAAs, pre-treatment evaluation is still 

recommended to establish the therapeutic schedule252. There is also evidence that these SNPs 

may affect viral kinetics even in the context of IFN-free regimens169. 

As a response to the need for pharmacogenetic tests, which allow genotyping of these 

informative SNPs in clinical practice, we decided to develop two assays for allelic discrimination 

based on real-time PCR with TaqMan® probes. This is a standard and cost-effective method that 

has been in use by most analysis laboratories for several years. The final assays were very 

reliable in the identification of variants of the IL28B SNPs rs12979860 and rs8099917 with a 

diagnostic sensitivity and specificity of 99.50% and a 99.48%, respectively (calculated on 

approximately 200 clinical samples). Diagnostic sensitivity and specificity values indicate the 

accuracy of the test to give reliable results when compared to a reference method 

(observed/expected). Both assays demonstrated full capability to correctly assign the genotype 
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of samples with DNA concentrations between 2 ng/rx (analytical sensitivity) and 250 ng/rx 

(highest DNA quantity to amplify). Both devices were assigned a shelf-life of 12 months, but we 

planned to extend the time span during which assay performances are monitored to 18 months 

(already done with REALQUALITY RS-IL28B rs12979860). 

REALQUALITY RS-IL28B rs12979860 code RQ-87 and REALQUALITY RQ-IL28B rs8099917 code 

RQ-91 were notified with the Ministry of Health and received the CE marking. This mandatory 

conformity marking is required for sale of these products as IVD devices within the European 

Economic Area (EEA) and guarantees that EU legislation in matter of safety, health and 

environmental protection is being respected. 

The assays must be performed using genomic DNA purified from whole blood. The assays 

resulted compatible with the following extraction systems: BioRobot EZ1 with EZ1 DSP Blood 

(Qiagen), QIAamp DNA Blood Mini Kit (Qiagen), NucleoSpin® Blood (Mackerey-Nagel), chemagic 

Prepito®-D (PerkinElmer), High Pure PCR Template Preparation Kit (Roche), MagNA Pure 

(Roche), Maxwell 16 Blood DNA Purification Kit (Promega), QuickGene-Mini80 and QuickGene-810 

(Fujifilm).  The assays were validated on Applied Biosystems StepOne™ and StepOnePlus™ Real-

Time PCR Systems, Applied Biosystems 7500 Fast and 7500 Fast Dx Real-Time PCR Systems, 

Applied Biosystems 7300 Real-Time PCR System, Bio-Rad Dx Real-Time System and Bio-Rad 

CFX96™ Real-Time PCR Detection System. Compatibility of the assays with additional real-time 

PCR systems (Applied Biosystems 7500 and 7900 Real-Time PCR Systems and LightCycler® 480 

System by Roche) which work with a reaction volume of 25 µL and FAM™ and JOE™ calibrated 

dyes, was established. As a result, REALQUALITY RS-IL28B rs12979860 and REALQUALITY RQ-

IL28B rs8099917 allow genotyping of the two most informative polymorphisms for HCV therapy 

with most real-time PCR systems. Samples can be simultaneously tested for both polymorphisms 

seen the identical thermal profile for both assays. 

The strengths of these devices compared to other commercial kits include: 

− the ready-to-use amplification mix reduces the manual steps thus minimizing the risk of 

contamination; 

− no extra reagents are needed; 

− the controls for all three genotypes are ready-to-use and do not need to be diluted; 

− the dUTP/UNG system in the amplification mix prevents carry-over contaminations from 

previous amplifications; 

− the master mix contains ROX™ as passive reference for reduction of non-PCR-related 

fluctuations in fluorescence signal.  
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 GENEQUALITY CALR MUTATION 7.2
BCR-ABL1-negative myeloproliferative neoplasms (MPNs) are characterized by clonal molecular 

markers. JAK2 mutations are almost invariably found in polycythemia vera (PV), whereas 

approximately 90% of patients with essential thrombocytemia (ET) and primary myelofibrosis 

(PMF) carry one of the mutations listed below in order of relative frequency: the valine-to-

phenylalanine substitution in the Janus kinase 2 gene (JAK2 V617F), insertions and/or deletions 

in calreticulin encoding gene (CALR), the amino acid substitutions tryptophan to leucine or 

lysine (W515L/K) in the myeloproliferative leukemia virus oncogene (MPL). The recent 

discovery of CALR mutations210,211 was not only important in the field of diagnostics253, as it is 

now a major diagnostic criterion in the new proposed WHO classification for BCR-ABL1-negative 

MPN, but also for its prognostic value212–214. In ET and PMF, CALR mutations correlated with 

male gender, younger age, lower hemoglobin levels, lower leukocyte count, higher platelet count 

and a higher chance of thrombosis-free survival212,214. The prognosis in CALR-mutated PMF is 

further influenced by the coexistence (unfavorable) of ASXL1 mutations200,219 or other 

prognostically detrimental mutations220. 

In order to address the new diagnostic needs in the field of BCR-ABL1-negative MPNs, we 

decided to develop an assay for the detection of mutations in exon 9 of the CALR gene. We based 

this multiplex assay on conventional PCR, a very simple and common method that gives results 

that are easy to interpret. Thanks to the low costs of this technology (due to inexpensive 

reagents) the assay can be used for the screening of suspected patients that are negative for the 

JAK2 V617F mutation. 

Diagnostic specificity and sensitivity of the assay were measured on a total of 36 wild-type and 

29 mutated clinical samples. Since the assay method was based on visualization of amplification 

products on agarose gel, the length of the target sequence was established using a reference 

method (Sanger sequencing) for all tested samples. All mutated samples contained insertions, 

deletions or complex ins-del that generated sequences with at least 4 bp difference in length 

compared to the wild-type sequence. The results showed that the assay had an accuracy of 

100%. We were able to overcome the well-known limit in precision associated with analysis by 

agarose gel electrophoresis by using a post-PCR treatment that allowed detection of DNA 

sequences of very similar size. The assay detection limit was 10% of mutated allele on a wild-

type allele background. The assay was also able to correctly discriminate samples with DNA 

concentrations from 25 to 100 ng/rx. A stability study to determine the shelf-life of the reagents 

is still on-going. Preliminary data indicate that the performances of the assay remained stable 

for at least 3 months. We could, however, safely assign the device a shelf-life of 6 months based 

on the similarity of the reagent composition to other IVD developed at AB ANALITICA, according 

to the European Standard EN 13640:20021. 
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The GENEQUALITY CALR MUTATION device, code 04-40R-50 and code 04-40A-50, was finally 

notified with the Ministry of Health and placed in the market as the first CE-IVD device for the 

detection of mutations in exon 9 of the CALR gene. Code 04-40A-50 contains all reagents 

necessary for both PCR amplification and gel electrophoresis whereas code 04-40R-50 does not 

provide the reagents for visualization of PCR products. The reagents for PCR amplification 

include a ready-to-use master mix, which minimizes the number of manual steps, thus lowering 

the risk of contaminations, and ready-to-use positive controls for the wild-type sequence and 

the two most common mutations (Type-1 and Type-2). Both device formats additionally contain 

sequencing primers. Bidirectional sequencing is optional, but can be very useful when the 

precise identification of a particular mutation detected by the assay is required. In this regard, 

development of interpretation software for automated identification of the mutation type based 

on the DNA sequence would be a valuable addition to the assay.  
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 MPL W515L/K ASSAY 7.3
To complete the panel of the genetic tests facilitating diagnosis of BCR-ABL1-negative MPNs, we 

decided to develop an assay for the detection and (semi-)quantification of the two main 

mutations in the MPL gene (MPL W515L and MPL W515K). Based on our experience with the 

JAK2 V617F semi-quantitative assay (REALQUALITY RS-JAK-2 V617F), we decided to use a qPCR 

based on TaqMan® MGB probes. Preliminary results were obtained on the Applied Biosystems 

StepOnePlus™ Real-Time PCR System. On this instrument we established the cut-off value 

(threshold between “positive”, i.e. above, and “negative”, i.e. below, results) of 1.5%. Although 

the assay was able of correctly attributing the wild-type status to 11/11 wild-type clinical 

samples (comparison with a reference method), the distance of ΔRn ratios (ΔRnMUT/ ΔRnWT) 

between the cut-off and the wild-type controls was very small with both amplification mixes. 

This represents a substantial risk of “false positive” results due to inter-assay variation. 

When testing the assay with mutated samples, we found that the presence of other mutations in 

or close to codon 515 prevented the correct identification of mutated samples. Two samples 

carrying less frequent mutations in codon 515 of MPL (W515R and W515S) produced no signal 

for the assayed mutations but only a wild-type signal in the expected ΔRn range. A sample with 

the MPL W515K mutation accompanied by a point mutation in codon 514 (c.1542 G>A) 

generated no fluorescence signal at all. This atypical mutation in codon 514 is a silent mutation 

or a synonymous SNP (AGG>AGA, both code for Arginine) and, therefore, likely to be present in 

both alleles of the respective gene. These results may be explained by the high specificity of the 

probes used in the assays. It seems that hybridization of the probes (specific for the wild-type, 

MPL W515K and MPL W515L sequences) to the target sequence did not take place in the 

presence of the mismatches. Furthermore, this high specificity may be partly due to the stringent 

amplification conditions used in this assay.  

Although detection of MPL W515 mutations other than MPL W515L and MPL W515K was not 

part of the initial objective of this project, we decided to design a new multiplex assay for the 

simultaneous semi-quantification of all MPL W515 mutations (L, K, R, A, S). For this purpose, the 

next step of this project will be to accurately design new probes with the introduction of 

“strategic” mismatches in order to reduce the specificity for the target sequence and favor 

crosstalk hybrids between similar sequences. 
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Since the number of genes carrying subclonal mutations used in the stratification of patients 

with primary myelofibrosis or advanced- polycythemia vera/essential thrombocythemia has 

rapidly increased in the last months, the need for a complete molecular panel for the detection of 

all informative mutations is emerging. Next-generation sequencing may be the most suitable 

technique for this purpose. Therefore, we will be focusing on a further development of a NGS-

based system for the detection of mutations in 8 genes (JAK2, CALR, MPL, ASXL1, EZH2, IDH1, 

IDH2 and SRSF2) that are associated with a high risk according to the DIPSS-plus prognostic 

model. Patients carrying mutations in these genes should be immediately allocated to 

therapeutic intervention. Compared to conventional methods used by many laboratories, NGS 

displays several advantages including high sensitivity and specificity, and allows high-

throughput screening of patients, thus potentially lowering the costs for diagnosis. 
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