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Abstract

This thesis is motivated by the desire to understand better and to model

some important aspects of tidal estuary. Three different subjects are stud-

ied: cross-section modelling; wind characterization in Venice Lagoon (Italy);

drainage channel initiation.

It has been developed a physical based analytical model to study the

estuary cross-section for hydrodynamics and sediment transport. The main

focus is to study the effects of different boundary conditions.

At the bed, three condition are applied: the classical no-slip condition

with constant eddy viscosity; a partial-slip condition with constant eddy vis-

cosity; a no-slip condition with parabolic eddy viscosity profile. Solutions are

investigated using scaling and perturbations methods. Whereas the partial-

slip condition does not consistently improve the no-slip condition, the use of

parabolic eddy viscosity is a really impressive progress: it allows a better un-

derstanding and representation of the physical dynamics of the environment.

Regarding wind in the Venice lagoon, it has been analysed an 11-years

database of wind data taken in the lagoon and in the nearby sea. Wind

statistics are studied by rose plots and nine probability density functions.

This work results in a characterization of the annual, seasonal, monthly and

hourly statistics of the wind in the lagoon.

The last argument of research concerns the modelling of drainage channel

initiation in sheet flow condition. The analysis is specialized to model the pe-

riodic spacing of parallel drainage channels; this type of networks are present

in many different environments and with a wide range of length-scales. The
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model is analytical and physical based; solutions are searched by scaling and

perturbation methods. The results point out that the main parameters are

the water depth, the concentration of sediment, the critical velocity for sedi-

ment resuspension. Spacing of drainage channels are found for a wide range

of parameters.

Riassunto

L’interesse di questa tesi é quello di meglio comprendere alcuni aspetti

importanti degli ambienti a marea. In questo contesto, sono stati analizzati

tre argomenti: modellazione delle sezioni trasversali di un estuario, carat-

terizzazione del vento nella laguna di Venezia e la formazione di canali di

drenaggio.

Si é costruito un modello analitico per lo studio dell’idrodinamica e il

trasporto dei sedimenti focalizzando l’attenzione alle sezioni trasversali. Lo

scopo principale é stato quello di analizzare gli effetti dell’applicazione di

differenti condizioni al contorno.

Al fondo sono state applicate tre differenti condizioni: quella classica di

non scivolamento con viscositá di vortice costante, la condizione di parziale

scivolamento con viscositá costante e la condizione di non scivolamento con

profilo parabolico di viscositá. Le soluzioni sono state cercate attraverso

l’utilizzo dell’analisi dimensionale e lo sviluppo perturbativo. La condizione

di parziale scivolamento non ha comportato un miglioramento significativo

rispetto al non scivolamento. Invece, la condizione di viscositá con profilo

parabolico risultata una miglioria significativa: permette una migliore com-

prensione e rappresentazione della fisica del sistema.

Per quanto riguarda il vento in laguna di Venezia, si é studiato un database

di 11 anni di dati di vento in laguna e nel mare vicino. Si sono utilizzati grafici

di vento a settori e si sono calcolate le distribuzioni di probabilitá. Attraverso

questo lavoro, si sono caratterizzati gli andamenti annuali, stagionali, mensili

e orari.



L’ultimo argomento riguarda lo studio della formazione di canali di drenag-

gio in consizioni di flusso laminare. L’analisi riguarda lo studio della spaziatura

dei canali a distribuzione parallela e periodica che caratterizzano diversi am-

bienti per un range ampio di parametri. Il modello é analitico e basato sulla

fisica del sistema; le soluzioni sono ricercate attraverso l’analisi dimensionale

e i metodi perturbativi. I risultati evidenziano che i parametri principali sono

il battente d’acqua, la concentrazione, e la velocitá critica per la risospen-

sione. Si sono trovati i valori di spaziatura dei canali per un ampio spettro

di variazione dei parametri.

Thesis structure

This thesis is structured in three independent parts: cross-section mod-

elling; wind characterization in Venice lagoon (Italy); drainage channel for-

mation. The first and last parts are more theoretical, instead the second is

more experimental.

Part one is composed of chapter 1 (from page 3). It is developed the

analytical model of cross-section and it is used to study the effects of three

different boundary conditions at the bed: the classical no-slip condition with

constant eddy viscosity; a partial-slip condition with constant eddy viscosity;

a no-slip condition with parabolic eddy viscosity profile.

The second part of the thesis consists of chapters 2 (from page 51), where

it is analysed an 11-years database of wind data to characterized the wind

statistics for the Venice lagoon.

Last part, chapter 3 (from page 121), concerns the study of drainage

channel initiation in a sheet flow environment.

Notations

In the thesis, the following notation are used:

• Re, Im and Abs are used to express the real, imaginary and absolute part



of a function or value;

• the imaginary number is denoted as i;

• a star apex is generally used for dimensional quantities;

• square brackets are used to indicate the arguments of a function;

• in the arguments of a function, a semi-colon is used to divide the variables

(on the left side) from the parameters (on the right side).



Part I

Cross-section modelling
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Chapter 1

Modelling cross-section

hydrodynamics and suspended

sediment concentration in tidal

estuaries: partial slip, no-slip,

parabolic eddy viscosity

comparison

Abstract

The present research focuses on the hydrodynamical processes and sed-

iment trapping in cross-section in tidal estuaries. The main contribution is

the analysis of the effects of three boundary condition at the bed: no-slip con-

dition with constant and parabolic eddy viscosity; partial-slip with constant

eddy viscosity.

This model is based on the shallow water equations for the hydrodynam-

ics and the advection-diffusion equation for sediment concentration. The

system of equations is closed by the morphodynamic equilibrium condition.
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CHAPTER 1. MODELLING BOUNDARY LAYER

The water motion is forced by tides and density gradients. The estuary is

well-mixed, uniform in the along-channel direction with an arbitrary lateral

bathymetry. At the free surface it is applied a rigid-lid approximation.

An asymptotic expansion is used to solve the system of equations. The

leading order solution consists of an M2-tidal component for the flow velocity

and the residual, and an M4 component for sediment concentration. Only

those component of the first order solution that are relevant for the leading

order sediment transport are calculated, i.e. the residual of flow velocity and

the M2 component of the sediment concentration.

The model allows analytical solution of the water motion and sediment

transport for the three considered boundary conditions. Considering constant

eddy viscosity, the results show that the no-slip and partial slip boundary

condition give very similar solutions. Considering the no-slip condition, the

use of a parabolic eddy viscosity give a very different solution respect to

the use of the classical constant eddy viscosity. The velocity profiles derived

with parabolic eddy viscosity show high gradient in the first meter from the

bed. In fact, with the parabolic eddy viscosity it is possible to resolved

the boundary layer at the bed, whereas with the classical solution it is not

possible.

1.1 Introduction

Velocity and suspended sediment concentration could vary significantly

within estuarine cross-sections, within cross-sections over time, between cross-

sections within an estuary and between estuaries (Valle-Levinson, 2010 [1]).

The transverse distribution of velocity and suspended sediment plays a signif-

icant role in momentum balance, mixing and transport of material in many

estuaries(Geyer, 1993 [2]). Another important aspects that mostly inter-

est cross-section is sediments trapping (Huijts, 2010 [3]), as high concentra-

tions of suspended sediment affect water quality (with all its consequence)

and often coincide with pools of easily erodible sediments at the bed. This
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1.1. INTRODUCTION

means that a knowledge of flow and sediment distributions in estuarine cross-

sections is relevant for effective management of estuaries.

The literature in cross-section modelling is becoming quite extensive;

there are various approach that range from complex numerical models (e.g.,

Chen et al., 2009 [4]) to analytical model (e.g., ) and intermediate model

(Burchard et al., 2011 [5]).

But only few works are interested in the effects of the different boundary

conditions and eddy viscosity formulation. Even if Burchard et al. (2011

[5]) developed a state-of-the-art formulation for the vertical eddy viscosity

in an estuarine cross section, to analyse the importance of eddy viscosity

formulation on computed flow fields and to improve the physical knowledge

of the problem, it is convenient to use analytical model, with which it is

easier to properly recognize the effects of the different contributions in the

equations.

However it seams very important to properly model the effect of the

boundary layer and eddy viscosity formulation, because its direct influence

on the entire circulation. Right now there is no confidence in this matter

(see Zitman and Schuttelaars, 2012 [6]).

The attention is limited to only three type of boundary condition and

eddy viscosity formulation (i.e., no-slip condition with constant and parabolic

eddy viscosity; partial-slip with constant eddy viscosity) because these three

alternatives cover the most frequently used parametrisations of the eddy

viscosity profile ([6]).

The model presented in this study use the same equations and solution

technique as in Huijts (2010, [3]) but here it is analysed the effects of different

boundary condition.

In section 1.2 it is introduced the geometry of the analysed system and

the general assumption and notations. The model is described in section

1.3, while the scaling of the equations is explained in section 1.4, and the

perturbation analysis is developed in section 1.5. The analytical solution is

reported in section 1.6; the results are shown in section 1.7. Finally section
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CHAPTER 1. MODELLING BOUNDARY LAYER

B
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�

Figure 1.1: A sketch of the idealized embayment. A Cartesian coordinate system
is taken such that x is the seaward oriented along channel coordinate, y is the cross-
channel coordinate and its origin is on the left border of the estuary (landward
looking) and z is the upward vertical coordinate with origin at the tidally averaged
free surface. η and H denote the free surface and bed position, respectively.

1.8 reports the conclusions.

1.2 General assumptions, considerations and

hypothesis

1.2.1 Basin geometry

Since the present research focuses on the hydrodynamical processes and

sediment trapping in cross-section in tidal estuaries, a local model description

is used. This model describes a specific cross-section of a estuarine section

with a length L∗ of the order of a kilometre. The length of this section is small

compared to the overall estuary length, the tidal wavelength (∼ 400 km),

the tidal excursion length (tens of kilometres) and the geometric length scale

(∼ 5− 40 km). Assuming the bathymetry to be uniform in the longitudinal

direction in the investigated estuary reach, the model results to be practically
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1.2. GENERAL ASSUMPTIONS

two-dimensional, involving only the lateral and vertical coordinate.

The idealized estuary is infinitely long, with constant width B∗, and it

has an arbitrary bathymetry in the cross-channel direction. The bathymetry

is described by z∗ = −H∗[y∗], with H∗ a positive function; in particular it is

characterised by a minimum (and maximum) depth.

The orthogonal Cartesian reference system consists of a sea-ward oriented

x-axis, a y-axis with the origin on the left bank, and an up-ward pointing

z-axis, with origin at the mean water surface.

1.2.2 Hydrodynamics

The water motion is described by the shallow water equations on an f-

plane for along-channel uniform conditions. The density variations over the

depth are assumed to be negligible, i.e. the focus is on partially to well-mixed

estuaries.

The water motion is driven by an externally prescribed M2-tide with

cross-sectional average velocity amplitude U∗
T and angular frequency ωT .

Furthermore, prescribed time-independent along-estuary density gradients

induce a mean flow with typical velocity U∗
D. Lateral density gradients and

Coriolis force result in lateral velocities with a typical magnitude V ∗. The

typical river discharge velocity, U∗
R, is assumed to be small compare to density

driven velocities and, therefore, is neglected.

It is used the rigid lid approximation; this means that variation in surface

elevation are neglected, but barotropic pressure gradients are retained and

internally prescribed by boundary conditions.

Table 1.1 reports the values of the various parameters characterizing the

estuary hydrodynamics.

1.2.3 Sediment and bed

Sediment consists of a single class of fine cohesionless particles, that is

assumed to be transported as suspended load, without significant effects
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CHAPTER 1. MODELLING BOUNDARY LAYER

Parameter Typical value Description
U∗
T 1 ms−1 cross-section average velocity amplitude

ωT 1.4X10−4 s−1 tide angular frequency
U∗
D 0.1 ms−1 velocity amplitude induced by density gradient

V ∗ 0.1 ms−1 lateral velocity amplitude
U∗
R 0.1 ms−1 river discharge velocity amplitude

Table 1.1: The typical magnitude of the estuary hydrodynamics parameters.

on water density. Sediment in suspension can settle and deposit in mud

reaches, forming layers of erodible sediments on top of a non-erodible bottom,

z∗ = −H∗[y∗].

The distribution of mud reaches along the cross-section is described through

a laterally varying erosion coefficient. This erosion coefficient has to be pre-

scribed such that lateral sediment transport is in morphodynamic equilib-

rium, that is, tidally-averaged sediment erosion balances deposition at every

location of the cross-section. The water depth is assumed to be unaffected

by the presence of the mud reaches; hence, the erodible layer is necessarily

thin compared to water depth.

Furthermore, the suspended sediment concentration, C∗
m (∼ 10 − 100

mg/l), is assumed to be small enough to not alter the water density signifi-

cantly.

1.3 Model

1.3.1 Hydrodynamics

The estuarine hydrodynamics is described by the shallow water equations,

that consist of mass and momentum conservation equations. The later equa-

tions are derived from the well known Navier-Stokes equations, taking into

account the shallow character of the flow field, as described in the following.
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1.3. MODEL

3D shallow water equations

Taking into account the along-channel uniformity hypothesis, the mass

conservation equation reduces to

∂v∗

∂y∗
+

∂w∗

∂z∗
= 0 (1.1)

The Navier-Stokes equations, written in vectorial form, read

d �u∗

dt∗
=

∂ �u∗

∂t∗
+
(
�u∗ · ∇) �u∗ = −∇Φ∗ − 1

ρ∗
∇p∗ + ν∇2 �u∗ − 2 �Ω∗ × �u∗ (1.2)

where �u∗ = �u∗[x∗, y∗, z∗, t∗] is the flow velocity with components �u∗ = (u∗, v∗, w∗)

along the longitudinal, lateral and vertical directions, respectively; Φ∗ is the

geopotential (see appendix B, page 147); ρ∗ = ρ∗[x∗, y∗, z∗, t∗] is the water

density; ν is kinematic viscosity; �Ω∗ is the Earth angular velocity; the scalar

product is denoted by ·; ∇ is the gradient; ∇2 is the Laplace operator; × is

the cross product. Neglecting the small correction for the centrifugal force

in the potential forces, the momentum equation 1.2 becomes

∂ �u∗

∂t∗
+
(
�u∗ · ∇) �u∗ = −�g − 1

ρ∗
∇p∗ + ν∇2 �u∗ − 2 �Ω∗ × �u∗ (1.3)

where �g is the gravitational acceleration. Integrating over turbulence (Reynolds

average), equation 1.3 becomes

∂ �u∗

∂t∗
+
(
�u∗ · ∇) �u∗ = −�g − 1

ρ∗
∇p∗ + ν∇2 �u∗ −∇( �A∗∇ �u∗)− 2 �Ω∗ × �u∗ (1.4)

where A∗ = (A∗
x, A

∗
y, A

∗
z) is the eddy viscosity coefficient and the turbulence

average operator < · · · > has been removed for the sake of simplicity. From

now on, the fluid variables are assumed to be average over turbulence. The

vectorial equation 1.4, splitted in the components along the three reference

9



CHAPTER 1. MODELLING BOUNDARY LAYER

axes, becomes

∂u∗

∂t∗
+ u∗∂u

∗

∂x∗ + v∗
∂u∗

∂y∗
+ w∗∂u

∗

∂z∗
=

− 1

ρ∗
∂p∗

∂x∗ + ν∇2u∗ −∇(A∗∇u∗)− 2Ω∗(w∗ cosϕ∗ − v∗ sinϕ∗) (1.5)

∂v∗

∂t∗
+ u∗ ∂v

∗

∂x∗ + v∗
∂v∗

∂y∗
+ w∗∂v

∗

∂z∗
=

− 1

ρ∗
∂p∗

∂y∗
+ ν∇2v∗ −∇(A∗∇v∗)− 2Ω∗u∗ sinϕ∗ (1.6)

∂w∗

∂t∗
+ u∗∂w

∗

∂x∗ + v∗
∂w∗

∂y∗
+ w∗∂w

∗

∂z∗
=

− g − 1

ρ∗
∂p∗

∂z∗
+ ν∇2w∗ −∇(A∗∇w∗)− 2Ω∗u∗ cosϕ∗ (1.7)

Under the assumption (usually satisfied in the field) that the Coriolis vertical

component is smaller than gravity (Ω∗u∗ << g) and the vertical velocity is

much smaller than horizontal velocity (w∗ << u∗, w∗ << v∗, shallow water

assumption), the Coriolis force can be approximate as

−2 �Ω∗ × �u∗ ∼ −fe3 × �u∗ (1.8)

where f = 2Ω∗ sinϕ∗ is the Coriolis parameter.

Using the hydrostatic assumption, eq. 1.7 could be approximate by

− g − 1

ρ∗
∂p∗

∂z∗
= 0 (1.9)

which yields

p∗ = g

∫ η∗

z∗
ρ∗ dz + patm (1.10)

with patm the atmospheric pressure at the water surface η∗[x∗, y∗, t∗]. The at-

mospheric pressure is assumed to be constant. With the present assumption,

10



1.3. MODEL

ρ∗ is not dependent on z, so it follows that

p∗ = gρ∗(η∗ − z∗) + patm (1.11)

Inserting eq 1.11 into eq. 1.5 and 1.6, it yields

∂u∗

∂t∗
+ u∗∂u

∗

∂x∗ + v∗
∂u∗

∂y∗
+ w∗∂u

∗

∂z∗
=

− g
∂η∗

∂x∗ +
g

ρ∗
∂ρ∗

∂x∗ z + ν∇2u∗ −∇(A∗∇u∗)− 2Ω∗(w∗ cosϕ∗ − v∗ sinϕ∗)

(1.12)

∂v∗

∂t∗
+ u∗ ∂v

∗

∂x∗ + v∗
∂v∗

∂y∗
+ w∗∂v

∗

∂z∗
=

− g
∂η∗

∂y∗
+

g

ρ∗
∂ρ∗

∂y∗
z + ν∇2v∗ −∇(A∗∇v∗)− 2Ω∗u∗ sinϕ∗ (1.13)

(1.14)

Because of the along-channel uniformity hypothesis, terms containing the

longitudinal derivative of the velocity ∂�u
∂x∗ vanish.

The longitudinal ( ∂ρ
∗

∂x∗ ) and lateral ( ∂ρ
∗

∂y∗ ) tidally-averaged density gradients

are externally prescribed on the basis of the data, characterizing a specific

estuary.

Moreover, dimensional analysis indicates that the horizontal component

of the eddy viscosity is negligible compared to the leading order contributions

in the equations.

The momentum equations then reduce to

∂u∗

∂t∗
+ v∗

∂u∗

∂y∗
+ w∗∂u

∗

∂z∗
=

g

ρref

∂ρ∗

∂x∗ z
∗ − g

∂η∗

∂x∗ +
∂

∂z∗

(
A∗

z

∂u∗

∂z∗

)
+ fv∗ (1.15)

∂v∗

∂t∗
+ v∗

∂v∗

∂y∗
+ w∗∂v

∗

∂z∗
=

g

ρref

∂ρ∗

∂y∗
z∗ − g

∂η∗

∂y∗
+

∂

∂z∗

(
A∗

z

∂v∗

∂z∗

)
− fu∗ (1.16)

where ρref is a constant reference density determined by Boussinesq closure.
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CHAPTER 1. MODELLING BOUNDARY LAYER

Boundary conditions and forcing

The shear stress is assumed to vanish at the free water surface, where

the kinematic boundary conditions hold; in the rigid lid approximation these

conditions imply

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w∗ = 0

A∗
z

∂u∗

∂z∗
= 0

A∗
z

∂v∗

∂z∗
= 0

at z∗ = 0 (1.17)

Although the estuary bed is assumed to be impermeable, two different bound-

ary conditions are investigated:

I: a no-slip condition

u∗ = v∗ = w∗ = 0 at z∗ = −H∗[y∗] (1.18)

II: a partial slip condition

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w∗ = 0

A∗
z

∂u∗

∂z∗
= s∗u∗

A∗
z

∂v∗

∂z∗
= s∗v∗

at z∗ = −H∗[y∗] (1.19)

where s∗ is partial slip parameter chosen on the basis of the measured velocity

profile (see Schramkowskiand de Swart, 2002 [7]).

In case of a no-slip boundary condition, both a constant and a parabolic eddy

viscosity profile are considered.

At the lateral boundaries there is no overall lateral flux of water. Hence,

the following integral condition holds:

∫ 0

−H∗
v∗ dz = 0 at y∗ ∈ {0, B∗} (1.20)

which, in turn, implies that the overall lateral water flux vanishes at each

12



1.3. MODEL

location in the cross-section:

∫ 0

−H∗
v∗ dz = 0 for all y∗ (1.21)

Finally, a semi-diurnal tidal discharge is imposed over the cross-section:

1

S∗

∫ B∗

0

∫ 0

−H∗
u∗dzdy = U∗ cos (ωT t

∗) (1.22)

where S∗ is the cross-section area

S∗ =
∫ B∗

0

H∗[y∗] dy (1.23)

1.3.2 Eddy viscosity models

Constant eddy viscosity profile

The no-slip and partial-slip boundary conditions are considered in con-

juction with an eddy viscosity modelled as proposed by Munk and Anderson

(1948, [8]), Bowden (1959, [9]) and Dyer (1973, [10]). In the presence of

stratification, it reads

A∗
z = A0(1 + 10Ri)−1/2 (1.24)

where

A0 = 2.5× 10−3U∗
TH

∗
0 (1.25)

is the vertical eddy viscosity coefficient in absence of stratification, and UT

is the tide-average mean velocity amplitude. The coefficient H0 is half cross-

section averaged water depth, and Ri is the Richardson number defined on

the basis of a typical density difference between bed and surface Δρ

Ri = g
Δρ

ρref

H∗
0

U∗2
T

. (1.26)

13



CHAPTER 1. MODELLING BOUNDARY LAYER

Note that the Richardson number and the vertical eddy viscosity are assumed

constant in time and z.

Parabolic eddy viscosity profile model

The other considered eddy viscosity profile is a parabolic profile. This

takes into account the vertical variation of eddy viscosity which is described

by a two parameter equation

A∗
z[y

∗, z∗] = A0

(
1−

(√
1− R

1− δ

(
z∗

H∗ + δ

))2
)
(1 + 10Ri)−1/2 (1.27)

Here the parameter R, varying in the interval (0,1), controls the value of eddy

viscosity at the bed, while δ parametrizes the depth at which the maximum

eddy viscosity occurs, ranging from 0 to
(
1 +

√
1−R

)−1
. A0 and Ri are the

same.

1.3.3 Sediment dynamics

The sediment mass balance equation, given the shallow water assumption

and the along-estuary uniform condition, simplifies to

∂c∗

∂t∗
+

∂

∂y∗

(
v∗c∗ −Ky

∂c∗

∂y∗

)
+

∂

∂z∗

(
(w∗ − ws) c

∗ −Kz
∂c∗

∂z∗

)
= 0 (1.28)

where c∗ is the sediment concentration, ws is the settling velocity while Ky

and Kz are the lateral and vertical eddy diffusivity coefficients, assumed to

be constant. In particular, it is used Ky = 5 m2s−1 (Fisher et al., 1979 [11])

while Kz is parametrized as suggested by Munk and Anderson (1948, [8])

Kz = A0(1 + 3.33Ri)−3/2 (1.29)

14



1.3. MODEL

for a vertically constant eddy viscosity, and

Kz = A0

(
1−

(√
1− R

1− δ

(
z∗

H∗ + δ

))2
)
(1 + 3.33Ri)−3/2 (1.30)

for parabolic eddy viscosity.

Similar to the boundary conditions for the lateral water flux, the lateral

sediment transport has to vanish at the lateral boundaries

∫ 0

−H∗

(
v∗c∗ −Ky

∂c∗

∂y∗

)
dz = 0 at y∗ ∈ {0, B∗} (1.31)

The sediment flux through the water surface must vanish:

wsc
∗ +Kz

∂c∗

∂z∗
= 0 at z∗ = 0 (1.32)

The sediment flux normal to the bed consists of an erosion and deposition

flux. The erosion E∗
s is modelled as

E∗
s ≡ −Ky

∂c∗

∂y∗
ny −Kz

∂c∗

∂z∗
nz = wsc∗ at z∗ = −H∗[y∗] (1.33)

where �n = (ny, nz) is the upward unit vector normal to the bottom and c∗ is

a reference concentration modelled as

c∗[y∗, t∗] = ρs
|τ ∗b [y∗, t∗]|

(ρs − ρref) gds
a∗[y∗] (1.34)

Here ρs is the sediment density, τ ∗b the bed shear stress, ds is the sediment

grain size and a∗[y∗] is the erosion coefficient, that is related to the amount

of sediment available for resuspension at the bed. The bed shear stress is

defined at z∗ = −H∗[y∗] by

�τ ∗b = ρrefA
∗
z[z

∗ = −H∗[y∗]]
∂ �u∗

∂z∗
(1.35)

The bed shear stress is assumed to be much larger than the critical bed shear
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CHAPTER 1. MODELLING BOUNDARY LAYER

stress for sediment erosion. Clearly, at equilibrium c∗ = c∗.

The deposition flux normal to the bed D∗ is modelled as

D∗ ≡ wsc
∗nz at z∗ = −H∗[y∗] (1.36)

In morphodynamic equilibrium, the tidally averaged rate of bed variation

vanishes,

<
∂z∗b
∂t∗

>=
1

T

∫ T

0

∂z∗b
∂t∗

dτ = 0 (1.37)

where z∗b is the bed elevation and angular bracket denote tidal-averaging.

The Exner equation describing bed evolution can be written as

(1− p)
∂z∗b
∂t∗

= D∗ − E∗
s (1.38)

with p sediment porosity.

The equilibrium condition 1.37 implies that a balance exists between de-

position and erosion, such that

< D∗ > − < E∗
s >= 0 (1.39)

Integrating over the depth, the sediment mass balance equation 1.28 gives

∫ 0

−H∗

(
∂c∗

∂t∗
+

∂

∂y∗

(
v∗c∗ −Ky

∂c∗

∂y∗

)
+

∂

∂z∗

(
(w∗ − ws) c

∗ −Kz
∂c∗

∂z∗

))
dz = 0

(1.40)

Using Leibniz integral rule, one finds

∫ 0

−H∗

∂c∗

∂t∗
dz +

∂

∂y∗

∫ 0

−H∗

(
v∗c∗ −Ky

∂c∗

∂y∗

)
dz −

(
v∗c∗ −Ky

∂c∗

∂y∗

)∣∣∣∣
−H∗

∂H∗

∂y∗
+

+

(
(w∗ − ws) c

∗ −Kz
∂c∗

∂z∗

)∣∣∣∣
0

−H∗
= 0 (1.41)

Taking into account the boundary conditions at the water surface z∗ = 0 and
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1.3. MODEL

at the bed z∗ = −H∗[y∗], along with the definition for D∗ and E∗
s , it follows

that

∫ 0

−H∗

∂c∗

∂t∗
dz +

∂

∂y∗

∫ 0

−H∗

(
v∗c∗ −Ky

∂c∗

∂y∗

)
dz+

+

(
Ky

∂c∗

∂y∗

)∣∣∣∣
−H∗

∂H∗

∂y∗
+

(
wsc

∗ +Kz
∂c∗

∂z∗

)∣∣∣∣
−H∗

= 0 (1.42)

and rearranging

∫ 0

−H∗

∂c∗

∂t∗
dz +

∂

∂y∗

∫ 0

−H∗

(
v∗c∗ −Ky

∂c∗

∂y∗

)
dz =

=

(
−Ky

∂c∗

∂y∗

)
−
(
wsc

∗ +Kz
∂c∗

∂z∗

)
≡ D∗ − E∗

s (1.43)

Averaging over a tidal period and considering the system in morphodynamic

equilibrium, it follows that

∂

∂y∗

∫ 0

−H∗

(
< v∗c∗ > −Ky <

∂c∗

∂y∗
>

)
dz =< D∗ > − < E∗

s >= 0 (1.44)

Recalling the lateral boundary condition on the lateral sediment transport,

the morphodynamic equilibrium implies

∫ 0

−H∗

(
< v∗c∗ > −Ky <

∂c∗

∂y∗
>

)
dz = 0 for all y∗ (1.45)

Essentially, the mean balance between deposition and erosion requires a mean

balance between advective and diffusive sediment transport in the lateral

direction along each vertical section. In the following, equation 1.45 will be

refereed to as the morphodynamic equilibrium condition.

Recalling the definition of the erosion E∗
s (eq. 1.33) and that the reference

concentration c∗ (eq. 1.34) has been assumed to vary linearly with the erosion

coefficient a∗[y∗], the morphodynamic equilibrium condition can be written
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CHAPTER 1. MODELLING BOUNDARY LAYER

as a first order linear differential equation for the erosion coefficient

I1
∂a∗

∂y∗
+ I2a

∗ = 0 (1.46)

where I1 and I2 are known integrals given by

I1 =

∫ 0

−H∗[y∗]
−Ky <

c∗

a∗
> dz (1.47)

I2 =

∫ 0

−H∗

(
< v

c∗

a∗
> −Ky

∂ < c∗
a∗ >

∂y∗

)
dz (1.48)

To determine the integration constant needed to solve eq. 1.46, an additional

condition is required, namely

1

B∗

∫ B∗

0

a∗[y∗] dy = a∗ (1.49)

Here a∗ is a reference value for the average amount of sediment available for

resuspension in the cross-section. In particular a∗ is prescribed considering

the order of magnitude of sediment concentration that is expected on the

basis of field observations.
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1.4. SCALING

1.4 Scaling

The various quantities defined so far are scaled as

x∗ = L∗x, y∗ = B∗y, z∗ = H∗
0z, t

∗ =
1

ωT
t (1.50)

u∗ = U∗
Tu, v

∗ = V ∗v, w∗ =
V ∗H∗

0

B∗ w (1.51)

H∗ = H∗
0H, S∗ = B∗H∗

0S (1.52)

a∗ = a∗a, τ ∗b =
ρrefA

∗
zU

∗
T

H∗
0

τb, c
∗ =

ρsρrefA
∗
zU

∗
Ta∗

H∗
0 (ρs − ρref) gds

c (1.53)(
∂2u

∂z2

)∗
=

U∗
T

H∗2
0

(
∂2u

∂z2

)
,

(
∂2v

∂z2

)∗
=

fU∗
T

ωTH∗2
0

(
∂2v

∂z2

)
(1.54)(

∂η

∂x

)∗
=

ωTU
∗
T

g

(
∂η

∂x

)
,

(
∂η

∂y

)∗
=

fU∗
T

g

(
∂η

∂y

)
(1.55)

A∗
z = ωTH

∗2
0 Az, k

∗
z = ωTH

∗2
0 kz, ω

∗
s = ωTH

∗
0ωs, f

∗ = ωTf (1.56)

where a star apex denotes dimensional variables. This scaling is the same as

in Huijts (2010, [3]), see there for details.

From eq. 1.19, it follows that

s∗ = ωTH0s (1.57)

where it has been used that A∗
z/(ωTH

∗2
0 ) ≈ 1, that means that friction is

alwayes important in the full water column.

Since lateral gradients are effective over the topographic length scale de-

fined by

Ltop =
H∗

0

mean
∣∣∣∂H∂y ∣∣∣ . (1.58)

in the present analysis we assume that Ltop ∼ B∗. If this is not the case, the

equations should be scaled with Ltop (see Zitman and Schuttelaars, 2012 [6]).

The scaling follows from the main balances in the hydrodynamic and sed-

iment equations. Considering the order of magnitude of the various dimen-
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sionless terms (see tab. 1.2) in the longitudinal momentum equation, there

must be a balance among local inertial, eddy viscosity and the surface slope.

Imposing that these terms are of the same order yields the scaling for longi-

tudinal velocity curvature (∂
2u

∂z2
) and lateral surface gradient ( ∂η

∂x
). Recalling

that the longitudinal eddy viscosity scales as
U∗
T

H∗2
0

it follows A∗
z

ωTH∗2
0

∼ 1. On

the other hand the lateral momentum equation is characterized by a balance

among Coriolis force, eddy viscosity and the surface slope. Imposing that

these terms are of the same order yields the scaling for the lateral velocity

curvature (∂
2v

∂z2
) and the lateral surface gradient (∂η

∂y
).

The resulting dimensionless shallow water equations then read

∂u

∂t
+

V ∗

ωTB∗

(
v
∂u

∂y
+ w

∂u

∂z

)
=

UD

UT
z −

(
∂η

∂x

)
+

1

ωTH2
0

(
∂

∂z
Az

∂u

∂z

)
+

V ∗f
ωTUT

v

(1.59)

V ∗

UT

∂v

∂t
+

V ∗

UT

V ∗

ωTB∗

(
v
∂v

∂y
+ w

∂v

∂z

)
=

=
UD

UT

(
∂ρ
∂y

)∗
(
∂ρ
∂x

)∗ z − f

ωT

(
∂η

∂y

)
+

f

ωT

1

ωTH2
0

(
∂

∂z
Az

∂v

∂z

)
− f

ωT
u (1.60)

∂v

∂y
+

∂w

∂z
= 0 (1.61)

where UD ≡ gH0

ωT ρ0

∂ρ
∂x

is the typical velocity scale for the density driven mean

circulation. Note that ∂ρ
∂x

is prescribed uniformly in the cross-section. The

dimensionless sediment mass balance equation becomes

∂c

∂t
+

V ∗

ωTB∗

(
v
∂c

∂y
+ w

∂c

∂z
− Ky

V ∗B∗
∂2c

∂y2

)
− ws

ωTH0

∂c

∂z
− 1

ωTH2
0

(
∂

∂z
Kz

∂c

∂z

)
= 0

(1.62)
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The boundary and integral conditions associated with the flow field are

w = Az
∂u

∂z
= Az

∂v

∂z
= 0 at z = 0 (1.63)

u = v = w = 0 at z = −H [y] (1.64)∫ 0

−H

v dz = 0 for all y (1.65)

1

S

∫ 1

0

∫ 0

−H

udzdy = cos [t] (1.66)

where

S =

∫ 1

0

H [y] dy (1.67)

In the case of the partial-slip boundary condition at the bed, eq. 1.64 has to

be replaced by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w = 0

Az
∂u

∂z
= u

Az
∂v

∂z
= v

at z = −H [y] (1.68)

The dimensionless boundary conditions for suspended sediment concentra-

tion become

∫ 0

−H

(
vc− Ky

V ∗B∗
∂c

∂y

)
dz = 0 at y ∈ {0, 1} (1.69)

ws

ωTH0
c+

Kz

ωTH2
0

∂c

∂z
= 0 at z = 0 (1.70)

Es ≡ − Ky

V ∗B∗
V ∗

ωTB∗
∂c

∂y
ny − Kz

ωTH
2
0

∂c

∂z
nz =

ws

ωTH0

c∗ at z = −H [y] (1.71)

c∗ = |τb| a (1.72)

�τb = Az
∂�u

∂z
(1.73)

Finally, the morphodynamic equilibrium condition equation and the integral

21



CHAPTER 1. MODELLING BOUNDARY LAYER

Parameter Value Assumption Description

ε ≡ V ∗
UT

0.1 O[ε]1 lateral vs. longitudinal scale
f
ωT

0.6 O[1] scaled Coriolis parameter
Az

H2
0ωT

1 O[1] scaled vertical eddy viscosity parameter
Kz

H2
0ωT

0.7 O[1] scaled vertical eddy diffusivity coefficient
ωs

H0ωT
0.7 O[1] scaled settling velocity parameter

( ∂ρ
∂y )

( ∂ρ
∂x )

2 O[1] lateral vs. longitudinal density gradient

Ky

B∗V ∗ 0.03 O[ε]1 scaled lateral eddy diffusivity coefficient
UD

UT
0.3 O[ε]1 density-induced flow vs. tidal velocity amplitude

V ∗
B∗ωT

0.06 O[ε]2 internal lateral advection scale vs. width

Table 1.2: The typical magnitude of the dimensionless parameters

condition, necessary to fix the total amount of sediment in the cross-section,

become

∫ 0

−H

(
< vc > − Ky

V ∗B∗ <
∂c

∂y
>

)
dz = 0 for all y (1.74)∫ 1

0

a dy = 1 (1.75)

Following Huijts (2010 [3]), it is assumed that the non-linear (inertial)

terms in the momentum and sediment mass balance equations are o(ε2).

1.5 Perturbation analysis

Solutions of the scaled equations (1.59-1.62) are derived as perturbation

series in power of the small parameter ε ≡ V ∗UT ∼ 0.1

Ψ = Ψ0 + εΨ1 + o(ε2) (1.76)

where Ψ = {u, v, w, ∂η
∂x
, ∂η
∂y
, c} and the subscript denotes the component order

of approximation. The various dimensionless numbers are ordered sort ε in

table 1.2.

Using this expansion, a leading order system of equations (ε0-term) and

a higher order system of equation (ε1-term) are obtained and analytically
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solved.

Leading order problem

The dimensionless equations for the O[ε0] flow field are given by

∂u0

∂t
= −∂η0

∂x
+ Az

∂2u0

∂z2
(1.77)

∂η0
∂y

−Az
∂2v0
∂z2

+ fu0 = 0 (1.78)

∂v0
∂y

+
∂w0

∂z
= 0 (1.79)

In case of no-slip boundary condition at the bottom, the boundary and inte-

gral conditions read

u0 = v0 = w0 = 0 at z = −H [y] (1.80)

The condition of a stress free surface and no normal flow through the surface

is given by

w0 =
∂u0

∂z
=

∂v0
∂z

= 0 at z = 0 (1.81)

and no lateral water transport

∫ 0

−H

v0 dz = 0 for all y (1.82)

At the leading order the forcing reads

1

S

∫ 1

0

∫ 0

−H

u0dzdy = cos [t] (1.83)
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In case of partial slip assumption at the bed, eq. 1.80 reads

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w0 = 0

Az
∂u0

∂z
= su0

Az
∂v0
∂z

= sv0

at z = −H [y] (1.84)

The longitudinal leading order flow is driven by a balance among local

acceleration, the surface gradient forcing and turbulent friction. The lateral

leading order flow is governed by a balance among the lateral surface gradient,

Coriolis forcing and turbulent friction.

The water motion is forced by the semi-diurnal M2-tide. The lateral flow

is forced at the semi-diurnal frequency by the Coriolis force. For convenience,

a second subscript will denote the tidal harmonic components of a particular

term (e.g., u02).

Because a semi-diurnal tidal discharge is imposed, at leading order only

theM2 component of the velocity is not zero (the other normal modes vanish).

On the other hand, the leading order suspended sediment concentration is

determined by a balance between local inertia, vertical settling and vertical

diffusion effects

∂c0
∂t

− ws
∂c0
∂z

− ∂

∂z

(
Kz

∂c0
∂z

)
= 0 (1.85)

implying that the leading order concentration c0 is determined by a balance

in the vertical.

The boundary conditions at the bottom read

−Kz
∂c0
∂z

= ws

∣∣∣∣∂ �u02

∂z

∣∣∣∣ a at z = −H [y] (1.86)

and at the surface

wsc0 +Kz
∂c0
∂z

= 0 at z = 0 (1.87)
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The presence of the absolute value of the vertical velocity gradient in 1.86,

implies that at the leading order the sediment concentration can be written

as a Fourier series which contains a mean term and even over-tides of M2,

c0 = c00 + c04 + ... (1.88)

First order problem

The o[ε1] flow field problem is given by the equations

∂u1

∂t
=

UD

UT
z −

(
∂η1
∂x

)
+ Az

(
∂2u1

∂z2

)
+ fv0 (1.89)

∂v0
∂t

=
UD

UT

(
∂ρ
∂y

)
(
∂ρ
∂x

) z − (∂η1
∂y

)
+ Az

(
∂2v1
∂z2

)
− fu1 (1.90)

∂v1
∂y

+
∂w1

∂z
= 0 (1.91)

with boundary and integral conditions: no slip and no normal flow at the

bottom

u1 = v1 = w1 = 0 at z = −H [y] (1.92)

no stress at the water surface and no normal flow through the free surface

w1 =
∂u1

∂z
=

∂v1
∂z

= 0 at z = 0 (1.93)

and no lateral water transport at any location in the cross-section

∫ 0

−H

v1 dz = 0 for all y (1.94)
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In case of partial slip assumption at the bed, eq. 1.92 reads

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w1 = 0

Az
∂u1

∂z
= su1

Az
∂v1
∂z

= sv1

at z = −H [y] (1.95)

The presence of v0 in 1.89 induces a forcing on u1 with an M2 frequency,

and the presence of a time-independent density gradient in the longitudinal

direction results in a residual flow component. This suggests a decomposition

of the form

u1 = u10 + u12 + . . . (1.96)

v1 = v10 + v12 + . . . (1.97)

The equation and boundary conditions for suspended sediment concentration

are

∂c1
∂t

− ws
∂c1
∂z

−Kz
∂2c1
∂z2

= 0 (1.98)

Kz
∂c1
∂z

= −ws

1
2

(
∂u0

∂z
· (∂u1

∂z

) ∗ + ∂u1

∂z
· (∂u0

∂z

)∗)∣∣∂ �u0

∂z

∣∣ a at z = −H [y] (1.99)

wsc1 +Kz
∂c1
∂z

= 0 at z = 0 (1.100)

The first order sediment concentration c1 results from the bed shear stress

at first order, that results from the leading order and first order flow. Har-

monic analysis of the right-hand side term in 1.99 shows that the sediment

concentration can be written as a Fourier series which contains a residual

component c10 and components that varies at the M2 tidal frequency and its

overtides

c1 = c10 + c12 + . . . (1.101)
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Note that the term c12 arises as a consequence of the non-linearity of the bed

shear stress.

Morphodynamic equilibrium condition

The morphodynamic equilibrium condition, up to o[ε2], requires that, for

any location y,

∫ 0

−H

(
< v0c0 > + < v1c0 > + < v0c1 > − Ky

V ∗B∗ <
∂c0
∂y

>

)
dz = 0 (1.102)

Recalling that the velocity components consists of M2, M4 and residual com-

ponents

v0 = v02, v1 = v10 + v12 (1.103)

and the concentration can be written

(1.104)

c0 = c00 + c04, c1 = c10 + c12 (1.105)

it follows that the only tidally average contributions at order ε2 are

TM0 =

∫ η

−H

(< v10c00 >) dz (1.106)

TM2 =

∫ η

−H

(< v02c12 >) dz (1.107)

Tdiff =

∫ η

−H

(
− Ky

V ∗B∗ <
∂c00
∂y

>

)
dz (1.108)

Now equation 1.102 becomes

TM0 + TM2 + Tdiff = 0 for all y (1.109)
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Hence, the system is in morphodynamic equilibrium if the mean lateral sed-

iment transport induced by the mean flow, TM0, by the semi-diurnal flow

u02, TM2, and by diffusion, Tdiff, balance. Although the mean transport TM2

induced by tidal flow is usually ignored or modelled as turbulent diffusion,

it can be quite important. Crucial for its importance is the phase difference

between the lateral tidal velocity and the semi-diurnal component of the sed-

iment concentration. The more these two quantities are in phase, the larger

their contribution to the mean lateral sediment transport.

1.6 Analytical solution

The main interest of the present work is to determine the tidally average

lateral sediment transport responsible for the sediment distribution across the

estuary section. As discuss in section 1.5, the following constituents of flow

and sediment concentration contribute to control sediment dynamics: the

leading order tidal M2 flow, �u02; the first order residual flow, �u10; the leading

order residual sediment concentration, c00; the semi-diurnal component of

the first order sediment concentration, c12.

A normal mode solution is considered by introducing the following expansion

Ψj = Re
[
Ψ̂j[x, y, z]e

iωt
]

(1.110)

where Ψj = {uj, vj, wj,
(
∂η
∂x

)
j
,
(

∂η
∂y

)
j
, cj} at each perturbation order j and

the hat indicates coefficients that are functions only of spatial coordinates.

Substituting this expansion into the leading and first order momentum and

mass conservation equations yields a series of ordinary differential equations

that allow the calculation of the coefficients Ψ̂j.

For a more easy interpretation of the analytical solutions and for their

representation, in the following the equations are dimensional, as well as the

figures.

The parameters used for all figures are those reported in section 1.9,if
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not otherwise specified; these parameters are taken as reference values for a

typical estuary (e.g., the James River - USA).

1.6.1 Constant eddy viscosity with no-slip condition

Hydrodynamics

In leading order, the spatial structure of the velocity is a function of the

surface gradient

û02 =
ig

ω

ˆ(
∂η

∂x

)
02

(
1− cosh (αz)

cosh (αH)

)
(1.111)

v̂02 =
fg

ω2

ˆ(
∂η

∂x

)
02

(
1− cosh (αz)

cosh (αH)
+

iω

2Az

(
z2 −H2

))
+

+
g

2Az

ˆ(
∂η

∂y

)
02

(
z2 −H2

)
(1.112)

where α =
√

iω
Az
.

The surface gradient ˆ(
∂η
∂x

)
02

results from eq. 1.83 and
ˆ(

∂η
∂y

)
02

from the

boundary condition 1.82.They read

ˆ(
∂η

∂x

)
02

=
ωUTS

ig

(∫ B∗

0

1

α
(αH − tanh (αH))dy

)−1

(1.113)

ˆ(
∂η

∂y

)
02

=
if

ω

ˆ(
∂η

∂x

)
02

(
3
αH − tanh (αH)

(αH)3
− 1

)
(1.114)

Here the longitudinal surface gradient ˆ(
∂η
∂x

)
02

is constant in the lateral direc-

tion. The lateral surface gradient
ˆ(

∂η
∂y

)
02

depends on the transverse coordi-

nate y, i.e. on the bathymetry.

The vertical velocity coefficient ŵ02 is obtained by integrating the conti-
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nuity equation over depth and imposing the no-flux condition at the bed:

ŵ02 =
1

6Azω2

(
6g

(
fAz

ˆ(
∂η

∂x

)
02

(
α2H(z +H)+

− sech(αH)(sinh (zα) + sinh (αH)) tanh (αH))+

+H(z +H)ω2
ˆ(

∂η

∂y

)
02

)
∂H

∂y
− g(z − 2H)(z +H)2ω2 ∂

∂y

ˆ(
∂η

∂y

)
02

)

(1.115)

Figure 1.2 shows a contour plots of the real part of the three component of

the velocity. The figure also shows the tidally averaged suspended sediment

concentration c00 in morphodynamic equilibrium.

At the first order each variable is expanded into a mean value (Ψ̂i0) and

its tidal-harmonic components (Ψ̂i2, Ψ̂i4, . . . ), namely

Ψi[x, y, z, t] = Ψ̂i0[x, y, z] + Ψ̂i2[x, y, z]e
iωt + Ψ̂i4[x, y, z]e

i2ωt + ... (1.116)

The contribution of the residual flow component Ψ̂i0[x, y, z]is obtained by

tidally averaging equations 1.89-1.91. The solution reads

û10 = − 1

Az

(
1

6

g

ρref

(
∂ρ

∂x

)(
z3 +H3

)− g

2

ˆ(
∂η

∂x

)
10

(
z2 −H2

))
(1.117)

v̂10 = − fg

12A2
zρ0

(
1

10
(z5 +H5) +H3(z2 −H2)

)
∂ρ

∂x
+

+
fg

4A2
z

(
1

6

(
z4 −H4

)−H2
(
z2 −H2

)) ˆ(
∂η

∂x

)
10

+

− g

6Azρ0
(z3 +H3)

∂ρ

∂y
+

g

2Az
(z2 −H2)

ˆ(
∂η

∂y

)
10

(1.118)

The longitudinal velocity is driven by the longitudinal tidally averaged den-

sity gradient (the gravitational circulation). The Coriolis deflecting the grav-

itational circulation is one of the contribution to the lateral tidally averaged

velocity. Apart from this contributions, the tidally averaged lateral density
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Figure 1.2: Model with no-slip (NS) boundary condition and constant eddy vis-
cosity: contour plots of the three components of the leading order velocity u, v
and w (real part) at max ebb and tidally averaged suspended sediment concen-
tration c00. The longitudinal component u is positive when directed sea-ward; the
lateral component v is positive when directed towards the right bank; the vertical
component w is positive if directed up-ward.
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gradient contributes to the lateral mean velocity as well. The surface gradi-

ent is calculated by imposing the boundary conditions of equation 1.83 and

1.82, respectively; namely

ˆ(
∂η

∂x

)
10

= −3

8

1

ρref

∫ B∗

0
H4 dy∫ B∗

0
H3 dy

∂ρ

∂x
(1.119)

ˆ(
∂η

∂y

)
10

=
7

48

fH3

Azρ0

∂ρ

∂x
− 3

8

H

ρref

∂ρ

∂y
+

2

5

fH2

Az

ˆ(
∂η

∂x

)
10

(1.120)

The solution for the mean vertical velocity is obtained by integrating the

continuity equation over depth and requiring that the bed is impermeable to

the flow

ŵ10 =
fg

24A2
zρ0

(2H2z3 − 9H4 − 7H5)
∂H

∂y

∂ρ

∂x
+

g

2Azρ0
H2(z +H)

∂H

∂y

∂ρ

∂y
+

+
fg

6A2
z

H(z3 − 5H2z − 4H3)
∂H

∂y

ˆ(
∂η

∂x

)
10

+
g

Az
H(z +H)

∂H

∂y

ˆ(
∂η

∂y

)
10

+

+
g

6Az
(z +H)2(z − 2H)

∂

∂y

ˆ(
∂η

∂y

)
10

(1.121)

The three component of the residual first order velocity are shown in figure

1.3.

Sediment concentration

The component of the suspended sediment concentration at the leading

order is the tidally averaged one. Integrating the tidally averaged equation

1.85 over the vertical coordinate, imposing the condition of vanishing sedi-

ment flux through the surface, gives that

Kz
∂c00
∂z

+ ωsc00 = 0 (1.122)

The tidally averaged suspended sediment concentration is thus determined

by the balance between the verticall diffusion and settling of sediment. The
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Figure 1.3: Model with no-slip (NS) boundary condition and constant eddy
viscosity: contour plots of the three components of the first order residual velocity
and the suspended sediment concentration c12. The longitudinal component u is
positive when directed sea-ward; the lateral component v is positive when directed
towards the right bank; the vertical component w is positive if directed up-ward.
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boundary condition have their default values at the bed, requires that

−Kz
∂c00
∂z

= ωs |τb|00 a[y] at z = −H [y] (1.123)

where τb00 denotes the mean component of the zeroth order bed shear stress

|τb|00 [x, y] = Azρ0

∣∣∣∣∂ �u02

∂z

∣∣∣∣ atz = −H [y] (1.124)

The solution of the boundary value problem provided by equations 1.122-

1.123 is given by

c00[x, y, z] = |τb|00 e−
ωs
Kz

(z+H)a[y]
ρs

(ρs − ρref)gds
(1.125)

where Kz

ωs
is an e-folding length scale controlling the decay of suspended

sediment concentration in the water column above the bottom. The residual

suspended sediment concentration is controlled by the erosion coefficient (a)

multiplied by the mean component of the bed shear stress.

The first order solution for the suspended sediment concentration is ob-

tained expanding the concentration into its tidal-harmonic components. It

was demonstrated that in the morphodynamic equilibrium condition the only

concentration component that is important up to O[ε2] is ĉ12, because of the

correlation with the M2 component of transverse velocity.

The complex coefficient ĉ12[x, y, z] is given by

ĉ12[x, y, z] = −
e−

(z+H)ωs+(z−H)R
2Kv ωs

((
−1 + e

zR
Kv

)
ωs −

(
1 + e

zR
Kv

)
R
)

(
−1 + e

HR
Kv

)
ω2
s + 2i

(
−1 + e

HR
Kv

)
KvωT +

(
1 + e

HR
Kv

)
ωsR

·

· ρs |τ̂b|12
(ρs − ρref ) gds

a[y] (1.126)

where R =
√
ω2
s + 4iKvωT and |τ̂b|12 is the first order semi-diurnal compo-
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nent of the absolute value of the bed shear stress:

|τ̂b|12 [x, y] =
Azρ0
2

(
∂�̂u02

∂z
·
(

∂�̂u10

∂z

)∗
+ ∂�̂u10

∂z
·
(

∂�̂u02

∂z

)∗)
∣∣∂ �u02

∂z

∣∣ at z = −H [y] (1.127)

Now it is possible to calculate the erosion coefficient by imposing the mor-

phodynamic equation 1.102, which leads to a first order differential equation

I1
da

dy
+ I2a = 0 (1.128)

where I1 and I2 are known integrals given by

I1[y] =

∫ 0

−H

−Ky
c00
a[y]

dz (1.129)

I2[y] =

∫ 0

−H

⎛
⎝v̂10

ĉ00
a[y]

+ v̂02
ĉ∗12
a[y]

−Ky

∂
(

ĉ00
a[y]

)
∂y

⎞
⎠ dz (1.130)

The erosion coefficient reads

a[y] = a0e
− ∫ y

0
I2/I1 dy (1.131)

where the integration constant a0 is obtained by imposing the boundary

condition 1.75; this yields

a0 =
a∗

1
B∗
∫ B∗
0

e
− ∫ y

0
I2
I1

dy
dy

(1.132)

1.6.2 Constant eddy viscosity with partial-slip condi-

tion

Let us now consider the flow field solution and the concentration distri-

bution resulting from the assumption of a partial-slip boundary condition at

the bed.
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Hydrodynamics

As in the no-slip case, the horizontal tidal velocity coefficients are solved

as function of surface gradient by imposing the boundary conditions 1.19.

They read

û02 =
ig

ωT

(
1− cosh (αz)

cosh (αH) + αAz

s
sinh (αH)

)
ˆ(

∂η

∂x

)
02

(1.133)

v̂02 =
fg

ω2
T

(
1− cosh (αz)

cosh (αH) + αAz

s
sinh (αH)

+
α2

2
(z2 −H2)− α2Az

s
H

)
ˆ(

∂η

∂x

)
02

+

+
g

2Az

(
z2 −H2 − 2Az

s
H

) ˆ(
∂η

∂y

)
02

(1.134)

where α =
√

iωT/Az. The water surface gradient is estimated through the

boundary conditions 1.65 and 1.66

ˆ(
∂η

∂x

)
02

=
ωTUTS

ig

(∫ B∗

0

1

α
(αH − sinh (αH)

cosh (αH) + αAz

s
sinh (αH)

)dy

)−1

(1.135)

ˆ(
∂η

∂y

)
02

=
fAz

αω2
T

(
− 3 sinh (αH)

H2(H + 3Az

s
)(cosh (αH) + αAz

s
sinh (αH))

+

+
3α

H(H + 3AZ

s
)
− α3

)
ˆ(

∂η

∂x

)
02

(1.136)

It immediately appears that the longitudinal component of the surface gra-

dient ˆ(
∂η
∂x

)
02

is constant; while the transverse component
ˆ(

∂η
∂y

)
02

depends on

only y-coordinate through the bathymetry.

The vertical velocity coefficient is obtained by integrating the continuity

equation over the depth and applying the condition of bottom imperme-
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ability

ŵ02 =
gf

ω2
T

(
zα2H +

(
− sinh (zα) sinh (αH) + zα3

(
Az

s

)2

sinh (2αH)+

+
αAz

s
cosh (αH)(zα cosh (αH)− sinh (zα)) + zα4

(
Az

s

)3

sinh (αH)2
)
·

·
(
cosh (αH) +

αAz

s
sinh (αH)

)−2
)

∂H

∂y

ˆ(
∂η

∂x

)
02

+

+
gz

Az

(
Az

s
+H

)
∂H

∂y

ˆ(
∂η

∂y

)
02

+

+
g

6Az

(
3zH

(
H +

2Az

s

)
− z3

)
∂

∂y

ˆ(
∂η

∂y

)
02

(1.137)

Figures 1.4 show a contour plots of the real part of the three component of

the velocity. Figure 1.4 also reporteds the real part of the tidally averaged

suspended sediment concentration c00. The first order of approximation is

processed as in section 1.6.1. The horizontal mean flow (residual flow) is

obtained as a function of mean surface gradient by solving the mean part of

the first order momentum equation and the relative boundary conditions. In

practice, each variable is expanded into its tidal-harmonic components

Ψi[x, y, z, t] = Ψ̂i0[x, y, z] + Ψ̂i2[x, y, z]e
iωT t + Ψ̂i4[x, y, z]e

i2ωT t + . . . (1.138)

with Ψ̂i0 the time-independent term related to residual flow, obtained by

solving the first order equations average over a tidal period. The horizontal
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Figure 1.4: Model with partial-slip (PS) boundary condition and constant eddy
viscosity: contour plots of the three components of the leading order velocity u, v
and w (real part) and tidally averaged suspended sediment concentration c00. The
longitudinal component u is positive when directed sea-ward; the lateral compo-
nent v is positive when directed towards the right bank; the vertical component w
is positive if directed up-ward.

38



1.6. ANALYTICAL SOLUTION

velocity read

û10 = − g

6Azρref

(
z3 +H3 + 3

Az

s
H2

)
∂ρ

∂x
+

g

2Az

(
z2 −H2 − 2

Az

s
H

) ˆ(
∂η

∂x

)
10

(1.139)

v̂10 = − fg

120A2
zρ0

(
z5 + 10z2H3 − 9H5 − 15

Az

s
H4

)
∂ρ

∂x
+

+
fg

24A2
z

(
z4 − 6z2H2 + 5H4 + 8

Az

s
H3

) ˆ(
∂η

∂x

)
10

+

− g

6Azρ0
(z3 +H3 + 3

Az

s
)
∂ρ

∂y
+

g

2Az
(z2 −H2 − 2

Az

s
H)

ˆ(
∂η

∂y

)
10

(1.140)

Surface gradient is calculated by using boundary conditions; it reads

ˆ(
∂η

∂x

)
10

= − 3

8ρ0

∫ B∗

0
H3(H − 4Az

s
) ∂ρ
∂x

dy∫ B∗
0

H2(H + 3Az

s
) dy

(1.141)

ˆ(
∂η

∂y

)
10

=
fH3

48Azρ0

7H + 18Az

s

H + 3Az

s

∂ρ

∂x
− 3H

8ρ0

H + 4Az

s

H + 3Az

s

∂ρ

∂y
+

fH2

5Az

2H + 5Az

s

H + 3Az

s

ˆ(
∂η

∂x

)
10

(1.142)

The mean vertical velocity is determined by integrating mean continuity

equation over the depth and applying bottom impermeability

ŵ10 =
fgzH2

24A2
zρ0

(2z2 − 9H2 − 12H
Az

s
)
∂H

∂y

∂ρ

∂x
+

gzH

2Azρ0
(H + 2

Az

s
)
∂H

∂y

∂ρ

∂y
+

+
fgzH

6A2
z

(z2 − 5H2 − 6H
Az

s
)
∂H

∂y

ˆ(
∂η

∂x

)
10

+
gz

Az
(H +

Az

s
)
∂H

∂y

ˆ(
∂η

∂y

)
10

+

− gz

6Az
(z2 − 3H2 − 6H

Az

s
)
∂

∂y

ˆ(
∂η

∂y

)
10

(1.143)

A snapshot of the three component of the residual first order velocity is

shown as contour plots in figure 1.5. The values of the various parameters

are reported in section 1.9.
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Figure 1.5: Model with partial-slip (PS) boundary condition and constant eddy
viscosity: contour plots of the three components of the first order residual velocity
and the suspended sediment concentration c12. The longitudinal component u is
positive when directed sea-ward; the lateral component v is positive when directed
towards the right bank; the vertical component w is positive if directed up-ward.
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Sediment concentration

The structure of the mass balance equation is similar to that obtained by

considering the no-slip boundary condition. However, owing to the different

flow field arising form the imposition of a partial-slip condition, bed shear

stress now read

|τb|00 [x, y] = sρ0

√
Abs

[
∂û02

∂z

]2
+Abs

[
∂v̂02
∂z

]2
+Abs

[
∂ŵ02

∂z

]2
atz = −H [y]

(1.144)

|τb|12 [x, y] =
sρ0
2

(
∂�̂u02

∂z
·
(

∂�̂u10

∂z

)∗
eiωT t + ∂�̂u10

∂z
·
(

∂�̂u02

∂z

)∗
e−iωT t

)
√

Abs
[
∂û02

∂z

]2
+Abs

[
∂v̂02
∂z

]2
+Abs

[
∂ŵ02

∂z

]2 at z = −H [y]

(1.145)

1.6.3 Parabolic eddy viscosity profile with no-slip con-

dition

Let us finally consider the case of a parabolic eddy viscosity profile. The

procedure follow to derive the leading and first order of the flow field and of

the sediment concentration are similar to that describe in section 1.6.1.

Now the solution are very long analytical expressions function of hyper-

geometric functions. In the following are presented only the results by their

figures.

1.7 Comparison

It has been made a comparison for the three different boundary condi-

tions. In figure 1.8 various vertical profile of the velocity u-component are

compared for different vertical section in the cross-section, from the side bank

to the centre of the estuary. The difference between the classical condition

and the partial-slip is minimal, and it decreases moving toward the deeper
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Figure 1.6: Model with no-slip boundary condition and parabolic eddy viscosity
(PEV): contour plots of the three components of the leading order velocity u, v
and w(real part) and tidally averaged suspended sediment concentration c00. The
longitudinal component u is positive when directed sea-ward; the lateral compo-
nent v is positive when directed towards the right bank; the vertical component w
is positive if directed up-ward.
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Figure 1.7: Model with no-slip boundary condition and parabolic eddy viscosity
(PEV): contour plots of the three components of the first order residual velocity
and the suspended sediment concentration c12. The longitudinal component u is
positive when directed sea-ward; the lateral component v is positive when directed
towards the right bank; the vertical component w is positive if directed up-ward.
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part of the estuary. Instead the difference with the parabolic eddy viscos-

ity is impressive. The gradient of the velocity is very high in the boundary

layer; after a small portion of the total depth, the velocity becomes almost

constant. To maintain the same discharge in the cross-section, the maximum

velocity is smaller than the case of constant viscosity.

Similarly, in figure 1.9 various vertical profile of the velocity v-component

are compared for the same different vertical section. Also in this case the

partial-slip condition is quite similar to the classical solution derived with

constant eddy viscosity and no-slip condition. The solution with parabolic

eddy viscosity again shows high gradient in the bed boundary layer and

globally it is very different form the classical one.

1.8 Summary and conclusions

It has been developed a model for the investigation of the influence of

boundary condition at the bed, on both hydrodynamic and suspended sed-

iment distribution in cross section of tidal estuary. The main contribution

is the analysis of the effects of three boundary condition at the bed: no-

slip condition with constant and parabolic eddy viscosity; partial-slip with

constant eddy viscosity.

The model allows analytical solution of the water motion and sediment

transport for the three considered boundary conditions.

The model is analytical and so it allows highly accurate calculation and

high space resolution. These are important aspects when dealing with cross-

section analysis and mud reach search. The model is built-up with implicit

dependency on the different forcing and parameters, they all appear as func-

tion in the results. Even if in this way it is not optimised for fast calculation,

it is quite fast and this easily permits sensitivity analysis on the most rel-

evant factors that affect the model. So the model is extremely flexible for

wide variation of forcing and parameters.

Considering constant eddy viscosity, the results show that the no-slip and
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Figure 1.8: Comparison profiles for of the u-component of the velocity for dif-
ferent vertical section in the cross-section: in red the solution with no-slip and
constant eddy viscosity; in green the case of partial-slip and constant eddy viscos-
ity; in blue the profile for the case of no-slip and parabolic eddy viscosity.
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Figure 1.9: Comparison profiles for of the v-component of the velocity for dif-
ferent vertical section in the cross-section: in red the solution with no-slip and
constant eddy viscosity; in green the case of partial-slip and constant eddy viscos-
ity; in blue the profile for the case of no-slip and parabolic eddy viscosity.
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partial slip boundary condition give very similar solutions. Considering the

no-slip condition, the use of a parabolic eddy viscosity give a very different

solution respect to the use of the classical constant eddy viscosity. The

velocity profiles derived with parabolic eddy viscosity show high gradient in

the first meter from the bed. In fact, with the parabolic eddy viscosity it is

possible to resolved the boundary layer at the bed, whereas with the classical

solution it is not possible.

It remain to better compared and understand the effect of parabolic eddy

viscosity to the sediment concentration distribution and to compared the

solution with field data. In this way it will be possible to verify if effec-

tively the parabolic eddy viscosity is a real improvement to the modelling of

hydrodynamics and sediment distribution in cross-section.

1.9 Parameters and constants

Typical estuary geometry and sediment characteristics

B∗ ∼ 5 km, estuary width

L ∼ 1 km, length of the investigated reach

Hmin ∼ 1 m, cross-section minimum depth

Hmax ∼ 12 m, cross-section maximum depth

H0 ∼ 3 m, cross-section mean depth

Cm ∼ 10− 100 mg/l, mean sediment concentration

ds ∼ 20 μm, sediment grain size

a∗ ∼ 4× 10−6, reference erosion coefficient

ws ∼ 1 mm/s, settling velocity

ρs ∼ 2650 kgm−3, sediment density
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Δρ ∼ 2 kgm−3, bed to surface density difference

Typical features of the tide forcing and the resulting mean flow (order of

magnitude

ωT = 1.4× 10−4 s−1, M2-tide angular frequency

UT ∼ 1 m/s, cross-sectionally averaged tidal velocity amplitude

UD ∼ 0.1 m, mean flow induced by longitudinal density gradient

V ∗ ∼ 0.1 m, typical velocity caused by lateral density gradient and Coriolis force

UR ∼ 0.01− 0.001 m, typical velocity induced by river discharge

∂ρ

∂x
∼ 0.5× 10−3 kg/m−4, longitudinal density gradient

∂ρ

∂y
∼ 1× 10−3 kg/m−4, lateral density gradient

Kv ∼ 0.009 m2s−1, vertical eddy diffusivity coefficient

Ky = 5 m2s−1, lateral eddy diffusivity coefficient

Eddy viscosity

R ∼ 0.01

δ ∼ 0.5

Ri ∼
A0 ∼

Constants

g = 9.8 ms−2, gravitational acceleration

f = 10−4 s−1, Coriolis parameter

ρref = 1020 kgm−3, reference density
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Chapter 2

Statistical evaluation of wind

characteristics and wind energy

density in the Lagoon of

Venice, Italy

2.1 Abstract

The present study characterizes the sea-surface wind energy potential in

view of its implications for modelling salt-marsh bank retreat in the Venice

Lagoon (North-Eastern Italy).

A wind velocity/direction dataset of 11 years is analysed in terms of

yearly, seasonal, monthly and hourly distributions of the wind field. Auto-

correlation and wind event lengths are also analysed to better characterize

wind events. The analysis is made by use of wind rose plots and wind prob-

ability density function.

It is found that wind climate inside the lagoon is weaker (yearly mean

speed 3.8±2.7 and 3.3±2.2 m/s for Southern and Northern part, respectively)

than over the sea (yearly mean speed 4.8 ± 3.6 m/s). The prevailing wind

direction is North-East, and the second dominant direction is from South-
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East, the latter mainly connected to land-sea breeze. In the last 10 years

there was an anticlockwise rotation of the wind direction by about 22◦ in the

two prevailing wind directions.

Wind velocity is highest between September and April, December being

the windiest month. Land-sea breeze appears in February, it intensifies until

March , to decrease in August and vanish in November.

Hourly analyses highlight that high wind conditions generally happen

between 8 pm to 8 am in the open sea, and between 12 pm and 8 am within

the lagoon; there is a maximum probability of low wind around 1 pm in the

open sea, while inside the lagoon there are two minima around 11 am and 8

pm.

Autocorrelation analysis indicates that wind is a highly autocorrelated

phenomenon: wind autocorrelation falls below 0.5 only after 7 to 8 hours for

the Northern and Southern lagoon, respectively, and after at least 10 hours

for the nearby open sea.

2.2 Introduction

Many studies related to wind characteristics have been made in recent

years worldwide. This is partially due to increased interest in alternative en-

ergy resources; indeed, the available literature is most frequently concerned,

more or less explicitly, with wind power modelling for turbine installation.

Nevertheless, modelling the sea-surface wind field is of primary importance

in a number of fields connected to meteorology, oceanography and clima-

tology. Some of these investigations concern wind field measurements by

remote sensing (e.g., Meissner et al. 2001 [12]; Canestrelli et al., 2003 [13];

Monahan, 2006 [14]), estimates of airsea exchanges (e.g., Isemer and Hasse

1991 [15]; Wanninkhof 1992 [16]; Wanninkhof and McGillis 1999 [17]), wind

induced sea currents (e.g., Wu and Tsanis, 1995 [18]; Carniel et al., 2009 [19];

Burchard, 2009 [20]) and wind-waves (e.g., Yang et al., 2013 [21]; Johnson,

1998 [22]), but the list could indeed be much longer.
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An active field of research connected with the characterization of wind

speed distribution is the study of wind-wave erosion in estuaries. Generally,

these studies focus on wind-wave generation and evolution (e.g., Carniello

et al., 2011 [23]; Fagherazzi et al., 2009 [24]; Jouon et al., 2009 [25]; Moller

et al., 1999 [26]), wave impact on salt-marshes and tidal flats (e.g., Tonelli,

et al., 2010 [27]; Fagherazzi et al., 2007 [24]; Mariotti and Fagherazzi, 2010

[28]; Carniello et al., 2010 [29]; Marani et al., 2011 [30]) or the increase in

sediment re-suspension (e.g., Chao et al., 2008 [31]; Kessarkar et al., 2009

[32]; Talke and Stacey, 2008 [33]).

The present work is concerned with the topic of marsh lateral erosion

and it focuses on the sea-surface wind field characterization. For a morpho-

logical study of lagoon evolution, it is of primary importance to statistically

characterize the wind field to provide crucial input for wind-wave erosion

modelling. In fact, an important variable in wind-wave generation models

(and consequently in erosion models) is the correct representation of the wind

field and, in particular, of the wind energy power. To correctly evaluate the

wave energy generated in a shallow water environment, it is necessary to have

a detailed knowledge of various statistical characteristics of the wind field.

For a selected site, this is made by investigating wind characteristics, such as

speed, direction, duration, etc. through appropriate probability distribution

functions (PDFs).

There are several works that deal with the frequency distribution of wind

speed, and several PDFs have been proposed (see Carta et al, 2009 [34] and

Morgan et al., 2011 [35] for a review). In general, the Weibull PDF is widely

used to estimate a site’s probability distribution of wind speed and wind

power density ([34]). However, it has been noted that the Weibull distribu-

tion may not perform well in all cases and that it is generally not appropriate

for both low and high wind speed (e.g., Chang, 2011 [36]; Zhou et al., 2010

[37]; Sarkar et al., 2011 [38]). The wind speed probability distribution is

greatly dependent on the local morphology and climate conditions; for these

reasons, it is important to identify appropriate site-dependent PDFs.
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To analyse wind characteristics in the Venice lagoon, we use a dataset of

11 years of wind speed data (taken with a frequency of 5 minutes). The study

area is described in section 2.3.1; the sea surface wind dataset is outlined in

section 2.3.2. Wind rose and probability plots are briefly described in sections

2.3.3 and 2.3.4. A review of the properties of the used probability distribution

functions is presented in section 2.3.5; whereas parameter estimation methods

and accuracy judgement criteria are introduced in section 2.3.6 and 2.3.7.

Wind power density definition and equations are written in section 2.3.8. A

discussion of the observed statistics of the sea surface wind speeds is presented

in section 2.4.1, while the results of the power density analysis are reported

in section 2.4.2. Finally, summary and conclusions are given in section 2.5.

2.3 Materials and methods

2.3.1 Study area

The lagoon of Venice (Italy) is located in the Northern Adriatic Sea (Italy)

and is the largest lagoon in Italy and a protected Ramsar site. It is a wide

shallow basin with an area of about 550 km2, roughly 80% of which is covered

by water. The lagoon is also characterized by the presence of small islands

(about 5% of the total surface) and wide salt marshes and tidal flats (about

10% of the total surface).

Dominant winds are the Bora, a North-Easterly wind, and the Scirocco,

blowing from South-East.

2.3.2 Data

The wind observation dataset is provided by Istituzione Centro Previ-

sioni e Segnalazioni Maree (ICPSM; Center for Tidal Level Forecast and Sig-

nalling) of the Venice Municipality. We consider three stations: an offshore

oceanographic platform (“Piattaforma Aqua Alta” of CNR-ISMar, hereafter

referred to as PAA), representative of the wind field in the open sea (15 km
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PAA

SAL

CHI

Figure 2.1: Map of the Venice Lagoon with the location of the measuring stations:
PAA - Piattaforma Aqua Alta, SAL - Laguna Nord Saline, CHI - Chioggia Porto

station latitude longitude height [m] date interval
PAA 45◦18’51” N 12◦30’30” E 15 01/01/2000-31/12/2011
SAL 45◦29’44” N 12◦28’19” E 9 01/01/2000-31/12/2011
CHI 45◦13’57” N 12◦16’50” E 9 01/01/2004-31/12/2011

Table 2.1: List of ICPSM stations with geographical co-ordinates, anemometer
height above mean sea level, date range.

offshore), a station representative of the wind field in the Northern part of

the Venice lagoon (“Laguna Nord Saline” of ICPSM, hereafter SAL) and one

representative of the Southern part of the Venice lagoon (“Chioggia Porto”

of ICPSM, hereafter CHI). The station positions are presented in Fig. 2.1,

while station characteristics and time interval of available data are reported

in Tab. 2.1. To be notice wind gust data at SAL station start only form

01/01/2009.

Each station is equipped with the same instruments: a floating hydrom-

eter (SIAP ID7877) for tidal level measurements and a cup anemometer

(SIAP VT0705B) for measurements of horizontal wind speed and wind di-

rection. Measurement procedures, data sampling and data quality validation

are identical for each station.

The anemometer characteristics for wind speed measurements are, as
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specified in the instrument data-sheet: range 0-50 m/s; resolution 0.1 m/s;

accuracy 0.5 m/s with speed less than 10 m/s, 5% otherwise. The anemome-

ter characteristics for wind direction measurements are: range 0◦-360◦; reso-

lution 2◦; accuracy 3◦.

Wind observations are available every 5 minutes, and each value is the

mean of the last 15 minutes (sampling interval), with an instrument frequency

of 0.2 Hz (for both direction and speed). The wind gust value is the maximum

wind speed over the last 15 minutes, measured at instrument frequency. The

direction of the gust value is not reported.

From now on, wind speed is considered as the absolute value of the wind

vector, such that it is a positive quantity, and will be expressed in meters

per seconds. In some analyses the frequency distribution of wind speed is

expressed using the Beaufort scale (see App. E).

For wind direction it is adopted the convention to consider the direction

from which the wind is blowing (meteorological convention). Wind directions

is a continuous variable, but in some analyses it is sometimes discretized in 16

sectors 22◦30’ wide, corresponding to the cardinal directions, such as North

(N), North-North-East (NNE), North-East (NE), etc. The first sector (N)

ranges between -11◦14’99’ North to 11◦15’ North.

The dataset was pre-validated by ICPSM. A final quality control check of

the data was done before the analyses. The following tests were performed:

date and time control; range constraints; repeated data check; block sensor

problem; spike exclusion. The following range limits were used: 0◦-360◦for

wind direction; 0-50 m/s for wind speed (both mean and gust). Sensors were

considered to be not operational if observations do not change for more than

36 and 12 consecutive measure, for wind direction and speed respectively.

Spike analysis were considered only for consecutive data. The limits for

spike exclusion are: ±180◦for wind direction and ±20 m/s for wind speed.

Because it was decided to use wide limits for data quality control, a plot-

based visual check was performed to identify problematic data. In case of

doubtful data, they were compared with other datasets. Wind data values
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without direction or speed information have been excluded from the analysis.

Isolated data (no data before and after) were also excluded form the analysis.

There is no interpolation for missing data.

Being wind speed proportional to elevation, for result comparison wind

measurements are converted to the standard height of 10 m, by the use of

the Hellmann law. This correlates the wind speed readings at two different

heights (near water surface), under the hypothesis of atmospheric neutral

stability, namely

v(z) = v(z0)(
z

z0
)α (2.1)

where z0 is the height of measured wind velocity, v(z0); z is the eleva-

tion at which the wind velocity needs to be estimated; the exponent α is a

function of: orography, height, hour of the day, season, land features and

surface roughness, wind speed, temperature, and air condition. Despite its

variability, a constant roughness coefficient of 0.11 is considered because, for

the considered heights (9 to 15 m), the effect of a variable Hellman exponent

is negligible (less than 4%). For the same reason Hellmann’s law, rather than

the more appropriate Monin-Obukhov correction is adopted.

Wind is a continuous variable and, due to analogue to digital conversion

(ADC), it is recorded in discrete values. The anemometers used record wind

values as multiple of about 0.10 m/s and the frequency of a specific value is

the frequency of all wind values in an 0.1-width interval around the recorded

value. However, it is not known how this interval is distributed, unless one

knows the specifications of the ADC device. For example, if the ADC uses

a step function, the interval is at the right of the measured value. In this

way, having wind speed approximately a Weibull distribution, measurements

overestimate wind less than the most frequent value of wind velocity. For

goodness of fit calculations, one has to compare the measured frequency at

the discrete wind values with the integral of the PDF over the unknown

interval. Again, this involves some error. In the following, it is assumed
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that the interval is symmetric with respect to the measured values. An

evaluation of the error is made using the Weibull distribution of the entire

data set for station PAA and comparing a ADC right step function with a

ADC symmetric function. For the lowest wind velocities the error could be

more than 10% of the expected frequency; for the high speed tail the mean

error is of 2.5%. In the region of the mode of the distribution the error is less

than 0.1% of the expected frequency. Even if this source of error may not be

so relevant in practice, it is important to remember its existence, specially

when one calculates a continuous distribution from “discrete” measurements.

2.3.3 Wind Rose diagram

Wind rose is a simple way to present wind speed and direction statistics

in a straightforward visual form. In practice, it is a polar histogram of wind

direction data in which each sector is a frequency histogram of wind speed

data for that direction. The length of each spoke displays the frequency of

time the wind blows from that direction. Each concentric circle represents a

different frequency. Each spoke presents the frequency of time the wind blows

at certain speed ranges (for that direction) by colour bands of appropriate

length. Tables of frequencies and summary statistics are produced along with

the wind rose diagram. The developed code for wind rose was obtained by

modifying the Matlab code shared by M. Ma.

2.3.4 Probability plot

A probability plot (PP) is a graph for the comparison of two dataset,

either empirical (measured) or theoretical (PDF based) set. A PP plots two

Cumulative Distribution Function (CDF’s) against each other. It is a para-

metric graph with range [0, 1]× [0, 1]. Each point in a PP corresponds to a

couple of CDF evaluated at the same wind speed. For identical distributions,

all points lie along the diagonal between (0,0) and (1,1); any deviation in-

dicates a difference between the distributions; the greater the distance from
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the diagonal, the grater the deviation. The maximum deviation is measured

by the Kolmogorov-Smirnov test.

2.3.5 Wind speed distribution

There are several probability density functions (PDF) which provide a

good analytical approximation for wind speed frequency near the sea-surface.

After a quick analysis with several PDF’s used in literature, a selection

of ten PDFs is used in the following.

In particular, we consider the following distributions: Maximum Sta-

ble, Gumbel, Extreme Value, Frechet, Weibull, Pareto, Gamma, LogNormal,

LogGamma and Erlang.

With the aim of considering zero wind speed in the description of wind

regimes, some researchers use hybrid distribution. Following this idea, it

is introduced a slightly more complete version, which consider also the lost

data. Lost data are the sum of not registered measurements (for example

due to instrument breakdown) and values that were registered but that have

not passed the quality controls. For any of the following PDF the hybrid

distribution, h, corrected for lost data is determined by:

h[x; θ0, θN ,Φ] = (1− θN )θ0δ[x] + (1− θN − (1− θN )θ0)f [x,Φ] (2.2)

where x is the wind speed variable; θ0 is the probability of null wind

speed observations in the dataset; θN is the absolute frequency of lost data;

Φ is a set of parameters of the main PDF; δ is the Dirac function; f is the

PDF of positive wind speeds in the dataset. Lost data are computed as

the difference between the total number of potential measurements (that is,

time series length divided by temporal resolution) and dataset actual length.

Absolute frequency of lost data is computed as the rate of lost data over

total possible measurements. When the dataset is complete (no lost data;

θN = 0) the hybrid distribution reduces to the usual form, when wind speed
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is strictly positive it reduces to a normal PDF.

In the literature there are some differences in the definitions of the anal-

ysed distributions, so in the following I report a brief description of each

distribution. In the tables and plots throughout the Chapter the different

PDFs are indicated as follows: W for Weibull; M for Maximum Stable; G for

Gumbel; EV for Extreme Value; F for Frechet; Γ for Gamma; P for Pareto;

LN for Log Normal; LΓ for Log Gamma; E for Erlang.

Weibull distribution

The Weibull distribution is the most used PDF for wind speed data inter-

polation. It shows great flexibility and, even if it is quite simple, it generally

gives a good fit to experimental data. In fact, according to the Interna-

tional Standard IEC 61400-12 and other international recommendations, the

Weibull PDF is the most appropriate distribution for wind speed data. The

Weibull distribution is a continuous three-parameter probability density func-

tion given by

fW [x;α, β, μ] =
β

α

(
x− μ

α

)β−1

exp

(
−
(
x− μ

α

)β
)

(2.3)

where v ≥ μ (μ > 0 is the location parameter (m/s)), α > 0 is the

Weibull scale parameter (m/s), β > 0 is the Weibull shape parameter (di-

mensionless). The Weibull shape parameter generally ranges from 1.1 to 3

for most wind conditions. The location parameter is the minimum observed

(or modelled) wind speed. By taking μ = 0, the three parameter Weibull dis-

tribution reduces to a two parameter Weibull distribution, that is the most

used distribution for wind speed interpolation; if also α = 2, it becomes the

Rayleigh distribution.

The cumulative frequency distribution is the integral of the Weibull prob-
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ability density function, and is given by

FW [x;α, β, μ] = 1− exp

(
x− μ

α

)β

(2.4)

Averages of powers of v are simply given by

mean(vk) = αkΓ

(
1 +

k

β

)
(2.5)

In particular, the mean (mW ), variance (σW ) and median (MW ) are given

by:

mW = mean(v) = μ+ αΓ

(
1 +

1

β

)
(2.6)

σW = mean(v2) = α2

(
−Γ

(
1 +

1

β

)2

+ Γ

(
1 +

2

β

))
(2.7)

MW = μ+ αLog(2)
1
β (2.8)

Maximum Stable distribution

The Maximum Stable (hereafter MaxStable) distribution is also known as

Generalized Maximum Extreme Value distribution or FisherTippett distri-

bution. It is hardly ever used in wind speed distribution analysis. However,

it shows a good fit to the actual database. The MaxStable distribution

fM [x;α, β, μ] is a continuous three-parameter probability density function

given by

fM =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α−1e−
x−μ
α

−e−
x−μ
α

α−1e−(
β(x−μ)

α
+1)

−1/β
(
β(x− μ)

α
+ 1

)− 1
β
−1

0

β = 0

β 	= 0&1 +
β(x− μ)

α
> 0

otherwise

(2.9)
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where v > μ; α > 0 is the scale parameter (m/s); β is the shape parameter

(dimensionless) and μ > 0 is the location parameter (m/s). The cumulative

frequency distribution is

FM [x;α, β, μ] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e−e−
x−μ
α

e−(
β(x−μ)

α
+1)

−1/β

1

β = 0

β 	= 0&1 +
β(x− μ)

α
> 0

otherwise

(2.10)

The mean (mM ), variance (σM ) and median (MM) are given by:

mM =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γEα + μ

αΓ[1− β]− α + βμ

β

Indeterminate

β = 0

β 	= 0& β < 1

otherwise

(2.11)

σM =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

π2α2

6
α2 (Γ[1− 2β]− Γ[1− β]2)

β2

Indeterminate

β = 0

β 	= 0&2β < 1

otherwise

(2.12)

MM =

⎧⎪⎨
⎪⎩

μ− α log[log[2]]

μ− α
(
1− log−β[2]

)
β

β = 0

otherwise
(2.13)

where γE is the Euler’s constant.
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Gumbel distribution

The Gumbel distribution is a continuous two-parameter probability den-

sity function given by

fG[x;α, μ] =
e

x−μ
α

−e
x−μ
α

α
(2.14)

where v > μ; α > 0 is the scale parameter (m/s) and μ > 0 is the location

parameter (m/s). The cumulative frequency distribution is

FG[x;α, μ] = 1− e−e
x−μ
α (2.15)

The mean (mG), variance (σG) and median (MG) are given by:

mG = μ− γEα (2.16)

σG =
π2α2

6
(2.17)

MG = α log[log[2]] + μ (2.18)

Extreme Value distribution

The Extreme Value distribution is a continuous two-parameter probabil-

ity density function given by

fEV [x;α, μ] =
e−

x−μ
α

−e−
x−μ
α

α
(2.19)

where fEV is the probability of the measured wind speed, v > μ; α > 0 is

the scale parameter (m/s) and μ > 0 is the location parameter (m/s). The

cumulative frequency distribution is

FEV [x;α, μ] = e−e−
x−μ
α (2.20)
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The mean (mEV ), variance (σEV ) and median (MEV ) are given by:

mEV = μ+ γEα (2.21)

σEV =
π2α2

6
(2.22)

MEV = −α log[log[2]] + μ (2.23)

Frechet distribution

The Frechet distribution is a continuous three-parameter probability den-

sity function given by

fF [x;α, β, μ] =
βe−(

x−μ
α )

−β (
x−μ
α

)−β−1

α
(2.24)

v > μ; α > 0 is the scale parameter (m/s); β > 0 is the shape parameter

(dimensionless) and μ > 0 is the location parameter (m/s). The cumulative

frequency distribution is

FF [x;α, μ] = e−(
x−μ
α )

−β

(2.25)

The mean (mF ), variance (σF ) and median (MF ) are given by:

mF =

⎧⎨
⎩αΓ[1− 1/β] + μ

∞
β > 1

otherwise

(2.26)

σF =

⎧⎨
⎩α2

(
Γ[1− 2/β]− Γ[1− 1/β]2

)
∞

β > 2

otherwise

(2.27)

MF = α log[2]−1/β + μ (2.28)
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Gamma distribution

The Gamma distribution is an emergent PDF for wind speed data inter-

polation. This distribution is often referred to as Generalized Gamma distri-

bution, to distinguish it from 2-parameter Gamma and 3-parameter Pearson

type III, which are particular cases of this distribution. It shows great flex-

ibility, it is an extension of other PDF’s (among the others the Weibull).

The Gamma distribution is a continuous four-parameter probability density

function given by

fΓ[x;α, β, γ, μ] =
γ

αΓ[β]

(
x− μ

α

)γβ−1

exp

(
−
(
x− μ

α

)γ)
(2.29)

where v > μ; α > 0 is the scale parameter (m/s); β > 0 and γ > 0 are

the shape parameters (dimensionless) and μ > 0 is the location parameter

(m/s). By taking γ = 1 the four parameter Gamma distribution reduces

to a 3-parameter Pearson type III; by taking also μ = 0 it reduces to a 2-

parameter Gamma distribution (the most used among the Gamma family

for wind speed interpolation). The cumulative frequency distribution is the

integral of the Gamma probability density function, and it is given as function

of the regularized incomplete gamma function Q

FΓ[x;α, β, γ, μ] = Q[β, 0,

(
x− μ

α

)γ

] (2.30)

The mean (mΓ), variance (σΓ) and median (MΓ) are given by:

mΓ = μ+
αΓ[β + 1/γ]

Γ[β]
(2.31)

σΓ =
α2 (−Γ[β + 1/γ] + Γ[β]Γ[β + 2/γ])

Γ[β]2
(2.32)

MΓ = μ+ αQ−1[β, 0, 1/2]1/γ (2.33)

where Q−1 is the inverse of the regularized incomplete gamma function.
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Pareto distribution

The Pareto distribution is a continuous four-parameter probability den-

sity function given by

fP [x;α, β, γ, μ] =

βα−1/γ(x− μ)
1
γ
−1

((
α

x−μ

)−1/γ

+ 1

)−β−1

γ
(2.34)

where v > μ; α > 0 is the scale parameter (m/s); β > 0 and γ > 0 are

the shape parameters (dimensionless) and μ > 0 is the location parameter

(m/s). The cumulative frequency distribution is

FP [x;α, β, γ, μ] = 1−
((

x− μ

α

)1/γ

+ 1

)−β

(2.35)

The mean (mP ), variance (σP ) and median (MP ) are given by:

mP =

⎧⎪⎨
⎪⎩

αΓ[γ + 1]Γ[β − γ]

Γ[β]
+ μ

Indeterminate

β > 1

otherwise

(2.36)

σP =

⎧⎪⎨
⎪⎩

α2 (Γ[β]Γ[2γ + 1]Γ[β − 2γ]− Γ[γ + 1)2Γ[β − γ]2)

Γ[β]2

Indeterminate

β > 2γ

otherwise

(2.37)

MP = α
(
21/β − 1

)γ
+ μ (2.38)
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LogNormal distribution

The Log Normal distribution is a continuous two-parameter probability

density function given by

fLN [x; σ, μ] =
e−

(log[x]−μ)2

2σ2

√
2πσx

(2.39)

where v > 0; σ > 0 is the standard deviation and μ > 0 is the mean (m/s).

The cumulative frequency distribution is

FLN [x; σ, μ] =
1

2
Erfc

(
μ− log(x)√

2σ

)
(2.40)

where Erfc is the the complementary error function. The mean (mLN), vari-

ance (σLN ) and median (MLN ) are given by:

mLN = eμ+
σ2

2 (2.41)

σLN = e2μ+σ2
(
−1 + eσ

2
)

(2.42)

MLN = eμ (2.43)

Log Gamma distribution

The Log Gamma distribution is a continuous three-parameter probability

density function given by

fLΓ[x;α, β, μ] =
β−α(1 + x− μ)−

1+β
β log[1 + x− μ]−1+α

Γ[α]
(2.44)

where v > 0; α > 0 and β > 0 are the shape parameters and μ > 0 is the

location parameter (m/s). The cumulative frequency distribution is

FLΓ[x;α, β, μ] = Q[α, 0,
log[1 + x− μ]

β
] (2.45)
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where Q is the the generalized regularized incomplete gamma function. The

mean (mLΓ), variance (σLΓ) and median (MLΓ) are given by:

mLΓ =

⎧⎨
⎩ (1− β)−α + μ− 1

∞
β < 1

otherwise

(2.46)

σLΓ =

⎧⎨
⎩ (1− 2β)−α − (1− β)−2α

∞
β < 1/2

otherwise

(2.47)

MLΓ = −1 + eβ Q−1[α,0,1/2] + μ (2.48)

where Q−1 is the inverse of the generalized regularized incomplete gamma

function.

Erlang distribution

The Erlang distribution is a continuous two-parameter probability density

function given by

fE [x;α, k] =
αkxk−1e−xα

Γ[k]
(2.49)

where v > 0; k is the shape parameter (positive integer) and α > 0 is the

rate. The cumulative frequency distribution is

FE [x;α, k] = Q[k, 0, αx] (2.50)

68



2.3. MATERIALS AND METHODS

The mean (mE), variance (σE) and median (ME) are given by:

mE =
k

α
(2.51)

σE =
k

α2
(2.52)

ME =
Q−1[k, 0, 1/2]

α
(2.53)

2.3.6 Parameter estimation methods

The present work almost exclusively uses the maximum likelihood method

to estimate the parameters of the distributions to be compared (Chang, 2011,

[36]). The maximum likelihood estimator is quite stable and relatively easy

to use, except in the presence of distributions which do not converge rapidly.

Furthermore, it usually yields lower estimation mean square errors with re-

spect to the moment method.

2.3.7 Accuracy evaluation criteria

When dealing with distribution modelling, accuracy evaluation starts

with visual analysis. The first step is the construction of a plot that shows

data histograms and distribution functions. In this way it is possible to have

an idea of what distributions are fitting better. Subsequently accuracy is

evaluated on the basis of probability plots.

However, to give more objective results, the distribution performances

are tested by numerical analysis. To evaluate the goodness of fitting (GOF)

of the considered distributions, several tests are used.

One of the most used GOF measures is the well-known determination

coefficient (R2). This coefficient indicates how much of the total variation

in the dependent variable can be accounted for by the derived PDF. The

higher the value of the R2 (with maximum 1) is, the better the calculated

distribution approximates the measured data.

Another common GOF is the root mean square error (RMSE), the most
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used in literature along with R2.

Because of historical importance and for comparison with concerning lit-

erature, the Pearson Chi-square error (χ2) is calculated and reported, even

if it is not the best test for continuous distributions.

The values of these tests are dependent on how data are binned, whereas

the following tests are independent from the number of wind speed classes.

The Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) tests are sta-

tistical tests specifically designed for GOF of continuous distributions. The

KS test is based on the empirical distribution function. The AD test is a

modification of the KS test to better adapt the test to different distributions.

In the KS test, the critical values do not depend on the specific distribution

being tested. Instead, the AD test makes use of the specific distribution

in calculating critical values; for this reason it could be considered a more

sensitive test. The AD test gives more weight to the tails of the distribution

with respect to the KS test; the latter is more sensitive near the centre of

the distribution.

2.3.8 Wind power density

For many application, it is convenient to estimate the wind energy out-

put.The wind kinetic energy can be expressed as

E(v) =
1

2
mv2 (2.54)

where m is the mass of the air and v is the instantaneous wind speed vec-

tor. Taking into account a cross section area A, perpendicular to the wind

direction, and a time interval t, the considered air mass could be modelled

as ρAvt; that is: air density ρ (1.225 kg/m3, in standard conditions) times

the considered volume, the latter being the product of the cross section and

the length covered by air in time t. In this way equation 2.54 becomes

E(v) =
1

2
ρAv3t (2.55)
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Now it is possible to derive the wind power per unit area perpendicular to

wind direction per unit time

P (v) =
1

2
ρv3 (2.56)

Taking advantage of wind PDF results, it is possible to define a wind power

density distribution as

p(v) =
1

2
ρv3f [v] (2.57)

where f [v] is a wind speed PDF. The wind power density is expressed in

Wm−2. For simplicity the air density is often assumed to be constant, despite

it being a function of temperature, pressure and humidity. Considering the

common range of air density for the Venice Lagoon, taking into account

the typical variation of pressure, temperature and humidity, it is possible

to calculate the error introduced with constant air density hypothesis: it is

at most of 10% (see also Waewsak et al., 2011 [39]). An interesting model

without this restriction is analysed by Carta and Mentado (2007, [40]). They

also conclude that the difference between considering or not constant air

density is negligible in areas where the standard air density is similar to the

mean air density and the range of variation is narrow. The total wind power

density per unit area can be expressed as

Pt =
1

2
ρ

∫ ∞

0

v3f [v] dv (2.58)

It is also convenient to define a threshold wind power density as the wind

power density for a wind greater than a minimal velocity

Pm =
1

2
ρ

∫ ∞

vm

v3f [v] dv (2.59)

In the Venice Lagoon the minimal wind velocity to generate a stable wind-

wave field (with favourable characteristics for erosion purposes) is around 6
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mean ± std max mode median
station ws ws dir gust ws dir ws

(m/s) (m/s) (◦) (m/s) (m/s) (◦) (m/s)
PAA 4.8±3.6 30.1 336 42.1 3.0 40 3.9
SAL 3.3±2.2 20.8 60 26.2 1.9 31 2.6
CHI 3.8±2.7 21.4 65 30.7 2.4 42 3.3

Table 2.2: Global statistics for all station from whole dataset (11 years for PAA
and SAL; 8 years for CHI). The columns represent: station; mean and standard
deviation of wind speed; maximum recorded wind speed and its direction; max-
imum wind speed gust; wind speed mode and wind direction mode; wind speed
median.

m/s at 10 m above water (from direct measurements, not reported here).

2.4 Results and discussion

2.4.1 Wind speed

Global statistics

In this section, global statistics are reported for the entire dataset (Tab.:

2.2 on page 72), considering 11 years for PAA and SAL station, 8 years for

CHI station.

It should be noticed that, for the SAL station, missing data are about

10% of the overall period duration. Looking at the yearly plots (see fig. 2.14

on page 98), it is clear that this is primarily related to the large number of

missing data in year 2002 (about 72%).

The maximum gust velocity at CHI station is 49 m/s, but it is considered

as a spike or an exceptional event. It happened twice in 15 minutes with a

mean wind speed of about 10 m/s. There would be a maximum gust at PAA

station of 48 m/s, but its interpretation is not clear. It happened in a 20

minute event with a before-event mean wind speed of about 8 m/s and an

after-event mean wind speed of 15 m/s; the maximum 5-minute mean wind

speed was 30 m/s.

A more comprehensive description of the data is presented in the three
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rose plots of figure 2.2 (page 75).

As expected, it is clear from table 2.2 and figure 2.2 (page 72 and 75),

that wind velocity in the Venice lagoon is weaker than in the open sea (with a

median wind speed of 3.9 ms−1). The Southern station in the lagoon displays

higher wind speeds than the Northern part (median wind speed of 3.3 ms−1

vs 2.6 ms−1).

For all the stations, the dominant wind is Bora (wind direction around

North-East), with a probability of occurrence of about 18% for PAA and 13%

for SAL and CHI. If a wider range of directions around the main North-East

Bora direction the probability increases to 38% for PAA and around 32% for

the lagoon stations. A second important wind direction is around South-East

(Scirocco), with a probability of 6% for the open sea and about 7% in the

lagoon. Because of the surrounding landscape morphology in the Northern

part of the lagoon, the Bora wind is more North-oriented than in the open

sea. On the contrary, in the Southern part wind is more widely distributed

from North-East to South-East and, differently from the other stations, CHI

presents also a relevant wind from the South-West direction, in connection

with land-sea breeze.

These results are consistent with what is reported in Massalin and Canestrelli

([41]), even if they analysed only PAA data for the period 1983-2004.

From tables 2.3-2.5 (pages 76-78) it is evident that the calm condition

(wind intensity less than 0.3 ms−1) has a low probability to occur at all

stations (less than 4%). This agrees with previous wind studies ([41]). The

most probable condition is of light to gentle breeze (wind speed between

1.6 to 5.4 ms−1) with a probability greater than 50%. The probability of

wind speed greater than breeze (> 10.7 m/s) is low inside the lagoon (less

than 3%) but not negligeble in the open sea, with a probability about 8%.

From measurements of wind-wave generation in the Venice Lagoon, it seems

that only a wind velocity larger than gentle breeze (> 5.4 m/s) is able to

generate a wave field capable of eroding salt-marsh banks. Inside the lagoon,

the probability to have a wind speed greater than gentle breeze is about 13%
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and 21% for the Northern and Southern part of the lagoon respectively.

The parameters of the tested PDF and the statistical GOF are listed in

table 2.6 (page 80). The wind speed data histograms with the calculated

PDF are presented in Figure 2.3 (page 81).

From tab. 2.6 (page 80), it is clear that it is difficult, and in some way

subjective, to establish which is the best distribution to model the data.

Figures 2.4-2.6 (page82-84) 82-84) show the histogram with each PDF (top

panel), and report PP-plots for each PDF (bottom panel). From these fig-

ures, it is possible to see how some PDFs give a good representation of the

data only for a portion of the histogram, but any or few give a suitable data

interpolation for the entire range of wind speed.

In the case of PAA station, good choices could be: MaxStable and Gamma

distributions (for their low RMSE and high χ2 and R2 values) or Weibull,

Pareto and Erlang distributions for their high values in Anderson Darling

and Kolmogorov Smirnov tests. As best choice, it is assumed the Erlang

distribution.

Data from station SAL are best modelled by Gamma, Pareto and Erlang

distributions (good values in all tests) and with less agreement by MaxStable

distribution (good results in RMSE, χ2 and R2 tests). As best choice, it is

assumed the Gamma distribution.

Gamma, Pareto and Extreme Value distributions seem to be good choices

for CHI station, due to their high score in all statistical test; looking at

only RMSE and R2 GOF also MaxStable distribution appears to be good

interpolating distributions. As best choice, it is assumed the Extreme Value

distribution.

For the selected geographical area, the Pareto, Gamma and Erlang distri-

butions seems to be the most adequate distributions for wind speed analysis,

with Pareto as the more suitable. Considering only RMSE and R2 as GOF,

then the best representative distributions are MaxStable and Gamma, with

MaxStable as best choice.

For the analysed stations, the Weibull distribution is to be considered a
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Figure 2.2: Wind rose of the entire dataset for the three stations. Lost data
percent refers to not-recorded or false data and are reported in red inside the
inner circle.
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2.4. RESULTS AND DISCUSSION

relatively good distribution, but not the best choice as compared with the

other analysed PDF. It is a really good choice only for offshore wind speed.

Data independence

Before proceeding, it is essential to check the hypothesis of data indepen-

dence. This is necessary because wind data are highly autocorrelated over

short times. It is also important to remember that each value is the average

of the previous 15 minute measurements, so consecutive data (the database

frequency is 5 minutes) are strongly correlated. In the following, the results

of the analysis are shown for station SAL, but similar results hold for the

other stations (data not presented).

In figure 2.7 (page 86) the autocorrelation function for station SAL is

reported. It is possible to see how the data are highly autocorrelated in the

short time interval; autocorrelation decreases under 0.5 only after about 7

hours (sample number 79) (8 and 10 hours for CHI and PAA, respectively).

There is also a small local maximum around 24 hours (sample number 288).

In figure 2.8 (page 86) it is reported the autocorrelation for station SAL

for increasing time step from 1 to 10 days. It is possible to see how the

autocorrelation is really small, but there are periodic small local maxima in

autocorrelation every 24 hours (corresponding to sample numbers: 288, 576,

864, 1152, 1440, 1728, 2016, 2304, 2592, 2880). These local maxima point

out the presence of a daily structure in the wind speed distribution, basically

connected to land/sea breeze.

To analyse the independence of the statistical results from the data sam-

pling techniques, in the following it is shown a comparison among differ-

ent data sampling: all data (at 5 minute frequency); data extracted (sub-

sampling) from the database at 15, 60, 120 and 420 (i.e., 7 hours) minute

frequency. The histograms of figure 2.9 (page 87) show the distributions of

the wind speed data as derived from the entire dataset (5 minute sampling)

and the 7 hour sub-sampling; the corresponding PDFs are plotted in figure

2.10 (page 87). In table 2.7 (page 88) it is shown the GOF of the most rele-
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Figure 2.3: Histograms of the entire dataset (wind speed) for the three stations
with the calculated PDF.
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Figure 2.4: PAA station wind speed: histograms of the entire dataset and the
calculated PDFs (top); PP-plots of the calculated PDFs (bottom)
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Figure 2.5: SAL station wind speed: histograms of the entire dataset and the
calculated PDFs (top); PP-plots of the calculated PDFs (bottom)
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Figure 2.6: CHI station wind speed: histograms of the entire dataset and the
calculated PDFs (top); PP-plots of the calculated PDFs (bottom)

84



2.4. RESULTS AND DISCUSSION

vant PDFs. It is clear that, even if there are some differences, for each PDF

the results are very similar and that there are no major differences between

the PDF calculated for the entire dataset and those obtained from its sub-

sets, even with 420 minute frequency. In the following analyses are thus only

performed on the entire dataset, to take advantage of the greater statistical

significance.

Yearly statistics

All the stations show a weak variation among years, with variation of the

yearly-mean wind speed of about 0.5 m/s (see figure 2.11, top panel on page

89). With some exceptions, it seems that the yearly variations are similar for

all the stations. Years 2002, 2006 and 2011 are the less windy years; 2010 is

the most windy year.

Hourly statistics

Looking at figures 2.12-2.17 (pages 96-101), it is evident how wind is vari-

able from year to year, even if the main field structure remains the same, with

a dominant wind from the first quadrant and a second important component

in the second quadrant. However it seems that there is a small anticlockwise

rotation of the dominant and secondary wind of at least 22◦; this is more no-

ticeable comparing the years before and after 2004. This generalized rotation

agrees with what is reported in Massalin and Canestrelli ([41]).

In the Northern part of the lagoon, the general rotation of wind direction

is associated with a rise in importance for wind of the fourth quadrant, more

evidently starting from 2006. In particular, in 2011 the wind from NW and

NNW gives a contribution greater than 15%, whereas before 2006 the wind

from this direction was less than 5%.

In the Southern part of the lagoon, in the years 2004-2006 there was an

homogeneous distribution of dominant wind from NNE to E; starting from

2007, North-Easterly winds become more important. In the same year there

was a reduction in the frequency of wind occurrence from the third quadrant
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Figure 2.7: SAL station wind speed autocorrelation diagram: from 0 to 36 hour
data shift.
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Figure 2.8: SAL station wind speed autocorrelation diagram: from 1 to 10 day
data shift.
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Figure 2.9: SAL station wind speed histograms: entire dataset compared with 7
hour sub-sampling.
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Figure 2.10: SAL station wind speed PDFs: entire dataset compared with 7
hour sub-sampling for the most relevant PDFs.
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Figure 2.11: Wind speed means: yearly (top), monthly (middle) and hourly
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and a homogenization of Scirocco wind, from a SE dominant component to

a uniform distribution from ESE to SSE. Starting from 2007 CHI sees an

increase in wind speed, with maximum in 2008.

Seasonal statistics

Seasonal analysis are made for the following seasons: winter (January to

March); spring (April to June); summer (July to September) and autumn

(October to December). In figures 2.18-2.20 (pages 102-104) the rose plots

of seasonal analysis are shown. It is clear that the windier seasons are winter

and autumn.

PAA and SAL show an homogeneous wind presence in third and forth

quadrant for winter and autumn, whereas they are marginal in spring and

summer. For the same stations the figures point out an important presence

of Scirocco in spring and summer. Scirocco is a marginal wind in winter and

autumn in PAA, but it is present in winter in SAL. It is to be noticed that

for SAL, Scirocco is as frequent as Bora in spring; in all other situations Bora

is the clear dominant wind, both in frequency and velocity.

The results for CHI shows a quite different situation. In winter there is

a dominance of the first quadrant, with a relatively important contribution

in the third quadrant. In spring and summer the wind is principally in the

first and second quadrant. In autumn wind distribution is homogeneous in

all quadrants except the second. In this station Bora is not as dominant as

in the other stations. Only in the year average is Bora a dominant wind for

CHI, as, differently from other wind directions, it is present in all the seasons

with about the same frequency.

Monthly statistics

Figure 2.11 (middle panel, page 89) shows some basic characterization

of the monthly mean wind speeds. In the open sea, monthly changes are

dominated by the presence or absence of strong events, typically of Bora,

that mainly occur in winter and autumn. On the contrary, the Northern
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lagoon is dominated by sea-land breezes, which have an important effect in

spring and summer. An intermediate situation characterizes the Southern

lagoon, where both breezes and strong events play a relevant role.

As it can be seen in figures 2.21-2.26 (pages 105-110), for the studied area

there is a clear and important variation of the wind field during the year.

Starting from February, and until May, there is an increase in wind from the

second quadrant and a decrease in wind from first and second quadrants. In

June and July the wind field is quite stable; from August to November there

is a decrease in wind from the second quadrant and an increase for the other

sectors. In December and January the wind from E to SSW are negligible.

It should be noticed that August-October exhibits the highest Bora oc-

currence, even more frequent than in Winter; however wind speed is low,

whereas in Winter Bora events are much more intense. This frequent pres-

ence of low-speed Bora during Summer is probably connected to sea-land

breezes.

In the open sea (PAA) the strongest events are concentrated between

December and March, with a maximum in December for the higher wind

speed from ENE (about than 7% of wind speed greater than 13.8 m/s). A

similar distribution is seen in CHI, but the frequency of wind speed greater

than 13.8 m/s from ENE is about 3%.

In the Northern lagoon the highest probability (less than 2%) of v > 10.7

m/s is concentrated in February, March and November. This station is

alwayes dominated (at least 70%, up to 81%) by wind speeds less than 5.4

m/s.

Hourly statistics

Analyses at the daily scale show daily patterns in wind occurrence. Figure

2.11 (bottom panel on page 89) shows that high wind conditions generally

happen between 8 pm and 10 am in the open sea, and between 12 pm and 8

am in the lagoon; there is a maximum probability of low wind around 2 pm

in the open sea, while inside the lagoon there are two minima, around 12 am
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and 10 pm. The variations in mean speed during the day are about 1m/s in

the open sea and about 0.33 and 0.28 m/s for SAL and CHI respectively.

The distribution of wind directions for each hour of the day are shown in

figures 2.27-2.32 (pages 111-116). From 4 am wind from the first quadrant

is dominant (frequency greater than 60%). Later, a clockwise rotation takes

place around 10 am and from 3 pm the second quadrant becomes dominant;

Starting from 8 pm there is an increase in wind frequency from the third

and fourth quadrants; around 10 pm Southerly winds are dominant. From 1

am to 5 am the wind from the fourth quadrant is stable, and then decreases

until 5 pm. In summary, an overall clockwive rotation of wind direction takes

place during the day. This rotation is due to sea-land breezes.

The rotation of the dominant wind during the day occurs at all stations,

but it is more evident at PAA and SAL. At CHI the rotation is more com-

plicated because of the specific morphology of the area. In particular, the

breezes are more intense and from about 1 pm there is a strong dominance

of the breeze wind that rotates from E to SW, decreasing in intensity with

time. This rotation confirm what was found by Massalin and Canestrelli

([41]). There are other literature contributions that analyse breeze wind in

the North Adriatic sea, but they focus on the East coast, where both clock-

wise and anticlockwise rotations are found, due to local orography ([42] and

[43]).

2.4.2 Power density probability distribution

The results of the analysis of power density distribution (eq. 2.57) are

summarized in Table 2.8 (page 95), where the parameters of the tested PDF

and of the statistical GOF are listed. Calculated wind power histograms

and analysed PDFs are reported in Figure 2.33 (page 117). The table and

figures show wide departures between PDFs, particularly as compared to the

results for the wind speed PDFs (see tab. 2.6 on page 80 and fig. 2.3 on

page 81). In this case, the Weibull distribution performs consistently well

and comparably to the Gamma distribution.
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It should be noticed that the direct use of eq. 2.57 with the best PDF

for wind speed does not give good results to represents wind power density.

As plotted in figure 2.34 the power density distribution derived by the use

of the best PDF calculated for wind speed underestimates the actual power

density distribution. Even if the original PDF is quite good, in the equation

the wind speed is elevated to the third power, consequently any small error in

the middle-high tail of the distribution is amplified. For this reason, whenever

it is necessary to use a PDF to calculate wind power, it is better to choose a

PDF that is a good approximation of the medium-high tail of the distribution,

even if it does not accurately reproduce lower wind speeds.

2.5 Summary and conclusions

A 5-minute resolution, 11-year long, wind dataset from the Venice lagoon

has been analysed. This is the first analysis based on such a high-resolution

and extensive data set performed for this area.

The analysis considers the spatial dependence of statistical character-

istics, comparing wind regimes in different parts of the lagoon and in an

offshore site. The wind inside the lagoon is, not unexpectedly, found to be

weaker than in the nearby sea, and the Southern part of the lagoon turns

out to be windier than the Northern one. The whole region is dominated

by Bora, both in intensity and frequency. Scirocco, mostly connected to sea-

land breeze regimes, is the second most frequent wind. The windiest months

are in autumn and winter (November to March), with maximum wind events

in December. The sea-land breezes start in February and end in November,

with a stable and strong presence in June and July. The sea-land breezes

follow a clockwise rotation. There is a maximum variation in yearly mean

wind speed of about 0.5 m/s in the analysed period (2001-2011). It has been

noticed a generalised anticlockwise rotation of the yearly wind fields of about

22◦in 11 years.

The analysis of wind speed probability distributions points out that gen-
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erally the GEV family gives good fits. Other candidate PDFs to describe

wind velocity are the Pareto, Gamma and Erlang distributions.
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Figure 2.12: Wind rose for each year of the database. Station: PAA
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Figure 2.13: Wind rose for each year of the database. Station: PAA
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Figure 2.14: Wind rose for each year of the database. Station: SAL
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Figure 2.15: Wind rose for each year of the database. Station: SAL
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Figure 2.16: Wind rose for each year of the database. Station: CHI
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Figure 2.17: Wind rose for each year of the database. Station: CHI
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Figure 2.18: Wind rose for seasonal evolution of mean wind speed, starting from
Winter. Station: PAA
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Figure 2.19: Wind rose for seasonal evolution of mean wind speed, starting from
Winter. Station: SAL
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Figure 2.20: Wind rose for seasonal evolution of mean wind speed, starting from
Winter. Station: CHI
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Figure 2.21: Wind rose for monthly evolution of mean wind speed. Station:
PAA
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Figure 2.22: Wind rose for monthly evolution of mean wind speed. Station:
PAA
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Figure 2.23: Wind rose for monthly evolution of mean wind speed. Station: SAL
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Figure 2.24: Wind rose for monthly evolution of mean wind speed. Station: SAL
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Figure 2.25: Wind rose for monthly evolution of mean wind speed. Station: CHI
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Figure 2.26: Wind rose for monthly evolution of mean wind speed. Station: CHI
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Figure 2.27: Wind rose for hourly evolution of mean wind speed. Station: PAA

111



CHAPTER 2. WIND CLIMATE MODELLING

5%

10%

15%

20%

NORTH
Hour: 13

1.4%

5%

10%

15%

20%

NORTH
Hour: 15

1.4%

5%

10%

15%

20%

NORTH
Hour: 17

1.3%

5%

10%

15%

20%

NORTH
Hour: 19

1.3%

5%

10%

15%

20%

NORTH
Hour: 21

1.3%

5%

10%

15%

20%

NORTH

0 − 0.3
0.3 − 1.5
1.5 − 3.3
3.3 − 5.4
5.4 − 7.9
7.9 − 10.7
10.7 − 13.8
13.8 − 17.1
17.1 − 20.7

Hour: 23

Wind speed
BS [m/s]

1.4%

Figure 2.28: Wind rose for hourly evolution of mean wind speed. Station: PAA
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Figure 2.29: Wind rose for hourly evolution of mean wind speed. Station: SAL
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Figure 2.30: Wind rose for hourly evolution of mean wind speed. Station: SAL
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Figure 2.31: Wind rose for hourly evolution of mean wind speed. Station: CHI
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Figure 2.32: Wind rose for hourly evolution of mean wind speed. Station: CHI

116



2.5. CONCLUSION

WeibullDistribution�Α, Β, Μ�

MaxStableDistribution�Α, Β, Γ�

ParetoDistribution�Β, Α, Γ, Μ�

LogNormalDistribution�Μ, Β�

LogGammaDistribution�Α, Β, Μ�

ExtremeValueDistribution�Α, Β�

FrechetDistribution�Α, Β, Μ�

0 5 10 15 20 25 30
0

5

10

15

wind speed �m�s�

p�
v�
�W

m
�

2
�

PAA

WeibullDistribution�Α, Β, Μ�

MaxStableDistribution�Α, Β, Γ�

ParetoDistribution�Β, Α, Γ, Μ�

LogNormalDistribution�Μ, Β�

LogGammaDistribution�Α, Β, Μ�

ExtremeValueDistribution�Α, Β�

FrechetDistribution�Α, Β, Μ�

GammaDistribution�Α, Β, Γ, Μ�

0 5 10 15 20
0

1

2

3

4

5

6

7

wind speed �m�s�

p�
v�
�W

m
�

2
�

SAL

WeibullDistribution�Α, Β, Μ�

MaxStableDistribution�Α, Β, Γ�

ParetoDistribution�Β, Α, Γ, Μ�

LogNormalDistribution�Μ, Β�

ExtremeValueDistribution�Α, Β�

FrechetDistribution�Α, Β, Μ�

GumbelDistribution�Α, Β�

0 5 10 15 20 25
0

2

4

6

8

10

wind speed �m�s�

p�
v�
�W

m
�

2
�

CHI

Figure 2.33: Global wind power density distribution: histograms of the entire
dataset for the three stations with the calculated PDF.
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Figure 2.34: Global wind power density distribution: histograms of the entire
dataset; the PDF calculated applying the power density distribution equation to
the dataset; the PDF calculated applying the equation to the PDF derived for
wind speed.
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Chapter 3

Rill spacing in hillslopes

Abstract

A simple two-dimensional model of flow field and bed topography along

an hill-slope is proposed to investigate the key mechanisms leading to stabil-

ity/instability of the system and the formation of periodic parallel drainage

channels (rills). A linear stability analysis is carried out to perturb flow field

and bed topography, leading to an eigenvalue problem. Channel inter-axis is

derived by marginal stability analysis as function of the fundamental param-

eters of the system. The results are dependent on four parameters: the depth

of the water sheet; the length of the hill-slope; the critical velocity for ero-

sion; the concentration at the bed. A sensitivity analysis on this parameter

space has been made for a wide range of values.

The role of bed load transport is found to be crucial for stabilizing the

system and leading to a draining channel generation.

Despite the substantial simplicity, the model appears to mimic the essen-

tial physics of the system, giving reasonable values for the fill inter-axis for

the investigated parameter space.
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Figure 3.1: Regular spacing of parallel rills in Dinosaur Provincial Park, Alberta
- Canada (by @Fotomorgana).

3.1 Formulation of the problem

In many environments it is possible to see drainage channels that ap-

pear to be parallel and uniformly spaced (see fig. 3.1). The characteristic

wavelength of channel inter-axes seems to be an emergent property of the hy-

drodynamic and sediment transport processes that act on these environments

(Perron et al., 2008 [44]).

Studying the formation of erosional rills, Smith and Bretherton (1972)[45]

showed that an erodible surface under a sheet flow is unstable with respect

to lateral perturbations, leading to incipient channel formation; in particu-

lar, they demonstrated that the shortest-wavelength grow faster, resulting

in instability and no preferred wavelength. To overcome this instability,

Loewenherz (1991)[46] introduced an artificial smoothing function and she

obtained that the intermediate wavelengths grow faster, leading to a stable

channel formation.
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Later on, several researchers have investigated drainage channel forma-

tion by free-surface flows, both analytically ([47], [48], [49]) and numerically

([50], [51]). There exists a lot of different models, often specialized to de-

scribe a particular conditions of channel formation. This leads to great dif-

ficulties in satisfactory interpretations of the underlying mechanisms, and in

this way, the results are hardly comparable. Izumi and Parker (2000, [48]),

for example, based the model on the Froude number and a moving reference,

obtaining a downstream-driven theory. On the other hand, Perron et al.

(2008, [44]) concentrate on a landscape Peclet number, which quantifies the

relative importance of advective and diffusive sediment transport processes.

Apart the differences, the existing models indicate that it is possible to use

the equations for shallow water flow, together with appropriate formulations

of sediment transport, to provide a theory of channel formation.

The strategy of the present research is to suitably simplify the relevant

equations, to construct an analytical model of periodically spacing channel

formation. The focus is limited to channelization due to surface sheet flow.

In section 3.2 it is introduced the geometry of the analysed system and

the general assumption and notations. The model is described in section

3.3, while the boundary conditions are reported in section 3.4. The scaling

of the equations is described in section 3.5, and the perturbation analysis

is developed in section 3.6. The analytical solution is reported in section

3.7; the results are shown in section 3.8. Finally section 3.9 reports the

conclusions.

3.2 Domain and general assumptions

The domain is an hill-slope with given width B∗
0 and length L∗

0. The lon-

gitudinal x-axis is posed at the centre of the domain and is pointing down-

stream. H∗ represents the local free surface elevation; D∗ is the water depth

and η∗ is the bed elevation. They all are measured respect to a common

reference plane (the reference is such that at x∗ = 0, η∗ = 0). Here and in
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Figure 3.2: A stretch of the investigated domain with the relevant notations

the following, a superscript asterisk denotes dimensional quantities. A sketch

of the investigated domain is showed in figure 3.2.

Being the morphological time scale (associated with bed surface evolution

in response to erosion) much larger than the flow time scale (associated with

the response of the flow to the bed changing), it is reasonable to adopt the

quasi-steady state approach for the flow field, Accordingly, the unsteady

terms in the equations are neglected. Moreover, it is assumed the absence of

density- and wind-driven currents.

The unperturbed flow is uniform with constant (depth averaged) velocity

U∗[x, y, t] = U0; in the basic state the bed is flat and tilted, with unperturbed

water depth D∗
0.

The slope of the bed surface is mild for the flow to be critical. Sediment is

cohesionless with geometric mean size d∗s and density ρs. The bed is erodible

and sediment is transported as both suspended load and bed load; the Shields

stress exceeds its critical value everywhere. The sediment balance is described

by the 2-D Exner’s equation.
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3.3 Governing equations

According to the present assumptions, a depth-averaged model is used,

where the governing flow field equations are the shallow water equations

associated with two-dimensional sheet flow:

∂D∗

∂t∗
+

∂U∗D∗

∂x∗ +
∂V ∗D∗

∂y∗
= 0 (3.1)

∂U∗

∂t∗
+ U∗∂U

∗

∂x∗ + V ∗∂U
∗

∂y∗
+ g

∂H∗

∂x∗ +
τ ∗x

ρwD∗ = 0 (3.2)

∂V ∗

∂t∗
+ U∗∂V

∗

∂x∗ + V ∗∂V
∗

∂y∗
+ g

∂H∗

∂y∗
+

τ ∗y
ρwD∗ = 0 (3.3)

where t∗ is time; x∗ and y∗ are the longitudinal (streamwise) and lateral

Cartesian coordinates; H∗ and D∗ denote instantaneous free surface eleva-

tion and water depth, respectively; U∗ and V ∗ are longitudinal and lateral

components of the depth-averaged fluid velocity; g is gravitational acceler-

ation; ρw is (mean) water density; τ ∗x and τ ∗y are components of bed shear

stress in the x∗ and y∗ directions

�τ ∗ = ρwCf

√
U∗2 + V ∗2�U∗ = ρwCf

∥∥∥ �U∗
∥∥∥ �U∗ (3.4)

where Cf is the friction coefficient

Cf =
g

X2
, X = ksD

∗ 1
6 (3.5)

and ks is the Gauckler-Strickler roughness coefficient.

The Exner balance equation governing the evolution of the bed elevation

η∗ = H∗ −D∗, reads

(1− p)
∂η∗

∂t∗
= (Q∗

E −Q∗
D)−∇ · q∗s (3.6)

where Q∗
E and Q∗

D are the rate of erosion and deposition, q∗s is the bed load

fluxes per unit width; p is sediment porosity. The erosion and deposition
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rates can be estimated using the Partheniades and Krone formulations

Q∗
e = Qe0

(
τ̃ ∗

τ ∗e
− 1

)
H̄

[
τ̃ ∗

τ ∗e
− 1

]
(3.7)

Q∗
d = Cbw

∗
s

(
1− τ̃ ∗

τ ∗d

)
H̄

[
1− τ̃ ∗

τ ∗d

]
(3.8)

τ̃ ∗ = |τ ∗| = ρwCf

(
U∗2 + V ∗2) (3.9)

where Qe0 is a characteristic erosion rate; τ ∗e and τ ∗d are threshold of bed

shear stress for sediment erosion and deposition; w∗
s is sediment settling ve-

locity; Cb ∼ 2C is the volumetric sediment concentration at the bed and

H̄ is the Heaviside function. Here the sediment concentration is considered

dimensionless; to convert the values to the dimensional form it is necessary

to multiply the dimensionless concentration for the sediment density.

As a first approximation, it is assumed that the net suspended fluxQ∗
e−Q∗

d

varies continuously by tacking τ ∗e ∼ τ ∗d and Qe0 ∼ Cbws, with τ ∗e = ρwCfU
2
c ,

and Uc is the threshold velocity for sediment movement. The net suspended

flux is eventually written as

Q∗
e −Q∗

d ∼ 4Cws

(
τ̃ ∗

τ ∗e
− 1

)
= 4Cws

(
U∗2 + V ∗2

U2
c

− 1

)
(3.10)

The bedload flux qs can be model as in Lanzoni and Tubino (1999, [52])

qs = Φ

√(
ρs
ρw

− 1

)
gd∗3s (cosφ∗, sinφ∗) = ΦQs0 (cosφ

∗, sinφ∗) (3.11)

Φ = 8 (ϑ∗ − ϑc)
3/2 H̄ [ϑ∗ − ϑc] (3.12)

where φ∗ denotes the angle between bedload transport direction and x-axis; Φ

is the intensity of bedload transport in the classical Meyer-Peter and Muller

form; ϑ∗ is dimensionless bed shear stress (Shields parameter) and ϑc is its
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critical value for incipient sediment motion

ϑ∗ =
|τ ∗|

(ρs − ρw) gd∗s
. (3.13)

Furthermore, it is:

cosφ∗ = cosϕ ∼ −3

2

ϑc

ϑ∗ − ϑc

∂η∗

∂x∗ (3.14)

sinφ∗ = sinϕ− r√
ϑ∗

∂η∗

∂y∗
∼ − r√

ϑ∗
∂η∗

∂y∗
(3.15)

where ϕ is the (small) angle between the bottom stress vector and the x-axis;

r is a dimensionless parameter given by [53]

r =
1

9
(
d∗s
D∗

0

)−0.3 (3.16)

Accordingly, the Exner sediment balance equation governing the evolution

of bed elevation becomes

(1− p)
∂η∗

∂t∗
= E

(
U∗2 + V ∗2

U2
c

− 1

)
+

−∇ ·
(
8 (ϑ∗ − ϑc)

3/2 H̄ [ϑ∗ − ϑc]

√(
ρs
ρw

− 1

)
gd∗3s ·

·
{
−3

2

ϑc

ϑ∗ − ϑc

∂η∗

∂x∗ ,−
r√
ϑ∗

∂η∗

∂y∗

})
(3.17)

where E is a suitably define erosion coefficient.

3.4 Boundary conditions

It is assumed that a uniform sheet of water flows over the hill slope. At

the lateral water divide an impermeable condition is prescribed

V ∗ = 0 at y∗ = ±B∗
0

2
(3.18)
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Q∗ = Q∗
0 = U0D

∗
0B

∗
0 at x∗ = 0 (3.19)

while upstream discharge is assumed at the top of the hillslope. In other

words, the hillslope is assumed to drain a constant amount of water.

3.5 Scaling

To derive an analytical solution of the problem, it is convenient to write

the equations in dimensionless form using the following scaling

t =
U0

L∗
0

t∗, {x, y} =
1

L∗
0

{x∗, y∗} , {H,D, η, ds} =
1

D∗
0

{H∗, D∗, η∗, d∗s}
(3.20)

{U, V } =
1

U0

{U∗, V ∗} , {τx, τy} =
1

ρwCfU
2
0

{
τ ∗x , τ

∗
y

}
(3.21)

where D∗
0 and U0 are the depth and velocity in the basic state.

Note that only external scales, i.e. not resulting from morphological pro-

cesses, are considered. The dimensionless continuity and momentum equa-

tions become

∂D

∂t
+

∂UD

∂x
+

∂V D

∂y
= 0 (3.22)

χm

(
∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y

)
+

∂H

∂x
+ χτ

τx
D

= 0 (3.23)

χm

(
∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y

)
+

∂H

∂y
+ χτ

τy
D

= 0 (3.24)

where

χm =
U2
0

gD∗
0

, χτ = Cf
U2
0

gD∗
0

L∗
0

D∗
0

(3.25)

The parameters χm and χτ , weighting inertia and friction with respect to

gravitational effects in the momentum equation, are typically small.

The term
L∗
0

D∗
0
represents the aspect ratio of the system. The dimensionless
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bed shear stress components reads:

{τx, τy} =
√
U2 + V 2{U, V } (3.26)

The sediment balance equation becomes

1

σ

∂η

∂t
= (ϑ− α2)− B∇ ·

(
(ϑ− ϑ̃c)

3
2

{B∞
B

1

(ϑ− ϑ̃c)

∂η

∂y
,− rB∈

B√ϑ

∂η

∂y

})
(3.27)

1

σ

∂η

∂t
= (ϑ− α2)− B∞

∂

∂x

((
ϑ− ϑ̃c

) 1
2 ∂η

∂x

)
− B∈

∂

∂y

((
ϑ− ϑ̃c

) 3
2 1√

ϑ

∂η

∂y

)
(3.28)

where the dimensionless morphological time scale σ and the dimensionless

bed-load parameters are defined as

σ =
4

1− p

L∗
0

D∗
0

Cws

U0

α2 (3.29)

B = α2 2

Cws

D∗
0

L2
0

(CfU
2
0 )

3/2

Δg
(3.30)

B∞ =
3

2
Bϑ̃c (3.31)

B∈ = rB
√

Δgds
CfU2

0

(3.32)

and the other parameters are

α =
Uc

U0
, ϑ = U2 + V 2 (3.33)

ϑ̃c =
Δgdsϑc

CfU2
0

, Δ =

(
ρs
ρw

− 1

)
(3.34)

Introducing the following dimensionless relevant parameters

β =
L∗
0

D∗
0

, F r =
U0√
gD∗

0

and Fr∗ =
U0

Cws
(3.35)
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the dimensionless parameters of the equations read

χm = Fr2, χτ = CfβFr2 (3.36)

σ =
4

(1− p)
α−2βFr−1

∗ , B =
2C

3/2
f

Δ
α2β−2Fr2Fr∗ (3.37)

Finally, the boundary conditions becomes:

V = 0 at y = ±1

2
(3.38)

Q = Q0 = 1 at x = 0. (3.39)

3.6 Perturbation analysis

In order to study the stability of transverse perturbations, the following

perturbation of the basic state equilibrium is considered, in terms of the small

parameter ε

Ψ = Ψeq + εΨ̃ +O
(
ε2
)

(3.40)

where Ψ = {H,U, V, η} is the solution, Ψeq = {H0, U0, V0, η0} represents the

basic state and Ψ̃ = {H1, U1, V1, η1} is the perturbation. The dimensionless

equations are linearised by substituting the decomposition 3.40. Solutions

are then taken to be of the normal mode form with

H̃ = eωσtĤ[x] cos [ky] (3.41)

Ũ = eωσtÛ [x] cos [ky] (3.42)

Ṽ = eωσtV̂ [x] sin [ky] (3.43)

η̃ = eωσtη̂[x] cos [ky] (3.44)

where k is the perturbation wave number in the transverse direction and

ω is a complex number which is composed of a growth rate Re[ω] and a

frequency Im[ω]. Ĥ , Û , V̂ and η̂ represent the longitudinal structure of the
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perturbations. The chosen decomposition allows to separate the x, y and t

dependencies.

3.7 Solution

3.7.1 Leading order problem

Using the perturbation expansion 3.40, at the leading order of approxi-

mation (ε0) the quasi-steady state equations give

∂U0D0

∂x
+

∂V0D0

∂y
= 0 (3.45)

χm

(
U0

∂U0

∂x
+ V0

∂U0

∂y

)
+

∂H0

∂x
+ χτ

√
U2
0 + V 2

0 U0

D0
= 0 (3.46)

χm

(
U0

∂V0

∂x
+ V0

∂V0

∂y

)
+

∂H0

∂y
+ χτ

√
U2
0 + V 2

0 V0

D0

= 0 (3.47)

1

σ

∂η0
∂t

=
(
U2
0 + V 2

0 − α2
)− F [U0, V0, η0] (3.48)

where F is a long expression function of U0, V0, η0.

In the basic uniform sheet flow the transverse velocity is identically zero,

V0[x, y, t] = 0, while U0[x, y, t] = U0, D0[x, y, t] = D0. The momentum

equations 3.46 and 3.47 then reduce to

∂H0

∂x
+ χτ

U2
0

D0
= 0 (3.49)

∂H0

∂y
= 0 (3.50)

The second implies the independence of H0 and η0 from the y-coordinate.

On the other hand, the hypothesis that the basic state is also characterized

by equilibrium bed also implies that ∂η0
∂t

= 0 and ∂H0

∂t
= 0. From eq. 3.49,

and considering a reference system such that at x=0 η0[0] = 0, it then follows

H0[x] = D∗
0 − x

χτU
2
0

D∗
0

(3.51)
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η0[x] = −x
χτU

2
0

D∗
0

(3.52)

The sediment balance equation implies that U0 =
√
Uc.

To derive the present solution it has been used a balance between the

gravitational and the shear stress contributions in the momentum equation.

The same solution is valid considering also the advection terms.

The founded solution is the classical one of . . .

3.7.2 First order problem

Observing that the parameter χm, representing the square of the Froude

number, is generally small, we assumed that χm = o(ε1) Taking into account

the solution for the basic state, at the first order of approximation o(ε) the

quasi-steady state perturbed equations then become

U0
∂D1

∂x
+D0

∂U1

∂x
+D0

∂V1

∂y
= 0 (3.53)

U0D
2
0

∂H1

∂x
+ χτ

(
2U2

0D0U1 − U2
0D1

)
= 0 (3.54)

D0
∂H1

∂y
+ χτU0V1 = 0 (3.55)

1

σ

∂η1
∂t

− 2U0U1 + B∞

⎛
⎝√U2

0 − ϑ̃c
∂2η

∂x2
− χτ

U3
0

D0

√
U2
0 + ϑ̃c

∂U1

∂x

⎞
⎠+

+ B∈

(
(U2

0 − ϑ̃c)
3/2

U0

∂2η

∂y2

)
= 0 (3.56)

Using the following expansion

H1[x, y, t] = h1[x] exp [ωσt] cos [ky] (3.57)

U1[x, y, t] = u1[x] exp [ωσt] cos [ky] (3.58)

V1[x, y, t] = v1[x] exp [ωσt] sin [ky] (3.59)

η1[x, y, t] = z1[x] exp [ωσt] cos [ky] (3.60)
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the linearised o(ε) equations become

U0
∂h1

∂x
+D0

∂u1

∂x
+ kD0v1 − U0

∂z1
∂x

= 0 (3.61)

U0D0
∂h1

∂x
− χτU

3
0h1 + 2χτU

2
0D0u1 + χτU

3
0 z1 = 0 (3.62)

kh1 − χτ
U0

D0

v1 = 0 (3.63)

2U0u1 + χτB∞
U3
0

D0

√
U2
0 − ϑ̃c

∂u1

∂x
− B∞

U2
0 − ϑ̃c√
U2
0 − ϑ̃c

∂2z1
∂x2

+

+ k2B∈
(U2

0 − ϑ̃c)
3/2

U0
z1 = ωz1 (3.64)

The problem posed by this system of partial differential equations is char-

acterized by eigenvalues ω that are function of the wavenumber k. These

eigenvalues are calculated numerically by Chebyshev Spectral Methods and

the solutions are analysed as function of the fundamental parameters, i.e. β,

Fr and Fr∗. A sensitivity analysis is carried out for these parameters. It is

thus possible to locate the regions of stability of the physical system and the

wavelengths of the fastest growing perturbations leading to rill formation.

3.8 Model results

Figure 3.3 shows a typical distribution of the growth rate of perturbations

Re[ω] as function of the wavenumber k. Clearly, the number of eigenvalues

is equal to the number of discretization points used along the longitudinal

direction; their values depend on the parameters β, Fr and Fr∗. The first 3

eigenvalues are reported in figure 3.4; the first 2 curves are identical, as they

are complex conjugates. It is important to note that each curve pass twice

the ω = 0 line (controlling the marginal stability).

The results of the analysis on the dependence of the eigenvalues from

the discretization cardinality, associated with the spectral method (Cheby-

shev) used to solve the system of linearized partial differential equations, are
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Figure 3.3: Perturbation growth rate as function of the wavenumber k. Param-
eter values: α = 0.45, β = 50, Fr = 0.14, Fr∗ = 89× 104.
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Figure 3.4: Perturbation growth rate resulting from the first 3 modes as function
of the wavenumber k. The curve ω1 and ω2 are complex conjugate. Parameter
values: α = 0.45, β = 50, Fr = 0.14, Fr∗ = 89× 104

134



3.8. MODEL RESULTS

�0.3 �0.2 �0.1 0.0 0.1
Re�Ω�

1

2

3

4

5
n

50

100

200

400

Figure 3.5: Dependency of the eigenvalues from the number of points (50-400)
of discretization used in the Chebyshev spectral method. The vertical axis is used
simply to separate the eigenvalues with different discretization.

shown in figure 3.5. It could be seen that, starting form a sufficiently high

number of discretization points, the system is quite stable: increasing the

discretization, the first eigenvalues remain fixed and the new ones are all

smaller than the previous. The minimum number of points depends on the

relevant parameters. In addition, for very small values of the wavenumber,

there is another small dependency of the eigenvalues on the number of dis-

cretization points. It has been found that a good choice for the system to

be completely stable (that is, no more variations of the curves of the first

eigenvalues is observed by increasing the number of discretization points) is

to use about 300 discretization points.

The parameter space (β×Fr∗×Fr), has been explored fixing two param-

eters and varying the other. Some results are reported in figure 3.6. Typical

values of the dimensional quantities used to calculate the dimensionless pa-

rameters are: 0.01-0.1 m for D∗
0; 0.1-1 m/s for UC ; 0.1 to 1000 m for L0; 10

−6

to 10−2 for the concentration C.

Two example of marginal stability curves in the (k×β) and (k×C)-planes
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Figure 3.6: Perturabtion growth rate Re[ω] as a function of the wavenumber for
different values of the parameters: for β parameter, with Fr∗ = 18×104 (top) and
for concentration, with β = 100 (bottom).
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are given in figure 3.7.

The value of the wavenumber for which the maximum growth rate Re[ω]

occurs, corresponds to the spacing of the periodical drainage channels. The

channel inter-axis in fact is

L =
2π

k
(3.65)

and returning to dimensional quantites

L∗ =
2π

k
L∗
0 (3.66)

Figures 3.8 and 3.9 analyse the dependency from sediment concentration for

different values of water depth D0 and critical velocity for erosion Uc. The

sediment concentration is varied in the range 10−6 − 10−2. The β parameter

varies in the range 2−215, which puts a limit in the maximum hillslope length

from about 200 to 1000 meters, depending on the selected water depth. In

both figures, the used value for the water depth are 0.01, 0.03 and 0.06 m,

from top to bottom. Two values of the critical velocity Uc (0.2 and 0.4 m/s)

have been also considered.

For a fixed set of the parameters D0, Uc and C (i.e., a single curve in

the figures 3.8 and 3.9), there is a critical limit βc above which a stability

condition occurs. This means that, to ensure the development of parallel

channels with periodic spacing, the hillslope length must be greater than a

minimum value (that is parameter dependent). Starting from this minimum

value, the channel spacing increases with increasing the hillslope length. For

a fixed sediment concentration (and fixed D0 and Uc) a shorter hillslope

implies an increase in the number of channels for unit width.

Looking at a fixed hillslope length and changing only the sediment con-

centration (i.e., moving along a vertical line in the figures 3.8 and 3.9), the

channel spacing reduces increasing the suspended sediment concentration. In

other words, at the bed for a fixed hillslope an increised erosion leads to a

denser drainage network.
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Increasing the water depth implies a considerable increment in channels

spacing, that is a reduction of the number of channels for unit of hillslope

width, as well an increment to possible hillslope lengths leading to the devel-

opment of stable parallel channels with periodic spacing: the aforementioned

critical values βc becomes shorter with increasing water depth.

Finally, increasing the critical velocity Uc (i.e., increasing the grain size)

tends to slightly increase the channel inter-axis.

3.9 Summary and conclusions

It has been developed a physical based model to study the formation of

a network of periodic parallel drainage channel (rills).Analytical solutions

are found by suitably scaling and performing a perturbation analysis. The

associated eigenvalue problem is solved by Chebyshev spectral method. The

channel inter-axis is derived by considering the maximum growth rate of

perturbations as function of the fundamental parameters of the system: the

depth of the water sheet; the length of the hill-slope; the critical velocity for

erosion; the concentration at the bed. Despite the model is very simple, the

results seam able to mimic the physics of drainage channel formation. The

stabilizing mechanism is found to be related to the correction of bedload due

to the longitudinal bed-slope. The most important parameters emerge to be

the water depth and the sediment concentration; a marginal role is connected

to the critical velocity for erosion, at least for the analysed values.

Clearly, in order to quantify the reliability of the predictions an extensive

comparison with the results reported in literature and in field measurements

needs to be carried out.

Further investigations are also worthwhile to understand a whether the

introduction of the dispersive terms in the momentum equations can lead,

beside longitudinal effects on bedload, to a further stabilization of the system.
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Figure 3.8: Characteristic spacing L between drainage channels as a function of
the hillslope length for different selections of the various parameters: a) D0 = 0.01
m; b) D0 = 0.03 m; c) D0 = 0.06 m. The critical velocity for sediment erosion is
Uc = 0.2 m/s. The suspended sediment concentration C at the bed is varied in
the range 10−6 − 10−2.
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Figure 3.9: Characteristic spacing L between drainage channels as a function of
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3.10 Parameters and constants

Dimensionless relevant parameters

ds =
d∗s
D∗

0

∼ 5× 10−5, grain parameter ; ds ∈
[
10−4, 10−2

]
β =

B∗
0

D∗
0

∼ 100,
aspect ratio parameter

cross section parameter
; β ∈ [5, 30]

ϑ0 =
CfU

2
c

ΔgD∗
0ds

∼ 0.27, Shields parameter ;ϑ0 ∈ [0.05, 0.30]

Fr∗ =
U∗

Cws

=

√
τ0
ρw

Cws

=

√
Cf (U

2
0 + V 2

0 )

Cws

=

√
CfU2

c

Cws

∼ 2530, Froude parameter

Dimensionless parameters

χm =
Δds
Cf

ϑ0 ∼ 0.004, inertial parameter

χτ = Δdsβϑ0 ∼ 0.0016, friction parameter

σ =
8rds

√
Cf

1− p
β−1

√
ϑ0 ∼ 9.4× 10−8, morphological time parameter

e =
1

2r
β2ϑ

− 1
2

0 ∼ 1.5× 10−5, diffusion parameter

ϑcn =
ϑc

ϑ0

∼ 0.16

R =
1

r
β
√
ϑ0 ∼ 104

Accessories

|τ ∗0 | = ρwCf

(
U2
0 + V 2

0

) ∼ 2
kg

ms2
, bed shear stress

r = 0.5, dimensionless erosion coefficient
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Qs0 =

√(
ρs
ρw

− 1

)
gd∗3s ∼ 1.2× 10−6m

2

s

Φ = 8 (ϑ0 − ϑc)
3/2 ∼ 0.88, Mayer-Peter-Muller parameter

Θ =
|τ ∗0 |

(ρs − ρw) gd∗s
∼ 3.4, dimensionless Shields parameter

Constant and characteristic values

D∗
0 ∼ 0.01m, water depth

L∗
0 ∼ 102m, channel length

U0 ∼ 0.5
m

s
, flow velocity

p ∼ 0.3, porosity

C ∼ 0.0001, mean sediment concentration

Uc ∼ 0.2
m

s
, threshold velocity for sediment movement

ks ∼ 30
m1/3

s
, roughness coefficient

Cf ∼ 0.004, friction coefficient

d∗s ∼ 5× 10−5m, sediment geometric mean size

ρs ∼ 2.2× 103
kg

m3
, sediment mean density

Δ =
ρs
ρw

− 1 ∼ 1.2

ws ∼ 5× 10−4m

s
, sediment settling velocity

ϑc ∼ 0.043, dimensionless critical shear stress

g = 9.8
m

s2
, gravity acceleration

ρw ∼ 103
kg

m3
, water density
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Appendix A

Conservation equations

Incompressible fluid mass conservation equation

∂ρ

∂t
+∇ · (ρ�u) = 0 (A.1)

dρ

dt
=

∂ρ

∂t
+ (�u · ∇) ρ�u =

∂ρ

∂t
+ (ρ (�u · ∇) �u+ (�u · �u)∇ρ) = 0 (A.2)

Since the density gradient is usually much smaller than the velocity diver-

gence and ρ can be considered practically constant in time, the mass conser-

vation equation can be approximated to (Batchelor, 19XX)

∇ · �u = 0. (A.3)

Mass conservation equation equivalent

Integrating the mass conservation equation, ∇ · �u = 0, over the depth,

applying Leibniz integral rule and considering the kinematic boundary con-

ditions at the water surface, z = η[x, y, t] and at the bed z = −H [x, y, t]

⎧⎪⎪⎨
⎪⎪⎩

− u|η ∂η
∂x

− v|η ∂η
∂y

+ w|η = ∂η

∂t
at z = η

u|−H
∂H

∂x
+ v|−H

∂H

∂y
+ w|−H =

∂H

∂t
at z = −H

(A.4)
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yields

∂

∂x

∫ η

−H

u dz +
∂

∂y

∫ η

−H

v dz = 0 (A.5)

The first term however vanishes because of the assumption of along-estuary

uniform flow condition. It then terms out that

∂

∂y

∫ η

−H

v dz = 0 =⇒
∫ η

−H

v dz = constant for all y (A.6)

and the constant is zero because of the zero flux boundary condition at the

banks, namely

∫ η

−H

v dz = 0 for all y (A.7)

On the other hand, the along-estuary uniform flow condition implies that

∫ η

−H

u dz = F [y] (A.8)

and integrating across the section

Q =

∫ B

0

∫ η

−H

u dz dy = constant (A.9)

Hence, the flow discharge does not vary along the estuary and it is equal to

U cos (ωT t) because of the boundary conditions.

Concluding, the integral conditions A.7 and A.9 ensure the overall mass

conservation within the estuary.
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Coriolis Force

As the Earth rotate, the momentum equations must account for centrifu-

gal and Coriolis forces. In the local (non inertial) system the Earth angular

velocity is

�Ω =

⎛
⎜⎜⎝

0

Ω cos [ϕ]

Ω sin [ϕ]

⎞
⎟⎟⎠ (B.1)

with Ω = 2π
24h

∼ 7.2910−5s−1 and being ϕ the latitude. The centrifugal force

is

�acf = �Ω×
(
�Ω× �r

)
(B.2)

where �r is the vector from the Earth centre to the origin of the local reference

system. This force can be included in the geopotential:

�g∗ = −g �e3 − �Ω×
(
�Ω× �r

)
= −∇Φ (B.3)

(B.4)
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where �e3 denotes the unit vector in the direction normal to the Earth surface

and

Φ = gz − (Ωr cos [ϕ])2

2
(B.5)

The Coriolis force is given by

�aC = −2
(
�Ω× �u

)
= −2

⎛
⎜⎜⎝

0

Ω cos [ϕ]

Ω sin [ϕ]

⎞
⎟⎟⎠×

⎛
⎜⎜⎝

u

v

w

⎞
⎟⎟⎠ =

= −2Ω

⎛
⎜⎜⎝

w cos [ϕ]− v sin [ϕ]

u sin [ϕ]

u cos [ϕ]

⎞
⎟⎟⎠ (B.6)

It represents a deflecting force, which produces an acceleration perpendicular

to the velocity. In particular the u components is accelerated both in the y

and z direction; v component is accelerated in the x direction; w component

is accelerated in the x direction. When the vertical component of the velocity

is much smaller than horizontal components (w << u,w << v), the Coriolis

force simplifies as

�aC ∼ −2Ω

⎛
⎜⎜⎝

−v sin [ϕ]

u sin [ϕ]

0

⎞
⎟⎟⎠ = −f

⎛
⎜⎜⎝

−v

u

0

⎞
⎟⎟⎠ =

= −f

⎛
⎜⎜⎝

0

0

1

⎞
⎟⎟⎠×

⎛
⎜⎜⎝

u

v

w

⎞
⎟⎟⎠ = −fe3 × �u (B.7)

where f is the Coriolis parameter, f = 2Ω sin [ϕ]. The plane tangential to

the Earth’s surface (with x pointing eastward, y Northward and z positive in

the outward radial direction) is called the f-plane, since Ω becomes (0, f̃ , f),

f̃ = 2Ω cos [ϕ]. Clearly the Earth’s surface is a constant geopotential surface.
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Characteristic dimensionless

numbers

The importance of the various terms in the Navier-Stokes equations can

be investigated using the following dimensionless numbers

Fr =
Inertial force

Gravitational force
=

(�u · ∇) �u

g
∼ U2

gL
Froude Number (C.1)

Eu =
Inertial force

Pressure gradient force
=

(�u · ∇) �u
1
ρ
∇p

∼ ρU2

Δp
Euler Number (C.2)

Ro =
Inertial force

Coriolis force
=

(�u · ∇) �u

2
(
�Ω× �u

) ∼ U

fL
Rossby Number (C.3)

Re =
Inertial force

Frictional force
=

(�u · ∇) �u

ν · ∇2�u
∼ UL

ν
Reynolds Number (C.4)

The Reynolds number provides an estimate of the order of magnitude of in-

ertia terms vs frictions terms. For high enough Re, inertia tends to dominate

over friction and, when a critical value Rec is exceed, a transition occur from

laminar to turbulence flow conditions. The value of Rec depends on the in-

vestigated flow field for laminar vs turbulence behaviour of the fluid, in case

of dominance of the inertial force (turbulence production) or viscous friction

(turbulence dissipation) respectively. Critical Reynolds number is about 55.
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Appendix D

Reynolds Averaged

Navier-Stokes equation

The Reynolds averaged Navier-Stokes equations (RANS) are turbulence-

averaged equations of motion for a Newtonian fluid. The average is taken

statistically for unsteady turbulence while a time average can be used in the

case of stationary turbulence (i.e., when the turbulence average quantities do

not depend on time). The basic idea is the Reynolds decomposition, whereby

an instantaneous quantity is decomposed into its turbulence-averaged and

fluctuating components. The equations resulting from substituting this de-

composition into the Navier-Stokes equations and average over the turbulence

can be used to solve the flow field in terms of turbulence-average quantities.

For a stationary, incompressible Newtonian fluid, these equations can be

written as

ρūj
∂ūi

∂xj
= ρf̄i +

∂

∂xj

(
−p̄δij + μ

(
∂ūi

∂xj
+

∂ūj

∂xi

)
− ρu′

iu
′
j

)
(D.1)

where the over-bar represents time-averaged quantities and the prime denotes

fluctuating quantities. The left-hand side represents the variation in mean

momentum of fluid element owing to the convection by the mean flow. This

variation is balanced by the mean body force, the isotropic stress owing to

151



APPENDIX D. REYNOLDS AVERAGED NSE

mean pressure field, the viscous stress and Reynolds stress resulting from

the fluctuating velocity field. The presence of the non-linear Reynolds stress

requires additional modelling (the turbulence model) to close the system

of governing equations. To derive RANS equations the starting point is the

Navier-Stokes equations (NS)that for an incompressible Newtonian fluid read

∂ui

∂xi

= 0 (D.2)

∂ui

∂t
+ uj

∂ui

∂xj
= fi − 1

ρ

∂p

∂xi
+ ν

∂2ui

∂xj∂xi
(D.3)

where �f represents external forces. Each instantaneous quantity is split into

turbulence-averaged and fluctuating components and the resulting equations

are averaged over turbulence.

Taking advantage of the definition of mean, of the linearity of the various

terms (except for the convective acceleration), the continuity equation yields

∂ūi

∂xi
= 0 (D.4)

(D.5)

while for momentum equation the result is

∂ūi

∂t
+ ūj

∂ūi

∂xj

= f̄i − 1

ρ

∂p̄

∂xi

+ ν
∂2ūi

∂xj∂xi

− ∂u′
ju

′
i

∂xj

(D.6)

Last term on the right-hand side represents physically the mean transport

of fluctuating momentum by turbulent velocity fluctuations, and it can be

considered as an added stress on the fluid

∂ūi

∂t
+ ūj

∂ūi

∂xj
= f̄i − 1

ρ

∂

∂xi

(
p̄δij + μ

∂ūi

∂xj
− ρu′

ju
′
i

)
(D.7)

It is thus possible to define the Reynolds stress tensor τ , as the turbulence-

average advection of u′
i by u′

j (i.e., advection of momentum or velocity fluc-

tuations). It leads to a spread of momentum (diffusion) by turbulence that
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is independent of viscosity

τij = −ρu′
ju

′
i = −ρ

⎛
⎜⎜⎝

u′2 u′v′ u′w′

v′u′ v′2 v′w′

w′u′ w′v′ w′2

⎞
⎟⎟⎠ (D.8)

The related tensor is symmetric and it introduces 6 new unknown, to be

solved by a suitable closure model. Note that the total turbulent kinetic

energy is one half of the τ trace. On the other hand, the continuity equation

can be rewritten as

∂ui

∂xi
=

∂ (ui + u′
i)

∂xi
=

∂ui

∂xi
+

∂u′
i

∂xi
= 0 =⇒ ∂u′

i

∂xi
= 0 (D.9)

Hence, both the average flow field and fluctuating velocity field satisfy the

average continuity condition.

153





Appendix E

Beaufort wind scale

The Beaufort wind scale is an empirical evaluation of wind speed by

observed condition at sea or on land. It is commonly used to describe the

wind force. It is divided into series of values which represent specific ranges

of wind velocity; each class has a corresponding description of wind effects

on some common features like trees, waves, smock, . . . .
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APPENDIX E. BEAUFORT WIND SCALE
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