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Abstract I 

Abstract 

The present thesis focuses on studying structure/morphology/activity relationships in 

bimetallic Pt-Sn nanostructured electrodes for proton exchange membrane (PEM) fuel 

cells by adopting a rigorous surface science approach where: 

i) Model electrocatalysts are prepared in ultra-high-vacuum (UHV) conditions as 

ultrathin (UT) films (PtSnx/Pt(110) and SnOx/Pt(110))  to ensure a very reproducible 

control down to the atomic level; 

ii) Composition, morphology and structure of the UT nanostructured films are studied in 

situ by adopting state-of-the-art characterization tools; 

iii) Quantum mechanical calculations are carried out adopting the density functional 

theory (DFT) in order to determine the atomic structure of the UT films. 

A systematic search for possible Sn alloy or oxides on Pt(110) surface phases was carried 

out. Three surface alloys (including one already reported surface alloy) and two surface 

oxides on Pt(110) surface were identified.  

The two novel surface alloys: p(3×1)PtSn/Pt(110) and p(6×1) PtSn/Pt(110) can be 

prepared by means of UHV Sn deposition on Pt(110) at different thickness and by a 

subsequent annealing at proper temperature. Besides, two SnOx oxides surfaces, namely 

the c(2×4)SnOx/Pt(110) and the c(4×2) SnOx/Pt(110), were prepared by oxidizing the 

surface alloys. With optimization of the preparation conditions, a phase diagram for the 

surface alloys and surface oxides on Pt(110) was outlined.  

The two novel surface alloys were characterized by low energy electron diffraction 

(LEED), scanning tunnelling microscopy (STM) and synchrotron radiation 

photoemission spectroscopy (SRPES). STM images of the two surface alloys are 

characterized by a highly corrugated row structure whereas photoemission data indicate a 

complex intermixing between Pt and Sn which leads to the formation of extended near-

surface alloys. Some models for the two surfaces were proposed on the basis of the 

experimental evidences. These models were then compared with DFT calculations and 

the simulated STM images of the models were used as final assessment of their validity. 

The reactivity of the surface alloys with CO was investigated both experimentally by 

thermal programmed desorption (TPD) and theoretically by DFT calculations. The results 
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reveal a scarce reactivity towards CO on the two surfaces due the lower adsorption 

energy with respect to pure Pt(110) surface, indicating their use as highly CO tolerant 

catalysts. Based on the DFT results, the surfaces can have also an improved performance 

in CO oxidation reaction (COOR) on the basis of the calculated d-band centroid value. 

The two surface oxides (c(2×4)SnOx/Pt(110) and c(2×4)SnOx/Pt(110) ) were investigated 

by LEED, STM and  SRPES. Some models for the two surfaces were proposed based on 

the experimental results, and investigated by DFT calculations. The good agreement 

between the simulated STM images with the experimental data suggests a good reliability 

of the proposed structures. 

The reactivity towards CO for the two oxidised phases was also investigated. The c(4×2) 

structure, constituted by a slightly oxidised Sn overlayer, demonstrated to be scarcely 

reactive, whereas the more oxidized c(2×4) phase proved to be able to efficiently oxidize 

CO. These results were also confirmed by DFT. The decomposition of methanol on 

c(2×4) surface was also investigated by TPD and SRPES, indicating that the methanol 

can be oxidised efficiently into CO2 and H2O. However the body of our experimental 

data points to a quite complex oxidation mechanism whose selectivity changes 

dynamically according to the experimental conditions. The fully oxidised c(2×4) can 

efficiently oxidise methanol to CO2 at low temperature, but this reaction path is 

progressively suppressed as soon as the phase is reduced. In this regime the methanol is 

oxidized to CO2 at higher temperature and less efficiently, the microscopic mechanism of 

the reaction implies the supply of oxygen by c(2×4) islands on reduced Pt or PtSn areas 

by spillover, where the actual reaction takes place. When the spillover is not anymore 

possible, because the methanol decomposition has removed most oxygen, methanol is 

simply oxidatively dehydrogenated to CO and H2, similarly to what happens on the clean 

Pt(110) surface but at a slightly lower temperature. 

 

Key words: Fuel cell, PtSn, surface alloys, surface oxides, CO reactivity, methanol 

decomposition  

 

 

 



Abstract III 

Riassunto 

La presente tesi si concentra sullo studio della relazione struttura / morfologia / reattività 

in elettrodi bimetallici nanostrutturati Pt - Sn per celle a combustibile a membrana a 

scambio protonico (PEM), adottando un rigoroso approccio di scienza delle superfici 

sviluppato come segue: 

i) sistemi modello di elettrocatalizzatori sono stati preparati in condizioni di ultra - alto 

vuoto (UHV) depositando via epitassia da fasci molecolari (MBE) strati ultrasottili (UT) 

di PtSnx e SnOx su superfici di Pt monocristallino orientate (110), al fine di garantire un 

controllo fine e riproducibile su scala atomica; 

ii ) composizione, morfologia e struttura dei film nanostrutturati UT sono stati studiati in 

situ mediante l'adozione di strumenti di caratterizzazione in linea con le più avanzate 

tecniche offerte dallo stato dell’arte; 

iii ) calcoli quanto-meccanici basati sulla teoria del funzionale densità (DFT) sono quindi 

stati effettuati per determinare la struttura atomica dei film UT, in modo da razionalizzare 

e supportare i risultati sperimentali ottenuti al punto precedente. 

Una ricerca sistematica è stata effettuata allo scopo di identificare nuove possibili fasi di 

superficie di Sn o ossidi di Sn supportate su Pt (110). In questo modo, tre leghe di 

superficie (di cui una risulta già nota in letteratura) e due ossidi di superficie su Pt (110) 

sono stati identificati. Le due innovative leghe da film UT, la p(3 × 1) PtSn / Pt (110) e la 

p(6 × 1) PtSn / Pt (110) possono essere sintetizzate mediante deposizione di Sn su Pt 

(110), preparando spessori diversi e sottoponendo le superfici così ottenute a trattamenti 

termici effettuati a diverse temperature. Conseguentemente, l’ossidazione ad alta 

temperatura delle leghe superficiali ha permesso l’ottenimento di due nuove fasi ossidate 

di superficie, la (c(2 × 4) SnOx / Pt (110) e la c(4 × 2) SnOx / Pt (110). Infine, data 

l’elevata flessibilità delle tecniche di preparazione e caratterizzazione offerte dalla 

scienza delle superfici, è stato possibile delineare con grande accuratezza un diagramma 

di fase sia per le leghe che per gli ossidi di superficie sopra descritti. 
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Le due nuove leghe superficiali sono state caratterizzate mediante diffrazione di elettroni 

a bassa energia cinetica (LEED), microscopia a scansione ad effetto tunnel (STM) e 

spettroscopia di fotoemissione da radiazione di sincrotrone (SRPES). Le immagini STM 

delle due leghe superficiali sono caratterizzate da una struttura a righe altamente 

corrugata; i dati di fotoemissione indicano inoltre un complesso intermixing tra Pt e Sn 

che porta alla formazione di leghe localizzate in prossimità della superficie. Alcuni 

modelli per le due superfici così ottenute sono state proposte sulla base delle evidenze 

sperimentali. Tali modelli sono stati poi confrontati con calcoli DFT; in particolare, sono 

state generate simulazioni di immagini STM che sono state quindi confrontate con i dati 

sperimentali ed usate come valutazione finale della validità dei modelli proposti. La 

reattività delle leghe di superficie rispetto al CO è stata studiata sia sperimentalmente, 

mediante desorbimento termico programmato (TPD), sia ricorrendo a calcoli DFT. I 

risultati rivelano una scarsa reattività delle due superfici nei confronti del CO a causa 

dell’energia di adsorbimento inferiore rispetto alla stessa superficie di Pt (110) presa 

come riferimento; tale fenomenologia indica pertanto il promettente impiego di tali 

sistemi come catalizzatori caratterizzati da elevata tolleranza al CO.  

Come già descritto per le leghe di superficie, i due ossidi superficiali (c(2 × 4) SnOx / Pt 

(110 ) e c(4 × 2) SnOx / Pt (110) ), sono stati studiati mediante LEED, STM e SRPES. 

Alcuni modelli per le due superfici sono stati proposti sulla base dei risultati sperimentali, 

la cui validità è stata supportata da calcoli DFT. Il buon accordo tra le immagini STM 

simulate e i dati sperimentali suggeriscono una buona affidabilità delle strutture proposte. 

La reattività verso il CO per le due fasi ossidate è stata inoltre indagata mediante TPD 

supportata da calcoli quantomeccanici. La struttura c(4 × 2), costituita da uno strato UT 

di SnOx sub-stechiometrico, ha dimostrato di essere poco reattiva, mentre la fase più 

ossidata c(2 × 4) ha dimostrato di essere in grado di ossidare efficacemente il CO. 

Lo studio della decomposizione del metanolo sulla fase c(2 × 4), effettuato mediante TPD 

e SRPES, indica come il metanolo possa essere ossidato in modo efficiente a CO2 e H2O. 

Tuttavia, i dati sperimentali indicano un meccanismo di ossidazione piuttosto complesso, 

la cui selettività cambia dinamicamente in base alle condizioni sperimentali. Ad ogni 

modo, la fase completamente ossidata c(2 × 4) può facilmente ossidare il metanolo a CO2 

già a bassa temperatura, tuttavia tale reattività viene progressivamente soppressa non 
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appena inizia la riduzione della fase con la perdita di ossigeno reticolare. In questo 

regime l’ossidazione del metanolo a CO2 richiede temperature più elevate; in particolare, 

il meccanismo microscopico della reazione implica la fornitura di ossigeno da parte della 

fase c(2 × 4) ad isole ridotte di Pt o PtSn, siti nei quali avviene effettivamente la reazione 

di ossidazione. Con il procedere della decomposizione del metanolo, il progressivo 

consumo di ossigeno porta ad una drastica soppressione della diffusione di superficie di 

quest’ultimo. In questo modo, il metanolo viene semplicemente deidrogenato a CO e H2 

analogamente a quanto accade sulla superficie pulita di Pt (110), sebbene a temperature 

inferiori. 

 

Parole chiave : celle a combustibile, leghe di superficie , ossidi di superficie , reattività 

verso il CO, decomposizione del metanolo. 
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1. Introduction  1 

1 Introduction  

1.1 Energy crisis and solutions  

Nowadays, the global economy relies on the traditional fossil fuel; however, excessive 

consumption of fossil fuel will lead to some terrible results. One of the disaster is the fast 

increasing temperature of the earth from recent 30~50 years, due to the emission of CO2 

from the consumption of  fossil fuel [1]. The plot of global temperature and atmospheric 

CO2 concentrations since 1880 is presented in Figure 1-1, indicating that the CO2 

concentration is the main factor for the increasing global temperature. The increasing 

temperature will cause some phenomena such as the melting of Antarctic ice and 

consequent rising sea level. Then the main cities near the coast will be flooded, as their 

positions are very low.  

 
Figure 1-1  Michael Crichton's plot of global temperatures and atmospheric CO2 concentrations 
since 1880.[1] 
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Besides, the air quality is deteriorating because of rising amount of cars which mainly use 

fossil fuel as their major power. Hence, finding energy sources alternative to fossil fuels 

is one of the biggest challenges for mankind in this century [2, 3]. Among several routes 

to satisfy the energy demand, fuel cells (FCs) have drawn much attention due to their 

high conversion efficiency[4], limited environmental impact[4] and solution to 

distributed energy requirements.  

In this context, proton exchange membrane fuel cells (PEMFCs) are expected to be 

progressively used in daily applications. 

1.2 Electrocatalysts and fuel cells  

An electrocatalyst[5] is a catalyst that promotes electrochemical reactions [6]. Catalysts 

modify the rate of chemical reactions without being consumed in the process. 

Electrocatalysts are a specific form of catalysts deposited at electrode surface or may be 

the electrode surface itself. An electrocatalyst can be heterogeneous, such as a platinum 

surface or nanoparticles,[7-11] or homogeneous, like a coordination complex or 

enzyme[12-15]. The electrocatalyst assists in transferring electrons between the electrode 

and reactants, and/or facilitates an intermediate chemical transformation described by an 

overall half-reaction. 

Figure 1-2 presents a typical structure of PEMFC[16]. According to the demonstrative 

figure, fuel such as H2[17] or methanol[18] can be injected into anode, and the electrons 

from fuel can be consequently transferred to the electrode. Then the electrons go through 

the outside circle to the cathode to generate current, and H+ transformed from H2 transfers 

to cathode through the electrolyte present in the proton exchange membrane. In the 

cathode, O2 and water can accept the electron from fuel and transform into OH-, and 

finally react with transferred H+ to form water exhaust.  
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Figure 1-2  A demonstrative structure for typical PEMFCs. 

1.2.1 Oxygen Reduction Reactions (ORR) 

In cathode of PEMFC, air is pumped into the cell and oxygen is reduced on the cathode 

[19-23]. The ORR reaction consists in transferring four electrons from cathode to O2 

which is then transformed into OH-, and then the OH- can react with H+ to form water 

during the reaction. The ORR reactions can be displayed as Equation 1-1.  

𝑶𝟐 + 𝟒𝑯+ + 𝟒𝒆−→𝟐𝑯𝟐𝑶  𝑬𝜽 = 𝟏.𝟐𝟑𝐕        Equation 1-1 

1.2.2 Oxidation Reactions  

For PEMFC, hydrogen [17, 24] and methanol [25-29] are the most used fuel due to their 

environmental friendly performance and to their abundance. However, H2 always 

contains some trace of  CO because of its preparation coming from reaction of water with 

coal or decomposition of methane. Hence, the CO oxidation reaction is also considered 

[30-34] and its presence can poison the electrode which is always made of Pt.  

1.2.2.1 Hydrogen Oxidation Reactions (HOR)  

In the electrochemical cell, hydrogen can be oxidized on the anode and then form proton. 

[34-37]  The oxidation reactions can be described as Equation 1-2.  

𝑯𝟐→𝟐𝑯+ + 𝟐𝒆−    𝑬𝜽 = 𝟎.𝟎𝟎𝐕      Equation 1-2 
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Then, the proton can be transferred to cathode and react with OH- which is the products 
from O2 reduction reaction. So the total reaction of the fuel cells is showed as in 
Equation1-3.  

2𝑯𝟐 + 𝑶𝟐→ 2𝑯𝟐𝑶     𝑬𝜽 = 𝟏.𝟐𝟑𝐕      Equation 1-3 

1.2.2.2 Methanol Oxidation Reactions (MOR) 

Methanol is another major fuel for PEMFC due to is convenient transportation and large 

supply from factory [38-42]. The MOR reaction [43, 44] implyes transferring of 6 

electrons from methanol to anode and the transformation of methanol into CO2 and H+, 

which can be expressed as in Equation 1-4.  

𝑪𝑯𝟑𝑶𝑯 + 𝑯𝟐𝑶→𝟔𝑯+ + 𝑪𝑶𝟐 + 𝟔𝒆− 𝑬𝜽 = 𝟎.𝟎𝟐𝐕      Equation 1-4 

So, the total reaction of the fuel cells can be showed as Equation 1-5.  

𝑪𝑯𝟑𝑶𝑯 + 𝟑
𝟐
𝑶𝟐 →2𝑯𝟐𝑶 + 𝑪𝑶𝟐 𝑬𝜽 = 𝟏.𝟐𝟏𝐕      Equation 1-5 

1.2.2.3 CO Oxidation Reactions (COOR) and CO stripping  

As already mentioned, CO always exists in H2 and it can be also one of the by-products 

during the MOR reaction[18]. But even trace amount of the gas can poison the electrode 

made of Pt and deteriorate the electrode performance dramatically. Hence, bimetallic 

electrocatalysts [32, 45-47] like Pt-Ru or Pt-Sn have attracted more attention due to their 

inhibition of CO poisoning. The promoting effect of alloyed M may be explained by two 

factors: functional and ligand (electronic) factors:  

a) Bifunctional factor  

The Pt atoms of alloy surfaces can adsorb CO very strongly. Hence, when some new 

metal is alloyed with Pt to form a bimetallic electrode, the second metal atom can 

promote the formation of–OHad on the surface, which, reacting with COad on Pt atoms, 

can produce water and CO2 [32, 48, 49].  The reaction can be described as Equation 1-6.  

𝑷𝒕 − 𝑪𝑶 + 𝑴−𝑶𝑯→𝑯𝟐𝑶 + 𝑪𝑶𝟐       Equation 1-6 

The mechanism has been supported by many experimental results [25, 50, 51], and also 

explained by theoretical calculations [52, 53].  
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b) Ligand (electronic) factor. 

The MOR performance of the bimetallic electrodes can be also explained considering a 

change in the electronic properties of Pt atoms which induce a CO absorption inhibition 

[26, 52, 54-56]. According to the mechanism, the alloyed metal atoms can decrease the 

adsorption energy of CO on Pt. Consequently, the CO can be easily desorbed from the 

surface, or it  can be more easily removed by –OHad  present on the metal atoms close to 

Pt.  

1.3 Bimetallic alloy electrocatalysts 

Pt is the most popular material for electrode of FCs. However, durability and cost of the 

electrocatalysts for PEFMCs are still two open issues that restrict a pervasive diffusion of 

this technology [30, 57, 58].  As an example of the former, standard Pt-based 

electrocatalysts are quickly poisoned by CO [59, 60], one of the main impurities of the H2 

fuel. The replacement of Pt with cheaper catalysts, or at least its decrease, while 

maintaining the efficiency of current catalysts, is an open issue for the application of 

PEMFCs. The use of bimetallic catalysts [61] (either MM’ or MM, where M’=noble 

metal and M=non-noble metal) is regarded as a promising route both to reduce the price 

[57, 62-65] and increase the durability of electrocatalysts [62, 66]. Ni[19] and Co[9] are 

two of the most popular alloyed metals for cathodes in PEMFC due to their excellent 

ORR performance after alloying with Pt. In particular, PtSn alloys [32, 48, 49, 67] have 

been considered as the most promising candidates to avoid CO poisoning [68-71] and 

with the best performance in alcohol oxidation [28, 72]. 

In order to optimize the activity/durability of bimetallic real electrocatalysts (i.e. PtSn 

alloy nanoparticles on a support [73-75]) a reductionist surface science based approach 

applied to appropriate model electrocatalysts offers a rationally-oriented route: surfaces 

of single crystal alloys [76-78] and their oxides [79, 80] or, alternatively, surface alloys 

and oxides can be fabricated with atomic scale precision by evaporating one of the two 

metals on a single crystal of the other, followed by thermal annealing. The processes 

occurring on such model electrocatalysts (such as alloying, corrosion or redox processes) 

can be efficiently monitored by the tools offered by modern surface science and the 

results transferred to real cases.   
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1.3.1 Deposition of metals on low index Pt surface 

Alloying Pt with transition elements can provide better electrocatalysts and also reduce 

the load of Pt[7, 9, 81-84]. So, research on alloyed electrodes are increasing fast[85, 86], 

while more basic studies about the effect of alloyed elements were completed on PtM 

model catalysts prepared on various low index Pt surface (M= non-noble elements) [28, 

80, 85, 87-89]. Ni is one of the most studied metals deposited on low index Pt surface, 

especially on Pt(111) surface[90-93]. According to these studies, the low index surface 

alloys exhibit excellent ORR performance. Markovic et. al has done systematic 

investigations in PtNi alloys, indicating that ORR current can be strongly enhanced,even 

more than a factor of 10.  Alloying Co with low index Pt surface is another hot topic due 

to the enhancement of ORR performance [94-97]. Also, Pt electrodes alloyed with Ni or 

Co performs better than Pt for MOR [98], due to the introduction of the already 

mentioned factors and also to the facilitated decomposition of methanol (according to 

Thermal Programmed Desorption, TPD, investigations). Besides, adopting Sn as one of 

alloyed elements[32, 49, 69] with Pt is becoming an attractive topic to be investigated, as 

Sn can split water [52, 99] and reduce adsorption energy of CO on the Pt-M alloy 

electrode[55, 56]. Some basic investigations have been published on various low index Pt 

surface [2, 72, 77, 89, 100-104].    

1.3.2 PtSn/Pt(111)  surface alloys and their oxidized surface  

Pt(111) is one of the most studied model catalyst surface because it represent the most 

abundant exposed surface in Pt nanoparticles and many papers  have appeared in 

literature [105-110] So, PtSn/Pt(111) phase diagram [111-113] were accurately 

investigated.  

1.3.2.1 Phase diagram  

When various amount Sn is deposited on the Pt(111) surface, the p(2×2) and (√3 ×

√3)R30° reconstructions can be observed by LEED, reported by Paffett et.al [114] about 

25 years ago. After this paper, a lot of further studies were accomplished on the two 

surface alloys [111, 113, 115, 116]. Some theoretical studies were also reported based on 

the Tight-Binding Ising Model (TBIM) and a mean-field approximation [113]. According 
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to the literature, the p(2×2) pattern can be prepared at lower Sn coverage compared to the 

(√3 × √3)R30° one. Similar results are also reported in other studies [113, 117, 118]. 

Besides, some papers reported on the oxidation of the reconstructed PtSn(111) 

surfaces[119-126]. Batzill et al. [118, 120-122, 125] reported that oxidation of the 

(√3 × √3)R30 surface forms a (5×5) pattern, while a more severe oxidation takes to a 

(4×4) reconstruction. After further oxidation at 900K, a monolayer wetting layer of tin 

oxide completely covers the substrate, and a 3D ordered structure on the surface can be 

obtained after oxidation with more oxygen exposure. Annealing of these oxidized 

surfaces at high temperature results in complete decomposition of SnOx species and the 

p(2×2) pattern can be again observed by LEED and STM[122]. Hence, according to the 

above results, the phase diagram of PtSn(O) on Pt(111) surface can be also summarized 

as in Figure 1-3.  

 

 
Figure 1-3 Phase diagram for PtSn/Pt(111) surface alloys and their SnOx/Pt(111) oxides. 
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a. p(2×2)PtSn/Pt(111) surface 

According to the phase diagram in Figure 1-3, after depositing 0.2~0.4ML Sn on Pt(111) 

surface at certain temperature and consequent annealing at about 800~1000K, a p(2×2) 

reconstructed pattern (see Figure 1-4(c)) can be observed[114, 120]. After the first report 

of the structure by Paffett et al. [114] in 1986, some similar works about reconstructed 

surface were also published [111, 113-117, 127-129]. The characterizations by XPD 

[116], LEED-IV [113], STM [118] and low-Energy Ion-Scattering [128] provide an 

evidence for the incorporation of Sn into the outermost Pt layer forming a two-

dimensional ordered alloy surface. A typical image of the structure were presented as 

Figure 1-5(a) by Overbury et al. [128], and it was commonly also supported by other 

investigations[113, 128].  

   
Figure 1-4 Typical LEED patterns : (a) the (√3 × √3)R30°, (b)  the c(4×2) patterns and (c) p(2×2) 
[114] 
 

  
Figure 1-5 Structures for various reconstructed PtSn/Pt(111) surfaces are shown: p(2×2) 
(a) and (√3 × √3)R30° (b). Dark circles represent Sn atoms; open and shaded circles 
represent first and second layer Pt atoms, respectively [116]. 
 
 

a b c 

a b 
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b. Multilayer p(2×2) reconstructed surface  

Multilayer p(2×2) reconstructed surface can be obtained when 3~5ML Sn are deposited 

on Pt(111) surface with subsequent annealing at about 600K, which was reported by 

Galeotti, et al. [116].  The reconstructed surface can be transformed into (√3 × √3)R30° 

pattern after higher temperature annealing to 800K. A similar work was published by 

Gallis et al. [111] where they annealed the sample covered with 3ML Sn at about 1000K 

for few seconds, and a (√3 × √3)R30° pattern was observed after annealing at 1000K for 

longer time, probably due to decrease of Sn amount on the surface by Sn diffusion into 

the bulk. 

c.  (√3 × √3)R30° PtSn/Pt(111) surface 

(√3 × √3)R30° PtSn/Pt(111) reconstruction, whose LEED pattern is shown in Figure 

1-5(a), was  first reported in 1986 by Paffett et al. [114]. It can be obtained with a 

coverage of about 0.4ML Sn deposited on Pt(111) surface at a substrate temperature of 

320K[128]. The surface structure was also characterized with various tools and 

thoroughly discussed [113-116, 128, 130]. According to the investigations, Sn is 

incorporated into the first Pt layer forming a two-dimensional ordered alloy surface and 

its structure is presented in Figure 1-5(b): it exhibits a slight buckling where Sn protrudes 

about 0.022±0.005nm above the plane of the first-layer Pt atoms [116]. The same 

reconstruction  was also reported by Philip et al.  starting from a Pt3Sn bulk alloy [29, 

115, 131]. 

d. c(4×2) PtSn/Pt(111)  surface  

The reconstruction was also first reported in 1986 by Paffett et al.  [114], and the typical 

pattern is shown in Figure 1-4(b). It can be prepared from Pt(111) surface with about 

0.5ML Sn coverage at low tempareture and then annealed to 1000K. The same 

preparation procedure has been  also suggested by Gallis et al.[111].   

e. (5×5) SnOx/Pt(111)  surface  
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After oxidation of (√3 × √3)R30° PtSn/Pt(111) reconstruction with NO2 at 4×10-7mbar 

for several adsorption cycles, the surface can be transformed into (5×5) SnOx/Pt(111) one 

[118, 120-122, 132] which is first reported by Batzill et al.[120]. The STM image of the 

surface was reported (see Figure 1-6). According to the topography, the surface presents 

point defects on an ordered (5×5) renconstructed surface sitting on a p(2×2) reconstructed 

substrate.  

f.  (4×4) PtSn/Pt(111) surface  

After oxidizing the p(2×2) and the (√3 × √3 )R30° reconstructed surfaces, a (4×4) 

reconstructed surface can be prepared [120-122, 124, 133]. STM images were obtained 

and some typical STM images are displayed in Figure 1-6 [120, 124, 133]. A  structural 

model has been proposed by Hoheisel et al. in agreement with the XPD and STM data, 

and it  is presented in Figure 1-6(d) [133].  

g. Some other surfaces 

Some other ordered structures including (4×6) and (4×8) were identified from STM 

images reported by Batzill et al.[120], but details are not presented herein.  

 
 

a b 
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Figure 1-6 Typical STM and LEED images: (a) (5×5) reconstructed surface (62nm×62nm) and 
(b) (4×4) reconstructed surface (12nm×12nm)(b) [120]; (c) atomic (4×4) reconstructed surface 
with structural model and (d) schematic model of the (4×4) phase.[133]. 
 
 

1.3.2.2 Chemical and electrochemical reactivity  

After discovery of the reconstructed patterns on Pt(111) surface, a lot of work [56, 114, 

127, 129, 134, 135] was carried out to investigate their catalytic activities. However, most 

of the work is focused on the two most popular surface alloys: the p(2×2) and the 

(√3 × √3)R30. Also some investigations about electrocatalysis of the two surface alloys 

were reported [29, 136-138], while a few papers about activities of SnOx on Pt(111) were 

published in recent years [28, 72, 80, 139].  

a. Catalytic activities of the surface alloys 

After the first report of the surface alloys, their reactivity with various gases was tested 

[107, 108, 135, 140, 141] and the surfaces exhibit reduction of adsorption energies of the 

dosing species due to the electronic effect [56, 107, 108, 127, 142-145]. Alloying Sn with 

Pt(111) surface can lower the adsorption energies of CO[56, 131, 146], which can also 

explain the high performance for carbon oxidation reaction in the electrochemical cells 

and is also confirmed by some theoretical results [31, 147].  

Besides, the surface exhibit very high selectivity for some reactions, such as 

hydrogenation [148] and dehydrogenation [149].  

 

c d 
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b. Electrochemical activities of the surface alloys 

With the two surface alloys electrodes were also prepared and tested in electrochemical 

cells [29, 136, 143] with respect to COOR [31, 150, 151], MOR[29] and EOR[101, 137]. 

According to the works by Markovic et al. [29, 136], the addition of Sn in the Pt(111) 

surface can electro-oxidize carbon monoxide efficiently due to the bifunctional effect. 

The study of MOR [29] and EOR [137] on the two surfaces demonstrates an excellent 

activity.  

c. Catalytic activities of the oxides 

In recent years, reactivity studies were published on the ordered SnOx/Pt(111) [28, 29, 72, 

80, 139]. Axnanda et al. found that the Sn(II)O is playing a key role for the high COOR 

performance of the SnOx/Pt(111) surface[80]. Also  the electrocatalytical activity toward 

EOR is highly enhanced after adding SnOx to the Pt surface[101]. 

1.3.3 PtSn/Pt(100)  surface alloys and their oxidized surface  

Some reconstructed PtSn surface alloy on Pt(100) have also been reported [102, 152-155] 

even if the number of publications is less than the one on the Pt(111) surface.  

1.3.3.1 Phase diagram  

According to the works of Koel et al.[102, 153, 156], addition of Sn at various coverage 

on Pt(100) can produce several reconstructed surfaces: an overlayer c(2×2), an 

incorporated c(2×2) and �3√3 × 3√3�R45°. According to preparation parameters, the 

phase diagram of Pt(100) surface can be obtained (see Figure 1-7).  
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Figure 1-7 Phase diagram for PtSn/Pt(100) surface alloys and their SnOx/Pt(100) oxides. 
 

a. c(2×2)PtSn/Pt(100) overlayer surface alloy 

The surface was reported for the first time by Haner et al. [157]: after depositing 

0.2~0.55ML Sn on the Pt(100) surface and consequent annealing to 600~750K[153, 156], 

a c(2×2) pattern can be observed and its typical LEED, STM images, and atomic model 

[102] are shown in Figure 1-8. With increasing annealing temperature, the pattern 

becomes more clear which has been interpreted as an incorporated c(2×2) reconstruction 

of the outermost surface layers. If further annealing to 850K is applied, the surface can 

transform to the well-known �3√2 × √2�𝑅45° pattern [102, 156, 157].  

b. Incorporated c(2×2)PtSn/Pt(100) surface alloy  

The incorporated c(2×2)PtSn/Pt(100) surface alloy was identified [156] after the first 

report of the c(2×2) pattern [157]. The surface can be prepared from annealing the 

overlayer c(2×2) surface to 800K [102, 156]. It has been also reported [155] that the 

surface with high Sn coverage had numerous pyramids on the surface and some  atomic 
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lines can form on the flat plane after heating to 1000K. Some typical STM images, LEED 

pattern and atomic models [102] are presented in Figure 1-9.  

 

 
 

Figure 1-8 Typical STM image, LEED pattern 
and model of overlayer c(2×2) PtSn/Pt(100) 

surface. 

Figure 1-9 Typical STM image, LEED pattern 
and model of incorporated c(2×2) PtSn/Pt(100) 

surface. 

c. �3√2 × √2�𝑅45°PtSn/Pt(100) surface 

The �3√2 × √2�R45°  reconstruction was prepared from higher coverage Sn and 

annealing the sample above 800K [102, 153, 155-157]:  its STM images, LEED pattern 

and atomic model are reported by Batzilland et al. [102] and shown in Figure 1-10. The 

STM images display some dark channels consisting of three missing Pt row on the 

reconstructed surface [102]. The surface is identified as one of the most stable surface 

[156]. The surface can be oxidized with large O2 exposure and a p(3×3) pattern can be 

prepared [153]. 

 

(c) (b) 

 

(c) 
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Figure 1-10 Typical STM image, LEED pattern and model o�3√2 × √2�𝑅45° PtSn/Pt(100) 

surface. 

d. p(3×3)SnOx/Pt(100) surface oxides 

Only one reconstructed pattern was reported [153] after oxidation of the surface alloys 

discussed above at about 673K. A further short report [104] has been reported on the 

surface oxides.  

1.3.3.2 Chemical and electrochemical reactivity  

Some gases were dosed on the surface of the reconstructed PtSn/Pt(100) surface, such as 

NO [158], CO [154] and acetylene [103, 159]. It has been shown that the addition of Sn 

can reduce the adsorption energy of the species on the Pt(100) surface. Also adding Sn 

into the Pt(100) surface can deactivate decomposition of acetylene [103, 159]:  no 

decomposition of the gas on the overlayer c(2×2)PtSn/Pt(100) surface alloyhas been 

observed .  

1.3.4 PtSn/Pt(110)  surface alloys and their oxidized surface  

The Pt(110) surface is by far the less studied one.  The reconstructed surfaces of 

PtSn(110) were always prepared from Pt3Sn bulk alloy [2, 78, 115, 136], and a 

 

(c) (d) 
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reconstructed surface oxide was prepared on the Pt3Sn(110) from the bulk alloy [79]. 

They shows enhanced CO oxidation in solution. Also the effect of addition of Sn into the 

Pt(110) surface is to decrease the adsorption energy of CO on Pt [78, 136, 150].  

1.3.4.1 Surface alloys and nano-oxides 

a. p(4×1)PtSn/Pt(110) 

Until now, only the p(4×1)PtSn/Pt(110) reconstructed surface alloy has been reported 

having a sharp LEED pattern with addition of Sn into Pt(110) [76, 77]. The surface is 

characterized by synchrotron radiation (SR) photoemission spectra (SRPES) and STM, 

and it was studied with DFT calculation. According the work of  Agnoli and et al, [77], 

after deposition of 0.75ML Sn the p(4x1) LEED pattern and the STM images shown in 

Figure 1-11 are obtained. Also, the same authors propose a DFT derived model of the 

surface reconstruction.  

 
Figure 1-11  Typical STM images, LEED pattern and model of p(4×1)PtSn/Pt(110)[77] 

b. p(2×2)PtSn/Pt(110) 

Beside the p(4×1) reconstructed surface, von Schenck et al. reported an ordered surface 

with p(2×2) reconstruction characterized by STM, but no clear LEED pattern can be 

observed [100, 160]. The surface contains Pt-Sn-Pt along the [11�0] direction and the Sn 

addition cause the roughing of Pt(110) surface.  

 

a d b 

c 
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c. c(4×2)SnOx/Pt3Sn(110) 

A c(4×2) LEED pattern was observed from the Pt3Sn(110) surface after annealing in O2 

with exposure of thousands Langmuir [79]. The surface has an additional c(2×2) 

superstructure with respect to the p(2×2) of Pt3Sn(110) substrate. According to the STM 

images, the surface topography contains boundaries between the domains. Figure 1-12 

presents typical LEED pattern and STM images of the nano-oxides [79].  

  
Figure 1-12  Typical STM images, LEED pattern of c(4×2) SnOx/Pt3Sn(110)[79]  

d. some other patterns from Pt3Sn bulk alloy  

After sputtering and annealing Pt3Sn(110) bulk alloys, p(3×1) and p(2×1) patterns were 

observed [150]. Besides, Hoheisel et al. [2] reported a surface with a mixed patterns 

containing p(2×1) and p(1×1) reconstructions and the surface was characterized with 

STM and LEED.  

1.3.4.2 Chemical and electrochemical reactivity  

Only few chemical characterizations have been reported. Surfaces were investigated with 

CO as a probe [100] or by theoretical calculation [78, 161]. Based on the results, the C1s 

of CO has similar binding energy after adsorbing on the p(2×2) reconstructed Sn 

terminated Pt(110) surface. Theoretical results indicate the adding of Sn can reduce the 

a b 
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adsorption energy of CO on the Pt but no modification on adsorption sites. According to 

COOR tests of the reconstructed surfaces from Pt3Sn(110) surface alloys in the 

electrochemical cells [136, 150], the surfaces perform very high COOR reactivity.  

1.4  Thesis Outline  

According the above panorama, only a few papers were focusing on the PtSn(O) system 

on Pt(110), while the Pt(110) exhibits very high MOR reactivity. Hence, it is very worth 

to further investigate modification the Pt(110) surface with Sn to understand if the data 

obtained on the Pt(111) and Pt(100) surface alloys  can be also transferred on the Pt(110) 

surface. The present thesis focuses on studying structure/morphology/activity 

relationships in bimetallic Pt-Sn nanostructured electrodes for proton exchange 

membrane (PEM) fuel cells by adopting a rigorous surface science approach where: 

i) Model electrocatalysts are prepared in ultra-high-vacuum (UHV) conditions as 

ultrathin (UT) films (PtSnx/Pt(110)  and SnOx/Pt(110))  to ensure a very reproducible 

control down to the atomic level; 

ii) Composition, morphology and structure of the UT nanostructured films are studied in 

situ by adopting state-of-the-art characterization tools, i.e. photoemission spectroscopy, 

scanning probe microscopy and spectroscopy, once again down to the atomic level; 

iii) Quantum mechanical calculations were done adopting the Density Functional theory 

(DFT) in order to derive model structures of the UT films; 
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2 Experimental Techniques and Model Calculations 

In this chapter, some basic principles of the experimental techniques used for the 

sample characterization during this PhD thesis will be introduced briefly, i.e. TPD, 

XPS, STM, and LEED. Certain basis theory about quantum mechanism calculation will also 

be presented. For more detailed information about both the experimental set-up and the 

rigorous interpretative principles the reader is redirected to textbooks about Surface 

Science and quantum calculations. Besides, the used experimental setups (TPD-Mass and 

UHV-STM) during the experiments will be displayed. 

2.1 Ultra High Vacuum Chamber  

2.1.1 X-ray Photoelectron Spectroscopy 

The X-Ray Photoelectron Spectroscopy (XPS)[1-4] employs the photoelectric effect. 

Some photoelectrons will emit when a solid surface is exposed to an X-ray radiation. A 

simple schematic configuration for an XPS setup is presented as Figure 2-1(a), and it 

consists of an X-ray primary source, a sample holder and an electron analyzer. 

  

Figure 2-1(a) Schematic representation of an XPS instrument; (b) The photoemission process ( a 
1s photoelectron emission as the example). 

 

When the X-rays photon flux, generated by the source (usually through electron 

bombardment of a metal anode, Mg or Al), is directed on the sample, a flux of 

photoelectrons will be generated both from the core and the valence shells (Figure 2-1 

(b),). The photoelectrons emitted between the X-ray photons and the sample can have 

a b 
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different interactions. Part of them can undergo an elastic diffusion, and their energy is 

released as heat or contributes the spectrum baseline during the diffusion. Some other 

part of photons can both be excited and emitted without any energy loss, giving the 

characteristic elastic peaks. The analyzer can record the kinetic energy associated to the 

photoelectrons, and give out an output spectrum where the signal intensity (counts per 

second) is reported as a function of the kinetic energy. The kinetic energy depends on the 

incident photons energy (primary radiation E = hν) and it can be transformed into a 

function with electron binding energy to the atom (BE) showing as the equation: 

𝑬𝒌 = 𝒉𝝂 − 𝑩𝑬 − 𝝓    Equation 2-1 

where ϕ is work-function of the analyzer. The BE is strongly dependent on the oxidation 

state of the analyzed element. So, an XPS spectrum can provide some important 

information about the electronic structure of a solid sample through the analysis of its 

output core and valence peaks (Figure 2-2), although it is more difficult to specify a 

photoelectron from an oxidized element with respect to its reduced counterpart.  

 

Figure 2-2 Example of an XPS spectrum. 

Sampling depth as another important parameter in XPS depends on the emitted electrons 

kinetic energies. Moreover, the electrons kinetic energy affects an elastic attenuation 

length (Λe) which is directly related to the electron mean free path. The variation in 

the XPS signal intensity is expressed by the following: 

𝐼 = 𝐼0 ∙ 𝑒𝑥𝑝 �
−𝑧

𝛬𝑒𝑠𝑖𝑛𝜃
�    Equation 2-2 
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where –z/sinθ is the length covered by the electron. The relation between signal intensity 

and attenuation length can be demonstrated that the 65% signal intensity comes from a < 

Λe distance, the 85% comes from a < 2 Λe distance and the 95% comes from a < 3 Λe 

distance. So, this technique is considered “surface sensitive”, only available to 

characterize a few nm sample thickness. Besides, if the angle between the sample 

surface and the analyzer (θ) is 90° (normal emission angle), the sampled thickness is 3 

Λe. When the angle θ is reduced (θ < 90°), the sampled thickness consequently becomes 

3Λesinθ, and the analysis turn more surface sensitive[5]. 

The conventional notation used in this thesis to indicate the XPS peaks refers to the 

quantum numbers related to the orbital where the photoelectron comes from. It is 

always express as nlj, where n means the principal quantum number representing the 

orbital energy level and l indicates the azimuthal quantum number representing the 

orbital geometry. When l>0, the XPS peaks display generally doublets due to the 

interaction of the magnetic moment (m) associated to the angular one with the spin 

magnetic moment (ms) associated to the electron. And the sum vector of these two 

creates a vector (j), expressed as a subscript in the notation, whose magnitude is given by 

j = l + s. Therefore a d peak can originate 3 values of j: 3/2 (which originates from l 

- s) and 5/2 (which originates from l + s). The peak distribution attributed from it will be 

a doublet, whose components will be separated by an energy difference corresponding to 

the spin-orbit coupling and an intensity ratio given by (2j + 1).  

In period of my finishing PhD project, some work were finished at the Elettra synchrotron 

facility, in Basovizza, Trieste. A precise photon wavelength when using synchrotron 

radiation[1, 6, 7] set by mean of monochromators can be utilized during High 

Resolution (HR)-XPS experiments. Since the selected radiation derive from a storage 

ring where electrons are accelerated in a magnetic field up to very high energy (2.0 

Gev), the photon fluxes are extremely high compared with the one produced by a 

common X-Ray source.  Therefore, the intense and tunable photon energy can provide 

a maximization of the photoionization cross sections of the elements that are useful for 

the analysis. Meanwhile, it is also possible to minimize some contributions coming, for 

example, from the bulk substrates, basing on the photoionization cross sections 

Cooper’s minimum energy position. The latter procedure is particularly helpful for the 
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valence band studies as the presence of a bulk signal can affect the overall spectrum 

appearance. 

2.1.2 Scanning Tunneling Microscope [8] 

Scanning Tunneling Microscopy (STM) is a powerful technique for imaging surfaces at 

an atomic level. This technique is based on quantum tunneling effect: a conductive tip is 

brought close to the sample surface (ca. 1 nm) and a voltage difference (called Bias) is 

applied between the two, allowing electrons to go through the vacuum. 

The measured electron current (tunneling current) is related with the bias, the tip position 

and the local density of states (LDOS) of the sample. The tunneling current as a quantum 

mechanical effect has two major properties for STM: it flows between two electrodes and 

even through a thin insulator or a vacuum gap, and it decays on the length scale of one 

atomic radius. So, it is possible to display a surface image plot according to the measured 

current as a function of the tip scan position. When the tip is close to the sample and its 

movements in the three dimensions are controlled by piezoelectric devices, the device 

can maintain a tip-sample separation that is typically in equilibrium between attractive 

and repulsive interactions. If the tip scans the sample (in the x-y planes), the changes in 

the surface morphology and LDOS cause changes in the current that can be mapped in 

images. There are two main way to operate with STM: constant height mode (mapping 

the above mentioned changes in the tunneling current) and constant current 

mode( mapping the tip height (z) with a constant current. Then the z position can be 

calibrated by applying a voltage to the piezoelectric height control mechanism. In the 

latter operating mode variations in the images contrast are due to variations in the sample 

charge density.  

As the above description, the basic physical principle of STM is the interaction between 

the scanning tip and the sample. If this interaction has a near field character, it is possible 

to overcome the resolution limits of far-fields techniques like microscopies (optical and 

SEM), which has disadvantage of limitation in the order of half a wavelength of the 

photons or the electrons. However, the resolution in STM is just controlled by the 

geometrical shape of the tip. The lateral resolution is decided by the vertical amplitude of 

the structures on the surface. The probing tip is always a cone with an opening angle and 

a finite radius at the apex. Hence, images of the surface steps with walls steeper than the 
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tip opening angle will be distorted due to the convolution of the tip shape with the surface 

structure. All the holes with smaller dimension than the tip radius will not be imaged at 

all or with a reduced corrugation, as it is possible to observe in Figure 2-6. On atomically 

flat surfaces or molecular layers the resolution is determined by the atomic structure of 

the tip apex.  

 
Figure 2-3  Resulution limits in a conventional STM instrument. Images of step walls and holes 

are distorted when their size is comparable to that of the tip apex 

 

The most powerful near-field interaction is the tunneling current across a vacuum gap for 

two main reasons: 

- the decay length is less than an atomic diameter 

- there are no other electrical currents flowing through the vacuum. 

2.1.3 Low Energy Electron Diffraction 

The Low Energy Electron Diffraction (LEED) is based on the oscillation behavior of a 

primary electron beam at low energy (20-500 eV), which corresponds wavelengths 

variation from 0.5 to 2.0 Å. The electrons are diffracted and an image of diffraction spots 

matching the reciprocal lattice ones can be obtained if the beam interacts with a crystal 

lattice with comparable inter-atomic distances. Then, we can deduce the real lattice and 

surface structure according to the obtained bright spots. The electrons mean escape depth 

values are low, usually less than 10 Å, so that electrons are very surface sensitive and can 

be used for surface analysis of the surface atoms layers. A usual schematic experimental 

setup is displayed in Figure 2-4 (a)). In the device, the sample is illuminated with an 

electron beam, produced from electron gun at the back screen side. The electrons are then 

accelerated up to the set energies through a potential gap and collide on the sample.  
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Figure 2-4  Example of a rear-view LEED configuration; (b) Schematic representation of the 

diffraction process from atoms separated by a periodic distance  

 
The diffracted electrons emitted back in precise directions (with respect to the primary 

beam), collide with a suppressor made by a series of grids kept at a variable potential, in 

order to select their energy. The selected electrons emerge from the last grid, and then the 

diffraction spots are revealed from hemispheric fluorescent screen where the electrons hit 

finally. 

The diffraction spots are typical as a function of the sample crystal lattice, are also used 

to judge surface reconstruction. The surface indicates homogeneous ordered and large if 

the obtained spots are sharp, intense and well defined (with respect to the screen 

background). When a disordered lattice is observed, the diffraction electrons from many 

directions can be generated and then a high background is observed. The diffraction spots 

correspond to the positive interference of the waves. In Figure 2-4 (b), a sample is 

proposed, where an electron beam with λ wavelength colliding with a mono-dimensional 

chain of atoms separated by a distance (a) is reported. The positive interference condition 

is given by the Bragg’s law: where nλ is an entire number of waves (n is the diffraction 

order) and asinθ is the inter-atomic distance projection along the propagation direction. 

The first diffraction order is then obtained when sinθ= λ/a. Hence, if the value of θ is 

known, the inter-atomic distance a can be obtained easily. When the sample is put at the 

a 

a 
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center of the LEED screen, θ can be measured in this simplest way. And then the distance 

between the zero order spot (covered by the electron gun) and the first diffraction order a 

can be easily measured. Therefore, supposing the distance between the screen and the 

sample (R) and the one between the zero and first order diffraction spots (a*) are known, 

the following relation can be obtained: sinθ = a*/R, thus allowing us the calculation the a 

value: 

𝑎 = 𝑅𝜆
𝑎∗

     Equation 2-3 

2.1.4 Temperature Programmed Desorption 

The Temperature Programmed Desorption (TPD) [9] plays an important method for the 

study and determination of thermodynamic and kinetic parameters about the desorption 

processes. Commonly, the sample is heated following a programed temperature ramp 

(𝛽(t) = 𝑑𝑇/𝑑𝑡) where the temperature (T) varies linearly with the time. The partial 

pressures corresponding to the atoms or molecules desorbed from the sample surface are 

detected by a Quadrupole Mass Spectrometer (QMS)[10]. So the final report of the 

experiment provides spectra including the partial pressures intensities as a function of the 

temperature. The experimental method used in this thesis for all the TPD experiments is 

always as the following: 

a. Sample exposing to a precise amount (expressed in Langmuirs [L]) of a probe 

molecule/s (usually CO or methanol) at room temperature (RT) or low temperature (LT)  

b. Sample heating (a linear temperature ramp by 1 or 2 K/s) up to a set temperature 

while the QMS monitor the probe molecule/s partial pressure intensities 

c. Sample cooling-down after the set temperature is reached. 

The adsorption process takes place when the surface temperature is enough to disorder 

the interaction energy between an adsorbate (probe molecule) in the gas phase and the 

surface. According to the strength of such interaction, both physisorption (typically Van 

der Waals interactions, with a ΔHads < 50kJ/mol) or chemisorption (when the interaction 

strength is comparable to a chemical bond and ΔHads > 50 kJ/mol) can be observed. The 

former, being a low energy interaction, is favored by low temperatures and is non-

specific (each kind of molecule can be adsorbed under appropriate experimental 

conditions). The latter leading to the formation of a chemical bond is suitable for a 
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specific orientation of the molecules. Moreover, some molecular can be dissociated due 

to the chemisorption interaction which can weaken the intra-molecular bonds[10]. The 

kinetic aspects regarding the adsorption/desorption processes are well described by the 

Langmuir isotherm, that is a function with the surface coverage to the gas pressure on the 

surface. The main assumptions to obtain this equation are the following: 

a.  The adsorption process is localized; 

b.  The sample surface is saturated so that the degree of coverage is θ= 1 ML when 

all the active sites are occupied; 

c.  The interactions between the adsorbed molecules are negligible.  

It is then able to obtain the rate (r) both for the adsorption and the desorption processes: 

𝑟𝑎𝑑 = 𝐴𝑛 ∙ 𝑝(1 − θ)𝑛     Equation 2-4 

𝑟𝑑𝑒𝑠 = 𝐵𝑛 ∙ θ𝑛     (An, Bn =cost., n=1,2 )  Equation 2-5 

When the equilibrium is reached: rad = rdes , and then: 

𝐴𝑛 ∙ 𝑝(1 − θ)𝑛 = 𝐵𝑛 ∙ θ𝑛    Equation 2-6 

θ = (𝑏𝑛𝑃)1/𝑛

1+(𝑏𝑛𝑃)1/𝑛        (bn =An/Bn =cost., n=1,2 )   Equation 2-7 

For n = 1, the adsorption/desorption kinetic is first order.  For n = 2, the kinetic is second 

order and so on. 

The adsorption/desorption processes according to the microscopic reversibility principle 

states that both the processes can be described by the same kinetic equations. Hence, the 

reaction rate for a n order process can be written as: 

𝑟𝑑𝑒𝑠 = −𝑑𝜃
𝑑𝑡

= 𝑘𝑛 ∙ 𝜃𝑛     Equation 2-8 

where k is the rate constant that can be described with an Arrhenius equation: 

𝑘𝑛 = νn(𝜃) ∙ exp �− ∆𝐸𝑑𝑒𝑠(𝜃)
𝑅𝑇

�   Equation 2-9 

Combining the two equations, it is possible to obtain the Polanyi-Wigner equation: 

𝑟𝑑𝑒𝑠 = −𝑑𝜃
𝑑𝑡

= νn(𝜃) ∙ exp �− ∆𝐸𝑑𝑒𝑠(𝜃)
𝑅𝑇

� ∙ 𝜃𝑛  Equation 2-10 

where νn(𝜃) is a pre-exponential frequency factor, θ is the degree of coverage, n is the 

kinetic order of the process (in this case the desorption) and ∆𝐸𝑑𝑒𝑠(𝜃) is the activation 

energy for the same process. Application of the Polanyi-Wigner equation to our 

experimental technique (TPD with dt =(1/β) ·dt  causes the followed equation: 
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−𝑑𝜃
𝑑𝑡

= 1
𝛽
νn(𝜃) ∙ exp �− ∆𝐸𝑑𝑒𝑠(𝜃)

𝑅𝑇
� ∙ 𝜃𝑛  Equation 2-11 

This last equation indicates that: 

_ the desorption temperature (T) depends on  Edes, β, θn; 

_ the desorption peaks shape depends on νn, β, n; 

_ the peaks area depends on θn. 

If a sequence of desorption spectra is recorded at a constant coverage (θn) (both νn and 

ΔEdes become independent from it) and at different heating rate (β), it is possible to obtain 

the desorption temperature corresponding to the peak maximum for each β. Then, we can 

get a plot reporting the 𝑙𝑛 �𝑇𝑚𝑎𝑥
2

𝛽
� vs 1

𝑇𝑚𝑎𝑥
  allowing us to calculate the ΔEdes value. The 

Edep can also be calculated from the desorption temperature, which was proposed by 

Redhead.P.A[9].  The equation can be showed as followed equation if n=1.  

𝐸𝑑𝑒𝑝
𝑅𝑇𝑝

= 𝑙𝑛 𝜈1𝑇𝑝
𝛽

− 3.64    Equation 2-12 

2.1.5 Evaporation of metals[11] 

Physical Vapor Deposition (PVD) processes (often just called thin film processes) are 

atomistic deposition processes in which material is vaporized from a solid or liquid 

source in the form of atoms or molecules, transported in the form of a vapor through a 

vacuum or low pressure gaseous (or plasma) environment to the substrate where it 

condenses. Typically, PVD processes are used to deposit films with thicknesses in the 

range of a few nanometers to thousands of nanometers; however, they can also be used to 

form multilayer coatings, graded composition deposits, very thick deposits and 

freestanding structures. The substrates can range in size from very small to very large 

such as the glass panels used for architectural glass. The substrates can range in shape 

from flat to complex geometries such as watchbands and tool bits.  

Typical PVD deposition rates are 10–100Å (1–10 nanometers) per second. PVD 

processes can be used to deposit films of elements and alloys as well as compounds using 

reactive deposition processes. In reactive deposition processes, compounds are formed by 

the reaction of depositing material with the ambient gas environment such as O2 (e.g. 

SnO2) or with a co-depositing material (e.g. titanium carbide, TiC). Quasi-reactive 

deposition is the deposition of films of a compound material from a compound source 
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where loss of the more volatile species or less reactive species during the transport and 

condensation process, is compensated for by having a partial pressure of reactive gas in 

the deposition environment. For example, the quasi-reactive sputter deposition of ITO 

(indium-tin-oxide) from an ITO sputtering target using a partial pressure of oxygen in the 

plasma. The main categories of PVD processing are vacuum evaporation, sputter 

deposition, and ion plating as depicted in Figure 2-5. During my PhD research, vacuum 

evaporation is the only way to deposit the metal on the sample substrate.  

 
Figure 2-5 PVD processing techniques: vacuum evaporation 

In this thesis, the all the surface were prepared with the procedure showing in Figure 2-6. 

 
Figure 2-6 The procedure to prepare surface alloys and surface oxides 

2.2 Density Function Calculations 

2.2.1 DFT theories[12] 

Density functional theory (DFT) is a quantum mechanical modeling method used in 

physics and chemistry to investigate the electronic structure of atoms, molecules, and the 

condensed phases. DFT has been attracted by the scientist since the 1970s, especially in 

the field of solid state physics [13, 14].  

The aim of all quantum chemical approaches is the solution of the time-independent, non-

relativistic Schrödinger equation[13] 

Pt(110) Pt(110) 

Sn 

Pt(110) 

PtSn/Pt(110) 
surface alloys 

Deposition Annealing 

550~700K0.5~3ML 
Pt(110) 

Annealing in O2 

700~800K

SnOx/Pt(110) 
surface oxides 
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H�Ψ𝑖��⃗�1, �⃗�2,⋯�⃗�𝑁 ,𝑅�⃗ 1,𝑅�⃗ 2,⋯𝑅�⃗ 𝑀� = E𝑖Ψ𝑖��⃗�1, �⃗�2,⋯�⃗�𝑁 ,𝑅�⃗ 1,𝑅�⃗ 2,⋯𝑅�⃗ 𝑀� Equation 2-13 

where H� is the Hamilton operator for a molecular system consisting of M nuclei and N 

electrons in the absence of magnetic or electric fields.  E𝑖  corresponds to the energy 

eigenvalue of the Schrödinger equation and Ψ𝑖 is the wave function. H� is a differential 

operator representing the total energy: 

H� = Tel + Tnu + Vnu−nu + Vel−el + Vnu−el  Equation 2-14 

Where Tel is the kinetic energy of electrons; Tnu the kinetic energy of nuclei; Vnu-nu is 

interactions between nuclei, Vel-el is the interactions between electrons, and Vnu-el is the 

interactions between electrons and nuclei. 

In reality, only a few systems such as the hydrogen atom or H2
+ can be solved analytically, 

as these system have only one electron which excludes the interaction between electron 

and electron. All other systems require at least two approximations. One is the Born-

Oppenheimer approximation. As the difference between electron and nucleus is very 

large, even a proton is about 1800 times heavier than electron, hence the nuclei move 

much slower than the electrons. So, it is a good approximation to consider the electrons 

as moving in the field of fixed nuclei[13]. This approximation allows to separate the 

electronic and nucleus parts of the Schrödinger equation. 

Ψ𝑡𝑜𝑡 = Ψ𝑒𝑙Ψ𝑛𝑢   Equation 2-15 

Where Ψ𝑡𝑜𝑡 is the total wave functional, Ψ𝑒𝑙 is the wave functional of electrons and  Ψ𝑛𝑢 

is the wave functional of nuclei. So, the contributions to the total potential energy surface 

can be splitted up as follows:.  

E𝑡𝑜𝑡 = E𝑒𝑙 + E𝑛𝑢   Equation 2-16 

Where E𝑡𝑜𝑡  is the total energy, E𝑒𝑙 is the energy of electrons and E𝑛𝑢 is the energy of 

nuclei. So, potential energy surface is obtained.  

One of the first practical implementations to solve the electronic Schrödinger equation for 

multi-electron systems within the independent particle and Born-Oppenheimer 

approximations are the Hartree-Fock equations[15]. The independent particle 

approximation[13] assumes, that the single electrons moves in the field of all other 

electrons. So instead of considering all surrounding electrons independently only their 

mean field is used. Then the system state can be considered as the product of all the 

single particle state in the system.  



36 Chapter 2 Experimental Techniques and Model Calculations 

�−
ℏ2

2𝑚
∇2 + �−�

Z𝑖𝑒2

|𝒓 − 𝑹𝒊|𝑖

� + ��𝑑3𝒓′
𝑒2

|𝒓 − 𝒓′|
�Ψ𝑗(𝒓′)�

2

𝑗

 �Ψ𝑖(𝒓)

−��𝑑3𝒓′
𝑒2

|𝒓 − 𝒓′|
Ψ𝑗∗(𝑟′)Ψ𝑖(𝒓′)Ψ𝑗(𝑟)𝛿𝜎𝑖𝜎𝑗

𝑗

= EiΨ𝑖(𝒓) 

Equation 2-17 

Where 

 − ℏ2

2𝑚
∇2 is Tel ; 

�−∑ Z𝑖𝑒2

|𝑟−𝑅𝑖|𝑖 � is νext(r) which equals to νnu−el(r); 

∑ ∫𝑑3𝑟′ 𝑒2

|𝒓−𝒓′|
�Ψ𝑗(𝑟′)�

2
𝑗  is νHartree(r) which equals to νel−el(r); 

∑ ∫𝑑3𝑟′ 𝑒2

|𝒓−𝒓′|
Ψ𝑗∗(𝑟′)Ψ𝑖(𝒓′)Ψ𝑗(𝑟)𝛿𝜎𝑖𝜎𝑗𝑗  is Ex which is the .  

Having solved all 1-electron Hartree-Fock equations the total energy of the system can 

finally be obtained from summing up all the single electron energies and adding the 

constant interaction between nuclei.[16, 17] A complementary way to solve the electronic 

Schrödinger equation is Density Functional Theory (DFT). In pure DFT, which is based 

on the Hohenberg-Kohn theorem [18]. The HK theorem says for a given electron density 

the external potential is unique. As a result the electron density may be used. 

N(𝐫) ⟶ νext(𝐫) + const   Equation 2-18 

N = ∫𝑛(𝒓)𝑑3𝒓   Equation 2-19 

Where, N is the times of the probability for one particular electron[13]. 

Hence, Kohn-Sham (KS)[18] , a more practical formulation, was developed to solve the 

trouble in computational chemistry due to the limitation of DFT. The new DFT 

formulation, inspired by Hartree-Fock theory, replaces the electron density n(r) in pure 

DFT by a wave function. 

𝑛(𝒓) = ∑ |Ψ𝑖(𝒓)|2𝑁
𝑖=1     Equation 2-20 

�− ℏ
2𝑚

∇2 + νext(𝐫) + 𝜈𝐻𝑎𝑟𝑡𝑟𝑒𝑒(𝒓) + νxc(𝐫)�Ψ𝑖(𝒓) = 𝐸𝑖Ψ𝑖(𝒓)     Equation 2-21 

Where − ℏ
2𝑚

∇2 is Telec,   and  νext(𝐫) + 𝜈𝐻𝑎𝑟𝑡𝑟𝑒𝑒(𝒓) + νxc(r) is νeff(𝐫).  

The exchange can be known exactly from Hartree-Fock theory, but the exact value from 

correlation part is unknown. Over the years different levels of approximations were 
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developed most notably GGAs[13, 18, 19]. GGAs rely on approximated exchange and 

correlation parts for cancellation of errors. Even introduction of GGA functions, there are 

also some problems with DFT exist, i.e. van-der-Waals[14], near-degenerate electronic 

structures which can be found in TM oxides[20, 21], artificial delocalization of charges 

due to interaction of electron with itself[18].  

2.2.1 Computational method  

All closed-shell density functional theory (DFT) calculations were performed using 

GPAW[22, 23] (version: 0.9.0.8965) code within the ASE (version: 3.7.1.3184 ) [24] 

environment at the generalized gradient approximation (GGA) level of theory employing 

the RPBE[19] functional. The core electrons were approximated by projector augmented 

wave functions (PAW) [25] as implemented into GPAW (version: 0.8.7929). A finite 

difference grid basis set with a grid spacing of 0.15 Å was used for the valence electrons. 

Depending on the surface reconstruction k-point sets containing 5×5×1 for p(3×1), 9×3×1 

for p(6×1), 5×5×1 for Pt(110), 5×5×5 for the required bulk structures Sn8, 9×9×9 for  

Pt3Sn and 5×5×9 for Pt15Sn k-point sets were employed. The geometries were relaxed 

using a BFGS algorithm as implemented into ASE (version: 3.7.1.3184). Convergence of 

the electronic structure was assumed for energy differences below 0.0005 eV and 

convergence of the geometry for forces below 0.05 eV/Å. STM images of the fully 

converged surfaces for different potentials were simulated using ASE [26-29].   

Employing these setups a lattice constants of 4.01 Å for Pt4, 4.10 Å for Pt3Sn and 6.74 Å 

for Sn8 (α-Sn8) were obtained. These results are in agreement with experiment [30]. All 

surfaces were modeled employing a 5 monolayer (ML) slab using the relaxed Pt4 system 

as a precursor in order to account for the pure Pt bulk which enforces a Pt4 lattice 

constant on the surface monolayers. The lowest ML was kept constant and the slabs were 

divided by a vacuum of at least 8 Å in order to avoid interactions between the slabs. In 

order to identify the most stable configuration a number of different models for the 

p(3×1) and p(6×1) reconstructions, differing in the amount and the position of Pt atoms 

substituted by Sn, were considered.  

In the above equations, m can be 3 or 6 to calculate the formation energies of p(3×1) and 

p(6×1) respectively, and y is the number of replaced atoms to form the reconstructed 
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surface alloys. 𝑃𝑡(110)𝑟𝑒𝑐 is the reconstructed surface with pure Pt slab and its energy is 

𝐸𝑃𝑡(110)𝑟𝑒𝑐  .  𝑝(𝑚 × 1)𝑃𝑡𝑆𝑛/𝑃𝑡𝑥𝑆𝑛(110) is reconstructed surface which can be p(3×1) 

or p(6×1) surface, and their energies are described as 𝐸𝑝(𝑚×1)𝑃𝑡𝑆𝑛/𝑃𝑡𝑥𝑆𝑛(110) . 𝑃𝑡4 𝑏𝑢𝑙𝑘 is 

bulk Pt unit with energy 𝐸𝑃𝑡4 𝑏𝑢𝑙𝑘  and 𝑆𝑛8 𝑏𝑢𝑙𝑘  is bulk α-Sn8 unite with energy 𝐸𝑆𝑛8 𝑏𝑢𝑙𝑘 . 

The relative energies can be calculated by assuming a reaction where a surface slab Pt 

atom is replace by a Sn atom from a Sn source such as Pt3Sn  

𝑃𝑡(110)𝑟𝑒𝑐 + 𝑦 × 1
8�  𝑆𝑛8 𝑏𝑢𝑙𝑘   →  𝑝(𝑚 × 1)𝑃𝑡𝑆𝑛/𝑃𝑡𝑥𝑆𝑛(110) +  𝑦 × 1

4�  𝑃𝑡4 𝑏𝑢𝑙𝑘  

 Equation 2-22 

The energy of formation for the different model slabs become then 

𝐸𝐹 = 𝐸𝑝(𝑚×1)𝑃𝑡𝑆𝑛/𝑃𝑡𝑥𝑆𝑛(110)  +  𝑦 ∙ (1
4
𝐸𝑃𝑡4 𝑏𝑢𝑙𝑘 −

1
8

 𝐸𝑆𝑛8 𝑏𝑢𝑙𝑘) − 𝐸𝑃𝑡(110)𝑟𝑒𝑐     

Equation 2-23 

Where m can be 3 or 6 to calculate the formation energies of p(3×1) and p(6×1) 

respectively, and  y is the number of replaced atoms to form the reconstructed surface 

alloys.  𝑃𝑡(110)𝑟𝑒𝑐  is the reconstructed surface with pure Pt slab and its energy is 

𝐸𝑃𝑡(110)𝑟𝑒𝑐  . 𝑝(𝑚 × 1)𝑃𝑡𝑆𝑛/𝑃𝑡𝑥𝑆𝑛(110) is reconstructed surface which can be p(3×1) or 

p(6×1) surface, and their energies are described as 𝐸𝑝(𝑚×1)𝑃𝑡𝑆𝑛/𝑃𝑡𝑥𝑆𝑛(110)  . 𝑃𝑡4 𝑏𝑢𝑙𝑘  is 

bulk Pt unit with energy 𝐸𝑃𝑡4 𝑏𝑢𝑙𝑘  and 𝑆𝑛8 𝑏𝑢𝑙𝑘  is bulk α-Sn8 unite with energy 𝐸𝑆𝑛8 𝑏𝑢𝑙𝑘 . 

Employing pure Pt4 and α-Sn8 (modification) as references would results would prefer 

unphysical high Sn concentrations [31]. In order to correct for this error a more physical 

reference system is required. In the present study Pt3Sn and a more diluted Pt15Sn were 

considered as Sn sources. The reference energy can in this case be obtained by assuming 

the following chemical reaction 

𝑃𝑡4𝑏𝑢𝑙𝑘 + 1
8�  𝑆𝑛8𝑏𝑢𝑙𝑘   →  𝑃𝑡3𝑆𝑛 𝑏𝑢𝑙𝑘 + 1

4�  𝑃𝑡4𝑏𝑢𝑙𝑘 

𝑃𝑡16𝑏𝑢𝑙𝑘 + 1
8�  𝑆𝑛8𝑏𝑢𝑙𝑘   →  𝑃𝑡15𝑆𝑛 𝑏𝑢𝑙𝑘 +  1 4�  𝑃𝑡4𝑏𝑢𝑙𝑘 

𝜟𝑬𝑷𝒕𝒙𝑺𝒏  =  𝑬 𝑷𝒕𝒙𝑺𝒏 𝒃𝒖𝒍𝒌  +  𝟏 𝟒�   𝑬 𝑷𝒕𝟒 𝒃𝒖𝒍𝒌  –   𝑬 𝑷𝒕𝟒 𝒃𝒖𝒍𝒌  −  𝟏 𝟖� 𝑬 𝑺𝒏𝟖 𝒃𝒖𝒍𝒌   

 Equation 2-24 

The reference energy becomes then 
1

8� 𝐸 𝑆𝑛8 𝑏𝑢𝑙𝑘 =  𝐸 𝑃𝑡𝑥𝑆𝑛 𝑏𝑢𝑙𝑘  + 1
4�  𝐸 𝑃𝑡4 𝑏𝑢𝑙𝑘  –    𝐸 𝑃𝑡4 𝑏𝑢𝑙𝑘  − 𝛥𝐸       

=  𝑬 𝑷𝒕𝒙𝑺𝒏 𝒃𝒖𝒍𝒌 −  𝟑 𝟒� 𝑬 𝑷𝒕𝟒 𝒃𝒖𝒍𝒌   − 𝜟𝑬𝑷𝒕𝒙𝑺𝒏    Equation 2-25 



Chapter 2 Experimental Techniques and Model Calculations  39 

Where x can be 3 and 15 responding to Pt3Sn and Pt15Sn respectively.  

Then, 𝛥𝐸𝑃𝑡3𝑆𝑛 = −1.43𝑒𝑉  and 𝛥𝐸𝑃𝑡15𝑆𝑛 = −1.18𝑒𝑉  were obtained. In this paper, we 

defined the negative value as energy emitted from the system.     

By replacing Ereference in Equation 2-25 by Equation 2-27 the formation energy becomes 

𝐸𝐹 = 𝐸𝑝(𝑚×1)𝑃𝑡𝑆𝑛/𝑃𝑡𝑥𝑆𝑛(110)  +  𝑦 × 1
4� 𝐸𝑃𝑡4 𝑏𝑢𝑙𝑘 − 

𝑦 ∙ �𝐸 𝑃𝑡3𝑆𝑛 𝑏𝑢𝑙𝑘 −  3 4� 𝐸 𝑃𝑡4 𝑏𝑢𝑙𝑘   − 𝛥𝐸𝑃𝑡𝑥𝑆𝑛 � − 𝐸𝑃𝑡(110)𝑟𝑒𝑐  

=  𝐸𝑝(𝑚×1)𝑃𝑡𝑆𝑛/𝑃𝑡𝑥𝑆𝑛(110)  − 𝐸𝑃𝑡(110)𝑟𝑒𝑐 +  𝑦 ∙ (𝐸 𝑃𝑡4 𝑏𝑢𝑙𝑘 − 𝐸 𝑃𝑡3𝑆𝑛 𝑏𝑢𝑙𝑘 +  𝛥𝐸𝑃𝑡𝑥𝑆𝑛) 

 Equation 2-26 

Formation energies for both a Pt3Sn and a Pt15Sn reference system were calculated. While 

indeed quantitative differences are found between both references, the predictions arrived 

at are not affected. In what follows results only using the Pt15Sn reference system are 

reported. 

A second potential source of errors is differences in the amount of tin atoms at the 

backside surface of the slab. In order to correct for this model inherent source of errors, 

the correction factor for placing a bulk tin atom at the backside surface is calculated. This 

correction is arrived at by calculating the energy difference for a Sn atom in a 5 ML 

Pt(110) slab in the center of the slab and at the surface. This results in a correction of 

0.97eV per surface Sn atom at the backside surface of the slab that was added. So the 

Equation 2-28 can be corrected into Equation 2-29 in which z is the atoms at back side.  

𝐸𝐹 =  𝐸𝑝(𝑚×1)𝑃𝑡𝑆𝑛/𝑃𝑡𝑥𝑆𝑛(110)  − 𝐸𝑃𝑡(110)𝑟𝑒𝑐 +  

𝑦 ∙ �𝐸 𝑃𝑡4 𝑏𝑢𝑙𝑘 − 𝐸 𝑃𝑡3𝑆𝑛 𝑏𝑢𝑙𝑘 + 𝛥𝐸𝑃𝑡𝑥𝑆𝑛� + 0.97 ∙ 𝑧     Equation 2-27 

Adsorption energy is calculated with the deviation between the energetic sum of CO (ECO) 

& surface (EM) and the systematic energy of the surface adsorbed with CO (ECO-M)[20].  

𝐸𝑎𝑑 = 𝐸𝐶𝑂−𝑀 − (𝐸𝐶𝑂 −  𝐸𝑀)     Equation 2-28 

2.3 STM simulations  

STM can observe details of the electronic properties of sample surface as it has a sharp 

tip which can approach to surface very close in real space. Then the electron of the tip 

can interact with the electron of atoms or molecules of the surface. During the STM 

measurements, the signals by atomic structure and electronic structure can be recorded 
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together through the tip. So, it is very important to understand the corresponding effects 

from electronic interaction or morphology, especially for the atomic resolved STM 

images. Due to the difficulty of separating the current from the electronic interactions and 

surface structures, the collaboration between experiment and theory is indispensable for 

the interpretation of experimental results. Then, an accurate STM simulation can show 

the insight on the origins of observed image contrast, and avoid some effect by the STM 

devices, STM tip and so on. [27]. 

In the simplest case, the tunneling current can be considered as the electrons over the 

vacuum between STM tip and sample, so the value is proportional to the probability of 

finding the surface electron in the tip apex region [27, 29]. If the electron–electron 

interaction can be disregarded, and a constant value U between tip and sample is applied, 

the electron can be described by a single particle Schrödinger equation: 

− ℏ2

2𝑚
𝑑2

𝑑𝑧2
𝜓(𝑧) + 𝑈𝜓(𝑧) = 𝐸𝜓(𝑧)    Equation 2-29 

In which, z corresponds to the distance between the electrons of sample surface and tip. 

Then, the decayed surface state can be described as the Equation 2-41 when the potential 

is in the classically forbidden region (E < U).  

𝜙(𝑧) = 𝜙(𝑧)𝑒−𝜅𝑧     Equation 2-30 

𝜅 = �2𝑚(𝑈 − 𝐸)/ℏ is the decay constant of the electron state. In the Tersoff– Hamann 

model, an atomic s orbital assuming is employed as the electronic structure of the tip. 

When the applied bias is very small, the electronic properties of tip and sample are not 

affected. Then, the tunneling current can be evaluated from the Tersoff–Hamann 

formula[28, 29]:  

𝐼(𝑧) ∝ ∑ �𝜓�𝑧,𝐸𝑠𝑛��
2𝐸𝑠𝑛<𝐸𝐹

𝐸𝑠𝑛>𝐸𝐹−𝑒𝑉𝑏𝑖𝑎𝑠
   Equation 2-31 

where EF is the Fermi level of the sample surface states. In practice, the obtained 

tunneling current map according to the TH model is simply the Local Density of States 

(LDOS) of the sample at Fermi level [27]. Hence, Tersoff-Hamann method can be very 

simple, and is adopted by most existing DFT codes.  
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2.4 Instruments 

The instruments used during my PhD thesis are showed in Figure 2-7. All the TPD tests 

were finished in TPD setup showing as Figure 2-7(a). Some of STM images were 

completed in UHV-TPD displayed as Figure 2-7(b).  

 

 

  

Figure 2-7 (a) The TPD UHV chamber setup; (b) The UHV-STM chamber setup. 
  

a 

b 
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3 Preparation and phase diagram 

3.1 Clean (1×2)-Pt(110) surface  
All the STM measurements reported in this chapter were performed in an Omicron 

variable temperature (VT) STM system. The instrument consists of a UHV preparation 

chamber with a base pressure of 2×10-10 mbar containing equipment for sample 

sputtering, thermal annealing, Sn evaporation, precise gas dosing. For all the 

experiments, the (1×2)-Pt(110) surface termination was obtained by cycles of Ar+ 

sputtering and annealing at 973 K, followed by a short flash in oxygen at 10-7mbar to 

eliminate residual carbon on the Pt surface. STM topographies were acquired in constant 

current mode at room temperature (RT) using PtIr electrochemically etched tips. Tip bias 

values (VT) are reported for all images. The cleanness and order of the final surface was 

checked by LEED and photoemission experiments, while Figure 3-1 presents a typical 

LEED pattern and topography of (1×2)-Pt(110) surface.  

 

 
Figure 3-1. (1×2)-Pt(110) surface alloy : (a) LEED pattern at 49eV and (b) STM image, Vt=1000mV. 

3.2 PtSn/Pt(110) surface alloys and their oxidized SnOx derivatives 

The Sn overlayers were deposited from an e-beam evaporator in UHV conditions using a 

molybdenum crucible filled with high purity Sn pellets (Mateck 99.99%). The calibration 

of the Sn deposition rate was obtained by STM measurements. In the following we will 

make reference to a Sn monolayer equivalent (MLE) defined as 1 Sn atom per Pt(110) 
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surface unit cell, i.e., 1.8×1015 atoms/cm2. To obtain the surface alloys, UHV thermal 

treatments were carried out at different temperatures and times (see below). After 

annealing the samples, the surface structures were characterized by LEED. To simplify 

the name of the obtained surfaces, p(3×1)PtSn/Pt(110) and p(6×1)PtSn/Pt(110) were 

shorten as p(3×1) surface and p(6×1) surface respectively.  

The experimental phase diagram summarizing the whole set of experimental data 

discussed in this thesis is reported in Figure 3-2. In a previous paper, we already reported 

on the preparation of the p(4×1) PtSn/Pt(110) surface alloy [1]. However, the data 

reported in Figure 3-2 represent a refinement of the experimental conditions after a 

further optimization.  It should also be stressed that kinetic effects have a large impact on 

the final results. In fact, a significant portion of the deposited Sn undergoes bulk 

diffusion, which is strongly dependent on both the deposition rate and the annealing 

temperature and time. As a consequence, the effective Sn surface coverage is very 

sensitive to the adopted procedure. In practice, this means that the vertical lines reported 

in Figure 3-2 should be considered as transition regions.   

3.2.1 PtSn/Pt(110) surface alloys 

Different amounts of Sn (ranging from 0.5 to 3.0 MLE) were evaporated at RT on the 

clean (1×2) reconstructed Pt(110) substrate and subsequently annealed in UHV. The 

choice of this particular Pt surface was suggested by the easy mass transfer that can be 

achieved on it by thermal activation, which facilitates the alloying process.  Depending 

on the actual Sn dose and on the UHV annealing temperature, three different PtSn surface 

alloys were obtained under optimized experimental conditions.   

When the Sn dose is ranging between 0.5-1.5 MLE and the sample is UHV-annealed at 

625 K (with the following thermal ramp: heated up at 60 K/min, kept at 625 K for 5 min 

and finally cooled down to RT) a clear p(3×1) reconstruction is seen: in Figure 3-3 we 

report both LEED and STM results indicating the formation of a single prevalent phase. 

A similar but poorly defined LEED pattern has been reported in the literature after mild 

sputtering with Ar+ ions of a Pt3Sn(110) bulk alloy surface [2]. The large-scale STM 

topography Figure 3-2(b) indicates that the surface is covered by large flat terraces with 

some defective points. High resolution STM images show that the surface is covered by 
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corrugated rows running along the [001] direction, giving a superstructure whose unit cell 

has an area of 0.84 × 0.39 nm2, in agreement with the LEED pattern. The distinctive 

feature of the p(3×1) surface is the presence of several missing atoms (highlighted with 

yellow rectangles) and few ad-atoms (highlighted with green rectangles).  

 

Figure 3-2.  Phase diagram for PtSn/Pt(110) surface alloys and their SnOx/Pt(110) oxides. 
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Figure 3-3. p(3×1) PtSn/Pt(110) surface alloy : (a) LEED pattern at 74eV and (b) STM image, 

Vt=875mV (the inset image is the atomically resolved STM topography,  Vt= 875mV). 

When a higher Sn amount (from 1.5 MLE to 3 MLE) is dosed on the clean substrate and 

the sample is annealed to 540 K (following a similar thermal program as above), a p(4×1) 

pattern is observed by LEED ( Figure 3-4) [1, 3]. With respect to previously reported data 

[1], where an annealing temperature of 623 K was used, after optimization we have found 

that this phase is observed starting from lower T (540 K). The surface unit cell has an 

area of 1.12 × 0.39 nm2, i.e. given by the product of four surface unit vectors in the [11�0] 
direction and one in the [001] direction. According to large-scale STM topographies (not 

reported), the surface is covered by rectangular terraces with sizes ranging from 5 × 10 

nm2 to 12 × 40 nm2 and steps with an apparent  height of 5-20 Å, which produce a high 

surface roughness. High resolution STM data [1] indicate that the surface is 

homogenously covered by biatomic stripes running along the [001] direction.  In ref. [1] 

we have already reported a model of the p(4×1) PtSn/Pt(110) surface alloy based on DFT 

calculations: as shown in Figure 3-4(c), the structure can be described as a (4×1) 

termination over a Pt3Sn(110) near-surface ordered alloy. In the top layer, Sn atoms on 

the ridges are surrounded only by Pt atoms in the first layer, while Sn atoms in the second 

layer interact with 3 Pt atoms and 3 Sn atoms. The peculiar dependence of the STM 

(1,0) 

(0,-1) 

(a) 
(b) 
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pattern on the applied bias, coupled with the DFT results, allowed us to monitor the 

compositional order in deep layers [1].    

 
 Figure 3-4.  p(4×1) PtSn/Pt(110) surface alloy: (a) LEED pattern at 61 eV, (b), STM image, 

Vt=987mV (the inset image is the atomically resolved STM topography, Vt= -10mV) and (c) atomic 

model (from ref  [1]). 

When either the p(3×1) PtSn/Pt(110) or the p(4×1) PtSn/Pt(110) surfaces are annealed in 

UHV to 723 K with ramp of 120K/min, a new p(6×1) reconstruction is formed, as 

evidenced by the LEED pattern reported in Figure 3-5(a). A similar p(6×1) reconstruction 

is apparent in the STM image reported by Hoheisel et.al [4] when studying the annealing 

of the PtSn(110) bulk alloy, but no comment on it is reported in the paper.  Since the 

coverage giving rise to the p(4×1) reconstruction is higher than the one leading to the 

p(3×1) superstructure, it turns out that appreciable Sn bulk diffusion occurs during the 

annealing. Large-scale STM pictures of the p(6×1) PtSn/Pt(110) phase show that the 

surface is covered with small rectangular terraces with an area ranging from 5 × 10 nm2 

to 10 × 20 nm2, with step heights of 2-5 Å. The terraces are even smaller than those on 

the p(4×1) surface. The corresponding local STM topography (Figure 3-5(b)) shows that 
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the surface is covered by highly corrugated stripes running along the [001] direction. 

Atomically resolved images allow us to identify a 1.68 × 0.39 nm2 rectangular unit cell, 

in agreement with the LEED results.  

 
Figure 3-5. p(6×1) PtSn/Pt(110) surface alloy:  (a) LEED pattern at 80eV and (b) STM image, 
Vt=-1000mV (the right inset image is the atomically resolved STM topography, Vt=550mV). 

The line profile analysis of the three surface alloys is presented in Figure 3-6: the 

p(3×1) reconstruction has the lowest corrugation, while p(6×1) is the most corrugated 

among the three, more precisely the peak to valley apparent height along the [1-10] 

direction is 0.5 Å for the p(3×1), 1.5Å for the p(4×1):, and 2.0 Å for the p(6×1), 

respectively.  

Moreover, we have investigated in detail also the boundary between the p(3×1) and the 

p(6×1), as shown in Figure 3-7, where black and dashed rectangles indicate the unit cells 

of the p(6×1) and the p(3×1) superstructures, respectively. The bright lines of the p(6×1) 

termination are midway between two adjacent p(3×1) stripes. The line profile reported in 

the inset of Figure 3-7shows that the apex of the p(6×1) corrugation (position a in the 

profile) is slightly lower than the one of the p(3×1) phase (position b in the STM image): 

in other words the two phases are roughly coplanar and in lateral registry, so that a 

roughening transition from p(3×1) to p(6×1) driven by surface energy minimization 

seems the likely mechanism for the interconversion. 
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Figure 3-6. Line profiles along the [11�0] direction of the three PtSn surface alloys on Pt(110). 

 

 

Figure 3-7. STM image of a region containing both the p(6×1) PtSn/Pt(110) and p(3×1) 
PtSn/Pt(110) terminations (Vt=875 mV). In the inset the line profile along the [11�0] direction is 

reported .  
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In conclusion, Sn deposition and successive UHV annealing can increase the roughness 

of the Pt(110) surface by forming surface alloys on the surface. The increased roughness 

can in principle influence the reactivity of surface sites, possibly leading to an enhanced 

electrochemical activity, since implies the formation of a large amount of coordinatively 

unsaturated sites. 

3.2.2 SnOx nano-oxides on Pt(110) 

When the surface alloys are exposed to an O2 background in the range of 10-7 -10-5 mbar 

[4, 5]  and annealed at high T, Sn is oxidized and the formation of SnOx nano-oxides can 

be observed. The oxidation process has been followed step-by–step by high synchrotron 

radiation photoemission spectroscopy. 

If the oxidation is carried out under nonspecific conditions, a mixture of different and 

disordered nano-oxides is obtained.  However, procedures to obtain single and well-

ordered phases have been optimized. For example, starting from the p(6×1) PtSn/Pt(110) 

and annealing it at PO2>10-6 mbar and T= 723 K (with the following thermal ramp: heated 

up at 60 K/min, held at 723 K for 5-15 min, and finally cooled down to RT), a c(2×4) 

SnOx/Pt(110) LEED pattern is obtained Figure 3-9 (a)). 

The corresponding STM images are reported in Figure 3-9(b). In this case, the surface is 

characterized by large terraces covered by variable amounts of highly corrugated bright 

spots arranged into chessboard with a c(2×4) periodicity with respect to the substrate, as 

confirmed by the fast Fourier transform image reported in  Figure 3-8(c). By connecting 

the bright spots, it is possible to identify the c(2×4) primitive unit cell, as highlighted by 

the blue rhombus reported in the top-right inset of Fig. 7b. However, an small fraction of 

bright spots are characterized by a random registry with the substrate (see yellow circles). 

A very similar STM appearance has been previously observed on some SnOx/Pt(111) [6-

11] surfaces and was attributed to the presence of variably interconnected SnOx species 

forming ultrathin films with an exotic structure. However, the LEED pattern shown in 

Figure 3-8(a) is very sharp, indicating that the pattern must be associated to an ordered 

interfacial layer rather than to the arrangement of the bright spots observed by STM, 

which in general are coherent only on the short range: the bright spots do not form 

extended ordered clusters or ordered lines of more than four-five units.  As a matter of 
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fact, the top-left inset of Figure 3-8(b) reports the high-resolution image of a region with 

just few bright spots, which allows imaging the layer underneath. In this case a faintly 

corrugated motif compatible with a c(2×4) periodicity can be clearly observed. The 

c(2×4) phase therefore seems to be constituted by a highly ordered low corrugation 

structure that can be randomly decorated by very bright defects in registry with the 

substrate. The nature of these defective units is not clear at the moment: they could be 

adsorbed species (hydroxyls), oxygen vacancies, or differently coordinated tin atoms. 

However, they are fascinating because they are mobile even at room temperature and can 

be accommodated in a quite variable amount on the c(2×4) net (from a few percent up to 

more than 50%,  e.g. in the two different insets of Figure 3-8(b), respectively).  

We have also followed the same thermal treatment by LEED starting from either the 

p(3×1) or p(4×1) surfaces: both the pristine surfaces are initially transformed into p(6×1) 

and then the p(6×1) is oxidized into the c(2×4) SnOx/Pt(110) oxide phase.  

         
Figure 3-8. c(2×4) SnOx/Pt(110) nano-oxide: (a)  LEED pattern at 63eV and (b) STM image, 

Vt=658mv.  The top-left inset shows a zone where the c(2x4) motif is well evident with atomic 

resolution, Vt= -528mV. The top-right inset shows the c(2x4) motif of the bright spots (see text).  

(c) fast Fourier transform image of the top-right inset in (b). 
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If the oxygen pressure and the annealing temperature are reduced, we obtained a single 

phase only when starting from the p(4×1) surface alloy (e.g. PO2 5×10-7 mbar at 673 K for 

20 min). According to the LEED pattern (Figure 3-9(a)), and STM topography (Figure 

3-9(b)), the surface is transformed into a c(4×2) regular pattern with respect to the 

substrate. A similar c(4×2) SnOx/Pt(110) reconstruction can be also prepared from 

Pt3Sn(110) bulk alloy after adsorption of several thousand Langmuir of O2 at 750K[4]. 

Our STM images show regularly spaced bright spots, which are analogous to the bright 

bumps observed on the SnOx/Pt(111) surface [6-11]. However, fewer missing spots are 

observed in our case than on the SnOx/Pt(111) system.. The surface cell has an area of 

1.12 × 0.78 nm2, which corresponds to four unit cells in the [11�0] direction and two in 

the [001] direction. Different domains separated by several zigzag-like boundaries 

(aligned with the [2�21] and [221] directions and highlighted with red lines in Figure 3-9) 

can be easily observed. Such line defects are identified as antiphase domain boundaries. 

These results are consistent with SnOx nano-oxides grown by oxidation of the Pt3Sn(110) 

bulk alloy [4].  

  

 
Figure 3-9 c(4×2) SnOx/Pt(110) nano-oxide: (a) LEED pattern at 63eV and (b) STM image, Vt=1234mV, 

of. The inset image is the atomically resolved topography of the surface alloy oxide, Vt = -34mV. 
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Finally, the reduction of the c(2×4) SnOx/Pt(110) phase was attempted by using 

methanol. The sample was maintained at 673 K and then exposed to ca 200 L of 

methanol. The surface was checked by LEED before and after the reaction, and the 

LEED patterns are shown in Figure 3-10. According to the LEED results, it can be 

concluded that the oxidized surface can be reduced from c(2×4) SnOx/Pt(110) to p(6×1) 

PtSn/Pt(110).  

3.3 Conclusions 

a. Three distinct Pt-Sn surface alloys, obtained by means of UHV Sn deposition on 

the (1×2) reconstructed Pt (110) surface and UHV annealing, have been isolated 

by a careful optimization of the growth conditions. In addition, their conversion 

into SnOx surface nano-oxides as a consequence of oxygen dosing has been 

explored. All phases have been structurally and morphologically characterized by 

means of LEED and STM measurements.  

b. Besides to the already known p(4×1) PtSn/Pt(110) superstructure[1] whose 

growth conditions have been now further refined, a new p(3×1) PtSn/Pt(110) 

surface alloy has been obtained starting from lower Sn coverage values. Both 

phases are shown to convert into a p(6×1) PtSn/Pt(110) superstructure after 

  
Figure 3-10 LEED patterns of (a) the pristine c(2×4) SnOx /Pt(110) phase (82.0 eV) and (b) the same 

surface after reaction with methanol at 10-7mbar (80.0 eV). 
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annealing at 723 K. Surface alloying is shown to imply a substantial roughening 

of the substrate surface. 

c. Annealing the p(6×1) phase in an oxygen background at a pressure higher than 

10-6 mbar and at T=723 K leads to the formation of a c(2×4) SnOx/Pt(110) surface 

nano-oxide. Under the same conditions, the p(3×1) and p(4×1) PtSn/Pt(110) 

surface alloys lead to the same c(2×4) nano-oxide, though not directly, but rather 

through the p(6×1) intermediate. In turn, the c(2×4) oxide superstructure can be 

switched back into the p(6×1) Snx/Pt(110) surface alloy by dosing methanol.  

d. Finally, a different nano-oxide phase characterized by a c(4x2) periodicity can be 

obtained exclusively from the higher coverage p(4×1) PtSn/Pt(110) surface alloy 

at a somewhat lower oxygen pressure (5×10-7mbar) and  annealing temperature 

(673 K).   

e. A phase diagram summarizing these observations has been proposed. 
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4 Structure and reactivity of PtSn/Pt(110) surface alloys 

4.1 Characterizations and their models 

All the samples were checked by LEED and also consequently characterized by UHV-

STM. All the STM images are presented as following. 

4.1.1 p(3x1) PtSn/Pt (110) 

4.1.1.1 LEED and STM images 

The STM images of p(3×1) surface are presented in Figure 4-1. According to the STM 

images, the distance between the rows along with [11�0 ] direction is 0.80±0.05nm and 

the one between the bright spots along with the [001] direction is 0.40±0.03 nm. The 

parameters of the unit cells indicate that the surface has a p(3×1) reconstruction meaning 

three atoms along [001] direction and one atom along with the [11�0 ] direction in every 

unit cell.  

4.1.1.2 Models and DFT calculations 

Since this phase can be obtained in a wide range of Sn coverage (ie from 0.5ML to 

1.5ML), the model for this structure was proposed assuming a variable amount of Sn in 

the substrate as shown in Figure 4-2. We report the formation energy with different 

reference including Pt3Sn and Pt15Sn, and the results considered the backside effects 

introduced previously in Chapter 2 for the two references are also listed. The comparison 

of difference among the listed models exhibits the stability trend of models is not 

influenced by the reference. Model 1 and model 2 have the same stoichiometry, while 

they have different surface structures. The model 1 has a Pt-rich surface, whereas the 

model 2 surface is Sn-rich. By the comparing the formation energies calculated by DFT 

of model 1 (-6.45eV) and model 2(-7.96eV), which have the same stoichiometry, we can 

infer that model 2 is more stable than model 1. Hence, according to the comparison, the 

surface having Sn atoms on the surface is more stable. The surface structure might very 

well depend on the bulk composition. So it is hard to make conclusions based on the 

results obtained from pure Pt(110) bulk only. Furthermore it is unlikely that penetration 
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of Sn into the bulk does not occur in the described experiments, therefore PtxSny bulk 

must be considered. 

 

 

  
Figure 4-1. p(3×1) PtSn/Pt(110) surface alloy : (a) LEED pattern at 74eV, (b) STM image, 
Vt=875mV, (c) atomic resolved STM image, Vt=875mV, and (d) STM images with atomic 

resolution, Vt=1452mV 
Based on the surface structures of model 1 and model 2, additional models employing a 

PtxSny bulk are proposed and studied by DFT. So, we just list the model having surface 

structures like model2. Let us consider model 2 to model 5, where we have systematically 

changed the amount of Sn and its arrangement but keeping the same structure on the 

surfaces. The formation energies are -7.96eV, -7.94eV, -10.81eV and -11.43eV for model 

2, model 3, model 4 and model 5, respectively. So, the model 5, which has the highest Sn 
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content among the discussed four models in the substrate, is the most stable and therefore 

the most likely candidate as the real structure of the p(3×1) phase .  

 
Figure 4-2 Schematic calculation process for formation energies of p(3×1) surface 

Reference *     Pt3Sn,  &    Pt15Sn, ^     Pt3Sn+backside effect, %    Pt15Sn+backside effect 

 We have also explored the effect of a different Sn arrangement in the bulk while keeping 

the overall composition fixed. In this case we considered the model 5, model 6 and model 

7, which have the same reconstructed surface, but different bulks (see Figure 4-2). The 

formation energies of model 5, model 6 and model 7 are -11.43eV, -8.09eV and -7.22eV, 

respectively, indicating that the model 5 is clearly most stable one.  

To corroborate this conclusion we have simulated by DFT the STM images of the model 

at two different potentials, typical of our experimental conditions, and the results are 

reported in Figure 4-3. It can be seen that the simulated images contain bright rows that 

are consistent with the experimental STM topography. We have also performed the 

simulation for the other models obtaining very similar results, meaning that the STM 

images of the p(3×1) surfaces are insensitive to the actual bulk structures. Hence, 

according to the results from DFT calculations and experiments, the surface as in model 2 

~ model 7 are energetically more favorable, and higher Sn concentration in the bulk 

preferred. So that, the application of pure Pt bulk as model2 is questionable since Sn 

penetration into bulk is not likely not avoidable in experiment. Based on calculations, 

model 5 (at Pt3Sn reference) is clearly the most stable one. 

 

Model 1 
-6.47eV* 
-5.50eV& 
-6.47eV ^ 
-5.50eV% 

Model 2 
-7.96eV 
-6.99eV 
-7.96eV 
-6.99eV 

Model 3 
-9.27eV 
-7.82eV 
-7.94eV 
-5.88eV 

Model 4 
-14.67eV 
-12.74eV 
-10.81eV 
-8.87eV 

Model 5 
-17.23eV 
-14.81eV 
-11.43eV 
-9.01eV 

Model 6 
-13.89eV 
-11.47eV 
-8.09eV 
-5.67eV 

Model 7 
-13.02eV 
-10.60eV 
-7.22eV 
-4.80eV 
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Model 2 

  
Model 3 

  
Model 4 

  
Model 5 

  
Model 6 

  
Experimental STM images 

  
Figure 4-3 simulated STM images of models of the p(3×1) surface 

and Experimental STM images  

The direct comparison between simulated STM images and experimental STM images of 

the p(3×1) surface (model 5) are showed in Figure 4-4 indicating the simulated images 

can fit our experimental STM image.  
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Figure 4-4 Comparison between simulated and experimental STM images of p(3×1) 
surface - model 5  

4.1.2 p(6x1) PtSn/Pt (110) 

4.1.2.1 LEED and STM 

The LEED patterns and atomic STM images of the p(6×1) surface are presented in Figure 

4-5. The STM images show that the surface is covered by distinguished wide and highly 

corrugated rows running along the [001] direction. The row separation is about 1.70±0.05 

nm, which is 6 atomic spacing in the [11�0] direction, whereas the periodicity along the  

[001] direction is about 0.40±0.05 nm, that is one unit cell of the substrate. In conclusion, 

these parameters indicate the formation of a p(6×1) superstructure. Highly resolved STM 

images reported in Figure 4-5, can provide some details about the surface structure. 

According to different tunneling conditions (and more likely of different tip states) (see 

Figure 4-5(c)) the topographic images show either two close rows in every reconstructed 

unit along the [001] direction, or only one highly corrugated row, surrounded by two 

weaker features at both sides. 

4.1.2.2 SRPES 

To confirm the structure of the p(6×1) surface alloy, a SRPES investigation at different  

photon energies (125 eV and 60 eV) was carried out. In Figure 4-6 (a) we report the 

energy region corresponding to Sn4d levels. The spectrum measured at 60 eV presents 

two peaks, whereas three peaks can be observed in the spectra taken at 125eV. This 

difference stems from the different sampling depth of the two measurements: more 

surface sensitive the one at lower energy, whereas at 125 eV the bulk component gets 

more important. The fitting data of Sn4d of p(6×1) surface indicates that the surface 

contains four Sn-related species: component a at ~23.95 eV , component b at ~24.25 eV, 

component c at ~24.70 eV and component d at ~25.19 eV.  

0.85V 1.50V 
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Figure 4-5 p(6×1) PtSn/Pt(110) surface alloy: (a) LEED pattern at 80eV, (b) STM image,  
Vt = -1000mV , (c), (d) and (e) reported atomic resolved STM image with Vt = 537mV, (f) atomic 

resolved STM image with tip bias at 537mV and (f) STM topography with tip bias at 1550mV 

(1,0) 

(0,-1) 

(a) 

_ 

[110] 

 [0
01

] 

(b) 

[0
01

] 

   _ 
[110] _ 

[110] 

 [0
01

] 

c d 

e f 



4   Structure and reactivity of PtSn/Pt(110) surface alloys  63 

By the comparison with the values reported in literature, both the peak at ~23.95 eV [1-3] 

and the one at ~24.27 eV [3] can be assigned to metallic Sn on the surface due to low BE 

value: the former can be associated to Sn atoms in the topmost layer and the latter to Sn 

atoms in the second layer. The peaks at ~24.69 eV[1-3] should be connected to bulk 

species since it is more intense at high rather than low photon energy, and fits nicely with 

the value reported for Pt3Sn alloys The peak at ~25.19 eV [4-6] has a very small intensity 

ratio and can be assigned to partially oxidized Sn (SnO, Sn-OH or Sn-H2O).  

  
Figure 4-6 SRPES and model of p(6×1) PtSn/Pt(110) surface alloy with source at various energy 

levels: (a) Sn4d and (b)valence band 

The comparison of valance band of p(6×1) and of the clean  Pt(110) surface presented in 

Figure 4-6(d) indicates that the p(6×1) surface presents a smaller density of states  in the 

energy region just below the Fermi level. On the clean Pt substrate, one broad peak 

centered at 4.4eV is visible as well as and some complex structures below 3 eV which is 

similar to the results reported in our previous work [1]. After the deposition of of Sn, the 

VB spectrum of p(6×1) surface develops two broad peaks centered at 2.2 eV and 4.6 eV, 

and its intensity around Fermi energy level decreases.  

4.1.2.3 Models and DFT calculations 

In order to determine the atomic structure of the p(6×1) surface alloy we used DFT 

calculations in order to identify the minimum energy configuration for Sn either in the 

surface or in the bulk and then we tested the model by simulating the STM images. As 

starting models for DFT calculations, we constructed a set of test structures based on 

a 
b 
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chemical intuition that could fit the STM contrast in a one bump one atom scheme and 

were in agreement with the photoemission data (i.e. structure presenting Sn atoms with 

three different type of chemical environment). These models are shown in Figure 4-7. In 

Model 1 and model 2, the substrate is Pt3Sn(110), while in model 3 and model 4 the 

substrate is Pt(110). Model 1 and model 3, as well as model 2 and model 4 have the same 

topmost layer. Finally, Model 5 and model 6 shares the same surface reconstruction, 

which is different from the other four models, but model 5 is based on a Pt3Sn(110) bulk, 

while model 6  on pure Pt(110). Model 1 and model 3 have one Pt atom in the center of 

every reconstructed unit, while model 2 and model 4 have two Pt atoms.  

As explained in chapter 2 we adopted several methods to calculate the formation energy 

of the different structures. However our photoemission data suggest that the selvedge is 

constituted by Pt3Sn, therefore in the following we will discuss just the energy values 

obtained assuming as a reference the Pt3Sn corrected by the backside effect. It is worth to 

notice however that this procedure is not arbitrary. Actually, as it can be seen form the 

values reported in figure 4-7, just little variations are observed by using a different energy 

reference. 

According to the comparison of formation energies by DFT calculation, the formation 

energies of the model 1 and model 2 are -12.15eV and -12.13eV.  They can be considered 

as the same value as their deviation of energies is 0.02 eV, which is with the error bar 

from DFT calculation. And the formation energies of model 3 and model 4 is -9.03 and -

7.81eV, while the ones of model 5 and model 6 are -11.87eV and -6.72eV. The formation 

energies of model 3, 4 and 6 are less stable than the one of model 1 & 2 indicating that a 

PtxSny bulk as it can be found in Model 1, 2 and 5 is energetically favorable. Besides, 

according to SRPES of p(6×1),  model 3, 4 and 6 can be rule out due to this lower Sn 

content in the bulk. Hence we will have to confirm the model of the p(6×1) according to 

further investigation.  
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Figure 4-7 Schematic calculation process for formation energies of models for p(6×1) surface 

Reference: *     Pt3Sn,  &    Pt15Sn, ^     Pt3Sn+backside effect, %    Pt15Sn+backside effect, 

The simulated STM images with various biases are presented in Figure 4-8. According 

the simulated results of model 1, the images have two rows in every unit along the [001] 

direction, indicating that the STM of the model is not sensitive with bias but sensitive 

with surface. The results of model 2 show only a row along with [001] direction at any 

bias. The STM images of model 3 displays a row with bias at 0.55V, while two rows can 

be obtained with bias at 1.60V, meaning that this model is very sensitive with bias. The 

results of model 4 shows the two rows in the every unit along with [001] direction, but a 

wide single row could be observed with bias at 1.60V. Hence, the simulated images 

indicate that the tip biases has little impact on the STM topographies of model 1 and 

model 2, while the one is very dependent on bias for model 3 and model 4. Even the 

models has same surface structures, such as model 1 and model 3, or model 2 and model4, 

the simulated STM with various biases can be different. Model 1 and model 3 have 

similar STM images with bias at 0.55V, but model 1 shows two rows while the mode3 

has only one wide row along with [001] direction. The STM image with bias at 0.55V of 

model 1 has zigzag rows in unit, while the one of model 4 exhibits two rows in the unit 

along [001] direction. However, if bias increases to 1.60V, the simulation of the two 

models shows similar STM images including one row in the center and two zigzag rows 

around the middle row. 
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-17.00eV* 
-14.58eV& 
-12.15eV^ 
-9.73eV% 

Model 2 
-16.98eV 
-14.80eV 
-12.13eV 
-9.95eV 

  

Model 3 
-9.03eV 
-7.82eV 
-9.03eV 
-7.82eV 

Model 4 
-7.81eV 
-6.84eV 
-7.81eV 
-6.84eV 

Model 5 
-16.72eV 
-14.54eV 
-11.87eV 
-9.69eV 

Model 6 
-6.72eV 
-5.75eV 
-6.72eV 
-5.75eV 
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Model 1 

  
Model 2 

  
Model 3 

  
Model 4 

  
Model 5 

  
Model 6 

  
Measured STM iamges 

  

 
Figure 4-8 Simulated STM images of different p(6×1) models and STM image with corresponding 

tip biases 

So the comparison of the simulated images of model 1, 2, 3, and 4 illustrate that STM 

images are highly dependent with their substrate composites. And we can further 

conclude that the STM images of surfaces from precursor of model 1, 2, 3 and 4 are 
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usually morphological sensitive if the bulk is Pt3Sn(110), and the ones are very tip-bias-

sensitive if the substrate is pure Pt(110). 

Model 5 and model 6 have the same simulated STM images which have three rows from 

the simulation containing one bright row in the middle and two less bright rows around 

the bright row. As some STM images having double bright rows, model 5 and 6 can be 

disregarded due to their exhibition of constant one bright row along [001] direction.   

According to the comparison of simulated and experimental data, model 1 always 

displays two rows at the both used bias. But the model cannot configure transition 

between p(3×1) to p(6×1) structures illustrated in Figure 4-9. Hence, Model 2 can be a 

preferable one. However, we cannot obtain some simulated STM images exhibiting two 

rows along with [001] direction.  

 
Figure 4-9 STM images of transition between p(6×1) and p(3×1): (a) experimental with tip bias at 
1.25V, (b) embedded transition comparison and (c) grown transition comparison of experimental 
results and simulated STM image including p(3×1) and p(6×1) of model 2  
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The model 2 having Pt3Sn(110) bulk cannot exhibit topography with the two row , while 

the model 4 owing Pt(110) substrate have the same surface structure as the model 2 can 

obtain the topography. Some models having the same surface structure as model 4 and 

model 2 on the different bulk compositions with various Sn content were proposed and 

investigated by DFT calculations. According to the simulated results reported in Figure 

4-11, the model 7 and the model 9 can exhibit STM images including one row in the 

reconstructed unit along with [001] direction at different tunneling current and two rows 

at relative low tunneling current, which are displayed in Figure 4-11. From the formation 

energies of model 7 and model 9, model 9 is favorable. Hence, the model of p(6×1) can 

be very likely on a PtxSny bulk (based on energetics) and it can also explain the transition 

between the two model seen from STM images. Besides, compared with all the proposed 

models, the bulk has a huge influence on the measured STM images, which is also 

obtained in p(4×1)PtSn/Pt(110) surface[1]. The model 2 surface therefore can in principle 

explain the appearance of different measured STM images in different experiments.  

 
Figure 4-10 Schematic calculation process for formation energies of models for p(6×1) surface 

Reference: *     Pt3Sn , &    Pt15Sn, ^     Pt3Sn+backside effect, %    Pt15Sn+backside effect, 
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Figure 4-11 Simulated STM images of various p(6×1) models with different currents 
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The comparison of simulated STM and experimental images are displayed in Figure 4-12 

indicating that a reasonable agreement between the simulated STM and experimental 

results. 

 

 

Figure 4-12 Comparison between simulated and experimental STM images of p(6×1) surface  

The Sn species assignments are presented in Figure 4-13 .The Sn atoms in position a and 

a’ (noted as Snridge ) are in the ridge of the corrugated surface where the tin atoms of 

surface can exhibit similar electronic state on the surface [1]. And if we compare the Sn 

atoms in the ridge with the one in the valley between the rows (noted as Snvalley ), the 

former ones can have poorer electronic state than the latter. Hence, the peak at ~23.95eV 

should be from the ones at postions a and a’, and the peak should be from the Sn at 

position b. Also, the ratio of peak1/peak2 is about 3 (3.1 at 125eV and 2.5 at 60eV), in 

reasonable agreement with the atomic ratio of sum of Sn at position a and a’ to the one at 

position b.  

The area of peak at ~24.69eV[1-3] with source at 125eV is much more than the one at 

60eV. As the spectra at 60eV is more sensitive with surface Sn, the peaks can be assigned 

as the Sn from Pt3Sn(110) bulk, which is noted as c and c’ in the model of Figure 4-13 (b). 

As the Sn atoms at position c and c’ have very similar chemical environment, the 

difference of binding energies can not be distinguished by SRPES. Hence, the peak 

assignation to the Sn at position c and c’ is kindly reasonable.  

The model 1 indicate the surface have at least two Sn species on the surface and Snridge 

/Snvalley is 4/1 and one Pt3Sn species in the bulk, the model therefore is not fit for our 

surface due to mismatch of Snridge /Snvalley . The model 5 exhibits the surface has at least 

three Sn species on the surface and two Sn in the bulk which can be considered as the 

same species, indicating its photoemission spectra should be separated into five peaks 

whose peaks position should be lower than 24eV. However, the spectra can not be fitted 

0.55V, high current 0.55V, low current 
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with five species with the ratio corresponding to the model 5. So, the model can 

reasonably agree with SRPES spectra data.  

4.2 Reactivity 

4.2.1 CO adsorption  

Thermal programed desorption (TPD) experiments were carried out in a home-built 

system with the base vacuum at 2×10-10 mbar. The system is equipped with quadrupole 

mass analyzer to record the desorbed gases signal. The sample is mounted on  two 

parallel Ta wires, and  can be cooled down to 120 K with liquid nitrogen and heated to 

about 1300 K. TPD measurements were performed in the UHV after the exposure to 

different amount of CO at about 120 K. During the TPD experiments, the sample was 

placed about 5 mm from of the collector tube of the spectrometer, where the emitted 

species were ionized and filtered by mass and detected. CO TPD results on the two 

surface alloys and clean (1×2)Pt(110) surface with various CO exposures are displayed in 

Figure 4-14.  

the CO TPD results on p(3×1) surface and p(6×1) surface, are presented in Figure 4-14(a) 

and (b). The two surfaces exhibit only one obvious desorption peak,, however some 

smaller intensity features can be observed at the sides of the main desorption peak. For 

increasing CO exposure, the desorption peak position remains fixed on both surfaces 

indicating that first-orderkinetics. This behavior is the sane as the CO adsorption on 

 
 

Figure 4-13 Sn species assignments between model and photoemission spectra of p(6×1) surface  
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Pt(110) . Hence according to the method developed by  P.A.Redhead [7], the adsorption 

energy can be calculated by the following equation. [8]..  

 𝑬𝒂𝒅
𝑹𝐓𝒑

= 𝒍𝒏 𝝂 𝑻𝒑
𝜷
− 𝟑.𝟔𝟒.     Equation 4-1 

Where Ead is the adsorption energy, which is independent of the heating rate for a first-

order rate. R is the ideal gas constant, 8.314 J/(K⋅mol). Tp is the temperature of desorption 

peak. β is the heating rate with unit K/s. ν is the rate constant, which in general is 

assumed to be in the  range 1013>ν/β >108.  

Assuming ν/β =1013K-1 like on Pt, then we can obtain the CO adsorption energy on the 

surface alloys as following.  

Ead =111 kJ/mol or 1.16eV/ molecule for the peak at 415 K from p(3×1) surface . 

Ead =114kJ/mol or 1.19eV/ molecule for the peak at 425K from p(6×1) surface . 

Ead =132kJ/mol or 1.38eV/molecule for Peak α at 490K from pure Pt(110) surface . 

Hence the adsorption energies of CO on the surface can be followed the series as Ead p(3×1) 

≈ Ead p(6×1) < Ead Pt(110).  

  
Figure 4-14 CO adsorption on various PtSn/Pt(110) surface alloys : (a) p(3×1) surface and (b) 

p(6×1) surface 

4.2.2 DFT calculations 

DFT [9, 10] calculations about CO adsorption on the p(3×1) surface and p(6×1) surface 

were finished and the results are provided as followed description. It is noted that the 

preferable adsorption site on pure Pt(110) surface is on top site with adsorption energy at 

-1.80eV according to our calculation.   

a b 
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Figure 4-15 and Table 4-1 present the results of CO adsorption on the p(3×1) surface, 

indicating that CO can be adsorbed at O2 site showing in Figure 4-15 with adsorption 

energy(Ead) at -0.86eV. Another possible adsorbed position is B5 site with Ead = -0.70eV. 

The O2 site and the B2 site can compete for the CO adsorption, while the Ead at O2 more 

stable than B2. On the other sites, CO can be desorbed directly or formed an unstable 

structure. Hence O2 can be preferable adsorption position. According to the DFT results, 

the CO bond length after adsorption on the surface is 1.169Å (bond length of the CO gas 

is 1.147 Å) and the bond of Pt-C is 1.876 Å, indicating a strong chemisorption on the 

surface.  

 

 

Table 4-1 Adsorption Energies of CO on the p(3×1) surface 
Original  
position 

Final  
Position 

Adsorption  
Energy(eV) 

d(CO) 
/Å 

d(Pt-C) 
/Å 

B1 Unstable    
B2 O2    
B3 O2    
B4 Unstable    
B5 B5 -0.70 1.197 2.071 
O1 Desorbed    
O2 O2 -0.86 1.169 1.876 
O3 Desorbed    

Figure 4-16 and Table 4-2 present the results of CO adsorption on the p(6×1) surface, 

showing that CO can be adsorbed on the surface at O2 site with Ead = -1.05eV and B2 

sites with Ead.= -0.90eV. The O2 site and the B2 site share the same Pt atoms of the 

surface; hence a competitive adsorption of CO on the two positions can occur. As CO 

adsorption on O2 is more stable than the one on B2 site. On the other sites, CO can be 

desorbed directly or formed an unstable structure. So the O2 site should be the preferable 

site for CO adsorption.  According to the DFT results, the bond length of CO after 

adsorption on the surface is 1.165Å (bond length of the CO gas is 1.147 Å) and bond 

length of Pt-C is 1.917 Å, indicating a strong chemisorption  
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Figure 4-15 Possible CO adsorption 
sites on p(3x1)PtSn/Pt3Sn(110) 
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Table 4-2 Adsorption Energies of CO on the p(6×1) surface 
Original  
position 

Final  
Position 

Adsorption  
Energy(eV) 

d(CO) 
/Å 

d(Pt-C) 
/Å 

O1 Desorbed    
O2 O2 -1.05 1.165 1.917 
O3 Desorbed    
O4 Unstable     
O5 Desorbed    
B1 B2    
B2 B2 -0.90 1.192 2.012 
B3 O2    
B4 O4    
B5 O4    

LB1 B2    
LB2 B2    
LB3 O4    
LB4 Unstable    
TF1 B2    
TF2 O2    

Hence, the two surface alloys can have the similar performance of CO adsorption, which 

is identified by our experimental data, while the temperature difference between the CO 

adsorption of the p(3×1) and the p(6×1) surface is about 10K, just a small deviation.   

Therefore, according to the DFT calculation, the CO adsorption energies on p(3×1) and 

p(6×1)) are very close. So, the adsorption temperature series can be described as followed: 

p(3×1) ≈ p(6×1) < Pt(110). And the series is exactly same as our experimental results.  
 

 
Figure 4-17 Comparison of LDOS of Pt atom of various surface alloys on the topmost 

layer and the one of Pt(110) 
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According to d-band center theory by Norskov[11], the value of d-band center is very 

important for COOR[11], oxidation of methanol or formic acid[12]. Among pure metals, 

the best one is palladium which has value of d-band center at -1.83eV, while the one of 

Pt(111) is -2.25eV. According to the DFT calculation of our surface alloy and clean, the 

value of d-band center of Pt atom on the topmost layer of the surface alloys are -1.73eV, -

1.88eV and -1.60eV for p(3×1) surface, p(6×1) surface and Pt(110) surface respectively. 

According to the value of d-band center, the reactivities of the obtained surface alloys 

could be probably ranked as: p(6×1) ≈ p(3×1)>Pt(110), which has reasonable agreement 

with our CO TPD experimental results.   

4.3 Conclusion  
a. Some STM images at atomic solution of the two surfaces (p(3×1) surface and 

p(6×1) surface) were obtained and the p(6×1) surface were also additionally 

characterized with SRPES.  

b. Some possible models of the two surfaces were proposed and investigated by 

DFT calculation. According to their formation energies, the preferable models 

were selected. Compared with all the proposed models of p(6×1) surface, the bulk 

has a huge influence on the measured STM images. The model 2 surface therefore 

can in principle explain the appearance of different measured STM images in 

different experiments. 

c. We simulated by DFT the STM of the two surfaces, confirmed the proposing 

models, which are also supported by SRPES data. 

d. The CO reactivity of two surfaces  was investigated, showing that the introduction  

of Sn can decrease the CO adsorption energy with respect to the  pure Pt(110) 

surface 

e. CO adsorption was also investigated with DFT calculations and the adsorption 

energies series agree quite well with our experimental data.  

f. By comparing the d-band center of Pt atoms on the clean and Sn deposited Pt(110) 

surface we deduce a shift of the centroid of Pt d-band towards higher binding 

energy, which corresponds to a higher activity for the COOR.   

.    
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5 Structure and reactivity of SnOx/Pt(110) nano-oxides  

When the surface alloys are exposed to O2 in the range of 10-7 -10-5 mbar [1, 2]  and 

annealed at relatively high T (500-800 K), Sn is oxidized and the formation of SnOx 

nano-oxides can be observed. The oxidation process was followed by accurate 

photoemission, and the related results are reported as followed.  

5.1 STM and LEED 

5.1.1 c(2×4) SnOx/Pt (110) 

If all the three surface alloys are oxidized under nonspecific conditions, a mixture of 

different nano-oxides is obtained.  However, procedures to obtain single and well-ordered 

phases were optimized. For example, starting from p(6×1) PtSn/Pt(110) and annealing it 

at PO2>10-6 mbar and T= 723 K (with the following thermal ramp: heated up at 60 K/min, 

held at 723 K for 5-15 min, and finally cooled down to RT), a c(2×4) SnOx/Pt(110) 

LEED pattern is obtained Figure 5-1(a)). 

The corresponding STM images are reported in Figure 5-1 (b). In this case, the surface is 

characterized by large terraces covered by variable amounts of highly corrugated bright 

spots arranged into c(2×4) chessboard with respect to the substrate, as confirmed by the 

fast Fourier transform image reported in  Figure 5-1(c). By connecting the bright spots, it 

is possible to identify the c(2×4) primitive unit cell, as highlighted by the blue rhombus 

reported in the top-right inset of Figure 5-1(b). However, a small fraction of bright spots 

is characterized by a random registry with the substrate (highlighted with yellow circles). 

A very similar STM appearance has been previously observed on some SnOx/Pt(111) [3-

8] surfaces and was attributed to the presence of variably interconnected SnOx species 

forming ultrathin films with an exotic structure. However, the LEED pattern shown in 

Figure 5-1(a) is very sharp, indicating that the pattern must be associated to an ordered 

interfacial layer rather than to the arrangement of the bright spots observed by STM, 

which in general are coherent only on the short range: the bright spots do not form 

extended ordered clusters or ordered lines of more than four-five units. As a matter of 

fact, the top-left inset of Figure 5-1(b) reports the high-resolution image of a region with 

just few bright spots, which allows imaging the layer underneath. In this case a faintly 
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corrugated motif compatible with a c(2×4) periodicity can be clearly observed. The 

c(2×4) phase therefore seems to be constituted by a highly ordered low corrugation 

structure that can be randomly decorated by very bright defects in registry with the 

substrate. However, they are fascinating because they are mobile even at room 

temperature and can be accommodated in a quite variable amount on the c(2×4) net (from 

a few percent up to more than 50%,  e.g. in the two different insets of Figure 5-1(b) and 

Figure 5-1(d), respectively). A high atomic resolved STM image is presented in Figure 

5-1(e), indicating that every bright dot is embraced with a cross with victors at [11�1] and 

[1�11] directions highlighted with red. The ratio of the length along with [11�0] direction 

to the one in [001] direction is a little less than the perfect c(2×4) reconstruction. It can be 

due to the less thermal drift in [001] direction which is the scanning direction than the 

one in [11�0] direction.  

5.1.2 c(4×2) SnOx/Pt (110) 

If the oxygen pressure and the annealing temperature are reduced, we obtain a single 

phase only when starting from the p(4×1) surface alloy (e.g. PO2 5×10-7 mbar at 673 K for 

20 min). According to the LEED pattern (Figure 5-2(a)), and STM topography (Figure 

5-2(b)), the surface is transformed into a c(4×2) regular pattern with respect to the 

substrate. A similar c(4×2) SnOx/Pt(110) reconstruction can be also prepared from 

Pt3Sn(110) bulk alloy after adsorption of several thousand Langmuir of O2 [2]. Our STM 

images show regularly spaced bright spots, which are analogous to the bright bumps 

observed in SnOx/Pt(111) [3-8]. However, fewer missing spots are observed in our case 

than in the SnOx/Pt(111) one. The surface cell has an area of 1.12 × 0.78 nm2, which 

corresponds to four unit cells in the [11�0] direction and two in the [001] direction. The 

vectors of the unit cell are highlighted with blue in Figure 5-1(c) and (d). Different 

domains separated by several zigzag-like boundaries (aligned with the [2�21] and [22�1] 
directions and highlighted with red lines in Figure 5-2 (b)) can be easily observed. Such 

line defects are identified as antiphase domain boundaries. These results are consistent 

with SnOx nano-oxides grown by oxidation of the Pt3Sn(110) bulk alloy [2]. 
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Figure 5-1 c(2×4) SnOx/Pt(110) nano-oxide: (a) LEED pattern at 63eV and (b) STM image, 
Vt=658mV. The top-left inset shows a zone where the c(2×4) motif is well evident with atomic 
resolution, Vt= -528mV. The top-right inset shows the c(2×4) motif of the bright spots (see text), 
Vt=658mV. (c) fast Fourier transform image of the top-right inset in (b), and (d) STM image with high 
atomic resolution, Vt = -61mV.    
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Figure 5-2 c(4×2) SnOx/Pt(110) nano-oxide: (a)LEED pattern at 63eV, (b) STM image, Vt=1234mV,  ( The 
inset image is the atomically resolved topography of the surface alloy oxide, Vt = -34mV), (c) STM image 
with c(4×2) motif at high atomic resolution, Vt= 55mV and (d) high atomic resolved STM image with 
c(4×2) motif, Vt= -55mV. 

Basing on atomically resolved  STM in Figure 5-2 (c) and (d), the images illustrate some 

defects and dark lines along with [22�1] direction, while some dark spots can be observed 

between bright dots in [22�1] direction. The STM images display that every bright spot 

locates in the center of less bright cross around the dots, while the cross vectors noted as 

dark arrows in Figure 5-2 (d) are not perfectly along with [11�0] or [001] direction.  
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5.2 SRPES 

The two oxides were characterized by SRPES and the spectra are displayed as Figure 5-3, 

and their fitting data are listed in Table 5-1 The SPRES contains Sn4d (23.5eV ~28eV) 

and O2s (20eV ~24eV) spectra meaning a little overlap between Sn4d and O2s. The Sn4d 

photoemissions lines are constituted by a large doublet which can be mainly separated 

into several different chemically shift doublets. The Sn4d spectrum of c(2×4) oxide is has 

a peak of higher binding energy than the one of c(4×2) oxide. The O2s lines of c(2×4) 

oxide is much wider than the one from c(4×2) oxide.  

According to the SRPES of O2s and Sn4d of the two oxides, c(2×4) oxide is more 

oxidized than c(4×2) surface. The 4d photoemission line of c(2×4) surface can be 

separated into four Sn-related species[9-11]: one component noted as Sna at 24.78 eV 

which can be corresponding to the Sn in Pt3Sn, a peak at 25.66eV noted as Snb ascribed 

to Sn(II), the last two components at 26.19 eV and 26.96eV noted as Snc are connected to 

Sn(IV) and Sn(IV)-OH species, respectively. The presence of hydroxyls species can be 

induced by the reaction of c(2×4) surface with residual water in the UHV environment.  

 The O2s photoemission line of c(2×4) surface can be fitted by three O-related species: 

component Oa as O-Sn at 20.31eV, component Ob connected O-Sn-O at 21.64 eV, and 

H2Oad or –OH at 23.14 eV (see Figure 5-4). The ratio between the peak areas of Sn(IV) 

species to Sn(II) species  is about 0.4, whereas the ratio of O-Sn-O/O-Sn is about 1.7. The 

Sn(IV) should be related with O-Sn-O, while the Sn(II) can be corresponding to O-Sn. So, 

the surface should has species SnO4 and SnO with a ratio SnO4/SnO=1/2 
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Figure 5-3. SRPES of c(2×4)SnOx/Pt(110) and c(4×2)SnOx/Pt(110) surface oxides: 

(a) Sn4d and O2s and (b) comparison of valence band (VB) of various surfaces 

(a) 

(b) 
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Table 5-1 Fitting data of the two oxides  
c(2×4)SnOx/Pt(110) 

Sn4d Position(eV) Peak area 
 

O2s Position(eV) Peak area 
Sn-Pt 24.78 15287 

 
Sn-O 20.31 5001 

Sn(II) 25.66 117684 
 

O-Sn-O 21.64 8781 
Sn(IV) 26.19 35882 

 
H2Oad or -OH 23.14 7244 

Sn(IV)-OH 26.96 10238 
    c(4×2)SnOx/Pt(110) 

Sn4d Position(eV) Peak area 
 

O2s Position(eV) Peak area 
Sn-Sn 23.89 4420 

 
SnOx 20.98 6842 

Sn-Pt 24.70 56379 
 

H2Oad or -OH 22.75 2693 
Quasi-Sn(II) 25.05 37991 

    Sn(II) 25.43 9498 
    

The spectrum of c(4×2) surface can be separated into four distinct peaks, connected to Sn 

atoms in different structural environment[9-11]. The peak at 23.89eV assigned as little 

metallic Snad or the Sn on the surface not oxidized; the peak at 24.70eV, a value close to 

the BE of Sn in Pt3Sn can be associated of the “bulk species” noted as Sna,. The 

component at 25.43eV fits the expected value for Sn(II) noted as Snc species, whereas the 

peak at 25.05eV noted as Snb should represent quasi Sn(II) species due to the media value 

between the ones attributed by Sn(II) and Sn(ad). Similarly the O2s peak can be fit by 

two components: component Oa from O-Sn at 20.98 eV, and a second peak at 22.75eV 

due to adsorbed H2Oad or –OH. The ratio of Sn(II)/quasi-Sn(II) corresponding to Snc/Snb 

is 0.25, while the O-related species can be mainly attributed to O-Sn from Oa. Hence, the 

surface should constitute of SnO4 & SnO while the O is the interlock between the two Sn 

species.  

VB spectra of the two surface oxides surfaces presented in Figure 5-3, (b) indicate that 

the pure Pt(110) has a complex structure of the Pt 5d band [9], consisting of peak at about 

4.5 eV and some highly intense features around the Fermi level. The VB of c(2×4) 

surface with a broad peak centered at 4.5 eV and a medium intensity around Fermi level ; 

while the one of c(4×2) surface has four peaks: 2.4eV, 4.5eV, 5.5eV and 9.2eV,  and very 

low value around Fermi level. The peak at 4.5eV obtained from c(2×4) surface is  

probably caused by the bulk Pt or Pt3Sn(110) Pt3Sn(110) exhibiting the c(2×4) surface 

has a thin SnOx layer. And the intensity around Fermi energy level of the surface 

illustrates the layer. The spectrum of c(4×2) surface has a four wide peaks including the 
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peak at 4.5eV probably from Pt3Sn bulk, and peaks centered at 2.4eV, 5.5eV, 9.2eV 

which are probable from SnO whose VB typically has three peaks at about 3eV, 6.5eV 

and 9.7eV respectively. [12-15]. Hence c(4×2) surface has kindly thicker SnOx covered 

on the Pt surface than c(2×4) surface, which agree with comparison between models of 

the two oxides. 

5.3 Models 

According to STM images of the oxides, some models were proposed and investigated by 

DFT calculations.  

5.3.1 c(2×4) SnOx/Pt (110) 

According to the SRPES results discussed previously, the surface constitutes of SnO4 and 

SnO clusters with their SnO4/SnO component ratio at 0.5. The models are proposed and 

investigated by DFT calculation, and their structures and simulated STM images are as 

displayed in Figure 5-4 . The model 1, 2 and 3 assume SnO4 clusters whose components 

are labeled as Snc and Ob on the topmost layer. The third layer has a SnO with half-layer 

and its components are indicated as Snb and Oa, whereas the bulk can have pure Pt or 

PtSn alloys which contains the Sna component. The three models are constructed such 

that they share the same topmost layer termination and differ only for the Sn amount and 

distribution in the Pt bulk. Model 4 also has a SnO4 clusters on the topmost layer, and a 

full SnOx in the second layer. In the third layer, a full PtOx is configured, while the 

substrate consists of pure Pt bulk. The proposed models were simulated by DFT 

calculations, and are displayed in Figure 5-4.  
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Model 1 Model 2 Model 3 Model 4 

EForm𝑀2  EForm𝑀2  EForm𝑀3   

Figure 5-4 Atomic models of c(2×4) surface and their corresponding simulated STM images. 

The simulated STM images show some flower-like structure corresponding to the SnO4 

cluster and a “zigzag-like” structure in the space between the “flowers”, which stems 

from the Oa in the SnO of the third layer. The model 4 shows some crosses on the 

topmost layer, while the contrast is not consistent with the experimental STM image. 

Hence, according to the comparison of experimental data and simulated images, model 1, 

2, and 3 could match experimental STM images. According to DFT calculations, STM 

topographies of the oxide are not so sensitive to the bulk composition. So, the formation 

energies among the models should be considered. Using the method explained in chapter 

2 the formation energy for the different phases is also reported in Figure 5-4 . 

According to the comparison of the formation energies among the models, the Model 3 

owing the lowest formation energy should be the preferable one. It can be noted that there 

is a clear preference for the system to go towards Sn rich conditions. From the 

experimental point of view, this uptake of Sn is ruled by the actual availability of Sn on 

the surface and therefore by the amount of Sn deposited. The model obtained by DFT 

optimization is made up by a SnO4 unit and two SnO species therefore well in agreement 

with the values obtained by the analysis of the photoemission data (SnIV/SnII=0.5 O-

SnIV/O-SnII=2). Hence, the model 3 can match the surface well.  
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5.3.2 c(4×2) SnOx/Pt (110) 

The proposed models of c(4×2) surface are presented in Figure 5-5 . The model 1 and 

model 2 were supposed the surface has a completed SnOx topmost layer (i.e. No Pt is 

exposed), The two models have the same stoichiometry of components, while their 

oxygen sites on the topmost layer have different orientations showing in Figure 5-5. For 

the two models, outer Sn and Oxygen atoms are named as Snc and Oa, respectively. The 

second layer comprises a pure Sn layer, whose atoms are arranged in group of four that 

are slightly tilted with respect to the main crystallographic directions of the substrate. The 

third layer is the interface between Snb layers and bulk composing with Pt3Sn and is 

made up by Sn and Pt atoms arranged in a slightly distorted fcc lattice. The model 3 has 

the same surface structure as the model 1 and model 2 while the model 3 has a pure Pt 

interfacial layer between the SnOx layer and Pt3Sn(110) bulk. The model 4 has a SnO4 on 

cluster on the topmost layer, while the second layer is composited of PtOx which share 

the oxygen atoms with the SnOx. The interfacial layer is a PtSn layer between PtOx layer 

and bulk having a component of Pt3Sn(110).  The models were investigated by DFT 

calculations providing also the simulation of the STM images. Comparing the simulated 

STM images with experimental data (see Figure 5-5), the simulated STM images of 

model 1 can nicely reproduce the bright spots and slight dark troughs along with [22�1] 

well indicating that model 1can match the surface well. The simulated STM image of 

model 2 and model 4 can also reproduce the bright spots and the dark trough, but the dark 

trough direction can not match our experimental results. The model 3, according to its 

simulated STM image can not match experimental STM images due to no reproduction 

of dark troughs. Besides, the comparison between experimental and simulated STM 

images of model 1 with bias at 50mV and -50mV displayed in Figure 5-6(d) and (e), 

indicating high accordance of the model. The ratio of Snc/Snb= 0.25, and the O atoms on 

the topmost layer are shared by the two Sn-species, which means a quite good agreement 

with our photoemission data. Therefore, mode1 can match the surface very well.  
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Model 1 Model 2 Model 3 Model 4 
Figure 5-5 Atomic models of c(4×2) surface and their corresponding 

simulated STM images. 
 

 

 
 

      

 

Figure 5-6 Atomic models of c(4×2) surface-M1: (a) top view, (b) front view and (c) side 
view, and comparisons between simulated STM and experimental results with different bias:  

(d)  50mVand (e) -50mV. 
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5.4 Reactivities 

The reactivity of the two oxides was tested using small molecules such as CO and 

methanol, and their results are discussed in the following paragraphs.  

5.4.1 CO adsorption 

CO was employed as the probe to test the performance for the two surface oxides and 

oxidized Pt(110) surface. Firstly, the surfaces were prepared with isotopic labeled 

oxygen,18O2, and then the samples were checked by LEED and then cooled down to 150 

K to complete the TPD tests. The reactivity towards CO was investigated experimentally 

and theoretically by DFT calculations. 

5.4.1.1 TPD results 

The TPD experimental results are presented in Figure 5-7. Figure 5-7(a) shows the CO 

signal (m/z=28) on various surfaces including the c(2×4), the clean and oxidized Pt(110) 

surface. According to the spectra, for the clean Pt(110) surface, the CO shows two 

desorption peaks: peak 0 at 405 K and peak 4 at 495 K, which are identified with 

saturated CO adsorption on reconstructed Pt(110) reported in the previous papers [16-19].  

After pre-dosing dosing 18O2 3L at 723K, the sample was exposed cyclically to CO at 3L 

CO per cycle. In the first cycle, a peak at 490K is recorded from the oxidized Pt(110) 

surface. Then, starting from the 2nd cycle, the position of desorption peak does not change, 

whereas the area is higher than the one in first cycle and is maintained constant in the 2nd 

and 3rd cycle. From the comparison with the CO on the oxygen pre-exposed and clean 

Pt(110), the active adsorbed surface area is reduced into about one half of the one on the 

clean Pt(110) surface. It can be explained as the oxidation of Pt on the surface by pre-

adsorbed oxygen during the TPD measurements. The oxidation will block some active 

adsorption sites and it then cause the decrease of CO adsorption.  

When the CO was exposed on the c(2×4) surface, no clear CO desorption peaks can be 

observed from the surface. But, starting from the 2nd cycle, a CO peak at 485 K is 

observed, whose area increases with the gas exposure to saturate at the 4th cycle. In the 

3rd and 4th cycle, two more peaks become visible, peak 1 at 425 K and peak 2 at 450K as 



5   Structure and reactivity of SnOx/Pt(110) nano-oxides  89 

reported in Figure 5-7(a), indicating that two new active sites for CO adsorption are 

formed during the desorption experiments procedure.  

  

 

 
 
 

 

 

 

 

Figure 5-7 CO adsorption on c(2×4)SnOx/Pt(110) nano-oxides and (1×2)Pt(110) surface pre-
dosed with O2 : (a) CO with signal at m/z =28, (b) C18OO at m/z =46 and (c) plot of peaks area vs 

total dosed CO amount 

Figure 5-7(b) reports the desorption spectra monitoring m/z=46 corresponding to C18OO 

from the different surfaces after cyclic CO exposure. on the oxidized Pt(110) surface, 

four peaks including peak 2 at 225K , peak 3 at 280K, peak 4 at 320K and peak 5 at 375K   

can be observed., the peak at 320 K being the most intense one. All these peaks can be 

assigned to products of CO oxidation from different reconstructed oxidized Pt(110) 

surface[20-24].  And after the 1st cycle, no C18OO evolves from the Pt(110) surface 

probably due to the depletion of oxygen from the surface.   

(a) (b) 
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On the c(2×4) surface, at least three peaks can be observed in the C18OO desorption 

spectrum: peak 1 at 160 K,  the wide peak 3 at 280 K and peak 5 at 375 K. Peak 1 is 

always attributed from physically adsorbed C18OO, however the peak from the 1st cycle is 

very huge. Hence, it could be caused by desorption of products from reaction of adsorbed 

CO with active 18O on the surface. Peak 3 and 5 can be also observed from oxidized 

Pt(110) surface in our experiments, so the c(2×4) surface should has certain part PtOx 

surface which has active sites for CO transformation into C18OO. Starting from the 2nd 

cycle, the peak 5 disappears, and the peak 2 and peak 3 reduces comparing with the 1st 

cycle; moreover, a new peak, labeled as 6, can be observed at 500 K. In the following CO 

exposure cycles, the peaks below 400 K quickly decrease in intensity and almost 

disappears whereas peak 6 even if decreasing remain very intense.,  

By comparing Pt(110) and c(2×4) spectra we can deduce that the CO can be converted to 

CO2 following two distinct path. There is one direct high temperature channel that 

implies just the c(2×4) phase where the CO is adsorbed, reacts with the oxygen of the 

c(2×4) phase and is readily desorbed, originating the desorption peak at 500 K. 

An alternative lower temperature path involves the co-presence of c(2×4) and Pt. This 

can be deduced by the co-presence of the same desorption peaks (2, 3 and 5) on Pt and on 

the surface oxide. However, the presence of the surface oxide determines an increase in 

the activity as a function of time. Actually while the activity conversion of CO is lost 

after the first cycle on the Pt(110) surface because all oxygen is consumed. On the c(2×4) 

the low temperature desorption peaks are observed also in the 2nd and 3rd cycles. This 

indicates that the c(2×4) surface can act as an oxygen reservoir (spillover effect) for the 

Pt areas where the actual conversion of CO takes place. Increasing the cycles this channel 

disappears probably because a Sn metal area is produced around SnOx islands preventing 

therefore the interaction with Pt. 

If we plot the areas of the CO and C18OO desorption peaks versus total CO exposure 

reported in Figure 5-7(c), it become apparent that on Pt in absence of O2 pre-exposure no 

oxidation occurs and just CO desorption, whereas in presence of O2, CO2 is efficiently 

produced until oxygen is consumed. On the c(2×4) surface the production of CO2 is more 

steady indicating that the c(2×4) surface as higher durability than the Pt(110) surface. 
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 If we compare the sum of all the CO2 peaks area from the c(2×4) surface with the one 

from oxygen pre-exposed Pt(110) surface, the c(2×4) transforms more than 50% of CO to 

CO2 .  

CO is also used to test reactivity of the c(4×2) surface, however, no clear CO or CO2 can 

be observed from the surface.   

5.4.1.2 DFT calculations 

The reactivity of two oxide surfaces towards CO was investigated by DF theory. A 

summary of the results is presented in Figure 5-8 & Table 5-2 for the c(2×4) surface , and 

Figure 5-9 &Table 5-3 for the c(4×2) surface, respectively.  
 

 

 

Table 5-2 Adsorption Energies of CO on 
the c(2×4)SnOx/Pt(110) surface-M3 

Original 
position 

Final 
position Product Energy 

B1 Desorbed CO2 -2.91 
B2 B2 CO 5.01 
B3 Unstable 

 
-1.53 

B4 Desorbed CO2 -0.73 
B5 B5 CO 2.53 
B6 Desorbed CO2 -1.69 
B7 Unstable  

 
0.75 

O1 Desorbed CO2 -1.69 
O2 B2 CO 5.01 
O3 Desorbed CO -- 
O4 Desorbed CO -- 
TF1 TF1 CO 4.73 

 

Figure 5-8 DFT results of CO adsorption on 
c(2×4)SnOx/Pt(110) surface  

 

On the c(2×4) surface, a CO molecule was added to the surface to calculate reactivity on 

all the possible adsorption sites by calculating their corresponding adsorption energies. 

According to the results reported in Table 5-2, on the surface, there are two active sites 

that are able to adsorb CO and then oxidize the CO to CO2. This reaction can produce 

CO2 with 1.7 eV energy emitted on O1 site whereas this reaction can reach 2.9 eV on B1 

site (see Figure 5-8 ). The active barriers are always less than 1.0eV [20, 23-25]. On 

oxidized Pt(110) surface, the barriers is about 0.4 eV via Langmuir-Hinshelwood  

mechanism, or about 0.7 eV through Eley-Rideal mechanism[22]. On the 

PtOx(110)/Pt(110) (12×2) reconstruction, the barriers is only 0.3eV[22]. And on α-

PtO2(0001), the barrier is 1.9eV which is pretty high, however the value is still lower than 
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the one giving out from the oxidation on B1 site. So, it is possible oxidize CO on the 

c(2×4) surface. Hence, according to the DFT results, the surface can oxidize CO 

efficiently, which is in agreement with our TPD results.  

 

 
Table 5-3 Adsorption Energies of CO on 

c(4×2)SnOx/Pt(110) surface 
Original 
position 

Final 
position Product Energy 

B1 Desorbed CO -- 
B2 Desorbed CO -- 
B3 Desorbed CO -- 
O1 Desorbed CO -- 
O2 Desorbed CO -- 
O3 Desorbed CO -- 

 

Figure 5-9 DFT results of CO adsorption on 
c(4×2)SnOx/Pt(110) surface 

 

According to the adsorption sites showed in data presented in Figure 5-9 and Table 5-3, 

no CO can be adsorbed on the c(4×2) surface, due to its complete coverage by SnOx. 

Hence, it can match our experimental results. And the conclusion obtained from DFT 

calculations also support our conclusion about the role of Pt-related species in oxidation 

of CO in SnOx/Pt(110) system.   

5.4.2 Methanol decomposition 

The two oxide surfaces were investigated using methanol as probe molecule.  

In the case of the c(2×4) a marked reactivity was observed. As a matter of fact as already 

reported in chapter 3, by dosing methanol on the c(2×4) structure at moderate 

temperature it is possible to induce a phase transition to the p(6×1). Obviously, this 

indicates a redox reaction where the methanol reduces the surface oxide and leaves on the 

surface metal Sn alloyed with Pt. We tried to get a better insight into this surface reaction 

by carrying out TPD experiments. In particular we exposed the c(2×4) structure to 3L 

methanol at low temperature and performed a linear ramp to 600 K to observe the 

desorption spectra. Then we cycled this same procedure for several times. 

 Differently from the c(2×4), the c(4×2) resulted to be scarcely reactive towards methanol. 

Methanol is adsorbed at low temperature and it is molecularly desorbed around 200 K. 
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No other byproducts were observed (e.g. CO, H2 CO2 C H2O ect), therefore the 

corresponding TPD will not be discussed in the present thesis. 

5.4.2.1 TPD results from c(2×4) surface dosed with 3 L CH3OD per cycle  

To better understand the reactivity of the c(2×4) surface and to gauge the results, the 

clean (1×2)Pt(110) was employed as internal reference.  The corresponding TPD results 

with 1 L methanol exposure are reported in Figure 5-10.   

 
Figure 5-10 TPD results of methanol decomposition on clean (1×2)Pt(110) surface 

after dosing 1L methanol 

According to the desorption curves, the Pt surface can decompose methanol completely 

into CO and H2 whose ratio of the two peaks area (CO/H2) is about 1:2. The desorption 

temperature of the CO and H2 peaks are 510 K and 305 K respectively, which perfectly 

agrees with literature data [26, 27]. This points to a very high activity of the surface that 

can clearly decompose methanol below room temperature, interestingly no other 

byproducts like CO2, water, or formaldehyde were observed.   
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Figure 5-11 Cyclic TPD results from c(2×4)SnOx/Pt(110) surface  

dosed with 3L/cycle CH3OD  

Figure 5-11 presents a set of TPD experiments where the exposure to CH3OD at low 

temperature (120 K) and desorption ramp up to 600 K were cycled several times.  

The reiteration of the dosing procedure allows monitoring the effect of an increasing 

reduction of the oxide towards the reaction path of methanol. Actually, methanol is a 

reducing species whose decomposition removes oxygen from the surface. Our data will 

show that on passing from a fully oxidized surface to a reduced one (and eventually PtSn 

surface alloy) methanol undergoes a notable change in the decomposition products. 

In order to get a complete view of the different products that can be formed during 

methanol decomposition we acquired the mass signal corresponding to methanol, 

formaldehyde, CO, CO2, H2, D2O, HDO.   

The results show that from 1st cycle to 3rd cycle, no distinct CH3OD can be observed, 

meaning that the oxidized surface can catalyze methanol decomposition completely in the 

quite efficiently. In the 4th cycle, two desorption peaks: peak 2 at 222 K and peak 3 at 267 

K were observed from the surface, which indicates that some CH3OD molecules are 

simply molecularly desorbed from surface, without undergoing any reaction. This is a 

first indication that the surface oxide is quite reactive, whereas as the phase gets more and 

more reduced also its reactivity strongly decreases. In the 4th and 5th cycle, the curve 

contains two peaks, peak 1 at ~214 K, and peak 2 at 267 K. Comparing with the 4th cycle, 

the TPD desorption peak area in 5th cycle is higher than the one in the 4th cycle, meaning 

g h 
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that more CH3OD is desorbed from the surface, without be involved in a chemical 

reaction.  

Figure 5-11(b) reports one of the products (m/e=30), formaldehyde (CH2O), obtained 

from the oxidized surface. During the first two cycles, a peak at 450 K, peak 3, is 

observed and the peak area decreases in the following cycles. In the 3rd cycle, the peak at 

450 K cannot be detected, while a new weak peak at 565 K, peak 4 appears. In the 

subsequent exposure, the peak 4 remains roughly constant, but in the 4th and 5th cycle, 

two intense low temperature peaks, peak 1at 220K and peak 2 at 265K, can be seen, but 

are simply due to the cracking pattern of CH3OD which are plotted with dotted curves in 

the figure, therefore not connected to the surface reactivity.  

In Figure 5-11(c), we report the desorption spectrum of m/z=28, which corresponds to 

CO and in dotted lines the background signal coming from the cracking pattern of 

CH3OD. The data indicate that no CO desorption peak can be observed during the first 

exposure, whereas one weak peak at 380K - peak 4- can be observed in the 2nd cycles. An 

intense desorption peak at about 490K - peaks 4 - can be observed starting from the 3rd 

cycle. The desorption temperature slightly shifts and undergoes a huge intensity increase. 

It has to be noted that peak 4 shows a desorption temperature very similar to the CO 

desorption temperature from Pt(110) (495 K) and also to the desorption of  CO coming 

from the decomposition of methanol (510 K). This seems to indicate that starting from 

the 3rd exposure the surface oxide is heavily reduced and some Pt patches are formed. 

The mass signal coming from CO2 (m/z=44) is reported in Figure 5-11(d). In the 1st cycle, 

two desorption peaks can be distinguished: peak 1 at 320 K and peak 2 360K. An 

evolution of the desorption spectrum can be observed already at the second exposure: the 

peak 1 disappears, the peak 2 becomes weak, and a new peak - peak 3 - at 380 K can be 

observed From the 3rd cycle to the 5th cycle, the peak 3 decreases and another new peak- 

peak 4 - at 490 K is obtained.   The intensity of peak 4 decreases from the 3rd to 5th cycle.   

The behavior of the surface is therefore quite complicated, however we can discern a 

pattern: at high level of oxidation (first cycle) the total conversion of methanol to CO2 is 

quite effective at low temperature (peak 1, 2, 3), however as the oxygen availability is 

progressively reduced a new reaction channels opens at higher temperature (peak at 490 

K). This latter peak seems to have a similar behavior to the CO2 desorption peak 
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observed on the oxygen pre-dosed Pt(110) surface, suggesting once again the hypothesis 

that after an induction period during which the oxide is reduced, Pt metal patches are 

formed and on these areas methanol can be decomposed.    

The desorption spectra of hydrogen were recorded as well (m/z=2, Figure 5-11(e)). 

According to the spectra, no clear peaks can be observed from the surface in the first two 

cycles but only starting for the 3rd exposure to methanol. This peak at 295 K remains 

constant in position and slightly increases in intensity from the 3rd to 4th cycle, then 

remain constant. The peak lies in a temperature range very similar to the desorption 

temperature of H2 from Pt(110) as a consequence of methanol decomposition  

Since we used deuterated methanol, various water species including HDO (m/z=19) and 

D2O (m/z=20) were recorded. The results are showed in Figure 5-11(f), and Figure 

5-11(g) respectively. The spectra of two species have the same desorption peaks at about 

200 K, and undergo small changes as a function of the number of the exposure cycles.  

From the results of HDO and D2O, the signal of HDO is stronger than D2O. The data 

therefore do not allow an easy disentanglement of the reaction pathway followed by 

methanol probably because of the adsorption of H2O from the background atmosphere, 

which prevents a clear identification of the H or D atoms coming from the formation of 

methoxy species or from oxidative dehydrogenation of methanol to formaldehyde, 

respectively. 

To summarize the surface reactivity we have reported in one plot the trend of products 

observed by mass spectroscopy as a function of the exposure cycles, and the results are 

showed as Figure 5-11(h). According to the plot, during the first two cycles, three species 

can be clearly observed: CO2, methanol and formaldehyde; hence the reactions of the two 

cycles can be concluded as Equation 5-1 and Equation 5-2. The CO amount is far more 

than CH2O, so the latter one should be related with decomposition products from the 

surface defect or boundary.  

𝑪𝑯𝟑𝑶𝑫 + 𝑷𝒕𝑺𝒏 − 𝑶→ 𝑪𝑶𝟐 + 𝑯𝑫𝑶  Equation 5-1 

𝑪𝑯𝟑𝑶𝑫 + 𝑷𝒕𝑺𝒏 − 𝑶→ 𝑪𝑯𝟐𝑶 + 𝑷𝒕𝑺𝒏 − 𝑶𝑯   Equation 5-2 

With increasing cycles to the 3rd cycle, also CO and H2 can be observed probably coming 

from the interaction with Pt or PtSn reduced areas:   

𝑪𝑯𝟑𝑶𝑫 + 𝑷𝒕𝑺𝒏→ 𝑪𝑶 + 𝟐𝑯𝑫𝑶  Equation 5-3 
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When exposure reaches the 4th cycle, a relevant amount of CH3OD is molecularly 

desorbed from the surface. It can be deduced that the surface becomes less reactive with 

methanol decomposition. Also the fraction of methanol that undergoes total oxidation to 

CO strongly reduces whereas the signal from CO and H2 strongly increases. Then the 

reaction can be described as Equation 5-4.   

 𝑪𝑯𝟑𝑶𝑫 + 𝑷𝒕𝑺𝒏 − 𝑶𝒓𝒆𝒅 → 𝑯𝑫𝑶 + 𝑪𝑶 + 𝑯𝟐 + 𝑪𝑶𝟐 Equation 5-4 

At the 5th TPD cycle, the peak area of CO2 decreases dramatically, while the one of H2 

increases and becomes one of major products. Besides the signals of CO and HDO is 

almost the same as the one in the 4th cycle. Therefore, the main reaction in this cycle can 

be summarized as Equation 5-5.  

𝑪𝑯𝟑𝑶𝑫 + 𝑷𝒕𝑺𝒏 − 𝑶𝒓𝒆𝒅 → 𝑯𝑫𝑶 + 𝑪𝑶 + 𝑯𝟐  Equation 5-5 

 Finally, to corroborate the hypothesis of the formation of clean Pt and PtSn alloys 

patches we mention that the after the set of TPD experiments we observed a strong 

weakening of the of the LEED pattern of the c(2×4) structure and at the same time we 

observe the formation of the pattern pertainig to the p(6×1). 

5.4.2.2 SRPES and LEED 

SRPES was also used to characterize the interaction between methanol and the surface 

oxide: Sn3d, O1s, C1s and Pt4f signals were acquired on the clean surface, after 5.0 L 

methanol exposure and after desorption to 600K. The SRPES spectra are showed in 

Figure 5-12 (a), (b), (c) and (d). C1s was also recorded during the desorption of methanol 

in snapshot mode (selecting the binding rang and acquiring the signal in real time through 

the MCP detector) and the resulting spectra were plotted as a matrix (Figure 5-13(a) ). 

Moreover, in Figure 5-13(b) we report the line profiles corresponding to C1s peaks at 6 

increasing temperatures (T0 – T5), and their deconvolution. Finally, the evolution of each 

C 1s peak component as a function of temperature is shown in Figure 5-13(c).  

According to the Sn3d spectra,( Figure 5-12(a)),  the signal can be separated into five 

peaks[8, 28, 29]: 

i) ~484.68 eV  assigned to  Sn ad-islands on the surface, noted as Snad 

ii) ~485.65 eV assigned to Pt3Sn in the bulk, noted as Snalloy 

iii) ~486.45 eV assigned to Sn2+ species,  
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iv) ~487.30 eV assigned to Sn4+
 species  

v) ~488.20 eV assigned to SnO2-OH 

The Sn4+/Sn2+ components ratio evaluated by the Sn 3d peak deconvolution of the clean 

(original) surface is about 0.26 (comparing to the 0.5 value predicted by the model), 

indicating that the present of some defects.  

The same ratio, evaluated after 5L methanol dosing is about 0.34. These two values can 

be considered constant as the 0.26 to 0.34 deviation can be made on the Sn3d 

deconvolution. Therefore, we can conclude that surface does not change after the 

methanol exposure. Moreover, the spectrum of the surface dosed with 5.0L methanol 

shows a weak peak at ~488.25 eV, which can be assigned to SnO2 adsorbed with 

hydroxyl. After methanol desorption, the Sn4+/Sn2+
 ratio decreases to about 0.14, much 

lower than ~0.3 value reported above, in agreement with a further reduction of the 

surface oxide. . 

 Furthermore, we compared the Sn2+/Pt-Sn among the three spectra:  a value of about 0.7, 

0.8 and 1.3 were found for the clean surface, after 5.0L methanol dosing and after 

desorption respectively. The first two value can be considered constant it is clear that the 

Sn2+ species increased after desorption  due to an increase of Sn2+ (as demonstrated 

before by Sn4+/Sn2+ ratio), thus to the SnOx reduction. The peaks area of Snad peaks and 

SnO2-OH are very little; and can be assigned to some defects on the surface. By 

comparing the results of Sn4+/Sn2+ and Sn2+/Pt-Sn ratios, we can conclude that after 

reaction with methanol,  Sn4+
 surface species are reduced into Sn2+ and some Sn diffusion 

from the surface to the bulk occurs during the heating process.   

Based on the O1s signal deconvolution (Figure 5-12-b), the spectrum of the pristine 

surface contains three O-related species [8, 30]:  

i)  SnO at 529.95 eV 

ii) SnO2 at 530.90eV  

iii) –OH at 531.90 eV.  

The SnO2/SnO peaks components ratio result to 0.37, which is a lower than the computed 

ratio of 0.52 and in quite good agreement with the ~0.3 values obtained from Sn3d 

deconvolution. As discussed above, this is tune with presence of surface defects. When 
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the surface is exposed with 5.0L methanol, the O 1s spectrum becomes more complex 

and can be separated into several components.  

-the components i), ii) and iii) assigned to SnO, SnO2 and -OH species, were still present, 

although the -OH peak maximum negatively shifts to 531.67eV  

iv) 532.55eV, assigned to methanol (CO, -OCH3 or CHxO species)[31, 32]; 

v) 533.40eV assigned to adsorbed water; 

  

  

  
Figure 5-12 In-situ SRPES results during reactions of 5L CH3OH during heating 

c(2×4)SnOx/Pt(110): (a) Sn3d results, (b) O1s signal, (c) C1s, and (d) Pt 4f, 

a b 

c d 
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After methanol desorption, the two peaks related with methanol and adsorbed water are 

almost disappeared. The SnO2 peak area decreases probable due to the oxidation film 

reduction in agreement with the Sn3d results discussed above. A small peak at 

~531.67eV is still present and shows no shift compared to the one collected on the 

surface dosed with methanol; this it can be assigned to hydroxyl.  

Also small intensity peak at 532.20eV can be observed and could be due to adsorbed 

species (either methanol or products from methanol decomposition). .   

Figure 5-12(c) reports the C1s spectra of the original surface, the surface with after 5L 

methanol dosing and after desorption.  According to the results, no carbon- related 

species can be observed on the original surface. After 5L methanol exposure, a broad C1s 

spectrum was observed. Based on the deconvolution results, the spectrum can be 

separated into 4 components[33]:  

i) ~284.30eV, assigned to elemental carbon, 

ii) ~285.86eV, assigned to CO, 

iii) ~286.26eV, assigned to methoxy (-OCH3) group,   

iv) ~286.91eV, assigned to methanol.  

According to spectra, no related C1s signal can be detected, while little formaldehyde can 

be observed from the surface. It can be explained as the little amount of formaldehyde on 

the surface comparing with other species, so the photoemission signal of formaldehyde 

cannot be distinguished. After the methanol desorption, no distinguished C1s peaks can 

be observed. The results match the O1s peak analysis.  

Figure 5-12(d) shows the Pt4f spectra unchanged both after the methanol exposure and 

the desorption  

In-situ SRPES test was finished during the TPD procedure which is reported as Figure 

5-13(a) and some of their fitting results were showing as Figure 5-13(b).  According to 

the C1s matrix ( Figure 5-13(a)) and the C1s deconvolution (line profiles T0-T5 , Figure 

5-13(b) ) four species can be singled at T0 [34]: ~284.30eV, ~285.86eV, ~286.26eV, and 

~286.91eV, which are assigned as residual carbon, -OCH3, and methanol respectively.( in 

agreement with the spectrum reported in Figure 5-12(c), - i~iv peaks)  The same 

components are also present at T1 and T2. When the sample temperature increases to T3, 

the peak iv) corresponding to molecular methanol disappears. This indicates the methanol 
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is either desorbed or decomposed from the surface. When the temperature reaches T4, 

only one peak centered at 295.9eV, assigned to adsorbed CO, can be observed. However, 

at this temperature, no CO can be observed from TPD spectra, but clearCO2 desorption 

peaks develops (see Figure 5-13(d).). Therefore, we can conclude that the surface is able 

to oxidize the methanol to CO, then to CO2 due to plentiful O atoms on the topmost 

surface. When the temperature reaches T5, the spectrum shows no distinguished peak 

meaning that no carbon-related species can be detected.  

In Figure 5-13(c), we report that the C 1s peak components evolution as a function of the 

temperature in the T0-T5 range. Based on the plot, at T0 the surface is mainly covered by -

CH3O Resulting from the dissociative adsorption of CH3OH. When the temperature 

reaches T1, the amount of CH3OH and –CH3O decreases.  

This can be explained by: 

i) molecular desorption of CH3OH, 

ii) recombination of -CH3O and –OH groups to yield CH3OH (recombinative desorption),  

iii) -CH3O decomposition (oxidation to CO) [33], 

The CO component area increases, doe to a probable decomposition of methoxy into CO 

(reaction path iii). This reaction path (methanol total oxidation to CO2) is supported by 

presence of labeled water (HDO) desorption peak, showing in Figure 5-13(d). HDO is 

formed from the recombination of –OH and –OD groups that are formed upon CH3OH 

dissociation and -CH3O decomposition.  

When the temperature reaches T3, CH3OH can no more be detected while the signal of –

CH3O decrease dramatically and the CO shows a little variation. T3, can be considered 

the temperature at which CO desorption starts. At T4, CO is the only species detected on 

the surface, even though its intensity decreases with respect to the maximum. This result 

is in good agreement with TPD which shows that CO2 is the last desorption product. (see 

Figure 5-13(d)). As CO2 cannot be adsorbed on the surface, the CO2 can be the products 

of oxidized CO on the surface. Basing on the photoemission peak area, about one half 

part of adsorbed CO can be oxidized into CO2 by the O of the surface from T3 to T4.  
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Figure 5-13 (a) in-situ matrix results of C1s and fitting data of spectra at certain temperature from 
the matrix , (b) fitting data of spectra extracted from the matrix and (c) the plot of the species’ 
peaks area vs Temperature according to fitting data showing in (b), (d) the corresponding TPD 
results for the in-situ SRPES 

Based on the above analysis, the (2×4) surface can oxidize the methanol to CO2 and be 

reduced to PtSn alloys. To confirm the surface oxide reduction, an in-situ LEED test was 

performed. The sample was placed in front of the LEED screen, then the surface was 

heated to 673K and kept at this temperature during thousand Langmuir methanol dosing 

a b 

c 

d 
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at 10-7mbar The comparison of the LEED patterns of the original surface and the one 

after reaction is showed in Figure 5-14.  

It is important to point out that no LEED pattern modifications were observed during the 

heating and thermalization of the sample at 673 K. Accoding to the LEED patterns, the 

original surface is a perfect c(2×4), while after the reaction with methanol it turns into 

mixed surfaces including  c(2×4) and p(6×1) patterns. The p(6×1) surface is one of the 

most stable surfaces reported in the previous chapter. 

 

5.5 Conclusion 

g. Some STM images at atomic solution of the two oxides: (c(2×4) surface and 

c(4×2) surface) were obtained and the both surface were also additionally 

characterized with SRPES which indicates c(2×4) surface is more oxidized than 

c(4×2) surface.  

h. The model of the oxides were proposed and investigated by DFT calculations, and 

then the preferable models were confirmed and also match our SRPES analysis.  

i. Reactivity of CO with the oxides were finished and also studied by DFT, indicating that 

c(2×4) surface can oxidize CO into CO2 while c(4×2) surface is very inert. And 

comparing with oxidized Pt(110), the introduction of SnOx can enhance the 

durability of the active surfaces. 

 
Figure 5-14  comparative LEED patterns of (a) the pristine c(2×4) SnOx/Pt(110) phase (82.0 eV) and 

(b) the same surface after reaction with methanol at 10-7mbar for several minutes(80.0 eV). 

(a) (b) 

c(2×4) c(2×4) 

p(6×1) 
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j. The decomposition of methanol was also completed on the two surfaces. 

According to the results, methanol can be oxidized by c(2×4) surface into CO2 

and H2O. After several cycle, the surface can form surface alloys or possible core-

shell structure. 

k. SRPES results indicate that after reaction with methanol, the surface will be 

reduced due to the reduction of Sn4+, some Sn can be diffused into bulk.    
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6 General conclusion and Outlook 

During my three years’ work on my thesis, I had a systematic research on new ultrathin 

films of Sn on the Pt(110) surface and their oxides. Three surface alloys (including one 

already reported surface alloy) and two new surface oxides on Pt(110) surface were 

obtained.  

The two novel surface alloys, i.e.  p(3×1)PtSn/Pt(110) and p(6×1) PtSn/Pt(110), can be 

prepared by means of UHV Sn deposition on Pt(110) at different coverage, and with a 

consequent annealing at various temperature. Two SnOx oxides surfaces, i.e. 

c(2×4)SnOx/Pt(110) and c(4×2) SnOx/Pt(110), were prepared by oxidation starting from 

the surface alloys. With optimization of the preparation condition, a phase diagram for 

the surface alloys and surface oxides on Pt(110) was determined.  

The LEED pattern and STM images of the two novel surface alloys were obtained, and 

also SRPES of the p(6×1) surface was recorded at MaxLab (Lund). STM images of the 

two surface alloys are characterized by corrugated structures. Some models for the two 

surfaces were proposed based on the STM and LEED results (for p(6×1) surface, SRPES 

were also employed ), and on DFT calculations. The simulated STM images were 

compared to the experimental ones. Based on the experimental and DFT results, the most 

suitable models for the two surfaces were proposed. The reactivity of the surface alloys 

with CO was investigated by TPD and DFT calculations. The results reveals similar CO 

reactivity on the two surfaces and higher CO poison resistance due to chemisorption with 

lower adsorption energy with respect to the one on pure Pt(110) surface. Based on the 

DFT results, the investigated surfaces can have a better COOR performance, and the 

introduction of Sn can enhance the COOR reactivity.  

LEED patterns and STM images for the two nano-oxides (c(2×4)SnOx/Pt(110) and 

c(2×4)SnOx/Pt(110) ) were obtained, and they were also characterized with SRPES at 

Elettra (Trieste). Some models for the two surfaces were proposed based on the 

experimental results and DFT calculations. According to DFT calculations and to 

comparison between experimental and simulated STM images, the most suitable models 

for the two surfaces were proposed, exhibiting a good agreement with the experimental 

data. Reactivity studies with CO were also carried out and also compared with DFT 
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calculations, indicating that c(2×4) surface can oxidize CO to  CO2. On the contrary,  

c(4×2) surface is very inert.  

From the point of view of the EC activity, with respect to oxidized Pt(110), the 

introduction of SnOx can enhance the durability of the active surfaces.  

The decomposition of methanol on c(2×4) surface was also investigated by TPD and 

SRPES, indicating that the methanol can be oxidized efficiently to CO2 and H2O, while 

the surface can be transformed into surface alloys or possible core-shell structure after 

several TPD cycles. The Sn4+ surface can be reduced during the TPD procedure, and 

some Sn diffuses into bulk.  

In conclusion, PtSn surface alloys and SnOx on Pt(110) can exhibit high reactivity for 

COOR reaction, hence they owns probably high MOR reactivity. However, such 

predictions require a detailed EC screening.   
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