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Riassunto 

Le larve delle processionarie europee e mediterranee (genere Thaumetopoea) 

producono delle setole urticanti dal terzo stadio larvale al quinto sulla parte dorsale 

dell’addome, in specifiche aree denominate “specchi”. Le setole sono facilmente removibili 

dal tegumento e sono importanti per la difesa dell’insetto nei confronti di vertebrati predatori. 

L’impatto delle setole urticanti sull’uomo è stato ripetutamente descritto e consiste 

prevalentemente nella manifestazione da contatto con la complicazione dell’insorgenza di 

risposte allergiche. Il meccanismo di azione è complesso e riguarda sia una lesione meccanica 

causata dalla penetrazione della setola sia il rilascio di proteine con potere antigenico. Risulta 

quindi importante esplorare i geni potenzialmente coinvolti nel meccanismo di difesa, al fine 

di identificare le proteine associate con le setole e chiarire la loro espressione durante lo 

sviluppo larvale. Inoltre, il genere comprende diverse specie e sembra opportuno esplorare la 

variabilità dei geni coinvolti a livello intra- e interspecifico. 

Nell’introduzione della tesi presento i diversi tipi di setole urticanti degli artropodi, 

focalizzandomi su quelle che vengono denominate “setole urticanti” caratteristiche delle 

processionarie, gli aspetti medici correlati, l’epidemiologia e i geni correlati alle proteine 

antigeniche. Uno dei principali obiettivi del mio lavoro è quello di caratterizzare tutte le 

proteine, urticanti e non, presenti all’interno delle setole e provare a identificare altre proteine 

antigeniche, oltre alla già nota Tha p 2. Altri obiettivi sono quelli di concentrarsi sul profilo di 

espressione della proteina Tha p 1 (una proteina isolata da larve di processionaria del pino e 

riconosciuta come antigene da persone esposte all’insetto, ma successivamente identificata 

come appartenente al gruppo delle proteine chemosensoriali) e Tha p 2 in tutti gli stadi vitali 

di Thaumetopoea pityocampa, e la caratterizzazione del gene Tha p 2 in tutte le specie del 

genere Thaumetopoea disponibili e anche in altre della sottofamiglia delle 

Thaumetopoeainae, per studiare l’evoluzione della proteina in questo gruppo. 

Nel primo studio ho provato due protocolli di estrazione proteica per creare un data 

set completo di tutte le proteine, sia urticanti che non, presenti nelle setole. Possibili proteine 

antigeniche sono state riconosciute utilizzando i sieri di persone precedentemente esposte e 

con reazioni acute. É stata ottenuta un’elevata quantità di proteine che ha permesso di 

confermare che le setole urticanti di Th. pityocampa contengono proteine, alcune delle quali 

sono riconosciute da Ig-E di persone precedentemente esposte a larve di questo insetto. 

Inoltre ho potuto ottenere informazioni riguardo la qualità e la quantità delle proteine 

associate alle setole.  
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Nel secondo studio mi sono concentrata sull’espressione dei geni associati alle 

proteine urticanti Tha p 2 e Tha p 1 in tutti gli stadi larvali di due popolazioni italiane e per 

gli ultimi stadi e le uova di due popolazioni portoghesi. Ho potuto confermare l’espressione 

del gene Tha p 1 in tutti gli stadi di Th. pityocampa di tutte le popolazioni, mentre il gene Tha 

p 2 è espresso solo negli stadi larvali dove le setole sono prodotte (dal terzo al quinto).  

Nel terzo studio, ho sequenziato il gene Tha p 2 in tutte le specie della sottofamiglia 

Thaumetopoeinae disponibili, concentrandomi su membri del genere Thaumetopoea, così 

come su specie non affini, per capire le proprietà chimico-fisiche della proteina, la natura dei 

geni e la loro storia evolutiva. Questo studio ha permesso di identificare due diverse isoforme 

del gene Tha p 2 in tutte le specie, che può essere interpretato come un risultato di eterozigosi 

del singolo gene. L’unica eccezione è rappresentata da una specie (Thaumetopoea wilkinsoni) 

nella quale sono state individuate 20 diverse isoforme in un unico campione; ciò porta a 

pensare che possano esistere molteplici copie del gene. 

I capitoli supplementari includono due parti alle quali ho lavorato durante il periodo 

della tesi, per ottenere materiale utilizzabile durante gli altri esperimenti. La prima parte 

riguarda il confronto del tempo di sviluppo di quattro popolazioni di processionaria del pino 

mantenute in condizioni controllate di laboratorio. Le quattro popolazioni, caratterizzate da 

diversa fenologia, mantengono un ciclo vitale annuale anche in condizioni favorevoli a un 

rapido sviluppo larvale, soprattutto grazie alla flessibilità della durata dello stadio pupale. La 

seconda parte dell’appendice è una descrizione della biologia di Thaumetopoea herculeana 

campionata in Spagna e studiata per l’analisi del gene Tha p 2.  

Nel complesso, la tesi approfondisce la conoscenza del sistema urticante delle 

processionarie, puntando a individuare gli ulteriori passi necessari per chiarire il complesso 

meccanismo associato allo sviluppo di reazioni cutanee negli esseri umani e, possibilmente, 

in vertebrati predatori che sono il bersaglio naturale della setole. Inoltre, le analisi rivelano 

che il sistema urticante e i geni associati sono ben conservati nel gruppo e potrebbero essere 

un fattore importante nella storia evolutiva in questo e in altri gruppi di artropodi che 

condividono meccanismi di difesa simili. 
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Summary 

Larvae of the Thaumetopoea genus produce urticating setae in the third and later instars on 

the dorsal part of the abdomen in specific areas called mirrors. These setae are easily removed 

from the integument and are considered to be important for defense against vertebrate 

predators. Impacts on humans are well described and consist mainly of dermatitis due to 

contact with the setae and allergic responses. As the mechanism of action in the human skin 

involves both the mechanical injury of the penetration and the release of proteins with 

antigenic power, it is important to explore the genes putatively involved in the defense 

mechanism of the Thaumetopoea species, in order to identify the proteins associated with the 

setae and elucidate their expression pathway during the larval development. In addition, as 

the genus includes several species, the variability occurring within and among species should 

be also explored.  

In the introduction of the thesis I present the different type of urticating hairs of the 

arthropods with a focus on the true setae of the processionary moths, the medical aspects 

related to them, the epidemiology, and the genes encoding for the antigenic proteins. One of 

the main aim of my work was to characterize all the proteins, urticating and not, occurring in 

the setae and try to extract other proteins similar to the main one described so far, Tha p 2. 

Other goals were to focalize on the expression profile of Tha p 1 (a chemosensory protein of 

Th. pityocampa) and Tha p 2 in every life stage of Thaumetopoea pityocampa and, at the end, 

to characterize the orthologous counterparts of Tha p 2 in all the Thaumetopoea species 

available, as well as in other species of Thaumetopoeinae, to better understand the evolution 

of the protein in this group. 

In the first study I tested two different protein extraction protocols of different 

strength, in order to create a complete data set of all proteins, urticating and not-urticating, 

occurring in the setae. Candidate antigenic proteins were recognised by using the sera of 

persons previously exposed to the agent and showing acute reactions. A high quantity of 

protein was obtained, confirming that the urticating setae of Th. pityocampa contain proteins, 

some of which were recognized by Ig-E of persons previously exposed to the larvae of this 

insect. In addition, I added information about the type, quality and quantity of the proteins 

associated with the setae. 

In the second study I investigated the expression values of the urticating protein Tha p 

2 and also of a chemosensory protein Tha p 1, for all life stages of two Italian populations and 

for the last development stages and eggs of two Portuguese populations, in order to better 

understand the expression of the gene Tha p 2. I confirmed the expression of Tha p 1 gene in 
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all development stages of Th. pityocampa of all populations, instead the gene Tha p 2 was 

typically expressed only in those larval instars when the setae are produced, i.e. from the third 

to the fifth.  

In the third study, I sequenced the Tha p 2 gene in all Thaumetopoeinae species 

available, with a particular focus on members of the genus Thaumetopoea, as well as 

unrelated moth species, for better understanding the chemical-physical properties of the 

proteins and the nature of the encoding genes, as well as their evolutionary history. This study 

permitted to identify two isoforms of Tha p 2 in all species that can be interpreted as the 

result of heterozygosity in the single gene. The only exception is represented by one species 

(Thaumetopoea wilkinsoni), in which 20 different isoforms occur in a single specimen, 

leading to the conclusion that at least in the species multiple copies of Tha p 2 exist.  

The Supplementary chapters includes two parts which I developed during the thesis in 

order to obtain the material used in the analyses. The first concerns the comparison of the 

developmental time of four populations of the pine processionary moth under controlled 

laboratory conditions. The four populations, which are characterized by different life history 

phenology in the field, maintained an annual life cycle also under favorable laboratory 

conditions, mainly because of a flexible duration of the pupal stage. The second part of the 

Supplementary chapters is a description of the life history of a species (Thaumetopoea 

herculeana) collected and studied in Spain for the analysis of the Tha p 2 gene.. 

On the whole, the thesis is deepening the knowledge on the urticating system of the 

processionary moths, pointing at identifying the further steps required for the clarification of 

the complex mechanism associated with the development of reactions in humans and possibly 

in the vertebrate predators which are the natural target of the setae. In addition, the analyses 

reveal that the urticating seta system, and the genes associated, are well conserved in the 

group and could be a major factor affecting their evolution, as well as that of other groups of 

arthropods which share similar defense mechanisms. 
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Urticating Hairs in Arthropods 

The arthropods own different types of hairs with several functions (Witz 1990). The hairs 

play a rule of protection against invertebrate and vertebrate in several taxa, like 

lepidopterans, spiders, coleopterans, and millipedes (Battisti et al. 2011). A role of 

protection is insured by the urticating hairs characterize by at least two cells, hair-forming 

cells, called trichogen cell also named hair-forming cell and tormogen also called 

auxiliary cell. Those cells are connected to the neurons for transmission of sensorial 

information (Battisti et al. 2011) (Fig 1). In literature the urticating hairs are divided in 

three categories: true setae, modified setae and spines depicted in Fig.1.  

 

 

Figure 1. Schematic representation of (a) an insect hair, (b) a true seta, (c) a modified seta, and (d ) a 

spine. Note the different scale between (a), (b), (c), and (d ) by comparing the epidermal cell size (Battisti et 

al. 2011). 

 

True setae  

True setae are the particular hairs that occur in Lepidoptera larvae and adults (Gilmer 

1925) (Kawamoto and Kumada 1984) and in some spiders (Cooke et al 1972). In 

particular they are a feature of the larval stage of processionary moths (Thaumetopoeinae, 

Notodontidae) and adult stage of Notodontidae (Rothschild et al. 1970), Lymantridae, a 

few species of Saturniidae in South America (Werno 1991) and Zygaenidae in Australia 

(Tarmann 2004). The early lepidopteran larval instars are without urticating setae, 

although the cellular apparatus that produces them is present; in particular in the 

processionary moths, setae emerge in the third stage and increase during every molts. At 
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the same time other species like the lymantriid Euproctis and the Thaumetopoeinae 

Ochrogaster lunifer and Anaphe panda use the urticating setae to protect also the eggs. 

The setae have lost the neuronal connection and they have the proximal end detached 

from the integument and inserted into a socket (Lamy et al. 1982); they can easily be 

removed with any kind of mechanical stimulation in case of danger. Usually, the setae are 

short (100-500 µm long, 3-7 µm in diameter), have barbs along the shaft and occur in 

special parts of the insect body called mirrors (Foelix et al. 2009) (Démolin 1963) that 

increase in number and size as the larva molts. When the larva is undisturbed, the mirrors 

are closed and from outside it is possible to see only the distal part of the setae located on 

the outer border of the mirror. The density of setae can be very high, from 60,000 

setae/mm
2
 in the Lepidoptera larvae to 10,000-12,000 setae/mm

2
 in spiders (Lamy et al. 

1982). Spider setae are situated on the abdomen and start to develop in the third instars, 

that is the time when the spider molts to the adult stage (Battisti et al. 2011).  

 

Modified setae  

Modified setae occur especially on larvae of Lymantriidae (Deml and Dettner 1995), 

Lasiocampidae, Arctiidae (Kawamodo and Kumada 1984), Anthelidae (Balit et al. 2004) 

and other small families. Modified setae, have a low density on different part of the body 

and can easily broken off from the integument; they are longer than true setae (up to 1 

mm), are rather stiff and have barbs of various size along the shaft. The mature larvae 

have the capacity to incorporate the setae into the cocoon as an external protection in case 

of risk (Balit et al. 2004).  

 

Spines  

Spines are typically present in Lepidoptera Megalopygidae, Limacodidae and Saturniidae 

(Gilmer 1925) and rarely in other lepidopteran families. Respect the other setae, have a 

complex structure, are stiff, filled with a secretion and respond to mechanical stimulation. 

Their size may be vary and the diameter is larger than 3-7 µm. Spines can be alone or 

combined with modified setae.  
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Medical Aspects 

The hairs are well-known to cause a number of diseases to humans and other warm-

blooded animals (Arlian 2002, Mullen 2009). The problems are correlated to the 

arthropod density and the risk is for humans and animals. Modified setae and spines are 

generally present at a much lower density on the insect body compared with true setae 

and are not released into the air. The urticant capacity of these hairs is known from the 

antiquity (Roques and Battisti 2014), although the first descriptions correspond to 

Reaumur (1736) and Fabre (1900). The Lepidoptera in particular are known to cause 

‘lepidopterism’, which indicates every kind of pathological condition produced by them. 

Lepidopterism may be further divided into two categories: lepidopterism in a narrow 

sense refers to syndromes caused by adult moths and butterflies, whereas erucism refers 

to reactions resulting from contact with urticating hairs of larvae or pupae (Delgado 1978; 

Kawamoto and Kumada, 1984). The use of these terms, however, is problematic because 

erucism and lepidopterism refer to different life stages of the insects (larvae and adult, 

respectively) rather than to reactions in humans. The distinction of these syndromes, 

based on local and general reaction is complicated because true setae can be released by 

the insects, either larvae or adults, and distributed in the environment by air. For this 

reason these definitions are of limited value when the effects of true setae on humans are 

described in clinical practice. Because modified setae and spines are normally not 

released into the air, they are more likely associated with reactions from direct contact 

(Battisti et al. 2011). Urticating hairs can also affect domestic animals (Mullen 2009), the 

ingestion of caterpillars or only urticating hairs, may have dramatic consequences like 

tongue necrosis in dogs (Jans 2008) (Moneo et al. 2014). Most of the information about 

the release of true setae in Lepidoptera are related to Thaumetopoea spp. (Démolin 1963, 

Lamy 1982). 

 

Processionary moths (Lepidoptera: Notodontidae, Thaumetopoeinae) 

The Thaumetopoeinae clade comprises 111 species in 20 genera occurring in Africa, 

Madagascar, Europe, India and Australia (Kiriakoff 1970, Schintlmeister 2013). Most of 

the species studied in this thesis are distributed in Europe except the African Anaphe 

panda and the Australian Ochrogaster lunifer. The genus Thaumetopoea  includes a high 

number of species distributed mainly in the Mediterranean region. The larvae feed on 

trees and shrubs such as Pinaceae (pine, cedar), Anacardiaceae (pistachio, sumac) and 
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Cistaceae, with the exception of one species feeding on Fagaceae (oak) (Simonato et al. 

2013). The species considered in this studies, especially in Chapter 4, are listed below. 

Table 1. List of the Thaumetopoeinae species analysed in this thesis 

Family Species 
 

   

Notodontidae Anaphe panda Biosduval 

Notodontidae Ochrogaster lunifer Herrich-Shäffer 

Notodontidae Thaumetopoea bonjeani Powell,1922 

Notodontidae Thaumetopoea herculeana Rambur 1840 

Notodontidae Thaumetopoea ispartaensis Doganlar and Avici 2001 

Notodontidae Thaumetopoea libanotica Kiriakoff  and Talhouk 

Notodontidae Thaumetopoea pinivora Gotland, Sweden 

Notodontidae Thaumetopoea pityocampa Denis and Schiffermüller 

Notodontidae Thaumetopoea pityocampa ENA 
(Eastern-Northern Africa)

 

 

Notodontidae Thaumetopoea processionea Linnaeus, 1758 

Notodontidae Thaumetopoea solitaria Freyer, 1838 

Notodontidae Thaumetopoea wilkinsoni Tams, 1925 

 

Phylogenetic studies linked to ecological and life history traits identified three main 

clades of processionary moth. Clade A includes Th. herculeana, Th. processionea and Th. 

Solitaria, clade B Th. pityocampa ENA, Th. pityocampa and Th. Wilkinsoni, clade C Th. 

bonjeani, Th. ispartensis, Th. libanotica and Th. pinivora. All species feeding on Pinaceae 

belong to clades B and C, while all species feeding on Angiosperms are grouped in clade 

A. The clades B and C showed different adaptations, the first with a switch of larval 

feeding to cold season and the second with a retraction to high altitude and latitude and a 

development cycle extended over two years (Fig. 2). The clade A has a fast spring 

development of larvae (Simonato et al. 2013). 
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Figure 2. Phylogenetic scheme of some processionary moth species described in Simonato et al. 2013 

Urticating system in processionary moths  

Setae production and morphology was first studied in the pioneering work of Fabre 

(1900), continued by Démolin (1963), Lamy et al. (1982) and Novak et al. (1987) (Moneo 

et al. 2014). Thaumetopoea larvae use the setae to protect themselves against predators; 

when are disturbed, the larvae opens the mirror releasing the setae (Fig. 4) that are carried 

by the wind away from the tent and persist in the environment for long time; for this 

reason their nature is very different from those of other types of defensive hairs occurring 

in Lepidoptera, which are part of the integument and require contact with the larva to 

cause the reaction (e.g. the larvae of Saturniidae, Megalopygidae and Limacodidae), 

while they are similar to urticating setae released by some spiders from America 

(Theraphosidae) (Battisti et al. 2011). The urticating setae are renewed at each molt since 

the 3rd larval instar (Fig. 3) and the larval exuvia may carry the setae that were not 

dispersed during the previous instar. All studied species of the Thaumetopoeinae are 

known to carry urticating setae, either as a larva (genus Thaumetopoea) or as an adult, 
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which use them to protect eggs and larvae of the next generation (e.g. Anaphe from 

Africa and Ochrogaster from Australia) (Lamy et al. 1984, Floater 1998). The only 

exception was Th. herculeana, that was not considered urticant in literature. During my 

thesis I had the possibility to better explore the life history of this species (see below in 

the Supplementary chapters) and I found that also Th. herculeana presents the same 

urticating system of the other Thaumetopoea, but not very efficient because the mirrors 

do not open upon disturbance and the setae are not released. When applied to the human 

skin of a sensitized person, however, they produce the same reactions caused by the setae 

of the other Thaumetopoea.  

 

Figure 3. Scanning of electron photographs of the urticating setae in Thaumetopoea pityocampa (A) and 

scales of Ochrogaster lunifer (B,C). The holes in A indicate the sockets where the sharp proximal end of 

the setae is inserted. The photo B of the scales represents the apices of flat scales and other photo (C), 

section of anal tuft that showing base of flat and filamentous scales (Floater 1998).  

 

The mirrors (Fig. 4) increase with the larval instar and are actively open when the larva is 

disturbed (Démolin 1988). Studies of the seta system of processionary moths, showed a 

wide variation in seta length like in case of Th.pityocampa the longest (680 µm) were 

approximately 14 times longer than the shortest (50 µm) (Petrucco Toffolo et al. 2014). 
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Figure 4. Schematic drawing of the mirrors of Th. pityocampa and scheme of the opening of the setae 

field and release of the urticating setae in Th. bonjeani (modified from Démolin 1988). 
 

Epidemiological studies  

Th. pityocampa larvae induce skin lesions such as urticaria or dermatitis, conjunctivitis 

and rarely respiratory symptoms or even anaphylactic shock. Is clear that the mechanical 

lesion induced by the penetration of the setae in the skin can be responsible for the 

urticaria that is always present, but the setae may contain toxins and proteins which may 

contribute to the inflammation (Ducombs et al. 1979). The first symptoms and signs of 

uricaria include itching, local swelling, red discoloration (erythema) (Hossler 2009) and 

allergic respiratory response, in rare case anaphylactic reactions (Gottschling 2007). The 

mild reaction after mild symptoms disappeared in three weeks. Often, the reactions occur 

in isolated persons; than can be related to exposure in areas of heavily infested tree or  in 

areas close from the infested trees, but with a strong wind (Moneo et al. 2014). Most 

studies described isolated cases of persons, such as one of Th. processionea (6% of 1,025 

persons living in radius of 500m from infested trees) (Maier et al. 2003) one of Th. 

pinivora (18% of 4,300 persons living in an infested area of about 3,500 ha) (Holm et al. 

2009). Two cases of Th. pityocampa confirm that these reactions are common in endemic 

areas. In the first case 9% of 653 children living in a rural area had reactions, in the 

second case 12% in rural areas, 10 % in semi-urban areas and 4 % in urban areas of 1,224 

adults (Vega et al. 2003). The data shows that peripheral urban areas with nearby 

pine/oak trees are also areas with a high incidence of Thaumetopoea reactions (Moneo et 

al. 2014). 



Chapter1 - Introduction 

22 

 

The urticating mechanism 

Setae are build up by chitin, a polysaccharide biopolymer composed of N-acetyl-β-D-

glucosamine and proteins, and are covered by a layer of tannin-bound lipoprotein, wax, 

and mucopolysaccharides (Chapman 1998). The percentage of chitin present in the 

urticating setae of Th. pityocampa in a population of Northern Italy was as high as 36.8% 

(unpublished data), bringing us to think that the rest is mainly protein. The chitin action is 

not clear yet, although it can stimulate alone in vitro human T-lymphocyte proliferation 

(Holm et al. 2014). A much stronger proliferation, however, is induced by setae of Th. 

pinivora in persons previously exposed to the setae, indicating that setae contain 

molecules which may start cell-mediated immune response (Holm et al. 2014). In the 

hypothetical scheme proposed by Battisti et al. (2011), the penetration of the seta into the 

skin induces the macrophages to produce chitinases together with proinflammatory 

cytokines and other inflammatory and immunoregulatory mediators that break down 

chitin and start complex interactions with cells of the immune system like T-lymphocytes 

(Lee et al. 2008). Chitinase break down the chitin skeleton of the setae and chitin 

fragments, proteins and other antigenic components are released. Setae proteins are taken 

up and processed by antigen cells (APCs) and presented to lymphocytes for a specific 

immune response. Chitin fragments promote inflammation and further proliferation of 

lymphocytes (Fig. 5).  

 

 

Figure 5. Tentative role of setae as inducers of inflammation and immune reaction in the skin (from 

Battisti et al. 2011) (see text for an explanation). 
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The most likely function of the setae seems to be the protection against the vertebrate 

predators of these insects (Battisti et al. 2011). Indirect evidence comes from the 

observation that generalist predators avoid the larvae of the pine processionary moth 

Thaumetopoea pityocampa, with the exception of few bird species (cuckoo, hoopoe, tits) 

which developed foraging techniques to avoid the ingestion of the setae (Barbaro and 

Battisti, 2011).The reaction correlated to the contact with the setae appears to be quite 

complex. While the activity of chitin is still under investigation, the presence of a protein 

with allergic activity has been studied and demonstrated in Thaumetopoea pityocampa. 

Three different antigens reactive with IgE antibodies of previously exposed persons have 

been described in both larval and setae extracts. The first work was done by Lamy et al. 

(1986), who described a 28 kDa dimeric protein called thaumetopoein extracted from the 

setae. This protein is formed by two subunits, one of 13 kDa and the other of 15 kDa. 

Two years later, the same scientific group described a homologue of thaumetopoein in the 

setae of the oak processionary larva (Th. processionea) (Lamy et al. 1988). This protein 

exhibited the same urticating effect as thaumetopoein in the guinea pig skin. Later, 

Moneo et al. (2003) purified a 15 kDa protein from larvae extracts, named it Tha p 1 and 

identified it as a major allergenas it was recognized by IgE antibodies from previously 

exposed persons. This protein was purified by ethanol fractionation by differential 

precipitation of a whole larval extract followed by separation by a reversed-phase high 

performance liquid chromatography (RP-HPLC). The amino acid terminal sequence 

GETYSDKYDTIDVNEVLQ for Tha p 1 was obtained and at that time no similarities 

with other proteins were found using the web interface BLAST of the USA National 

Centre for Biotechnology Information (NCBI). Several years later, however, the complete 

sequencing of the silkworm Bombyx mori genome led to classify Tha p 1 as a 

chemosensory protein (Larsson and Backlund 2009), similar to those found in this species 

(Picimbon et al. 2000). Mature Tha p 1 mRNA (Fig. 6) could be sequenced isolating the 

larva RNA using the traditional method of TRIzol and performing a retrotranslation 

followed by a polymerase chain reaction (RT-PCR). 
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Figure 6. Complete sequence of Tha p 1 mRNA and its translation to amino acids. Stop codon is 

identified as a dash. Signal peptide is underlined (European Nucleotide Archive accession number 

HE962022) (from Moneo et al. 2014). 

Tha p 1 was modelled upon the crystalline structure of the chemosensory protein 10 from 

Bombyx mori, using the web interface Fist approach mode of Swiss-model (Moneo et al. 

2014). Despite the high homology between the chemosensory proteins of Th. pityocampa 

and B. mori, person  sensitized to the pine processionary larva did not recognize any 

protein of a silkworm whole body crude extract (unpublished data by Moneo). The 

second protein Tha p 2 was extracted from the setae by Rodriguez-Mahillo et al. (2012) 

and characterized as a 14 kDa protein using biochemical and molecular techniques (Fig. 

7). It has no similarity with Tha p 1 and it may correspond to the thaumetopein described 

in 1985, also extracted from the setae, but unfortunately no information about the 

sequence of this allergen was provided. It is interesting to note that Tha p 2 showed 

similarity in the carboxyl terminal region to a hypothetical protein of Acyrthosiphon 

pisum, the pea aphid. This fact suggested that both proteins could be members of an 

unknown family of insect proteins and that more allergens of this family could be found 

in the future.  
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Figure 7. Tha p 2, a protein of  14 kDa isolated from the setae of Th. pityocampa) (Rodriguez-Mahillo et 

al. 2012). 
 

Objectives and content of the thesis 

Most of my work has concerned Tha p 2 in a comparative study aiming at identify and 

characterize the orthologous counterparts in all the Thaumetopoea moths, as well as in 

other species of Thaumetopoeinae, and understand the evolution of the protein and the 

nature of encoding genes (Chapter 4). In this perspective, a part of the study focalized on 

the expression profile of Tha p 1 and Tha p 2 in every life stage of Thaumetopoea 

pityocampa (Chapter 3).This study was conduct with technique of NGS (Next-Generation 

Sequencing) that revolutionized genomics research by bringing the sequencing of entire 

genomes or transcriptome like in our case. NGS generate a large number of reads but in 

higher speed, lower cost, and small instrument size. In this case, the transcriptome 

research increased the speed and accuracy of discovering new gene and their expression, 

as well as determining how gene transcription variation are regulated in different life 

stages of the insects. NGS offers the opportunity to generate genome data sets (Wang et 

al. 2009). In particular, RNA-seq is a recently developed large-scale genome wide 

approach that has been applied successfully to gene discovery and expression profiling, 

and to the study of functional, comparative and evolutionary genomics. RNA-seq make 

reference to a transcriptome produced by methods of NGS, which ensure a good coverage 

of transcripts detection (Wang et al. 2009, Oshlack et al. 2010). The transcriptome 

involve all types of ribonucleic acids (RNAs), including the protein coding messenger 

ribonucleic acid (mRNA) and the non-coding ribonucleic acid (ncRNA) such as 

ribosomal RNAs (rRNA), transfer RNAs (tRNA), and the small nuclear RNAs (snRNA). 

These RNAs may be differentially expressed according to the tissue, the stage of 
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development and the physiological condition being accessed (Wang et al. 2009, Anders 

and Huber 2010). The RNA-seq approaches has emerged as a new approach for the 

transcriptome complexity. A transcriptome consists in taking a photograph from a 

specific time in a cell, highlighting only the condition at that short period of time. After 

that bioinformatics analysis is also an important step and includes the use of 

computational tools that guarantee the processing of large volumes of data generated by 

NGS (Gavery and Roberts 2012, Guo et al. 2013). Another aim of this study was the 

characterization of new possible urticating proteins involved in the defense mechanism of 

the Thaumetopoea species (Chapter 2). Tha p 2 protein showed a IgE and IgG recognition 

patterns of 18 Th. pityocampa sensitized person  from whole body and setae extracts (in 

Rodriguez-Mahillo 2012 and Moneo et al. 2014, Fig. 8). Several allergens present in the 

setae extract were detected, although the IgG recognition patterns of the whole body and 

the setae extracts were much weaker then the IgE. Our studies focalized on the 

characterization of all the proteins, urticating and not, occurring in the setae. 

 

 

Figure 8. IgE and IgG detection of proteins of Th. pityocampa whole body and setae. Individual sensitized 

person  (1-18) and healthy donors (C1-C2) sera were tested. Tha p 1 is marked with an arrow while Tha p 2 

is marked with an asterisk (Moneo et al. 2014). The black square indicates another protein which is 

recognized by sera, parlty sequenced and called Tha p 3 by Moneo et al. (2014) 
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Abstract 

The larvae of the pine processionary moth produce urticating setae which are likely used 

for protection against vertebrate predators. Contact with urticating setae by humans and 

animals induces dermatitis, usually located in the exposed areas. Reactions are common 

in pine wood area workers, who are exposed to high levels of setae, but also in persons 

non-occupationally exposed to processionary larvae, such as farmers living near infested 

areas. Recent studies demonstrated the presence of a complex urticating mechanism 

where the proteins present in the urticating setae may play a role as activators of immune 

responses. A complete data set of all proteins, , occurring in the setae is not available. In 

this work, two different protein extraction protocols of different strength were tested and 

a total of 182 urticating and not-urticating proteins were obtained. We confirm that the 

setae of Th. pityocampa contain many proteins, some of which are recognized by Ig-E of 

persons manifesting dermatitis when exposed to the larvae of this insect. In addition, we 

add information about the type, quality and quantity of the proteins associated with the 

setae. 

 

Introduction 

Pine processionary moth (Thaumetopoea pityocampa) larvae are a medical and veterinary 

problem in Mediterranean countries, Southern Europe, Middle East and Northern Africa 

because of the reactions caused to humans and warm-blooded animals (Battisti et al. 

2011). Reactions are common in pine wood area workers, who are exposed to high levels 

of setae, but also in persons non-occupationally exposed to processionary larvae, because 

of the setae are dispersed by the wind on long distance (Fenk et al. 2007, Petrucco 

Toffolo et al. 2014). Contact dermatitis and urticaria are the most frequent symptoms 

related to the exposure to this insect (Vega et al. 1999).  

In addition to the mechanical effect of the seta penetration in the skin, an IgE-

mediated mechanism has been demonstrated as inducer of clinical symptoms (Moneo et 

al. 2014). Lamy et al. (1986) were the first to describe proteins, and their potential 

antigenic action, of Th. pityocampa listing a complex mixture of 16 proteins extracted 

from urticating setae. Among them, a 28 kDa protein not associated to carbohydrates or 

lipids was identified and called thaumetopoein, further separated in two subunits of 13 

and 15 kDa. This protein induced mast cell degranulation by a non-immune mechanism 

(Lamy et al. 1985). Two years later, the same group described a homologue of 
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thaumetopoein in the setae of the oak processionary larva Th. processionea (Lamy et al. 

1988) with the same effect. Additionally, a 45 kDa protein extracted from pine 

processionary setae gave also a strong reaction with IgE (Werno et al. 1993). Later, 

several IgE-binding proteins putatively involved in allergic reactions were described by 

Moneo et al. (2003), using a crude extract of whole larvae in the last stage (L5). They 

identified a protein named Tha p 1, with molecular mass of 15 kDa as a major allergen, 

but could not compare its amino acid sequence with thaumetopoein because it had not 

been sequenced. The amino acid terminal sequence GETYSDKYDTIDVNEVLQ for Tha 

p 1 was obtained but the full sequence was published only in 2014 (Moneo et al. 2014). In 

the while, the Tha p 1 was found to belong to the chemosensory protein family by 

Larsson and Backlund (2009), by comparing it with the complete sequencing of the 

silkworm Bombyx mori genome, where there are similar proteins (Picimbon et al. 2009). 

Another protein with antigenic role against sera of previously exposed persons 

was described by Rodriguez-Mahillo et al. (2012) from a seta extract. This protein has 

been sequenced and called Tha p 2, with molecular mass around 14 kDa; in addition, 

these authors demonstrated that the setae contain a complex mixture of about 70 proteins, 

some of those recognised by human sera. Very recently, Holm et al. (2014) have shown 

that cultivated human lymphocytes of previously exposed persons proliferate when in 

contact with setae and setae extracts of the closely related species Thaumetopoea 

pinivora, indicating the occurrence of a cell-mediated immune response. As proteins of 

the setae are bound to chitin, these authors also explored the possibility that chitin per se 

was able to induce lymphocyte proliferation in vitro and the result was positive, although 

not different between persons previously exposed or not.  

The aim of this work is to establish a clear data set of the proteins extracted from 

the urticating setae of the pine processionary larvae, by testing different protein extraction 

methods  and creating a large profile of proteins to be used in future work on allergic 

reactions. 

 

Materials and Methods  

Setae collection  

Larval colonies of Th. pityocampa were collected in March 2013 from Pinus nigra trees 

in Tregnago (Verona, Italy). Each individual of the larval instar L4 and L5 was taken out 

from the tent in a hood and put in an Eppendorf tube at -20°C. Later the setae were 
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removed from thawing larvae with forceps under stereomicroscope with x40 

magnification, inside a hood. About 2,000,000 of urticating setae were collected from 20 

larvae.  

 

Protein extraction from the setae  

According to the method developed by Olivieri et al. (2013), the setae were put in an 

Eppendorf with 100 µl of H2O solution and proteins were extracted in ice using an 

homogenizer, with two cycles of 30 seconds at maximum speed. The sample was then 

centrifuged at 12,000 xg for 30 minutes and the supernatant stored at -80°C until used. 

The supernatant was then quantified by the DC Protein assay reagents. We also used a 

variant of this method (called here Hepes), consisting in using acetone instead of water, 

which allows a quick detachment of the setae from the forceps, and the following 

procedure. The setae were frozen in liquid nitrogen, broken by sonication, then 

centrifuged for 2 minutes at 16,000 rpm  and crushed in 1.5 ml extraction buffer made up 

by 50 mM Hepes pH 8, 1% Triton X-100 1M NaCl, 1mM PMSF/Benzamidin. The 

preparation was then stirred for 4 hours at room temperature and centrifuged for 20 

minutes at 14,000 rpm at 4°C. The clear supernatant was taken and the proteins were 

precipitated in 100% acetone at -20°C over night and centrifuged again at 12,000 rpm for 

10 minutes. The supernatant was eliminated while the pellet was washed with acetone 

80% and resuspended in Laemmli solution. The protein content of the solution was 

measured according to the Bradford method (Kruger 1994) and by the use of 

spectrophotometers.  

 

Protein in situ digestion 

The extracts obtained from the water method was used for SDS-PAGE (Sodium 

dodecylsulfate polyacrilamyde gel electrophoresis) using RunBlue Tris-MOPS 4-20% 

precast minigels according to manufacturer’s instructions, while those obtained with the 

Hepes method were loaded into a homemade 13% gel . Proteins were visualized by 

Coomassie staining. The bands were excised and washed several times with 50 mM 

TEAB (triethylammonium bicarbonate) and dried in the vacuum after a short acetonitrile 

wash. Cysteines were reduced with 10 mM dithiothreitol (in 50 mM TEAB) for 1 hour at 

56°C, and alkylated with 55 mM iodoacetamide (in 50 mM TEAB) for 45 minutes at 

room temperature in the dark. Gel pieces were then washed with alternate steps of TEAB 



Chapter 2 – Identification of proteins from urticating setae 

38 

 

and acetonitrile, and dried. Proteins were digested in situ with sequencing grade modified 

trypsin (Promega, Madison, WI, USA) at 37°C overnight (12.5 ng/μl trypsin in 50 mM 

TEAB). Peptides were extracted with three steps of 50% acetonitrile in water. One µg of 

each sample was withdrawn to check digestion efficiency using LC-MS/MS analysis, and 

the remaining peptide solution was dried in the vacuum. 

LC-MS/MS analysis and database search, and protein quantification 

The extract obtained from the Hepes method was suspended in H2O/0.1% formic acid and 

analyzed by LC-MS/MS. The MS analyses were conducted with a LTQ-Orbitrap XL 

mass spectrometer (Thermo Fisher Scientific, Pittsburgh, CA, USA) coupled online with 

a nano-HPLC Ultimate 3000 (Dionex - Thermo Fisher Scientific). Samples were loaded 

onto a homemade 10 cm chromatographic column packed into a pico-frit (75 mm id, 10 

mm tip, New Objectives) with C18 material (ReproSil, 300 A°, 3 mm). The LC 

separation and mass spectrometer instrumental settings used for the analyses were the 

same as those described in Tolin et al. (2013) and the method was as described by Köcher 

et al. (2009). The raw LC-MS/MS files were analyzed using Proteome Discoverer 1.4 

(Thermo Fisher Scientific), connected to a Mascot Search Engine server (Matrix Science, 

London, UK). The spectra were searched against a transcriptome protein database 

provided by Centre de Biologie et Gestion de Populations (INRA Montpellier, France). 

Enzyme specificity was set to trypsin with two missed cleavages, and peptide and 

fragment tolerance was set to 10 ppm and 0.6 Da, respectively. Based on the search 

against the corresponding randomized database, false discovery rates (FDR) of 5% were 

calculated by the Proteome Discoverer. The data were pre-filtered to exclude MS/MS 

spectra containing less than 5 peaks or with a total ion count below 50. 

 

Bioinformatics analyses 

All proteins extracted by the Hepes method were identified with at least two independent 

peptides with a high degree of confidence. The list of protein was exported in Excel 

further filtering and cleaning of the same peptides. BLASTp (Basic Local Alignment 

Search Tool) provided by NCBI web site (Altschul et al., 1990) was used for indentifying 

any possible homologous protein, by selecting the proteins with the highest identity value. 

Study of function of proteins was provided by UniProt (Bairoch et al. 2005). A dataset 

with all BLAST proteins, their description, the BLAST species, % of coverage, and 
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number of peptide mapped was also created, together with a dataset of proteins with the 

same function. 

 

Protein recognition by human sera 

Proteins obtained by the extraction in water were transferred onto PVDF (polyvinylidene 

difluoride membrane) using a Gel Casting Kit (GE Healthcare Hoefer
TM

) for 1 hour at 

25V and 400mA. Blots were incubated with a pool of sera of 5 forestry workers. These 

persons were suffering from pruritic skin reactions, especially between February and 

April, when the larvae are more active and they were working in areas with pine trees 

infested by Th. pityocampa. The sera were diluted 1:2 in PBS (Phosphate Buffered 

Saline) containing 3% bovine serum albumin and 0.05% Tween for 16 hours at 4°C; then 

washed and probed with secondary antibodies (anti-Human IgE) conjugated with 

horseradish peroxidase for 1 hour at 25°C. After washing, the membrane was developed 

with the enhanced chemiluminescence kit ECL Immun-star HRP (BioRad). 

Chemiluminescence was detected using the ChemiDoc imaging system (BioRad). 

Quantity One software (BioRad) was used to perform the quantitative analysis of the 

bands. 

The protein product of the Hepes extraction was used for a dot blot screening of 

16 persons taken randomly from three different group of persons sera for a representative 

number of persons different for symptoms and exposition, grouped as follows: n.8 sera 

from persons showing clinical symptoms after repeated exposure to processionary larvae, 

n.5 sera of persons with occasional exposure to processionary larvae, and n.3 sera from 

atopic patients without any symptom related to larvae exposure. A total of 3µl of 

supernatant were put in a nitrocellulose membrane and the non-specific sites were 

saturated by soaking in 5% BSA and washed in TBS-T for 1 hour at room temperature . 

Two washing steps, each of 5 minutes, with Tris 10 mM NaCl 140 mM pH 7.4 0.05% 

Tween (TBS-T) were carried out. Then the sera (primary antibody) were incubated for 2 

hours, washed 4 times with TBS-T, incubated with secondary antibody anti-IgE diluted 

(conjugated to HPR S A-9667) 1:10,000 for 1 hour at room temperature, washed 3 times 

with TBS-T and visualized with Bio-Rad. 
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Results  

Sodium dodecylsulfate-polyacrilamyde gel electrophoresis (SDS-PAGE) of proteins 

The extraction with sterile water (first method) revealed the presence of a clear band at 75 

kDa and of several weak bands at different molecular weight as shown in Fig. 1. The 

SDS-PAGE of the Hepes method also revealed the presence of many proteins. A clear 

band was detected at high molecular weight, ~100 kDa and others between 8 kDa and 12 

kDa. The clear bands and the smear obtained from both extraction methods were excised 

and successively digested.  

 

 

Figure 1. SDS-PAGE of protein extraction. The left gel represents the water extraction while the right one 

the Hepes method. Numbers refers to the molecular weight and the letters to the marker (M) and 

supernatant (S). 

 

The MS-based identification of proteins 

The results of the LC-MS/MS analyses against the Th. pityocampa transcriptome 

identified 182 proteins and 92 different protein families. The urticating protein Tha p 2 or 

parts of it were identified in all the bands of the Hepes method. Notably, four peptides in 

each gel bands and 5 in only one band, coded for Tha p 2, that mapped a total of 86 amino 

acids of the protein (Fig. 2). All 5 peptides were coded in a band of 8 kDa. In addition, 

another protein similar to Tha p 2,  with a sequence coverage equal to 84% in BLASTp, 

was also identified in all gel bands. In total, only two proteins showed a higher 

abundance, being present in all the bands (Tha p 2, and the protein highly similar to Tha p 

2), while the Tha p 1 protein was identified only in two gel bands localized at ~12 kDa. 

Only 115 protein were indentify for one time in the total running gel, those that remain 
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appears more than one time. The full list of the identified proteins by BLASTp and their 

putative biological functions identified by UniProt are provided in the Annex Table at the 

end of the chapter. Only one protein did not match in BLAST database (see the Annex 

Table at the end of the chapter). Concerning the protein families distinguished, those with 

a frequency protein in the gel, higher than 10 times were selected (Fig. 3): hypothetical 

proteins (30), urticating proteins Tha p (26), arylphorin proteins (17), histone proteins 

(15) secreted proteins (15), aldo-keto reductase proteins (14), uncharacterized proteins 

(10), glycine rich proteins (10), chemosensory proteins (10). The other proteins exhibited 

a frequency lower than 10.  

 

Figure 2. Alignment of the sequence of Tha p 2 and peptides obtained by LC-MS/MS. The Pep 4 was 

identify only one time.  
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Figure 3. Graphic representation of the protein families. Only the protein families with a frequency value 

≥ 10 were used. 

 

Protein recognition by human sera  

The recognition of the proteins obtained from the first extraction method by human sera is 

shown in Fig. 4. At least two bands reacted with the pool of the 5 allergic sera tested. The 

molecular weight of these bands was  75 kDa and 45 kDa. The recognition of the proteins 

from the Hepes extraction is shown by the dot blot test in Fig. 4. The positive response of 

the sera was determined by the visualization of a black dot at the centre of the 

nitrocellulose paper. The test identified 10 persons with strong response, 3 with a medium 

level of response, and 3 without recognition. All the persons with a frequent exposure and 

symptoms answered positively to the antigen, and also three out of five occasionally 

exposed persons, although without symptoms, had a positive response. Only one person 

(serum number 13) had a positive recognition without any declared symptom and 

exposure. 
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Figure 4. Western blot (left) and dot blot (right).Western blot anti-IgE of the a pool of sera of 5 persons 

previously exposed to setae, obtained with proteins from the water extraction method. Dot blot anti-IgE of 

the sera of 16 persons obtained with proteins from the Hepes extraction method. Persons 2, 3, 8, 10-16: 

positive recognition; persons 1, 4, 5: low recognition; persons 6, 7, 9: no recognition. 

 

Tabale 1. Response of the sera persons of dot blot. Were indicate the number identity of persons, the 

response P (positive) N (negative), the presence (yes) or absence (no) of symptoms and frequency of 

exposition during the life. 
Persons Response Symptoms Type of Exposure 

1 P (low recognition) yes occasional 

2 P yes frequent 

3 P yes frequent 

4 P (low recognition) no occasional 

5 P (low recognition) yes occasional 

6 N no absent 

7 N yes frequent 

8 P yes frequent 

9 N no absent 

10 P yes frequent 

11 P yes frequent 

12 P no occasional 

13 P no absent 

14 P yes frequent 

15 P no occasional 

16 P yes frequent 
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Discussion 

In this paper we confirm that the urticating setae of Th. pityocampa contain proteins, 

some of which are recognized by Ig-E of forestry workers presenting intense skin 

reactions when exposed in the infested area of the larvae of this insect. In addition, we 

contribute new information about the quality and quantity of the proteins associated with 

the setae, thanks to the availability of a transcriptome protein database of Th. pityocampa 

provided by Centre de Biologie et Gestion de Populations (INRA Montpellier, France). 

The extraction of the setae with the variant of the method proposed by Olivieri et 

al. (2013) allowed the precipitation of a large amount of protein material. Since the 37% 

of the urticating setae are made by chitin (unpublished data), this brings us to think that 

most of the rest is mainly proteins. A technique that permits a good extraction of all 

proteins, however, is still missing.  

Extraction methods 

In the first study on the setae (Lamy et al. 1986), proteins were extracted from 

setae and from cuticles with the same method, consisting of an immersion in liquid 

nitrogen followed by crushing in a saline solution. A total of 16 proteins were detected in 

the setae extract while 25 proteins were detected in the cuticle. One protein of 28 kDA, 

composed by two sub-units of 13 and 15 kDa, was found only in the setae and was 

recognized as an antigen called thaumetopoein. Later, Moneo et al. (2003) focused only 

on whole larva extract, which was obtained after maceration in a saline solution, agitation 

for 24 hours and precipitation of the supernatant in ethanol. With this method they were 

able to obtain a number of proteins among which one of 15 kDa which was named Tha p 

1 because of its allergenic power. Fuentes Aparicio et al. (2004) also started from the 

mature larvae, which were ground in liquid nitrogen and then extracted by magnetic 

stirring in agitation in phosphate-buffered saline (PBS). This method permitted to detect 

proteins of molecular mass ranging between 14 and 107 KDa, with several of them being 

recognized as antigens. They also found that some bands appeared only in absence of β-

mercaptoethanol (non reducing conditions). Two years later, Fuentes Aparicio et al. 

(2006) prepared same the extract with the mature larvae and confirmed the previous 

results. 

Rodriguez-Mahillo et al. (2012) compared the crude larval extract obtained by 

Moneo et al. (2003) with a setae extract, resulting from mixing the setae in a phosphate-

buffered saline (PBS) followed by sonication on ice. The method allowed the discovery 
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of about 70 proteins from the setae extract, 7 of which were recognized by sera of 

exposed persons. One of them was found to be a major allergen different from Tha p 1 

and was then called Tha p 2. 

These considerations and our results suggest that a large amount of protein can be 

obtained from the setae when a preliminary step in liquid nitrogen is followed by crushing 

in saline solution or sonication, indicating that setae need to be broken in order to release 

an additional amount of proteins. Harsher extraction conditions, such as the use of high 

amounts of detergents rather than just sterile water, released further amounts of proteins 

from the setae. The Hepes extraction method allowed to detect the presence of a high 

number of proteins (181) not identified as allergens. This may suggest that during their 

growth, the urticating setae may become a sink for proteins occurring in the cytoplasm of 

the forming epidermal cells and perhaps also for blood proteins, which can easily enter 

the epidermis (Chapman 1988)). The sink function can be explained by the huge number 

of setae which have to be formed in a short time during each molt (up to 1,000,000 in a 

5
th

 instar larva) (Petrucco Toffolo et al. 2014) and the urgent need for the chitin fibers to 

be embedded with proteins (Andersen et al. 1994), to provide the setae with a rigid 

structure that is functional to skin penetration (Battisti et al. 2011).  

The presence of Tha p 2 or its parts in all bands obtained with the Hepes 

extraction method and its overall frequency in the protein profile (18%) confirms the 

reliability of the extraction method and leads to think that there are 86 amino-acids 

divided in peptides of different length that remain embedded in other proteins of different 

molecular weight. The amino-acids probably process the urticating element or 

characterize the component sequence of a Tha p protein family with a common 

evolutionary origin from a hypothetical ancestral gene (Andersen et al. 1994). The 

presence of Tha p protein family could also be hypothesized based on the detection of a 

protein with a sequence similar to Tha p 2, although the allergenic role of this second 

protein needs to be demonstrated.  

Sera response 

Overall we can conclude that the positive dot blot of the sera of persons previously 

in contact with urticating setae, although at different level of exposure, prove the 

occurrence of allergenic protein components of the setae extract. The positive response of 

the persons without any symptom but with exposure could be associated to the deficiency 

of their immune system, while the case of the person (serum number 13) who responded 
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without previous record of exposure should be further explored for confirmation with a 

more detailed analysis. The positive response of sera of exposed persons to a protein of 

about 75 kDa and 45 kDa, obtained with the first extraction method (water) could be 

explained either by the milder nature of the extraction or by the specificity of the 

insect/human population tested. The sera of sensitized persons used by Rodriguez-

Mahillo et al. (2012) came from Spain and recognized especially an allergen of 14 kDa 

obtained from the setae of an Italian population of processionary moth, close to the one 

used in this work. Those sera in any case detected also several high molecular weight 

proteins, and one of them could correspond to the 75 kDa or 45 kDa proteins detected in 

our work where Italian persons were tested. It seems thus that the detection of proteins at 

different molecular weight as allergens may depend on the strength of the extraction 

method more than to the origin of either the insects or the humans, although more work 

has to be done in this regard.  

Concluding remarks 

In addition, the detection of fragments of Tha p 2 in proteins of different 

molecular weight could open a new way to understand the immunologic component in the 

complex mechanism of reaction to setae in humans. In this perspective, also the chitin 

component is a recognition element for tissue infiltration by innate cells implicated in 

allergic and immunity (Reese et al. 2007). The chitin action is not clear yet, although it 

can stimulate alone in vitro human T-lymphocyte proliferation (Holm et al. 2014). A 

much stronger proliferation, however, is induced by setae of Th. pinivora in persons 

previously exposed to the setae, indicating that setae contain molecules which may start 

cell-mediated immune response (Holm et al. 2014). A previous study (Rodriguez-Mahillo 

et al. 2012) demonstrated that the specific IgG was not found in the majority of sensitized 

persons and suggested that processionary larvae induce a predominantly IgE-mediated 

response in humans. This fact led us to believe that after skin penetration, allergens could 

be delivered to the immune system in a dual way: a fast release of allergens present on the 

outside of the setae and a slow or very slow release that must occur after degradation of 

the setae by chitinases (Moneo et al. 2014). In conclusion, the setae are considered a 

source of allergens and the risk for humans and animals is very high; they constitute a 

serious hazard, but the components, the quantity, the function and the real urticating 

protein family or components must be further investigated. 
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In the future, we aim to extend the extraction of the urticating setae to other 

species of processionary moths and try to determine if the protein extracted from 

urticating setae are the same. We aim also at repeating the immunologic tests with other 

persons who were exposed or not to the larvae to better understand the specificity of the 

response to the urticating setae. Finally, we will also look at the occurrence of similar 

types of responses in the animals which are considered the natural target of the setae, like 

the insectivorous birds. 
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Annex Tabele.  Full list of the proteins identified by BLASTp and their putative biological 

functions identified by UniProt.  

CDS identity Homology Species homology % Coverage N. peptide 

cds.c247563_g2_i3 Allergen Tha p 2 Thaumetopoea 
pityocampa 

100% 5 

cds.c165818_g1_i1 Allergen Tha p 2 Thaumetopoea 

pityocampa 

84% 5 

cds.c250969_g2_i1 thioredoxin-2 Papilio xuthus 80% 3 

cds.c252880_g4_i1 GI22343 Drosophila mojavensis 34% 7 

cds.c128348_g1_i1 hypothetical protein 3  Trichoplusia ni 90% 6 

cds.c222697_g1_i2 unknown secreted protein Papilio polytes 85% 3 

cds.c245091_g1_i1 chemosensory protein Danaus plexippus 93% 5 

cds.c237613_g1_i1 WAP four-disulfide core domain protein 

2 

Papilio xuthus 97% 1 

cds.c22118_g1_i1 Neurobeachin Cerapachys biroi 70% 1 

cds.c256696_g1_i1 thioredoxin-2 Papilio xuthus 80% 2 

cds.c244184_g2_i1 BCP inhibitor precursor Bombyx mori 96% 1 

cds.c246506_g2_i12 acyl-CoA binding protein 1 Sesamia inferens 69% 2 

cds.c234296_g2_i2 hypothetical protein  Danaus plexippus 72% 2 

cds.c247894_g2_i4 glycine-rich protein Bombyx mori 65% 2 

cds.c356727_g1_i1 cuticular protein glycine-rich 10 
precursor 

Bombyx mori 84% 4 

cds.c230591_g3_i2 polyubiquitin-B-like isoform Coptotermes formosanus 100% 2 

cds.c255122_g2_i2 saposin Papilio polytes 97% 2 

cds.c255774_g1_i2 hypothetical protein  Danaus plexippus 48% 1 

cds.c217974_g1_i3 unknown secreted protein Papilio xuthus 97% 3 

cds.c253205_g1_i3 arylphorin Cerura vinula 97% 33 

cds.c255429_g2_i4 arylphorin type 2 Cerura vinula 98% 36 

cds.c255264_g5_i5 hexamerine Helicoverpa armigera 100% 15 

cds.c248008_g1_i1 aldo-keto reductase Agrotis ipsilon 99% 15 

cds.c111339_g1_i1 actin-4 Bombyx mori 100% 10 

cds.c245915_g1_i5 catalase Spodoptera exigua 100% 9 

cds.c227972_g2_i1 histone H1 Oreta rosea 44% 3 

cds.c248262_g3_i7 mitochondrial aldehyde dehydrogenase Danaus plexippus 95% 3 

cds.c250933_g2_i1 storage protein 1 Plutella xylostella 100% 6 

cds.c246942_g1_i1 heat shock protein 70 Spodoptera litura 100% 2 

cds.c146340_g1_i1 glycogen phosphorylase  Microplitis demolitor 100% 3 

cds.c227993_g2_i1 cysteine-rich venom protein ENH1-like   Bombyx mori 100% 1 

cds.c182227_g2_i1 DEHA2F04796p Debaryomyces hansenii 100% 1 

cds.c254783_g3_i8 alpha-actinin, sarcomeric-like  Bombyx mori 99% 3 

cds.c238976_g1_i2 apolipophorin III Trichoplusia ni 87% 1 

cds.c255169_g1_i9 methionine-rich storage protein 2 Manduca sexta 100% 4 

cds.c234385_g1_i1 juvenile hormone binding protein  Bombyx mori 95% 2 

cds.c218396_g2_i1 enolase Spodoptera litura 100% 9 

cds.c252682_g3_i6 triosephosphate isomerase Helicoverpa armigera 100% 1 



Chapter 2 – Identification of proteins from urticating setae 

52 
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cds.c162537_g1_i1 peptidyl-prolyl cis-trans isomerase  Papilio xuthus 100% 2 

cds.c324063_g1_i1 translation initiation factor  Cerapachys biroi 100% 1 

cds.c239062_g1_i2 uncharacterized protein Nasonia vitripennis 87% 1 

cds.c246705_g3_i1 elongation factor  Nasonia vitripennis 100% 2 

cds.c252804_g1_i2 GI22710 Drosophila mojavensis 35% 1 

cds.c265904_g1_i1 sorting nexin-13-like isoform   Nasonia vitripennis 99% 1 

cds.c237572_g1_i1 alpha-N-acetylgalactosaminidase 

precursor 

Bombyx mori 100% 1 

cds.c12924_g1_i1 40S ribosomal protein S3a-like  Musca domestica 100% 1 

cds.c155109_g1_i3 Lin-9-like protein Harpegnathos saltator 100% 1 

cds.c255660_g2_i10 unconventional myosin-XV-like  Bombyx mori 88% 1 

cds.c251838_g1_i5 imaginal disc growth factor-like protein Mamestra brassicae 100% 1 

cds.c250126_g4_i1 diapause bioclock protein Bombyx mori 100% 8 

cds.c257062_g1_i1 hypothetical protein  Bombus terrestris 97% 1 

cds.c334690_g1_i1 uncharacterized protein  Microplitis demolitor 100% 1 

cds.c162397_g1_i1 syntrophin Aedes aegypti 99% 1 

cds.c248008_g2_i1 aldo-keto reductase Agrotis ipsilon 98% 12 

cds.c249761_g5_i1 hypothetical protein  Danaus plexippus 99% 8 

cds.c249761_g6_i2 hypothetical protein  Danaus plexippus 99% 8 

cds.c255264_g5_i10 hexamerine Helicoverpa armigera 98% 8 

cds.c190487_g1_i3 heat shock protein Helicoverpa armigera 100% 5 

cds.c255169_g1_i3 methionine-rich storage protein 2 Manduca sexta 97% 6 

cds.c254857_g2_i1 heat shock protein  Spodoptera litura 99% 4 

cds.c231404_g2_i2 nucleobindin-2-like isoform   Bombyx mori 64% 2 

cds.c252693_g6_i3 hypothetical protein  Danaus plexippus 99% 1 

cds.c252077_g1_i7 Moesin A  Spodoptera frugiperda 93% 2 

cds.c214759_g1_i2 coatomer protein complex subunit delta Bombyx mori 100% 1 

cds.c245626_g1_i2 hypothetical protein  Lonomia obliqua 46% 6 

cds.c207263_g1_i3 TBC1 domain family member  Bombyx mori 98% 1 

cds.c223078_g1_i1 yellow-c Heliconius melpomene 99% 13 

cds.c162794_g1_i1 uncharacterized protein  Apis dorsata 94% 1 

cds.c250954_g3_i4 hypothetical protein  Danaus plexippus 93% 1 

cds.c9578_g1_i1 protein phosphatase 1 regulatory subunit 
21 isoform   

Nasonia vitripennis 100% 1 

cds.c225190_g1_i1 neurogenic protein mastermind-like  Bombyx mori 92% 1 

cds.c243108_g5_i1 actin, clone 205-like isoformX1  Apis mellifera 100% 13 

cds.c241261_g1_i1 unknown similar to AMEV109 Mythimna separata 99% 13 

cds.c238074_g1_i2 imaginal disc growth factor-like protein Mamestra brassicae 100% 12 

cds.c215365_g1_i1 yellow-d Bombyx mori 99% 11 

cds.c254374_g3_i3 hemolin Helicoverpa zea 99% 10 

cds.c237352_g1_i3 serine proteinase-like protein precursor Bombyx mori 100% 5 
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cds.c247424_g3_i3 protein disulfide isomerase Papilio xuthus 100% 5 

cds.c245279_g1_i4 aldo-keto reductase, partial Agrotis ipsilon 69% 5 

cds.c254039_g4_i10 serine proteinase inhibitor-1A Mamestra brassicae 99% 2 

cds.c251564_g7_i2 allantoinase Danaus plexippus 98% 2 

cds.c242998_g2_i1 mitochondrial aldehyde dehydrogenase Danaus plexippus 98% 1 

cds.c242366_g1_i2 calreticulin Papilio xuthus 98% 3 

cds.c193417_g1_i3 alpha-actinin, sarcomeric-like isoform X1  Bombyx mori 91% 1 

cds.c252167_g1_i1 glucose-6-phosphate isomerase Spodoptera exigua 98% 1 

cds.c244264_g3_i1 aldo-keto reductase family 1 Bombyx mori 96% 8 

cds.c248468_g2_i4 phosphoglycerate kinase-like  Bombyx mori 100% 1 

cds.c248232_g3_i2 chymotrypsin inhibitor  Bombyx mori 99% 1 

cds.c252247_g1_i3 uncharacterized protein Nasonia vitripennis 29% 1 

cds.c305352_g1_i1 serine protease inhibitor  Bombyx mori 100% 1 

cds.c246154_g1_i1 tetratricopeptide repeat protein  Bombyx mori 99% 1 

cds.c250370_g3_i2 helicase Lactobacillus apodemi 39% 1 

cds.c235263_g1_i1 putative leucine-rich  Bombyx mori 79% 1 

cds.c229624_g1_i4 chitin deacetylase  Mamestra brassicae 100% 1 

cds.c243533_g8_i1 glycerophosphodiester phosphodiesterase Pseudomonas aeruginosa 87% 1 

cds.c215532_g1_i3 serine/threonine-protein phosphatase  Apis mellifera 100% 1 

cds.c225502_g1_i1 myosin-I heavy chain-like Bombyx mori 97% 1 

cds.c244766_g3_i2 tubulin gamma-1 chain Spodoptera exigua 100% 1 

cds.c244668_g2_i3 serine proteinase-like protein 1 Helicoverpa armigera 100% 1 

cds.c235717_g1_i3 SCO-spondin-like  Bombyx mori 97% 6 

cds.c147708_g1_i1 probable GPI-anchored adhesin-like 
protein 

Acyrthosiphon pisum 67% 1 

cds.c239631_g5_i3 Y+L amino acid transporter 2 isoform X1   Nasonia vitripennis 64% 1 

cds.c250390_g1_i3 probable citrate synthase 1, 

mitochondrial-like  

Bombyx mori 98% 1 

cds.c234385_g1_i2 juvenile hormone binding protein an-

0921 precursor 

Bombyx mori 85% 9 

cds.c245445_g2_i8 unknown protein Helicoverpa armigera 95% 8 

cds.c239913_g1_i2 uncharacterized protein LOC101742613 

isoform  

Bombyx mori 97% 5 

cds.c248232_g2_i3 chymotrypsin inhibitor CI-8A Bombyx mori 99% 6 

cds.c227993_g1_i3 cysteine-rich venom protein ENH1-like  Bombyx mori 100% 7 

cds.c254599_g10_i4 uncharacterized protein  Bombyx mori 98% 5 

cds.c243842_g1_i1 apolipophorin III Trichoplusia ni 100% 9 

cds.c253495_g4_i1 phosphatidylethanolamine binding 
protein isoform 2 

Bombyx mori 100% 6 

cds.c248159_g11_i1 glyceraldehyde-3-phosphate 

dehydrogenase 

Spodoptera frugiperda 100% 3 

cds.c160507_g1_i1 cuticular protein  Danaus plexippus 87% 3 

cds.c243750_g2_i1 phosphatidylethanolamine-binding 

protein  

Bombyx mori 100% 3 

cds.c251040_g1_i1 heat shock protein  Spodoptera litura 99% 3 
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cds.c252733_g3_i1 uncharacterized protein  Bombyx mori 100% 3 

cds.c230658_g2_i3 multiple coagulation factor deficiency 

protein  

Bombyx mori 98% 1 

cds.c251831_g2_i2 vitellogenin Helicoverpa armigera 100% 2 

cds.c236041_g1_i5 histone H2A-like  Nasonia vitripennis 87% 1 

cds.c245890_g4_i2 chitin binding peritrophin-A Papilio xuthus   100% 2 

cds.c248540_g1_i1 unknown secreted protein Papilio polytes 95% 7 

cds.c250475_g7_i1 ML-domain containing secreted protein-
like protein 

Antheraea yamamai 87% 2 

cds.c18274_g1_i1 binding FK506- protein precursor Bombyx mori 99% 1 

cds.c255616_g2_i2 proline-rich receptor-like protein kinase  Bombyx mori 100% 1 

cds.c17057_g1_i1 malate dehydrogenase, mitochondrial  Nasonia vitripennis 100% 1 

cds.c235010_g1_i1 juvenile hormone binding protein Heliothis virescens 100% 1 

cds.c232852_g1_i2 dihydropteridine reductase Papilio xuthus 100% 1 

cds.c355329_g1_i1 triosephosphate isomerase  Microplitis demolitor 100% 2 

cds.c247998_g1_i2 egalitarian Danaus plexippus 100% 1 

cds.c242810_g1_i4 protein takeout-like  Bombyx mori 87% 1 

cds.c391427_g1_i1 peptide chain release factor (probable )  Nasonia vitripennis 87% 1 

cds.c254029_g1_i2 serine protease Papilio xuthus 100% 1 

cds.c236757_g1_i2 voltage-dependent anion-selective 
channel-like isoform X4  

Bombyx mori 100% 1 

cds.c243797_g4_i2 juvenile hormone binding protein an-

0921 precursor 

Bombyx mori 90% 1 

cds.c253640_g7_i4 nucleoplasmin isoform 2 Danaus plexippus 93% 1 

cds.c247161_g1_i2 hemolymph proteinase 8 Manduca sexta 81% 1 

cds.c262202_g1_i1 interference hedgehog-like  Bombus terrestris 97% 1 

cds.c245014_g3_i1 yellow-c Heliconius erato 98% 1 

cds.c243221_g1_i1 peptidyl-prolyl cis-trans isomerase Papilio polytes 100% 5 

cds.c244127_g2_i1 uncharacterized protein   Bombyx mori 100% 6 

cds.c246112_g4_i1 superoxide dismutase Danaus plexippus 100% 6 

cds.c254772_g4_i5 secreted protein unknown  Papilio xuthus 98% 3 

cds.c145193_g1_i1 abnormal wing disc protein Antheraea pernyi 100% 2 

cds.c255864_g3_i1 No match  No match No match 1 

cds.c245309_g1_i2 promoting protein Danaus plexippus 84% 1 

cds.c219735_g1_i1 muscular protein 20 Bombyx mori 100% 1 

cds.c180932_g2_i1 hypothetical protein SINV_02932 Solenopsis invicta 77% 1 

cds.c247482_g4_i2 Histone H2B Camponotus floridanus 100% 2 

cds.c232764_g1_i5 similar to CG9796 Papilio xuthus 100% 1 

cds.c240809_g3_i7 hypothetical protein 31 Lonomia obliqua 72% 1 

cds.c248400_g2_i1 mesencephalic astrocyte-derived 
neurotrophic factor homolog 

Bombyx mori 100% 1 

cds.c99479_g1_i1 unknown secreted protein Papilio xuthus 91% 2 

cds.c255429_g2_i1 aryphorin type 2 Cerura vinula 92% 1 
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cds.c232174_g1_i1 adenylyltransferase and sulfurtransferase 

MOCS3 isoform X1   

Nasonia vitripennis 100% 1 

cds.c254703_g1_i1 uncharacterized protein  Bombyx mori 58% 1 

cds.c250034_g2_i1 Tha p 1 allergen  Thaumetopoea 

pityocampa 

100% 3 

cds.c247952_g2_i1 histone H2A-like protein 2 Bombyx mori 100% 2 

cds.c241205_g3_i2 odorant-binding protein 4 Chilo suppressalis 96% 1 

cds.c249497_g1_i4 lysozyme Helicoverpa armigera 82% 1 

cds.c230317_g1_i1 60S acidic ribosomal protein P2-like  Bombus impatiens 100% 2 

cds.c225627_g1_i1 uncharacterized protein LOC101739120  Bombyx mori 82% 1 

cds.c254766_g5_i2 actin-2, partial Wuchereria bancrofti 100% 1 

cds.c237613_g2_i3 WAP four-disulfide core domain protein 

2 precursor 

Papilio xuthus 97% 4 

cds.c252458_g5_i2 chemosensory protein 7 precursor Bombyx mori 98% 3 

cds.c245136_g2_i2 odorant binding protein 6 Spodoptera exigua 100% 1 

cds.c165775_g1_i1 Histone H4 Macaca mulatta 85% 1 

cds.c243980_g12_i4 hypothetical protein  Heliothis virescens 
ascovirus 

92% 1 

cds.c109578_g1_i1 hypothetical protein  Tetrapisispora phaffii  70% 1 

cds.c252383_g1_i2 slowmo Bombyx mori 92% 1 

cds.c234087_g1_i3 protocadherin-16-like PREDICTED:  Bombyx mori 99% 1 

cds.c248008_g1_i2 aldo-keto reductase, partial Agrotis ipsilon 91% 1 

cds.c231482_g1_i1 cytochrome c oxidase subunit 4 isoform 

1, mitochondrial 

Nasonia vitripennis 95% 1 

cds.c185079_g1_i1 REPAT32 Spodoptera littoralis 92% 2 

cds.c223924_g1_i1 cysteine proteinase inhibitor precursor Manduca sexta 99% 1 

cds.c253993_g4_i1 chemosensory protein 3 precursor Bombyx mori 100% 1 

cds.c181512_g1_i1 histone H2A-like  Diaphorina citri 95% 1 

cds.c123959_g1_i1 pterin-4-alpha-carbinolamine 

dehydratase-like  

Bombyx mori 91% 1 

cds.c249531_g1_i1 chemosensory proteins Dendrolimus kikuchii 100% 1 

cds.c243108_g8_i1 actin Onthophagus nigriventris 99% 1 

cds.c209834_g1_i1 hypothetical protein  Danaus plexippus 98% 2 

cds.c358177_g1_i1 hypothetical protein  Vittaforma corneae 100% 1 
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Abstract  

Larvae of the pine processionary moth, Thaumetopoea pityocampa, produce urticating 

setae from the third to the fifth larval instars. By penetrating the skin, they can cause 

inflammatory symptoms in man and other vertebrates. These setae convey an urticating 

component previously identified as a protein named Tha p 2. In the present study, the 

expression profiles of the gene coding for this urticating protein Tha p 2 and the gene 

corresponding to a chemosensory protein previously considered as allergenic, Tha p 1, 

were investigated throughout the insect development. All life stages of two Italian 

populations and the last development stages and eggs of two Portuguese populations were 

considered, in order to better understand the expression patterns of both genes in the 

different development stages. An NGS approach (Illumina HiSeq sequencing) was used 

for sequencing the cDNA obtained for each stage. The obtained reads were mapped 

against the reference sequences of both genes using two different bioinformatics methods. 

We confirmed the expression of Tha p 1 gene in all life stages of Th. pityocampa for both 

populations, indicating that it is not strictly associated with the urticating setae, while the 

gene Tha p 2 was expressed only in larval stages where the setae production occur.  

 

Introduction 

All studied species of the Thaumetopoeinae are known to carry urticating setae, either as 

a larva (genus Thaumetopoea) or as an adult, which uses them to protect eggs and larvae 

of the next generation (e.g. Anaphe from Africa and Ochrogaster from Australia) (Lamy 

et al. 1984, Floater 1998).  

Urticating setae provide an efficient defense system for the colony but not for the 

individual, as the symptoms appear with a delay of time, when the larva has already been 

killed (Battisti et al. 2011). As setae disperse as a cloud around the colony (Fenk et al. 

2007), with high concentration of short setae up to 6 km during the day and 12 km during 

the night, their function could be to keep away predators (Moneo et al. 2014). 

Incidentally, these setae are a serious threat to human health and the reactions are 

common in pine wood area workers, who are exposed to high levels of setae, but also in 

persons non-occupationally exposed to processionary larvae, because the setae are 

dispersed by the wind over long distances (Fenk et al. 2007, Petrucco Toffolo et al. 2014). 

Contact dermatitis and urticaria are the most frequent symptoms related to the exposure to 

this insect (Vega et al. 1999).  
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Each larva bear integument areas in the abdominal tergites, called mirrors, that 

enclose the setae and are actively open when the larva is disturbed (Démolin 1963). The 

setae are short and thin (100-500 µm long and 3-7 µm in diameter) and like the insect 

integument are built up by chitinUrticating setae are absent from the early larval stages of 

Thaumetopoea pityocampa, although the cellular apparatus that produces them is present. 

Urticating setae appear in the third stage and their number increases after each molt 

(Lamy 1990). The urticating setae found in L3 to L5 in larvae are not present in moths, 

which possess only scales which vary in size and form (Lamy 1986). The urticating 

reaction in human and animals is correlated to specific allergens. Until now only tree 

proteins were identified in Th. pityocampa, namely thaumetopoein, Tha p 1 (Moneo et al. 

2003) and Tha p 2 (Rodriguez-Mahillo et al. 2012). The first protein, named 

thaumetopoein, is supposed to be composed of two subunits having respectively a 

molecular weight of 13 and 15 kDa (Lamy et al. 1986). Unfortunately the thaumetopoein 

was not sequenced after its discovery, and the corresponding gene is unknown. A second 

protein named Tha p 1 with an estimated molecular weight of 15 kDa was later isolated 

by Moneo et al. (2003) who published a polypeptide encompassing 18 residues and 

deposited the full length sequence in GenBank (accession number: HE962022) Three 

years later, Larsson and Backlund (2009) showed that Tha p 1 polypeptide was related to 

chemosensory proteins similar to one found in Bombyx mori. Finally, a third protein 

named Tha p 2, unrelated to Tha p 1, was identified and the cDNA encoding the complete 

polypeptide was amplified and sequenced (Rodriguez-Mahillo et al. 2012). The 

sensitizing capacity of moth allergens is clearly demonstrated with the help of 

epidemiological studies.  

The presence or absence of the protein, and the expression levels of the 

corresponding Tha p 1 and Tha p 2 genes in the different life stages (including the instars 

without urticating setae), is still unknown. An NGS approach (Hiseq Illumina sequencing 

of mRNAs) was used to sequence the expressed genes for the different development 

stages. RNA-seq is a recently developed large-scale genome-wide approach that has been 

applied successfully to gene discovery and expression profiling, and to the study of 

functional, comparative and evolutionary genomics in non-model organisms for which 

limited previous information existed (Lu et al. 2013). In this study, RNA-seq data were 

analyzed from every life stages to screen the patterns of expression of the two genes of 

interest mentioned above. In particular, we wanted to determine whether these genes were 
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expressed only during the larval stages bearing urticating setae, or if they were also 

detected in eggs, early larval stages, pupae and moths. In this work we used four different 

populations of Th. pityocampa, two from Italy characterized by early and late adult 

emergence in the field, and two from Portugal characterized by contrasted life cycles 

(Santos et al. 2007, 2011). 

 

Material and methods  

Sampling  

Four Th. pityocampa populations were sampled to develop Illumina sequencing of 

cDNAs. We chose two populations from the Italian Alps characterized by early and late 

adult emergence as well two populations from Portugal characterized by summer and 

winter feeding of the larvae. The Italian populations were also used for a development 

study of Th. pityocampa in laboratory conditions (see Supplementary chapters below). 

The eggs batches from the Italian early population were collected on the needles of Pinus 

nigra in the south eastern Alps (Cimolais, 12°27’E 46°19’N) (n = 12) in July 2012, while 

those of the late population were collected on the needles of the same pine species in the 

last week of August 2012 in the southern Prealps (Cinto Euganeo, 11°39’E 45°16’N  and 

Tregnago, 11°09’E 45°30’N). The Italian "early" and "late" larvae were reared in separate 

boxes under laboratory conditions. Some individuals were put in RNAlater or liquid 

nitrogen after each molt (see the Supporting Chapter1 below).The pupae were collected 

few days after pupations started (“early pupae”), then by the and of the pupation stage 

(“late pupae”) and the adults after the emergence. 

For the Portugal populations, the samples corresponded to eggs, L3, and all stages 

from L5 to adults. All samples of summer and winter populations were collected from the 

maritime pine Pinus pinaster in the National Forest of Leiria (Portugal) (39º47' N 8º 58' 

W). For the winter population eggs, L3 and L5 were sampled from the field. A part of L5 

larvae were immediately frozen at -80 °C, while the others were kept in the laboratory at 

the Institute Superior de Agronomia of Lisbon until pupation and adult emergence. 

Similarly to the sampling of Italian populations, samples were taken and put in liquid 

nitrogen few days after pupations started ("early pupae"), then by the end of the pupation 

stage ("late pupae") and immediately after adult emergence. Concerning summer 

population, eggs, L3, L5 and early pupae were sampled in the field, and a part of pupae 
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were kept under laboratory condition until adult emergence (to collect "late pupae" and 

adults). All sample were put in liquid nitrogen and deep frozen at -80 C° immediately 

after each collection. Samples were sent in dry ice to the Centre de Biologie pour la 

Gestion des Populations (CBGP, INRA Montpellier, France) to proceed with RNA 

extraction.  

 

RNA extraction 

Total RNA was isolated from a pool of five samples for each stage, including males and 

females. RNA was isolated using TRIzol Reagent (Invitrogen) according to the 

manufacturer’s protocol. The RNA was separated with chloroform, precipitated with 

isopropanol at room temperature and washed with ethanol 75% RNAse and DNAse free. 

The RNA extracted was resuspended in 50 µl of ultrapure water. RNA quantity and 

quality were estimated using NanoDrop ND-1000 spectrophotometer (NanoDrop 

Technologies) and gel electrophoresis. Equal amounts of total RNA were subsequently 

pooled for each stage and each population, and the RNA samples were sent in dry ice to 

the Montpellier GenomiX (MGX) NGS platform, c/o Institut de Génomique 

Fonctionnelle (Montpellier, France) for the sequencing and the preliminary 

bioinformatics treatments.  

 

Construction and sequencing of RNA libraries 

Library construction and Illumina sequencing was done at the MGX platform. The 

TruSeq Stranded Sample mRNA Sample Preparation kit was used to synthesize a strand 

of cDNA and construct the libraries. Each stage and population sample was barcoded 

using a different Illumina index. Quality control of library preparation was done using 

Agilent DNA 1000 kit as well as qPCR. The librairies were sequenced on 4 lanes of an 

Illumina Hi-Seq 2000, using the SBS (Sequence by Synthesis) technique and 100 pb, 

paired-end sequencing. The Next-generation sequencing technologies are being exploited 

not only to analyze static genomes, but also transcriptomes with rapidly evolving 

technologies (Marguerat and Bähler 2010).  

 

Bioinformatics analyses, mapping and differential expression analysis 

The image of the analyses was realized with HiSeq Control Software (HCS) Illumina, that 

permitted to identify the position of the clusters, the intensity and the noise. The quality 
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of the sequencing results was checked by FastQC. All reads that successfully passed the 

quality controls were mapped against the reference sequences of genes Tha p 1 (accession 

number: HE962022) and Tha p 2 (accession number of the protein: P86360.1) of 

Thaumetopoea pityocampa with Tophat2 (v. 2.0.12) with a default parameters and the 

BAM file obtained, were visualize with IGV genome browser. After running Tophat2, the 

resulting alignments files are provided to Cufflinks (v.2.2.1) for assemble the mapped 

reads in order to retrieve the exon-intron structure of the genes (Trapnell et al. 2012). 

These assemblies are then merged together, using the Cuffmerge utility, which is included 

with the Cufflinks package. Then, we merged the GTF files of each cufflinks assembly to 

one common GTF annotation; this merged assembly provides a uniform basis for 

calculating and compare genes expression in each stage. The reads and the merged 

assembly are fed to Cuffdiff, which calculated expression levels and tests the statistical 

significance of observed changes between two conditions (developmental stages). To be 

able to compare gene expression for two conditions, Cuffdiff normalizes read counts of 

several runs (conditions and replicates) for a specific transcript. This normalization is 

done by calculating the FPKM (fragments per kilobase of transcript per million mapped 

fragments) value per condition. Hence FPKM allows normalization of read counts by 

transcript length. FPKM calculation is applied for comparison of two conditions and also 

for comparing replicates of the same condition. These results are reported as a set of text 

files and can be displayed in the plotting environment with CummeRbund.  The analyses 

were also validate with CLC Bio Workbench 7 (default parameters) where the reads were 

mapped against the sequences of genes Tha p 1 and Tha p 2. The Total count (TC) 

normalization method (Dillies et al. 2012) was applied only to the Tha p 1 (Tables 1-2) 

because of the number of reads mapping with Tha p 2 was too low.  

 

Results  

The RNA was successfully extracted from all the samples except from  "late pupae" of 

the Italian late population (LP). Twenty-seven types of samples, which represented 

different developmental stages of Th. Pityocampa, were sequenced. Approximately 80 

million Illumina sequence reads originating from each sample were mapped against the 

two studied genes. Both approach methods used gave the same results. As regards the 

Italian populations, the results demonstrate that all stages of each population express Tha 

p 1 gene; the numbers of mapped reads were highest in the adult stage for both 
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populations. It was also high in L5 and late pupae in the early population (Tab.1). 

Conversely, the Tha p 2 gene was only expressed in the L4 sample. The values obtained 

for L3 and late pupae in the early population, and for adults in the late population, were 

too low to be considered. More precisely, in the early population, 128 reads were mapped 

on Tha p 2 for L4 (over a total of 26026052 reads), while in the L3, late pupae and adults 

only 4, 5 and 21 reads were mapped, respectively. No expression of Tha p 2 was found in 

the L1, L2 and early pupal stages. In the case of late population, the L4 stage mapped 

1707 reads over a total of 63776998, moth 12 and L2 only 3 reads; the L1, L3, L5 and 

pre-molt did not express the gene. In both populations Tha p 2 is not expressed in the L3 

and L5 stages. As regards the Portuguese populations, as already said, Tha p 1 is 

expressed in all the stages, with a higher number of mapping reads in early pupae and 

moth in the summer population, but the value remain high also in the other stages, like for 

winter population where the higher value of mapped reads were visualized on L5 and 

early pupae (Table 2). Tha p 2 show a high expression level in L3 and especially in L5 

stages of both Portuguese population. In the summer population, L5 mapped 2709 over a 

total of 81320594 reads and in the winter population 6017 on a total of 82234506. The 

gene is not expressed in the eggs. The value of other stages are too low to be significant.  
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Table 1. Mapped reads for Tha p 1 and Tha p 2 genes, Total Reads for each stage and  Total Count (TC) only for the 

gene Tha p 1, in the early population (EP) and late population (LP), 

        EP 
 

 

 

 

 

Total reads for 

stage  

Mapped reads 

Tha p 1 TC Tha p 1 

Mapped reads 

Tha p 2 

L1 73x106 10x103 7.00 0 

L2 77 x106 8x103 5.47 0 

L3 77 x106 9x103 5.63 4 

L4 26 x106 4x103 8.58 128 

L5 93 x106 76 x103 3.90 0 

early pupae 80 x106 3 x103 2.02 0 

late pupae 103x106 52 x103 2.44 5 

moth 64 x106 215 x103 1.60 21 

        LP  

 

 

 
L1 96 x106 12 x103 8.44 4 

L2 5 x106 4 x103 5.24 3 

L3 46 x106 4 x103 6.78 1 

L4 63 x106 21 x103 2.22 1707 

L5 55 x106 30 x103 3.60 1 

early pupae 105 x106 9 x103 5.84 1 

late pupae missing missing missing missing 

moth 77 x106 294 x103 2.46 12 

 

Table 2 Mapped reads for Tha p 1 and Tha p 2 genes, Total Reads for each stage and  Total Count (TC) only for the 

gene Tha p 1, in the summer population (SP) and winter population (WP). 

              SP  

 

 

 

 

Total reads for 

stage  

Mapped reads 

 Tha p 1 TC Tha p 1 

Mapped reads 

Tha p 2 

eggs 67 x106 4 x103 5.09 0 

L3 71 x106 16 x103 1.74 250 

L5 81 x106 23 x103 2.15 2709 

early pupae 104 x106 166 x103 1.17 1 

late pupae 106 x106 5 x103 4.02 4 

moth 80 x106 38 x103 3.56 3 

               WP  

 

 

 eggs 73 x106 4 x103 3.12 0 

L3 62 x106 20 x103 1.61 162 

L5 82 x106 39 x103 2.37 6017 

early pupae 80 x106 182 x103 1.10 2 

late pupae 104 x106 24 x103 1.16 4 

moth 103 x106 22 x103 1.06 6 
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Discussion  

The preliminary results obtained from this study demonstrate that the Tha p 1 gene is 

expressed in all developmental stages of Th. pityocampa, yet with a higher expression 

level in the last stages (L5 and moth in Italian populations; L5, pupae and moth in the 

Portuguese populations). Concerning Tha p 2, the number of mapped reads is high only in 

the L4 stages and low in the moth in the Italian populations while it is not expressed in 

the other stages, including the L5 larvae, even though this stage bears urticating setae; in 

contrast to Italian populations, the Portuguese ones express the gene in L3 and L5 while 

the L4 were not tested. 

The presence of Tha p 1 gene in all stages is consistent with the identification by 

Larsson and Backlund (2009) as a chemosensory protein, although its role as an allergen 

has been demonstrated starting from a crude larval extract (Moneo et al. 2003). Based on 

its occurrence in all life stages of the insect, it is unlikely that it is associated exclusively 

with the urticating setae. The occurrence of Tha p 1 in the setae has been shown in 

Chapter 2, although at a very low concentration. The confirmation of the antigenic role of 

Tha p 1 should be carried out with setae extracts (Moneo et al. 2014). The situation is 

more simple for Tha p 2 because it is largely expressed only in the larval stages when the 

urticating setae are produced, although not in all of them. The reasons why the expression 

was partly inconsistent among larval instars and populations should looked for in the 

timing of the extraction and the preservation of the samples. Both Italian population are 

characterized by a high expression only in the L4, while a high expression level was also 

expected in the L5 larvae. This can be due to the fact that the sampled individuals were 

reared under laboratory conditions in Italy, unlike the Portuguese populations that were 

sampled in the field and might produce urticating proteins at higher rates because of 

predation pressure. The low expression of Tha p 2 gene during the moth stage can bring 

us to hypothesize the presence of Tha p 2 also in the scales of the anal tuft of the female 

moth, where it should be looked for in future work. Interestingly, other species of 

processionary moths which bear the urticating setae at the moth stage (e.g. the African 

Anaphe and the Australian Ochrogaster) present them in the anal tuft and use them to 

protect the eggs and the larvae hatched from them (Lamy et al. 1984, Floater 1998). Our 

results confirmed the absence of the urticating protein during the first larval instars, 

including the eggs, confirming the situation that was also found in other Thaumetopoea 

species (Battisti et al. 2011). This can be explained by the short duration of the first two 
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larval instars L1 and L2 (around 14 days each, see Supplementary Chapters), which may 

not require the presence of a protection system. In those instars the larvae are also smaller 

and not as conspicuous as in the other larval instars, when they occur in very visible tents 

on the most exposed parts of the trees. The long development times of the later instars L3, 

L4 and L5 (from one to two months each under natural conditions) expose the larvae to a 

high predation risk by bird like cuckoo, hoopoe and tits, which developed foraging 

techniques to avoid the ingestion of the setae (Barbaro and Battisti, 2011).  

In the future we aim to repeat RNA extraction from L5 Italian sample for a real-

time PCR approach to verify and eventually confirm the effective absence of Tha p 2. A 

similar approach on adults would allow to test the hypothesis that Tha p 2 is expressed in 

female abdominal scales and involved in egg protection. The expression patterns and 

levels of Tha p 1 and Tha p 2 genes in other Thaumetopoea species should also be 

analysed. Overall it should be noted that the results must be considered as a preliminary 

and need to be confirmed by further analyses. 

 

Acknowledgements 

We want greatly acknowledge the Instituto Superior de Agronomia, University of Lisbon, 

Portugal, for providing Portugal sample and Laure Sauné for the RNA extractions (Centre 

de Biologie et Gestion de Populations INRA Montpellier, France). 

 



Chapter 3 - Study or the expression of Tha p 1 and Tha p 2 genes  

68 

 

References 

 

Barbaro L., Battisti A., (2011). Birds as predators of the pine processionary moth 

(Lepidoptera: Notodontidae). Biological Control 56: 107-114. 

Battisti A., Holm G., Fagrell B., Larsson S., (2011). Urticating hairs in arthropods: Their 

nature and medical significance. Annual Review of Entomology 56: 203-220. 

Démolin G., (1963). Les ‘miroirs’ urticants de la processionnaire du pin (Thaumetopoea 

pityocampa Schiff.). Agricultural Zoology Reviews 10–12: 107–14. 

Dillies M.A., Rau A., Aubert J., Hennequet-Antier C., Jeanmougin M., Servant N., Keime 

C., Marot G., Castel D., Estelle J., Guernec G., Jagla B., Jouneau L., Laloë D., Le 

Gall C., Schaëffer B., Le Crom S., Guedj M., Jaffrézic F., (2012).  A 

comprehensive evaluation of normalization methods for Illumina high-throughput 

RNA sequencing data analysis. Briefings in Bioinformatics  14,6: 671-683. 

Fenk L., Vogel B., Horvath H., (2007). Dispersion of the bio-aerosol produced by the 

Oak Processionary moth. Aerobiologia 23: 79-87. 

Floater G.J., (1998). Tuft scales and egg protection in Ochrogaster lunifer Herrich-

Schäffer (Lepidoptera: Thaumetopoeidae). Australian Journal of Entomology 37: 

34–39. 

Lamy, M., Pastureaud, M.H., Novak, F., Ducombs, G., Vincendeau, P., Maleville, J., 

Texier, L., (1986). Thaumetopoein: an urticating protein from the hairs and 

integument of the pine processionary caterpillar (Thaumetopoea pityocampa 

Schiff., Lepidoptera, Thaumetopoeidae). Toxicon 24: 347–356. 

Lamy M., Novak F., Duboscq, M.F., Ducombs G., Maleville J., (1988). The oak 

Processionary caterpillars (Thaumetopoea processionea L) and man -Urticating 

apparatus and mechanism of action. Annales de Dermatologique et de 

Venereologique 115: 1023-1032. 

Lamy M., (1990). Contact dermatitis (erucism) produced by processionary caterpillars 

(genus Thaumetopoea). Journal Apply of Entomology 110: 425–37. 

Larsson S.,  Backlund A., (2009). Regarding the putative identity of moth (Thaumetopoea 

spp.) allergen. Allergy 64: 493. 

Lu X., Li J., Yang J., Liu X., Ma J., (2013). De novo transcriptome of the desert beetle 

Microdera punctipennis (Coleoptera: Tenebrionidae) using illumina RNA-seq 

technology. Molecular Biology Reports 41, 11: 7293-7303. 



Chapter 3 - Study or the expression of Tha p 1 and Tha p 2 genes  

69 

 

Marguerat S., Bähler J., (2010). RNA-seq: from technology to biology. Cellular and 

Molecular Life Science 67: 569-579. 

Moneo I., Vega J.M., Caballero M.L., Vega J., Alday E., (2003). Isolation and 

characterization of Tha p 1, a major allergen from the pine processionary 

caterpillar Thaumetopoea pityocampa. Allergy 58: 34–37. 

Moneo I., Battisti A., Dufour B., García-Ortiz J.C., González-Munoz M., Moutou F., 

Paolucci P., Petrucco Toffolo E., Rivière J., Rodriguez-Mahillo A.I., Roques A., 

Roques L., Vega J.M., Vega J., (2014). Medical and Veterinary Impact of the 

Urticating Processionary Larvae. In: Processionary moths and climate change: an 

update (ed. A. Roques). Springer-Quae, Dordrecht, pp: 359-410. 

Petrucco-Toffolo E., Zovi D., Perin C., Paolucci P., Roques A., Battisti A., Horvath H., 

(2014). Size and dispersion of urticating setae in three species of processionary 

moths. Integrative Zoology 9: 320–327. 

Rodríguez-Mahillo A.I., González-Muñoz M., Vega J.M., López J.A., Yart A., Kerdelhué 

C., Camafeit E., García Ortiz J.C., Vogel H., Toffolo E.P., Zovi D., Battisti A., 

Roques A., Moneo I., (2012). Setae from the pine processionary moth 

(Thaumetopoea pityocampa) contain several relevant allergens. Contact 

Dermatitis 67: 367–374. 

Santos H., Rousselet J., Magnoux E., Paiva M.R., Branco M., Kerdelhué C., (2007). 

Genetic isolation through time: allochronic differentiation of a phenologically 

atypical population of the pine processionary moth. Proceedings of the Royal 

Society of London Series B 274 (1612): 935-941.  

Santos H., Burban C., Rousselet J., Rossi J.P., Branco M., Kerdelhué C., (2011) Incipient 

allochronic speciation in the pine processionary moth Thaumetopoea pityocampa 

(Lepidoptera, Notodontidae). Journal of Evolutionary Biology 24 (1): 146-158.  

Trapnell C., Roberts A., Goff L., Pertea G., Kim D., Kelley D.R., Pimentel H., Salzberg 

S.L., Rinn J.L., Pachter L., (2012). Differential gene and transcript expression 

analysis of RNA-seq experiments with TopHat and Cufflinks. Nature protocols 

7,3: 562-578. 

Vega J.M., Moneo I., Armentia A., Fernàndez A., Vega J., De la Fuente R., Sanchez P., 

Sanchis M.E., (1999). Allergy to the pine processionary caterpillars 

(Thaumetopoea pityocampa). Clinical and Experimental Allergy 29: 1418-1423. 



Chapter 3 - Study or the expression of Tha p 1 and Tha p 2 genes  

70 

 

Wang Z., Gerstein M., Snyder M., (2009). RNA-Seq: a revolutionary tool for 

transcriptomics. Nature Reviews Genetics 10: 57–63. 



 

 



 

 



 

73 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Authors:  

 

Berardi
 
L., Battisti

 
A., Negrisolo E.  

 

I contributed to experimental parts data analysis and chapter writing.  

Manuscript submitted. 

 

 

 

The allergenic protein Tha p 2 of 

processionary moths of the genus 

Thaumetopoea (Thaumetopoeinae, 

Notodontidae, Lepidoptera): 

characterization and evolution 

 

 

 

Chapter 4 



 

 



Chapter 4 – Characterization and evolution of Tha p 2  

75 

 

Abstract 

The allergenic Tha p 2 protein has been extracted recently from urticating setae of the 

pine processionary moth Thaumetopoea pityocampa. In the present paper we test for the 

occurrence of this protein in other Thaumetopoeinae, with a particular focus on members 

of the genus Thaumetopoea, as well as unrelated moth species, in order to better 

understand the chemical-physical properties of the protein and the nature of encoding 

genes, as well as their evolutionary history. Tha p 2 is encoded by the intronless gene Tha 

p 2 that is restricted to the processionary moths (Thaumetopoeinae, Notodontidae, 

Lepidoptera). Most of the species present two isoforms of Tha p 2 that can be interpreted 

as the result of heterozygosity in the single gene. The only exception is represented by 

Thaumetopoea wilkinsoni, in which 20 different isoforms occur in a single specimen, 

leading to the conclusion that at least in the species multiple copies of Tha p 2 exist. The 

Tha p 2 is a glycine and cysteine rich protein very well conserved among processionary 

moths. The predicted secondary structures indicate presence of 3 α-helices and six β-

barrels. Finally, the evolution of the gene and more markedly of the protein is 

characterized by negative selection. 

 

Introduction 

The larvae of the processionary moths belonging to the genus Thaumetopoea 

(Thaumetopoeinae, Notodontidae; Lepidoptera) present a specialized urticating apparatus, 

occurring from the third instar onwards on the dorsal part of the abdomen, in specific 

areas called mirrors (Démolin, 1963). Conversely, the adults of other processionary moths 

genera, like the African Anaphe and the Australian Ochrogaster, produce the setae in the 

anal tuft of female moths (Floater, 1998; Schabel, 2006). The setae are thought to protect 

the insects from mammalian and avian predators, although the nature of the reactions 

caused by them has been thoroughly studied only in humans (Battisti et al. 2011).  

The setae are short and thin (100-500 µm long, 3-7 µm in diameter), have barbs 

along the shaft and are modified by the loss of the neuronal connection and the 

detachment of the proximal end of the hair from the integument (Battisti et al. 2011; 

Petrucco Toffolo et al. 2014). The base of each seta is inserted into a socket and can 

easily be removed with any kind of mechanical stimulation (Lamy et al. 1982). 



Chapter 4 – Characterization and evolution of Tha p 2  

76 

 

Accidental contact with urticating setae induces symptoms like cutaneous lesion 

or respiratory responses even anaphylactic shock in humans or tongue necrosis in dogs 

(Maier et al. 2003), often referred to syndromes such as erucism and lepidopterism. The 

use of these terms is not clear because erucism and lepidopterism refer to different life 

stages of the insects (larvae and adults, respectively) rather than to human reactions 

(Battisti et al. 2011). 

Setae, like the insect integument, are build up by a chitin skeleton with a matrix of 

proteins. While the role of chitin is still under investigation, the presence of several 

proteins with allergic activity against humans has been demonstrated in Thaumetopoea 

(Lamy et al. 1985; Lamy et al. 1986; Rodriguez-Mahillo et al. 2012). Three proteins with 

allergenic activity have been identified for processionary moths. The first protein was 

named thaumetopoein and estimated to be made by two subunits having respectively a 

molecular weight of 13 and 15 kDa (Lamy et al. 1986). Unfortunately the thaumetopoein 

was not sequenced after its discovery. Successively, a second protein named Tha p 1 with 

an estimated molecular weight of 15 kDa was isolated by Moneo et al. (2003) who 

published a polypeptide encompassing 18 residues and successively deposited the full 

length sequence in GenBank (ADK47876). Larsson and Backlund (2009) showed that 

Tha p 1 polypeptide was related to chemosensory proteins found in insects. Finally, a 

third protein named Tha p 2, unrelated to Tha p 1, was identified in Thaumetopoea 

pityocampa and the cDNA encoding the complete polypeptide was amplified and 

sequenced (Rodriguez-Mahillo et al. 2012). The acronym Tha p 2 used to identify the last 

protein is unfortunate because it induces confusion with a large group of totally unrelated 

proteins named by the possession of the THAP domain (see Roussigne et al., 2003). 

Notwithstanding this potential problem we did not suggest a change of name for this 

protein here, provided that the stability of allergens nomenclature is a high priority (see 

www.allergen.org). 

The Thaumetopoea genus is included in the subfamily Thaumetopoeinae, which is 

a well-defined subclade of Notodontidae containing 101 species split in 20 genera 

distributed in five different geographical regions: Africa, Madagascar, Europe, India, and 

Australia (Kiriakoff, 1970; Miller, 1991; Schintlmeister, 2013; Zahiri et al. 2011; Zahiri 

et al. 2013). 

Most of Thaumetopeinae moths live in countries that are difficult to be explored 

due to geopolitical reasons. Furthermore, even for species present in countries without 
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political turmoil the sampling can be difficult due to the nocturnal behavior of the adults 

and to the fact that the larvae do not form conspicuous assemblages in the field. The 

genus Thaumetopoea, is the only Thaumetopoeinae taxon having a distribution centered 

in the Western Palaearctic zone (i.e. Europe, Middle East and North Africa). Furthermore, 

the larvae of this genus have a gregarious nesting behavior that makes them conspicuous 

and relatively easy to be sampled in the field (Battisti et al. 2011). 

This paper deals with the characterization of the Tha p 2 gene and Tha p 2 protein 

in the species of Thaumetopoeinae with a particular focus on species of the genus 

Thaumetopoea and the study of their evolution. 

 

Materials and Methods 

Taxon sampling  

Larvae of twelve species of processionary moth were studied in present work. 

Furthermore the Lepidoptera Euproctis chrysorrhoea, that presents in the larval stage a 

similar type of urticating setae, Lymantria dispar and Bombyx mori were sampled to 

verify if they encoded in their genome the Tha p 2 gene. All specimens were collected in 

ethanol 70% and stored at -20°C. Details on the sampling of studied taxa are provided in 

Table 1. As mentioned in the Introduction the Thaumetopoeinae are distributed in five 

different geographical regions: Africa, Madagascar, Europe, India, and Australia 

(Kiriakoff, 1970; Miller, 1991). Most of the species live in countries that are difficult to 

access due to several types of geopolitical problems. Thus the collection of samples is a 

very daunting task. In the case of Thaumetopoea the situation is much more favorable for 

European species while it still remains critical for Middle East and North African moths. 

For taxa belonging to this latter group we had just a single larva available. As a 

consequence for all species only one specimen was used to extract DNA and obtained the 

Tha p 2 sequences in order to ensure an homogenous treatment of the results (see below). 

The Thaumetopoea genus includes 12 species formally described plus a new species 

identified on a molecular basis (i.e. Thaumetopoea pityocampa ENA (Eastern-Northern 

Africa)) (Simonato et al. 2013). We were able to study 10 of the 13 taxa contained in the 

genus (see Table 1).  
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DNA extraction 

Total DNA was extracted from single specimens through a salting-out protocol (Patwary 

et al., 1994) or alternatively performed using the ZR Genomic DNA- Tissue MidiPrep 

(Zymo Research). 

The quality of the extracted DNA was assessed loading 70 ng/µl in a 0.7% agarose 

gel in 1X TAE, along with DNA size markers such as a 1-kb ladder. DNA was allowed to 

run for 40 min under a voltage of 100V. The gels were visualized in the Bio-Rad Gel 

DOC system (Bio-Rad Laboratories, Inc., USA). The DNA concentration was determined 

by NanoDrop (NanoDrop Thermo Scientific USA) and Qubit (Invitrogen, USA, using the 

high sensitive DNA quantification kit). 

For cloning purposes (see below) DNA was concentrated by low-speed 

centrifugation using Amicon® Ultra- 0,5 Centrifugation Filter Devices. 

 

PCR amplification and sequencing of Tha p 2 gene 

Initially the amplification of Tha p 2 gene was done using the primers TP2 DF, 5’-GTC 

CCG CAA CTA AGT GAG AAA GC-3’ (forward) and TP2 DR 5’-GGT CCT TGT TCG 

GCC TAG TAA-3’ (reverse) (Rodriguez-Mahillo et al., 2012). PCR assay was optimized 

for a 20 µl volume. Reaction contained 5X PCR buffer, 25mM MgCl2, 25mM dNTP’s, 10 

mM primer forward and 10 mM primer reverse, 5u/µl Taq polymerase, H2O and 2 µl of 

DNA. The PCR program consisted of 35 cycles at 96°C for 5’, 96°C for 45’’, 52°C for 

30’’, 72°C for 30’’ and 72°C for 5’. 

The PCR products exhibiting a single band in an electrophoresis gel (1% agarose), 

were purified with ExoSAP and sequenced according to Sanger method at the BMR 

Genomics service (Padova Italy) on automated DNA sequencers with the primers used for 

PCR amplification. 

Further primers were designed for each species in order to complete the lacking portions 

of the gene. 

 

Sequencing of the DNA portions 5’-upstream and 3’-downstream of the Tha p 2 gene and 

SNPs 

The DNA portions located upstream and downstream to the published Tha p 2 sequence 

were amplified using the GenomeWalker kit (Clontech, Basingstoke, UK). The obtained 

products were cloned with the TOPO TA cloning kit (Invitrogen, Carlsbad, CA, USA) 



Chapter 4 – Characterization and evolution of Tha p 2  

79 

 

and transformed into E. coli. Positive clones were PCR amplified and Sanger sequenced 

using the universal primers T7 (forward) and M13 (reverse). In order to identify the 

correct association among detected SNPs (single nucleotide polymorphisms, see results 

section), a cloning strategy was also applied to PCR products produced through a high 

fidelity polymerase reaction. 
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Table 1. List of the species analysed in present wok, with indication of the collection data. 
 

Family Species Site collection Latitude Longitude Date Legit 

Bombycidae Bombyx mori Padova, Italy ─ ─ 11/2012 A.Saviane 

Lymantridae Euproctis chrysorrhoea Valencia, Spain 39° 50' N1°17' E 01/2013       E.Frago 

Lymantriidae Lymantria dispar Sassari, Sardegna, Italy 40° 44' N 8° 36' E 11/2012 P. Luciano 

Notodontidae Anaphe panda Kakamega Forest, Western Kenia 0° 10’ N 34°47’E 11/2012 N. Mbahin 

Notodontidae Ochrogaster lunifer Kenmore (Queensland), Australia 27° 30' S 152° 56' E 25/02/2005 M.P. Zalucki 

Notodontidae Thaumetopoea bonjeani Forest of Chélia (Khenchela), Algeria 35° 22' N 6° 46'E 09/04/2006 M. Zamoum 

Notodontidae Thaumetopoea herculeana Cabo home, Spain 41° 51' N 7° 21′ E 04/04/2009 L. Berardi 

Notodontidae Thaumetopoea ispartaensis Kapidagi, Senirkent, Isparta, Turkey 37° 59’N 30° 36’ E 05/2006 M. Avci 

Notodontidae Thaumetopoea libanotica Tannourine et Tahta, Lebanon 34° 12' N 35° 55' E 03/06/2006 N.Nemer, C.Lahousl 

Notodontidae Thaumetopoea pinivora Gotland, Sweden 56° 18' N 18° 13' E 15/04/2006 S. Larsson 

Notodontidae Thaumetopoea pityocampa Moggio , Udine, Italy 46° 24' N 13° 12' E 12/03/2003 A. Battisti 

Notodontidae Thaumetopoea pityocampa ENA (Eastern-Northern Africa) Bizerte, Tunisia 37° 02' N 9° 42' E 11/2000 M. El Habib Ben Jamâa 

Notodontidae Thaumetopoea processionea Caprino Veronese, Verona, Italy 45° 34' N 10° 46' E 21/5/2007 M. Faccoli, M. Zampini 

Notodontidae Thaumetopoea solitaria Gamla (Golan heights), Israel 32° 59' N 35° 42' E 13/3/2005 A. Battisti 

Notodontidae Thaumetopoea wilkinsoni Aladag, Turkey 37° 33' N 35° 22' E 28/3/2004 A. Battisti 

─, laboratory rearing 
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Assembly of sequences and annotation 

Single chromatograms were analyzed and edited with Chromas Lite program 

(Technelysium, South Brisbane QLD, Australia). The consensus sequences were 

produced using the SeqMan program implemented in the software package DNAStar 

(DNAStar, Madison, WI). The identification of the correct frame and the translation of 

the DNA into the corresponding Open Reading Frame (ORF) were done with the Transeq 

program available at the EBI web server (Mc William et al. 2013). 

 

Bioinformatic analyses 

The newly determined sequences were compared with the GenBank data bases (both 

nucleotide and protein) through the BLAST package BLAST available at the NCBI web 

site (Altschul et al. 1990) in order to identify any possible homologous counterpart. 

The chemico-physical properties of Tha p 2 proteins were computed with the ProtParam 

and ProtScale programs available at the ExPASy web server (Gasteiger et al. 2005). The 

Logo of the protein multiple alignment was created with the WebLogo tool (Crooks et al., 

2004). Protein secondary structures were predicted with PSIPRED (McGuffin et al. 

2000), JPRED3 (Cole et al. 2008), and the 1D Protein Structure Prediction Server 

(Homaeian et al. 2007) packages. Putative disulfide bonds were identified with the 

DISULFIND server (Ceroni et al. 2006) and the DIpro program implemented in the 

SCRATCH server (Cheng et al. 2005). Signal peptide cleavage was predicted with 

SignalP 4.1 Server (Petersen et al. 2011). Search for conserved motifs was performed 

with the ScanProsite tool available at the ExPASy web server (Sigrist et al. 2013). 

Multiple alignment of the DNA/proteins sequences were performed with the MUSCLE 

(Edgar, 2004) program implemented in MEGA5.2 (Tamura et al. 2005). 

The phylogenetic analyses for nucleotides were carried out using maximum 

likelihood (ML) analysis performed with the RaxML 7.2.6 (Stamatakis 2006) program as 

implemented in raxmlGUI 0.93 (Silvestro et al., 2011). The molecular evolutionary model 

was GTR + G (Yang, 2014). Nonparametric bootstrap (BT) test was performed to assess 

the robustness of ML tree topology (1,000 replicates) (Felsenstein 1985). Types of 

selection acting on single codon were assessed with the algorithm FUBAR implemented 

in the datamonkey server (Murrell et al. 2013). 
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Results 

 

Gene structure and taxonomic distribution 

All Thaumetopoeinae species proved to encode the Tha p 2 gene in their genome. 

Conversely it was not possible to amplify Tha p 2 in the other tested Lepidoptera. This 

latter result could be due to the non-suitability of the used primers rather than to a true 

absence of the gene. Thus a thoroughly blastp search using the translated ORF was 

performed against the GenBank data base. This analysis failed to identify any, even 

distantly related, putative homologous outside the Thaumetopoeinae clade. 

Tha p 2 gene contained an intronless continuous coding portion in the species 

where it was possible to obtain the complete sequence. The sequences upstream or 

downstream to the ORFs were determined for these species: Thaumetopoea herculeana, 

Th. ispartaensis, Th. libanotica, Th. processionea, Th. pinivora). For other taxa it was not 

possible to obtained these portions due to technical problems related to the lower quality 

of the DNA samples. The 5’ untranslated portion exhibited a variable size with an in 

frame stop codon located upstream to the ATG for a minimum of 84 bp (Th. libanotica 

I,II) to a maximum of at least 114 bp (Th. herculeana). In this latter case the stop was not 

reached. BLAST searches (both blastn and blastp) using as query the 5’ and 3’ portions 

outside the ORF (maximum 640 bp in 5’; maximum 340 bp in 3) did not provide 

evidence of homologous sequences in GenBank. 

The complete ORF was always 348 bp long included the stop codon (invariably 

TAA) and coded for a polypeptide 115 amino acids long. 

Most of the species had two different sequences encoding always for slightly 

different proteins. Th. wilkinsoni was a notable exception presenting 20 distinct forms, 

confirmed through the sequencing of multiple independent clones, that clustered in two 

distinct groups in the phylogenetic analyses (see below). In this latter case 13 ORF 

differing for at least one amino acids were detected. One of these ORFs was encoded by 6 

different DNA sequences and a second ORF was encoded by 3 distinct DNA sequences 

(Table S1). The Th. wilkinsoni set of DNA sequences was obtained from the sequencing 

of a single specimen, thus our results clearly supported the presence of multiple distinct 

copies of the Tha p 2 gene in Th. wilkinsoni. 
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Protein chemico-physical properties 

As pointed out above the complete ORFs spanned 115 amino acids. The bioinformatic 

analysis performed with SignalP 4.1 identified the first 15 residues as constituting the 

signal peptide for all analyzed complete ORFs. Thus the final mature protein should be 

110 residues long (hereafter named mat-Tha p 2). Chemico-physical properties computed 

for both Tha p 2 and mat-Tha p 2 are provided in Fig. 1. Tha p 2 resulted S,G,C,L-rich 

(amino acids listed according to their abundance). Indeed the four residues accounted for 

a minimum of 35.65% in Th. pinivora I to a maximum of 40% of Th. wilkinsoni XV. 

More in general polar amino-acids dominated over other categories i.e. basic, acid and 

hydrophobic residues (Fig. 1). This result was corroborated by the hydropathy profile 

(Fig. 1). 

A similar pattern was observed in mat-Tha p 2, where however L dropped to a 

decidedly lower position in the amino acid composition (Fig. 1). The presence of a 

minimum of 9 Cys residues (Th. libanotica II) in the Tha p 2 opened up the possibility for 

numerous intra- and inter-chain S-S bridges (see below). 

The estimated average molecular weights for Tha p 2 and mat-Tha p 2 were 12,630 ± 69 

Da and 11,049 ± 69 Da, respectively. Both Tha p 2 and mat-Tha p 2 exhibited acid 

isoelectric points (see Fig. 1). 
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Figure 1. Chemical-physical properties of Tha p 2 protein. On the left, amino acid composition. 

Value located near the amino acid (listed according to the three letter IUPAC code) indicate the 

average number of residues followed by the standard deviation. Mw, average molecular weight 

(Dalton) ± standard deviation; pI, average Isoelectric point ± standard deviation. On the right 

Hydrophobicity diagram (Kythe and Doolittle, 1992) of Tha p 2 protein. 

 

Secondary structure prediction and motifs 

A multiple alignment of Tha p 2s (see below Fig. 4) was produced to evaluate the level of 

conservation among various sequences and used to generate the WebLogo vignette for 

this protein (Fig. 2). The average p-distance among Tha p 2s was 0.08 ± 0.04 with the 

maximum value being 0.19 (e.g. Th. herculeana vs Th. pityocampa ENA II) and the 

minimum values being 0.01 (e.g. Th. libanotica I vs Th. ispartaensis I). Thus the protein 

proved to be very conserved as well corroborated by the WebLogo vignette (Fig. 2). 

A consensus of the predicted secondary structures obtained for the protein is 

provided in Fig. 2. It must be noted here that the length of both α-helices and β-sheets 

depicted in Fig. 2 represents the maximum extent obtained by various methods. Minor 

differences were also observed among the various sequences analyzed.  
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Figure 2. Prediction of secondary structure, Logo vignette of Tha p 2 and type of selection acting 

on the Tha p 2 gene. The Logo vignette was created with the WebLogo tool. The secondary 

structure is a consensus of the predictions obtained with PSIPRED, JPRED3 and 1D Protein 

Structure Prediction Server packages. Red arrow identifies the placement of the signal peptide 

cleavage. Secondary structure elements: α0-α2, predicted α-helices; β1-β6 predicted β-barrels. S-S 

bridges connected by a continuous green line were predicted by both DISULFIND and DIpro 

programs; S-S bridges linked by a dotted blue line were predicted only by DISULFIND while 

those connected by a red dotted line were identified solely by in red DIpro program. Histograms 

show the relative contributions of negative and positive selection acting on single codons of Tha p 

2 as calculated with FUBAR. Red bar, negative selection component; green bar, positive selection 

component. **, posterior probability >95%; *, posterior probability >90%. 
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An initial α-helix (α.0) encompassed most of the putative signal peptide. The first third of 

the mat-Tha p 2 included two α-helices (α.1, α.2) interspersed with a short β-sheet not 

present in all species. The α.1 helix exhibited a high concentration of acidic residues (E, 

D, Q). The remaining two third of mat-Tha p 2 secondary structure was characterized by 

five short β-sheets connected by stretches of random coiled residues. Predictions of 

disulfide bonds identified five intra-chain bridges that were only partly congruent (C53-

C64; C68-C82;) or differed more or less markedly (C59-C97; C103-C106; C109-C113; 

DISULFIND), (C59-C106; C97-C109; C103-C113; DIpro). Thus these predictions must 

be considered tentative. Furthermore, it remained to be tested if some of the 10 Cys 

present in the Tha p 2 were actually involved in inter-chains bonds. 

Finally the PROSITE scan identified only conserved motifs with high probability 

of occurrence in proteins (Fig. S1). Thus, the effective role of these motifs for Tha p 2 

needs to be evaluated against most compelling evidence. 

 

Evolution of Tha p 2 gene and protein 

A maximum likelihood phylogenetic analysis was performed on a multiple alignment 

including the complete and incomplete ORFs of Tha p 2 gene. The obtained tree is 

depicted in Fig. 3. Provided that no reliable outgroup sequences exist for Tha p 2 (see 

above), the tree was arbitrarily rooted and four main clades (A-D), each receiving BT ≥ 

86%, were identified. These clades were further corroborated by the sharing of unique 

molecular signatures present in the encoded protein (see below). Clade A, further split in 

the sub-clades A1 and A2, contained the 20 sequences determined for Th. wilkinsoni plus 

those obtained from A. panda (A1) and O. lunifer (A2). Subclade A1 received BT 

support, that however lacked for sub-clade A2. Clades B and C received very high BT 

supports. Clade B contained the sequences obtained for the Th. pityocampa complex. 

Clade C contained the sequences obtained for Th. solitaria, Th. herculeana and Th. 

processionea. Finally, clade D encompassed Tha p 2 derived from Th. pinivora, Th. 

ispartaensis, Th. libanotica, and Th. bonjeani. Comparison of branch lengths showed that 

the substitution rate was variable among different sequences, with the higher frequencies 

observed for sequences of clades C and D. Changes of amino acids along the multiple 

alignment were tracked with the Mesquite program using as reference the tree presented 

in Fig. 3.  
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Figure 3. Phylogenetic analysis of Tha p 2 gene. The ML tree (-ln = 1389.189388) was produced 

with RaxML program by applying the GTR+G model to the Tha p 2 multiple alignment. Numbers 

indicate bootstrap values (after 1,000 replicates) expressed in percentage. Capital letters label 

nodes leading to major clades. The scale bar represents 0.01 substitutions/site. 
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The positions of the Tha p 2 multiple alignment containing these molecular signatures are 

presented in Fig. 4. The inspection of Fig. 4 shows that variable positions are distributed 

along the whole length of the alignment with a higher concentration in the first part. 

Molecular signatures can be restricted to a single sequence (e.g. Th. ispartensis II 

in position 90 His(H) vs Q(Gln)) or characterized groups. Representative examples will 

be briefly described below while the complete list of changes is provided in the 

Supporting Table S2. The sequences of clade C exhibit a peculiar Lys (K) residue in 

position 25 that in all other species is occupied by a Glu (E). Analogously the sequences 

of clade A1 are characterized in position 50 by a Lys (K) instead of the widespread Ser 

(S). The same residue appeared independently also in Th. solitaria I-II, while in Th. 

processionea I-II the change produced an Asp (D) residue. Finally clades C and D share a 

common Asn (N) in position 70 while in other groups Asp (D) is the standard. Further 

changes occurred independently in Th. pytiocampa ENA II (Ile, I) and Th. ispartensis II 

(Tyr, Y). 

We tested also the type of selection that acted on the codons of Tha p 2 gene. The 

analysis conducted with FUBAR showed that a limited number of codons were subject to 

positive selection with very strong (codon: 39, 51, 87) or strong (codon: 48, 50) statistical 

corroboration (Fig. 2). This aspect was further supported by the high variation of the 

encoded amino acids. Conversely codons 3, 15, 84, 86, 93 and 100 resulted to be under 

strong negative selection. Also codons 67 and 71 appeared to have experienced a negative 

selection but in this case the statistical support was less conclusive. The conservation 

observed at the amino acid level (Fig. 4) empirically supported the view that most of the 

protein experienced at negative selection in its evolution. 
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Figure 4. Multiple alignment of Tha p 2 proteins. Conserved amino acid residues are depicted with a gray background. The amino acid characterizing the 

different clades are presented black colored or with a black background. Positions not fully conserved are marked and numbered below the alignment. 
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Discussion 
 

We determined from a minimum of one to 20 distinct different DNA sequences of Tha p 

2 gene in the various species of Thaumetopoeinae (Fig. 3). Provided that sequences were 

obtained for all species from a single specimen (see 2.1. Taxon sampling), the easiest 

interpretation of these findings is that Tha p 2 is a single copy gene with different level of 

heterozygosity in various taxa, with a unique major exception represented by Th. 

wilkinsoni, where we have to postulate the existence of 10 genes provided that we 

obtained 20 distinct forms. Expansion was certainly favored by the short length of the 

coding sequence and by the fact that Tha p 2 gene is intronless. However, we cannot 

exclude the possibility that two copies, very similar or identical, exist also in other 

species. The availability of a whole genome for one or more Thaumetopoeinae species 

will allow to definitely settle this point. 

The occurrence of a multigene expansion of Tha p 2 in Th. wilkinsoni is in 

agreement with the general behavior of cuticular proteins (Cornman 2009). 

We were able to predict a secondary structure for the Tha p 2 protein that needs to be 

corroborated through crystallographic studies that were outside the goals of this paper. 

Among the various biochemical feature of Tha p 2 is the massive presence (9-10) of Cys 

residues located along in the C-half of the mat-Tha p 2. The richness of Cys opens up the 

possibility for several intra- and inter-chain S-S bonds that are well worthy to be explored 

in further studies in order to understand how Tha p 2 is related with other cuticular 

proteins present in the larva setae. 

The Tha p 2 gene was identified and sequenced for all tested Thaumetopoeinae 

species. Conversely we failed to amplify it in other moths. This could have been just the 

effect of unsuitable primers. Thus we performed a BLASTP search against GenBank that 

harbors a huge amount of sequences obtained from insect taxa including complete 

genomes (e.g. Apis mellifera, Drosophila melanogaster, Anopheles gambiae). This search 

failed to identify any possible homologous counterpart, even distantly related. 

All these findings point in favor of the uniqueness of the Tha p 2 and to the 

possibility that it represents a taxon-specific gene restricted to Thaumetopoeinae. We 

cannot rule out completely the possibility that indeed the gene is present in other insect 

species. However, if this latter case is true we must hypothesize that other taxa having 

this gene have not yet been sequenced or that alternatively their “Tha p 2” gene encodes a 

polypeptide so diverging that cannot be associated to Tha p 2 through BLASTp search. 
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The level of conservation among various Tha p 2s sequenced in present work is very 

high, thus it appears contradictory to imagine a so rapid level of divergence among the 

representatives of the same protein. 

Tha p 2 protein has been initially isolated from setae of Th. pityocampa 

(Rodríguez-Mahillo et al., 2012) thus it is reasonable to include it within a novel family 

of cuticular proteins. The fact that it is restricted to a single taxon is in agreement with 

previous knowledge on cuticular protein that in several cases are taxon-specific (e.g. 

Willis, 2010). Tha p 2 is Gly-rich, a feature shared with other cuticular proteins (Willis 

2010), while its richness in Cys remains peculiar. It is not yet known where Tha p 2 is 

synthesized. 

A limited number of codons was identified with statistical corroboration to have 

experienced the action of negative selection. Even less numerous resulted the codons 

under positive selection. All these findings suggest that at the DNA level the large part of 

the coding portion evolved under a neutral selection. However, a closer inspection of 

FUBAR results (Fig. 2) shows that for the majority of codons the negative selection 

component (red bar) prevails over the positive selection component (green bar) more or 

less clearly (e.g. codon 74, 77, 78). This result suggests that a mild to robust effect of 

purifying selection shaped the evolution of Tha p 2 even at the gene level. This aspect is 

more evident when we consider the level of conservation occurring at the amino acid 

level (Figs.2,4) where 64% of the positions are constant and 16% of positions are 

singletons, i.e. the amino acid changes only in one sequence (e.g. positions 79 and 89 of 

Fig. 2). 

The branching off in the Tha p 2 phylogenetic tree is largely in agreement with the 

species phylogeny with a major exception represented by Th. wilkinsoni that in the 

species tree is sister taxon of the Th. pityocampa complex (Simonato et al. 2013; 

unpublished data). 

The absence of credible putative orthologous counterparts for Tha p 2 gene makes 

problematic to identify its origin. Possibly it started as the duplication of an existing gene 

(Zhang 2003) followed by a very rapid diversification that made impossible to recognize 

the initial point. Irrespectively to its origin, the Tha p 2 gene and particularly the encoded 

protein is very well conserved among the various Thaumetopoeinae species. The typical 

and widespread reactions caused by Thaumetopoeinae setae in humans and domestic 

animals (Moneo et al. 2014), and the indirect evidence of their action against birds 
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(Barbaro and Battisti 2011), strongly support the idea that Tha p 2 plays a pivotal role in 

the defensive system of the larvae against predatory vertebrates. Indeed the communal 

behavior of the urticating larvae of the Thaumetopoea genus makes them a very 

conspicuous target for predators like insectivorous birds and mammals (Battisti et al. 

2011). Interestingly, the protection of the larvae of the other two genera considered in this 

study, Anaphe and Ochrogaster, seem to be indirect as the setae are produced by the 

female moth and become incorporated in the tent spun by the larvae. Thus we can 

hypothesize that once appeared, Tha p 2 was selected to maximize its effectiveness 

against these predators. Apparently this goal was achieved very early in the protein 

evolution provided that the amino acid variation among different taxa is very limited. As 

Tha p 2 is one of several proteins associated with the setae, it would be necessary to 

clarify the nature and action of the other proteins in order to fully understand their role in 

the defense system. 
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Table 1. List of the species analysed in present wok, with indication of the collection data. 
 

Family Species Site collection Latitude Longitude Date Legit 

Bombycidae Bombyx mori Padova, Italy ─ ─ 11/2012 A.Saviane 

Lymantridae Euproctis chrysorrhoea Valencia, Spain 39° 50' N1°17' E 01/2013       E.Frago 

Lymantriidae Lymantria dispar Sassari, Sardegna, Italy 40° 44' N 8° 36' E 11/2012 P. Luciano 

Notodontidae Anaphe panda Kakamega Forest, Western Kenia 0° 10’ N 34°47’E 11/2012 N. Mbahin 

Notodontidae Ochrogaster lunifer Kenmore (Queensland), Australia 27° 30' S 152° 56' E 25/02/2005 M.P. Zalucki 

Notodontidae Thaumetopoea bonjeani Forest of Chélia (Khenchela), Algeria 35° 22' N 6° 46'E 09/04/2006 M. Zamoum 

Notodontidae Thaumetopoea herculeana Cabo home, Spain 41° 51' N 7° 21′ E 04/04/2009 L. Berardi 

Notodontidae Thaumetopoea ispartaensis Kapidagi, Senirkent, Isparta, Turkey 37° 59’N 30° 36’ E 05/2006 M. Avci 

Notodontidae Thaumetopoea libanotica Tannourine et Tahta, Lebanon 34° 12' N 35° 55' E 03/06/2006 N.Nemer, C.Lahousl 

Notodontidae Thaumetopoea pinivora Gotland, Sweden 56° 18' N 18° 13' E 15/04/2006 S. Larsson 

Notodontidae Thaumetopoea pityocampa Moggio , Udine, Italy 46° 24' N 13° 12' E 12/03/2003 A. Battisti 

Notodontidae Thaumetopoea pityocampa ENA (Eastern-Northern Africa) Bizerte, Tunisia 37° 02' N 9° 42' E 11/2000 M. El Habib Ben Jamâa 

Notodontidae Thaumetopoea processionea Caprino Veronese, Verona, Italy 45° 34' N 10° 46' E 21/5/2007 M. Faccoli, M. Zampini 

Notodontidae Thaumetopoea solitaria Gamla (Golan heights), Israel 32° 59' N 35° 42' E 13/3/2005 A. Battisti 

Notodontidae Thaumetopoea wilkinsoni Aladag, Turkey 37° 33' N 35° 22' E 28/3/2004 A. Battisti 

─, laboratory rearing 
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Table S1. List of the Thaumetopoeinae species (Lepidoptera Notodontidae) and accession numbers of the new Tha p 2 sequences. 
 

Species Sequence name Accession 

Anaphe panda Anaphe panda LM994946 

Ochrogaster lunifer Ochrogaster lunifer LM994966 

Thaumetopoea bonjeani Thaumetopoea bonjeani LM994944 

Thaumetopoea herculeana Thaumetopoea herculeana LM994937 

Thaumetopoea ispartaensis Thaumetopoea ispartaensis I LM994941 

 Thaumetopoea ispartaensis II LM994942 

Thaumetopoea libanotica Thaumetopoea libanotica I LM994943 

 Thaumetopoea libanotica II LN558421 

Thaumetopoea pinivora Thaumetopoea pinivora I LM994967 

 Thaumetopoea pinivora II LM994968 

Thaumetopoea pityocampa Thaumetopoea pityocampa LM994969 

Thaumetopoea pityocampa ENA (Eastern-Northern Africa) Thaumetopoea pityocampa I (genotype ENA) LM994970 

 Thaumetopoea pityocampa II  (genotype ENA) LN558420 

Thaumetopoea processionea Thaumetopoea processionea I LM994938 

 Thaumetopoea processionea II LM994939 

Thaumetopoea solitaria Thaumetopoea solitaria I LM994940 

 Thaumetopoea solitaria II LN558419 

Thaumetopoea wilkinsoni Thaumetopoea wilkinsoni I LM994945 

 Thaumetopoea wilkinsoni II LM994947 

 Thaumetopoea wilkinsoni III LM994948 

 Thaumetopoea wilkinsoni IV LM994949 

 Thaumetopoea wilkinsoni V LM994950 

 Thaumetopoea wilkinsoni VI LM994951 

 Thaumetopoea wilkinsoni VII LM994952 

 Thaumetopoea wilkinsoni VIII LM994953 

 Thaumetopoea wilkinsoni IX LM994954 

 Thaumetopoea wilkinsoni X LM994955 

 Thaumetopoea wilkinsoni XI LM994956 

 Thaumetopoea wilkinsoni XII LM994957 

 Thaumetopoea wilkinsoni XIII LM994958 

 Thaumetopoea wilkinsoni XIV LM994959 

 Thaumetopoea wilkinsoni XV LM994960 

 Thaumetopoea wilkinsoni XVI LM994961 

 Thaumetopoea wilkinsoni XVII LM994962 

 Thaumetopoea wilkinsoni XVIII LM994963 

 Thaumetopoea wilkinsoni XIX LM994964 

 Thaumetopoea wilkinsoni XX LM994965 
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Table S2. Amino acids changes in the Tha p 2 multiple alignment and molecular signatures of clades. 
 

N SEQUENCES POS CHANGE  N SEQUENCES POS CHANGE 

1 Clade D except T. pinivora I,II 5 L vs I  1 T. processionea I, II 50 D vs R 

2 T. herculeana; T. processionea II 16 L vs V  1 Clade A1 
g

 + Clade A2 51 S (G) vs D, H, K, N 

1 Clade D 
a 

21 K vs E  1 
g
 T. wilkinsoni III 51 G vs S 

1 
a
 T. libanotica II 21 Y vs K  1 Clade C 

h
 + Clade D 

i 
51 N vs D, S 

1 T. herculeana 22 E vs K  1 
h

 T. processionea I, II 51 K vs N 

1 Clade C 25 K vs E  1 
i
 T. pinovora I 51 D vs H, N 

2 Clade A2; T. solitaria I,II 27 V vs I  1 
i
 T. pinivora II 51 H vs D, N 

1 T. pityocampa ENA II 27 L vs I  1 Clade B 
j 

51 D (H) vs N (D,H,K) 

1 T. pityocampa ENA II 30 S vs T  1 
j
 T. pityocampa ENA II 51 H vs D 

1 Clade A2 
b

 except O.lunifer 30 A vs T  1 T. pinivora I 52 A vs G 

1 
b
 T. wilkinsoni XVIII 30 T vs A  1 T. libanotica II 53 S vs C 

1 T. wilkinsoni XVII 31 H vs Y  1 T. pityocampa ENA II 54 Q vs H 

1 T. wilkinsoni XVII 32 R vs Q  1 T. herculeana + T. processionea I, II 55 I vs V 

1 T.wilkinsoni VI 34 R vs K  1 T. pityocampa ENA II 57 L vs F 

1 T. pinivora II 36 K vs N  1 T. herculeana 61 N vs K 

1 T. wilkinsoni XVI 36 S vs N  1 T. herculeana 62 E vs G 

2 T. herculeana; T. pinivora II 38 L vs F  1 Clade A1 excluded A.panda 62 R vs G 

1 Clade C + Clade D 
c 

39 E vs D, N, Y  1 Clade A1 + Clade A2 70 D vs N 

1 
c
 T. pinivora II 39 D vs E  1 Clade B

k
 + Clade C + Clade D

l
  70 N vs D 

1 Clade A2 
d 

39 D vs N  1 
k

 T. pityocampa ENA II 70 I vs N 

1 
d

 T. wilkinsoni XVIII. N ancestral 39 N vs D  1 
l
 T. ispartensis II 70 Y vs N 

1 T. pityocampa. N ancestral 39 D vs N  1 T. processionea I, II 72 R vs T 

1 T. pityocampa ENA II. N ancestral 39 Y vs N  1 T. libanotica II 72 S vs T 

3 T. pityocampa ENA I; Clade A1; T. wilkinsoni XVIII. D ancestral 39 N vs D  1 T. ispartensis II 73 Y vs N 

1 T. pityocampa ENA II. D ancestral 39 Y vs D  1 T. processionea II 79 D vs E 

1 T. herculeana 42 A vs S  1 T. processionea I, II 80 H vs N 

3 T. herculeana; Clade A1; T. wilkinsoni XVIII + T. wilkinsoni XIX 43 A vs V  1 T. libanotica I, II 80 D vs N 

1 Clade C 
e
  44 V vs A  1 T. pityocampa ENA I 81 R vs W 

1 
e
 T. solitaria 1 44 A vs V  1 T. pityocampa ENA II 81 G vs W 

3 Clade D; Clade A1 except A.panda; T. wilkinsoni XVIII 45 A vs G  1 Clade C + Clade D
 m 

87 T vs S 

1 T. wilkinsoni II 47 V vs I  3 
m
 T. pinivora 1; T. ispartensis II; T. libanotica II 87 S vs T 

1 T. wilkinsoni XVI 47 N vs I  1 T. wilkinsoni XIX 87 P vs S 

2 T. solitaria II; T. ispartensis I to T. libanotica I 
f 

48 I vs L  1 T. wilkinsoni I 89 P vs S 

1 
f
 T. libanotica II 48 K vs I  1 T. ispartensis II 90 H vs Q 

1 T.ispartensis II 48 K vs L  1 T. wilkinsoni XVII 94 H vs Y 

1 T. pityocampa ENA II 49 R vs S  1 T. processionea I, II 96 E vs Q 

1 T. pinivora I 49 T vs S  2 Clade B; T. herculeana + T. processionea I, II 104 N vs D 

2 T. solitaria I,II; Clade A1 50 K vs R  1 T. processionea I, II 108 S vs K 

N, number of changes; POS, position in the alignment; Change, type of change. 
a-m, these superscript letters refer to taxa, listed immediately below the reference group, departing from the general behavior observed 

for a specific clade. 
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Figure S1. Distribution in Tha p 2s of conserved motifs with high probability of occurrence in 

proteins. Motifs were identified with the the ScanProsite tool available at the Expasy web server. 

The Logo vignette was created with the WebLogo tool. The secondary structure is a consensus of 

the predictions obtained with PSIPRED, JPRED3 and 1D Protein Structure Prediction Server 

packages. Red arrow identifies the placement of the signal peptide cleavage. Secondary structure 

elements: α0-α2, predicted α-helices; β1-β6 predicted β-barrels. 
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Conclusion 

There are two general conclusions that can be taken from the results obtained; the first 

concerns the proteomics and immunological aspects related to the urticating system while 

the second is oriented to clarify the biological aspects of the processionary moths of the 

genus Thaumetopoea and of other Thaumetopoeinae.  

 

Proteomics and immunological aspects 

My studies and results suggest that a large amount of proteins can be obtained 

from the urticating setae with a harsher extraction method that permitted to strongly break 

the setae. As many of the extracted proteins were not identified as allergens, I hypothesize 

that during the growth of the urticating setae they may become a sink for proteins 

occurring in the cytoplasm of the forming epidermal cells and perhaps also for blood 

proteins, which can easily enter the epidermis. The occurrence of allergenic proteins is 

confirmed by the positive blots of the sera of persons previously in contact with urticating 

setae, although at different level of exposure. In my experiment I was not able to 

reproduce the same results of Rodrigez-Mahillo (2012) for Tha p 2 protein, but 

component peptides of the same sequence were found in bands of different molecular 

weight, allowing to think to a family of urticating proteins, some of them still to identify. 

Also, the proteins of different molecular weight could open a new way to understand the 

immunologic component in the complex mechanism of reaction of the setae in humans. In 

addition to the allergic role of Tha p 2, the role of the chitin bound to these proteins 

should be explored, as it can be recognized as an allergen for tissue infiltration by innate 

cells implicated in allergic and immunity (Reese et al. 2007). The chitin action is not clear 

yet, although it can stimulate alone in vitro human T-lymphocyte proliferation, although 

at lower intensity compared with the urticating setae of Th. pinivora (Holm et al. 2014). 

In the latter study, a much stronger proliferation was induced in persons previously 

exposed to the setae, indicating that setae contain molecules which may start cell-

mediated immune response (Holm et al. 2014). This fact may suggest that after skin 

penetration, allergens can be delivered to the immune system in a dual way: a fast release 

of allergens present on the outside of the setae, and a slow or very slow release that must 

occur after degradation of the setae by chitinases (Moneo et al. 2014).  

In conclusion, the setae are considered a source of allergens and the risk for 

humans and animals is very high; they constitute a serious hazard, but the total 
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components, the quantity, the function and the real urticating proteins must be further 

investigated. This will give the possibility to create a diagnostic test not only for humans 

but also for animals. There is the need to repeat the immunologic tests with other persons 

who were exposed or not to the larvae to better understand the specificity of the response 

to the urticating setae. Finally, the occurrence of similar types of responses in the animals 

which are considered the natural target of the setae, like the insectivorous birds, should be 

explored. 

 

Biology of Thaumetopoeinae and their urticating system 

The characterization of Tha p 2 gene and the study of its evolution, permitted to know 

that it is an intronless gene restricted to the processionary moths (Thaumetopoeinae, 

Notodontidae, Lepidoptera). Most of the studied species present two isoforms of Tha p 2 

that can be interpreted as the result of heterozygosity in the single gene. The only 

exception is represented by Thaumetopoea wilkinsoni, in which 20 different isoforms 

occur in a single specimen, leading to the conclusion that at least in the species multiple 

copies of Tha p 2 exist. The Tha p 2 is a glycine and cysteine rich protein very well 

conserved among processionary moths, included Anaphe panda and Ochrogaster lunifer 

that presents the urticating setae only in the moth.  

The results of all this works permitted to clarify the real function of urticating 

setae as protective agents against predators, produced for this reason during the longest 

larval instars which are more exposed, and not during the first larval instars, as shown in 

the Chapter 3 in the study of the expression of the gene. The NGS approach (Illumina 

RNA-seq) used for sequencing the reads and the subsequent bioinformatics analyses, 

confirmed the expression of Tha p 1 gene in all life stages of Th. pityocampa of both 

populations used for the experiment, indicating that it is not strictly associated with the 

urticating setae, while the gene Tha p 2 was expressed only in larval stages where the 

setae production occur.  

In addition, the analyses reveal that the urticating setae system and the gene 

associated, are well conserved in the Thaumetopoeinae group and could be a major factor 

affecting their evolution, as well as that of other groups of arthropods like spiders which 

share similar defense mechanisms.  

A new objective following this results could be the extension of the extraction of 

the urticating setae to other species of processionary moths, to determine if the proteins 
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extracted from urticating setae are the same. It could be also of interest trying to 

understand the genetic expression of the urticating proteins in species like Th. herculeana, 

that was not considered dangerous in literature, but during my thesis I found that also Th. 

herculeana presents the same urticating system of the other Thaumetopoea, but not very 

efficient, because the mirrors do not open upon disturbance and the setae are not released. 

When applied to the human skin of a sensitized person, however, they produce the same 

reactions caused by the setae of the other Thaumetopoea. In this case, it will be 

interesting to understand the real expression of the gene of urticating protein, because of 

the Thap 2 gene is also present. Finally, the study of the urticating system of 

processionary moths will require further development, including the analyses of other 

genes with specific urticating functions not only in Thaumetopoeinae but also in other 

groups of arthropods. 
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Abstract 

The pine processionary moth Thaumetopoea pityocampa (Lepidoptera, Notodontidae) is a 

univoltine defoliator that is active over a wide range of latitude and elevation, being 

largely influenced by temperature variations especially during larval development. To 

compare developmental time in the field with laboratory rearing under controlled 

conditions, four populations characterized by different life history phenologies were 

selected and reared from egg to adult. The selection concerned two populations from the 

Italian Alps characterized by early and late adult emergence, as well as two populations 

from Portugal characterized, respectively, by summer and winter feeding of the larvae. 

The rearing was started from egg stage and maintained in the laboratory at 20-25°C under 

natural light in aerated boxes. The duration of each larval instar was calculated as the time 

taken by 50% of the larvae to molt to the next instar. In spite of the different geographic 

origins and asynchronous time of the larval development, all populations maintained an 

annual life cycle as well as a phenology very similar to that observed in the field. This 

outcome was possible due to a flexible duration of the pupal stage, indicating that this is 

the time when the mechanism maintaining the univoltine life cycle is working. 

Introduction 

Regulating phenology to be active and reproduce on the most favorable season is a 

common evolutionary mechanism in animals and plants (Tauber et al. 1986; Danks 1987). 

Many insect species, and phytophagous insects in particular, are univoltine and 

semelparous. The single reproductive event occurs normally in the season which allows 

optimizing survival for the offspring. Seasonality thus appears as a strong factor 

maintaining the univoltine cycle, and insects use environmental variables to track the 

right time of activity (Danks 1987; Saunders 1982). For herbivore insects, the univoltine 

life cycle is often explained by a precise synchronization with a particular developmental 

phase of the host plant. For example, several early-feeding herbivores of temperate forest 

ecosystems depend on the ingestion of young foliage, which is available during a 

restricted time window in the spring, while less specialized feeders are less constrained in 

time and can develop over longer periods or alternatively become multivoltine (Dajoz 

1980). Evergreen coniferous host plants offer a good opportunity to test this hypothesis 

because they offer a relatively stable food supply over time, i.e. mature leaves. For 

example, in the diprionid sawflies, some species have a fixed univoltine cycle whereas 
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others may have univoltine cycles interchanged with multivoltine ones (Larsson et al. 

1993). The latter species, when reared in the laboratory under optimal conditions of 

temperature and photoperiod, may develop continuous generations as in the case of 

Diprion pini (Eichhorn 1976). 

Shifts in phenology, however, may occur in any life stage depending on changes 

of environmental variables. Recent studies show that the effects of day length on the 

induction and termination of diapause may be modified by rising temperatures (Saunders 

1982; Battisti 2004). This happens because photoperiod is not affected by climate change 

whereas temperature is, especially in temperate and boreal zones and in winter more than 

in summer (Hodkinson 2005). Evidence may be obtained by demonstrating that 

conditions exceeding the current threshold of species survival will impose prohibitive 

mortality or preclude the completion of the life cycle.  

The winter pine processionary moth, Thaumetopoea pityocampa (Lepidoptera, 

Notodontidae), provides a classic example of an insect feeding on mature foliage that 

does not need to be synchronized with the spring leaf flush. In addition, the larvae feed 

during winter, usually while in the third to fifth instar, and respond positively even to a 

slight increase of temperature (Battisti et al. 2005). As Th. pityocampa is univoltine, 

favorable conditions could promote faster development and thus the possibility to develop 

continuously. We know for example that embryonic development takes from 20 to 45 

days, depending on the temperature recorded in the egg masses, which relates to the 

adsorption of solar radiation by the layers of protective scales (Milani 1990). Larvae are 

night feeders and gregarious, with a development time in the field varying between four 

and nine months (Battisti et al. 2014), depending on the winter conditions. The timing of 

adult emergence is generally inversely proportional to the length of the larval 

development, i.e. populations with early adults show the longest larval development, and 

vice versa (Battisti et al. 2014). Plasticity of phenology is typical among populations of 

this species, and it has been considered as an adaptive strategy to wide latitudinal and 

elevational gradients over witch its range is extended. Such a plasticity consists of a 

complementary duration of larval and pupal stages, for example long feeding period and 

short pupal time in the cooler areas, and viceversa (Huchon and Démolin 1970). 

Interestingly, a population with shifted phenology has recently been found in 

Portugal, characterized by larval feeding in summer instead of winter. In this population, 

the adults emerge in late spring (from April to June) instead of in the summer (August-
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September), as locally observed for the typical populations. The shifted population is 

genetically differentiated from the sympatric winter pine processionary moth (Santos et 

al. 2007; Santos et al. 2011a). Summer and winter populations co-occur in the same area, 

but are at great extent isolated by different reproductive periods (Santos et al. 2011a). 

Considering the large phenotypic plasticity in the duration of the Th. pityocampa 

different stages of development, it would be important to determine how the insect 

develops under constant laboratory conditions. However, in the literature only two data 

sets are available. The first one relates to a population of the winter feeding Th. 

pityocampa from Kassandra peninsula in northern Greece (Devkota and Schmidt 1990). 

This population was taken at the egg stage to a laboratory in Germany (Hannover) and 

raised at 17-20°C. The emergence of the new adults was observed exactly one year later, 

although the larval development took between 86 and 109 days only. The second 

concerns to another Greek population (Kalogria, Schmidt 1989), which provided similar 

results. Although the pine processionary moth was reared by many entomologists under 

controlled conditions, no other data have been published about the total duration of larval 

development at constant temperature. One reason is probably linked to the difficulty to 

rear larvae which carry urticating hairs, implying the availability of dedicated rearing 

chambers (Battisti et al. 2011).  

We therefore decided to collect data related to the duration of insect development 

under controlled conditions of four distinct populations of Th. pityocampa, two 

characterized by early versus late emergence in the field, from the Alps (Italy), and two 

characterized by summer versuswinter emergence, from Portugal. This approach allowed 

us to compare, among populations with apparent differentiation in phenology,  the 

development time and mortality for each life stages. The general aim was to obtain 

background information to compare the result with the field development time and to 

explore the basis for adaptation to different climatic conditions.  
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Materials and methods 

Two populations previously studied for variation of phenology (early and late) and 

population genetics were identified in north-eastern Italy (Simonato et al. 2012). They are 

located along an east-to-west gradient of egg size (Zovi et al. 2008), where the eastern 

populations, which also have early phenology, have about 10% larger eggs than western 

populations, which have late phenology. Therefore, there is a trade-off between egg 

number and egg size (Zovi et al. 2008). The eggs batches laid by moths of early 

population were collected on the needles of Pinus nigra in the south eastern Alps 

(Cimolais, 12°27’E 46°19’N, 650 m above sea level) (n = 12) in July 2012, while those of 

the late population were collected on the needles of the same pine species in the last week 

of August 2012 in the southern Prealps (Cinto Euganeo, 11°39’E 45°16’N, 200 m; 

Tregnago, 11°09’E 45°30’N, 450 m) (n = 16). Egg batches of both Portuguese 

populations (summer and winter population) were obtained by experimental mating 

conducted in the laboratory from 2008 to 2012, with the aim to analyze the phenology of 

both populations (Branco et al., in preparation). Late instar larvae or pupae of both 

populations were previously collected from maritime pine Pinus pinaster in the National 

Forest of Leiria (Portugal) (39º47' N 8º 58' W, 50 m). Larvae were allowed to pupate in 

the laboratory in boxes filled with sand. Pupae were separated by population and sex and 

kept at room temperature until emergence. Eggs batches were obtained for five 

consecutive years were n= 12, 6, 46, 46, 52 for the summer population and n = 4, 34, 45, 

60, 26 for the winter population. Eggs batches were kept then in separate vials at room 

temperature (20-24ºC) until larvae hatched. 

 

Larval rearing 

Each egg batch was put in a plastic vial to wait for hatching in the laboratory under 

controlled conditions of temperature (20-25°C) and natural photoperiod, which was short 

day-length for the winter feeding populations and long day-length for the summer feeding 

population. After hatching, the larvae were transferred in aerated boxes (size cm 

15x10x5?) with freshly collected pine twigs carrying needles. Then the egg batch was 

cleaned from the scales and the number of eggs and hatching holes were counted. 

Colonies originating from different egg batches were reared inseparate boxes. For the 

Italian populations, we decided to use Pinus sylvestris instead of P. nigra because the 

needles are shorter and easier to handle in the rearing boxes, while the larvae perform 
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equally well on the two hosts (Stastny et al. 2006). For the Portuguese populations, larvae 

were fed with fresh maritime pine Pinus pinaster needles, the main pine tree in Leiria 

pine forest. Fresh twigs were provided daily during the feeding period by gently removing 

the colony from the old twig, as well as the feaces and the feeding debris. On this 

occasion the developmental stage of the larvae was checked at the individual level, as 

well as the mortality. For the two Portuguese populations, mortality was recorded only at 

colony level. Since the third instar, the above checks were conducted under the hood 

because of the occurrence of urticating setae (Battisti et al. 2011). As the larvae reached 

the end of their development, the late fifth instar, they were transferred into a box (size 

cm 25x15x 5) with 4 cm of sterilized sand on the bottom, to offer a suitable site for 

pupation. Food was also added ad libitum. After about five weeks from pupation, the 

cocoons were sorted out from the sand and the pupae were extracted. Each pupa was then 

kept individually in a plastic vial in darkness under the same temperature condition. For 

the two Portuguese populations, pupae were kept in separate boxes, one for each family.   

The pupae were inspected once a week until the beginning of the emergence of the moths, 

when they were inspected daily. The mortality of the larvae in each instar of each colony 

was calculated as the total number of dead larvae in a given instar subtracted by the 

number of larvae that entered that instar. It was not possible to assess the cause of the 

death because symptoms were not specific to any factor known. The mean duration of 

each larval instar was calculated as the time until half the larvae completed the instar, 

excluding those that died during each specific period. In Portuguese populations the 

mortality at family level was evaluated during five years. Data was analyzed by logistic 

regression considering the proportion of dead families a dependent variable and 

considered the factors population and larval stage. The SD (standard deviation) and t-test 

were calculated for the development and the hatched eggs of each population, and a 
2 

test was used to test for population mortality.  
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Results  

Development  

The larvae of the Italian populations hatched in August in the early population, and in 

September in the late one. As expected, the egg batches from the early populations had 

fewer eggs per batch (225.2, SD 50.0, n 12) than those of the late population (251.7, SD 

35.4, n 16), although the difference was not significant (t-test = 1.24, p = 0.23), and the 

number of hatched eggs was similar between the populations (57.2, SD 19.9, n 12, and 

65.1, SD 36.3, n 16 for early and late population, respectively) (t-test = 0.57, p = 0.58). 

The larval development time did not differ significantly between the two populations (t 

test = 0.51, p = 0.69) (Table 1 and Fig. 1). There were differences between the 

populations in the duration of the individual instars, with the second shorter in the early 

and the third longer in the late population. All the surviving larvae moved into the sand 

for pupation between December and January (different from colonies). From early 

population were obtained 5 pupae and 7 from late, with an average of 1 pupa per colony. 

The pupal stage was shorter in the early population compared to the late one. The adults 

of the early population started to emerge at the beginning of June and those from the late 

population one month later. 

 

Table 1. Duration of larval and pupal development of populations of Thaumetopoea pityocampa 

under laboratory conditions. Data from literature are added (
+
). 

 

Population 

Larval 

development 

(days±SD) 

 Larval 

     T° 

Pupal 

development 

(days±SD) 

Pupal 

   T° 

Italy-early emergence  100.7±3.25 21.5 223±5.2        21.5 

     

Italy-late emergence  

 

102.5±4.42 21.5 229±0.0        21.5 

Portugal-summer population  

 

Portugal-winter population 

 

+
Greece-Kassandra  

Devkota and Schmidt (1990) 

88.6±9.4 

 

100.4±3.9 

 

93.3±6.73 

24.9 

 

22.6 

 

18.5 

258±30.0 

 

234±27.1 

 

241 

       22.0  

 

       22.0 

 

        n.a. 

+
Greece-Kalogria  

Schmidt (1989) 

>100 21.0 248         n.a. 
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Figure 1. Duration of larval development of each instar of early and late populations of 

Thaumetopoea pityocampa from the Italian Alps. Bars indicate standard deviation. Numbers of 

colonies are given in the text. 

 

From the 5-year monitoring in Portuguese populations, larval hatch occurred from May 

8
th

 to June 2
nd

 for summer population and from August 3
rd

 to September 10
th

 for winter 

population. Thus, development began about three months earlier in the population with 

shift phenology than in the typical population. The larval development time of the early 

population was significantly shorter than that of the late population (F1,53 = 39.071, p < 

0.001) (Table 1 and Fig. 2). There were also differences between the populations in the 

duration of the individual instars: all the larval stages had shorter development in the 

summer population (Fig. 2). All the surviving larvae moved into the sand for pupation, in 

the summer population during the month of August and in the winter population between 

the second week of November and the end of December. In the following year, 

Emergences occurred from the first week of May to the end of June for summer 

population, and from the end of July to mid-August for winter population. Therefore the 

pupal stage was significantly longer in the summer population than in the winter 

population (F1,36= 14.349, p=0.001) (Table 1) . 
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Figure 2. Duration of larval development of each instar of summer and winter populations of 

Thaumetopoea pityocampa from Portugal. Bars indicate standard deviation. Numbers of colonies 

are given in the text. 

 

Mortality 

Larval mortality was associated with the arrest of feeding and the desiccation of the 

larvae. Symptoms clearly associated with microbial infections were not observed. The 

colonies which reached the adult stage were 4 out of 12 and 4 out of 16 for the early and 

late Italian populations, respectively. The individual larval mortality was rather high for 

young larvae and then progressively declined toward the fourth and fifth instars (Fig. 3), 

with no significant differences between the populations (test 
2
 = 4.3, p = 0.63). Colony 

disappearance because of total mortality varied strongly along the larval development, 

without a clear pattern. However, in the colonies which survived until the end, the overall 

individual mortality was only 5.6% for early and 11.3% for late population. Individual 

pupal mortality pooled among colonies was 50% for both populations. 
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Figure 3. Mortality of larvae of early and late Italian populations of Thaumetopoea pityocampa. 

Bars indicate standard deviation (number of starting colonies: 12 for early and 16 for late 

populations). 
 

In Portuguese populations the mortality was estimated at colony level only (Table 2). It 

was higher for the three first instars in the summer population while it was rather similar 

among larval instars in the winter population. No significant differences between 

populations were found (Wald 
2 

1 = 3.597; p = 0.058), but colony mortality varied 

significantly with the larval instar (Wald 
2

4 = 10.402; p = 0.034). Overall, younger 

instars were the most affected ones in both populations. Pupal mortality at colony level 

was significantly higher for winter than for summer population (F1,41= 5.889, p < 0.01) 

(Table 2).  

Table 2. Colony mortality percentage (%) of larvae and pupae of the Portuguese populations of 

Thaumetopoea pityocampa. Mean is calculated for five years. 

Instars 

summer population 

(mean±SD) 

winter population 

(mean±SD) 

L1 32 ± 3.6 38 ± 3.4 

L2 32 ± 4.4 38 ± 4.3 

L3 42 ± 5.6 30 ± 5.2 

L4 13 ± 5.1 24 ± 5.7 

L5 18 ± 6.1 45 ± 7.7 

Pupae 41 ± 6.0 69 ± 10.2 
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Discussion  

The most striking result of this work is that the pine processionary moth is keeping its 

annual life cycle even under conditions conducive to continuous development. Raising 

larvae at room temperature of 20-25ºC, either under short or long day-length, resulted in a 

developmental time variable between 88 and 102 days only, while larval development 

under field conditions usually takes between 180 and 300 days for the winter feeding 

populations and around 90 days for the summer feeding populations (Battisti et al. 2014). 

The maintenance of the annual life cycle is therefore made possible by a flexible duration 

of the pupal stage, which under laboratory conditions was much longer than in the field 

for the winter feeding populations. In addition, the duration of the pupal stage can be 

much longer in the field in the case of prolonged diapause, while such an extension has 

never been reported under laboratory conditions in this species. Prolonged diapause is 

supposed to have evolved owing to enhancing geometric, rather than arithmetic mean 

survival of the population in fluctuating environments (Menu and Roebuck 2000). A 

constant environment in the laboratory does not let insects confront variability, thereby 

reducing possible risk, which in turn might ensure them of suitable environment in the 

current year. In addition, manipulative process of methodical laboratory experiment may 

disturb the energy status of insects encouraging them to flip their coin or emergence in 

the progressing year.  

In the winter populations, the duration of the larval period has been shown to be 

strictly dependent on temperature, as the larvae are continuously feeding as long as the 

night temperature is above 0°C and the previous day temperature higher than 9°C inside 

the tent (Battisti et al. 2005), and they may cope with extended periods of starvation and 

repeated freezing across the winter (Hoch et al. 2009). Interestingly, the switching to the 

summer feeding observed recently in Portugal (Santos et al. 2007; Santos et al. 2011a) 

has resulted in developmental times of larvae and pupae which resemble those obtained in 

the laboratory at 20-25 °C for the winter populations, although both larvae and pupae 

development occur in different seasons. It seems that adult emergence time is regulated 

by factors which are relatively independent from temperature, while the duration of both 

adult and egg stages does not show major variation across all the populations (Battisti et 

al. 2014).  

The laboratory rearing data confirm the general pattern described by Démolin 

(1969) and based on the collation of a large number of observations done across both 
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elevational and latitudinal gradients. According to this author, the warmer is the winter 

the shorter is the larval development, and the longer the pupal stage. Such a mechanism is 

basically dependent on the variability of the adult emergence, which can extend over 

several months depending on the location, as it has been  confirmed in the survey of 

Pimentel et al. (2010). The larval development time of the six populations of Th. 

pityocampa for which data under laboratory conditions are available shows little variation 

at room temperature in spite of different geographic origins. Still, slight variations 

observed in the laboratory may be partially justified by differences on temperature. 

Although the correlation was not significant, developmental time tended to decrease with 

increasing temperature (r = -0.27, p = 0.61), consistent with the expected effect of 

temperature on larval development. In the field, the elevation and latitude drastically 

influenced the development time: at colder sites (high elevation or high latitude) the 

development time is longer. These results are concordant with the general predictions of 

temperatures-based models of insect development (Chapman 1998).  

In particular, the L3, L4, and L5 instars are longer than the first two instars. The 

higher biomass of the later instars may justify their longer development time, as larvae 

attain 22 fold more biomass on L5 compare to that of L2 (Branco et al. 2008). For all 

larval stages, the development times on the summer population were shorter than those of 

the Portuguese winter population. This result might be justified by slight differences on 

temperature on the two periods (Table 2). Otherwise, we can hypothesize that the higher 

egg size found in the summer population compared to that of the winter population 

(Santos et al. 2013) may have an adaptive significance allowing lower mortality and 

shorter development time (Zovi et al. 2008). Nevertheless, for the early and late Italian 

populations such trend was not evident (Fig. 1). Variation of quantity or quality of the 

diet could also have effect on larval development; as low growth rates are associated with 

poor diets (Chapman 1988). This does not seem to be the case of the studied populations 

as they were raised on their preferred host in the field and regularly provided with fresh 

pine twigs.  

The pupal development time shows much higher variation which does not seem to 

be explained by temperature. This physiological process is probably influenced by 

interaction of environmental, hormonal, and genetic signals (Tauber et al. 1986; Danks 

1987, Denlinger 2002, Denlinger et al. 2005) that allow maintaining of the univoltine 

cycle with the right emergence time of the adults, like in the field, for each specific 
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population. A recent study demonstrated that adults under laboratory conditions emerged 

one month earlier than in the field (Zhang et al.1998), although the experiment was 

started with mature larvae ready to pupate and this fact may have disrupted the expected 

phenology. In the present study, starting rearing from eggs, we observed a good 

synchronization of the emergences times with those expected for the respective 

populations in the field. 

The mortality percentage of Th. pityocampa larvae clearly decreased with increase 

of the larval stage. It was not possible to assess the cause of death because symptoms 

were not specific. Presumably it was caused by diseases or drying out, as the limitation of 

space in the boxes does not allow the colony to move from one branch to another as they 

do in nature. In the field, the principal causes of mortality are correlated to agents like 

viruses, bacteria, and fungi. The pupae in the soil are mostly attacked by fungi that are a 

key factor in causing decline in populations, especially when the stands are closed and the 

soil moisture is high (Markalas 1989, Battisti et al. 1998). However the individual larval 

mortality of the Italian populations of Th. pityocampa reflects the typical survivorship 

trend of decreasing with larval growth (Speight et al. 1999). In the field the young larvae 

of each population are affected by a strong effect of mortality, showing a direct influence 

from the daunting task of establishing themselves on a food plant (Zalucki et al. 2002). In 

laboratory, young larvae were found to have higher mortality when exposed to 

disturbances such as thermal stress (Santos et al, 2011b), possibly because their behavior 

was negatively affected by the absence of the tent (Battisti et al. 2014). 

Development times under laboratory conditions are also available for other 

species of Thaumetopoea. The larvae of Th. processionea of a population from Romania 

were maintained at 20-22 °C and developed in 76-79 days, instead of 96-100 days 

observed in the field (Dissescu et al. 1968 in Battisti et al. 2014), although the annual life 

cycle was maintained. The larvae of Th. jordana developed faster in the laboratory than in 

the field and much faster at high temperature, taking 70 days at 20°C, 48 days at 25°C, 

and 40 days at 30°C (Furth and Halperin 1979), but also in this case there was no 

anticipation of the adult emergence. Studies done with a Spanish population of Th. 

pinivora (Galapagar, Madrid, Spain) (Montoya and Robredo 1972) indicate that 

development time is the same as observed in the field, although the extended diapause of 

the pupal stage is missing. All these data indicate that the processionary moths are well 

synchronized with the seasonality of their habitats despite thermal variations larvae might 
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experience, and this may result from a long co-evolution which has defined the 

development patterns. Yet, it is surprising that the pattern can be completely reversed, as 

in the case of the summer processionary moth of Portugal, while univoltinism is 

maintained. As this event is considered to be recent, as far as the genetic distance tells us 

(Santos et al. 2011 and 2013), we may expect a large flexibility in the responses to 

changed environmental conditions. The effect of temperature on larval development is 

quite clear and there is no more action to take in this concern, while the mechanisms 

regulating the pupal development need to be thoroughly considered as they could be the 

key to understand the phenology regulation in this group. In other words, the matter of 

diapause in this species needs to be taken into thorough consideration. We can first 

identify two different kinds of pupal diapause phenotypes, a) the obligatory diapause, of 

flexible duration, during which the “development time buffer”, or synchronization of 

emergences, seems to happen, b) the extended diapauses, that rather seems to be involved 

in mitigating environmental stochasticity, but might also be related to synchronization in 

some cases (see the particular populations where extended diapause is mandatory, as 

normal pupal time would be too short for allowing the complete metamorphosis in the 

same year). In both cases though, the termination signal might be the same, thus ensuring 

synchronized emergences  
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Natural History of Thaumetopoea herculeana 

 

Mauro Simonato, Laura Berardi, Andrea Battisti, and Juan Pino 
 

Host Plants and General Distribution 

Thaumetopoea herculeana is associated with open areas covered with low natural 

vegetation of truly Mediterranean type of the Iberian Peninsula and on the southern rim of 

the Mediterranean basin until the Near East. The larvae feed on Geraniaceae (Erodium 

moschatum and E. arborescens), and Cistaceae (Helianthemum vulgare, H. croceum and 

Cystus salviaefolius), which are not crop plants. 

 

Life Cycle 

There is large uncertainty about the life cycle of this species. According to Go´mez-

Bustillo (1979), the moth’s flight period extends from June in the northern and central 

Spain to September/October in Andalusia. Agenjo (1941) reported moth catches in May, 

August, September, and October. Larvae are reported to be present from October to April 

(Gomez de Aizpura 1986). During our small survey in coastal NW Spain, larvae of 

different instars (second to fifth) were found in April and gave origin to adults emerged in 

July under laboratory conditions, while in the field moths have been observed between 

July and September (unpublished data). It is thus possible that the life cycle depends on 

local weather patterns and host plant phenology. Moths lay eggs on low plants, grouping 

them in cylindrical batches. Larvae show a gregarious behaviour as they stay in groups of 

about 20–30 individuals piled up on the ground, forming a small cluster without silk (Fig. 

2.4). A silk protection is reported just in the northern and central part of Spain, but not in 

Andalusia (Go´mez-Bustillo 1978). In the sunny days they move in processions with a 

triangular shape, separating to feed on the low vegetation around, and regrouping again 

after it. They usually feed during the night and in the morning.  

Larvae have a bluish grey appearance, and are covered by hairs of the same colour 

during the first two instars; in the next larval instars yellow-green tufts interspersed with 

grey appear on the back until the last moulting, probably to mimic the surrounding 

vegetation (for example Ulex europaeus). Larvae pupate in the ground at a low depth 

between March and April in the south of Spain. Larvae were not reported to be irritant 

(Agenjo 1941) although they carry urticating setae as in the other species of the genus 

(unpublished data). 
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Natural Enemies 

The larvae are parasitized by unknown tachinids and preyed by the carabid 

beetle Macrocarabus lusitanicus (Pino, unpublished data from north-western 

Spain). 

 

Population Dynamics 

No information is available. 

 

Relationships with Climate Change 

No information is available 
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Thaumetopoea herculeana 

 

Mauro Simonato, Laura Berardi, Juan Pino, and Andrea Battisti 

 
The moth has an almost continuous distribution in the Iberian peninsula, Spain and 

Canary Islands and Portugal (Agenjo 1941; Go´mez-Bustillo 1979; Gomez de Aizpurua 

1986; Bacallado Ara´nega and Herna´ndez Pacheco 1990) (Fig. 3.41). Isolated findings 

exist from Morocco, Algeria, Tunisia, Libya Cyrenaica, and Palestine, although most of 

the material is old (Agenjo 1941) and would need 

reconfirmation. 

 

 

 

 
Fig. 3.41 Distribution map of Thaumetopoea herculeana in the Iberian Peninsula according to 

Go´mez-Bustillo (1979) 



 

 

 



 

 



 

139 

 

Acknowledgments 

 

During this PhD experience I had the pleasure to meet and work with several 

person and all of them, contributed to my professional and moral growth, and is now a 

pleasure for me to thank them all.  

Firstly I would like to thank my supervisors Prof. Andrea Battisti and Prof. Enrico 

Negrisolo, who assisted and supported me for the three years of this experience. A 

particular thanks are due to my tutors in France, Carole Kerdelué, for very kind 

hospitality and for the help in my works, Frank Dorkeld, Bernhard Gschloessl and my 

special office colleague Julie Pisano. 

Special thanks go to my friendly and kindly office colleagues: Davide, Diego and 

Giovanni and to my friends of department: Andrea, Diego, Edoardo, Ewelina, Fernanda, 

Giacomo C., Giacomo S., Ines, Isabel, Lorenzo T., Mauro, Micaela, Paola, Riccardo, 

Salman. I want also to thank my colleagues of the department of BCA, Eleonora, Lisa, 

Massimiliano, Massimo, Marianna, Nadia, Rafaella, Roberta, Sara, Serena. Thanks also 

to the entomology staff at the department, Gabriella Frigimelica, Luca Mazzon, Lorenzo 

Marini and Nicola Mori and Professors Carlo Duso, Giuseppina Pellizzari, and 

technicians Patrizia Dall’Ara, Paolo Paolucci.  

I have to say a special “thank you” to Nicola, my family for the moral support and 

all my friends. 

 


