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Abstract 

Thanks to European environmental rules and regulations establishment, waste recycling has 

become a more and more relevant problematic. For manufacturing plants, especially those 

producing hazardous wastes, expenses linked to waste production have drastically increased over 

the last decades. In the proposed work, various hazardous and non-hazardous wastes, among: 

soda-lime and borosilicate glass cullet, cathode ray tubes glass, exhausted lime from fume 

abatement systems residues, sludge and slags from ferrous and non-ferrous metallurgy, and pre-

stabilized municipal solid waste incinerators ashes are used to elaborate several compositions of 

glass-ceramics. High-temperature treatment (minimum 800 °C) associated to a Direct Sintering 

process (30 min) was an efficient way to stabilize chemically the final products. The impact of 

each waste on the final product’s mechanical properties was studied, but also their synergies 

between each other, when mixed together. Statistic mixture designs enabled to develop interesting 

products for modern building applications, such as porous tiles and lightweight panels destined to 

insulation, with a purpose of fulfilling multifunctional properties. 

 

Sommario 

Grazie alle regole e normative ambientali europee istituite, il riciclaggio dei rifiuti è diventato 

una problematica sempre più rilevante. Per gli impianti di produzione, in particolare quelli che 

producono rifiuti pericolosi, le spese connesse allo smaltimento sono drasticamente aumentate 

negli ultimi decenni. Nel lavoro proposto, vari rifiuti, pericolosi o no, vengono utilizzati per 

elaborare diverse composizioni di vetroceramiche. Si distinguono rottami di vetro della produzione 

di finestre, di contenitori farmaceutici e di tubi catodici. I rifiuti non vetrosi invece sono calce 

esausta da residui di sistemi di filtrazione di fumi, scorie metallurgiche da leghe ferrose e non e 

ceneri da inceneritori. E' presentata nel presente lavoro la ricerca di un metodo di trattamento ad 

alta temperatura (minima 800 ° C) efficace per stabilizzare chimicamente il prodotto finale, tramite 

i diversi processi di sinterizzazione diretta, sinter-cristallizzazione e vetrificazione. Sono stati 

studiati gli effetti di ogni rifiuto sulle proprietà meccaniche del prodotto finale, ma anche le nuove 

funzionalità ottenute attraverso le sinergie risultanti dalla loro miscela. Miscele calibrate hanno 

permesso di sviluppare prodotti interessanti per applicazioni edilizie moderne, come le piastrelle 

porose e pannelli leggeri destinati all’isolamento. 
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Chapter I 

Overall introduction: the GlaCERCo project 

 

 

 

I.1 Introduction  

 

For a few decades, companies have been financially encouraged in reviewing the entire design 

of their products, with the use of renewable materials or aggregates from recycling materials left 

on building demolition yards. States of European Union produced annually in the mid-1990 over 

250 million tons of municipal waste and more than 850 million tons of industrial waste. 

In the European countries that were OECD members, about 10 000 border crossings were 

registered per year (for a total of 2 million tons of hazardous waste). More than 55 000 

contaminated sites were then known in only six European countries and the total area 

contaminated in Europe would represent 47 000 to 95 000 km2, of which 1 000 to 3 000 km2 were 

(contaminated) with discharges. 

A deep knowledge of wastes would enable industries to reuse them as secondary materials in 

their processes and then become financially independent from prices fluctuations. To optimize the 

recycling and minimize costly landfill treatments, industrial wastes have been studied by 

researchers for over 40 years. As an example, a wide-spread research on characterization, co-

financed by world leaders groups of coal manufacture, was developed to enlighten the inherent 

properties of so called “fly ashes” coming from coal calcination: granularity, silica content, 

density, rheology, enabling to transform them in secondary raw materials. Nowadays, fly ashes 

have been successfully reintroduced in many ceramic compositions, mainly concrete and cement, 

in the field of building materials.  

The ceramic industry consumes large amounts of energy, especially during the firing process 

(Agrafiotis and Toutsos, 2001). Firing temperatures greater than 1200° C are required to sinter 

typical ceramic raw materials into dense products. Modifications of the raw material formulations 

have led to reductions in firing temperatures, but the improvements are limited because of the 

types of raw materials used. Most traditional ceramic products, such as tile and brick, consist 

mainly of clay-based raw materials, which inherently require high firing temperatures. Other 

ceramic manufacturing steps, such as the drying processes, are also very energy intensive. It is 

why in building applications, other alternatives to ceramics are often searched, like plastic, wood, 

and so on. Energy costs are a major portion of the total manufacturing costs, and thus new methods 

to reduce the amount of energy required will be a great benefit to the ceramic industry. By reusing 

waste, many investigations are technically possible in the ceramic field. As any solution, glasses 

are tolerant to compositional deviations, and therefore not sensitive to waste compositional 
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variations. Glasses are solid materials, which with their topologically-disordered internal atomic 

structure are true solid solutions; that is, solutions which were frozen to a solid state without phase 

separation. The most universal materials which are durable enough and have a long track record 

proving that they can withstand corrosive environments for millennia are silicate glasses. The high 

chemical resistance of silicate glasses allows them to remain stable in corrosive environments for 

many decades. On the other hand, ceramics are thermodynamically stable materials often derived 

from glasses via controlled crystallization. Many crystalline materials are extremely durable. Glass 

and glass-ceramics based hosts are the most prominent materials to ensure protection of the 

environment now and in the future in any expected and unexpected circumstances. 

The proposed work demonstrates the feasibility of manufacturing high quality glass and glass-

ceramic using a well-established and low-cost glass-ceramic process (Colombo et al., 2003 and 

Bernardo et al., 2006). The effects of glass composition on the crystalline phases that form and the 

nature of the oxides formed after exposure to heat and a reducing atmosphere will be determined.  

The process will yield dispersed metallic particles supported by the oxide glass-ceramic that may 

have applications for building and architecture: tiles (Bernardo et  al., 2008, 2009, 2010), 

insulating panels (Bernardo and Albertini, 2006), bricks, concrete aggregates (Bernardo et al., 

2010), cement, plaster, pane of glass (Bernardo, 2008), and coatings (Binhussain et al., 2014). This 

subject may probably help to increase energetic performance of building field (Blengini et al., 

2012, Cabeza et al., 2014). 

 

I.2 U.E. Roadmap on waste  

 

In 2011, the European Commission has set a Roadmap to Resource Efficiency in Europe, in 

order to improve the management of raw materials as well as wastes in a common objective of 

international competitiveness and independence. One of the significant issues raised is turning 

waste into a resource. A number of decisions have been set, among them an impressive milestone:  

“By 2020, waste is managed as a resource. […] Recycling and re-use of waste are 

economically attractive options for public and private actors due to widespread separate 

collection and the development of functional markets for secondary raw materials. Waste 

legislation is fully implemented.”  

However the European Union is prepared to make the decisions the situation requires, such as: 

stimulate the secondary materials market and demand for recycled materials through economic 

incentives and developing end-of-waste criteria (in 2013/2014); review existing waste prevention, 

re-use, recycling, recovery and landfill diversion targets to move towards an economy based on re-

use and recycling, with residual waste reasonably tending toward zero (in 2014);  ensure that 

public funding from the EU budget gives priority to activities higher up the waste hierarchy as 

defined in the Waste Framework Directive (e.g. priority to recycling plants over waste disposal) 

(in 2012/2013).  

As part of this commitment a supporting research and innovation is necessary and then, 

milestones have been defined also to trigger and give the necessary push for the transition to a 

green and low-carbon economy:  
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“By 2020, scientific breakthroughs and sustained innovation efforts have dramatically 

improved how we understand, manage, reduce the use, reuse, recycle, substitute and safeguard 

and value resources.” 

Examining the sustainment provided by European Union, we find a particular Focus Union 

research funding (EU Horizon 2020) on environmentally friendly applications, ‘Innovation 

partnerships’ and the 7th Framework Program which is the very context of this PhD Thesis. The 

total waste production in Europe is quite constant and around 250 000 Gton/Year. The most 

important waste production is made by construction and demolition, (for this reason Horizon 2020 

Program has a dedicated call for the recycling of wastes from this sector, SPIRE and WASTE), but 

combined together, hazardous, manufacturing, mining and quarrying wastes are also an important 

target and most of them contain easier potentiality to be recycled in a ceramic product. 

 

I.3 The European Project GlaCERCo  

 

All the activities refer to the European Project “GlaCERCo” (Glass and Ceramic Composites 

for High Technology Applications – FP7-PEOPLE-2010-ITN); in particular they refer to the 

Work Package 1 (Vitrification and reuse of waste), for which the University of Padua (Padova, 

Italy) is the leading research unit. 

The aim of the “GlaCERCo project” is to offer a multidisciplinary training in the field of high-

tech glasses and composites, in tight contact with companies and universities within this 

consortium. The scientific goals are to develop advanced knowledge on glass based materials and 

to develop innovative, cost-competitive, and environmentally acceptable materials and processing 

technologies. 

More precisely in this context, the aim of the research at University of Padova is to develop 

sintered or vitrified products (glasses and glass-ceramics) from wastes, hazardous or inert, as 

“secondary” raw materials for building materials with improved properties (e.g. porous 

lightweight panels for building applications, of low density and low mater absorption). Indeed, 

the technology has the three advantages of being valuable, environmentally friendly and low 

cost. 

The thermal process is thought to answer industrial requests: low temperature (<1100 °C) and 

direct heating (30 min) enables fuel saving for ceramic manufacturing. Replacing raw materials by 

wastes in glass-ceramic composition diminishes final product cost. 

Moreover, instead of paying for landfill storage, concerned companies can decrease their cost 

of waste treatment by reintroducing them in another “product-life-cycle”, and make easier any 

environmental certification. 

Particularly environmentally friendly, the obtained glass-ceramic becomes non-hazardous, 

thanks to the vitrification and/or sintering process. Inside the product, amorphous phase 

surrounds the waste material and enables to decrease its polluting effect. In case of a glass-

ceramic, grown crystalline phase depends on oxides composition of each waste and their 

interactions with other raw materials, bringing to the material either excellent mechanical 

properties or thermally insulating properties. 
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At the end, wastes are enhanced by their inherent properties to develop valuable products: 

wastes containing foaming agents for porous glasses, wastes containing fluxing agents for low-

temperature vitrified glass, or waste containing high strength particles as composite additives. 
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Chapter II 

Inorganic waste in Europe 

 

 

 

II.1 What is an inorganic waste? 

 

Wastes are unwanted or unusable substances or materials, which derive from natural or human 

(civil and industrial) processes. Waste can be, in a first approximation, divided in two main 

categories: organic and inorganic, and each category includes both hazardous and non-hazardous 

waste (Bernardo et al., 2012). We also distinguish them depending on their origin, as presented in 

figure II.1. 

 
Figure II.1: Example of wastes distribution in some european countries (Eurostat, 2010)  

 

Waste can be characterized by their composition, by proximate and elemental analysis, their 

calorific value, and by their biogenic and biodegradable function. Their composition type is 

separated in 8 major fractions: cellulosic materials (paper, cardboard); textile and wood; plastic 

(rigid: PET, HDPE, PVC or film: LDPE, PP) and rubber (and thermosetting plastic); metals 

(ferrous: steel, cast iron, iron scraps, and non-ferrous: aluminum, copper, stainless steel, others); 

glass and inert (ceramics, stones, rubble); organic materials (kitchen waste, garden waste); 

hazardous municipal waste (batteries, drugs); fines (everything smaller than 20 mm). Figure II.2 

schematizes that a focus is done on the composition of unsorted residual waste (URW), by direct 

analysis at the gate of the recovery/ disposal plants (incinerators, landfills, …) and on the 

composition of gross waste (GW), to be calculated or estimated according to the existing type and 

level of source separation. In the “Polluter Pays” principle, the polluting party pays for the impact 

caused to the environment. This principle generally refers to the requirement for a waste producer 
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to pay for the appropriate disposal of the unrecoverable material. More specifically, for a 

company, there will be a range of solutions available to address the will or need to get rid of waste. 

As “inorganic” correspond every material that are solids, not-short term biodegradable and do 

contain as major components the 4 main atoms of so-called organic materials: C, N, O and H. It 

includes metals, glasses, rocks, and the derivatives of those materials and excludes polymers, 

compost, oils. These products are distributed as following: urban waste, industrial waste, 

construction/demolition waste and agriculture waste.  

ISO14001 is an international standard that provides a framework for organizations to develop a 

systematic approach, implements strategies to reduce air pollution and that also fosters the 

development of an environmental management system. Along with the determination of Europe to 

improve the environmental economy through waste management, ISO 14001 has been upgraded in 

2012, and the approach includes, from now, water and CO2 footprints, which may push 

manufacturers to take into account the water and gas consumption in their production process. 

Recycling waste in the heart of a production life cycle is already an environmental advantage for a 

company. The introduction of wastes in the process could present a benefit if it has a positive 

impact on these two components and then a key component in a business ability to obtain 

ISO14001 certification. It is indeed in accordance with the sustainability purpose of this norm. 

Sustainability is the ability to meet human needs at least environmental impact. In the industry, 

attention may be focused on materials selections, in this view. Environmental analysts and 

universities can be very strong external supports when they benefit of a growing knowledge on 

waste management and recovery market. The University of Padova is a good example of this, 

since the Department of Industrial Engineering combines both competencies into two services, 

chemistry materials and environment. It is relevant to remind that by definition the inorganic waste 

does not contain organic toxic substances, which are quite numerous. Indeed, in the list of toxic 

limits to apply in European countries laws, given by the European Commission (Regulation CE 

1013/2006; Directive 1999-31/CE; Decision 2000/33/CE; Decision 2008/98/CE) to classify wastes 

by type (hazardous, non-hazardous, inert) for their admissibility in landfill storage, another part of 

elements to be analyzed are chloride, fluoride, FS, BTEX, PCB, sulfate, organic carbon, C10 and 

C40, HAP. These substances do not enter in the manufacture process of the inorganic wastes 

studied here. If some building materials such as concrete, bricks, ceramics and glasses, are directly 

admitted (except those coming from contaminated sites (Arrêté du 31/12/04)), however, a lot of 

powders are not admitted because of their volatility. For this reason, a low temperature 

ceramization of powder waste would give at first, the possibility to the producer to send it in 

landfill as inert materials. 

 

II.2 Management technologies 

 

One of the strategies of the management of waste production is called 4 R: Reduction, Energy 

Recovery, Recycling and Reuse. Inorganic waste is frequently obtained after reduction: dusts and 

ashes are among the residues from a combustion process. Inorganic wastes are not so much 

concerned about energy recovery: in some cases, they dissipate heat that could be redistributed 

through pipes but usually it is accompanied by toxic fumes which make difficult the direct energy 

recovery from them. However, they are widely used for elements recovery, often, metals such as 
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rare earths from extraction plants residues, Pb from battery, etc. Iron was recovered from 

metallurgy process and eventually, H2 release from metallurgical slags sludge or by products, has 

already been under investigation (Malfliet et al., 2013). In general, there is already an existing 

recycling path for many considered wastes, as they may offer a technological advantage for the 

manufacturer, without mentioning the other practical advantages. Stoneware “chamotte” illustrates 

a typical example of closed recycling loop in the ceramic industry. If the waste is recycled inside 

the process of elaboration, it is called a closed recycling loop. The reuse of waste is not so 

developed, and is assimilated to an open recycling loop, when the waste is used in another process 

to elaborate another product. Glass cullet, when added among the ingredients of glass production, 

is in a closed loop, whereas, if used for the elaboration of insulating glass fiber, is in an open loop. 

 

 
Figure II.2: Conceptual approach of a conceptual waste management scenario (Consonni, 2012) 

 

Figure II.2 illustrates the complexity of municipal solid waste (MSW) selection. The separation 

between materials type enables to collect each of them for specific destinations. Iron, aluminum, 

glass, paper, wood, and plastic are recycled. Organics (Green) is composted. Among URW (urban 

residues waste), some part is sent to cement kiln or waste to energy (WTE) plants, and finally 

landfill. The recovery of URW (dash arrow) is always under investigation. 

 

II.2.1 Thermal treatment by incineration 

Nowadays, incinerators are most diffuse means of gross wastes thermal treatment. The 

incineration plants or municipal solid waste incinerators (MSWI) allow to decrease the volume 

occupied by waste in landfills and to recover energy by thermal utilization. In incineration is done 

the thermo-destruction of the waste but also the thermo-use: the difference is the energy recovery 

and then, the reduction of the life cycle impact factor.  
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Figure II.3: Thermal cycle of the combustion in a modern thermouser  

(grate combustor) (Consonni, 2012) 

 

As shown in figure II.3, the MSW is converted into ash and the volatile compounds are 

collected by an important flue gas treatment system. The incinerator has the objective to sterilize, 

reduce the volume to 10-30 times and inert debris landfills. Those thermoelectric centrals are also 

modern thermo-users. But not all types of waste can be treated in an incinerator. It depends mainly 

on the heat capacity. We can differentiate on the basis of physical macroscopic characteristics (or 

on the basis of the chemical composition). The heat capacity (kJ) is the amount of heat obtained 

after oxidation of 1 kg of completely dry product at standard T and P. For example, the plastic has 

a heat capacity of 7500 kcal/kg against 3700 kcal/kg for the paper. Today the heat capacity of 

some waste can get to 2200 to 2800 kcal/kg against 700 kcal/kg to 900 kcal/kg at the beginning of 

the century. To summarize, the purpose of a thermo-user is a conversion of waste and air to 

combustions products: heat and slags. The entire combustion is done on a grate. There are 

combustors grate pan / tilt, fixed or mobile, air cooled or water cooled, belt or rollers (integrated 

with vertical boiler), grill fire bars (horizontal boiler). The distribution of combustion air is 

calculated for maximum energy savings, depending on the progress of combustion. It stands at 

least the primary air (undergrill) and the air above the second grate. All combustion is controlled 

with sensors. When the combustion is well controlled, i.e. complete, the emission of ultrafine 

particles waste is still important but not more important than those of the urban environment. A 

treatment is done (wet or dry with bag filter), with a steam cycle. The fumes are mainly dioxins, 

NOx, SOx, Cd, Hg, and MSWI powders. 

 

II.2.2 Landfill storage 

Landfill storage is the last destination of wastes, when they cannot be valorized anymore 

(Arrêté du 31/12/04). Previously, they usually are considered for a possible prevention, then 

minimization, then reuse, recycling and energy recovery, as presented in figure II.4. Landfills are 

separated depending on toxicity level of the waste stored: hazardous, non-hazardous and inert. 

Hazardous waste are waste that pose substantial or potential threats to public health or the 
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environment, and they can be flammable, radioactive, corrosive, toxic or have a genetic, 

carcinogenic, mutagenic and teratogenic potential. 

 
Figure II.4 : Schematic diagram of waste hierarchy (UNEP, 2013) 

 

At these stages, they may undergo various chemical or thermal treatments: volume reduction, 

recovery, stabilization. Depending on available time, the emergency varies: immediately, it goes to 

landfill or it is exported, in medium times (years), recycling or energy recovery and, in long 

periods (< 10 years), sustainability can be studied through reduction of the production and re-use.  

 

II.2.3 Waste vitrification 

 Vitrification is the transformation of a substance into a glass, typically accomplished via a 

process involving the formation a liquid phase at high temperature, in the presence of an adequate 

content of vitrifying oxides (i.e. the so-called “network forming oxides”, normally SiO2, B2O3, 

P2O5). This subsequently cools to a solid without the formation of any crystalline phases. In this 

context, the substance of interest is hazardous waste, with the addition or not of additional glass 

forming raw materials (Bernardo et al., 2012) Table II.1 summarizes the main vitrification 

technologies. Among them, plasma torch is used by Europlasma, a European company that enables 

the inertization of asbestos, a hazardous waste from construction (figure II.5). 

 
Figure II.5: Plasma torch technology (inertam.com, 2014) 

 

The process is to burn by plasma-torch the fibers up to a complete melting, at 1350 °C to 1400 

°C, making of it a one-piece amorphous material. The ability of glass to incorporate nearly all the 

elements of the periodic table into its structure is of fundamental importance: if formulated with an 

adequate composition, the resulting glass features a high chemical inertness, so that it can be 

landfilled without any particular concerns but it can also be recycled as secondary raw material for 
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the manufacturing of new products (Bernardo et al., 2012). This process enables to transform a 

dangerous waste into a non-dangerous waste glass that will be safely stored in landfill. This 

thermal treatment is unavoidable to stabilize hazardous waste. From energetic views, it is relevant 

to imply this process in the elaboration of a new commercialized product.  

 
Vitrification technology Heat source Advantages (A), Disadvantages (D) and Limitations (L) 

Combustion based melters 
(tank melters, cyclone 
melters, surface melting 
furnaces and small-scale 
blast furnaces) 

Combustion (natural gas, 
fuel oil, or coke) 
 
 

(A) High reliability, long life, ability to vitrify waste of very 
different composition (tank melters). High processing rate 
(cyclone melters).  
(D) High capital cost. Inhomogeneous melt, volatilization of 
heavy metals, particulate in the off-gas, large volume of the off-
gas (to be treated in large and expensive depuration plants). Pure 
oxygen as combustion agent decreases the off-gas volume by 
over 70% (but extra-cost has to be considered). 

Fluidized bed gasifying 
melting systems 

Combustion (natural gas, 
fuel oil, or coke) 

(A) Optimum thermal efficiency. Complete destruction of toxic 
contaminants as dioxins. Melting of ashes into a vitreous slag. 

Joule heated melters 
(JHMs): cold top JHMs, 
hot top JHMs, intensively 
stirred small volume-high 
throughput JHMs 

Electrical power (Joule 
heating, due to ionic 
conduction inside the 
melt) 

(A) Drastic reduction of the off-gas volume and thus of the 
purification plant size. By employing cold top JHMs it is 
possible to hinder volatilization of heavy metals and to obtain 
salts condensation. With hot top JHMs complete destruction of 
hazardous organics is obtained. 
(D) Free metals attack graphite or Mo electrodes and decrease 
the process efficiency. 
(L) System particularly suitable to vitrifying properly divided 
homogeneous inorganic materials (mud, soils and finely ground 
concrete). Careful formulation of the charge is required: water 
and organics must not exceed 5 wt%. 

Terra-Vit melter (JHM) 
 

Electrical power  (A) Reduced capital and operating costs. Increased melter life. 

Electric arc furnaces Electrical power (electric 
arc generated by three 
electrodes on the furnace 
top). 

(A) Systems characterized by simplicity of construction, low 
thermal losses, high output. High process temperature 
(>1400°C). Fast ferrous materials melting. Risks of explosion 
minimized. 
(L) Technology most applicable to essentially inorganic, dry 
waste. 

Plasma torch melters Electrical power 
(ionization of a process 
gas by the electric arc 
generated, and formation 
of a very high 
temperature plasma) 

(A) Compact plant (mobile units can be used). Very high 
temperatures attainable. High efficiency of toxic organic 
compounds destruction. Very wide flexibility, i.e. possibility of 
direct treatment of highly different types of waste, even 
containing large quantities of metals. Absence of waste products. 
(D) Limited yield of the plant. Plasma torch melters consume 
more energy, need frequent maintenance and are less durable 
than combustion-based or electric furnaces.  
(L) Technology most suited to waste requiring high destruction 
temperature or operating conditions that minimize risks to 
human health and the environment. 

Cold-crucible induction 
melters 

Electrical power 
(induction heating of a 
water-cooled crucible)  

(A) Crucible protected against corrosion. Effective stirring of the 
melt. High purity melts attainable. Very high processing 
temperatures achievable, if required. 

In situ vitrification Electrical power (Joule 
heating of contaminated 
soils) 

(A) Mobile equipment. High melting temperatures attainable. 
Highly effective process for remediating soils contaminated by 
heavy metals, chlorinated organic compounds and radioactive 
materials. 
(L) High cost of the process makes it sustainable only for hard to 
treat hazardous waste. 

Self-sustaining 
vitrification 

Exothermic chemical 
reactions between 
powder metal fuel and 
the waste 

(A) No need of external power supply. Large and expensive 
equipment not required. 
(L) Technology most suited for small volume hazardous waste. 

Table II.1: Main technologies used to vitrify waste (Bernardo et al., 2012) 
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The plasmalit product sheet® produced by Europlasma is a glass aggregate for pavements (in 

regard to EN 12620 Norm), from the melting of residues obtained by incineration of municipal 

solid wastes. A scientific program (Vivaldi Program, www.torchprocess.com) has been set to 

evaluate if the Plasmalit® can be considered safe for usage, and to show that it is not a hazardous 

waste. The chemical stability, the oxide content, and the content in crystalline phases are compared 

to specifications from the U.E. (EN 12457-2 Norm) and from the Vivaldi Program (XP X30-440 

Norm). “The vitrified product deteriorates with a speed inferior of the initial speed Vo. 

Considering this speed, the lifetime of the vitrified product stored in the blocks is 12 million years. 

Its performances in terms of life time are similar to those of natural basalt. That’s why the impact 

on the environment of storage of this vitrified glass should be as low as the one caused by basaltic 

rock. The concentration of toxic elements measured in the percolation water coming from the 

experimental blocks – assigned to reproduce the class III storage conditions – are widely inferior 

to the threshold values recommended in: The French Decree of 09 September 2007 on minimal 

criteria applicable on rejected liquid effluents in the natural environment , the Ministerial Proposal 

of January 1998 criteria and methods to evaluate the eco-toxicity of wastes and the Project related 

to class III storage installations (H or G category) of June 1998.” 

These promising conclusions enable to consider the alternative of a thermal treatment at lower 

temperatures, in which the melting is replaced by sinter-crystallization or sintering, leading to inert 

materials as well. Indeed, “ceramization” thermal process enables to decrease considerably the 

hazard risk of an inorganic substance, and then to develop an inert material presenting a new added 

value (environmental, technical and economic advantage). On another hand, the vitrification 

process is capital and energy intensive. The process is consequently hardly sustainable, if the 

economic advantage is related only to the avoided disposal costs. These costs are particularly 

significant for highly hazardous waste, such as asbestos-containing materials, which are vitrified 

even by employing the most expensive technologies, such as plasma heating. The obtained 

ceramic material, not only represent a security of safe landfill storage, in case of non-use, but also 

it can find a second application (Bernardo and Scarinci, 2009 and 2011b).  

 

II.3 Inorganic waste that can be valorized in a ceramic composition 

 

Many inorganic wastes contain a relevant percentage of silica and other oxides; their 

compositions could be comparable to those of raw materials traditionally used in ceramic and glass 

ceramic manufactures. Publications from Colombo et al., 2003, Bernardo et al., 2007a and 2007b; 

Rawlings et al., (2006), give a huge overview of the feasibility of reusing such wastes in glass-

ceramics. Most recent reviews (Rozenstrauha et al., 2013; Chinnam et al., 2013; M.A. Binhussain 

et al., 2014) give an idea of the progresses during the last decades on this field.  

 

II.3.1 Municipal Solid Waste Incinerator fly ashes 

Municipal solid waste incinerated (MSWI) bottom and fly ashes have been deeply investigated 

for the elaboration of glass ceramics (Appendino et al., 2004; Aloisi et al., 2004 and 2006; 

Karamanov et al., 2003 and 2008; Karamanova et al., 2010) and ceramics (Karamanov et al., 

2005; Lin, 2006; Schabbach et al., 2011; Kasuriya et al., 2008). In general, the sintering process 

allows an introduction of the waste at around 5 to 10 wt% in the composition, depending on 
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previous treatments, such as deironization. (Rambaldi et al., 2010 and Vu, et al., 2012) This kind 

of recycling path is the only one that ensures a positive leaching test, i.e. showing no heavy 

elements release, and has been widely experimented for the elaboration of novel eco-glass 

ceramics. Other possibilities of recycling such as mortars, cements, cement concretes, Portland 

cement, require the necessity to previously extract by leaching the heavy metals from them in 

order to get a safe product (Pera et al., 1997; Rémond et al., 2002; Lin et al., 2003; Bertolini, et 

al., 2004; Aubert et al., 2004; Shi et al., 2009). An alternative process recently developed at 

Brescia University, allows these ashes to be incorporated in a mixture safely, thanks to a pre-

stabilization of the particles by an organic silica layer (Guarienti et al., 2014). 

 

II.3.2 Residues from fume abatement system  

In the traditional ceramic manufacturing, i.e. in the production of pottery, earthenware, 

stoneware, chinaware, porcelain, and some technical ceramics, acid fumes escaping from kilns are 

ventilated and abated by chemical reaction with exhausted lime. Gaseous pollutant emissions come 

from firing and forming parts of the process, and consist in SO2, NOx, CO, CO2, HF and Fluorides. 

Emissions of HF from kilns can be reduced through process modifications such as increasing the 

raw material lime content, but if not possible, dry sorption scrubbing also has been used to control 

HF emissions in the brick and ceramic industries. These devices use limestone as adsorption 

medium to produce CaF2, which is removed by mean of a rotating screen, drum, or fabric filter. 

Control efficiencies of 95% to 99% have been reported for this type of scrubber (E.P.A., Mineral 

Products). 

 

II.3.3 Metallurgical sludge from blast furnace 

Historically, most iron ore is converted to iron using a blast furnace, although a number of 

newer technologies are replacing this process. The production of iron requires three important raw 

materials: iron ore, coal converted to "coke", and limestone.  

 

 
Figure II.6: Iron blast furnace (Ophardt, 2003) 
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The coal is converted to coke in coking ovens (figure II.6). The three raw materials are added 

to the top of the blast furnace. A blast of air containing oxygen is forced in from the bottom of the 

furnace. This causes the coke to burn with an intense heat of almost 2000 °C. The reaction is 

carbon plus oxygen to produce carbon monoxide (incomplete combustion due to lack of air).  

The main reaction is then between the iron oxide, Fe2O3, with the carbon monoxide to produce 

molten iron metal and carbon dioxide. An alternate reaction is with the coke, C, to produce iron 

and more carbon monoxide. The molten iron collects on the bottom of the furnace and when 

cooled is called pig iron with many impurities.Much of the carbon dioxide is reduced with more 

carbon from the coke to make more carbon monoxide.  

Impurities in the iron ore such as silicon dioxide react with the limestone to produce slag, CaSiO3, 

and carbon dioxide. The slag floats on top of the molten iron and can be drawn off separately. The 

pig iron is treated in a second step called the basic oxygen furnace. Pure oxygen is blown into the 

molten pig iron to oxidize the impurities of sulfur, phosphorus, and carbon to their respective 

oxides: SO2, P2O5, and CO2. The result of this is the production of carbon steel. Other transition 

elements may be added to impart a variety of other properties. For example stainless steel contains 

14-18% chromium and 7-9% nickel.  

 Blast furnace sludge or flue dust is a solid waste material from the integrated steel plant. It 

is a mixture of oxides expelled from the top of the blast furnace, whose major components are iron 

oxides and coke fines. It also contains silicon, calcium, magnesium and other minor elemental 

oxides in lesser amounts. The direct recycling is not usually possible since it contains some 

undesirable elements (like zinc, lead and alkali metals) that can cause operational difficulties in the 

blast furnace. In some cases the particles contain large amount of Zn and Pb as the volatile 

impurities. It is mainly due to the Pb–Zn containing scrap that is added into the blast furnace. 

Furthermore, in some cases the dust contains toxic elements (Cd, Cr and As), which make it 

hazardous and unacceptable for landfill. Usually the utilization of BF sludge is done by removal of 

alkalis, recovery of Zn and Pb, of C and magnetite, or Fe by complete reduction, or recycling as an 

absorbent to purify Cu2+ containing solutions (Das et al., 2007). 

 

II.3.4 Metallurgical slags from the copper smelting process 

Historically, the most abundant copper bearing ore was called chalcopyrite, CuFeS2. This ore is 

first enriched by flotation or beneficiation process (sulphite ores), in which powdered ore is mixed 

water as a slurry and then further mixed with oil and a chemical called amyl xanthate. The slurry, 

when agitated causes the copper sulphide minerals to float at which point they are skimmed off the 

surface and eventually dried. The dried material called concentrate is then sent to the smelter. As 

shown on figure II.7, oxide ores (and certain sulphide ores) are placed onto a leach pad and 

saturated with weak acid solutions that dissolve the copper mineral content. The resulting copper-

bearing solution is collected and pumped to a solvent extraction plant. Compressed air is then 

blown through the mixture. The flotation process is dependent on pine oil droplets, but it's really 

xanthate-coated chalcopyrite grains sticking to air bubbles on their way up and over the tank. Pine 

oil simply makes the bubbles. Almost any frother would do, but pine oil is cheap and readily 

degrades in the environment. The less dense oil covered copper sulphide particles are carried to the 

top in the foam and are then skimmed off. 
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The next step carried out in an oxygen flash furnace is heated using natural gas to a high 

temperature. Next is added limestone, sand, and fresh copper ore concentrate (chalcopyrite) is 

blown into the furnace with oxygen. It is heated to 1100 °C. The combustion with oxygen is 

endothermic, and chalcopyrite is actually the fuel that keeps the furnace hot at that point. The 

oxygen in the air selectively reacts with the iron to form the iron oxide, FeO, and leaves copper in 

the form of the sulphide, CuS. Sulphur dioxide is a by-product and pollutant unless captured and 

converted to sulphuric acid. 

The silicon dioxide in the sand reacts with the limestone and the iron oxide to form slag, 

FeSiO3 and CaSiO3. At the same time the excess sulphur in the ore reduces Cu2+ sulphide, CuS, to 

Cu+ sulphide, Cu2S, which melts and flows out of the bottom of the furnace. The slag is less dense 

and floats on the top. The molten Cu+ sulphide, called copper matte, is run into a converter 

furnace, where air containing oxygen is blown through the copper matte to oxidize the sulphide 

ions to sulphur dioxide. At the same time some of the sulphide ions reduce the Cu+ ions to impure 

blister copper metal. A final heating in an anode furnace is used to burn off the remaining oxygen. 

An interesting aside is that for every ton of copper produced, 1.5 tons of slag and 2 tons of sulphur 

dioxides are also produced as waste products. 

 

 

 
Figure II.7: Copper Smelting Process (Ophardt, 2003) 

 

The final step is the conversion of the impure copper to pure copper. This is done by 

electrolysis where the impure copper is made into the anode electrode and the pure copper is 

formed at the cathode electrode. The copper electrodes are immersed in a solution of sulfuric acid 

and Cu2+ sulfate. Oxidation occurs at the anode; therefore copper metal is converted to Cu2+ ions 

with the release of two electrons. At the cathode the opposite reaction occurs: Cu2+ ions are joined 

with two electrons to form copper metal. During the transformation of copper metal into copper 

ions and back to copper metal, the impurities drop to the bottom of the electrolysis cell. Some of 

the impurities are gold, silver, nickel, platinum which are themselves recovered to be used. 

The main constituents of a copper slag are FeO and SiO2, each present at about 20 to 55 wt%. 

The copper content of a smelter slag is normally around 1 wt% while converter slag contains in 

general much more Cu (2 wt% to 25 wt%), which is much higher than that of copper ore ( 0,5 to 1 
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wt% ), due to over oxidation and entrapment of metal droplets. Some Cu slags also contain Co 

and/or Ni at levels of interest for recovery. Toxic elements (e.g. As) and heavy metals (e.g. Pb) 

exist in some copper slags as well. The mineralogical compositions of slags generated from 

different origin are quite diverse due to many factors such as ore types, processing techniques and 

cooling rates. Normally, fayalite and magnetite are the two dominant phases. Ni and Co are 

present in the form of oxides while Cu in the form of oxides, metallic copper and various copper 

sulphides has been identified. 

Fayalite based slag has already been present for a long time in copper metallurgy. The 

production of copper from both ores and secondary resources results in major amounts of fayalite 

slag at a rate of 2.2 ton slag per ton of produced copper. Fayalite slag still contains valuable metals 

in concentrations sometimes exceeding the content of current natural ores. Rather than being a 

waste, the slag residue itself can be used in different applications. In order to utilize fayalite based 

slag and improve the sustainability of the copper metallurgical process, new extraction techniques 

and slag applications need to be implemented or developed. Although fayalite is the main phase, 

the resulting microstructure and metals content of the slags lightly differs depending on the 

metallurgical process and the cooling practice (figure II.8). Applicable techniques for metal 

recovery and slag utilization depend on the final microstructure of the slag, according to a review 

on existing and novel routes for metal recovery and fayalite slag utilization (Hunt, 2013). 

Metallurgical slag without fayalite also was the object recent studies (Zaitsev et al., 2009; Skuza et 

al., 2009). 

 

 
Figure II.8: High Magnification SEM view of two types of slags  

from the non-ferrous metallurgy (Wang et al., 2013)  

 

II.3.5 Glass Wastes 

'Downcycling' and landfill of glass can be avoided - making container glass a valuable eco-

friendly packaging material. In addition, for a glass manufacturer, the use of cullet (recycled glass) 

is extremely beneficial. Cullet is the technical term the industry uses for crushed glass and is a 

very important secondary raw material. Aside savings in virgin raw material consumption, around 

2.5 - 3% in energy savings can be achieved for every 10% of cullet that replaces primary, 'virgin', 

raw materials, as no 'reaction energy' is needed to melt cullet. The increased use of cullet, 

replacing carbonates as well as other raw materials, also results in reduced CO2 emissions. The use 



Chapter II 

16 

of cullet leads to savings on both fuel and raw material costs - something the glass industry has 

known for some time. However, using cullet also brings down CO2 emissions, as proved by a 

study carried out in the UK by Glass Technology Services Ltd (GTS) in collaboration with a group 

of leading manufacturers and The Carbon Trust. 

Recycled glass can come from several sources, such as flat glass, glass bottles, light-bulbs, 

television screens, etc. Before it can be used in ceramic tile manufacturing, it has to provide certain 

characteristics: supply needs to be plentiful and its composition must be both homogenous and 

constant. The amorphous nature of glass and also its composition (rich in alkalis) give it a fluxing 

character. Because of these properties, recycled glass can be used both in ceramic body 

compositions (where it acts as a flux in a similar way as feldspars do), in ceramic pastes and glaze 

compositions as a substitute for frits (Karamberi et al., 2006; Karamanov et al., 2008). 

 

II.4 Waste based glass ceramics 

 

Thermal treatments of problematic wastes by glass-ceramic technology have been well-

documented regarding its effectiveness in immobilising the toxic contents in their glass matrices. 

These kinds of heat treatment technologies have been widely used for treatment of several wastes 

usually processed to form glass-ceramic products. These wastes, coming from numerous sources, 

can be also considered raw materials and comprise (Rawlings et al., 2006, Chinnam et al., 2013, 

Cicek, 2013): 

• Slag from metallurgical processes (iron and steel production) 

• Coal Ash from Power Stations 

• Residues from Urban Incinerators 

• Slag from Gasification Processes 

• Electric Arc Furnace Dust (Steel Fly Ash) 

• Cement Dust 

• Ore-Refining Quartz-Feldspar Waste 

• Fluorescent Glass Waste 

• Sewage Sludge 

• Anodising Plant Industrial Waste 

• Zinc-Hydrometallurgy Wastes 

• Clay-Refining Waste (Kira) 

 

Nowadays, recycling the products we consume has become an inevitable requirement in order 

to optimize natural resources usage while simultaneously preventing pollution from the disposal of 

such waste. The tile manufacturing industry in the US and in Europe scores highly in terms of 

effort made to reduce its carbon footprint. More companies are increasing the amount of recycled 

material used in their products, such as, in UK: Johnson Tiles, British Ceramic Tile, Natural Tile 

Company and Bottle Alley Glass, in US: Fireclay and Fired Earth, in Italy: Refin Ceramics, and in 

Spain: Roca, Onix Mosaico and Porcelanosa (Hari, 2013).  

In recent years, the Spanish ceramic industry has undergone a period of crisis and uncertainty, 

with production levels dropping to 50% in less than three years. But this crisis may also herald 

new opportunities for the sector of ceramics by encouraging the development and manufacture of 
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more environmentally friendly, ecological tiles. Spain is one of the European countries where 

scientific research on waste-based products has been really increasing, particularly regarding the 

elaboration of ecological construction materials, defined as such due to their content of recycled 

glasses, manufacturing wastes and demolition wastes (Romero et al., 1999 and 2001; Lazaron et 

al., 2012; Rodriguez-Robles et al., 2014).  

In Italy, Lancellotti et al. (2013; 2014) have been focusing on chemical and thermal processes 

to transform waste by referring to End-of-Waste criteria (Directive 2008/98/CE), in order for it to 

be reused as “secondary raw material” in a traditional manufacture. In parallel, Bernardo, 

Colombo, Scarinci, Brusatin, et al., have further oriented their interest toward chemical and 

thermal processes of products generated from wastes mixtures, such as innovative glasses, glass-

ceramics, ceramics, and glass ceramic composites. The deepen characterization after sinter-

crystallization, sintering, or vitrification allover involves to seek for the chemical stability of final 

products, but also for the enhancement of functional properties and the development of innovative 

ceramics (Colombo et al., 2003; Bernardo et al., 2006; Bernardo, 2007a, 2007b; Bernardo et al., 

2010a, 2010b, 2011a, 2012). 

In Europe, more and more papers are published about waste based products and in 2013/2014 

the Impact factors (IF) of the corresponding journals have reached interesting levels, showing the 

growing interest of waste valorization (as examples: Waste Manag. (3.157) vs. J. Eur. Ceram. Soc. 

(2.307) (according to citefactor.org, accessed online on 18/01/2015)). Referenced scientists are 

upraising as specialists of the new field of waste recycling, recovery and re-use (Portillo et al., 

2011; Hojamberdiev et al., 2011; Nandi et al., 2014). In international organizations on ceramics, it 

often exists a session on environmental issues that includes this problematic, such as the technical 

committees “Waste vitrification” (TC05) and “Environment” (TC13) at the International 

Commission on Glass.* 
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Chapter III 

Glass and glass-based products 

 

 

 

III.1 Definition of glass  

 

Solids that do not have a three-dimensional, periodic structure are said to be amorphous or 

glassy. Such materials do not exhibit significant level of crystallinity. Many classes of materials 

are capable of forming amorphous or glassy structures under certain conditions, including metal 

alloys, organic polymers and oxide or non-oxide compounds. In this discussion we will focus 

primarily on oxide-based glasses. The main types of glass include borosilicate glass, soda-lime 

Commercial glass, glass fiber (and Lead glass). Types of special glass include Alkali-barium 

Silicate glass, Aluminosilicate glass, Optical glass, Sealing glass, Technical glass, Vitreous Silica. 

Glass Ceramics can enter also in special glasses definition but here they will be considered apart. 

Most types of glass are made up of network-forming oxides and network-modifying oxides, the 

bases of which are principally either silicon oxide, calcium oxide or sodium oxide.  

 

Main glass formers Conditional glass formers Intermediate oxides Network modifiers 

SiO2 Al2O3 TiO2 MgO 
B2O3 Bi2O3 ZnO Li2O 
GeO2 WO3 PbO BaO 
P2O5 MoO3 Al2O3 CaO 
 TeO2 Zr2O3 Y2O3 
   K2O 

Table III.1: Abbreviation list of oxides commonly used in glass 

 

The structural relationship between the oxygen and the cation of the oxide compound strongly 

influences the glass-forming ability of the oxide. Table III.1 details the classification of oxides 

depending on their role in the glassy structure. The main glass former oxides have suitable 

structure and crystallization rates slow enough to form glasses when cooled from a liquid state 

with relatively slow cooling rates. Conditional glass-forming oxides will form glasses under 

certain circumstances. Intermediate oxides cannot form glasses, on their own or when mixed with 

glass formers. However, they can modify the properties of the glass because they can weaken the 

glass network by affecting Si-O bonds. These oxides are used to control properties such as the 

softening point or hardness. Oxides with crystal structures such as A2O, AO, AO4, A2O7, where A 

represents a cation, are so symmetric that they generally crystallize from a melt rather than form 

glasses. In its glassy state, the structure is seen to be disordered, where the positions of the atoms 
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are not correlated and with a chaotic behavior similar to a liquid, so that it displays an amorphous 

structure.  

One of the characteristic properties of glass is its viscosity, which is a measure of its resistance 

to flow. Viscosity depends on any factor that can influence the ease with which molecules slip past 

each other. Liquids tend to become more viscous as the molecules become larger, or as the 

intermolecular forces become stronger. They also become more viscous when cooled. In glass 

production, certain steps are defined by the glass viscosity and lead to the definition of various 

points (figure III.1). Among them, Tg, glass transition temperature is defined as the point at which 

the elongation becomes discontinuous and characterizes non-crystalline solids; strain point at 1013.5 

Pa·s; annealing point, at 1012 Pa·s; penetration point at 1011 Pa·s; dilatometric softening point at 

1010.3 Pa·s and “true” softening point at 106.6 Pa·s; finally flow point at 104 Pa·s; and working point 

at 103 Pa·s. At the melting point, vibrating lattice elements of a crystalline solid will no longer 

return to sites bonded to their neighbors. Glasses have three characteristics that make them more 

closely resemble "frozen liquids" than crystalline solids. First, and foremost, there is no long-range 

order. Second, there are numerous empty sites or vacancies. Finally, glasses do not contain planes 

of atoms. 

 

 
Figure III.1: Typical viscosity versus temperature curve for glass 

 

In general, the glassy state is metastable. Because the amorphous state is “quenched in” by 

cooling a liquid fast enough to prevent crystallization, the glass state has a thermodynamic driving 

force to transform to a crystalline state. However, in many glasses the kinetic for the reaction can 

be so slow that for all practical purposes, the glassy state is stable. Some compositions of glass 

may be marginally stable over time or with elevated temperature aging, and the glass may 

transforms from an amorphous state to a crystalline state. This phenomenon is known as 

devitrification. Certain classes of ceramics, glass-ceramics, are based on this devitrification 

mechanism. With glass-ceramics, an article may be formed in the glassy state by processes such as 

casting or compression molding and then transformed to a predominately crystalline ceramic via 
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devitrification. Glass-ceramic can have improved mechanical properties over completely 

amorphous glasses.  

Another characteristic is the volume expansion. When liquid or molten glass cools slowly, the 

volume (measured as specific volume- inverse of density) contracts based on the coefficient of 

thermal expansion of the material as shown in the figure III.2.  

 
Figure III.2: Glass transition (volume expansion in function of the temperature) 

 

Correspondingly, the viscosity of the glass increases, as show in the figure III.1. If the viscosity 

is still relatively low, structural changes (reorientation) can occur at the same rate as the cooling 

rate and the glass structure rearranges into a more dense arrangement as the viscosity of the glass 

increases. At some point the viscosity of the glass increases at a higher rate than the rate of 

structural rearrangement. At this transition temperature, the slope of the specific volume versus 

temperature curve changes. This change in slope occurs at the glass transition temperature, Tg. 

(Budinski and Budinski, 2004) 

 

III.1.1 Common glass (soda-lime) 

Most of the glass we see around us in our everyday lives in the form of bottles and jars, flat 

glass for windows or for drinking glasses is known as commercial glass or soda-lime glass, as soda 

ash is used in its manufacture. The main constituent of practically all commercial glass is sand. 

Sand by itself can be fused to produce glass but the temperature at which this can be achieved is 

about 170 0 °C. Adding other minerals and chemicals to sand can considerably reduce the melting 

temperature. The addition of sodium carbonate (Na2CO3), known as soda ash, to produce a mixture 

of 75% silica (SiO2) and 25% of sodium oxide (Na2O), will reduce the temperature of fusion to 

about 80 0 °C. However, a glass of this composition is water-soluble and is known as water glass. 

In order to give the glass stability, other chemicals like calcium oxide (CaO) and magnesium oxide 

(MgO) are needed. These are obtained by adding limestone which results in a pure inert glass. 
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Commercial glass is normally colorless, allowing it to freely transmit light, which is what 

makes glass ideal for windows and many other uses. Additional chemicals have to be added to 

produce different colors of glass such as green, blue or brown glass. Most commercial glasses have 

roughly similar chemical compositions of: 70% - 74% SiO2 (silica) 12% - 16% Na2O (sodium 

oxide) 5% - 11% CaO (calcium oxide) 1% - 3% MgO (magnesium oxide) 1% - 3% Al2O3 

(aluminum oxide). 

 

Chemical composition [wt%] 

SiO2 71.6 
Al2O3 1.0 
Na2O 13.5 
K2O 0.4 
CaO 9.0 
MgO 3.9 
Fe2O3 0.1 
SO3 0.2 
BaO <0.1 
Physical properties 

fusion point Log=2 1145 °C 
Flow point Log=3 1188 °C 
working point, Logη=4 1024 °C 
Softening point of Littleton, Logη=7.6 725 °C 
annealing point, Logη=13 590 °C 
strain point, Logη=14.5 550 °C 
Coefficient of thermal expansion α 8.67 10-6 °C-1 
Density ρ 2.497 g/cm3 

Table III.2: Chemical and physical characteristics of soda-lime silicate glass (Bernardo, 2004) 

0 100 200 300 400 500 600 700

-1,0

-0,5

0,0

0,5

1,0

T
d
 639°C

∆
l/
l 0 1

0
-2

Temperatura °C

T
g
 570.2°C

 
Figure III.3: Dilatometric analysis of a piece of soda-lime silicate glass 

 

Flat glass is similar in composition to container glass except that it contains a higher proportion 

of magnesium oxide. Within these limits the composition is varied to suit a particular product and 

production method. The raw materials are carefully weighed and thoroughly mixed, as consistency 
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of composition is of utmost importance in making glass. Nowadays recycled glass from bottle 

banks or kerbside collections, known as cullet, is used to make new glass. Using cullet has many 

environmental benefits, it preserves the countryside by reducing quarrying, and because cullet 

melts more easily, it saves energy and reduces emissions. Almost any proportion of cullet can be 

added to the mix (known as batch), provided it is in the right condition, and green glass made from 

batch containing 85% to 90% of cullet is now common. Although the recycled glass may come 

from manufacturers around the world, it can be used by any glassmaker, as container glass 

compositions are very similar. It is, however, important that glass colors are not mixed and that the 

cullet is free from impurities, especially metals and ceramics. 

The chemical and characteristic properties of a typical commercial transparent soda-lime glass 

are presented in the table III.2 and figure III.3. The DTA enabled to confirm the thermal expansion 

coefficient and to determine the glass transition point and the dilatometric softening, respectively 

of 570 °C and 640 °C. The DTA softening point is essential for the sintering and the sinter-

crystallization of glass mixtures. 

 

III.1.4 CRT glasses 

CRT glasses are recognized as diffused non-recyclable glasses. In the cathode ray tube glasses 

are implied glasses containing heavy metals, based on Pb and Ba (Hreglich et al, 2001). The use of 

heavy metals in the composition of glasses for television monitor and computers, comes from the 

necessity of absorbing the electromagnetic radiations, particularly at high frequency, emitted from 

the electronic gun (see figure III.4). Without this type of glass, watching TV is very dangerous, as 

televisions produced X-rays that must be absorbed, otherwise they could in the long run cause 

health problems. The X-rays are absorbed by glass with minimum amounts of heavy oxides (lead, 

barium or strontium). The concentrations in heavy metals vary with the function of the glass in the 

TV (see tables III.4 and III.5). Lead glass is commonly used for the funnel and neck of the TV 

tube, while glass containing barium is used for the screen. A cathode ray tube (Bernardo, 2008 and 

dalle Vedove, 2013) is an electrical device composed mainly of an evacuated glass tube, inside of 

which is an electron gun that emits by thermionic effect rays of electrons that enable to see 

pictures on a screen.  
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Figure III.4: Structure of monochrome kinescope 

 

Figure III.4 represents a CRT glass tube. We can note that is it is composed of 4 parts, panel, 

funnel, neck and frit. According to Andreola et al. (2007), it is estimated that approximately 65% 

of the weight of a television set or a computer monitor is constituted of cathode ray tube (CRT) or 

kinescope, and it is composed for 85% of glass (65% panel and 30% funnel and 5% neck glass) as 

a screen, a neck glass, in which an electron gun is inserted and a back funnel glass that connects 

the panel and the neck (Figure III.4). The panel and funnel glass are formed by pressing 

individually and later they are sealed together without a junction. The color CRT structure is 

essentially similar to the monochrome one with some technical differences. The base is the 

monitor’s “screen” that is coated on the inside with a matrix of thousands of tiny phosphor dots. 

Phosphors are chemicals which emit light when excited by a stream of electrons: different 

phosphors emit different colored light. Each dot consists of three blobs of colored phosphor: one 

red, one green, one blue. These groups of three phosphors make up what is known as a single 

pixel. In the neck there are three electron guns for the red, blue and green. Three electron beams 

from each electron gun pass through a hole in the shadow mask and excite phosphor uses vertical 

wires under tension, an aperture grill instead of a shadow mask. The main properties required for 

CRT glasses are X-ray absorption, electric resistivity and a thermal expansion suitable to the other 

glass parts and sealing metal. High light transmittance is also important for the panel glass to 

display clear pictures. In addition, it is essential that light transmittance is not deteriorated by 

electron beam or X-ray irradiation. Different kinds of glasses for each part of black and white 

(B&W) and color CRTs are used according to their technical specifications: 

1. Panel (screen, the front part): a very homogeneous barium–strontium glass, of a greenish-

blue color, whose weight is about two-third of the whole CRT; 

2. Cone (the hidden part inside the TV set): a lead glass, whose weight is about one-third of the 

whole CRT; 

3. Neck: a glass with a very high lead content enveloping the electron gun; 

4. Frit (the junction between the panel and the cone cone): a low melting lead glass, included 

only in color CRTs. 
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Type PbO 
(wt%) 

ρ 
(g/cm3) 

Panel TV 2.25 2.695 
Cone TV 22.5 3.02 
Tube TV 28.4 3.18 

Table III.4: Typical data of glass used in color CRT (Bernardo, 2004) 

 

 

 
Table III.5: Thermal properties for color (TV+PC) and B&W CRT glasses (Andreola et al., 2007) 

 

The CRT glass coming from color equipment, presents important differences in composition 

between panel (screen) and funnel (cone). The screen is characterized by high levels of BaO (9 to 

11 wt%) and SrO (8 to 10 wt.%), the cone instead contains a significant quantity of PbO (18 to 20 

wt%) that is moreover completely absent in the panel.  
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Figure III.5: Dilatometric analysis of lead glasses from tube and cone (funnel) (Bernardo, 2004) 
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Figure III.6: Dilatometric analysis of panel glass, richer in BaO (Bernardo, 2004) 

 

According to figures III.5 and III.6, the higher content of lead in tube glass determines the 

displacement of the glass transition temperature and the softening point of around 25-3 0 °C, with 

respect to cone glass. And the characteristic temperatures of panel glass are around 100 °C lower 

than those of a common soda-lime glass which makes this glass easy to process from 600 °C. By 

extension, not only for reasons of electric resistivity (absorption of electromagnetic radiations), the 

presence of Lead in the glass is due to the necessity to increase the coefficient of thermal 

expansion (α~10 10-6 °C-1), in order to make it compatible with platinum, used for the electric 

contact of lamps and lightening systems. The composition of the glasses for incandescent light 

contained Pb until the 1920’, and then with the automatization of production, it became possible to 

limit the percentage of Pb.  

 

III.1.5 Status of the recycling (closed- and open-loop cycle) 

Normally for the manufacture of new CRTs, the two glass fractions (the leaded and the 

unleaded glass) are accurately separated and cleaned. The event of the new LCD and PDP 

technologies allows the shift of production sites to emerging countries as India, China and 

Southeast Asia. From these considerations it is possible to hypothesize a drastic reduction of the 

close-loop recycling. On the other hand, open-loop recycling is not easy, because it is forbidden to 

introduce dangerous elements (such as lead, arsenic, cadmium) into products like glass containers, 

tableware or glass fibers. In this context, the glass industry is an excellent potential consumer only 

for glasses without the abovementioned elements, such as carefully selected glass from the 

screens. In the ceramic industry the restriction is not so restrictive and both glass from screens and 

cones are potentially acceptable as secondary raw material even if they must be supplied with 

particular characteristics of homogeneity, cleanness, etc. Some EU experiences of open-loop 

recycling are below listed: Potential use in brick manufacturing; Potential use in foam glass; Use 

of CRT glass in tableware glass production; Use of CRT glass in insulating glass fiber production; 

Use of CRT glass on ceramic bodies. 
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As regards glazing manufacturing, CRT glass could be considered as a substitute for non-

plastic materials, in particular ceramic frits. Moreover, it contains barium, strontium, zirconium 

and lead oxides, which represent components that are often added to glazes in order to obtain 

specific properties (brightness, chemical resistance, matt effect, etc.). Thus, CRT cleaned glass 

could represent an important raw material able to help to reduce the energy consumption and to 

shorten production times. This idea derives from the generally accepted concept for which the use 

of recycled materials is environmentally preferable to that of virgin raw materials. 

 

III.1.2 Borosilicate glass 

Most of us are more familiar with this type of glass in the form of ovenware and other heat-

resisting ware, better known under the trade name Pyrex. Borosilicate glass (or sodium-

borosilicate glass) is made mainly of silica (70 °C to 80%) and boric oxide (7-13%) with smaller 

amounts of the alkalis (sodium and potassium oxides) and aluminum oxide. This type of glass has 

a relatively low alkali content and consequently has both excellent chemical durability and thermal 

shock resistance - meaning it do not break under a rapid temperature change. As a result of these 

properties, sodium borosilicate glass is widely used across the household and chemical industry, 

the pharmaceutical sector but also various high intensity lighting applications and as glass fibers 

for textile- and plastic reinforcement. The typical characteristics of a borosilicate glass are 

presented in table III.4. 

 

Chemical composition [wt%] 

SiO2 72 
B2O3 12 
Al2O3 7 
CaO 1 
Na2O 6 
K2O 2 
BaO <0.1 
Physical properties 

working point, Logη=4 1140 °C 
Softening point of Littleton, Logη=7.8 785 °C 
annealing point, Logη=13 570 °C 
strain point, Logη=14.5 530 °C 
Coefficient of thermal expansion α 5.5 10-6 °C-1 
Density ρ 2.33 g/cm3 

Table III. 4: Chemical and physical characteristics of a borosilicate glass for pharmaceutical applications 

(Bernardo, 2004) 

 

The borosilicate glass is not generally made of a single phase, but of a mixture of two 

immiscible phases SiO2-B2O3. The first is rich in Silica and the second is rich in boric-anhydrates 

and other components (network modifiers). From the thermodynamic, the system is more stable if 

the two phases are separated, because the necessary energy to bind the distinct components is not 

sufficient with regard to the binding energy of same components.  
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Figure III. 7: Dilatometric analysis of a glass powder piece for the pharmaceutical industry 

 (Bernardo, 2004) 

 

However, there exist two mechanisms of separation, by nucleation and growth or by spinodal 

decomposition. In first case, a principal phase englobes isolated spherical particles of the second 

phase; in the second case, two continuous interconnected phases develop, both accessible at the 

surface. The borosilicate glasses of high chemical stability represent typical application of glass 

separated in phase of nucleation and growth; indeed, the SiO2 rich phase is actually the most 

chemically stable, stops the diffusion of acid attack and the leaching of cations (present in the 

second phase) happens only on a few micrometers at the surface. The Vycor glass, at 96% SiO2, is 

an application of spinodal decomposition. By a chemical attack, the interconnected soluble phase 

of borate is completely removed, leaving place to a micro porosity. (Bernardo, 2004) 

The temperatures of softening point by DTA and glass transition are typically respectively at 

645 °C and 590 °C (figure III.7).  

 

III.1.1 Glass production 

Note: acknowledgments to Prof Nicoletti (Honor President of the International Commission on 

Glass and part-time consultant at Stevanato, Nuova Ompi, Italy) Silvia Molinaro (Environment 

Engineer at Stevanato) for their explanations.  

Raw materials for the glass are mixed in the most homogeneous possible way, in liquid phase. 

Indeed, temperatures in the fusion glass bath should overpass the melting point of every involved 

material. Then furnace temperature can reach 155 0 °C. The raw materials are principally 

composed of sand or quartz-containing products, natural or synthetized, then of soda Na2O, of 

carbonates “A”-CO3 and an input of Alumina Al2O3. The glass of bottles and windows (90% world 

glass production), contains Ca and Mg ions brought by dolomite or marble. Global glass 

production is around 150 Mton/year.  

These materials all have very diverse aspects: their densities and granularities differ strongly, 

which makes their homogeneous mix almost impossible. Over the thermal process in the fusion 

furnace, cords lie ahead, richer in one or another raw material. These unavoidable defects are 

visible under SEM microscope. Knowing that fusion temperature can go quite high, depending on 
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composition, (for the record, pure quartz at 170 0 °C), the objective is to produce in the least 

energy consuming way. A compromise is to realize between a good chemical resistance, brought 

by alumina and silica, both of high fusion temperature, and a low glass fusion temperature, 

achieved by the addition of Na+ ions, which act as fluxing and modifying agents in the glass 

network, but consequently diminish the chemical resistance properties.  

Soda-lime glass is composed of ~72% silica SiO2, ~10% soda Na2O, then comes Na, Ca and 

Mg, and then ~ 6% alumina Al2O3, that can be brought by feldspars and nephelines (syenite, etc.), 

which further contain, Na, K and Mg, and which decrease fusion temperature. For example, the 

basic composition of float glass, one type of soda-lime glass, is of 72.6% sand, 13% soda, 8.4% 

lime and 4% dolomite. (ref: Pilkington glass website). 

Should a high chemical resistance really be required, it may necessary to decrease soda and 

increase silica and alumina amounts, still without the possibility to increase the furnace 

temperature (refractories would not stand). A borosilicate glass is then elaborated. Indeed, bore is 

an atom that does not modify the structure of the glassy network, but acts as fluxing agent. The 

composition can then be this one: SiO2 75%, Al2O3 6.5%, Na2O 7.5%, B2O3 10.5%, CaO-BaO 0.5-

1%. Sand, borax (containing soda), or a pure boric acid, then feldspars or alumina, and eventually 

soda, still form part of the glass compounds, and then soda in quantities deduced from the initially 

present percentages of the other materials.  

The chemical reactions stages in the fusion furnace are various: first is evacuated 

humidification water, which hydrates in the same time anhydrous compounds (NaOH, CaOH, 

etc.), then evaporates the borax hydration water with a dissolution of sand. Then, at 45 0 °C takes 

place the borax decomposition. At 80 0 °C carbonates decompose with the gaseous release of CO2. 

The fusion is recognized as such when there are no more solid particles in the mix, (by 

thermodynamic definition).Viscosity at the melting of the mixture is then a 100 times those of 

water, and is actually comparable to glycerin. Because of this, glass is full of tiny bubbles that 

cannot come up to the surface. Minor elements, in quantities 0.1% to 0.3% are incorporated to 

facilitate bubbles evacuation by agglomeration. It is called fused glass refinement (or refining 

process), that provides “bubbles cleaning” without increasing the temperature (115 0 °C). The 

refining agents derivate from CaF2, AsO3, and NaCl ions. They don’t enter in the glass 

composition as they evaporate fast in doing “big bubbles”, taking the smaller ones along to the 

surface. For those reasons, cords, unfused and bubbles are typically defects of a glass after 

manufacture. At the end of the fusion process, “ready-made” glass is evacuated by canals: 

conditioning zones. Then, forming process is variable: bottles are blown, glass tubes are made by 

Danner machines, and flat glass is produced according to float glass process established by 

Pilkington (glass floating on a fusion stain bath, allowing for a perfectly plane surface). To make 

amber colored glass (whose objective is to stop light emissions at high frequency (UV)) are added 

in the composition 1% to 2% Fe2O3 and 2% to 3% TiO2. 

During the shaping process of glass containers, the chemical transformation still takes place: 

the high temperature treatments (boring, cutting, and forming with pulleys and points) provoke the 

migration of Na+ ions. Some components are sublimated. To certify the chemical resistance of the 

employed container, an autoclave test is made by laboratory. Indeed, the attack of vapor water (12 

0 °C) on Na+ ions creates a basic medium that dissolves glass. It is the European pharmacopeia, 

Japanese or American that will decide the necessary chemical resistance. Is designed valuable 
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either the borosilicate glass or reinforced soda-lime glasses: an ammonium treatment enables to 

reduce the sodium quantity in surface indeed, the NH2SO4 dissociates and liberates SO3- which 

reacts with Na+ ions to give Na2SO4, an opaque white precipitate, very soluble and eliminated with 

distilled water. Then the glass, that contains 7% Na, does not contain at all of it on a few microns 

thickness in surface.  

Because of the differences in the various methods of manufacture, the industry is divided into 5 

main sections under the general headings: Container glass; flat glass; scientific/technical glass; 

domestic glass; and fiber glass. Glasses may be devised to meet almost any imaginable 

requirement. There are many different types of glass with different chemical and physical 

properties and each can be made by a suitable adjustment to chemical compositions. For many 

specialized applications in chemistry, pharmacy, the electrical and electronics industries, optics, 

the construction and lighting industries, glass, or the comparatively new family of materials known 

as glass ceramics, may be the only practical material for the engineer to use. 
 

III.2 Viscous flow sintering of glass 

 

The sintering of glasses follows an absolutely characteristic mechanism. In general, the 

sintering may be regarded as the densification of powders, generally pressed, through the 

progressive removal of the porosity located at interstices between the granules, by application of a 

temperature significantly lower than the melting temperature of the material. Densification is 

thermodynamically favored abasement of the free energy of the system related to the reduction of 

the specific surface area ratio (area/volume ratio). The sintering mechanisms feature the absence or 

the formation of a liquid phase, upon heating of pressed powders. The following mechanisms of 

sintering are generally recognized (Various authors, 1996): 

1. Solid state sintering by diffusion mechanism; this is the mechanism recognizable in advanced 

ceramic materials. It is characterized by the absence of a secondary amorphous phase to tie the 

crystalline grains. It involves the formation of a grain boundary by displacement of matter (and 

opposed displacement of crystal vacancies) from the internal part of the grains to the outside, with 

a progressive decrease of the distance between the centers of adjacent granules. The absence of a 

secondary intergranular phase allows for the manufacturing of materials with excellent high 

temperatures mechanical properties; in contrast, the diffusive mechanism is rather slow and often 

involves the need to compensate the activation energy (corresponding to the transfer of matter) not 

only with the thermal energy but also with the mechanical energy corresponding to a mechanical 

stress, associated to hot pressing (uniaxial or isostatic). 

2. Solid state sintering by evaporation-condensation; this is the prevailing mechanism for 

solids with high vapor pressure, such as alkali halides (poorly interesting for engineering 

purposes), in which the transfer material is carried out by transition to the external gas phase and 

subsequent condensation. 

3. Sintering with the formation of the liquid phase; powders of the substance to be sintered 

contain additives forming a liquid phase, for a content not exceeding 5%; the liquid phase 

"lubricates" the grains in the sense that it allows for the mutual sliding to compress the porosity 

and at the same time partially dissolves the base material (the associated change of the geometry of 

the grains provides a more favorable stacking). This mechanism of sintering is found in important 
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"technical” ceramic materials, such as alumina Al2O3 (with addition of MgO and SiO2), silicon 

nitride Si3N4 (with addition of MgO). 

4. Sintering by vitrification or viscous flow sintering; most of the starting powders are 

transformed into a highly viscous liquid phase; the glassy phase infiltrates in the pores, removing 

them. This mechanism is found typically in silicate raw materials, used for example in the 

manufacturing of traditional dense ceramic products, such as porcelain stoneware and more refined 

porcelain; the sintering of the glass represents a particular case, since all of the mass is transformed 

into liquid. 

Glass-based materials refer to viscous flow sintering, The equation that governing the 

densification, according to this mechanism, is that provided by Frekel (Bernardo, 2004): 
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where V0 is the volume of the powder compact before sintering, ∆V is the volumetric shrinkage 

from the compact to the sintered product, γ the surface energy, the radius of curvature r0 of the 

particles, t the holding time and η the viscosity of the glassy phase at the adopted sintering 

temperature. This law applies to spherical particles, homogeneous in size, and in case of 

interconnected porosity. When the sintering proceeds and the open porosity turns to closed 

porosity, we should refer to the McKenzie-Shuttleworth equation (Bernardo, 2004): 
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where ρ is the density of the material and a0 is the initial radius of the pores.  

The new functional dependence of sintering time is symptomatic of a certain slowing of the 

densification with the additional contribution of changes in the thermodynamic conditions (the 

specific surface area of a compact being densified is gradually lower than that of the original 

powders). For completeness, it is necessary to point out that the viscosity of the glassy phase (η) 

has a dependency only on the temperature (Logη ∝ 1 / T) in the case of exclusive sintering of a 

glass; in the general case, if the glass phase dissolves part of the crystalline phase, the modification 

in the composition of the glass during the sintering sometimes involves a strong change in the 

viscosity. 

An important research in the literature (Ray and Tiwari, 2001) has reported that the dilatometric 

softening point is a fundamental reference for the sintering of glass powders. At this temperature, 

the viscous flow (associated to the compression of rods in the dilatometer) exactly counterbalances 

the thermal expansion, and the viscosity η is in the order of approximately 1011 poise (with 1 

poise=10 Pa·s); it may be a direct reference in case of hot pressing. Empirically, for sintering 

without pressure, a temperature increase of at least 50 °C is needed (viscosity in the order of η= 

108 poise). It should be noted that for a variety of compositions is not acceptable, a strong increase 

of the sintering temperature than the softening temperature, when setting up the concurrent 

crystallization: the uncontrolled crystallization of the glass involves a drastic increase in viscosity 

and a strong delay in the densification. 
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III.3 Glass foams 

 

Glass foams represent a particularly interesting type of components for thermal and acoustic 

applications (Bernardo et al., 2012). They are produced in limited quantities due to high 

processing costs, but their characteristic of un-flammability, thermal and chemical stability will 

lead to an increased use in substitution for organic foams. Moreover, the closed cell structure 

makes the material watertight and an efficient barrier against soil humidity. The production of 

glass foams may follow two distinct processes: the first, dating back to the 1930s, consists of the 

direct introduction of gases (“blowing”) into molten glass; the second one, much less expensive, is 

based on the viscous flow sintering of fine glass powders, which creates a pyro plastic mass which 

is foamed by the action of specific powder additives (foaming agents), owing to decomposition or 

oxidation reactions. The decomposition reactions involve carbonates and sulfates, while oxidation 

reactions are due to the interaction of carbon-containing species (C, SiC) with oxygen, coming 

mainly from the atmosphere of the sintering furnace. The adoption of a sintering approach paved 

the way for the use of glass not specifically designed for foam production; significantly, the 

sintering approach led to the extensive use of cullet for this application. Soda-lime glass is the 

common raw material; however, a number of recent investigations showed that it is possible to 

fabricate foams using other glasses, such as CRT glass. The low characteristic temperature of these 

glasses enables foaming at particularly low temperature (even below 75 0 °C), through the 

decomposition of added calcium carbonate. Furthermore, this foaming procedure has the 

significant advantage of producing chemically stable foams, avoiding any risk of reduction of 

heavy metal oxides into metal colloids, which is often experienced when using reducing 

compounds (SiC or TiN). 

Glass foams represent an interesting way to directly use industrial residues, without converting 

them into a glass, with the addition of recycled soda-lime glass. Brusatin et al. (2002) used fuel 

oil-derived fly ashes (with SiC as foaming agent), processing at temperatures between 800 and 90 

0 °C, producing foams with a crushing strength of about 3.5 MPa and a density of ~0.35 g/cm3. 

Bernardo et al. (2007) used a SiC-containing waste, deriving from the polishing operations of 

artistic glass articles, as the only foaming agent (although the oxidation of SiC was favored by the 

addition of MnO2), obtaining very high porosities (up to 92%); the heavy metal oxides present in 

the waste (mainly lead and cadmium deriving from artistic glass) were found to immobilized in the 

glass matrix. Fernandes et al. (2009) also employed waste as raw materials containing a foaming 

agent, using ash produced after the burning out of SiC-based abrasive paper.  

The foaming of waste-derived glasses is quite complicated, due the above discussed tendency 

of these glasses to crystallize upon heating. Significantly, a porous structure is associated to a high 

specific surface, which enhances surface nucleation. If extensive crystallization occurs during 

foaming, problems in the homogeneity and reproducibility of the overall foam morphology arise. 

This issue may be overcome by using a combined approach, i.e. by the foaming of mixtures of 

soda-lime glass and a glass undergoing crystallization (Tulyaganov et al., 2006), or again of soda-

lime glass and selected waste (like in the case of “glass-ceramics” from direct sintering of silicate 

waste, Wu et al., 2009).In this case the crystallization may actually be useful, since it enhances the 

mechanical properties. A similar situation is found when using mixtures of soda-lime glasses with 
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cullet of other origin, more difficultly recycled but quite prone to crystallization (e.g. glass residue 

from the manufacturing of glass fibers, having a CaO-Al2O3-SiO2 composition similar to that of 

many waste glasses used for the preparation of glass-ceramics). 

The remarkable crystallization of waste glasses may be even advantageous when other types of 

cellular materials are desired. Common glass foams are mostly closed cell foams, thus maximizing 

the thermal insulation; on the other hand, this makes them unsuitable to filtering applications. 

Open-celled glass-ceramics may be obtained by the mixing of glass powders with polymeric 

micro-spheres or by the deposition of slurries onto polyurethane sponges, followed by the burn-out 

of the sacrificial polymers and sinter-crystallization. The crystallization, enhanced by the high 

amount of free glass surface, “freezes” the structure modeled by the polymeric templates, greatly 

limiting the viscous collapse. A similar concept was reported by Fidancevska et al. (2003) who 

used slurries composed of mixtures of coal fly ash and recycled glasses to coat polyurethane foam 

or to envelop sacrificial carbon fibers. (Bernardo et al., 2012) 

 

III.3.1 Historical background 

The production of glass foam dates back to the 1930’, when many patents were granted in the 

same period (Scarinci et al., 2005). The patented processes can be divided into two fundamental 

types: by the sintering of finely ground glass powders with a suitable foaming agent, and by the 

direct introduction of fluids into the molten glass. Originally, in the sintering process, foaming 

agents may come from a combustible material, such as coal, lignite, wood or CaCO3 and its 

alternatives like anthracite and carbon black. The direct introduction of gases into molten glass is 

done by injection (forcing gas, such as CO2 or vapor H2O) or by the evaporation of dissolved gas 

from a low softening point glass (composed of silica, borax and zinc oxide. Improvements in the 

bubble expansion may be depressurization, local overheating, addition of solid foaming agents 

Na2SO4, NaNi3 and later oxygen releasing agents SO3, Fe2O3, Sb2O3.  

 

III.3.2 Starting glasses 

Glass foam production can be considered an effective way of recycling a great number of glass 

products (container and flat glass, borosilicate glass for the chemical industry and more recently, 

even fluorescent lamp glass. The glass is contaminated with metallic and non-metallic fragments 

(plastics, ceramics, aluminum, iron, paper, organic substances, and soon). The costs of color 

sorting and impurity removal are high, especially if a significant portion of the glass is finely 

divided. The use of recycled glass in the production of new glass articles is consequently barely 

profitable. 

 

III.3.3 Foaming reaction 

The main industrial process currently employed for glass foam manufacture is sintering of 

powdered glass mixed with suitable agents. On a thermodynamic point of view, the growth of 

foam bubbles is analogue, in the process, to the growth of crystals, in that homogeneous dispersion 

of gas may form a nucleus that is susceptible to grow, only from a limit radius and in defined 

environmental conditions.  
 

III.3.3.a Chemical dissolved oxygen, carbon oxidation 
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A characteristic equilibrium always exists in an alkali silicate glass melt between trivalent and 

divalent iron with oxygen evolution. This phenomenon is of great importance in the foaming 

process, because the reduction of Fe3+ to Fe2+ is presumably the gas-forming reaction, since 

oxygen is used to oxidize carbon (the most foaming agent) in the pyroplastic glass.  

The reduction of sodium sulfate, introduced during fabrication of most common glasses as 

fining agent, oxidizes carbon to CO:  

 

Na2SO4 + 4 C → Na2S + 4 CO 

 

III.3.3.b Thermal decomposition 

The most famous reaction is the decarbonatation of Ca- or Na- carbonates at 750 °C to 850 °C. 

During the gradual softening of the sintered glass under continuous heating, the calcium or sodium 

carbonate particles decompose to the oxide with simultaneous release of gaseous carbon dioxide. 

The oxide is incorporated into the molten glass mass and acts as a glass modifier, thus altering the 

viscosity of the molten glass. The released CO2 is entrapped in the viscous glass mass and its 

pressure is gradually increased, forcing the molten glass to expand. On subsequent cooling the 

molten glass is solidified and a cellular structure is formed.  

 

III.3.3.c Foaming by reaction 

The production of CO and CO2 by oxidation of carbon, in form of graphite or carbon black may 

lead to extensive foaming at 800 °C to 900 °C. Secondary reactions of carbon happen with some 

other compounds (from the atmosphere, present as further additives, from the glass) such as H2O, 

alkali and sulfates, so that foaming can even be performed in non-oxidizing atmospheres, as 

follows: 

 

C + H2O → CO + H2 

C + 2 H2O → CO2 + 2 H2 

Glass-SO4
2- + 2 C → glass-S2- + CO + CO2 

 

SiC is another important foaming agent, releasing CO or CO2 by oxidation, typically 900 °C. 

The reaction leads to secondary compounds such as SiO or SiO2, as follows in table III.6 (many 

reaction paths are possible): 

 

 
Table III.6: Possible reactions of SiC in various atmospheres (Scarinci et al., 2005) 
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Si3N4 and AlN can lead to extensive foaming, again by oxidation, but with the release of 

nitrogen; as an example we could have: 

 
Si3N4 + 3 O2 → 3 SiO2 + 2 N2 

 

C, SiC and nitrides are particularly susceptible to the homogeneity of oxygen distribution. It 

may be that the external parts of glass/foaming agents compacts are subjected to extensive 

foaming, with the internal part, with limited access to atmospheric oxygen, practically unreacted. 

The homogeneity of foaming may be improved by addition of easily reducible compounds, such as 

oxides of metals with multiple valence states (MnO2, Fe2O3, CeO2 etc.). Sulfates (e.g. gypsum, Ca-

sulfate) are useful as well, being reduced to sulfites or sulfides (as reported above). Oxides with 

multiple valence states can be provided also in form of an “oxidized” glass (Pittsburg Corning 

produces the well-known Foamglass ® by mixing recycled glass, carbon black and an oxidized 

glass, see figure III.8) (Scarinci et al., 2005). Oxides with multiple valence states can be used as 

the only foaming agents, with the release of oxygen. As an example, MnO2 is exploited following 

the equation: 

 
2 MnO2 → 2 MnO + 2 O2 

 

Mechanical properties of foams have been deeply studied by Ashby (2005) who established 

indexes to compare materials strength in function of their density. Foams and cellular materials are 

considered as structured material of which mechanical properties can be estimated by introducing 

the concept of lightweightness. The most diffused expressions applicable to the young modulus 

and to the bending strength are summarized in table III.7 (Bernardo, 2007). 

 

 Stiffness problem Strength problem 
Simple tension E/ρ σf/ρ 
Bending of bars (section free) E1/2/ρ σf

2/3/ρ 
Bending of panels (thickness 
free) 

E1/3/ρ σf
1/2/ρ 

Table III.7: Indices expressing the contribution of material to a given minimum mass or stiffness in 

mechanical strength. E is the young modulus in GPa and ρ is the material apparent density in g/cm
3
 

 

This comparison is useful is the materials selection, when a user seeks for a multifunctional 

application, such as lightweightness and mechanical strength (typical example of foams for 

building insulation or panel for ventilated façades). More particularly, foam glasses and glass-

ceramics extend the field of applications of porous materials by linking porous ceramics and foams 

(see figure III.9). 
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Figure III.9: Ashby graph - strength (MPa) in function of density (g/cm

3
) of current engineering materials 

 

Figure III.8 details the steps of the production of the FOAMGLAS® product. In 1) we observe 

the addition and weighting of raw materials, recycled glass, feldspars, Na-carbonate, Fe2O3, MnO2, 

Na2SO4, and NaNO3. Oxides, sulfates and nitrates are intended to lead to an “oxidized” glass. In 

the melting furnace (2), the temperature is around 125 0 °C. The melted glass (3) goes out of the 

furnace. In (5), pure glass is added in the mixer and carbon black is added in (6). Recycled glass 

(window glass) is ground and then introduced in the mixer (7). The whole mass is poured in 

specific containers for further expansion a secondary furnace at 850 °C where it will foam (8). A 

dispositive of energy recovery links the two furnaces ventilation pipes (9). The glass passes 

through a final furnace where a controlled cooling is applied (10) and finally the pieces are cut and 

shaped (11).  

 



Glass and glass-based products 

39 

 
Figure III.8: The production process of FOAMGLASS® 

 

III.3.4 Viscosity conditions 

Glass can be transformed into a foam by addition of suitable substances with generate gaseous 

products by decomposition or reaction at temperatures above its softening (Littleton) temperature 

(corresponding to a viscosity of 106.6 Pa·s). Then, the glass powder has not yet sintered to closed 

porosity, and the gaseous products cannot be retained by the ass, and if the gas generation takes 

place when the glass viscosity is too low, the gaseous products are released from the melt, as in the 

fining of glass melts. 

Most convenient viscosity range for optimizing the foaming process for development of 

maximum porosity and minimum apparent density is at 105 Pa·s or 103 Pa·s, which corresponds for 

standard soda-lime glass, to temperature ranging between 800 °C and 1000 °C. 

 

III.3.5 Properties of commercial glass foam products 

Table III.8 shows various properties that can be asked for a commercial foam glass granulate 

for a use as filler in insulating applications of building and housing. The average size (“taille du 

grain”) varies from 30 mm to 100 mm, the density (“densité en vrac”) corresponding to the 

geometric density, is between 0.13 and 0.25 g/cm3. The water absorption (“absorption d’eau”) is 
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lower than 7%. Lambda in W/mK corresponds to the thermal resistivity of the material and the 

thermal capacity (“capacité thermique”) is expressed in J/m3K. The compression strength is not 

directly expressed but is related to the compression coefficient and to the compression properties 

during the manipulation (“coefficient de compression”, “capacité de compression au 

déversement”, “module de déformation”). The porosity after compression (“pourcentage de 

volume vide après compression”) corresponds to a test that will enable to determine the insulating 

property of such material even under standard compressions in buildings; here, it is lower than 

35%. Temperature resistance is an important parameter and is presented resorting to the softening 

point (“point de ramollissement, grain”) and the refractory behavior (“comportement au feu, 

grain”). Freeze resistivity (“resistance au gel”), chemical stability (“matériau de construction 

inerte”, “aptitude au recyclage”), and thermal properties (“coefficient u sur dimension fixe”) are 

finally expressed. 

 

 
Table III.8: Technical data from a commercialized product Technopor Glass-schaum granulat 

 

III.4 Glass-ceramics 

 

An essential feature of glass is that it does not contain crystals. However, by deliberately 

stimulating crystal growth in glass it is possible to produce a type of glass with a controlled 
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amount of crystallization that can combine many of the best features of ceramics and glass. 

Actually, an accidental overheating of a glass furnace led to the discovery of materials known as 

glass-ceramics. When the glass was overheated, small crystals formed in the amorphous material 

that prevented cracks from propagating through the glass. 

In most cases, for the production of glass-ceramics, a glass is first shaped (e.g. by rolling of the 

melt) and then subjected to a secondary ceramization treatment, aimed at nucleation and growth of 

crystalline phases (Höland and Beall, 2002). Further treatments on the glass-ceramic products, 

such as cutting and polishing, can be additionally requested, before commercialization and final 

use. 

The first step toward glass-ceramics involves conventional techniques for preparing a glass. 

The product is then heated to 75 0 °C to 115 0 °C, until a portion of the structure is transformed 

into a fine-grained crystalline material. Glass-ceramics are at least 50% crystalline after they have 

been heated. In some cases, the final product is more than 95% crystalline.  

 

III.4.1 Crystallization  

Crystallization, as well as melting, is first order transition. It is identified by thermo analysis 

(DTA, DSC), by an exothermal peak that appear during the cooling, whereas melting is identified 

by an endothermic peak during heating. Changing the heating rate displaces the crystallization 

peak (a slower heating/cooling cycle translates the peak to higher temperatures). This is a key to 

justify that crystallization is the consequence of two processes that depend on temperature: 

nucleation and crystal growth. Figure III.10 represents “Tammann curves”, showing that the 

maximum of nucleation and crystal growth rate is located at different states of super cooling. KG 

is the curve for growth rate and KV is the curve for nucleation rate (Deubener, 2012). 

 
Figure III.10: Crystallization (KG) and nucleation (KV) rates in function of the super cooling 
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a 
 

b 

Figure III.11: General evolution of (a) the work formation in function of the nucleus radius; (b) the critical 

radius r* in function of the temperature 

III.4.2 Nucleation processes 

Thermodynamic fluctuations provoke agglomerations of molecules in the matrix. Such 

agglomerates may grow or collapse, depending only on the initial nucleus size. The nucleus has a 

defined level of free-energy for its growth within the surrounding network. The growth 

phenomenon as a function of time and temperature, and intrinsic properties of the system was 

deeply explained using thermodynamic and kinetics laws (Gutzow 1980 and Höland et al., 2002, 

2003, 2009).  

The work of formation ∆G of a nucleus is a trinomial function of the radius of the growing 

sphere and has the evolution presented in figure III.11a. It also depends mainly on 2 terms of 

opposite sign: the negative term is linked to the free energy associated to the volume of the new 

formed phase, (related to saturation level) and the positive term includes the interfacial energy of 

the new surface. Schematically, the reaction happens as soon as ∆G is negative. At start, when r is 

near to zero, the free energy is unsufficient to maintain the cohesion so crystallization cannot 

occur. Then, the germs appear from a critical nucleus size, determined by the interfacial energy 

and the free energy (figure III.11b). For this reason, it is clear that a glass-ceramic can be full of 

crystals, as far as the interfacial energy is low enough (so the environment is not a barrier to their 

growth). 

The kinetics of the nucleation rate were investigated by Gutzow et al. (1980), as an exponential 

function of time and temperature. It is then inversely related to the viscosity of the glass phase. 

Crystallization should be distinguished between volume or bulk (homogeneous) and surface 

(heterogeneous) nucleation. There are two types of nucleation: the first one is volume nucleation, 

which is commonly used technique for both homogenous and heterogeneous nucleation (figure 

III.12). Particular glasses, for example from the systems SiO2-Al2O3-Alkali oxide, tend to phase 

separate into a SiO2-rich glassy matrix and an alkaline or alkalike-earth oxide-rich glassy droplet 

phase or solid solution. Crystallization is achieved at earlier stage or delayed by changing the 

composition of the matrix phase (figure III.13). Surface crystallization or volume crystallization 

can thus be provoked or suppressed. Second, phase separation may lead to the formation of a low-

viscosity phase demonstrating homogeneous crystallization, while the matrix crystallizes 

heterogeneously, either simultaneously or later. Third phase separation lead to the formation of 

interfaces that may be preferred sites for crystallization (figure III.14). At the end, in glass-
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ceramics, the crystalline phases transformations are controlled after a good knowledge of 

temperature and viscosity of the system which can be determined by DTA analysis. 
 

 
Figure III.12: Schematic summary of the nature of the crystallization process (Müller et al., 2000) 

 

 
Figure III.13: From glass to glass-ceramic. (a) nuclei formation, (b) crystal growth, (c) glass-ceramic 

microstructure (Höland and Beall, 2002) 

 

 

 
Figure III.14: Glass-ceramic from powdered glass. (a) powder glass compact (b) densification and 

insipient crystallization (c) frit derived glass-ceramic (Höland and Beall, 2002) 

 

 

III.4.3 Properties of glass ceramics 
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Because glass-ceramics are more resistant to thermal shock, cookware made of this material 

can be transferred directly from a hot stove burner to the refrigerator without breaking. Because 

they are more crystalline glass-ceramics are also slightly better at conducting heat than 

conventional glasses. Glass-ceramics are also stronger at high temperatures than glasses. Thus, the 

glass-ceramic MgO - Al2O3 - SiO2 is used to make electrical insulators that have to operate at high 

temperatures, such as spark plug insulators. For comparison, the properties and uses of some 

glasses and glass-ceramics are given in the table III.9. 

For glass ceramics with important properties for technical, consumer, medical or biological 

applications, it is necessary to develop multi-component base glasses and still to apply the 

different nucleation mechanisms to convert the base glasses into glass ceramics. Glass ceramics of 

low thermal expansion involve two types of nucleation control: nucleation by phase separation and 

heterogeneous nucleation. First, nucleating agents TiO2 or ZrO2, incorporated in the system, form 

crystals at 78 0 °C by homogeneous nucleation. Then, SiO2 β quartz small 100 nm crystals form at 

their contact, by heterogeneous nucleation, at 98 0 °C, and at the same time happens a phase 

separation of SiO2 from the initial system (SiO2-Al2O3, Li2O for example). The low CTE 

(coefficient of thermal expansion) is achieved by forming those crystals of metastable solutions 

based on β quartz and β spodumene. For temperatures between 0 °C and 400 °C, any cracks that 

would be induced by a thermal shock are stopped by internal compression stress applied by quartz 

crystals on the glass, as quartz is highly mechanically resistant. Given the properties of low CTE 

and thermal conductivity, the glass ceramic has been successfully used as telescope mirror blanks 

in precision optics and for variety of household applications. 
 

Composition Property Use 

Glasses 

Al2O3, MgO, CaO, SiO2 
Translucent, chemically 

resistant 
Window glass, bottles 

PbO, SiO2 High refractive index Lead crystal 

B2O3, SiO2, Na2O 
Acid resistant, low  

expansion on heating 
Pyrex 

Glass Ceramics 

MgO, Al2O3, SiO2 

Insulator with high  

mechanical strength at  

high temperatures 

Spark plug insulators 

CaSiO3, CaMgSi2O6, 

CaAl2Si2O8 
Wear resistant Building materials 

Li2Si2O5 
Resistant to thermal 

shock 

Nose cones on  

rockets, cookware 

Table III.9: Properties and Uses of Some Glasses and Glass-Ceramics 

 

Glass ceramics of high mechanical strength are produced by hot pressing at less than 1000 °C 

and involve both phase separation and volume nucleation. In base glasses of SiO2-LiO2-P2O5-ZrO2 

(20 wt% ZrO2 –containing glass ceramics), nucleation is initiated by phase separation and 

primarily Li3PO4 crystals form during quenching of the glass melt. Then, ZrO2 phases are formed 

as microcrystals growing up to 20 µm length; in the same way as quartz, they enhance the 

mechanical strength of the glass ceramic. SiO2-LiO2 (lithium disilicate glass ceramics system is a 
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heterogeneous nucleation by epitaxial growth of Li3PO4. This high strength materials (bending 

strength around 280 MPa) are also chemically durable. Other types of glass ceramics deriving 

from similar crystallization were developed, such as Al2O3 free, Al2O3 and La2O3 containing 

multicomponent lithium disilicate glass ceramic, with additional improved properties and bending 

strength reaching 400 MPa. For higher temperatures, quartz phase transformation is well known 

for its important volume expansion in a preferred direction, but we can consider that because of the 

random orientations of every β quartz crystals, the glass expansion is homogeneous in the 3 space 

directions.  

 

III.4.4 Production modes 

An increasing amount of investigation on glass-ceramic production has been made in recent 

years. These processing routes differ from each other in order to obtain unique properties such as 

expected microstructural or mechanical properties. The glass-ceramic production techniques can 

be listed as; Traditional methods, Sinter-crystallization method and Direct sintering. 
 

 
Figure III.15: Double stage heat-treatment to control microstructure 

 

The crystal number density and time lag depend on condition of heat treatment of the second 

stage principally. First stage enables the nucleation whereas second stage enables the crystal 

growth. It is then possible to obtain desired number of crystals and size of crystals (figure III.15).  

 

II.4.4.a Glass Ceramics by nucleation and growth 

The following parts on glass-ceramics are available in the Encyclopedia of Sustainability 

Science and Technology (Bernardo et al., 2012). Glass-ceramics represent a vast range of 

materials obtained by controlled crystallization of a glass of selected composition; the overall 

process leads to materials often possessing outstanding properties, such as high hardness and 

mechanical strength, a thermal expansion coefficient adjustable in a wide range of values (from 

negative to more than 12 × 10-6 °C-1), high refractoriness, high chemical durability and excellent 

dielectric properties. The most valuable glass-ceramics, also known as “technical glass-ceramics”, 

can be produced only from base glasses with a carefully controlled chemical composition, 

obtainable from particularly refined raw materials. However, the glass-ceramic technology has 

been applied to glasses obtained from waste since the early 1960', i.e. quite soon after the 

discovery of glass-ceramics occurred. The significant variability in composition of the inorganic 
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residues may be accommodated by using mixtures of different waste materials (changes in the 

waste ratio could compensate variations in the composition of a single waste) and by considering 

not particularly sophisticated applications, such as the manufacturing of tiles for the building 

industry.  

 Classical glass-ceramic technology relies on a double step treatment of a previously formed 

glass object (shaped into the desired form), corresponding to the nucleation of a crystal species 

within the base glass, favored by the separation of some glass components (such as Ag or Au 

colloids, or oxides like TiO2 and ZrO2), and to the crystal growth. These components are generally 

added to the formulation of the base glass, and are referred to as “nucleating agents”. The base 

glass is heated first to the temperature of maximum nucleation and then to the temperature of 

maximum crystal growth (slightly higher than the previous one), with a holding time at each 

temperature, before cooling. These temperatures are different for each glass composition, and need 

to be determined precisely using, for instance, Differential Thermal Analysis (DTA). 

 Microcrystalline products obtained from extensive nucleation (i.e. containing a very large 

number of nuclei) possess of very remarkable mechanical properties, even when produced from 

waste. It must be observed that waste-derived glasses usually have an inherent strong tendency to 

devitrification, attributable to the presence of specific components in the formulation of waste, and 

therefore there is no need to add nucleating agents to the batch. The separation of magnetite 

(Fe3O4) crystals is particularly significant in iron-rich waste glasses. Karamanov and Pelino 

observed the dependence of crystallization on the ratio Fe3+/Fe2+ (Karamanov et al., 1999; 

Karamanov and Pelino, 2001). They showed that the crystallization of iron-rich glasses begins 

with the separation of small magnetite crystals, but the surface oxidation of Fe2+ to Fe3+ causes a 

change of the chemical composition, with the formation of hematite (Fe2O3), thus decreasing the 

total amount of crystal phase and changing the reaction order of the crystallization process. 

Bloomer et al. (1999) also showed that oxidized glass from dc arc melting of highly iron 

containing waste were highly durable, since oxidative conditions promote the dissolution of heavy 

metals, but poorly prone to devitrification. Iron-rich waste glasses are known also for the 

opportunity of obtaining glass-ceramics with interesting functional properties: Romero et al. 

(2001) showed that with Fe2O3 contents in the base glass superior to 26%, the precipitated 

magnetite particles were large enough to exhibit full magnetic order, so that glass-ceramics 

showed ferromagnetic behavior.  

 

II.4.4.b Glass Ceramics by sinter-crystallization 

 The above described nucleation/crystal growth step may be difficult to control and 

economically expensive. A major drawback concerns the presence of defects in the glass articles, 

like pores, which remain in the glass-ceramic, causing a decrease in the mechanical properties. The 

evolution of gas bubbles from the glass melt requires high temperatures and long holding times, 

i.e. a carefully controlled refining step. This refining is particularly complicated with waste 

glasses, which are usually dark and feature a low thermal conductivity by radiation, due to the 

amount of heavy metals. A further detrimental issue for glass-ceramics obtained by the traditional 

route is their visual appearance, which is generally rather inferior to that of natural stones and 

traditional ceramics. With a sintering approach, the problems of defects and visual appearance are 

generally avoided. In fact, when applying the sintering route, there is no need to refine the melt 
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before casting into a frit, thus reducing cost and gaseous emissions. The ground glass powder is 

subsequently heated to a certain temperature, at which viscous flow sintering of glass powders 

occurs together with crystallization.  

 The simultaneous sintering and crystallization treatment is known as sinter-crystallization 

(Gutzow et al., 1998), and it has been exploited commercially since the 1970', for the 

manufacturing of the well-known Japanese, wollastonite-based, “Neoparies” tiles for the building 

industry. As mentioned above, refining is not needed, so that the vitrification may be conducted in 

small plants and in particularly short times, favoring the immobilization of components which 

could vaporize with longer heat treatments. Furthermore, a relatively high degree of crystallization 

may be achieved in very short times; the surface of glass is in fact a preferred site for 

crystallization (Müller et al., 2000; Prado and Zanotto, 2002; Francis et al., 2004; Hernández-

Crespo et al., 2006), and thus ground glass is easier to devitrify than bulk glass with the same 

composition, and nucleating agents are not needed. In some cases, the holding time at the sintering 

temperature may not exceed 30 min, being also accompanied by very fast heating rates (even 

“direct heating” is possible, that is the direct insertion of glass powder compacts in the furnace 

directly at the sintering temperature), thus configuring a “fast sinter-crystallization” process 

(Bernardo, 2008). The base glasses for the manufacturing of sintered glass-ceramics have similar 

chemical compositions, except for lack of nucleating agents, to those of glass-ceramics from waste 

glasses obtained by conventional nucleation and growth. Pyroxenes, wollastonite and anorthite 

(with solid solutions) are very common crystal phases.  

 The sinter-crystallization process relies on a quite complicated balance between viscous flow 

sintering, surface crystallization and even bulk crystallization, i.e. crystallization operated by the 

separation of components acting as nucleating agents. This balance is sensible to many conditions, 

e.g. the oxidation state and the heating rate. Starting from an iron-rich waste glass, Karamanov et 

al. (2000) observed that the addition of C (1.5-2%) to the glass batch increased the magnetite 

phase and enhanced the crystallization rate. Bernardo et al., starting from a base waste glass with a 

low Fe2+/Fe3+ ratio, observed that magnetite was promoted by oxidation, more sensible for fine 

glass powders (<40 µm) than for coarse ones (<80 µm). Karamanov et al. (2003 and 2005) 

reported that the balance between surface crystallization and bulk crystallization is strongly 

affected by the heating rate: low heating rates favor bulk crystallization, and sintering may be 

inhibited by the crystal phase, causing incomplete densification. 

High heating rates favor sintering so that low porosity remains in the material; however the 

amount of crystal phase formation is lower, because crystallization occurs only at the surface. It 

has been shown in many papers that, in the presence of fine glass powders (<40 µm), the 

crystallization may be achieved right at the temperature of the crystallization exothermic peak in 

the DTA plot of the same powders (figure III.16). More recent investigations, however, 

highlighted that optimum crystallization is achievable only if the crystallization peak is located at a 

temperature suitably higher than that corresponding to the dilatometric softening point, i.e. the 

temperature at which viscous flow becomes appreciable (Ray and Tiwari, 2001). If the temperature 

difference is limited, the obtained glass-ceramics are remarkably porous and improvements in the 

densification are achievable only by increasing the sintering temperature and the heating rate 

(direct heating, as described above, enables sintering of the powders before the crystallization can 
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“freeze” the viscous flow, due to the very large increase in viscosity associated to crystal 

precipitation) (figure III.17). 

 
Figure III. 16: Thermal anaylsis showing the superposition of dilatometric and DTA plots for a glass 

(Bernardo et al., 2011) 

 

 

 

 

Glass not subjected to surface crystallization 

Simple viscous flow sintering 

Output: dense glass object 
 

Glass subjected to surface crystallization 

Crystallization temperature well above dilatometric 

softening point 

Output: dense glass-ceramic 
 

Glass subjected to surface crystallization 

Crystallization temperature not well above dilatometric 

softening point 

Output: porous glass-ceramic 

Figure III.17: Schematic representation of the different conditions starting from fine glass powders 

(Bernardo, 2013) 

 

II.4.4.c Glass Ceramics by the petrurgic method 

 Glass-ceramics from waste may be produced by a third method, known as the “petrurgic 

method” (Romero and Rincón, 1999), named in this way because of the similarity with the process 

of crystallization of natural rocks. This method has actually been applied since the 1970s, with the 

development of “Silceram” ceramics from metallurgical slags. In this process, crystals nucleate 

and grow directly upon cooling of glass from the melting temperature, with an intermediate 

temperature holding stage, which can sometimes be avoided. A controlled cooling (from 1 to 10 

°C/min) of glasses enables to obtained crystallization from mixtures of coal ash and soda lime 

glass melted at 1500 °C, without any intermediate step. The cooling rate is a dominant factor in 

controlling the formation and morphology of the crystal phase, particularly in relation to iron 

containing raw materials. Faster cooling rates allow for the formation of magnetite, with samples 
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exhibiting magnetic properties, while slow cooling rates cause the formation of plagioclase and 

augite. 

 

II.4.4 “Glass-ceramics” by direct sintering of silicate waste 

 The above mentioned techniques for the manufacturing of glass-ceramic all involve the 

previous formation of a glass. However, some interesting sintered materials may be produced by 

mixing glass cullet, of various origins, with silicate waste, leading to components which cannot, 

strictly speaking, be termed glass-ceramics, since they are not produced by the (controlled) 

crystallization of any parent glass. Francis et al. (2002), as an example, produced glass-ceramics 

from high iron containing coal ash, adding Pyrex glass powder. The presence of iron led to soft 

magnetic materials, due to ferrite phases formation depending on the ash/glass ratio. A similar 

approach was followed by Fidancevska et al., (2003). In these cases, the crystallization is 

associated to the interaction between recycled glass and the silicate waste. 
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Chapter IV 

Samples preparation and characterization  

 

 

 

IV.1 Preparation process 

 

IV.1.1 Humid phase powder elaboration 

After sieving under 90 µm, the components are mixed together and added with water (35%-

40% of the total solid), obtaining aqueous slips, homogenized by mechanical stirring. If a grinding 

step is necessary, the aqueous mix is purred into a jar containing agate balls and ball milled for 30 

min at 300 rpm. The slips are cast in wide glass containers (or aluminum, to avoid interaction of 

lime with glass containers) and dried at 110 °C overnight. The solid residues were manually 

ground and sieved to get fine granules of about 200 µm diameter and about 7% humidity. 

 

 

IV.1.2 Uniaxial dry pressing 

The powder mixture is weighted and slightly homogeneously humidified by droplets 

pulverization until 7 wt% water content, in a view to imitate the atomization process at laboratory 

scale. Obtained round granules are then pressed at 40 MPa, in different dies, to form discs (30 mm 

diameter, 2 mm height) and rectangular tiles (dimensions of 50 × 35 × 5 mm). 

Double-layer glass-ceramic samples are obtained by first lightly pressing (at 10 MPa) 15 g of 

the waste mixture in a square die (cross-section 50 × 50 mm) and then depositing 3 g of waste 

glass frit on this substrate at a surface density of 0.080 g/cm2 by passing the powder through a 90 

µm sieve. The layered samples are then uniaxially pressed at 40 MPa. 

The samples are further dried at 110 °C for 30 min and then fired at the chosen process 

temperature for 30 min (heating rate of 40 °C/min, to mimic actual industrial processing, in case of 

rectangular tiles). 

 

IV.1.3 Thermal treatment 

For sinter-crystallization, the raw materials are first dried and homogenised by ball milling in 

an agate jar for 30 minutes at 300 rpm, then calcined at 900 °C(for 5 hours) and finally melted in a 

kyanite (Al2SiO5) refractory crucibles at 1400 °C for 90 minutes. The melt slightly reacted with 

the crucible thus inducing a limited increase of the alumina and silica in the final composition of 

the frit. Glass powders are produced pouring the melted glass into water; the drastic quenching 

provided a number of fragments that were successively dried and ball milled (30 minutes at 400 

rpm). The milled powders were passed through a 240 mesh sieve to collect the particles < 63 µm. 
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Sintering experiments are performed after uniaxial pressing by direct introduction of samples, 

i.e. without heating stage. The molded specimens were dried at 110 °C for 1 hour and then directly 

put in an electric muffle furnace operating at the desired temperature (between 800 °C and 1150 

°C). After 30 min holding time, discs samples were directly removed from the furnace, whereas 

small tiles were subjected to a cooling procedure, aimed at minimizing the thermal shock (furnace 

turned off, natural cooling at a rate of approximately 20 °C/min just at the end of the holding stage, 

until 600 °C and then natural cooling out of the furnace). 

 

IV.2 Technical characterization 

 

IV.2.1 Density 

The apparent densities of the sintered materials are estimated by water displacement method, 

following Archimedes’ principle, on electronic scale, of samples immersed in water (see figure IV. 

1). Samples were hold by a leaky hamper which rested on the measurement plate. The measured 

weight m’ comes from the forces balance m’g = mg - ρVg, where m is the effective mass of the 

sample, measured separately and ρVg is the hydrostatic push of the fluid, with V the sample 

volume. In water (distilled), ρ = 1 g/cm3 and the volume in cm3 is expressed from difference in g 

{m-m’}; and then sample density is: ρc = m/ (m-m’). 

 
Figure IV.1: Schematic representation of the density measurement 

 

The bulk density was assessed by He Pycnometer (Micromeritics®, model AccuPyc1330, 

Norcross, GA) after the grinding of the materials in fine powder shape, to avoid the influence of 

porosity in the calculated volume.  

 

IV.2.2 Porosity 

Porosiy was assessed by He Pycnometer (Micromeritics®, model AccuPyc1330, Norcross, 

GA). The characterization of the porosity of a cellular material is not so straightforward; in fact, 

with the same mass, several volumes can be detected, as illustrated by Fig.IV.2. The actual bulk 

density of a solid is its “intrinsic density”, from pycnometry analysis on powders, i.e. ideally pore-

free portions. If we consider a cellular material, we should consider other two density values: 1) 

geometric density (mass/volume ratio): the measurement does not consider pores, but only the 

external volume; 2) apparent density: the volume considered for the mass/volume ratio is the 

geometric volume deprived of open pores, i.e. those that can be reached by a fluid (in our case, 

helium) coming inwards (pycnometry analysis applied on whole samples). We may first define the 

outer volume (VG), i.e. the “geometrical volume”; it comprises the volume of the solid phase (VS) 

and the volumes of open and closed pores (VOP and VCP, respectively): VG = VS+VOP+VCP. The 

volume detected by pycnometry on whole samples, i.e. “apparent volume” (VA) is the geometrical 

volume deprived of open pores: VA= VS+VCP = VG-VOP. The volume detected by pycnometry on 
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powders is the volume of the solid phase (VS): VS = VG-VOP-VCP. Finally, we can define geometric, 

apparent and bulk densities, for a generic mass m, as follows: ρG = m / VG ; ρA = m / ( VG - VOP) ; ρB 

= m / ( VG - VOP - VCP). This means that: ρG·VG  = ρA·( VG - VOP) then fOP  = 1-ρG / ρA, and 

ρG·VG=ρB·(VG-VOP-VCP) then fCP=1-fOP -ρG/ρB, with fOP and fCP the fractions of open and closed 

porosity, respectively. The fraction of open porosity is conditioned by the size of pores. A truly 

open-celled foam features apparent and bulk density values very close to each other. In many cases 

it may be that foams with the same external volume but different cell size (Fig.IV.2) have different 

open porosity, even if closed celled. This happens as an effect of the cutting of samples, opening 

some pores; bigger pores determine a higher “open volume” (white spaces in Fig.IV.3). 

 

 
Fig. IV.2: Differences among bulk, apparent and geometric densities (purple: actual volume of the solid 

phase; orange: additional volume considered for apparent and geometric density determinations) 

 

 
Fig. IV.3 – Example of the impact of cell size (left: small pores; right: big pores) on the open porosity 

detected starting from an ideally closed-cell foam [grey: closed porosity; white: open porosity] 

 

IV.2.2 Water absorption 

 Immersion in boiling water is used for the evaluation of the water absorption, according to the 

current standard (ISO 10545-3, 1997). 

 

IV.2.3 Differential Thermal Analysis 

TG and DTA are applied on 100-150 mg powder samples with a temperature ramp of 10 

°C/min until 1200 °C (DTA/TGA, STA 409; Netzsch Gerätebau GmbH, Selb, Germany). 

 

IV.2.4 X-ray fluorescence analysis 

In particular, the fluorescence analysis was conducted by R. Falcone (Stazione Sperimentale 

del Vetro, Venice, Italy) with a wavelength dispersive spectrometer (WDXRF, ADVANT’XP+, 

Thermo ARL, Ecublens, Switzerland) operating on pressed powder pellets (six measurements 
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performed on each sample; the net intensities of the F Kα line - λ=1.83 nm - were determined as 

the difference between the gross and the background counts). 

 

IV.2.4 X-ray powder diffraction (XRD) 

Mineralogical analysis is conducted by X-Ray Diffraction analysis (XRD) on powdered 

samples (Bruker D8 Advance, Karlsruhe, Germany - CuKα radiation, 0.15418 nm, 2θ=10-60°). 

Phase identification is achieved by means of the Match!® program package (Crystal Impact GbR, 

Bonn, Germany), supported by data from PDF-2 database (ICDD-International Centre for 

Diffraction Data, Newtown Square, PA).  

As explained by Flewitt and Wild, (1998), X-ray diffraction has been extensively used for 

crystals analysis in many texts, from the years 1960s. X-rays are electromagnetic radiations, 

photons, with a wavelength of the order to a fraction of a nanometer compared with the hundreds 

of nanometers of light waves. Into crystalline materials, rows of atoms have spacing of ~0.3 

nanometers. An X-Ray beam incident on a material penetrates many micrometers into the bulk and 

the direction of the diffracted beam intensity is determined by the periodicity of the atom planes in 

the crystalline solid. Consider the case where a beam of characteristic X-Rays of wavelength, 

lambda, is incident on a single crystal surface at angle theta, which produces a diffracted beam at 

an angle theta.  

 
Figure IV4. X-ray diffraction from atoms in a crystalline material 

 (Flewitt and Wild, 1998) 

 

The ray from the second row of atoms travels a distance greater than the ray from the top row. 

The two rows of atoms are separated by a distance d. For this to produce a diffraction maximum, 

the path difference must be an integral number of wave lengths. We obtain a condition for the 

diffraction maxima which is called Bragg equation:  

, with d the distance between to plans of crystallization, theta the incident angle, 

and lambda the wavelength of the diffraction beam. 

By this equation, d may be determined and the crystal spacing identified. Specific atom species 

will have an influence on the phase of the diffracted beam and dissimilar atoms in lattice positions 

can cause certain diffraction peaks to be absent. Thus by observing the diffraction pattern it is 

possible to identify the structure of the material. The reciprocal lattice is a construction to aid the 

interpretation of diffraction from crystal lattice. It would be to long developing this here but we 

cannot help reminding that this model enables to predict theoretically the diffraction of crystals 

according to lattice planes of spacing, and has enabled a lot to understand the theory of 
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crystallization. X-rays can most easily be produced by bombarding a material surface with 

relatively high energy electrons. When a high energy electron impinges on the material X-rays are 

produced. In practice it is normal to use metals to produce X-rays for use in X-ray diffraction 

instruments. This is because an intense beam of X-rays is desired and the good thermal 

conductivity of the meal allows the heat produced during bombardment with an intense high 

energy electron beam to be readily removed thus avoiding damage to the source. X-ray beam is 

detected using a counter tube, linked with associated electronic circuitry for data collection, 

treatment and recording. The powder method (employed here) corresponds to the one devised by 

Debye and Scherrer. An incident beam of monochromatic X-radiation interacts with a non-

diffracting aluminum specimen filled with powder of very small grain size, the all forming a flat 

horizontal surface. This specimen must contain sufficient articles with the correct orientation to 

allow diffraction from all possible diffracting planes when the incident X-Ray angle varies. The 

angle between the incident and diffracted X-ray beam is 2θ and consequently each set of crystal 

planes products X-rays of semi-angle 2θ. The position of the intensity peaks in the diffracted beam 

is characteristic of the material being examined and unknown phases may be identified by 

comparison with standards JCPDS. 

 
Figure IV.5. Powder diffraction (a) geometry of a conventional diffractometer 

 (b) diffractometer (Courtesy Siemens Ltd.) 

 

Locked couple (LC) is activated, meaning that both source and detector move around the 

specimen symmetrically with a θ angle to the horizontal, at an angular speed which is determined 

by angular step and time between 2 steps (see figure IV.5). From Bragg law, the peak positions 

provide both the crystal structure and the lattice parameters for each phase contained in the powder 

specimen. The diffracted beam intensity provides a measure of the distribution and position of 

atoms within the crystal.  

 

IV.2.5 Fourier Transform Infra-Red spectroscopy 

Powdered samples were subjected also to FTI-R spectroscopy using KBr as supporting 

materials for the spectroscopy analysis. 1 wt% dry powder (after 1 hour at 200 °C) was introduced 
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in 1 g KBr pellet of diameter 10 mm. The mixture was carefully mixed and strongly grinded in an 

agate mortar and eventually pressed at 10 MPa just before the measure.  

 

IV.2.5 Induction heating test 

Discs of 5 mm mean thickness and 25 mm mean diameter were subjected to induction heating 

tests. The samples were placed at the center of the copper coils (9 turns and ϕ = 50 mm) of a Nova 

Star 5 kW® power supply (Ameritherm Inc, Scottsville, NY, USA) operating at 21 kA/m with the 

frequency of 168 kHz. The temperature was measured with an IR THERMACAM® (FLIR 

Thermacam E65, FLIR System, Boston, MA, USA). 

 

IV.2.6 Image analysis 

 

IV.2.6.a Scanning electron microscopy (SEM) 

 Most interesting samples are studied to investigate the microstructural development with back 

scattered electron imaging (BEI) mode in a scanning electron microscope (ESEM Quanta 200, FEI 

Company, Eindhoven, The Netherlands). Before analysis, surfaces are polished with 1 µm and 0.5 

µm diamond pastes except for powder samples. To reduce electrical charging of non-conducting 

specimen which can be induced by the incident electron beam, the surface can be sputter coated 

with a conducting metal such as gold. 

SEM is a technique using, instead of X-rays, monochromatic beams of electrons with a 

wavelength that is function of the applied accelerating potential (Flewitt and Wild, 2003). The 

specimen is scanned by the incident electron beam and electrons emitted from the surface are 

collected and amplified to form a video signal. When the electron beam penetrates the sample, it 

diffuses more or less deep depending on the nature of the elements (atomic number). It is the 

combination of the high resolution with a large depth of focus that makes the SEM well suited to 

examine topography (secondary electrons), for example fracture surfaces or porosity. To achieve 

an SEM image, use is made of the different signals produced when the electron beams interacts 

with the bulk specimen. The contrast obtained from refracted electron signals depends upon the 

local orientation of the surface to the incident electron beam offering the ability to provide 

quantitative topographic images. Unfortunately for specimens with very pronounced surface 

roughness and re-entrant relief, contrast is modified by surface collection contributions but any 

improved contrast is usually accompanied by degradation of image detail. A part of the electrons 

from the electron beam are backscattered. The backscattered electron yield from a specimen in a 

SEM is dependent on the incident electron beam energy and intensity, the mean atomic number 

density and the surface orientation. And then, filtering the backscattered electrons signal gives 

indication on the atoms presents on samples surface.  

 

IV.2.6.b Stereomicroscope 

Macroporosity qualitative characterization was performed using a stereomicroscope. 

 

IV.2.6.c Fluorescence microscope 

Qualitative evaluation was performed using a Fluorescence microscope ZEISS Scope A1, with 

Digital camera AxioCam Icc 1 S/N 28591065, HXP120C Kübler fluorescence light source, / BF, 
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Light blue (Dapi fluorescence markers) and green (Calcein markers), and pictures were analyzed 

using Software ZEN® (blue edition) 2006-2011 CarlZeissmicroImaging GmbH. 

 

IV.3 Mechanical characterization 

 

For the evaluation of mechanical properties, small beams of 45 × 3 × 4 mm are cut from bigger 

tiles and carefully polished up to a 5 µm finish and chamfered at the edges, by using diamond 

tools. This treatment is necessary due to the low fracture toughness of ceramic materials in 

general, but also because the preliminary cutting step lets the borders rough and irregulars, which 

may be responsible for the creation of new defects with a relevant concentration of stresses, which 

are not inherent to the material itself. The chamfering enables to decrease the inertia moment of 

the tested section. One set of beams can be left unpolished, in the case of studying the impact of 

surface on the bending strength. 

 

IV.3.1 Four point bending tests 

One of the most significant mechanical tests on ceramic materials is the bending test, and is 

fundamental in modelling. Compared to metallic materials, the traction strength of ceramics is 

very sensitive to dimension, geometry and superficial roughness of the samples, due to their lower 

fracture toughness: defects of various dimensions bring an important dispersion of rupture loads. 

The test itself then implies a difficult preparation of samples.  

 

Figure IV.5.: Section of a “ De Saint Venant” bar submitted to a flexural couple Mf with the distribution in 

traction and compression stresses indicated in function of the distance from the central axe (neutral). 

 

For these reasons, the bending test present more advantages in the case of ceramic materials. 

Indeed, it is an indirect traction test, as traction and compression forces applies on a transversal 

section of a bar, in function of the central axe, according to the “De Saint Venant” relation: 

J

yM f ⋅
=σ , where Mf is the bending moment in the inflection plan, J is the inertia moment of the 

section, y is the distance from the central axe (see figure IV. 5). 

For rectangular sections, of highness W and width B, we have: 
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Rupture happens when the strength σ, at the maximum distance y=W/2, over goes the traction 

strength of the material, (in the section where traction forces apply only); this strength is either 

called bending strength or modulus of rupture, M.O.R. 
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In the 3 points test, the bar is charged in the middle. The section submitted to a bending couple 

Mf=PL/4 is a triangle, as figured below (figure IV.6, left). The maximal load is then: 
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The bending rupture load corresponds to the maximum transversal charge supported by the sample 

at the rupture time (Prott):  
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Figure IV.6: Representation of the cutting load T and bending moment Mf for configurations of 3-point 

and 4-points bending test. 

 

A fundamental characteristic is that the central part is submitted to the maximum bending moment, 

and in the 3 points test, this part is limited (only a line), so the probability to meet critical defects is 

limited.  

The 4 points bending test shows a symmetric transversal load P of a bar, two supporting points 

separated from a distance S1 and two contact points at S2 distance (figure IV.6, right). The load is 

reparsed on application points submitted to P/2. The bending moment worth Mf=P(S1-S2)/4. 
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So the 3 points test can be considered a particular case of the 4 points test, where S2=0. 

 The volume of the section submitted to a maximum load is higher and then increases the 

probability to find a critical defect in this section. Consequently, the rupture load by 4 points test is 

lower than by 3 points test (around 20%) but is more representative of the reality.  

 

Four-point flexural tests (span of 28 mm) are carried out by using an Instron 1121 UTS 

(Instron, Danvers, MA); each data point represents the average of ten individual tests. The 

procedure for the bending test follows the conventional standards and the loading speed should 

remain in the interval 0.2-0.5 mm/min. 

Various effects during the test can disturb the right bending strength evaluation: errors in the 

measurement of the distance between contact points or asymmetric positioning; shifting on the 

loading points; defects of articulation (one of the two contact points has a lower or null load); 

twisting effect due to non-parallel surfaces; highness of the section too low (limits of validity of 

the model reached); excessive chamfer implying an underestimation of the bending rupture load. 
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For these reasons, a good preparation is necessary and a maximum dispersion of samples is useful 

to get a proper estimation of the dispersion in the results (Bernardo, 2004). 

 

IV.3.2 Compression tests (for porous samples) 

Ceramic materials that do not present a sufficient bending strength can be evaluated by 

compression test. Indeed, the compression strength of a material is much higher than his traction 

strength, particularly the ceramics. In the case of porous samples, the compression is first 

supported by the tridimensional structure coming from the presence of pores, and then by the 

material itself, packed. For foam glasses, this test is more significant that the bending test. 

Cubic samples are submitted to a load with a speed of 1 mm/min, which is applied on the entire 

surface of one of the cube side. Like in bending test, the parallelism of the surfaces is important to 

avoid parasite bending effects and a diminution of the contact area (Bernardo, 2004).  

 

IV.3.3 Vickers Hardness tests 

The hardness gives information of the evaluation of the abrasion strength, an important 

parameter in metals and ceramic-metal or ceramic-ceramic composites. The Vickers tests are very 

famous in dense materials based on glass, like glass-ceramics. A diamond pin in pyramid shape is 

loaded on the polished surface of the sample (see figure IV.7). The hardness measured is actually a 

“conventional pressure” value: the applied load P on the surface is normalized to the surface of the 

pyramidal stamp, established by the measurement of the diametric length d: 

2V
d

P
8544.1H = , with HV in MPa, P in N and d in µm.  

An important possibility of application of the micro hardness is given when, at important 

loads, a system of cricks from the angles of the stamp, of which length can be correlated to the 

material fracture strength (see part IX.3). 

 

a)  b)  
Figure IV.7: Schematic view of the two types of stamps Vickers (a) and Knoop (b) 

 

IV.3.4 Elastic modulus 

The elastic modulus was calculated on the base of non-destructive resonance frequency 

measurements. Young modulus was determined by the impulse excitation of vibration method 

(ASTM C 1259) using a flexure specimen configuration with nominal dimensions of 3 × 4 × 45 

mm. Output information such as resonance frequency was manually recorded via data acquisition 

incorporated with the excitation system (GrindoSonic Mk5, Leuven, Belgium). 
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IV.4 Environmental characterization 

 

Inorganic wastes often contain metallic trace-elements that could present a toxicity risk and 

confer a hazardous behavior to the environment. Some of these elements also interact in biological 

processes: for example, Iron is an essential component of hemoglobin; Zinc and Copper are 

important for cellular processes e.g. protein/DNA interactions. Their concentration in the 

elaborated material and their interaction with living organisms is a relevant factor to determine if 

these materials are chemically inert and can be used safely. To assess the compatibility of those 

materials with a natural marine environment, some studies refer to Daphne algae’s eco-toxicity test 

(Rawlings and Boccaccini, 2006). The cytotoxicity test is a convenient alternative to evaluate 

materials compatibility with an environment centered on human activity such as public buildings 

and works. Here we present a cytotoxicity test, traditionally used for biomedical application, 

which could be a good indicator for sanitary accreditations in housing. Additionally presented, the 

leaching test is mandatory for the establishment of inert or the hazardous classification of waste, 

and extended to the final generated material from wastes.  

 

IV.4.1 Notion of toxicity 

Acute toxicity is the toxicity induced by the administration of a unique and massive dose of a 

product with a 50% risk to kill an organism, defined as the LD 50 (Lethal Dose). Another concept 

is that the effects are dose-dependent; indeed, this is very well used in medicine since the “venom 

does not make the poison, but the dose”. Toxicity can be measured directly on a population range, 

or by comparison to similar exposures in similar conditions. When a single toxic product is 

involved, a “safety factor” can be added to account for uncertainties in data and evaluation 

processes. The safety factor from rat to humans is of 10 and from fish to mammals is of 100, 

meaning that rats are 10 times and fishes 100 times less resistant than humans. It is more difficult 

to determine the toxicity of chemical mixtures than a pure chemical, because of the effects of 

interactions. Common mixtures include gasoline, cigarette smoke and industrial waste, such as the 

discharge from a malfunctioning sewage treatment plant, with both chemical and biological 

agents. 

 

IV.4.2 Toxicity of metallic trace-elements (MTE) 

Naturally present as trace amount in the soil, a lot of MTE will be found among the presently 

studied components. Indeed, human activity may have reinforced this presence as they have an 

important role in every-day life. The list below gives an overview. 

- Iron (Fe) and Fe allies, steel, stainless steel; 

- Lead, (Pb) in accumulators’ batteries (cars), pipes, binders, anti-corrosion paintings, bullets; 

- Mercury (Hg) in teeth amalgams and electric batteries; 

- Uranium (U) for boats quills, anti-protection munitions; 

- Chromium (Cr) as red pigment, and for pieces chroming; 

- Copper (Cu) in the domain of electronic and as fungicide. (Cu sulfate in grapes trees 

treatment); 

- Cadmium (Cd) used in electric accumulators Ni-Cd is used in aeronautics for anti-corrosion; 
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- Silver (Ag) for jewelry, photography, mirrors, many electronic and electric industrial uses, 

money and medals; 

- Gold (Au) for jewelry, precious objects, electric contact, dentistry; 

- Zinc (Zn) for galvanization of steel, and molded pieces in automotive; 

- Titanium (Ti) for its chemical inertia in chemical reactors, and for bone (hump) replacement. 

- Nickel (Ni) for stainless steel; 

The combustion of solid or liquid fossils is also susceptible to reject metals in ashes, vapors and 

fumes. Above all combustibles, the energy-wood is (in France) the main emitter of heavy metals 

into the atmosphere (except Hg and Ni). In the year 2000, a general definition was set by the UE 

for European Rights and Member States, in particular in the waste field: 1) heavy metal designs 

“and compound of antimony, arsenic, cadmium, chromium, copper, lead, mercury, nickel, 

selenium, tellurium, thallium and Stain, 2) those materials under metallic form, as far as they are 

classified as hazardous substances” and more generally, a hazardous substance is “ a substance that 

has been or will be classified as dangerous (Directive 67/548/CEE and its updated modifications)”. 

In fact, mainly nanoparticles and aerosols shaped MTE are an issue for sustainability and health. 

When present in the air (road, industry pollution, combustion, etc.), they are usually abated by 

humid deposit. Ashes and incineration residues as well as carbon-ashes from individual or 

industrial installations (incinerators and thermal centrals) often are suspected to contain those 

MTE among the toxic products such as carbonated residues, heavy metals, organic-chlorides and 

traces of radionuclides. These products are partly chemically reactive in powder shape. 

 

IV.4.3 Cytotoxicity* test 

Cytotoxicity tests are performed for many different applications, generally in the biological 

field. The classic in vitro cytotoxicity tests is “USP” and is a semi-quantitative evaluation of cell 

damage using a scale from 0 to 4. Three cytotoxicity tests exist: the Agar Diffusion Test, the 

Direct Contact Test, and the Elution Test. In comparison, ISO 10993-5 (2009) provides further 

guidance to quantitatively measure cellular activity. Thus, ISO group measurements of 

cytotoxicity determination can be designated into groups: 1) assessments of cell damage by 

morphological means [like USP], 2) measurements of cell damage, 3) measurements of cell 

growth and 4) measurements of specific aspects of cellular metabolism. The most sophisticated 

tests 2-4 help researchers to investigate potential anti-cancer and anti-viral drugs. 

 

IV.4.3.a Cell biology introduction 

The cells presently studied here are mouse embryonic fibroblasts (MEFs). MEFs are used as a 

feeder layer in the culturing of mouse Embryonic Stem (ES) cells. They provide both a substrate 

for the ES cells to grow on and secrete many factors necessary for ES cells to maintain their pluri-

                                                      
* Note on cytotoxicity: The chemical stability of the produced glass-ceramics was assessed by combining together a 

method from waste toxicity control (TCLP testing) and an in vitro cytotoxicity test (ISO 1993, 2009), usually from 

biocompatibility control, but in this study, using traditional window glass, as biocompatibility reference. A very few 

research works used both TCLP and cytotoxicity together, and the objectives and methods were different (Huang et al., 

2008; Amaral et al., 2009). In order to confirm, after TCLP, the non-toxic behavior of elaborated glass-ceramics, both 

direct and indirect method (elution) were used as complementary information regarding samples-cells interaction: 

indirect method referred to cells reaction to released ions and direct method linked to surface properties. 
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potency. Fibroblasts are derived from mesenchymal cells, which are very abundant in the embryo. 

Fibroblast cells are mostly present in the non-specialized connective tissues which are in particular 

resident of the derma layer and which ensure its coherence and suppleness. They create a gluing 

matrix which helps to attach and strengthen the organs (see figure IV.8b). In adults, various 

specialized tissues exist such as fat tissue, reticulated tissue, cartilage and bone. In the embryo, 

only non-specialized conjunctive tissues are found and fibroblasts are also important in quantities. 

Their function is to maintain the structural integrity of connective tissues by continuously secreting 

precursors of the extracellular matrix fulfilled with the creation of proteoglycans (binding 

molecules that entrap water molecules) responsible for the synthesis of collagen or elastin, and 

proteinases, enzymes able to degrade and remodel the extracellular matrix. Fibroblast shape is 

elongated with at least two branches (see figure IV.8a). Its length is around 5 µm wide and 30 µm 

long, depending on its development state. The cells contain nuclear chromatin which makes them 

visible using specific markers: Dapi is absorbed and intercalates into the DNA and so enables the 

identification of the nucleus; Calcein passes through the cellular membrane and then enables the 

identification of cytoplasm shape. The cytoplasm is rich in mitochondria, which reveals the 

cellular viability: the more they are active, positively correlated with cellular growth and 

proliferation. Water, mineral salts and proteins provide the nutritive supply (Nissan, 2010; Saker et 

al., 2014). 

 

 
Figure IV.8: Fluorescence Magnification images of human fibroblasts adhered on hydrogel after 4 days (a) 

and 7 days (b) of incubation. The cells were stained for live cells (green) and nuclei (blue). Scale bar: 50 µm 

 

Mitochondria are cellular organisms (see figure IV.9), functional units situated in the 

cytoplasm. They are involved in the “cellular respiration”, where they burn nutrients by oxidation 

in order to produce the necessary energy (ATP synthesis) for the cell living. Their dysfunction 

may appear with the saturation of the system in free electrons (free radicals) coming form an 

incomplete reaction between complex components. Thus, measuring mitochondrial activity 

enables to evaluate cytotoxicity. 

 

Figure IV.9: Schematic representation of a MEF cell 

a b 



Samples preparation and characterization 

63 

 

IV.4.3.b Procedure employed 

For the evaluation of cytotoxicity, 6 samples are prepared (3 for direct method and 3 for 

indirect method). 0.5 g dry powder mixtures are pressed at 40 MPa using a 13 mm diameter mold, 

then direct heated (i.e. direct insertion the furnace at high temperature and cooling in air) during 30 

min, at 1050 °C, to obtain small caps of 2 mm thickness. Samples are then gradually polished 

using 20 µm, 10 µm and 5 µm roughness diamond discs and finally at 1000 nm and 350 nm. 

In order to assess the cell response to materials degradation, hereby different direct and indirect 

methods were applied (Hoppe et al., 2011). Suspension of Mouse Embryonic Fibroblast (MEF) 

cells was cultured for 24 hours in a Dulbecco’s Modified Eagle Medium (DMEM) containing 10% 

Fetal Bovine Serum (FBS) and 1% of penicillin-Streptomycin, at 37 °C, in a humidified 

atmosphere of 5% CO2 in air. In the direct method, samples of test and control materials were 

applied directly to monolayers of cells covered with nutrient medium during a 24 hours incubation 

time. In indirect method (elution test), extracts were obtained by placing the test and control 

materials in separate cell culture media under standard conditions. Each fluid extract obtained after 

1, 2 and 3 days was then applied to a cultured-cell monolayer, replacing the medium that had 

nourished the cells to that point. In this way, test cells were supplied with a fresh nutrient medium 

containing extracts derived from the test and control material. The culture were then returned to 

the 37 °C incubator and removed for examination after 24 hours. For cell viability quantification, 

Water Soluble Tetrasodium Test (WST) with Cell Counting Kit-8 (CCK-8) (Sigma Aldricht®, 

Germany) was used as recommended by the manufacturer. Cell viability after direct and indirect 

method was reported in a histogram. Cell viability of window glass is set at 100%, as a reference.  

 

IV.4.4 Leaching test 

The study of leachates from wastes and/or construction materials is relevant in the evaluation of 

the environmental impacts. In fact, many rules and regulation on leaching tests are available, 

which enables to model, evaluate and compare diverse scenarios, e.g. acidic/basic environment or 

short/long term leaching. The main purpose of a leaching test is to quantify hydro-extractable 

pollutants amounts from a material for a given scenario. Of course, the leaching depends on 

several chemical and physical conditions linked to the material and to the environment (table 

IV.1). To evaluate the impact of these factors on the leaching behavior, it exist either 

characterization trials or conformity trials.  

 

Intern Factors Extern Factors 

Chemical process Physical process  
Dissolution (solubility rate) Percolation Lixiviate quantity (L/S) 

pH Diffusion Contact time 
Chemical species Superficial washing Temperature 

Total composition/ availability Granulate/monolith Medium Redox potential 
Redox potential particles size Adsorption 

Acid/base tampon capacity Porosity DOC 
Dissolved organic carbon (DOC) Permeability  

Leachate composition roughness  
Temperature Erosion  

Time   
Table IV.1: Intern and extern factors that can influence the leaching process (Coutand, 2007) 

 



Chapter IV 

64 

Characterization trials enable to evaluate the influence of external parameters on the leaching 

and the short term behavior, so specific landfill environmental conditions will be determined for a 

given type of waste. Conformity tests do not translate a real scenario, but enable to compare the 

leachate rates of evaluated material with referring regulation limits, for its storage or valorization. 

In table IV.2 is presented a non-exhaustive list of conformity leaching tests. It shows the wide 

variability of existing procedures. In general, for the assessment of waste based glass-ceramics 

conformity, TCLP is the most common procedure but the method requires the use of acidic 

solution, whereas the UE procedure requires water. By commodity the UE test was chosen, and 

samples were evaluated according to the European thresholds instead of USA thresholds.  

 

Test 

-Origin- 

Size 
(mm) 

Solvent pH Leaching 
steps 

L/S ratio 
by step 

Time mixing Filtration (µm) 

EN 
12 457  
(1-4) 
-U.E.- 

<4  
or 

 <10 

water NC 1 or 2 2 or 10 
or 

2 and 10 

24 
hours 

or 
6 and 
18h 

Yes 0.45 

DIN 
38 414 

S4 
-DE- 

<10 water NC 1 10 24h Yes  

Waste 
research 

unit 
-GB- 

<10 water or 
acetic 
acid 

NC 
or 5 

5 5 to 6 2 to 9 
days 

Yes filtration under 
void 

TCLP 
1310 

-U.S.A.- 

<9.5 water +  
acids 

3 
initial 
or 5 

1 20 24h Yes 0.45 

Table IV.2: Some regulated protocols of waste leaching – conformity tests 

 

The leached elements, after quantification by ICP, will be evaluated in comparison to the limits 

corresponding to the selected procedure. As shown on following table, the limits defining inert or 

non-hazardous elements are different: European regulations separates landfill waste between inert, 

non-hazardous and hazardous definition. 

Element Limits (D.M.) / ppm  

 L/S =10 l/kg 

Limit (E.P.A.) / ppm 

inert material non-hazardous material  
As 0.05 0.2 5.0 
Ba 2 10 100 
Cd 0.004 0.1 1.0 
Cr 0.05 1 5.0 
Cu 0.2 5 5.0 
Hg 0.001 0.02 0.2 
Mo 0.05 1 - 
Ni 0.04 1 - 
Pb 0.05 1 - 
Sb 0.006 0.07 - 
Se 0.01 0.05 1.0 
Zn 0.4 5 - 
Ag -  5.0 

Table IV.3: Criteria for waste acceptance in landfill according to 

Italian (D.M.) and US (E.P.A.) regulations 
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The limit for the TCLP procedure, EPA, is far from the limits for the EN 12 457 procedure, 

DM. The release of heavy metals is evaluated by applying the conformity test EN 12457-2. Small 

fragments from bending strength determinations (dimensions of approximately 9 mm × 3 mm × 4 

mm) are placed in an extraction solution, consisting of pure distilled water, with a pH value of 

about 7 for a liquid to solid ratio of 10, and gently stirred at 25 °C for 24h. The resulting solutions 

are filtered through a 0.8 µm filter and analyzed by inductively coupled plasma (ICP, SPECTRO 

analytical Instruments GmbH, Kleve, Germany). A blank sample, containing distilled water only, 

is used as a reference. 
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Chapter V 

Direct sintering for waste stabilization and valorization 

 

 

 

V.1 Concept: glass-ceramics from direct reactive sintering  

 

The processing consists in the analogy with traditional ceramics (TC) (Colombo et al., 2013). 

 

 
Figure V.1: Overall phases transformation in the traditional system  

 

In the porcelain stoneware mixtures, we use a ternary system: feldspar, quartz sand and clay. 

Other added components vary slightly according to manufactures requirements and can be part of 

one the three acting elements for the preparation: fluxing agents (including feldspar), network 

formation (quartz sand), and binder (clay) (figure V.1). 

After sintering, usually at temperature higher than 1100 °C, a glass phase comes from the 

melting of feldspar, dissolution of quartz and dissolution of silica from the transformed clay. As 

pure quartz fusion point is at 1700 °C, its partial decomposition is favored at lower temperatures 

such as 1100 °C by the action of feldspar. Some residues of quartz remain. Finally are found 

mullite crystals, coming from the transformation of clay. 
 

 
Figure V.2: Overall phases transformation in the waste-based system  
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Many types for waste (especially if combined) may lead to an abundant liquid phase upon 

direct sintering. 

Reproducing the same ternary system logic, feldspar is replaced by glass and the network 

formation agents by inorganic waste. Clay may be kept as a binder. In this case, the absence of 

quartz enables a sintering under 1100 °C (figure V.2). The sintering process is a reaction sintering, 

as the crystalline phases do not come from the glass crystallization alone, but merely from 

chemical reactions between waste components and glass phases (for example, glass with 

Ca(OH)2). The resulting phases are a glass phase, silicate crystals and alumino-silicate crystals 

(from the clay+ glass interaction). In some case, we may find mixtures according to a binary 

system (only glass/waste) (figure V.3). 

 
Figure V.3 : Overall phases transformation in the waste-based system with two phases only 

 

Waste-derived glasses may represent an opportunity for the development of a new type of 

porcelain stoneware, fired at much lower temperatures than the traditional ones and with a much 

reduced use of natural raw materials. For instance, feldspar sands were completely replaced by a 

CaO-Al2O3-SiO2 waste-derived glass, obtaining a ceramic (fired at 1000 °C) with the same 

mechanical properties than that produced from traditional raw materials (fired above 1150 °C). 

The key advantages in the replacement of feldspars are the fact that the waste glass may provide a 

liquid phase by softening at much lower temperature than that required by the melting of feldspars, 

and the fact that some crystallization occurs, leading to an increase of viscosity that stabilizes the 

shrinkage. The complete replacement of feldspar with recycled soda-lime glass and CRT glasses 

has been recently proposed. The stabilization of shrinkage could be caused by a viscosity increase, 

operated by the addition of calcium hydroxide (for soda-lime glass) promoting the formation of 

wollastonite, or by the addition of alumina platelets (for CRT glasses). In both cases, the firing 

temperatures were particularly low (880 °C to 920 °C and 750 °C to 775 °C, respectively) 

(Bernardo et al., 2012). 

Glass compositions are suitable for the obtainment of (sintered) glass-ceramics from the mixing 

of different waste. The sinter-crystallization experiments enable to produce dense or porous glass-

ceramics depending on the balance at the viscous flow sintering. By applying changes in the 

sintering/crystallization balance, waste derived glass powders can be mixed with recycled glass 

powders having a fluxing action (increased viscous flow, increased densification). The attention is 

to keep on many types of glass not usable in the manufacturing of original articles (e.g. CRT 

glasses, pharmaceutical glass, etc. presented in chapter II). The recycling step becomes then a 

“recovery” process. Finally, the several types of recycled glasses, depending to their 

characterization, can be used as raw materials for waste derived glasses, as additives for waste 

derived glass powders, or as fluxing agents in stoneware and other traditional ceramics. 
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V.2 Stabilization of fluorine-contaminated waste  

 
SUMMARY - Calcium hydroxide is normally used to neutralize acid fumes escaping from furnaces for 

glass and ceramic manufacturing, leading to huge amounts of waste material known as “exhausted lime”. 

The presence of calcium fluoride greatly complicates the use of this waste as Ca-rich secondary raw 

material. The present study is aimed at the development of a new type of glass-ceramics, allowing a 

significant fixation of fluorine (maintained as CaF2 or in form of calcium silicon oxyfluorides), by direct 

sintering of exhausted lime mixed with clay and recycled glass from dismantled cathode ray tubes. The low 

softening temperature of recycled glass allowed a substantial viscous flow at relatively low temperature. 

Sintered glass-ceramic samples of optimized composition (glass/clay/waste weight proportion equal to 

50/30/20), featured water absorption below 2%, a good specific strength and, above all, a substantially 

unchanged F content, compared to the starting mixture. The obtained glass-ceramics could be used as low 

cost tiles, especially for insulation purposes, exploiting the residual porosity (30 - 40%). 

 

V.2.1 Introduction 

Elemental fluorine F is a member of the halogen family. In combination, it comprises 0.065% 

of the earth’s crust, being the 13th element in abundance, and it is inevitably present in the raw 

materials for the ceramic industry (Monfort et al., 2008). A significant drawback of F-containing 

raw materials is the hazardousness of F-rich gaseous compounds that could evolve upon thermal 

processing; in fact, especially in recent years, environmental legislation in the European Union has 

set strict limits on the emission of fluorine-containing compounds into the atmosphere, the specific 

emission limit values for ceramic industries being about 5 – 10 mg HF/nm3
 at 18 %O2 (IPTS, 2006; 

Ponikvar, 2008). Both glass and ceramic industries are known to abate F emissions by treating acid 

fumes with calcium hydroxide. This strategy provides some fluorine stabilization, by the formation 

of CaF2 (Denissen and Vries, 1998), but also implies the accumulation of huge amounts of waste, 

known as ‘‘exhausted lime’’, with limited valorization possibilities. In fact, any thermal treatment 

applied to F-contaminated calcium hydroxide may cause fluorine to escape again, by the 

decomposition of calcium-based compounds. Previous studies exploited exhausted limes imply as 

Ca- and F-rich raw materials, for the development of waste glasses (i.e. glasses from combinations 

of waste materials),to be converted into frit-derived glass-ceramics(‘‘sinter-crystallized’’ glass-

ceramics) (Bernardo et al., 2006; Bernardo, 2008; Lin, 2012), with no specific control of fluorine 

evolution. This part of Chapter V starts from a different approach, leading to glass-ceramics by 

direct sintering mixtures of exhausted lime, clay and recycled glass. The approach resembles that 

of traditional ceramics (e.g. Porcelain stoneware), in which wastes are no longer introduced in 

limited quantities (as shown by a vast literature (Rambaldi et al., 2007; Raimondo et al., 2007; 

Reinosa et al., 2010; Yürüyen and Toplan, 2009), but can represent the basic raw materials. Glass 

is a fundamental component, since it allows viscous flow sintering at much lower temperatures 

than those required for feldspar fluxes; in addition, it reacts with the other raw materials, giving 

origin to silicate and alumino-silicate crystals (Bernardo et al., 2008 and 2009).  

In particular, we refer to glass-ceramic products based on a glass hardly recycled in the 

manufacturing of the original articles (i.e. panel glass from dismantled cathode ray tubes, CRTs), 

pure kaolin clay and exhausted lime. Lightweight materials, with limited water absorption, were 

obtained at low temperatures (900 °C to 1100 °C) (IPTS, 2006), with the key result of a substantial 

fixation of F, posing the conditions for a successful recycling of exhausted lime. Additional 



Chapter V 

70 

experiments concerned the application of a glassy layer at the surface of sample to increase the 

mechanical properties and promote fluorine fixation. 

 

V.2.2 Characterization of starting materials 

The starting materials consisted of exhausted lime, glass from dismantled CRTs and pure 

kaolin clay. Exhausted lime comes from fume abatement systems of a plant for the production of 

blue-colored glass frits (Colorobbia SpA, Vinci, Italy), whereas CRT glass (provided by SASIL 

SpA, Biella, Italy) is actually a mixture of glasses from the recovery of panels of old TV and PC 

screens (Ba-Sr glasses, with a very limited content of PbO). The chemical composition of 

exhausted lime, according to XRF analysis (performed by the same Colorobbia SpA) and the 

composition ranges of CRT glass (provided by SASIL) are reported in Table V.1. 

 

 
Table V.1: Chemical composition of the employed exhausted lime and panel glass 

 

Exhausted lime was mixed with the other components in three different weight proportions, 

labelled A (lime/glass/clay=20/70/10), B (20/60/20) and C (20/50/30). The amount of lime was 

kept constant in order to assess the impact on sinterability, phase evolution and stabilization of F 

of different glass/clay ratios. 

 As shown by figure V.4a exhausted lime, in the as-received condition, featured calcium 

hydroxide (PDF#01-1079) and CaCO3 (calcite, PDF#86-2339) as the main crystal phases. Weaker 

diffraction peaks were attributed to CaF2 (fluorite, PDF#87-0971) and quartz (PDF#85-1780). The 

thermal plots in figure V.4b are consistent with the characteristics of the phases detected by x-ray 

diffraction: the thermogravimetric (TG) plot exhibits two weight loss effects, at 450 °C to 500 °C 

and 750 °C to 800 °C, both with endothermic character, according to the DTA. These effects are 

consistent with decomposition reactions, occurring at 450 °C for Ca(OH)2 (evolution of water 

vapor (García-Ten et al., 2011)) and 750 °C for CaCO3 (evolution of CO2 (Halikia et al., 2001). 

The weight change between the two reactions is also consistent with the preliminary information 

about chemical composition of exhausted lime, shown in table V.1.  
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Figure V.4: Preliminary analysis on exhausted lime in the as-received condition: a) x-ray diffraction 

analysis; b) thermal analysis (DTA/TG plots) 

 

Finally, the weak loss above 1000° C, accompanied by not well defined endothermic effects, 

may be attributed to the decomposition of calcium fluoride, as reported in the literature (Garcia-

Ten et al., 2006). The presence of calcium carbonate and its decomposition explains the generally 

decreasing trend of density with increasing temperature, as illustrated by figure V.5. 

 

 
Figure V.5: Water absorption and apparent density trends with firing temperature (lines are simply 

guides for the eye – disc samples) 

 

In fact, CaCO3 is known to cause some foaming when mixed with glasses having a low 

softening point, such as CRT glasses (Bernardo et al., 2006). Due to the direct insertion of samples 

at the firing temperature also the water release, from decomposition of Ca(OH)2 and clay 

dehydration (occurring at 550 °C Ring, 1996), probably contributed to the foaming. 
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The water absorption has more complex trends. All formulations generally led to a decrease of 

water absorption, up to 900 °C; above this temperature, the different balances among glass, clay 

and exhausted lime are associated to different behaviors. The formulation featuring the highest 

glass/clay ratio (formulation A), exhibited a dramatic increase of water absorption above 900 °C, 

whereas the one with the lowest glass/clay ratio (formulation C) exhibited a further decrease; the 

intermediate formulation had a stationary absorption above 900 °C.  
 

V.2.2 Characterization of sintered materials 

Densification and absorption trends could be caused by conflicting effects, involving the 

reduction of viscosity of the liquid phase, provided by the glass component, with increasing 

temperature. On the one hand, the viscous flow promotes the sealing of open porosity and the 

decrease of water absorption, on the other a low viscosity favors uncontrolled foaming by gas 

escape. In particular, the water absorption might be enhanced by the collapse of gas bubbles at the 

surface of samples (reasonably the hottest part of the samples, upon firing). 

 
Figure V.6: Phase evolution with increasing firing temperature: 

a) formulation A; b) formulation B; c) formulation C [pattern for exhausted lime represented out of scale 

– W=wollastonite; PsW=pseudowollastonite; Q=quartz] 

 

Operating with a high glass/clay ratio, the viscosity of the mixture was obviously lower than in 

the other cases, so that the “sealing effect” occurred at much lower temperature (900 °C) than 

extensive foaming (1000 °C to 1100 °C). On the contrary, for a low glass/clay ratio sealing and 

foaming likely occurred progressively and “simultaneously” (water absorption and density with 

similar decrease with increasing temperature). For all the formulations, the viscous flow was 

complicated by the crystallization, as illustrated by the diffraction patterns reported in figure V.6. 

The proposed approach does not properly lead to glass-ceramics, since there is no glass 

undergoing controlled crystallization by itself (Höland and Beall, 2012). However, we can observe 

that most of the crystal phases are “newly formed”, i.e. they were formed by reaction among the 

components. 
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The signals for both Ca(OH)2 and CaCO3, well recognizable in exhausted lime (even if the 

pattern, already shown in figure V.4a, is represented out of scale, for comparison purposes), are 

practically absent in samples fired at only 800 °C. The calcium oxide available from the 

decompositions led to other Ca-rich crystal phases, by reaction with CRT glass, dominant above 

900 °C. In fact, the main crystalline phase is wollastonite, in its low temperature form (β-CaSiO3, 

PDF#84-0655), accompanied by pseudo-wollastonite (α-CaSiO3, PDF#74-0874), i.e. its high 

temperature polymorph, appreciable especially above 1000 °C. The two phases are consistent with 

the formulation; more precisely the same phases were developed in frit-derived glass-ceramics, i.e. 

starting from a melting process (involving both CRT glass and exhausted lime as raw material) 

(Höland and Beall, 2012). 
 

 

Figure V.7: Phase identification for reference sintered materials: a) formulation A sintered at 900 °C 

(A900); b) formulation C sintered at 1100 °C (C1100) 

 

 Quartz and CaF2, the other two phases detected in the waste, were substantially 

maintained, but only in samples sintered at low temperatures. The quartz peaks are less intense for 

the mixture with the highest glass/clay ratio (formulation A): the lower viscosity of the system 

upon firing reasonably evidently promoted also intense quartz dissolution. According to figure 

V.5, some conditions could be taken as references. In fact, two formulations, for specific firing 

temperatures, i.e. composition A fired at 900 °C (A900) and C at 1100 °C (C1100), exhibited a 

water absorption below 2%, a sort of threshold limit for building materials to be applied on 

external walls (Bernardo et al., 2010). Coupled to the low density (close to 2 g/cm3), the low water 
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absorption makes the products suitable for innovative applications, such as tiles for ventilated 

façades (lightweight tiles constituting a thermally insulating structure, Bernardo et al., 2010). 

Figure V.7, reporting the detailed phase identification of the two reference samples (we report 

the most probable phases according to Match!), allows some clarification about the minor phases. 

CaF2 was actually replaced by another F-containing phase, that is cuspidine (Ca4Si2O7F2, PDF#41-

1474), due to the interaction among the constituents of the studied mixtures; the transformation is 

partial, for A900, whereas it is reputed to be complete for formulation C1100. For formulation C, 

also anorthite (CaAl2Si2O8, PDF#85-1415) is present, in agreement with the formulation (anorthite 

and related solid solutions have been already found to develop by reaction between Ca-rich 

compounds or glasses and kaolin clay (Bernardo et al., 2008 and 2009)).  

 

 
Figure V.8: FTIR characterization of the starting waste and of reference sintered glass-ceramics 

 

FTIR analysis allowed a confirmation of the development of cuspidine. CaF2 is infrared-

transparent (it is known to be used for commercial IR windows), so that it is not surprising to find 

signals are attributable only to the other phases (Nasrazadani et al., 2008) in the spectrum for as-

received exhausted lime, as shown by figure V.8a. However, in sintered glass-ceramics, A900 and 

C1100, there are signals compatible with those for cuspidine, as illustrated by figure V.8b (Cruz-

Ramírez et al., 2011) (the symbols refer to the typical bands as described in the reference). 
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V.2.3 Mechanical characterization of optimized samples 

Table V.2 summarizes the properties of test specimens cut from small tiles, sintered 

reproducing the reference conditions. The density and water absorption values practically confirm 

those determined for disc samples; the bending strength, considering the remarkable porosity, is 

quite substantial. Compared to a reference material, i.e. lightweight porcelain stoneware, 

specifically conceived for thermally insulating structures, samples from both formulations are 

denser, but possess almost the same specific strength (we considered, according to Ashby (1988), 

an index specifically concerning the structural efficiency of panels).  

 

 
Table V.2: Mechanical properties of selected sintered samples  

 

V.2.4 Analysis of fluorine content  

The obtainment of lightweight construction materials, at relatively low temperature and using 

waste materials instead of valuable raw materials (lightweight porcelain stoneware, presented in 

recent papers (Bernardo et al., 2010), is sintered above 1200 °C and is due to the addition of 

expensive foaming agents, such as CeO2 and SiC, to conventional raw materials), cannot be 

considered as separate from the stabilization of pollutants. In particular, fluorine evolution is a 

critical issue: any product should be accompanied by a significant fixation of the element, in order 

to reduce the need for new lime upon manufacturing (if all F is lost, the same amount of lime 

recycled is needed to neutralize the fumes from the new process, i.e. the overall amount of waste is 

constant). 

An affordable estimation of fluorine content comes from WDXRF analysis, summarized in 

table V.3. The total counts for the distinctive line of fluorine (F Kα λ=1.83 nm, corresponding to 

an energy of 0.68 keV) for A900 sample, compared to those for exhausted lime in the as-received 

condition, are in proportion with the content of exhausted lime in the mixture (the normalized 

count is 0.23, while the content of lime in the formulation is 20%=0.2). For C1100 sample the 

signal for fluorine is much weaker, the total counts being one half of those for A900, despite the 

same content of exhausted lime adopted. 

 

 
Table V.3: Estimation of F fixation by WDXRF analysis 
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Figure V.9: Microstructural details of selected glass-ceramic samples: a,b) A900; c,d) C1100;  

e,f) C1100 with coating 

At 900 °C, the fixation of F is practically complete, while higher temperatures are associated to 

some F evolution, in form of gaseous compounds (e.g. hydrofluoric acid, silicon tetrafluoride 

(Garcia-Ten et al., 2006), in agreement with the thermal analysis (figure V.4); the slight formation 

of alumino-silicates, for sample C1100, is also thought to favor the evolution, due to their ability 

to dissociate fluorine-retaining crystalline phases (Garcia-Ten et al., 2006). 

 

V.2.5 Application of a glaze 
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The fixation of F stimulates additional sintering experiments, based on double pressing. In fact, 

a second pressing operation is used to deposit a mixture of CRT glass and clay (in the proportion 

63/37) on a base body of formulation C, thus forming a double layer green body with a weight 

proportion between top and substrate of 1:10. This procedure is mainly conceived to “seal” the F-

containing body from the atmosphere, upon firing, with an F-free coating (glazes are effectively 

known to reduce gas emissions (Garcia-Ten et al., 2006)).  

The results of WDXRF analysis, however, demonstrate that only limited F fixation is achieved: 

with a slightly lower overall content of F-containing waste, the counts for F are almost the same 

than those available from C1100 with no coating. The most significant effect concerns the density, 

well below 2 g/cm3, much lower than in the glass-ceramic with no coating and not accompanied by 

any strength degradation; the coating, in other words, has a positive effect on specific strength. 

The coating probably helps the entrapment of gaseous compounds.  

The porosity is substantial (more than 30%, from density determinations), but uniform, as 

testified by the low magnification images of the two reference samples (figure V.9a and figure 

V.9c). The crystallization is also evident from the images: in figure V.9b many micrometric grains 

are visible especially at the surface of pores, for formulation A; in Figure V.9d we can observe 

many interconnected acicular crystals, typical for wollastonite. 

The good mechanical properties of the coated glass-ceramic sample, practically matching those 

of lightweight porcelain stoneware (both strength and elastic modulus are nearly the same, see 

table V.2) are a consequence of the quite homogeneous microstructures, as shown by figure V.9. 

The presence of a dense surface layer (see upper part of figure V.9e), for glazed samples, is 

confirmed to positively influence the porosity (the sample shown in figure V.9f - C1100 with 

coating - is visibly more porous than that shown in figure V.9c - C1100). 

In conclusion, further studies are probably needed to clarify the gaseous emission upon firing. 

In any case, the presented glass-ceramics achieve the starting objective of a substantial F fixation, 

and could be addressed to a specific application, in which they could be competitive with well-

established ceramics, due to the intrinsic inexpensive character (in turn associated to the recovery 

of waste and the adoption of low firing temperatures). Future investigations will be probably 

dedicated to “engineered coatings”, presented here only as an example, in order to improve both F-

fixation and mechanical properties. 

 

V.2.7 Additional tests 

A second batch of around 200 g waste was supplied by Colorobbia after one year. In this, we 

could estimate the impact of the variability of waste composition from one batch to another. Same 

previous mixtures were prepared, the new batch composition replacing the exhausted lime in the 

proportions of exhausted lime (see table V.4), in order to compare the resulting changes due to the 

new batch composition. Compositions were realized by direct sintering in direct heating for 30 min 

holding time. 30 g of a glass formulation was provided by Smeacetto et al., (2012, Politecnico di 

Torino, Italy) to be used as a coating for the foamed glasses, named G10. The properties of the 

G10 glass are summarized in table V.5. All samples presented low densities (figure V.10). Only 

A1 700 presented an important water absorption (over 5%), and A1 800 water absorption reached 

~2%. A2 900, prepared replacing CRT glass by G10 glass, and A1 900 showed a near-to-zero 

water absorption.  
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Reference Components of Mixture A (20/70/10) 

Sintering 

Temperature ( 
°C) 

A1 700 CaF waste batch 2 CRT glass clay 700 
A1 800 CaF waste batch 2 CRT glass clay 800 
A1 900 CaF waste batch 2 CRT glass clay 900 
A2 900 CaF waste batch 2 G10 glass clay 900 
A 900 CaF waste batch 1 CRT glass clay 900 

Table V.4: Mixtures compositions and thermal processing 

 

 

 
Table V.5: Compositions and characteristic temperatures, First Shrinkage temperature TFS, Maximum 

Shrinkage temperature TMS and coefficient of thermal expansion (TEC)  

for G10 glass (Smeacetto et al., 2012) 
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Figure V.10: Density and water absorption of mixture A from the second batch of exhausted lime, in 

function of the sintering temperature 

 

The samples containing the waste from the second batch were probably richer in Cobalt oxide 

(more blue, see figure V.11) and presented an equivalent appearance to the samples containing the 

waste given to UNIPD, with a difference of processing temperature of 100 °C. For example as 

visible on figure V.12, sample A1 800 best fits with sample A 900.  

A glaze composition {G10 (70 wt%); ZrSiO4 (20 wt%); Al2O3 (10 wt%)} was applied on 

samples A900 and A1 900. G10 being fully transparent, a white appearance was brought by 

ZrSiO4. Alumina, in addition not exceeding 10 wt%, was necessary to avoid foaming in the glaze, 
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to adjust the shrinkage of glaze to those of the substrate and to increase mechanical strength. The 

good adherence between the glaze and the substrate shows the good thermal compatibility of both 

compositions, and by extension, of CRT glass with G10 glass, at 900 °C. 

 

 
Figure V.11: Comparison of samples containing CaF waste from the second batch (A1 700; A1 800; 

A1 900; A2 900) and the first batch (A 900) 

 

 
Figure V.12: Sample A900 covered of 0.5 g glaze composition 

 

V.2.6 Cytotoxicity tests 

Note: The conditions of preparation are described in the chapter IV. 

Mouse Embryonic Fibroblasts directly seeded on samples surfaces and incubated for 24 hours 

(in a cell culture medium) were observed by fluorescent microscopy. Indeed, fluorescent 

microscope views give rapid information on cell dispersion on samples after 24 hours. They enable 

to measure qualitatively the short term cytotoxicity. 

Cells growth depends on the concentration of ions released by the samples during leaching, 

which depends on ionic dissolution kinetic and oxide composition of samples. As visible on figure 

V.13 on glaze and on A 900, cells tend to spread on the surface and extend their contact area. Blue 

points represent the sites of cells core whereas green shapes present the sites of cells cytoplasm 

and are indicators of mitochondrial activity. Cells seemed attach to the surface particularly if it is 

rough, and inside porosity (see figure V.13). It was not possible to attribute the distribution of cells 

to the microstructure because the crystals were not visible. On another hand, cells repartitions 

seem to correspond more to topology. As this sample was porous (polished, then closed porosity 

was opened), the cells easily dispersed in the structure as particularly visible on figure V.13d. 

However, the studied glass ceramic are composed of many elements which are necessary to cells 

culture, (Si, Na, Ca, and several metallic ions) but also contain elements that may be toxic from a 

certain percentage (F). Referring to A. Hoppe, et al. (2011), CaF2 are known for stimulating 

effects on osteoblasts cells when applied at moderate concentrations (25-500 ng/ml) whereas 

5 mm 
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higher concentrations (> 500 ng/ml) suppress osteoblast activity, impacting directly on cell 

viability. 

 

  

  

Figure V.13: Low (a, c) and High (b,d) Magnification views in fluorescence light (Dapi markers in blue, 

Calcein in green) of MEF seeded on the glaze (a,b) and on the sintered A 900 (c,d) 

 

As visible on figure V.13, glaze as well as A900 sample presented a homogeneous dispersion 

of cells, and samples seem fully covered of cells. The absence of F in the glaze easily explains the 

compatibility of cells to the material. On another hand, the content of A 900 in F may be low 

enough to consider also its short term compatibility. If 24 hours is sufficient to evaluate short term 

toxicity, however on the long term, toxic behavior can also happen by accumulation. Up to date, it 

is almost not feasible to perform such a test on long periods as it requires an immobilization of the 

equipment for long times. Long term cytotoxicity (i.e. > 7 days) which may be relevant 

information for the presented samples is usually determined by calculation.  

a 

d 

b 

c 
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V.2.6 Conclusions 

Exhausted lime, i.e. mainly F-contaminated calcium hydroxide, was successfully recycled in 

the formulation of lightweight glass-ceramics for building applications, based on low temperature 

sintering of glass-rich mixtures. The adopted strategy is particularly significant for its double 

impact; in fact: 

• Rapid sintering treatments, for formulations comprising CRT glass (having a low 

softening point) promotes some foaming, thus obtaining micro-porous components; 

due to the uniformity of pore distribution, the specific strength is substantial; 

considering the low water absorption, the products may be attractive for the specific 

application as lightweight panels in ventilated façades (similar results have been 

presented for traditional ceramics, sintered at higher temperatures and prepared with 

valuable raw materials); 

• Optimized formulations allow a remarkable fixation of fluorine; operating at low 

temperature (formulation A, sintered at 900 °C), fluorine is practically completely 

maintained, in form of CaF2 or other F-containing compounds (cuspidine), while 

treatments above 1000 °C (formulation C, sintered at 1100 °C) determine only a partial 

stabilization; although preliminary, the present study evidenced possible improvements 

associated to a F-free coating. 
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V.3  Valorization of already-stabilized waste  

A recent method of chemical inertization, based on the use of amorphous silica, offers the 

possibility to reduce the direct toxicity of MSWI fly ashes and use them as secondary raw material 

in low cost applications instead of landfill disposal. The present work was focused on the 

elaboration of an inert glass-ceramic comprising 20 wt% inertized fly ashes, coupled with recycled 

glass and clay. The chemical stability was confirmed by leaching tests and by cell culture studies 

to assess possible cytotoxicity using mouse embryonic fibroblasts. Optimized glass-ceramic tiles, 

processed at 1050 °C for 30 min, not only featured attractive aesthetic appearance and low water 

absorption (<2%), but also exhibited a remarkable specific strength (~3.6 MPa0.5
·cm3/g) and no 

cytotoxicity. 

 

V.3.1 Introduction 

Vitrification has proved to be the safest technology for the treatment and remediation of non-

combustible hazardous waste, among the various technologies for the disposal of inorganic waste 

(US E.P.A., 1992). The process implies the thermal destruction of waste and, when properly 

formulated, the resulting glass features a high chemical inertness, so that it can be landfilled 

without any particular concerns. Despite the soundness of vitrification technology, confirmed by 

numerous scientific studies and experimental tests (Colombo et al., 2003; Schabbach et al., 2011; 

Bernardo et al., 2008), the method is associated with high energy consumption being also capital 

intensive. Vitrification of inorganic waste for which, differently from radioactive waste, 

environmental safety has not an absolute priority over cost, may be feasible only if the obtained 

glass could be reused in high value products, such as cellular and monolithic glass-ceramics for 

structural and functional applications (Binhussain et al., 2014 ; Rawlings et al., 2006; Chinnam et 

al., 2013).  

The entrapment of heavy metals present in waste, such as municipal solid waste incinerator fly 

ash, in a silica network, has been presented as a particularly effective inertization treatment 

(Bontempi et al., 2013). This procedure is based on the mixing of colloidal silica with other fly ash 

residues, and the reaction occurs at room temperature (Bontempi et al., 2010). The resulting 

material, named COSMOS® (“COlloidal Silica Medium to Obtain Safe Inert”), is washed and 

soluble salts can be recovered from solution simply by crystallization.  

The obtained inert materials have been employed as filler for mortars, bitumen and resins. The 

chemical inertness of COSMOS has been recently exploited for its reuse as low cost filler for 

plastics. In particular, it was employed as a filler of polypropylene, showing promising properties 

as reinforcing filler (Besco et al., 2013). However, to date no application has been reported 

regarding the reuse of COSMOS in ceramics. The present paper aims at presenting a first approach 

of using COSMOS to fabricate glass-ceramics, based on viscous flow sintering, considering 

suitable mixtures of recycled soda-lime glass, kaolin clay and COSMOS powder. Optimized 

formulations led to lightweight glass-ceramics possessing microstructural homogeneity and 

specific mechanical properties, to be used as low cost building material, with no negative impact 

on the chemical inertness of the products. The chemical stability of the produced glass-ceramics 

was assessed by combining a method to determine the leaching behavior of the sintered glass-

ceramics (EN 12457-2) and an in vitro cytotoxicity test (ISO 10993-5:2009), usually considered 

for biocompatibility tests of materials (Amaral et al., 2009). Indeed very few previous reports 
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dealing with waste-derived materials have considered such a combination of tests including cell 

culture studies to assess the material biocompatibility or safety (Huang et al., 2008; Boccaccini et 

al., 1997). 

 

V.3.2 Materials characterization 

COSMOS material was obtained by mixing three different types of fly ashes: ashes coming 

from MSWI (65 wt% in the composition), slag from desulfurization of FGD combustibles (20 

wt%) and ashes from carbon combustion (15 wt%, Bernardo et al., 2010).  

Recycled soda-lime glass (SiO2: 72 wt%, Na2O: 13, CaO: 11, MgO: 2.5), pure kaolin clay and 

COSMOS powder were mixed together in four different weight proportions, labelled C1 

(glass/clay/COSMOS=50/25/25), C2 (55/20/25), C3 (60/15/25) and C4 (65/10/25). 

 

 
Table V.6: Results of leaching test on several samples of fly ashes  

and COSMOS powder (Bontempi et al., 2013)  

 

 
Table V.7: Composition of COSMOS (Bontempi et al., 2013)  

 

Table V.6 reports the results of leaching tests made on starting fly ashes and the obtained 

COSMOS powder. Fly ashes as well as COSMOS powder contained heavy metals such as Zn, Pb, 

Br, and Sr, but the released quantities were very different in each case. The leachate obtained from 

COSMOS powder showed very low concentrations of these elements, especially Pb, which 

confirmed the efficiency of COSMOS chemical inertization process (Bontempi et al., 2013).  

The presence of soluble salts and fine particles (<45 µm) could not be avoided, as testified by 

the relevant quantities of Br and Cl, in table V.6. This problem can be solved by means of a 

supplementary leaching purification step, which consisted in dissolution of exceeding salts in a 

liquid phase, in order to obtain totally inert COSMOS powder, according to Bontempi et al., 

(2013).  
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Bernardo et al. (2009) have recently demonstrated that low cost ceramics may be obtained by 

extensive use of recycled glasses instead of conventional feldspar fluxes, with significant energy 

savings; in fact, glass/clay mixtures can be sintered at much lower temperature than traditional 

stoneware ceramics, with a stabilization of shrinkage (over a wide temperature range) offered by 

partial crystallization, owing to glass devitrification and/or reaction of glass with CaO-rich 

additives. The mixtures considered in the present paper were basically conceived to mimic the 

previously tested glass/clay mixtures (Bernardo et al., 2009) with a CaO-rich additive; “technical 

clay”, i.e. a natural mixture of clay minerals and quartz, previously used, was replaced by pure 

kaolin clay mixed with COSMOS, providing also CaO. As shown by table V.7 COSMOS 

comprises silica-rich (mainly amorphous) and CaO-rich phases (carbonates). 

The porosity that could be generated by the decomposition of Ca carbonate and sulfate, in 

COSMOS, was not considered as an issue, but as an opportunity. In fact, there is a growing 

interest in the ceramic industry towards lightweight tiles, to be used in highly thermally efficient 

façades (tiles mounted on metal frames, in turn attached to the main building walls; the air gap 

between tiles and wall providing excellent thermal and acoustic insulation) (Bernardo et al., 2010). 

Densities below 2 g/cm3 are typically appreciated, but with the constraint of water absorption 

below 2% (higher absorption values could compromise the freeze-resistance). 

 
Figure V.14: a) density and b) water absorption trends with increasing temperature 

 in different glass-ceramic mixtures 

 

The newly developed ceramics, as presented in figure V.14, all showed decreasing density and 

water absorption with increasing temperature. The evolution of density is rather straightforward: 

the rapid heating (40 °C/min) reasonably forced CaCO3 to decompose completely, being well 

above its characteristic temperature (CaCO3 may decompose even below 800 °C (Ponsot et al., 

2013), causing some foaming in the pyroplastic mass of softened glass. Higher glass contents and 

higher temperatures (1000 °C to 1050 °C) were obviously associated to a lower viscosity, and a 

consequent higher foaming ability, with some samples (C4 series) achieving a density below 1.8 

g/cm3 (see figure V.14a). 

The increasing viscous flow with increasing glass content and firing temperature, explains also 

the decreasing water absorption. The samples of C4 composition, sintered at 1050 °C, even 

fulfilled the above mentioned constraint for freeze-resistant tiles (water absorption below 2%). It 

should be noted that 1050 °C is well below the temperatures required for traditional stoneware 
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tiles to possess negligible water absorption (temperatures exceeding 1200 °C, Bernardo et al., 

2010). The X-ray diffraction pattern of COSMOS powder, before any thermal treatment, as visible 

in figure V.15a, confirms the mineralogical composition provided by table V.7. The crystal phases 

correspond to calcite (CaCO3, PDF#85-1106), hemi hydrated gypsum (CaSO4·0.5H2O, PDF#84-

0962) and quartz (PDF#84-0962). After firing treatment at 1050 °C, a sample of C4 composition 

contained practically only wollastonite (PDF#72-2284) and anorthite (PDF#84-0750), with traces 

of albite (PDF#09-0466), as a proof of the reaction between components. The same sample, as 

shown in figure V.15b, is interesting for the minimization of cristobalite ((PDF#39-1425); we refer 

to the intensity of the main diffraction peak, a well-recognized index of the quantity of a given 

phase; for C4 sample fired at 1050 °C, the intensity of the peak is about one fifth of the intensity 

for C1 sample fired at 900 °C, i.e. the quantity of cristobalite in the best sample is one fifth of the 

maximum obtainable for the full series of samples).        

 
Figure V.15: a) XRD patterns confrontations of C4 composition sintered at 1050 °C and pure COSMOS 

powder; b) plots of normalized intensity of main XRD peaks of cristobalite and wollastonite 

 

Cristobalite likely originated from the decomposition of clay and it could degrade the 

mechanical properties, owing to the well-known displacive transformation at around 200 °C, upon 

cooling, accompanied by a volume contraction of 3%. Extensive degree of viscous flow, 

associated to high glass contents and high temperatures, was evidently favorable to the dissolution 

of cristobalite. Finally, figure V.15b shows that, although not maximized, the content of 

wollastonite in the C4 sample sintered at 1050 °C was quite significant (80% of the maximum). 

The obtained samples were not developed by a typical vitrification followed by controlled 

crystallization process. In practice, they cannot be considered, strictly speaking, as glass-ceramics 

(Höland and Beall, 2002). However, the developed phases are quite typical for glass-ceramics 

belonging to the CaO-Al2O3-SiO2 system and formed, as mentioned above, by reactions between 
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constituents. The formation of wollastonite could be due to a reaction between glass and CaO 

(from CaCO3, in turn provided by COSMOS). Anorthite and albite (calcium and sodium feldspars) 

could be formed from the chemical interaction of CaO and Na2O, from both COSMOS and glass, 

with alumino-silicate residues from clay decomposition, as previously observed for 

glass/clay/CaO-rich additive mixtures.  

 

 
Figure V.16: SEM views of C4 sintered at 1050 °C: a) porosity, low magnification; b) phase distribution, 

high magnification 

 

The microstructural details concerning the C4 sample sintered at 1050 °C, shown in figure 

V.16, confirm the foaming and the partial crystallization of this sample. The pore distribution is 

quite homogeneous (figure V.16a) and fibrous crystals (quite typical for wollastonite) are evident, 

especially around pores (figure V.16b). This fact may be seen as a proof of the double role of 

CaCO3: pores were determined by decomposition of the carbonate, and crystallization was favored 

by local interactions between its residue (CaO) and glass.  

 

 
Table V.8: Mechanical properties of ceramic C4, sintered at 1050 °C for 30 min compared to typical mean 

values of commercial equivalent products. 

 

Due to the substantial porosity, both elastic modulus and bending strength were not particularly 

high, as reported in table V.8. However, the C4 sample sintered at 1050 °C compares favorably in 

terms of specific mechanical properties, of vital importance for lightweight design, (Ashby, 1988) 

with both dense soda-lime glass and even with porcelain stoneware. The excellent value of specific 

strength is in good agreement with the possible application in ventilated façades (Bernardo et al., 
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2010). Such applications are supported also by the light coloration of the specimen (ivory-gray), as 

illustrated in figure V.17. 

 

 
Figure V.17: Visual appearance of C4 sample sintered at 1050 °C for 30 min                                                                 

(left: unpolished; right: polished surface) 

 

V.3.3 Chemical characterization 

 

Table V.9: Leachate of C4 ceramic (*elements below the detection limit not reported) 

 

The chemical stability of sample C4 sintered at 1050 °C for 30 min was verified by applying 

the TCLP test, as a preliminary approach. As reported in table V.9, the contents of toxic elements 

were all well below the limits for inert materials, except for chromium, only slightly below the 

threshold. Although successful, TCLP test was not considered as a definitive proof of inertness, 

since it is intended mainly for the certification of wastes, rather than for the characterization of 

products. The activity of MEF cells, generally applied in the characterization of biomaterials 

(Amaral et al., 2009), was considered as a more conclusive test for characterizing the non-

cytotoxicity of the material. Indeed the cell biology characterization of waste-derived materials, 

originally suggested almost 20 years ago (Boccaccini et al., 1997), should be increasingly 

considered as a convenient approach to test the safety of waste-derived products, contributing to 

tackle acceptability issues of such materials. In this context, our glass-ceramic was compared with 

a safe material of every-day use in building applications (window glass). Figure V.18 shows 

relative cell mitochondrial activity, in % (mean ± standard deviation, mitochondrial activity of 

window glass set at 100%), when measured after indirect and direct methods. Mitochondria are 

cellular sites whose activity is typically altered by toxic elements present in the surrounding 

medium, consequently, cytotoxicity is associated to mitochondrial dysfunction.  
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Figure V.18: Cell viability in contact with COSMOS ceramic [C4; 1050 °C], compared with window glass; 

direct study and indirect study 

 

A higher mitochondrial activity was measured by the indirect method, namely 136% ± 11% in 

comparison to 97% ± 4% obtained by the direct method.  

 

 
Figure V.19: Low magnification fluorescence microscope view with superposition Dapi (blue) and Calcein 

markers (green) of samples tested by the from direct method: a) window glass, b) C4 glass-ceramic 

 

The mitochondrial activity of C4 was practically equivalent to that of the reference glass, 

according to both direct and indirect methods. Small variations in cell activity are usually complex 

to interpret, as they would depend on uncontrolled parameters, whereas a 50% (or higher) decrease 
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of activity can be reasonably attributed to cytotoxicity (Cicek et al., 2014). In this case, it can be 

assumed that the variation of activity is a direct and unique consequence of sample cytotoxicity. 

Then, the lower value of mitochondrial activity defining the samples as non-toxic was set at 50% 

relatively to the reference glass. This value refers to LD50 and LC50 indexes used in toxicology 

(Trevan, 1927). The results presented here are then positive, in that the sample did not present any 

toxicity effect after 24 hours neither by direct or by indirect cell biology studies.  

As shown in tables V.6, V.7 and figure V.15, COSMOS ceramic contains many elements that 

usually promote cellular activity (Hoppe et al., 2012) particularly Si, O, Na, K and Ca (for 

example in bioactive glasses, Gerhart and Boccaccini, 2010). The other elements (Al, Cr) may be 

toxic but it seems that their concentration in the sample or their diffusion rate in the medium were 

not high enough to determine cytotoxicity. As illustrated by figure V.19, COSMOS C4 samples as 

well as window glass were fully covered by MEF cells, after 24 hours immersion. In addition, cells 

present an elongated morphology, which is typically for MEF cells. Furthermore, cells showed a 

fibroblast-like appearance with cytoplasmic expansions and cell–cell contact (Pollard, 2008; 

Amaral et al., 2009).  

The assessment of mitochondrial function (MTT assay) further suggested the low cytotoxicity 

of the glass-ceramic. Mitochondria are sensitive targets for toxic injury because of their crucial 

role in maintaining cellular structure and function via aerobic ATP production. The cells exhibit 

good cell attachment, spreading and mutual interconnections, well-recognized signs of successful 

biocompatibility. 

 

V.3.4 Conclusions 

Lightweight construction materials may be manufactured at relatively low temperature (1050 

°C) using a mixture of waste materials instead of valuable raw materials. In particular, the 

developed glass-ceramic materials demonstrate the possibility to reuse significant amounts of 

COSMOS, i.e. fly ash from MSWI, subjected to a preliminary stabilization treatment with 

colloidal silica. The mineralogy of COSMOS was exploited here in combination with recycled 

glass and clay for the development of uniform cellular structures, as well as for partial 

crystallization, owing to glass/waste interactions. 

According to leaching tests and cytotoxicity evaluation by cell culture, the glass-ceramic was 

safe and not toxic after 24 hours, exhibiting similar behavior to the reference soda-lime glass 

(considered as a safe product). Moreover, the material showed a spontaneous compatibility with 

MEF, which exhibited morphology and development similar to that observed on soda-lime glass. 

Indeed the cell biology study carried out represents a general convenient test for evaluating the 

biocompatibility of waste-derived materials, and it adds information about the safe behavior of this 

type of materials, thus we propose such cell biology tests for a comprehensive biocompatibility 

characterization of waste-derived products, which should help to tackle social acceptance issues 

for the broader exploitation of such materials. 
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V.4 Magnetic glass-ceramics 

 

SUMMARY – Ceramics and glass ceramics based on industrial waste have been widely 

recognized as competitive products for building applications; however, there is a great potential 

for such materials with novel functionalities. In this paper, we discuss the development of 

magnetic sintered glass ceramics based on two iron-rich slags, coming from non-ferrous 

metallurgy and recycled borosilicate glass. The substantial viscous flow of the glass led to dense 

products for rapid treatments at relatively low temperatures (900–1000 °C), whereas glass/slag 

interactions resulted in the formation of magnetite crystals, providing ferrimagnetism. Such 

behavior could be exploited for applying the obtained glass ceramics as induction heating plates, 

according to preliminary tests (showing the rapid heating of selected samples, even above 200 

°C). The chemical durability and safety of the obtained glass ceramics were assessed by both 

leaching tests and cytotoxicity tests. 

 

V.4.1 Introduction 

The recycling of inorganic waste into new usable ceramic products has been a key strategy for 

environmental protection for the last few decades (Lee, 2006), which has included also efforts to 

produce glass ceramics from waste (Rawlings et al., 2006). Glass ceramics undoubtedly have 

constituted an important and established waste-derived product since the 1960s (Höland and Beall, 

2002). Nevertheless, it must be acknowledged that the energy-intensive vitrification process at the 

basis of any glass ceramic manufacturing and the limited applications, mainly as building 

materials, remain as fundamental issues (Rawlings et al., 2006; Colombo et al., 2003). 

The direct sintering of mixtures of inorganic waste, including recycled glasses, acting as 

fluxing agents, is an important alternative to conventional glass ceramics. The products cannot be 

nominally considered as glass ceramics, since there is no actual vitrification, i.e., melting of an 

oxide mixture and cooling in an amorphous solid. However, a rich literature supports the 

classification of such products as “sintered glass ceramics”, owing to the generally observed phase 

evolution (Rawlings et al., 2006; Francis et al.., 2002; Dimech et al.., 2008; Bernardo and Dal 

Maschio, 2001). In fact, recycled glasses, besides promoting the densification by viscous flow 

sintering, react with the waste, leading to silicate and alumino-silicate crystals similar to those 

developed by devitrification of waste glasses. The process offers remarkable energy savings, due 

to the absence of a high temperature (>1350–1400 °C) melting stage and its simplicity. 

As widely discussed by Chinnam et al. (2013), iron-rich waste materials, when incorporated in 

glass ceramics, demonstrate the potential of turning these waste-derived materials into functional 

glass-based products, appreciated for their magnetic, electrical and thermal properties. In 

particular, the magnetic functionality is interesting for the possibility of induction heating, 

exploited even in non-waste-derived iron-rich glasses and glass ceramics, such as those developed 

for cancer treatment by hyperthermia (Bretcanu et al., 2005 and 2006); in fact, ferrimagnetic 

particles (such as magnetite crystals, embedded in a glass matrix) may provide intensive heating, 

owing to energy dissipation upon magnetization cycles (Deatsch and Evans, 2014). 

In the present study, we have investigated mixtures of pharmaceutical borosilicate glass 

residues and two iron-rich slags, coming from non-ferrous metallurgy. One of the slags, in 

particular, contains fayalite, i.e. iron (II) silicate (Fe2SiO4), a typical crystal phase in many slags 
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from non-ferrous metallurgical processes (Gorai et al., 2003; Mihailova and Mehandjiev, 2010). 

Whereas fayalite-rich slags have been already applied directly in working out foamed crafting 

concrete aggregates (Alp et al., 2008), they have been used in glass-ceramic materials, to the 

authors’ knowledge, only after a vitrification process aiming at the separation of iron from the 

glassy matrix (Francis, 2007; Çoruh et al., 2006; Zhihong et al., 2013). 

In this investigation, the mixing of slags with borosilicate glass was successful in yielding 

dense products by fast sintering at relatively low temperature (900 °C to 1000 °C) with an 

excellent stabilization of pollutants (e.g. heavy metal ions) present in the slags, as assessed by 

direct leaching tests and by cytotoxicity tests. These tests using cell culture methods are being 

proposed to provide reliable data about the safety of waste derived products, e.g. when they 

become in direct contact with biological entities. The formation of magnetite, as main crystal 

phase in the resulting glass-ceramics, has been exploited considering the application of the new 

glass-ceramics to induction heating applications. 

 

V.4.2 Raw materials characterization 

The starting wastes consisted of metallurgical slags labelled S1 and S2. The drive for 

investigating these particular slags relates to the fact they are quite typical and can be seen as two 

end members for non-ferrous slags, i.e. Fe,Si-rich and Fe,Ca,Si-rich. The slags were mixed with 

recycled borosilicate glass, from the manufacturing of pharmaceutical containers (BS), in the 

following proportions (expressed in wt.%): 75 BS-25 S1, 50 BS-50 S2, 75 BS-25 S2 and 50 BS-50 

S2. The chemical composition of the starting wastes, as well as of borosilicate glass is reported in 

Table V.10. The temperature necessary for an important densification was set at 900 °C, as a 

minimum firing temperature for glass/slag mixtures. In fact, because of the presence of secondary 

phases, some residual porosity could not be eliminated even operating at 850 °C, despite the 

possibility to achieve nearly full density at only 700 °C for the pure glass, in good agreement with 

previous experiences on the adopted borosilicate glass combined with alumina platelets, under 15 

vol% (Bernardo and Scarinci, 2004).  

 

 
Table V.10: Chemical composition of the starting materials, S: slags, BS: borosilicate glass 

 

V.4.3 Results and discussion  

As shown in figure V.20, both density and water absorption exhibit quite particular evolutions, 

with increasing firing temperature depending on the composition. The most straightforward trends 

correspond to the samples containing a significant amount of slag (50wt% of S1 or 50wt% of S2), 
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which exhibited a slight increase of density (always below 2.5 g/cm3), coupled with a sensible 

decrease of water absorption.  

 

 
Figure V.20: Density and water absorption evolutions with composition and temperature (B-spline lines are 

provided simply as guides for the readers’ eye) 

 

 
Figure V.21: Crystalline phase evolution of glass/slag mixtures based on (a) S1 slag, (b) S2 slag. 

 

Softened borosilicate glass reasonably “glued” the slag particles, progressively removing the 

interstitial porosity. Such densification was more efficient with increasing temperature (causing a 

decrease of viscosity) and at the outer part of samples, obviously hotter (being closer to the heating 
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elements). In fact, the latter effect is clearly evident on some samples fired at 1000 °C, in which 

water absorption approached zero and only internal closed porosity remained (Bernardo, 2008; 

Bernardo et al., 2010). 

The samples with low slag content (25 wt% of S1 or 25 wt% of S2) exhibited negligible water 

absorption even at 900 °C. The increased glass content evidently caused a more intensive viscous 

flow with the sealing of external porosity. The density, however, had quite surprising trends; 

whereas the density of samples featuring S1 slag remained almost stationary, the density of 

samples containing S2 slag exhibited a remarkable decrease with increasing firing temperature 

(from 2.45 g/cm3, at 900 °C, to 1.7 g/cm3, at 1000 °C). 

The different behavior of samples with different slags and/or with different slag concentration 

is attributed to the specific glass/slag interactions. As demonstrated by the X-ray diffraction 

patterns in figure V.21, the borosilicate glass did not merely encapsulate the slags in a glass 

matrix, but promoted phase transformations. 

The S1 slag, in the as-received conditions, as shown by figure V.21a, contained fayalite, i.e. 

Fe(II) silicate (Fe2SiO4 or 2FeO·SiO2, PDF#09-0484). The intensity of some peaks (labelled with 

“w”) is actually significantly higher than that of pure fayalite, which could be due to the 

incorporation of Zn2+ ions, with the formation of a solid solution; this is supported by the fact that 

willemite (Zn2SiO4 or 2ZnO·SiO2, e.g. PDF#02-1413) effectively possesses strong peaks in the 

selected positions (label “w” in figure V.211a) and forms solid solutions with fayalite (Ettler et al., 

2000; Raghavan, 2010). 

Air, i.e. an oxidative atmosphere, may cause the decomposition (“oxygenolysis”) of fayalite, 

with the formation of iron oxides, according to the following reactions (O’Neill, 1987): 

 
(Note: all equations should be completed within a two column table with one line, centered, no 

boarders, as example see above). 

At 900 °C, with S1 slag present in the amount of 25 wt%, both reactions likely occurred, with 

the formation of magnetite, i.e. iron oxide with both Fe2+ and Fe3+ (Fe3O4, or FeO·Fe2O3 – 

PDF#86-1351), and hematite, i.e. iron oxide with only Fe3+ ions (Fe2O3, PDF#72-0469), well 

visible in the pattern in figure V.21a. At 1000 °C, with the same concentration of S1 slag, 

magnetite was favored, consistently with the high temperature reduction of iron oxides in a viscous 

mass, associated to oxygen release, as discussed by Appendino et al. (2004). It can be noted that 

crystalline silica is not visible in the patterns for 25 wt% S1 slag: the secondary product of 

oxygenolysis reaction was probably dissolved by the borosilicate glass. 

Operating with 50 wt% S1 slag, as illustrated by the upper pattern in figure V.21a, magnetite 

and hematite are confirmed as the main crystal phases. However, in this case, hematite is 

dominant. This behavior is likely due to more intensive oxygen diffusion, promoting the reaction 

induced by Eq.(2): the reduced viscous flow, associated to the lower glass content, probably did 

not allow an instantaneous sealing of the slag particles from atmospheric oxygen. 

The minor phases detected in the X-ray diffraction pattern of sample with 50 wt% S1 slag are 

quite interesting. Whereas sodium borate [Na2B6O10 or Na2O·3B2O3, PDF#70-1446] could be 

attributed to the crystallization of the distinctive boron-rich phase of borosilicate glasses 
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(borosilicate glasses typically exhibit phase separation (Shelby, 2005)), the observed variety of 

crystalline silica, i.e. β-cristobalite, could be seen as a proof of glass-slag interaction. The detected 

phase could form by incomplete dissolution of silica from oxygenolysis, and it could be stabilized 

in the high temperature variant (β-phase) by incorporation of alumina, relatively high in the 

adopted borosilicate glass (Bernardo et al., 2009) (SiO4 tetrahedrons may be partially replaced by 

AlO4 tetrahedrons, with extra cations, such as Na+, Ca2+, Cu2+ and Sr2+, from both glass and slag, 

compensating the charge variation from Si4+ to Al3+) (Thomas, et al., 1994). 

As shown by figure V.21b, S2 slag was practically amorphous in the as-received conditions; 

the mixing with borosilicate glass yielded again iron-rich phases, comprising both Fe2+ and Fe3+, 

but mainly in association with calcium oxide. This is not surprising owing to the much more 

significant content of CaO in S2 slag compared with S1 slag. With limited slag content (25 wt%), 

the firing at 900 °C caused the separation of calcium-iron silicates, such andradite (Ca3Fe2(SiO4)3, 

PDF#79-1661), featuring Fe3+ ions, and hedenbergite (CaFeSi2O6), featuring Fe2+ ions. Magnetite 

and hematite, dominant with S1 slag, are reasonably still present, in form of traces, as well as zinc 

oxide (ZnO, PDF#79-0206). As observed for S1 slag, a temperature increase, starting from the 

same slag concentration, favored the formation of magnetite, with the rest of crystal phases 

dissolved by the borosilicate glass. The remarkable reduction of density could be due to the 

previously mentioned oxygen release, in turn provided by Fe3+/Fe2+ reduction, causing some 

foaming. Indeed, due to the higher content of network modifiers provided by the S2 slag, it is 

expected that the glass phase would be less viscous and more prone to foaming, than in the case of 

S1 slag. 

Operating with high content (50 wt.%) of S2 slag, in analogy with the samples made with S1 

slag, the formation of more oxidized phases was favored. In fact, magnetite is present (see upper 

pattern of figure V.21b) coupled with andradite and hematite. 

 

V.4.4 Mechanical characterization and functional properties 

 
Table V.11: Physical and mechanical properties of selected glass-ceramics based on glass/slag mixtures. 

 

Table V.11 summarizes the properties of samples based on S1 and S2 slag, sintered in the form 

of rectangular tiles. In this case, in order to mimic industrial firing, heating was performed at a 

steady rate (40 °C/min) and the samples were not removed from the furnace directly at high 

temperature, to avoid thermal shock. We focused on the conditions (concentration, temperature) 

that could maximize the density, on one hand, and minimize the water absorption, on the other. 

The density values are in good agreement with those referred to small discs, subjected to direct 

heating. Despite the relatively high residual porosity (inferred from image analysis), varying from 

8 to 18%, the obtained glass-ceramics compare favorably, in terms of elastic modulus, bending 

strength and Vickers hardness, with analogous waste-derived glass-ceramics (Cheng and Chen, 
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2004; Cheng et al., 2007). Like analogous waste-derived glass-ceramics, owing to the negligible 

water absorption, the developed materials could be used as low-cost building materials. 

 

 
Figure V. 22: SEM micrographs of selected glass-ceramics (polished surfaces of bending bars,  

cut from rectangular tiles): (a) 25 wt% S1, 900 °C; (b) 50 wt% S1, 1000 °C;  

(c) 25 wt% S2, 900 °C: (d) 50 wt% S2, 1000 °C. 

 

The SEM micrographs in figure V.22 confirm a quite homogeneous distribution of components 

in the glass-ceramic microstructure. In particular, iron-containing phases may be easily 

distinguished from the light color in the back-scattered electrons images. The homogeneity is 

particularly important for the stabilization of pollutants. In fact, the chemical homogeneity of a 

glass-ceramic from simple sintering of glass/slag mixture is obviously lower than that of a glass-

ceramic obtained from melting, solidification of a glass and crystallization; pollutants may 

selectively accumulate in aggregates of slag particles not completely encapsulated in the liquid 

phase provided by the glass. Except for figure V.22d (see highlighted areas), showing a sample 

with 50 wt% S2 slag, sintered at 1000 °C, no large slag-derived aggregates are visible. On the 

contrary, the sample with 50wt% S1 slag sintered at 1000 °C, shown in figure V.22b, exhibits 

iron-rich phases (light spots) surrounded by a light halo. To our opinion, this could be due to iron 

diffusion in the borosilicate glass, a further evidence of glass/slag interactions. 
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The large pores, visible especially with 50 wt% S1, at 1000 °C (figure V.22b), are hardly 

explainable as derived from incomplete sintering. As reported above, the firing at 1000 °C could 

favor some oxygen release, from the reduction of iron oxides; magnetite could not be simply a 

product of the oxygenolysis of fayalite, but also a product of hematite reduction: 

 
The phase development in the developed glass-ceramics suggests a possible application as tiles 

with a specific functionality. In fact, all the samples feature magnetite, i.e. a ferrimagnetic phase.  

 

V.4.4 Induction tests 

 

V.4.4.a Introduction to magnetism 

Magnetic fields are produced by electric currents. At the atomic scale, the electronic orbitals or 

electron spins create magnetic fields, and then elementary magnetic moments. The result of the 

alignment more or less rigorous of the elementary magnets in a solid body is presented as an M 

magnetization which is the magnetic moment by volume unit. To realize this alignment, it will be 

in general necessary to apply a magnetic field H; the new can define the magnetic susceptibility of 

a material by: χ =M/H, where χ is the susceptibility by cm3. 

More generally, solid compounds are shared, from a magnetic view, into two families, non-

ordered magnets (non-cooperative magnetism) and ordered magnets (cooperative magnetism). In 

the first case, the interactions between atoms in the crystalline network are low (no long distance 

interactions) and then unable to develop a magnetic order. Those materials do not show 

spontaneous macroscopic magnetization. We distinguish: i) Diamagnetism an intrinsic property of 

the matter leading to a negative value of the magnetic susceptibility; ii) Paramagnetism, due to 

electrons not paired to ions or free electrons of metals. 

However, some substances present a magnetic order spontaneous (cooperative magnetism) so 

that even in the absence of an external field, the electronic spins and the magnetic moments are 

arranged regularly due to the existence of the electrostatic exchange interaction. This order can be 

parallel (ferromagnetism), antiparallel with a compensation of the moments (antiferromagnetism) 

or antiparallel without compensation of the moments (ferrimagnetism) (see table V.12).  

In the ferromagnetic bodies, the magnetic moments are already aligned: they form parallels 

under the effect of an internal field called “Weiss field”. The magnetization is then present even 

without an excitation field. However, when the temperature rises, the thermal agitation tends to 

more and more compensate the effect of Weiss field, magnetic moments get disordered and over a 

critical temperature, Curie temperature, the body (e.g. metal) becomes paramagnetic with a 

magnetic susceptibility that decreases with the temperature. Ferrimagnets are materials in which 

the magnetic domains are subdivided into magnetic regions of varying intensities that cannot form 

opposite direction alignments, and which result in a non-zero magnetic moment. 
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Table V.12: The types of magnetic behaviors 

 

The ferrimagnetic bodies, represented by ferrites, a particular iron oxides family, have similar 

properties to ferromagnetic substances: they possess a resultant magnetization not zeroed in the 

absence of external magnetic field and then are considered as magnets. Contrarily to ferromagnetic 

materials, ferrimagnetic bodies are electric insulators, which make them interesting in the industry, 

notably in radio electricity. For example, magnetite counts among the ferrimagnetic substances 

and enables to product permanent magnets. 

 

 
Figure V. 23: Hysteresis cycle of the magnetization in function of the magnetic field applied (H) where MS is 

the saturation magnetization, MR is the remanent magnetization and HC is the coercive field.  

 

In the case of ferro- or ferrimagnetic materials, the magnetization is uniform inside each 

domain but vary from a domain to the other so that in the absence of external field, there is no 

global magnetization (figure V.23). The crystals of spinel structure AB2O4, in which A and B 

represent cations, have the possibility to show ferrimagnetism. Particularly in the present case, 

ferrites such as magnetite Fe3O4 show this property, indeed, the structure is built with FeO6 

octahedrons and FeO4 octahedrons, corresponding to a separation between the oxidation states of 

iron as following : FeO·Fe2O3, Fe3+ in FeO and Fe2+ in Fe2O3. Indeed, the spinel structure is 

composed of ions O2-, ions Fe2+ situated in octahedral sites and half ions Fe3+ in ¼ of octahedral 

sites and the other half in 1/8 of tetrahedral sites (figure V.24, Daou, 2007). 
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Figure V.24: Spinel structure, tetrahedral sites are represented in blue, octahedral sites in green and oxygen 

atoms in red. The elementary row is represented with a black line. 

 

V.4.4.b Application to the elaborated materials 

As presented in several reports concerning hyperthermia applications of ferrimagnetic materials 

(Andreu and Natividad, 2013; Jordan et al. 2009), when an alternating magnetic field (AMF) is 

applied to a ferrimagnetic material, the non-linearity and the delay of its magnetization with 

respect to the applied magnetic field originate a distinctive hysteresis loop; energy is dissipated, in 

the form of heat, for every cycle, i.e. for each alternation in the value of external field. Figure 

V.25a illustrates that the developed glass-ceramics effectively exhibited, for the samples with low 

slag content (25 wt% S1 and 25 wt% S2), an intensive heating when subjected to AMF. More 

precisely, the sample from S1 slag, sintered at 900 °C, reached 300 °C after only 60 s of 

application. Interestingly, the samples did not exhibit any cracking upon cooling, when AMF was 

switched off. The resistance to thermal shocks was probably favored by the relatively low thermal 

expansion of the adopted borosilicate glass (5.5 10-6 °C-1 , Bernardo et al., 2009) and by the 

porosity (reducing the elastic modulus). To our opinion, these findings could be the basis for the 

valorization of metallurgical slags, coupled with borosilicate glass, in the manufacturing of 

innovative heating elements, e.g. parts of cooking tops. Indeed fabrication of magnetic glass-

ceramics from waste has been exploited in the past (Colombo et al., 2003; Francis et al., 2004; 

Francis, 2006; Rosenweig et al., 2002) but no detailed investigation on heat generation under 

AMF has been presented. 
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Figure V.25: (a) Heating of glass-ceramics from glass/slag mixtures under alternating magnetic field 

(AMF); (b) EDS spectrum of slag-derived aggregate in the sample with 50wt% S2, sintered at 1000 °C. 

 

The samples with high slag content presented poor (50wt% S1) or even no (50wt% S2) 

temperature increase, despite the presence of magnetite. This phenomenological “anomaly” could 

be justified by the observed ionic inter-diffusion, as discussed earlier. Samples treated at 1000 °C 

did not feature pure magnetite, but a solid solution, comprising ions such as Zn2+, as demonstrated 

by the EDS spectrum in figure V.25b. Ferrites, i.e. compounds with the general formula 

M2+O·Fe2O3 are known to exhibit lower heating rates compared to magnetite (Rosenweig, 2002). 

The formation of a Zn-containing solid solution, instead of pure magnetite, could be the reason 

also for the behavior of the sample containing 25% S1 slag, sintered at 1000 °C; despite the more 

intense peaks of ferrimagnetic phase (and no evidence of hematite) in figure V.20b, it was similar, 

in its electromagnetic heating behavior, to the sample from S1 slag, sintered at 900 °C. 

The interdiffusion, at 1000 °C, between glass and slags, even in a low concentration (25 wt%), 

is testified by figure V.26. The SEM image in figure V.26a, referring to the sample with 25 wt% 

S1, clearly shows more “isolated” light spots (rich in iron), than in the case of the sample with the 

same composition sintered at 900 °C (figure V.25a), but also wide diffusion halos around the 

spots, like in the sample sintered at the same temperature, with higher slag content. The 

interdiffusion is so extensive for the sample with 25 wt% S2 that halos turn into “streaks”, evident 

in figure V.26b, around big pores. The big pores, for this sample, as written above, actually 

correspond to a foaming effect, further evidenced by the optical stereomicroscope image in figure 

V.26c. 

 

 
Figure V.26: Microstructural details of selected glass ceramics (a) 25 wt% S1, 1000 °C; (back) 25 wt% S2, 

1000 °C (image (c) is from optical stereomicroscopy). 

 

V.4.5 Chemical stability and cytotoxicity studies 
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Table V.13: Chemical analysis of the leachate of samples subjected to TCLP testing (* data not determined). 

 

The most interesting samples, i.e. those exhibiting intensive heating, were evaluated also in 

terms of chemical stability, a property essential for high value applications. TCLP test was applied 

as a preliminary approach. As reported in table V.13, the contents of toxic elements were all well 

below the limits for inert materials. Although successful, TCLP test was not considered as a 

definitive proof of inertness, since it is intended mainly for the certification of wastes, rather than 

for the characterization of products. In addition, antimony (Sb) was not determined, owing to 

problems of instrument calibration. 
 

 
Figure V.27: Relative cell viability of slag/glass samples, compared with soda-lime. 

 

The assessment of the biocompatibility of waste-derived products by cell biology 

investigations, although being of high relevance to certify the safety of these materials for general 

use, has been considered only to a limited extent in the past (Boccaccini et al., 1997). As discussed 

recently (Ponsot et al., 2014), there is therefore increasing interest to provide data about the safety 

of waste-derive products based on established cell-culture based cytotoxicity studies. In this 
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investigation, MEF cell cultures were considered to analyze possible cytotoxic effects of the glass-

ceramics produced. Generally, MEF cells are applied in the characterization of biomaterials, e. g. 

materials for use in medical applications. In this study the iron containing glass-ceramics were 

subjected to cell culture tests and results were compared with those on materials considered to be 

safe for every-day use, i.e. soda-lime glass. In cell proliferation analysis, mitochondrial activity 

was considered as an index of the toxicity level of the examined materials. Soda-lime glass was 

taken as a reference as a well-known “safe” product. Its mean mitochondrial activity was set at 

100% ± standard deviation. Figure V.27 illustrates the relative mitochondrial activity of MEF cells 

after 24 hours of seeding on waste-derived glass-ceramics and soda-lime glass, according to both 

direct and indirect studies. It can be noted that the mitochondrial activity of samples was 

practically equivalent to that of the reference glass. During the direct study, samples topology 

directly impacted on cells adherence. The higher values found for samples 25 wt% S1 900 (113% 

± 9) and 25 wt% S2 900 (106% ± 8) could be attributed to porosity, which favors cells adherence. 

During the indirect study (black and grey bars), cells seeded on microplates were in contact with 

ions in the medium, released by samples after 1, 2 and 3 days dilution.  

 

 
Figure V.28: Fluorescence microscope images of samples from direct test method (a) 25 wt% S1 900 °C; (b) 

25 wt% S2 900 °C; (c) 25 wt% S1 1000 °C; (d) soda-lime glass (reference) [with superposition nucleus 

(blue) and cell body (green)]. 
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The fluctuation of values was not interpreted further, but it might depend on parameters such as 

diffusion rate and concentrations of ions in the medium, synergies and interfacial cells/ions 

biological reactions. Only a significant drop of mitochondrial activity (not observed) could be 

reasonably attributed to environmental toxicity. In fact, the non-toxicity value limit value could be 

set at 50% mitochondrial activity, relatively to the reference glass, according to previous 

toxicology studies (Trevan, 1927). We can therefore state that, under the conditions of the applied 

test, none of the samples presented toxicity risk, even after 3 days (indirect study), which was 

accepted as a significant period to indicate cytotoxicity, considering the quasi instantaneous 

reactivity of MEF to their environment (Boccaccini et al., 1997; Ponsot et al., 2014).  

As illustrated by figure V.28, glass-ceramic samples as well as soda-lime glass were fully 

covered by MEF cells. The cells exhibited spreading and mutual interconnections, with an 

elongated morphology, which are well-recognized features to indicate biocompatibility 

(Boccaccini et al., 1997; Ponsot et al., 2014). The glass-ceramics, as shown in table V.10, actually 

contained several elements promoting cellular activity, such as Si, O, Na, K and Ca. In addition, 

glasses doped with Zn, B, Mg or Fe have shown stimulating effects on cells growth; other minor 

elements (Al, Cr) are effectively toxic (Hoppe et al., 2011). The results of MEF activity indicate 

that the diffusion rate of toxic elements in the cell culture medium was reasonably limited. In other 

words, the chemical stability of the adopted borosilicate glass, employed in the pharmaceutical 

industry, was not degraded by the incorporation of slags in the present glass-ceramics. 

 

V.4.6 Conclusions  

The results obtained and discussed in this paper lead to the following conclusions: 

• Metallurgical slags were successfully sintered, mixed with recycled borosilicate glass, 

at temperatures not exceeding 1000 °C. The developed glass-ceramics, owing to the 

negligible water absorption, could be used as low-cost lightweight tiles; 

• Fe-rich phases developed according to slag/glass interactions; 

• Owing to the presence of magnetite, the developed glass-ceramics (for a slag 

concentration of 25 wt%), exhibit intensive heating when subjected to an alternating 

magnetic field, so that they could be applied as novel heating elements; 

• The chemical durability of the glass-ceramics was assessed by TCLP testing while the 

materials biocompatibility was confirmed by cytotoxicity tests. 
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V.5 Highly porous glass-ceramics from self-foaming mixtures 

SUMMARY - Fe2O3 may transform to Fe3O4 or FeO by release of oxygen. This reaction provides an 

interesting alternative route for the manufacturing of glass foams. Additives, such as carbonates and C-

containing compounds may be replaced by iron-rich wastes, mixed with different recycled glasses. Partial 

crystallization is also achieved, by glass/waste interactions. The obtainment of lightweight materials is 

coupled with the stabilization of pollutants (i.e. the iron-rich wastes are stabilized in the glass matrices), 

thus configuring a very promising synergy for industrial applications.  

 

V.5.1 Soda-lime waste glass and iron-rich slag from refining of precious metals 

Viscous flow sintering of finely powdered glass, at atmospheric pressure, gives the opportunity 

to prepare new valuable engineering materials, including innovative “glass-based stoneware”, as 

presented in this paper. This new material derives from the substitution of expensive feldspar 

fluxes with glass, in turn allowing very low processing temperatures (even below 1000 °C) and 

promoting the incorporation of inorganic waste, such as iron-rich metallurgical slag. In the present 

case, glass-waste interactions were found to provide a homogeneous foaming, without other 

additives, and partial crystallization. The specific mechanical properties of the resulting cellular 

glass-ceramics, being comparable to those of conventional porcelain stoneware, sintered above 

1100 °C, suggest an extensive use in the building industry as lightweight panels, considering also 

the negligible water absorption and the chemical stability. 

 

V.5.1.a Introduction  

Traditional ceramics have always been regarded as a reference for the disposal of inorganic 

waste (Lee, 2006). Since traditional ceramics have a mass market, even a small addition of a given 

waste to the usual formulations is associated with a remarkable recycling. This concept may be 

applied even to waste glasses, including glasses from the melting of hazardous waste as well as 

glasses hardly used in the manufacturing of original articles (Colombo et al., 2003; Kidalova et al., 

2012). 

Small glass amounts do not determine significant changes in the properties of traditional 

ceramics, as testified by the experiences with waste glasses introduced in formulations for 

porcelain stoneware (Brusatin et al., 2005; Karamanova and Karamanov), but this probably 

represents an underestimation of the potentialities of glass. If we consider glass additions, indeed, 

viscous flow sintering may occur at much lower temperatures than those required by conventional 

feldspar fluxes. 

Extensive use of waste glass, either waste-derived or recycled, has been presented in recent 

papers (Bernardo et al., 2008 and 2009, Zhao et al., 2013). In particular, glass completely replaced 

the ordinary feldspar fluxes, allowing the obtainment of dense stoneware tiles (“glass-based 

stoneware”) at temperatures not exceeding 1000 °C (instead of approximately 1200 °C for 

conventional formulations). The degradation of mechanical properties is prevented by 

crystallization, caused by interactions between glass and clay components. On the one hand the 

sintering temperature is not high enough for mullite formation, on the other residues of clay 

dehydration (i.e. metakaolinite) may react with calcium oxide, provided by the glass (Bernardo et 

al., 2008) and/or additives (such as Ca(OH)2) (Bernardo et al., 2009), yielding calcium alumino-

silicates. 
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The present part of chapter V reports a further extension of the concept of revised formulations 

for stoneware, with most of the raw materials corresponding to waste; specifically, waste soda-

lime glass (SL), i.e. a by-product of municipal glass recycling, was considered combined with a 

vitreous iron-rich metallurgical slag (MS). This slag, being highly concentrated in SiO2 (see table 

V.14), cannot be considered for cementer use (Skuza et al., 2009). 

The use of metallurgical slag is interesting for the possible interactions between glass and clay 

components, favoring the crystallization, and for the remarkable content of iron oxide, promoting 

the development of a highly porous structure by gas release (“bloating” effect, in turn associated to 

the reduction of Fe3+ into Fe2+) (Appendino et al., 2004).  

Porosity in materials for modern buildings is highly attractive, particularly for lightweight tiles 

to be placed vertically. Such tiles are interesting, above all, for ventilated façades, i.e. a new 

generation of coverings applied on the surface of large buildings, aimed at improved thermal 

insulation (Infield et al., 2004). As recently reported (Bernardo et al., 2010; Garcìa-Ten et al., 

2012) a possible solution is represented by foamed porcelain stoneware, produced at high 

temperatures (those of conventional production), with the help of expensive additives (CeO2 or 

SiC). Cellular glass-ceramics, owing to their low water absorption, remarkable mechanical 

properties and good chemical stability, could be a valid alternative, especially when configuring 

savings in both raw materials and energy (due to the recycling of waste and low firing 

temperatures), as presented in this chapter. 

 

V.5.1.b Characterization of the raw materials 

The chemical composition of the employed starting materials is reported in table V.14. Pure 

kaolin clay (Carlo Erba Reagenti SpA, Milan, Italy) was mixed with soda-lime glass (SL), 

recovered from municipal recycling, and a metallurgical slag (MS), both kindly provided by 

SASIL SpA (Biella, Italy), in shape of fine powders (< 100 µm). SL does not refer to the fraction 

of recycled materials, after sorting, which consists of almost pure glass, ready for the industry, but 

to the fraction enriched in contaminants, which remains practically unemployed and mostly 

landfilled, in huge quantities (SASIL treats this waste in a quantity of about 180 000 tons/year). 

MS corresponds to slag from recovery and refining processes of precious metals. 

Kaolin clay, SL and MS were considered in three proportions, according to table V.15, showing 

also the overall oxide contents. Mixture A (SL and MS in equal amounts) can be seen as the 

reference composition; it was conceived according to previous experiments with sintered glass-

ceramics (Bernardo et al., 2012), in which pure kaolin clay, in an amount of 10 wt%, was 

successfully employed as binder for fine glass powders. Mixture B and C were conceived to 

evaluate the impact of an increased glass content, which was thought to enhance viscous flow 

(mixture B), and of an increased slag content, thought to favor crystallization and gas release, by 

reduction of Fe2O3.  
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Table V.14: Chemical composition of the starting raw materials 

 

 
Table V.15: Formulation of the investigated mixtures 

 

The amorphous character of MS is confirmed by the preliminary diffraction analysis shown in 

figure V.29. The same figure testifies the remarkable crystallization tendency of MS powders, 

fired at 1000 °C without additives. The developed crystal phases consist of calcium-sodium 

alumino-silicate (2 CaO·Na2O·Al2O3 · 4 SiO2, PDF#76-0479), nepheline (Na2O·Al2O3 · 2 SiO2, 

PDF#79-0993) and hematite (Fe2O3, PDF#87-1166). The separation of an iron oxide is interesting, 

since it reasonably acted as a nucleating agent, thus justifying the extensive crystallization (in 

figure V.29, the amorphous halo is practically absent for fired MS). This situation is rather similar 

to that of glass-ceramics from melted basalts, for which the separation of iron oxides is even 

promoted by adding oxidizing agents in the melt (Höland and Beall, 2002). In the present case, the 

oxidation (with the formation of ferric oxide, Fe2O3, i.e. the oxide associated to the higher valence 

state of iron ions) was favored by the high specific surface of glass powders (Chinnam et al., 

2013). 
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Figure V.29: Preliminary mineralogical analysis of MS slag, as received and after treatment at 1000 °C, 

with no additive, showing Nepheline Na2O.Al2O3.2SiO2 

 

V.5.1.c Characterization of the sintered samples 

As illustrated by figure V.30, both bulk density and water absorption of mixtures based on MS 

and SL decreased sensibly with increasing firing temperature. The general decrease of water 

absorption is not surprising, since the viscous flow of the liquid phase provided by glass softening 

is expected to seal the open porosity, at the surface. This sealing effect should be somewhat 

favored by the adopted firing strategy (direct introduction of samples in the furnace at selected 

temperatures), with the surfaces experiencing a much faster heating.  

The remarkable decrease of bulk density could be attributed to the gas release from iron oxide 

reduction (release of oxygen according to 2 Fe2O3 → 4 FeO + O2), causing a foaming effect (see 

Figure V.32). The foaming is not straight forward, since the partial crystallization (expected on the 

basis of the firing of MS alone) may complicate the viscous flow (rigid, crystalline inclusions are 

known to enhance the viscosity - Perrot, 1998). Above 1000 °C, the foaming was so intensive that 

bulk density was well below 2 g/cm3 for all formulations; water absorption, however, was 

negligible only for formulation A. This formulation evidently featured an optimized balance 

between viscous flow, crystallization and gas release.  

Figure V.31 confirms the crystallization of the samples, and evidences some changes according 

to the sintering temperatures and the formulations. Nepheline (NaAlSiO4 or Na2O·Al2O3·2SiO2, 

PDF#79-0993), already found for pure MS, was visible especially at low temperatures. 

Wollastonite, i.e. calcium mono-silicate, was the other main phase, becoming dominant above 950 

°C, as shown by figure V.31a. Interestingly, the best matching of diffraction data (see reference 

pattern) is provided by the iron-containing variant, that is Ca2.87Fe0.13(SiO3)3 (PDF#83-2198). The 

fact that this solid solution includes Fe2+ ions, coupled with the lacking of hematite, may be seen 

as a confirmation of the expected reduction of iron oxide.  



Direct sintering for waste stabilization and valorization 

109 

 

1,0

1,2

1,4

1,6

1,8

2,0

2,2

2,4

900 950 1000 1050

0

2

4

6

8

10

12

14

 

 

W
a

te
r 

a
b

s
o

rp
ti
o
n

 (
%

)

  A

  B

  C

D
e

n
s
it
y
 (

g
/c

m
3
)

 

Temperature (°C)  
Figure V.30: Density and water absorption evolution with increasing firing temperature 

 

Both wollastonite and nepheline exhibited a decreasing trend with increasing temperature, but 

with significant differences associated to the compositions, as shown by the “quantitative 

comparisons” illustrated in figure V.31b. It is well known that the intensity of diffraction peaks is 

proportional to the quantity of a crystal phase; for comparison purposes, we referred to the 

intensities of two characteristic main peaks (2θ = ~23° for nepheline, 2θ = ~30° for wollastonite), 

for each sample and sintering temperature, and plotted them normalized by the maximum 

intensities in the whole set (“normalized intensities”).  

Nepheline was maximized at 900 °C, for formulation A, whereas wollastonite was maximized 

at 950 °C, for formulation B. It is evident that the “slag-rich” composition (C) promoted nepheline 

formation, in good agreement with a higher overall Al2O3 content (favorable to alumino-silicates); 

on the contrary, the “glass-rich” composition (B) favored wollastonite crystallization (at 1050 °C, 

the wollastonite normalized intensity is about 60%, while the nepheline normalized intensity is 

slightly above 20%). 
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Figure V.31: Impact on crystallization of different processing conditions: a) phase evolution with increasing 

firing temperature (mixture A); b) intensity of distinctive peaks of major phases with increasing firing 

temperature, for different compositions 

 

For the above cited application as lightweight tiles, to be placed vertically in the so-called 

ventilated façades, density and water absorption should be below 1.8 g/cm3 and 2%, respectively, 

in order to minimize the weight of coverings and exhibit good frost resistance (Bernardo et al., 

2010). Such optimum conditions were reached in five cases (formulation A at 1000 °C and 1050 

°C, formulation B at 1000 °C and 1050 °C, formulation C at 1050 °C), but the mechanical tests 

involved only the samples fired at 1050 °C, possessing values significantly below the limits. The 

mechanical properties, as reported in table V.16, are quite promising.  

 

 
Table V.16: Physical and mechanical properties of selected glass-ceramic foams 

 

Compared to conventional dense porcelain stoneware, the developed materials are much 

weaker in terms of bending strength (according to Raimondo et al., 2011, the bending strength of 

dense stoneware is the range of 35 to 85 MPa), but quite similar considering the specific strength 

(σ1/2/ρ, where σ is the bending strength and ρ is the density), i.e. an index of mechanical efficiency 

for materials to be applied in form of panels (according to Ashby’s studies - Ashby, 1995).  
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Figure V.32: Microstructure detail of a “self-glazed” glass-ceramic foam (formulation A): a) cross-section; 

b) crystallization at the surface of macro pores; c) degasification and sinter-crystallization micro pores; d) 

evidence of formation of a dense surface layer 

 

The specific strength of the developed cellular glass-ceramics is close to the range of 3.4 to 3.8 

MPa1/2·cm3/g, reported for conventional stoneware (Bernardo et al., 2010). It should be noted that 

the bending strength was first determined on specimens cut from bigger samples and subjected to 

abrasion and polishing; since the preparation of specimens was associated to the removal of the 

dense layer at the surface, some stress concentration could be provided by the pores emerging at 

the surface. As reported in table V.16, unpolished specimens (bending bars from simple slicing of 

bigger tiles, upper and lower surfaces corresponding to the as-fired surface) exhibited a strong 

dispersion of strength data (reasonably due to cracks induced by cutting) but also a significantly 

higher average value (3.13 MPa1/2
·cm3/g) compared to the polished ones (2.80 MPa1/2

·cm3/g): the 

dense surface layer is evidently a reinforcing part. 

The microstructure details reported in figure V.32 are in good agreement with the previous 

observations. The good mechanical properties (especially the specific strength) could be justified 

by the remarkable homogeneity of pore distribution, as clearly shown by figure V.32a. The partial 

crystallization is testified by figure V.32b, which depicts a multitude of crystals formed near the 

pore surface. As observed in other sintered glass-ceramics, this is consistent with the tendency 
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towards surface crystallization of calcium silicates (Gutzow and Shmelzer, 1995) (the surface of 

pores represents a “free surface”, in which the volume variations associated to crystallization could 

be accommodated easier than in the bulk). Finally, figure V.32c evidences the presence of a dense 

layer (a sort of “self-glazing”) on the outer part of unpolished specimens: the more intense heating 

at the surface promoted the viscous flow; any pore from oxygen release reasonably collapsed. 

 

 
Table V. 17: Chemical analysis of the leachate of samples processed at 1050 °C and subjected to TCLP 

testing 

 

The proposed approach is advantageous not only for producing low cost ceramics (sintered at 

low temperatures, from waste or cheap raw materials), but also for waste stabilization. Table V.17 

reports the values obtained from the leaching of the samples A, B and C. The leaching for the 

various pollutants is negligible or below the limits reported in the European Directive 

(1999/31/EC).  

The evaluation of more specific further tests (under more aggressive environment and longer 

period of time) should be preceded by the collection of standards about the reuse of secondary 

materials in the construction sector. Even though each country has different standards, in general, 

we should consider: i) TCLP has already been presented as a more unfavorable case than the 

suggested use of ceramics as tiles in the building industry (Fernández-Pereira et al., 2011); ii) The 

test was applied on polished specimens “recycled” from mechanical testing, featuring a higher 

specific surface (dense surface layer removed, many pores in contact with the leaching solution). 

In other words, the observed low release of pollutants may be considered as an effective proof of 

environmental safety of the newly produced ceramics.  

 

V.5.1.d Conclusions 

We may conclude that: 

• The glass which is hardly recycled in conventional production can be used as very 

effective fluxing agent in the formulation of innovative stoneware ceramics, sintered at low 

temperature; 

• The liquid phase provided by the softening of glass is able to dissolve some inorganic 

waste, such as metallurgical vitreous slag; the dissolution is followed by a secondary 

crystallization of calcium silicate and alumino-silicate phases; 
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• The high iron oxide content of MS waste can be exploited for the development of a 

foamed microstructure, owing to a “bloating” phenomenon; 

• The residual porosity, in the “glass-based” stoneware here presented, is significant (above 

30%), but it is not open; the lightness, combined with surface sealing and relatively good bending 

strength (in turn associated to crystallization) makes the investigated materials extremely 

interesting for the novel, high value application of ventilated façades; the strength is increased by 

the presence of a dense surface layer, which and makes the material “self-glazed”. 

• Ecological sustainability is enhanced by the possible superposition of low emissions in the 

processing (firing at low temperatures), saving of natural raw materials (recycled glasses replacing 

feldspar fluxes) and stabilization of waste (reduced leaching of heavy metals). 

 

V.5.2 Borosilicate glass and iron-rich slag from refining of precious metals  

Note: Work in collaboration with R.K. Chinnam (University of Erlangen, Institute of 

Biomaterials, supervision by Prof. A.R. Boccaccini). The research in Padova mainly concerned the 

mechanical characterization of samples [manuscript “Self-foaming glass-ceramics made of 

borosilicate glass and iron rich waste residue, by R.K.Chinnam, I. Ponsot, E. Bernardo, A.R. Boccaccini in 

preparation]. 

 

V.5.2.a Introduction  

Two main choices to optimize the recycling products such as foam glass - ceramics are the 

additive type and the process parameters. In this study, an iron-rich scoria was used both as a 

foaming agent and as a filler mechanical reinforcement (in amounts ranging from 10 wt % to 50 wt 

%) in a glass-ceramic composition made from recycled pharmaceutical borosilicate glass. The 

compacts were pressed at 30 MPa and treated at 950° C using a direct sintering route ( heating rate 

of ~ 150 ° C / min ) at different annealing time ( 5, 30, 45 and 60 min ) . DTA and XRD analyses, 

showing a significant loss of viscosity of the borosilicate glass during the oxidation of iron oxide 

Fe3O4 reaction justified the homogeneous distribution of the pores and the important blowing. The 

foam glass - ceramic with an average porosity of 72%, had a mean density of 0.6 g/cm3. 

Strengthening the glass structure by scoria particles led to an impressive compressive strength, 

reaching 14 MPa. Considering the unusual strength-to-weight ratio (specific strength of ~ 4 

MPa1/2·cm3/g) and fast process possibilities, these glass - ceramic foams could find many 

interesting applications for the industry such as structural and functional lightweight materials. 

 

 V.5.2.b Description of the raw materials 

Table V.18 shows the composition of BSG while the composition of MS waste in as-received 

state is taken from the paper published by Ponsot et al. (2013).  
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Table V.18: Composition of borosilicate glass waste and MS 

 

V.5.2.c Results and Discussion 

The powders used in this study are BSG and MS wastes. BSG in powder form was completely 

amorphous and MS waste in as-received state was partially crystalline and under DH conditions at 

950 oC MS fully crystallized (see figure V.33, peaks are hidden by an amorphous silica rich 

phase). Phases Hematite Fe2O3 #72-0469, Magnetite Fe3O4 #75-0449, Acmite Na Fe (Si2O6) #71-

1492 and Hedenbergite CaFeSi2O6 #71-1500 in MS wastes are rich in iron with a calculated Fe3O4 

of 9.7%. Sintered MS at 950 oC for 30 min led to the growth of Nepheline, Ca-Na-Al silicate and 

Hematite phases. BSG powder when sintered under similar conditions resulted in crystallization of 

cristobalite phase (Chinnam et al., 2013).  

The influence of MS on the crystallization of BSG foams was analyzed using XRD (see figure 

V.34). With increase in MS, BSG+MS composition the inhibition to the growth of cristobalite was 

observed. In the case of 30, 40 and 50 wt% MS, the growth of cristobalite was almost completely 

inhibited leaving an amorphous material. A growth in the peak intensity of nepheline phase was 

observed with the increase in MS content in BSG.  

It is known that at the sintering temperature of 950 oC the BSG can form a reasonably low 

viscosity fluid which improves the wetting behavior of glass towards the included refractory MS 

particles, thus leading to better encapsulation of un-reacted solids or crystallized particles with 

better glass to refractory interface. In the study related to the inhibition to the growth of cristobalite 

phase in BSG by Jean and Gupta (1993), the Al2O3 particles were added to BSG. The strong 

coupling between Al3+ ions from Al2O3 and Na+ ions from BSG was found to change the glass 

network structure by substituting Si+4 by an Al+3 in the glass network. Due to the balance of 

charges a change in the composition could have occurred leading to the inhibition of cristobalite 

phase growth in BSG. Similarly in BSG+MS the inhibition to the crystallization could have 

occurred due to coupling between Al ions from MS and Na ions from BSG or any similar charge 

relaxation phenomenon which could have controlled the cristobalite growth (See figure V.34).  
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Figure V.33: XRD pattern of MS waste before and after direct heating at 950 °C 

 

 
Figure V.34: XRD peaks of BSG + xMS foam GCs sintered at 950 

o
C for 30 min 

 

To understand the softening behavior of BSG and MS the DTA measurements were performed 

(see figure V.35). At 825 °C, BSG exhibited small endothermic reaction representing the softening 

temperature. Though cristobalite formation is shown in XRD graphs (see figure V.34), there is no 

representative crystallization peak in DTA as the kinetic is probably too slow at the employed rate 

(10 °C/min). For MS, the endothermic peak at 820 °C is supposed to represent the initiation of 

softening (Lima and Monteiro, 2001) while complete softening was observed above 1000 oC.  

Weight loss of BSG is negligible (0.4% is assumed as machine correction) while MS lost ~2%. 

The weight loss could correspond to iron oxidation and decomposition of carbonates present in the 

composition, as mentioned above in this paper. 
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Figure V. 35: Thermal analysis of pure BSG and MS 

 

The release of gas in the material due to phase change of certain elements in the composition 

provides basis for self-foaming effect. Such reactions in the matrix of the low viscosity glass can 

create foam like structure. The BSG when heated to 950 oC attains low viscosity state and the 

release of oxygen from iron oxide decomposition in MS has self-foamed the material (see figure 

V.36).  

 

 
Figure V.36: Microscopic view of closed porosity in BSG-50 wt% sample. 

 

It was observed that the sintered bodies with different concentrations of MS in BSG exhibited 

different physical properties. Using pycnometric measurements the volume porosity of 77% was 

recorded for 10 wt% MS while volume porosity of 67% was recorded for 50 wt% MS in BSG. The 

densities of 0.5 g/cm3 and 1 g/cm3 were measured for 10 wt% and 50 wt% MS in BSG. The 

changes in physical parameters of GCs could be attributed to the refractory elements present in 

MS. The presence of insoluble particles in viscous BSG could have affected growth of bubbles and 

thereby volume porosity and density of the foamed GCs. Therefore to further understand the 

influence of refractory elements on foaming of MS+BSG sintered bodies, annealing time was 

varied (15, 30, 45 and 60 min) on samples with different compositions (see figure V.37).  
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Samples with different compositions developed a similar pore size of ~0.5 mm when annealed 

for 15 min, while the pore size rose gradually with the increase in annealing time. The gas volume 

could rise in pores with temperature homogenization and further decomposition of gasifying 

elements in sinter body. Increase in the gas volume of pores creates addition pressure on walls 

which in turn pushes insoluble particles at walls to pack tightly causing a particle flow. If insoluble 

particles volume is considerably less, then an increase in annealing time can create thin wall, 

which will tend individual pores to coalesce and grow in size. If the insoluble particles volume is 

greater then it becomes difficult for particles to flow hence retains fine pores. Therefore, under the 

similar sintering condition less MS concentrations in BSG created larger pore size and higher MS 

concentration created fine pores even after 60 min of annealing. It can be observed that in GCs 

with 50 wt% MS, the standard deviation values are negligible. This indicates that structurally these 

GCs are reproducible by optimizing composition, heating rate and annealing time.  

 

 
Figure V.37: Comparison between pore size distribution in Glass-ceramic composites made of 10, 20, 30, 40 

and 50 wt% MS in BSG processed at 950
 
oC at different annealing times (15, 30, 45 and 60 min). 

 

The change in thickness of pore wall leads to the change in mechanical properties. Foamed GC 

with thick and non-porous walls can exhibit greater strength compared to porous and thick walls 

(Bernardo et al., 2010). The presence of cristobalite phase in the microstructure decreases the 

mechanical strength of GC because of its brittle nature. The addition of higher wt% of MS has 

inhibited the cristobalite growth as observed in figure V.34. Compressive strength measurements 

on low MS GCs showed less mechanical strength while with higher MS an increase in the 

compressive strength was recorded (see figure V.38). The direct effect of increased refractory 

elements, thick and non-porous wall structure (see figure V.36) led to the increase in compressive 

strength. A compressive strength of ~14 MPa with a total porosity of 67% and density of 1 g/cm3 

was obtained for samples of 50 wt% MS in BSG. Considering high standard deviation value for 50 

wt% MS, it can be concluded that the faster cooling rate i.e., cooling samples in air directly from 

annealing temperature of 950 oC could have developed stresses in the material, such thermal shock 
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could have developed internal cracks deviating the absolute strength of the GC foam. Therefore, 

further studies on optimizing the cooling rates are necessary by keeping the processing conditions 

similar to the proposed once. 

 

 
Figure V.38: Compressive strengths of BSG + xMS foams sintered under DH at 950 

o
C, annealed for 30 

min and cooled in air to RT. 

 

 
Figure V. 39: Geometric density and total porosity in function of MS waste wt% 

 

As presented on figure V.39, the density of 0.5 g/cm3 was recorded for 10 wt% MS waste while 

50 wt% MS waste recorded ~1 g/cm3. At a given temperature and annealing time, with the 

increase in MS content in BSG, a decrease in pore size and pore volume was recorded. MS is rich 

in refractory elements and the increase in particle volume in viscous BSG could affect the growth 

of pores, volume porosity and the density of the foam glass obtained.  

The refractory or non-soluble particles presence in the viscous phase could restrict the flow or 

diffusion of gases within the compact (Jean and Gupta, 1993). The refractory particles could 

decrease the sinterability of the material (Chinnam et al., 2013) which in turn helps the escape of 

gases while the material is being foamed thus decreasing the total volume porosity in the material. 

Hence, samples sintered at the same temperature with increasing wt% of MS waste resulted in the 

decrease in the volume porosity (see figure V.39).  
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MS 
content 

(wt-%) 

Geometric 
density 

(g/cm3) 

Compression 
strength (MPa) 

Specific compression 
strength 

(MPa0.5·cm3/g) 

10 0.51 ± 0.02 1.7 ± 0.9 2.56 
20 0.69 ±0.02 3.9 ± 1.2 2.86 
30 0.8 ±0.01 5.8 ± 0.4 3.01 
40 0.82 ±0.02 11.5 ± 3.9 4.16 
50 0.94 ±0.05 13.2 ± 4.9 3.86 

Table V.19: Specific strengths of glass-ceramic compositions DH at 950 °C for 30 min 

 

Comparing to commercial glass foams mechanical strength (around 5 MPa), elaborated porous 

borosilicate glass-ceramics presented a relevant compressive strength, from 20 wt-% MS content. 

Growing bulk density by MS addition was compensated by a parallel growing porosity, which led 

to particularly relevant specific strength values (see table V.19), a prior index in construction field 

(Ashby, 2005). 

 

V.5.2.d Conclusions 

As a conclusion, we may say: 

• Influence of foaming agents on the pore distribution in glass foam and their mechanical 

properties was successfully avoided by using self-foaming material. The influence of 

heating and cooling rates was successfully avoided by using direct heating conditions 

hence, lowering the reproducibility problems. 

• Direct heating of foam glasses have given the opportunity to lower the total process 

time. Iron phase transformation has evolved gas which was helpful to self-foam the 

sintered body. The possible change in the network of BSG due to the charge relaxation 

phenomenon has inhibited the growth of cristobalite phase. Increase in refractory 

particles volume in the composition has helped to obtain ~14 MPa compressive 

strength for foam glass with a density of 1 g/cm3. 

• Waste derived materials and the processes involved in developing the form glass in this 

paper could attract industry to consider waste residues as the raw materials for 

processing functional materials. 
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V. 6 Glass foams from glass/sludge mixtures 

A metallurgical by-product was tested, mixed with soda-lime glass, in order to produce cellular 

glasses. In particular we referred to Blast Furnace (BF) sludge. BF sludge is rich in C which is 

interesting in a perspective of exploiting foaming properties, as presented in chapter II, thanks to 

the oxidation of carbon and the possible concurrent reduction of iron oxides. The exploitation of 

high percentage of Carbon (~50 mol%) in the waste led to highly porous cellular glasses, proved to 

be chemically stable. The preparation of lightweight ceramics produced from such sludge was 

reported in the literature (Qi et al., 2010). 

 

V.6.1 First characterization 

The chemical composition of the starting waste is available in table V.20. The metallurgical 

sludge used derived from the depuration system of the fumes from top furnace of steel plant 

ArcelorMittal. This sludge is good for the foaming because of its content in C and iron oxides. 

However, it cannot be reused in the top furnace because of its important content of Zn. Indeed, Zn 

would evaporate and condensate on the walls and damage strongly the refractory. 
 

Element [wt%] 

Fe 19.80 
C 44.70 
S 3.00 

CaO 2.84 
Al2O3 2.83 
SiO2 5.75 
PbO 1.30 
ZnO 5.80 

Table V.20: Chemical composition of the BF sludge 

 

 
Figure V.40: X-Ray diffraction pattern of BF sludge before thermal treatment 
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 The XRD analysis (figure V.40) indicates the presence of calcite (CaCO3), hematite (Fe2O3), 

magnetite (Fe3O4) and quartz. Considering the presence of C, we could think at three reactions 

contributing to the foaming of glass/BF sludge, as follows: 

 

CaCO3 → CO2 [gas] + CaO      (1) 

C + O2 → CO or CO2 [gas]      (2) 

MOx → MOy + O2 [x>y]; mainly 2 Fe2O3 → 4 FeO + O2  (3) 

 

V.6.2 Additives 

In order to find optimized formulations, the following additives were tested in the mixture, with 

the main aim of enhancing the oxidation of C: 

• Gypsum (CaSO4·2H2O) 

• MnO2 

• Oxidized glasses (glasses from dismantled cathode ray tubes, glass from the vitrification 

of MSWI ash) 

Panel glass from CRT and glass from MSWI, can be considered as oxidizing agents: in the first 

case, oxygen is known to be dissolved in the glass (CRT glasses are typically produced in 

oxidizing conditions, in order to prevent the reduction of heavy metal oxides), in the second case, 

oxygen may be provided by reduction of iron oxides, present in the formulation (this has been 

already exploited for the manufacturing of glass foams, according to Bernardo et al. (2013). The 

special Ba glass from cathode ray tubes, is not easily reused in the origin sector, since the original 

articles are no longer in the market. The glass from incinerator, rich in iron oxide derives from the 

vitrification of inorganic waste of the incinerator of Vercelli in Italy (VC). 

 

Component CRT panel glass 
(Andreola et al., 2007) 

VC glass 

CaO  13.9 
Al2O3 4.36 14.0 
MgO  4.60 
SiO2 66.1 41.1 
Na2O 7.63 10.3 
K2O 6.65 3.20 

Fe2O3 0.25 4.10 
MnO  0.20 
TiO2 0.13  
BaO 11.4  
SrO 0.99  

Sb2O3 0.44  
Table V.21: Chemical composition of secondary glasses 

 

V.6.3 Optimization of the mixture 

A simple mixture of 95 wt% SL glass and 5 wt% sludge led to inhomogeneous samples after 

direct sintering at 900 °C for 30 min. We can note a “black core”; this is likely due to 

inhomogeneous oxidation of C. At the surface, C reacted with atmospheric oxygen, leading to 

intensive foaming; the C in the internal part did not react with atmospheric oxygen, being 

“shielded” by the porous surface layers. This effect was quite expected; however, we expected also 

some oxidation of C, in the internal part, by reduction of iron oxide. The iron oxide from the 
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sludge evidently did not contribute. In order to improve the oxidation of “internal C” we added 

gypsum and MnO2, still with poor improvements. On the contrary, an improvement was possible 

adding oxidized glasses.  

 
Figure V.41: Reduction of black core on sample cross section 

 

SL glass, sludge, VC glass and panel glass were considered in the proportions indicated in the 

following table.  

 

Compound 

Temperature 

[wt%] 

900 °C 

[wt%] 

800 °C 

SL glass 90 85 
BF sludge 5 5 
VC glass 5  

Panel glass  10 
Table V.22: Compositions of the optimized mixtures 

 

We can note, with panel glass, the removal of black core with increasing firing time at 900 °C, 

from 15 to 30 min. However, the structure of foams from addition of panel glass was not 

satisfactory; due to its low softening temperature (lower than that of soda-lime glass, see Chapter 

III), there was a strong coalescence of pores (presence of big “bubbles” instead of a multitude of 

smaller pores, see figure V.41), generally associated with poor mechanical properties. The glass 

from MSWI, on the contrary, determined a homogeneous foaming, with no coalescence, due to the 

viscosity increase, associated to partial crystallization of wollastonite (see figure V.43). The partial 

crystallization is known to contribute positively to the mechanical strength. As shown by figure 

V.44, the optimized glass foam had a geometric density of 0.35 g/cm3 with a corresponding 

porosity of 86% ± 2%. The compressive strength of 1.18 MPa is in the same order of magnitude of 

that of commercial foams with similar density (in particular, the relative compressive strength, i.e. 

the strength/density ratio σrel = 3.37 MPa·cm3/g, shown as a black line in figure V.44, matches that 

of commercial glass foams). 
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Figure V.42: Removal of black core in the mixture containing panel glass by increasing firing time from 15 

to 30 min  

 

 
Figure V.43: X-Ray diffraction pattern of the mixture showing crystallization of wollastonite phase 

[PDF#76-0186] 
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Figure V.44: Ashby graph including the foam sample from the optimized mixture [“vetro cellulare da 

rifiuti”=waste-derived glass foam] 

 

V.6.3 Assessment of chemical stability 

The optimized foams were subjected to TCLP test (EN 12457) for waste toxicity evaluation. 

The results in concentration of heavy metals and/or toxic elements are positive, i.e. all under limit 

value for toxicity. 
 

Element Leachate / ppm Limit / ppm 

As <0.0049 0.5 
Ba <0.0000 20 
Cd <0.0002 0.02 
Cr <0.0004 0.2 
Cu <0.0001 0.1 
Hg <0.0004 2 
Mo <0.0033 0.5 
Ni <0.0014 2 
Pb <0.0047 0.2 
Sb <0.0099 0.06 
Se <0.0123 0.03 
Zn <0.0026 0.5 
Ag <0.0007 - 

Table V.23: TCLP test on the sample from soda-lime glass, BF sludge  

and oxidizing glass from waste incineration 

 

It must be noted that TCLP was applied of fragment of foamed materials, so that the contact 

area (solution/foam) was particularly high. The test can be considered as highly severe. The only 

issue, still subjected to investigation (in collaboration with Stazione Sperimentale del 

Vetro, Venice, Italy), is the content of Zn. It is true that the release of Zn is negligible, but some 

Zn could be lost directly during firing, by volatilization of metallic Zn, possibly provided by 
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reduction of ZnO by C. The presence of oxygen from MSWI glass, however, could contribute to 

the stabilization of the same ZnO. 

 

V.6.4 Examples of industrial applications 

The cellular glass obtained can be used as a thermal insulating material. In panel form, it can be 

used in the internal or external insulation; in form of granules, it can be easily inserted in concrete. 

As previously discussed, cellular glass has several advantages compared to foamed polymers: it is 

incombustible, highly compression resistant, and it has a lower environmental impact in 

production and dismantlement. In the specific case, the partial crystallization could be useful to 

avoid alkali-silica reaction (ASR) in contact with concrete. 
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Chapter VI 

Novel layered glass-ceramics 

 

 

 

VI.1 Concept of sinter-crystallization and layered glass-ceramics 

 

As previously mentioned, vitrification is the safest approach for the treatment of wastes but the 

process involves difficulties in establishing itself, being particularly cost-and capital-intensive. In 

the case of inorganic waste for which (in contrast to radioactive waste), environmental hazard does 

not impact on the environment by radiations, the feasibility of cost decreasing is justifiable, 

particularly if the glass obtained can be reused in high-value applications. 

If glass-ceramics are the most significant application waste-derived glasses, due to their 

combination of good mechanical properties and chemical stability, the production of such high-

value glass-ceramics from inorganic wastes incurs additional costs, however, particularly 

secondary ceramization treatments which double the energy consumptions. The production of the 

sinter-crystallized glass-ceramics has attracted much attention since the process is shorter 

compared to the traditional method. Quenching the glass frit obtained by a first rapid vitrification 

enables energy saving during both vitrification and ceramization steps. Finally, direct sintering of 

mixtures of inorganic wastes including recycled glasses acting as fluxes is an important 

alternative. The products cannot be strictly called glass-ceramics, since the vitrification of glass 

based components begins at the same time as the sintering and the phases transformations of other 

components. However, there is much evidence in the literature supporting the classification of 

such products as « sintered glass-ceramics », owing to their observed phase evolution (Francis et 

al, 2002).  

The idea presented in Figure VI.1 is to cover the sintered body with a vitrified layer, made of 

the same raw materials as the body (Binhussain et al., 2014). This would be a good solution not 

only to avoid problem of pollutants stabilization, but also to improve mechanical strength. Indeed, 

the glass ceramic layer offers mechanical reinforcement and enhances the stabilization of 

pollutants. 

The production process described has the aim of combining direct sintering of waste mixtures 

and sintering of waste-derived glasses, with the creation of layered « hybrid glass-ceramics » (see 

figure VI.1, red square). The good mechanical properties and homogeneous microstructure of 

sinter-crystallized glass-ceramics were also exploited in a glaze, white or colored, designed on a 

porous base body obtained from direct sintering. Vitrification of waste is sustainable, since it is 

applied only to a limited amount of the starting material and, in addition, the single firing reduces 

the costs associated with glaze deposition. Owing to their negligible water absorption on the 
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glazed side, and their low density, layered glass-ceramics could be a viable alternative to the 

lightweight tiles currently used in building façades. 

 

 
FigureVI.1: Schematic representation of the three routes for the process to obtain a layered glass-ceramic 

employing selected natural and waste materials 

 

VI.2 Layered glass-ceramics from engineered mixtures of wastes 

 

Monolithic glass-ceramics were produced by a novel sintering approach, involving both 

chemical composition and manufacturing operations. The surface porosity of a glass-ceramic body 

from direct sintering can be sealed by a dense sinter-crystallized glass-ceramic layer, produced 

from the same starting raw materials, consisting of a mixture of fly ash from thermal power plants, 

recycled soda-lime glass and boron waste (residues of the mining and purification of valuable 

boron containing minerals). The use of the latter waste, providing B2O3, allowed a substantial 

viscous flow, for the substrate, even at a relatively low sintering temperature (850 °C). 

The dense sinter-crystallized layer, besides imparting improvements in the mechanical 

properties, was found to feature an enhanced chemical stability. 

 

VI.2.1 Introduction 

Vitrification is a well-recognized technology for the stabilization of many types of inorganic 

waste, including radioactive waste (U.S. Patent, 1992). However, being particularly energy and 

capital-intensive, there are some difficulties in establishing the approach on an industrial scale. 

For non-radioactive waste the costs of vitrification can be compensated by the possible reuse of 

the waste-derived glass as a raw material for new products (Colombo et al., 2013). Glass-ceramics 

are undoubtedly the most established product from the reuse of inorganic waste, after vitrification 

(Rawlings et al., 2013). However, it should be noted that glass-ceramic manufacturing implies 

additional costs: the waste-derived glasses must be first shaped (e.g. by rolling of the melt) and 

then subjected to a secondary ceramization treatment, aimed at glass devitrification, i.e. nucleation 

and growth of crystalline phases. Further treatments on the glass-ceramic products, such as cutting 
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and polishing, can be additionally requested, before commercialization and final use (e.g. in 

buildings, replacing natural stones and traditional ceramics) (Höland and Beall, 2002). 

Frit-derived or “sinter-crystallized” glass-ceramics have attracted much attention as an 

alternative to conventional glass-ceramic manufacturing, in order to reduce the costs (Schabbach et 

al., 2011). In fact, energy savings are associated with both vitrification and ceramization steps, 

since waste glasses may be poured just after homogenization, thus avoiding the expensive refining 

step, and crystallization may occur very rapidly (in one hour or less, at a sufficiently high sintering 

temperature) as a result of surface nucleation, even for glasses with a very low content of oxides 

that can act as nucleating agents (i.e., oxides with poor solubility in glass, such as TiO2 and ZrO2 

)(Gutzow et al., 1998). Grinding is generally an expensive step, but we should consider that the 

fragments produced by pouring a glass melt into water possess high internal stresses, favorable to 

milling, and fine glass powders can be easily converted into flat glass-ceramic tiles, by simple 

pressing and single-step firing, minimizing cutting and polishing operations (Bernardo et al., 

2006). 

Although shorter, the high-temperature (>1350–1400 °C) melting stage, with sinter-

crystallization, remains. The melting stage can be even avoided when adopting a further sintering 

approach. Many investigations, from the literature, support a second type of “sintered glass-

ceramics”, derived from direct sintering of mixtures of inorganic waste including recycled glasses, 

which act as fluxes (Francis, 2002, Dimech et al., 2008). The products are not strictly glass-

ceramics, since there is no formation, at any stage, of a homogenous glass to be crystallized later. 

However, the recycled glass component (present in significant amounts), besides promoting an 

increase in density as a result of viscous flow sintering, reacts with the waste, leading to the 

formation of silicate and alumino-silicate crystals (similar to those produced by devitrification of 

waste glasses) and of a new glass phase. 

Like in conventional glass-ceramics, pollutants in products from direct sintering could be 

embedded in the crystalline and/or in the amorphous phase, but they could escape more easily, 

since the chemical homogeneity of a sintered solid is much lower than that of a glass obtained 

from melting (pollutants might remain concentrated in regions not completely dissolved by the 

liquid phase provided by the glass component). 

 

 

Figure VI.2: Schematic representation of the three routes for the production of glass-ceramic 

materials employed in the present chapter part 
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The present section aims at providing an example of this new strategy, combining the 

advantages of direct sintering and sinter-crystallization, with the creation of “double layer glass-

ceramics”, recently presented (Binhussain et al., 2014) (see figure VI.2) with an engineered 

chemical formulation. A selected mixture of waste (fly ash from thermal power plants, recycled 

soda-lime glass and boron waste) is mostly used for direct sintering; the base body, however, is 

coated by a glaze, derived from sinter-crystallization of a glass from the melting of the same 

mixture. The glazed side is that to be directly exposed to the environment: the sinter-crystallization 

process provides a layer with negligible water absorption and enhanced chemical stability. The 

sinter/sinter-crystallization approach, in the present investigation, is favored by the specific choice 

of starting waste; in particular, the presence of B2O3, allows sintering treatments at only 850 °C, 

due to enhanced viscous flow.  

 

2. Experimental procedure 

The chemical composition of the starting waste raw materials in this study is reported in table 

VI.1. SL corresponds to the fraction of recycled soda-lime glass that is difficult to reuse in 

conventional glass production owing to its impurities; FA refers to fly ash from lignite combustion 

(Public Power Industry of Greece, Megalopolis plant); BW represents boron-rich residues from the 

extraction of commercially valuable borate minerals (from borate mine waste deposits in Bigadic, 

Turkey). BW residue was considered after ball milling, aimed at homogenization, and calcination 

at 500 °C, for 2 h, aimed at the removal of decompose hydrated boron salts (BW contains several 

types of calcium borate hydrates, e.g. colemanite - CaO·3B2O3·5H2O -, mixed with calcite) (Cicek 

et al., 2013). 
 

Oxides SL glass FA BW Waste glass BS glass 

SiO2 71.6 49.4 16.1 50.2 72 
Al2O3 1.0 22.7 0.9 7.6 7 
Na2O 13.5 0.9 0.2 5.8 6 
K2O 0.4 1.4 0.5  2 
MgO 3.9 1.6 6.9 4.9  
CaO 9.0 8.9 26.4 17.3 1 
B2O3  0 19.7 8.2 12 
Fe2O3 0.1 7.4 0.1 2.3  
TiO2  1.1    
SrO   1.2   

others 0.5 5.3  3.7  
L.O.I.  1.3 28.0   

Table VI.1: Chemical compositions (wt%) of the starting waste and  

of the resulting waste-derived glass 

  

The waste materials were considered in the weight proportion SL/FA/BW=40/30/30.  

 

3 Results and discussion 

Figure VI.3 illustrates the evolution of both density and water absorption with increasing firing 

temperature, for the samples from direct sintering. We can note that the density increased almost 

linearly up to 1000 °C, reaching an almost stationary level of about 2.3 g/cm3. The water 

absorption, well above 15%, from 800 to 1000 °C, went abruptly below 2% (1.3%) at 1050 °C. 

This behavior is reputed to be due to interactions between the components of the starting mixture; 
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the glass component caused some densification by viscous flow, with increasing firing 

temperature, but also some dissolution of the other components, in turn stimulating the 

crystallization. The formation of a rigid network, from the interlocking of crystal inclusions, 

limited the same viscous flow, up to 1050 °C; at this temperature the flow of the glass phase did 

not deter mine a complete removal of porosity, but sufficed for the sealing of the external surfaces 

of samples, obviously subjected to a more intense heating than the rest. 
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FigureVI.3: Evolution of density and water absorption for glass-ceramics from direct sintering (S) 

 

 
a  b  

Figure VI.4: a) Phase evolution in glass-ceramics from direct sintering (S) 

b) Comparison between glass-ceramics from direct sintering (S) and from sinter-crystallization of waste-

derived glass (GC) 
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The starting composition was originally conceived with the aim of reproducing the molecular 

balance of main oxides, CaO, Al2O3 and SiO2, present in most waste-derived glass-ceramics, e.g. 

the well-known “Slag-sitalls” (Rawlings et al., 2006; W. Höland, G. Beall, 2002), with the 

additional contribution of B2O3; calcium silicates and alumino-silicates were expected as typical 

phases of a glass belonging to the CAS (CaO-Al2O3-SiO2) system, whereas boron oxide was 

expected to remain in the residual glass phase, lowering the viscosity. 

The XRD patterns, reported in figure VI.4a, demonstrate the substantial crystallization of the 

expected phases, even at low temperature. More precisely, above 850 °C, wollastonite (CaSiO3, 

PDF#84-0655) is clearly recognized as the most significant phase; the interlocking of crystals, 

previously hypothesized, is reasonable, considering the usual fibrous morphology of wollastonite 

crystals. Interestingly, at 1050 °C, only a secondary silicate, belonging to the pyroxene family 

(augite, Ca0.818Mg0.792Fe0.269Al0.42Si1.751O6, PDF#71-0721), is detected; variants of crystalline silica 

(α-quartz, PDF#87-2096, and α-cristobalite, PDF#82-0512) are detected in significant traces only 

below 950 °C; finally, another silicate phase (andesine, Na0.622Ca0.368Al1.29Si2.71O8, PDF#83-1938) 

is visible up to 1000 °C. 

No diffraction peak may be attributed to phases originally present in the BW waste (discussed 

by Cicek et al., 2013): B-rich compounds likely dissolved in the liquid phase provided by the 

softening SL glass, turning it into a boro-silicate phase. The developed Ca-rich silicate phases are 

practically identical to those developed from vitrification-crystallization process: this observation 

is supported by the comparison between S sample sintered at 950 °C (temperature at which 

wollastonite and augite peaks appear as well-defined) and samples from the sinter-crystallization 

of glass powders obtained from the same mixture, shown in figure VI.4b. Well-defined 

wollastonite and augite peaks are actually detected applying sinter-crystallization at only 850 °C; 

we may say that the selected mixture of raw materials yields, for both direct sintering and sinter-

crystallization of glass powders, the same phases, in turn depending on the mixing of oxides; the 

higher homogeneity in the distribution of oxides, with vitrification, allows for lower precipitation 

temperatures. The substantial crystallization, already at 850 °C, for GC samples, is consistent with 

the DTA plot reported in figure VI.5: a strong exothermic effect, for fine powders of waste glass, 

is visible at about 870 °C. 
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Figure VI.5: DTA plot for fine powders of waste glass 
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The sinter-crystallization process led also to improvements in the water absorption, which 

resulted negligible even starting from samples fired at 850 °C. This finding encouraged us to 

proceed with the development of “hybrid glass-ceramics” with a layered structure, i.e. materials 

with a main body from direct sintering of constituents and a glaze derived from a glass frit, in turn 

obtained by vitrifying the same constituents. In fact, materials developed according to this novel 

approach have the potential to fulfil the requirements of tiles for high values applications such as 

the so-called ventilated façades (Bernardo et al., 2010b), i.e. both low density (in the order of 2 

g/cm3 or below) and water absorption (below 2%). 

From table VI.2 we can note that a firing temperature of 1050 °C was necessary for tile samples 

from direct sintering to possess an adequately low water absorption (<2%); although containing 

many isolated pores, as shown by figure VI.6a, it is much denser than that sintered at 950 °C. The 

sample fired at 1050 °C, illustrated by figure VI.6b (fracture surface), and the sinter-crystallized 

one, sintered at 950 °C, shown in figure VI.6c, both contain a multitude of randomly oriented 

fibrous crystals, confirming the analogy inferred from X-ray diffraction analysis. 

 

Samples 

Sintering 

Temp. 

Water 

absorption 

Density 

ρ 

Elastic 

modulus, E 

4-pt 

bending 

strength, σ 

 °C % g/cm3 GPa MPa 

S1 950 24 2.04 ± 0.09 22 ± 1 16 ± 1 
S2 1050 1.3 2.32 ± 0.01 62 ± 2 44 ± 3 
GC 950 <0.5 2.66 ± 0.05 56 ± 2 32 ± 4 

HGC 950 <0.5* 2.16 ± 0.04 25 ± 3 14 ± 2 
HGC-BS** 850 0.8 * 2.05 ± 0.06 19 ± 3 25 ± 4 

Table VI.2: Physical and mechanical characterization data for tile samples* data referred to the glaze; ** 

5% Al2O3 – 95% glass (57% waste glass – 38% BS) 

 

A first “hybrid glass-ceramic” sample was fired at 950 °C, i.e. the minimum temperature at 

which, as discussed above, the phase composition of samples from direct sintering and that of 

samples from sinter-crystallization coincide. As illustrated by figure VI.6d, the coating was 

uniform, except for defects from manual handling, highlighted by arrows; the interface, shown in 

figure VI.6e, is visibly crack-free. As reported in table VI.2, while the density of the HGC sample 

was not particularly enhanced by the glaze, the water absorption of the glazed size is dramatically 

lower than that of the sintered body. 

Despite the practical identity of phase composition, the sinter-crystallized glaze and the 

sintered body could differ in terms of chemical homogeneity, considering that, as reported in the 

introduction, pollutants might remain concentrated in regions not completely dissolved by the 

liquid phase developed upon firing. This observation is substantially confirmed by the leachates 

from TCLP testing, reported in table VI.3; the release of most metals, from the glass-ceramic from 

sinter-crystallization at 950 °C, is much lower than from the glass-ceramic from direct sintering at 

1050 °C, with the exception of As and Pb (unchanged) and Ni (higher leaching after sinter-

crystallization). In both cases, however, the release is much lower than the limits for an “inert” 

material. A further reduction of the ionic releases could be provided by the mixing of the waste 

glass with a glass with high chemical stability, such as recycled pharmaceutical borosilicate glass, 

already used to densify and stabilize waste-derived glass-ceramics (Cicek et al., 2012). 
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Figure 

VI.6: Microstructural details of sintered samples: a, b) S sample, fired at 1050 °C; c) GC, 950 °C; d) visual 

appearance of HGC sample, 950 °C; e) glaze-body interface, HGC sample, 950 °C; f) glaze-body interface, 

HGC-BS sample, 850 °C 

 

The main purpose of the glass addition in the present case, however, was the control of 

shrinkage, when operating with a glaze even below 950 °C. In fact, the directly sintered body, 

fired at 850 °C, had a far lower shrinkage (∼2%) than at 950 °C (∼5%), causing the development 

of cracks in the glaze. The cracks were progressively removed by increasing the concentration of 

borosilicate glass; a slight amount of alu mina was introduced in order to lighten the yellow color 

of both glass-ceramic glazes. From figure VI.6f we can observe that operating with a mixture in 

the weight proportion alu mina/borosilicate glass/waste glass=5/38/57 (borosilicate glass and 

waste glass in the proportion 40/60), in a second hybrid glass-ceramic sample (HGC-Bs), the 

interface is again homogeneous and crack-free, after firing at 850 °C. As reported by table VI.3, 

the new formulation of the glaze had positive effects even on the leaching (TCLP was applied to 
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discs of glaze mixture fired in the same conditions than HGC-BS), with the exceptions of Ba, Ni 

and Pb.  

 

Element 

Leachates (ppm) EN Limit 

for inert 

material 

(ppm) 

S 1050 °C 

GC (=Glaze 

HGC) 

950 °C 

Glaze 

HGC-BS 

850 °C 

As 0.0091 0.0108 0.0049 0.5 
Ba 0.3783 0.0435 0.0711 20 
Cr 0.1303 0.0071 0.0039 0.2 
Cu 0.0293 0.0070 0.0014 0.1 
Mo 0.1535 0.0191 0.0033 0.5 
Ni 0.0014 0.0325 0.0513 2 
Pb 0.0096 0.0107 0.0328 0.2 
Se 0.0122 0.0122 0.0122 0.03 
Zn 0.0380 0.0203 0.0203 0.5 

Table VI.3: Chemical analysis of the leachate of selected samples subjected to TCLP testing 

  

 
Figure VI.7: Ashby’s plots of developed glass-ceramics compared with non-technical ceramics and glasses 

(a) Young’s modulus; b) flexural strength 
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A final remark concerns the mechanical properties of the different types of glass-ceramics 

developed. Figure VI.7 illustrates the typical Ashby’s plots (Ashby, 2005) considered for 

lightweight design (modulus/density, strength/density), representing data for traditional ceramics. 

The glass-ceramic materials here presented, highlighted in yellow, considering the guidelines for 

the manufacturing of lightweight panels (referring to the indices I=E1/3/ρ and I’=σf
1/2/ρ, where E is 

the elastic modulus, σf is the bending strength, or modulus of rupture, and ρ is the density; the 

performances of our samples are illustrated by the red lines), compare favorably with most 

construction materials available at the moment. More precisely, HGC-BS is the most efficient, 

considering the constraints of low density and low water absorption (penalizing GC and S2 

samples, respectively) for the above mentioned application in ventilated façades. 

 

4. Conclusions 

We may conclude the following. 

• The phase composition of glass-ceramics from direct sintering of a waste mixture and 

from vitrification and subsequent sinter-crystallization may coincide, operating above 950 

°C; this was likely due to the extensive fluxing ability offered by both soda-lime glass and 

boron waste; 

• Both types of glass-ceramics are chemically stable, according to the results of TCLP 

testing; the ionic releases, however, are lower for sinter-crystallized samples, than for 

directly sintered ones, owing to the higher chemical homogeneity; 

• The surface porosity of a glass-ceramic body from direct sintering can be sealed by a 

sinter-crystallized glaze, produced from the same starting waste mixture, thus forming 

layered glass-ceramics, at the temperature at which the phase composition is nearly 

identical (950 °C); 

• The characteristics of the waste-derived glass-ceramic glaze can be tailored by the 

addition of secondary components (pharmaceutical borosilicate glass and alu mina), 

allowing for the manufacturing of layered glass-ceramics at only 850 °C; 

• Owing to their characteristic specific strength, layered glass-ceramics could find 

applications in the building industry as lightweight tiles, e.g. in ventilated façades. 

 

VI.3 Optimization of glass-ceramics from mixtures of glass and 

metallurgical slags 

 

Glass-ceramics based on iron rich wastes are produced following an innovative approach, 

combining direct sintering and sinter-crystallization processes. According to this method, a layered 

tile is manufactured by single firing at 900 °C, using a selected combination of wastes for both 

porous body and dense coating layer. The coating layer (“glaze”) is due to sinter-crystallization of 

a waste-derived glass mixed with zircon and recycled borosilicate glass. The glaze sealed the 

porosity of body and enhanced both mechanical properties and chemical stability. Indeed, the 

results report a near-to-zero water absorption rate, despite a low geometric density (~2 g/cm3), 

accompanied by a Young’s modulus of ~40 GPa and a bending strength of ~30 MPa. The results 

of leaching behavior are consistent with EN standard for chemical stability of wastes.  
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VI.3.1 Introduction 

 

Vitrification technology has proved to be one of the most successful ways to stabilize inorganic 

wastes, and particularly radioactive waste (US E.P.A, 1992). As pointed out by Colombo et al., 

(2003) the stabilization of non-radioactive wastes is subjected to sustainability constraints: 

vitrification may be feasible when waste-derived glasses can be used as secondary raw materials, 

i.e. the costs associated to high temperature treatments are compensated by the value of new glass-

based products, among which glass-ceramics are undoubtedly the most established (Rawlings et 

al., 2006). 

In most cases, for the production of glass-ceramics, a glass is first shaped (e.g. by rolling of the 

melt) and then subjected to a secondary ceramization treatment, aimed at nucleation and growth of 

crystalline phases. Further treatments on the glass-ceramic products, such as cutting and polishing, 

can be additionally requested, before commercialization and final use (Höland and Beall, 2002). 

Frit-derived or “sinter-crystallized” glass-ceramics have also raised much interest as a low cost 

alternative to conventional glass-ceramic manufacturing (Schabbach et al., 2011). Indeed, if waste 

glasses are poured just after the homogenization, the (expensive) refining step is no longer 

required. Crystallization occurs more rapidly as a result of surface nucleation, in one hour or less, 

at a selected sintering temperature. Starting from pressed fine glass powders also cutting and 

polishing operations are minimized.  

The viscous flow sintering approach can lead to glass-ceramics even avoiding the high 

temperature melting stage (1350 °C-1400 °C). In fact, wastes, combined with significant amounts 

of recycled glasses, can be subjected to “direct sintering”. The dissolution of inorganic waste in the 

liquid phase provided by the recycled glass and the formation of new silicate and alumino-silicate 

crystals (similar to those produced by devitrification of waste glasses) support the identification of 

the products as glass-ceramics, although not derived only from a homogeneous parent glass 

(Rawlings et al., 2006).  

 

 
Figure VI.8: Schematic representation of the processes adopted for the development of glass-ceramics based 

mainly on metallurgical slags and soda-lime glass 

 
Glass-ceramics from direct sintering have one fundamental advantage and one fundamental 

disadvantage compared to “classical” glass-ceramics. Besides for the savings in energy required by 

the overall manufacturing process, the direct sintering is advantageous for reducing the 
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volatilization of some pollutants (e.g. fluorides, Ponsot et al., 2013); on the other hand, some 

pollutants could remain concentrated in some areas of the samples. 

This paper describes the obtainment of glass-ceramics from direct sintering of metallurgical 

slags, mixed with recycled soda-lime glass. A new strategy - recently proposed (Binhussain et al., 

2014) - combining the advantages of direct sintering and of sinter-crystallization, is also exploited. 

As illustrated by figure VI.8, “layered glass-ceramics” (LGC) could be considered as a third 

option, besides glass-ceramics from sinter-crystallization and direct sintering. A single-step 

treatment causes the direct sintering of a base body of glass/waste mixture, and the sinter-

crystallization of a frit, from a glass in turn derived from the same starting materials. The chemical 

stability may be optimized, since the glazed side would be that to be exposed directly to the 

environment. 

Vitrification of waste is reputed to be sustainable, since it is applied only to a limited amount of 

the starting materials; the single firing reduces the costs associated to the deposition of a glaze. In 

addition, there is a good matching of the concept of LGC with the requirements of modern 

building façades. In fact, there is growing demand for lightweight tiles, with low water absorption 

(below 2%, for optimized frost resistance), to be placed vertically, anchored to metal frames, in 

turn fixed on main building walls: the air gap between tiles and substrate walls contribute 

positively to the thermal insulation (mimimizing thermal losses, in winter, and minimizing 

overheating, in summer). A solution may come from traditional porcelain stoneware tiles with an 

engineered porosity, due to the use of foaming agents (Bernardo et al., 2010); waste-derived LGC 

could be far more convenient, since we could exploit the porosity of the core, formed by direct 

sintering, coupled with the strength, low water absorption and possibly pleasant color of the glaze, 

avoiding the use of valuable natural materials.  

 

VI.3.2 Experimental procedure 
 

VI.3.2.a Sample preparation 
Table VI.4 reports the chemical compositions of the starting raw materials and the formulations 

developed from them. “S1” and “S2” refer to two types of iron rich slags coming from non-ferrous 

metallurgy, provided by KU Leuven (Belgium). As previously reported (Ponsot et al., 2014), “S1” 

is partially crystallized, with fayalite, i.e. Fe(II) silicate (Fe2SiO4 or 2FeO·SiO2) as the main crystal 

phase, whereas “S2” is amorphous. Soda-lime glass (SLG), provided by Sasil SpA (Brusnengo, 

Italy), corresponds to the fraction of recycled soda-lime glass in which the amount of ceramic 

impurities impedes extensive reuse in the manufacturing of new glass containers (closed loop 

recycling). Borosilicate glass (BSG), provided by Nuova OMPI (Piombino Dese, Italy), derives 

from discarded pharmaceutical containers. Slags and glasses were first ground separately into fine 

powders by ball milling and then sieved up to 90 µm. 

Mixtures of fine powders of SLG and slags, corresponding to the proportions 50%S1-50%SLG 

(M1) and 50%S2-50%SLG (M2), were sintered at 900 °C, 950 °C and 1000 °C. 

The slag S2 was considered as raw material for a glass frit (WDF). This frit was obtained by 
melting a second SLG/S2 mixture (75%SLG-25%S2) at 1300 °C for 3 h, and later fired at 900 °C. 

Layered glass-ceramics (LGC) were obtained by double pressing in a 50 mm × 34 mm 

rectangular die. A base layer of M2 mixture was first subjected to light pressing (10 MPa) and 

subsequently coated with WDF/glass/zircon powders (a weight proportion WDF-BSG-Zircon of 

40-15-45 was the optimum one) in an amount corresponding to a surface density of 0.080 g/cm2. 
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Component S1 S2 

Soda-lime 

glass 

(SLG) 

Boro-silicate 

glass 

(BSG) 

Mixture 1 

(M1) 

Mixture 2 

(M2) 

Waste-derived frit 

(WDF) 

Oxides (wt%) 

SiO2 29 24 71.6 72 50.5 47.8 59.7 
FeO 52 32   26 16 8 

Al2O3 4 6 1.0 7 2.5 <1 2.2 
Na2O <1 <1 13.5 6 7 7 3.7 
K2O <1 <1 0.4 2 <1 <1 <1 
MgO 1 1 3.9  2.5 2.5 3.1 
CaO 2 21 9.0 1 5.5 15 12 
ZnO 7 7   3.5 3.5 1.7 
B2O3 <1 <1  12 <1 <1  

Formulations (wt% balances) 

M1 50  50     
M2  50 50     

WDF  25 75     
Glaze for LGC*    15   40 

* remaining 45% represented by zircon (ZrSiO4) mineral 

Table VI.4: Chemical compositions and formulations of starting wastes, recycled glasses and waste-derived 

glass-ceramics 

 
The coating was performed by leaving the pressed powders inside the die, removing only the 

plunger; the WDF powders were manually passed through a sieve positioned over the open die. 

After repositioning the plunger, the interpenetration between the WDF/glass/zircon powders and 

the substrate was achieved by secondary pressing at 40 MPa. Layered glass-ceramics were 

subjected to the same thermal treatment applied to M1 and M2. 

 
VI.3.2.b Results and discussion 

The preliminary firing treatments, on small disc samples, were aimed at evidencing the impact 

of temperature on density and water absorption, critical to applications in the building industry 

(Bernardo et al., 2010). From figure VI.9 we can observe that the two slags, mixed with soda-lime 

glass, led to samples with quite particular density and water absorption trends. Increasing the 

temperature of sintering from 900 °C to 1000 °C, the density almost linearly decreased, in parallel 

with a visibly growing porosity. S1 actually leads to lighter bodies, with the density curve 

corresponding to M1 mixtures always lower than those of M2 mixtures; the water absorption, on 

the contrary, is minimized for M1 samples.  
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Figure VI.9: Density and water absorption of samples from direct sintering (preliminary firing tests) 

 

The formation of pores is attributed to oxygen release (abundant in S1 and S2 slags). It may be 

observed that, from table VI.4, iron is in the Fe2+ (FeO) state, in the starting slags; for S1, in 

particular, this is consistent with the presence of fayalite (Fe2SiO4, PDF#09-0484), as actually 

shown in figure VI.10. However, a first oxidation by direct slag/air interaction (e.g. 

“oxygenolysis” of Fe2SiO4, yielding SiO2 and Fe2O3 or Fe3O4) (see chapter V.4), could be 

followed by reduction, as a consequence of slag/glass interactions (the glass chemistry affects the 

stability of the iron oxides: this has been recently observed with soda-lime glass/basalt mixtures, 

leading to highly porous glass-ceramic) (Marangoni et al., 2014).  

 
Figure VI.10: X-ray diffraction patterns of selected samples from direct sintering (preliminary firing tests) 

 
The diffraction patterns of M1 and M2 fired sample, in figure VI.10, may be seen as a 

confirmation of the oxidation/reduction sequence. In fact, both magnetite (Fe3O4, PDF#86-1356) 
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and hematite (Fe2O3, PDF#72-0469) appear in samples fired at 900 °C, for both formulations. For 

M1, cristobalite (crystalline SiO2, PDF#82-0512), is also evident, as a result of fayalite 

decomposition. The magnetite peaks (see, in particular, the strongest line at 2θ ~ 35°), for M1, 

become stronger with increasing firing temperature, whereas those of hematite (strongest line at 2θ 

~ 33°) become weaker, consistently with a reduction reaction, providing oxygen release  

(6 Fe2O3 → 4 Fe3O4 + O2). The glass/slag interactions are further testified by newly formed 

silicates, relatively rich in silica (limited in both S1 and S2, abundant in SLG). Fort both 

formulations we can observe the presence of pyroxene, corresponding to the general formula 

CaMgxFe1-xSi2O6 (the position and the intensity of peaks are well-matched by CaMg0.34Fe0.66Si2O6, 

PDF#87-0701, and CaMg0.52Fe0.48Si2O6, PDF#87-0701). The chemistry of this phase is probably 

even more complicated, since it can incorporate additional ions, e.g. Zn2+ as well as Al3+ (from 

slags) (Rincón et al., 1999). Finally, samples from S2 slag, richer in CaO, feature wollastonite 

(CaSiO3, PDF#84-0655). The formation of wollastonite could be seen as a reasonable cause for the 

observed enhanced water absorption for M2 samples. The viscous flow sintering of the glass phase 

could fill the external porosity (the sample M1 fired at 900 °C, as an example, exhibited a water 

absorption of only ≈1%); however, the presence of rigid inclusions could delay the flow (Pascual 

et al., 2005), especially in the case of inclusions represented by highly elongated crystals, like 

those usually associated to wollastonite (Bernardo, 2008).  

 

 
Figure VI.11: a) Aesthetic appearance of tiles samples from M1 and M2 mixtures; b) microstructural detail 

of sample M1; c) microstructural detail of sample M2 

 
As shown by figure VI.11a, tiles samples from M1 and M2, fired at 900 °C, were quite 

different. M1, presenting a black color, became smooth and particularly brilliant, after polishing 

(up to 5 µm), in good analogy with porcelain stoneware and natural stones. On the contrary, M2, 

featuring a red color, remained quite opaque. The difference is evident also in the high 

magnification details, in figure VI.11b and VI.11c; the M1 sample exhibited isolated pores, 

whereas the M2 sample presented a widespread porosity, deter mining the observed opacity, by 

substantial scattering of reflected light and the smoothness of the glazed surface, after polishing.  

 

Sample 
Density 

(g/cm3) 

Water 
absorption 

(%) 

Elastic 
modulus 

(GPa) 

Bending 
strength 

(MPa) 

M1 2.12 ± 0.03 0.6 44.3 ± 4.1 35.9 ± 9.0 
M2 2.08 ± 0.04 5.8 37.9 ± 2.4 27.6 ± 2.7 

LGC (M2 core) 2.16 ± 0.05 1.7 42.3 ± 6.5 31.4 ± 4.7 
Table VI.5: Physical and mechanical properties of waste-derived glass-ceramics 
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The water absorption, for tile samples, as reported in table VI.5, is in good agreement with that 

of discs samples, despite the difference in heating and cooling (the conditions applied to tile 

samples were conceived to minimize thermal gradients, in bigger samples, upon heating, and 

thermal shock, upon cooling). We can say that M1 samples, from direct sintering, exhibit a good 

potential as lightweight tiles, even in the absence of a glaze; the complex of properties (density 

slightly higher than 2 g/cm3, low water absorption, good bending strength) compares favorably 

with that of porous lightweight porcelain (Ponsot et al., 2014). M2 samples, on the contrary, 

cannot be accepted, due to the excessive water absorption. 

Following the scheme of figure VI.8, we considered the deposition of a glaze as a possible 

improvement of M2 samples. This glaze derived from the same starting raw materials (SLG and 

S2 slag) then M2 samples, but with a different balance. In fact, the mixing of 75 wt% SLG with 

25% S2, instead of 50% SLG and 50% S2, could lead to a glass frit (waste-derived frit, WDF) 

with enhanced silica content, promoting the chemical stability. 

 
Figure VI.12: DTA analysis of fine and bulk powders of WDF 

 
WDF was found to be sensitive to surface nucleation. As shown by figure VI.12, fine glass 

powders (with large specific surface) exhibited a significant crystallization exothermic peak at 

about 900 °C; on the contrary, coarse fragments (with limited specific surface) practically did not 

present any peak. Interestingly, WDF is also a good candidate for sinter-crystallization, i.e. 

crystallization with concurrent crystallization; in fact, dense glass-ceramics can be obtained by 

sintering at the crystallization temperature (temperature of the exothermic peak, TC), if this 

temperature far exceeds the dilatometric softening temperature, recognized as the minimum 

temperature for extensive viscous flow (Ray and Tiwari, 2001). In the present case, the 

dilatometric softening temperature was not determined, but there is a particularly wide gap (nearly 

300 °C) between the transition temperature (TG) and TC; considering that the dilatometric 

softening occurs only slightly above TG, WDF had effectively the potential for developing a dense 

glass-ceramic layer, sintering at 900 °C (Bernardo, 2008). 

The color and the shrinkage remained as open issues, concerning the application of WDF as a 

glaze for M2 bodies. In fact, pure WDF discs exhibited a quite unpleasant yellow-brown color and 

far higher shrinkage (∼26%) than M2 samples (6.2 %), after firing at 900 °C; such mismatch could 

cause the development of cracks between the substrate and the glaze, in layered glass-ceramics. 
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This was corrected by considering WDF mixed with zircon and BSG powders. Zircon (well-

known white pigment) improved the aesthetic appearance, leading to samples with a much lighter 

coloration, but also limited the densification. The shrinkage, operating with 45% zircon, fell 

dramatically, at about 1%, while the water absorption was above 7%. The addition of BSG 

enhanced the viscous flow sintering, being not subjected to crystallization: figure VI.13a shows 

that the progressive replacement of WDF with BSG, starting from a sample with WDF and zircon 

in the 55/45 weight proportion, effectively led to samples with moderate shrinkage and low water 

absorption. For the WDF/ BSG/zircon proportion of 40/15/45, the shrinkage matched that of M2 

sample, whereas the water absorption reached 2%, the above mentioned threshold limit for 

optimum frost resistance. 

 

 
Figure VI.13: a) Water absorption/shrinkage evolution with increasing amount of BSG glass in frit-

derived glass-ceramics fired at 900 °C, for 30 min; b) X-ray diffraction pattern of optimized glaze (WDF/ 

BSG/zircon=40/15/45) 

 

The glaze can still be considered as the sinter-crystallization of WDF. In fact, from figure 

VI.13b, we can note that the strongest diffraction peaks correspond to zircon (ZrSiO4, PDF #71-

0991); however, peaks attributable to both wollastonite and pyroxene (see the matching of 

positions with the pattern for M2) are still visible. 

The layered glass-ceramic sample from direct sintering of M2 mixture accompanied by sinter-

crystallization of WDF/BSG/zircon mixture is shown in figure VI.14a. The figure evidences the 

light color and the smoothness of the glazed surface, after polishing. The coating is uniform and 
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evidently crack-free; this is further confirmed by the SEM micrograph in figure VI.14b, clearly 

showing the good interpenetration of the glaze  

(the high atomic weight of Zr makes the zircon-containing glaze lighter, in backscattered 

electrons images), still featuring some residual porosity, with the more porous body from M2 

mixture. “Islands” corresponding to BSG and WDF are evidenced in figure VI.14c (in particular, 

due to the low atomic weight of B, BSG-rich zone appear darker). Finally, the previously 

discussed silicate crystals (wollastonite and pyroxene) are well visible in the WDF-rich areas, in 

the high magnification detail of figure VI.14d, while iron oxides are not visible as separate 

particles. Interestingly, fibrous silicate crystals appear concentrated at the interface with zircon 

particles, as a further proof of surface nucleation.  

As reported in table VI.5, the introduction of a glaze, in LGC sample, did not particularly 

enhance the density, compared to M2; on the contrary, the water absorption (measured on a dense 

disc with the composition of the glaze) was much lower than that of M2. Elastic modulus and 

bending strength improved, and were quite close to those of M1 sample. LGC could be actually 

considered a good candidate for the manufacturing of ventilated façades, like M1, but with the 

additional advantage of a much lighter color. 

 

 
Figure VI.14: Aesthetic appearance and microstructural details of LGC sample, derived from S2 slag: a) 

photographic view; b) interface (SEM micrograph); c,d) high magnification details of the glaze (SEM 

micrographs) 

 
The produced glass-ceramics were evaluated also in terms of stabilization of pollutants, by 

application of TCLP. The tile sample from M1 mixture, according to the leaching data reported in 

table VI.6, is chemically stable, with all metal ions well below the thresholds for inert materials, 

according to European Norm EN 12457. The tile from M2 had some ions above the thresholds (in 

particular Sb); the enhanced specific surface, due to open porosity (in turn associated to the 

observed high water absorption), reasonably maximized the interaction between material and 
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solution, favoring the leaching. In analogy with water absorption, also the leaching was improved 

by application of a glaze, with all metal ions well below the threshold for inert materials for a test 

applied on WDF/BSG/zircon glass-ceramic. 

 

Element 
Leachate / ppm Limits [UE] / ppm 

M1 M2 LGC (glaze) inert material non-hazardous material 

As 0.0241 0.3284 0.0309 0.05 0.2 
Ba 0.0514 >0.7382 0.0157 2 10 
Cd <0.0002 <0.0002 <0.0002 0.004 0.1 
Cr 0.0046 0.0226 0.1152 0.05 1 
Cu 0.0239 0.0602 0.0090 0.2 5 
Mo 0.0148 0.1684 0.0760 0.05 1 
Ni 0.0059 0.0045 0.0024 0.04 1 
Pb <0.0047 <0.0047 <0.0047 0.05 1 
Sb <0.0099 0.2498 <0.0099 0.006 0.07 
Se <0.0122 0.0697 <0.0122 0.01 0.05 
Zn 0.0281 <0.0203 <0.0203 0.4 5 

Table VI.6: Leaching results of samples heated at 900 °C for 30 min with 40 °C/ min rate 

 

Figure VI.15 reports the cell viabilities (left), after a 24 hours exposition in a culture of mouse 

embryonic fibroblasts, and the spreading of cells on samples surfaces (right), with blue and green 

evidencing the nuclei (Dapi markers) and the cytoplasms (calcein markers), respectively. 

 

 
Figure VI.15: Cell viability (in %) referred to a commercial SLG (left); fluorescent microscope images of 

samples from direct cytotoxicity test (right) 

 
Soda-lime glass is the most viable sample for cellular activity. Indeed, its composition is 

similar to simple biocompatible glasses, as Si, O, Na and Ca, present in high majority, are the 

elements that interact mostly in cellular growth (see chapter IV). The cell viability decreased, in 

M1 and in the glaze for LGC, in agreement with the lower percentages of the previously 

mentioned elements, but remained substantial (well above 50%, considered as a threshold for 

toxicity). As previously found with samples from S1 and S2 combined with BSG (Ponsot et al., 

2014), the cells exhibited spreading and mutual interconnections, with an elongated morphology, 

which are well-recognized features to indicate biocompatibility (Pollard et al., 2008; Hoppe et al., 

2011). The results are undoubtedly preliminary (as an example, “indirect” tests, with samples were 

placed in a separate cell culture medium under standard conditions, are still in progress), but the 
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observed biocompatibility well matches with the chemical stability, assessed by TCLP leaching 

test. 

 
VI.3.3 Conclusions 

We may conclude the following: 
• Direct sintering of metallurgical slag (S1) and soda-lime glass can lead to lightweight 

glass-ceramics, with limited water absorption, good mechanical properties and good 

chemical stability; 

• The excessive water absorption and the poor chemical stability of glass-ceramics from 

the mixing of soda-lime glass with another metallurgical slag (S2) can be improved by 

application of a glaze; 

• A single step thermal treatment can deter mine both direct sintering of a waste-derived 

base body and sinter-crystallization of the glaze; 

• A waste-derived glaze can be adjusted, in term of color, shrinkage and viscous flow, by 

addition of zircon and recycled borosilicate glass; 

• Layered glass-ceramics, comprising a waste-derived core and a waste-derived glaze 

could find applications in the building industry as lightweight tiles, e.g. in ventilated 

façades. 
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Chapter VII 

Final remarks 

 

 

 

VII.1 Novel application of waste-derived glass-ceramics: electromagnetic 

shielding tests 
 

VII.1.1 Introduction 

Ceramics and glass-ceramics based on industrial waste have been widely recognized as 
competitive products for building applications; however, there is a great potential for products 
with novel functionalities. As presented in chapter V.4, the substantial viscous flow of borosilicate 
glass led to dense products, for rapid treatments at relatively low temperature (900 °C to 1000 °C), 
whereas glass/slag interactions resulted in the formation of magnetite crystals, providing 
ferrimagnetism. In the case of soda-lime glass, the glass/slag interactions led to the evolution of 
oxygen (due to the reduction of Fe2O3 into FeO) upon sintering, with the development of highly 
porous foams, that could be used as thermally insulating materials, with no need for any foaming 
agent.  

Moreover, the ferrimagnetic properties obtained may be benefic in electromagnetic shielding 
application for EMC chambers. According to Drivnosky and Kejik (2009), problems arise when it 
is necessary to measure the shielding effectiveness of the construction materials for those 
chambers or boxes. Especially in the development stage, before building the whole chambers or 
boxes, it is not possible to perform accurate measurements in the huge sizes: this approach would 
be expensive and time consuming. Constructional problems appears when it is necessary to know 
the shielding efficiency of the developed materials like bricks, plasterboard, concrete etc., and 
particularly composite materials which are necessary to the construction of chambers doors, the 
weakest part of these shielded chambers.  

The generated material, if presenting suitable properties, could replace the current heavy 
construction materials that require both a complicated manutention and a supplementary additive 
coating to provide shielding efficiency in advanced microwave structures such as EMC or 
anechoic chambers. 

 
VII.1.2 Sample preparation 

The starting wastes consisted of the metallurgical slag labelled S2 presented in chapter V.4. 
The drive for investigating this slag relates to the fact it is Fe,Ca,Si-rich and then prone to sintering 
in the desired temperatures ranges. The slag was mixed with recycled soda-lime glass, in the 
following proportions: 75 wt% SL - 25 wt% S2. The chemical composition of the starting waste 
and of the recycled soda-lime glass is reported in Table VII.1. 
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Oxide S2 SL 
Chemical compositions (wt.%) 

SiO2 24 73 
Fe2O3 32 - 
Al2O3 6 - 
CaO 21 11 
MgO 1 3 
Na2O <1 13 
K2O <1 - 
ZnO 7 - 
B2O3 <1 - 

Table VII.1: Oxide content of the starting wastes 

 
Low densities (<1 g/cm3) were generally obtained by an important foaming, upon viscous flow 

sintering, in turn associated to the oxygen release provided by the reduction of ferric oxide into 
ferrous oxide. In fact, the sample elaborated presented an important blowing already present after a 
thermal treatment by direct sintering at 900 °C for 30 min. The rapid expansion enabled to shorten 
the heating time from 30 min to 5 min. 

 
Heating 

time 

Geometric density 
(g/cm3) 

Bulk density 
(g/cm3) 

Total porosity 

(%) 

30 min 0.36 ± 0.05 2.73 ± 0.00 87.2 
20 min 0.38 ± 0.02 2.75 ± 0.00 87.4 
10 min 0.45 ± 0.07 2.83 ± 0.00 82.6 
5 min 0.32 ± 0.06 2.79 ± 0.00 88.4 

Table VII.2: Total porosity of the selected sample {75 wt% SL ;25 wt% S1} sintered at 900 °C 

 
Comparatively to the borosilicate glass (chapter V.4), soda-lime glass favored the mechanism 

of high temperature reduction of Fe2O3, leading to both oxygen release and magnetite Fe3O4 
formation: 

 
3/2 Fe2O3 → Fe3O4 + ¼ O2 

Fe2O3 → 2 FeO + ½ O2 

 
The obtained densities, summarized in table VII.2, were sufficiently low to enable an 

adjustment of the temperature at 880 °C. The obtained foam was lightweight and presented 
relatively good compression strength (see tableVII.3). 

 
Heating time Geometric density 

(g/cm3) 
Bulk density 

 (g/cm3) 
compression strength  

(MPa) 
Total 

porosity (%) 

5 min 0.66 ± 0.03 2.67 ± 0.01 3.60 ± 0.57 75.2 
Table VII.3: Total porosity of the selected sample {75 wt% SL ;25 wt% S1} sintered at 880 °C 

 

To exploit the ferrimagnetic properties of the sample, a composite material was elaborated from 
the samples shaped in granules (see figure VII.1a) according to a typical laboratory granulation 
process (Citu et al., 2011 ; UniPD) and incorporated as fillers in a geopolymer preparation 
(Betonfix, UniPD) in volume proportions 60 % filler / 40 % geopolymer. The produced composite 
was shaped by wet casting (30 wt% water) into round plates of 15 mm thickness and 130 mm 
diameter, using a plastic mold (figure VII.1b). Because of the high density of the geopolymer, the 
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resulting plate presented an increased total geometric density, but still of reasonable value (2.0 ± 
0.1 g/cm3). 

 

  
Figure VII.1: a) Diametric section of a foam granule; b) composite plate 

 

The leachate of the obtained granules shown in table VII.4 indicates a good chemical stability 
lower than the limit for non-hazardous materials. Thus, by incorporating the granules among the 
(inert) geo polymer particles, the dilution of the heavy elements would be sufficient to reach the 
lowest limits of inert material.  

 
Element Leachate / ppm Limits / ppm 

L/S =10 l/kg 
Foam 

 
(S2 25 wt%) 

inert material non-hazardous 
material 

As 0.1811 0.05 0.2 
Ba 0.0399 2 10 
Cd <0.0002 0.004 0.1 
Cr 0.0111 0.05 1 
Cu 0.0429 0.2 5 
Hg 0.0007 0.001 0.02 
Mo 0.0192 0.05 1 
Ni 0.0078 0.04 1 
Pb 0.0050 0.05 1 
Sb <0.0099 0.006 0.07 
Se 0.1018 0.01 0.05 
Zn <0.0203 0.4 5 
Ag 0.0143 -   

Table: Leachate from TCLP (EN version) on foam granules 

 
The innovation here merely consists in combining electromagnetic properties to the 

lightweigthness, thanks to the already present ferrimagnetism. In the recent literature are reported 
similar studies, among them shielding effectiveness tests on low-cost civil engineering 
construction material based on cement containing waste (Migliaccio et al., 2013). 

The obtained plate in two replicates was then submitted to a first set of short electromagnetism 
tests showing a slight modification of the initial field of around 0.1 mT. It was noticed an 
inhomogeneity of the field along the disc superficial perimeter. The points of high concentration 
magnetic field corresponded to foam granules position and the zones showing an absence of 
magnetic field corresponded to geopolymer-rich zones, showing the inhomogeneous distribution 
of iron-containing particles in the disc. This was justified by the inhomogeneity resulting from the 

40 mm a b 
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particles/geopolymer mixture. Electromagnetic shielding effectiveness was tested according to the 
method established for thin films by Desideri et al., (2013) (figure VII.2). 

 

  
Figure VII.2: a) Sample holder ;b) Measurement experimental set-up 

 
In the procedure, the frequency ranged between 100 kHz and 3 GHz. The electrical resistivity 

was measured and reported as an electromagnetic signal. Figure VII. 3 shows the results of the test 
performed on new discs of dimension suitable to the experimentation (disc of 35 mm diameter and 
5 mm thickness, faces parallels and completely flat, with a 3 mm hole in the center).  

 

 
Figure VII.2: Electromagnetic response, in dB, in function of frequency (Hz); a) “zero – setting” curve, no 

sample; b) data with sample, no “zero – setting” 

 
The zero-setting curve (figure VII.2a) corresponds to a blank measurement, “zero situation”, 

i.e. the system in air, without the disc, done in the same geometric conditions as during the trial on 
the geopolymer-foam composite discs (figure VII.2b). Both measurements were done without 
domopack.  

As a result, the obtained difference between the data with and without sample, reported in 
figure VII.3, was very small, in an interval of ± 0.2 dB (among the values in the frequencies 
around 3 GHz). This first result indicated that, in fact, almost no shielding effectiveness effect 
could be observed at low frequencies, between 100 kHz and 3 GHz. 

 

a b 

a b 
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Figure VII.3: Superposition of the collected data to the zero setting curve 

 
Conclusions and further investigations: 

• The material is interesting for lightweight properties. Similar foam granules have 
already proven to constitute a good base for composite structures fulfilling insulating 
functions, as referred in the literature (Apkar’yan, et al., 2008; Shu et al., 2012). 

• Lower frequency shielding effectiveness is however still to investigate with a new 
technique. Indeed, with the increase applications of electronic equipment, the 
electromagnetic interfering problem becomes more and more serious. Also, with the 
increasing use of electrical power, magnetic fields of low frequency are often 
encountered in our environment. These high field strengths may cause disturbances on 
video display units, with interference occurring mainly as frame disturbances when the 
magnetic flux density is above 0.5-1 µT (Keshtkar et al., 2011). 

 

VII.2 Assessment of the stabilization of pollutants by cytotoxicity tests: 

further observations and perspectives 
 

VII.2.1 Study of the cytotoxicity of foams 

For the study of cytotoxicity, cell viability is evaluated mainly by mitochondrial activity. 
Indeed, mitochondria enzymes convert most of the energy released from the breakdown of 
nutrients into the synthesis of ATP, the common currency for most energy-requiring reactions in 
ells. This efficient mitochondrial system uses molecular oxygen to complete the oxidation of fats, 
proteins, and sugars to carbon dioxide and water. A less efficient glycolytic system in the 
cytoplasm extracts energy from the partial breakdown of glucose to make ATP. Mitochondria 
cluster near sites of ATP utilization, such as sperm tails, membranes engaged in active transport, 
nerve terminals, and the contractile apparatus of muscle cells. Mitochondria have also a key role in 
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cellular responses to toxic stimuli from the environment. In response to drugs such as many that 
are used in cancer chemotherapy, mitochondria release into the cytoplasm a toxic cocktail of 
enzymes and other proteins that brings about the death of the cell. Defects in this form of cellular 
suicide, known as apoptosis, lead to autoimmune disorder, cancer and some degenerative diseases. 
Mitochondria form in a fundamentally different way from the ER, Golgi apparatus and lysosomes. 
Free ribosomes synthesize most mitochondrial proteins, which are released into the cytoplasm. 
Receptors on the surface of the mitochondria recognize and bind signal sequences on 
mitochondrial proteins. Energy-requiring process transports these proteins into the lumen of insert 
them into the outer or inner mitochondrial membranes (Pollard, 2008). 

The Misapor commercial material was chosen as a porous reference for cytotoxicity study of 
foam samples (chapter V.5), as it presented an equivalent porosity to the compared sintered 
material (see part 1 of chapter VII).  
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Figure VII.4: Cell viability after 24 hours direct study on porous samples 

 

From figure VII.4, the porous reference Misapor presents a level of cell viability lower than 
that of the compared foam from formulation 25 wt% S2 (sintered at 900 °C for 5 min, presented in 
part VII.1). In fact, if the total porosity of both samples is equivalent, however, the open porosity 
is more important in the foam sample than in the Misapor reference. Cells, once seeded, could 
disperse inside the important network of pores and it is well-known that cellular activity is favored 
in pores interstices. The high cell viability (> 150 %) of foams can be explained by the important 
specific surface contact area (80% porosity) which enable to cell to attach also inside pores 
cavities. On another hand, the important Fe quantity in the foam may have interacted deeply in the 
cell viability. The high Fe amount in sample impacts positively on the results, promoting cell 
growth, as an important element in the cellular metabolism. 

 
VII.2.2 Deepen study of the cytotoxicity regarding pre-stabilized MSWI ashes based sample 

Pre-stabilized MSWI ashes “sintered glass-ceramic” is actually of porosity around 30%. Tested 
with TCLP method, which is usually used for the evaluation of toxicity of a waste, pre-stabilized 
MSWI ashes ceramic leachate corresponded to the level “inert waste”, but this test did not give 
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insurance of its use as a final product. The cytotoxicity comparative tests enabled to evaluate the 
environmental impact of pre-stabilized MSWI ashes ceramic as a final product for building 
applications, with window glass as most relevant comparison reference. Direct method and 
indirect method showed different results.  

Direct method was giving interesting information about the development of cells. Pre-stabilized 
MSWI ashes crystalline composition as showed in figure V.15a was mainly constituted of 
Wollastonite (CaSiO3), several forms of silica SiO2, Albite KSiAlO and Anorthite (Ca,Na) 
(Al4Si2O8). The solubility of those crystals was not known, but it could be reasonably deduced that 
the cells culture in direct method was mainly associated to the concentration of the element present 
in these crystals: Ca, Si, O, Al, K and Na. According to Dufrane et al, (2003) pseudowollastonite 
is able to induce several changes, as pH increase, release of calcium (Ca2+) and silicate (SiO3-) 
ions, in the environment leading to the papthite –like layer formation. These changes could 
potentially lead to cellular toxicity. Wollastonite being comparable to pseudowollastonite, we 
could deduce that the percentage of wollastonite in glass-ceramics was prior to that of heavy 
elements susceptible to impact on samples toxicity, during this time period. In other papers 
concerning the toxicity of waste products, the cytotoxicity was determined in percentages, with 
20% set as the maximum level for the definition of non-toxicity. (Huang et al., 2010). This result 
was supported by the following two facts: (1) wollastonite is one of two major crystalline phases 
of Apathite/Wollastonite glass ceramic that has excellent biocompatibility and bioactivity 
(Cannillo et al., 2009); and (2) wollastonite ceramic itself, owing to its relevant bioactivity, is 
usually regarded as a potential candidate for artificial bone (Liu et al., 2008). In indirect method, 
cells proliferation was not visible, but could be estimated quantitatively. After 3 days of leaching, 
it decreased, meaning probably that certain ions had reached threshold concentrations, from which 
the effect on cells culture became negative. The leachate in table V.9 (TCLP, 24 hours) showed an 
important presence of Cl, Ca, K, Br, S and Zn which may be detectable again in the cell culture 
medium of the indirect method. Except for Br and S, all those elements are convenient for cell 
culture. 

 
As a conclusion, the correlation between TCLP, XRD and cytotoxicity measurements enables 

to assess the non-toxicity of waste based samples, thanks to the possibility to cross the various 
information given by each measure. X-ray diffraction indicates the main phases susceptible to 
interact with the external environment; TCLP identifies the ions susceptible to be rapidly leached 
in a liquid and cytotoxicity illustrates the responses of living organisms to the material. By 
comparison with biocompatible glasses, the first chemical interactions between the material and 
cells can be determined. 
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VII.3 Conclusions 
 
Many types of wastes have been successfully converted into dense or porous glass-ceramics. 

We can summarize our experiences in the following points: 
• We fulfilled the “GlaCERCo” targets of valorization and vitrification of waste, since: i) 

we focused on glass-based engineering products with high commercial value such as 
lightweight tiles or panels for ventilated façades and foams for thermal and acoustic 
insulation foams, or with unconventional functional properties (e.g. magnetic 
properties) for new applications (e.g. panels subjected to induction heating); ii) many 
products were obtained by direct sintering of glass/waste mixtures, with satisfactory 
stabilization of pollutants in the matrix provided by simple viscous flow sintering; iii) 
vitrification (corresponding to the melting of mixtures of wastes) was applied with 
"sustainability" constraints, i.e. the costs of the process could be minimized using waste 
glasses as raw materials for glazes to be applied on products from direct sintering (the 
minimization of costs is due to the reduction of volumes; we keep exploiting, however, 
the high chemical stability of waste glasses and glass-ceramics, when properly 
formulated, in the glazes); 

• The direct sintering of glass/waste mixtures is advantageous for the minimization of 
costs, but also for the stabilization of specific waste. In fact, some waste (such as F-
containing waste) may decompose upon vitrification, with release of hazardous gasses. 
The products from direct sintering can be treated as glass-ceramics, although not 
developed by crystallization of a homogenous glass, for the observed glass/waste 
interactions, leading to new crystal phases; 

• The glass/waste interaction is particularly interesting with iron-rich waste, since it may 
be associated to the reduction of Fe2O3 into FeO and Fe3O4. The reduction implies the 
release of oxygen gas, that can lead to highly porous foams even in the absence of 
other (expensive) foaming additives; in addition, the possible formation of magnetite 
(Fe3O4) is interesting for the ferrimagnetic behavior of waste-derived glass-ceramics; 

• The low costs associated to direct sintering and the high chemical stability of glass-
ceramics can be effectively coupled in the manufacturing of novel layered glass-
ceramics, with a core from direct sintering, and a glaze from sinter-crystallization of 
waste-derived glasses; the products match the properties of specific valuable ceramic 
materials (porous stoneware ceramics) for application in ventilated façades;  

• A particular innovation concerns the development of new procedure for the assessment 
of the safety of waste-derived glass-ceramic products. In fact, conventional leaching 
tests were coupled with cytotoxicity tests. The new tests are thought to be particularly 
useful for the removal of the "social stigma" on waste-derived materials. 
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IX.1 Sinter-crystallization: case study #1. Sintered Nepheline Glass-

ceramics  

Note: This part is a participation to a work mainly conducted by Enrico Bernardo and his master 

student G. Dal Mas at the University of Padova, with the collaboration of R. Dal Maschio and V.M. 

Sglavo from the University of Trento. My contribution concerned paper editing, data analysis and 

plotting [related paper: Strengthening by Controlled Na/K Ion Exchange of Sintered Nepheline Glass-

ceramics by I. Ponsot, G. Dal Mas, E. Bernardo, R. Dal Maschio, V. M. Sglavo, Journal of Ceramic 

Processing Research, 15 (6), 411-417]. 

 

The possibility of achieving very high compressive stresses at the surface of nepheline glass-

ceramics, owing to the transformation of main crystal phase into kalsilite, was discovered more than 

40 years ago, but the very long processing times associated to conventional glass-ceramic 

manufacturing prevented extensive applications. 

The feasibility of nepheline-containing glass-ceramics by a rapid sintering of fine glass powders 

was achieved. On the other hand, to renew interest on strengthening by ion exchange induced 

transformation, for a selected glass-ceramic, developed using glass cullet as main raw material and 

sintered at very low temperature (840 °C), ion exchange treatments were found to be effective 

especially in increasing the reliability of samples (e.g. Weibull’s modulus exceeding 18). 

 

IX.1.1 Introduction 

Nepheline, i.e. NaAlSiO4 or Na2O·Al2O3·2SiO2, is known to be quite particular among the crystals 

developed upon controlled glass devitrification. Like in other feldspars and feldspathoïds, Al3+ ions 

occur in tetrahedral coordination that is surrounded by four oxygen atoms. More precisely, the crystal 

is virtually identical to that of trydimite (form of crystalline silica), with part of [SiO4] units being 

replaced by [AlO4] units. Since the ions for the compensation of the charge neutrality are located in 

the interstitial sites, nepheline may be seen as a “stuffed derivative of silica” (Höland and Beall, 2002). 

Within certain limits, sodium ions can be replaced by other “stuffing species”, such as potassium and 

calcium ions, thus forming nepheline solid solutions (with general formula represented by 

KxNayCaz□8-(x+y+z)Alx+y+2zSi6-(x+y+2z)O32), where □ represents a vacant cation site) (Duke et al., 1967). 

The pioneering paper by Duke et al. (1967) revealed the possibility of exploiting the structure of 

nepheline for a remarkable chemical strengthening effect, based on the exchange of Na+ with K+, 

applied to glass-ceramics. Unlike glasses, the high compressive stress at the surfaces is not simply due 
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to the difference in ionic radius between sodium and potassium, but it is associated to a specific 

change in the crystal structure. As previously mentioned, potassium solubility in nepheline is limited, 

so that the progressive replacement of Na+ with K+ ions causes the transformation of nepheline into 

kalsilite (K2O·Al2O3·2SiO2) with volumetric expansion. The compressive stress generated by the 

transformation is so high that bending strength of nepheline glass-ceramic rods after treatment can 

exceed the impressive level of 200.000 psi, i.e. ~ 1.4 GPa. The major issue concerns the composition 

of the starting glass: it was observed that glasses with a relatively high potassium content lead to the 

most remarkable strengthening. The incorporation of potassium into a nepheline solid solution likely 

led to a somewhat more “spaced” crystal lattice compared to pure sodium-based nepheline, thus 

favoring ionic diffusion. 

The investigation presented here was conceived in order to renew the interest towards nepheline 

glass-ceramics transformed by ionic exchange, checking the conditions for: i) simplified glass-ceramic 

manufacturing, based on sintering; ii) modified strengthening, with effects on the reliability rather than 

on the strength of glass-ceramics. In fact, glass-ceramics with only nepheline as crystalline phase were 

developed by extremely slow conventional nucleation/growth treatments (4 hours at ~ 850 °C + 4 h at 

1100 °C), aided by high content (>7 wt-%) of TiO2 in the starting glasses, acting as nucleating agent 

(Duke et al., 1967). The nepheline glass-ceramics here discussed refer to a much simplified process, 

i.e. sintering of fine glass powders. According to recent experiences, this approach may lead to very 

fast crystallization, even in the absence of nucleating agents (Bernardo et al., 2009). The feasibility of 

sintering or, better, “sinter-crystallization”, could promote the manufacturing of components with 

complex geometries, including highly porous foams (e.g. obtained by the replica method, already 

successfully applied to sintered glass-ceramics (Bernardo, 2007)). 

The second challenge concerns the refinement of the chemical strengthening process. The usual 

treatment on glass, e.g. with potassium replacing sodium ions, provides high compressive stresses with 

maximum intensity just at sample surface. Surface cracks can propagate at higher applied loads (i.e. 

tensile stresses actually tend to expand the cracks only if exceeding the pre-compression), but the 

variability of crack length causes variability of strength like in an untreated material. In the presence of 

an “engineered stress profile”, that is maximizing compressive stress at a certain depth beneath the 

surface, the reliability of glass can be impressively enhanced (cracks from the surface experience an 

increasing resistance to their propagation) (Green et al., 1999; Sglavo and Bonafini, 2000; Sglavo, 

2001; Sglavo and Green, 2001; Sglavo et al., 2001 and 2004). The feasibility of a double chemical 

treatment on glass-ceramics with reversible nepheline-kalsilite transformation, to the authors’ 

knowledge, is discussed for the first time here; double treatments, in fact, have been applied only to 

leucite-based glass-ceramics used for dental applications and obtained by a much more complex 

treatment than simple pressure-less viscous flow sintering, and with different transformation 

mechanism (Fisher and Marx, 2001 and 2003). 

 

IX.1.2 Experimental Methods 

In the present work we referred to three glass compositions (E, F and Centura® in table IX.1) 

known to yield nepheline-based glass-ceramics. E and F glasses correspond to the most effective 

compositions reported by Duke et al. (1967), whereas Centura® is a commercial glass-ceramic 

manufactured by Corning (Höland and Beall, 2002). The composition of a panel glass from dismantled 

cathode ray tubes (CRTs), nominally recyclable, but practically unused, due to the limited production 

of new CRTs, is reported in Table IX.1. The glass can be effectively treated as a “waste glass”, to be 
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considered only for products substantially different from CRTs (“closed loop recycling”); in fact, this 

specific type of glass has been already considered for glass foams or in the formulation of glasses to be 

converted into glass-ceramics (Bernardo, 2007; Bernardo and Albertini, 2006; Andreola et al., 2005; 

Bernardo et al., 2005). 

 
Table IX.1. Chemical composition of three reference glasses (Höland and Beall, 2002; Duke et al., 1967) for the 

production of nepheline-based glass-ceramics and of a reference waste glass 

 

 
Table IX.2. Chemical composition, formulation and characteristic temperatures of the investigated glasses 

 

As previously specified, a primary goal of the present work was a simplified processing, especially 

concerning the crystallization, based on sintering. This led us to consider E and F compositions, 

tailored to promote crystallization by conventional nucleation and growth, without TiO2 (nucleating 

agent). In addition, since glass frits (powders) are used, the fining of glass is not needed; this means 

that also As2O3 (fining agent) can be avoided. The compositions N1 and N2, reported in Table IX.2, 

effectively feature the same weight balance of characteristic oxides (SiO2, Al2O3, Na2O, K2O) present 

in E and F glasses, respectively, without other oxides. N3 was inspired by Centura®, but with 
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significant changes: again, TiO2 was avoided in the glass formulation and, although the overall molar 

content of alkali oxides is almost the same, N3 features potassium oxide, absent in Centura®. While 

N1 and N2 glasses were produced from pure oxides and carbonates, N3 was mostly derived from the 

CRT panel glass (64 wt-%). N1 and N2 glasses were prepared by melting the raw materials at 1600 °C 

for 2 h in alumina crucibles; the two glasses, after rapid cooling by direct extraction from the furnace, 

were separated from the refractory crucible by cutting after the complete solidification. N3 glass was 

prepared by melting the raw materials at 1550 °C for 2 h in a Pt crucible; very rapid cooling was 

performed by pouring the glass melt in water. 

A portion of the small beams from the bending test were treated in molten salts, i.e. in melted 

KNO3 and Na2SO4, at 590 °C. The samples and the salts were poured in a Pt crucible and heated with 

a rate of 10 °C/min; after a holding stage at 590 °C of variable duration, the crucible was subjected to 

natural cooling to room temperature and the samples were separated by washing in hot water. Selected 

samples were subjected to bending strength measurements after ionic exchange treatment. Also in this 

case, at least ten samples were considered for each condition. 

 

IX.1.3 Results and Discussion  

Glass transition (Tg) and crystallization (TC) temperatures of the three glasses are reported in Table 

IX.2. Figure IX.1 shows the evolution of bulk density as a function of the sintering treatment for N1 

glass. The maximum density level is very close to that of the glass-ceramics prepared by Duke et al. 

(1967), but it corresponds to a quite particular sintering condition, i.e. direct heating (DH) at high 

temperature. Sintering at the crystallization temperature, 980 °C, with a conventional heating rate of 

10 °C/min (CH), determined visibly porous bodies, whereas quite smooth and brilliant surfaces were 

achieved at 1180 °C (TC+200 °C). The remarkable difference is likely due to intensive crystallization 

during conventional heating at temperatures below 980 °C; the formation of a number of rigid 

inclusions, corresponding to nepheline crystals, reasonably “froze” the viscous flow of the residual 

glass. Diffraction patterns shown in figure IX.2a confirm this hypothesis: the sample is substantially 

crystallized even for a very short holding time (30 min) at 980 °C, after conventional heating. The 

large specific surface of the fine glass powder evidently promotes the crystallization, even in the 

absence of nucleating agents, as observed for waste-derived glasses (Bernardo et al., 2005; Bernardo, 

2007; Bernardo et al., 2009).   

Direct heating at temperatures well exceeding TC improves densification by changing the balance 

among viscous flow sintering and crystallization (Bernardo et al., 2009): the glass, far above the 

transition temperature, experiences an enhanced viscous flow; the consequent reduction of free glass 

surfaces reduces the crystallization (see the limited intensity of the peaks in the pattern recorded on 

sample N1 treated at TC+200 °C for 1 h, pattern DH in figure IX.2a). The enhanced densification of 

samples “directly” sintered at 1180 °C, combined with partial crystallization, is evident in figure 

IX.3a, showing isolated pores in a micro-crystalline matrix. Such evolution was accompanied by good 

mechanical properties, with the bending strength slightly exceeding 100 MPa, as reported in table 

IX.3. 
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Figure IX.1: Evolution of density with sintering treatments for N1 glass 

 

As demonstrated by the very close matching of powder diffraction peaks and reference lines in 

figure IX.2a, the developed crystal phase always corresponds to nepheline solid solution, 

Na3K(Si0.56Al0.44)8O16 (PDF#76-2465). The chemical composition is associated to substantial 

potassium incorporation (potassium and sodium ions being in the proportion 1:3), but also suggests the 

presence of vacancies (Si/Al ratio is higher than 1, thus determining an excess of positive charge, to be 

compensated by the “stuffing species”).  
 

 
Figure IX.2: a) phase evolution of N1 glass in different sintering conditions (powder diffraction – CH: 

conventional heating, DH: direct heating); b) glancing incidence x-ray diffraction pattern of N1 glass-ceramic 

after ion exchange treatment 
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Quite unexpectedly, the probable presence of vacancies did not help the transformation of 

nepheline into kalsilite upon the ion exchange treatment as reported by Duke et al. (1967). Glass-

ceramics samples, prepared with the best sintering conditions (direct heating at 1180 °C, holding time 

= 1 h), broke into fragments during the treatment, initially scheduled to last 8 h (Duke et al., 1967). 

After a series of try-and-error tests, it was inferred that glass-ceramics from N1 glass could withstand a 

maximum of 2 h treatment in molten potassium nitrate. 

The limited duration of the ion exchange treatment did not cause any appreciable change in the 

phase distribution on the surface, as shown by the glancing incidence diffraction analysis. Operating 

with a relatively high glancing incidence angle (4°, bottom pattern in figure IX.2b), i.e. collecting 

signals from the surface and from layers slightly below it (it is well known that patterns obtained at 

large glancing angles more bulk sensitive than those obtained at small glancing-angles) (Begg et al., 

2001), the diffraction pattern reveals the same crystal phase found with powder analysis; operating 

with a lower angle (2°, top pattern in Figure IX.2b), i.e. maximizing the contribution from the surface, 

the signals are obviously weaker, but with no practical change in the position of peaks. An effective 

transformation of nepheline should be accompanied by the shift of some main peaks (e.g. those at 

~23° and ~30°) and the disappearance of others (e.g. that at ~27°). The absence of surface changes is 

further confirmed by the strength values, which remain similar to those of as prepared N1 glass-

ceramic (Table IX.3). 

A quite different behavior was found for N2 glass. Based on a different balance among 

constituents, N2 glass features higher crystallization temperature (1080 °C) than N1 glass, but shows 

good densification at the same temperature (porosity slightly exceeding 2%) by direct sintering (see 

figure IX.3b). The previously presented nepheline solid solution, Na3K(Si0.56Al0.44)8O16, is confirmed 

as the characteristic crystal phase, as shown by figure IX.4. However, the glass-ceramic from N2 glass 

is weaker that the one from N1 glass (see table IX.3), and exhibits a higher sensitivity to ion exchange. 

More precisely, glass-ceramic from N2, sintered at 1080 °C (for 1 h), was able to withstand the 

treatment in potassium nitrate for 3 h and undergo to some transformation, as shown in figure IX.4b. 

The peaks corresponding to the main crystal phase, nepheline, are almost negligible compared to those 

corresponding to K-rich phases, such as kalsilite (KAlSiO4 or K2O·Al2O3·2SiO2, PDF#76-0635) and 

leucite (KAlSi2O6 or K2O·Al2O3·4SiO2, PDF#85-1421). 

The occurrence of the expected transformation of nepheline into kalsilite did not determine any 

strength improvement; conversely, as reported in table IX.3, the bending strength decreased 

substantially (almost 40%). Figure IX.3c and d show the changes occurring on the surface after ion 

exchange treatment; the surface, originally smooth (after cutting from larger specimens and polishing), 

become rougher after the treatment. In our opinion the results from the ion exchange treatment of 

glass-ceramics from both N1 and N2 glasses differs only in terms of intensity. The expected volume 

increase, associated to the insertion of K+ within the nepheline structure and its transformation into 

kalsilite, effectively occurred but it was not sustainable at the interface with the unmodified material. 

The mutual constraint of transformed crystals forced them to develop a significant interfacial stress, 

likely enhanced by the residual micropores (acting as stress concentrators). In other words, the 

strengthening observed by Duke et al. (1967) is probably possible only with pore-free materials, 

difficult to be obtained by pressureless sintering. 
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Figure IX.3: Details of the surface of nepheline-based sintered glass-ceramics: 

 a) N1; b) N2; c,d) N2 after ion exchange treatment  

 
 

 
Figure IX.4: a) phase evolution of N2 glass at different sintering temperatures (powder diffraction; holding 

time=1h); b) comparison between powder diffraction pattern (1080 °C, 1h) and glancing incidence pattern after 

ionic exchange treatment (3°) 
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The third glass, N3, was considered with the main aim of limiting nepheline formation. In fact, a 

reduction in the content of the crystal phase undergoing transformation was thought to “dilute” the 

stresses arising from the ion exchange treatment and to maintain the integrity of the samples. Figure 

IX.5a clearly shows that leucite (PDF#85-1419) is formed together with nepheline after sinter-

crystallization at 840 °C (1 h). The new formulation allowed a much lower processing temperature, 

without direct heating: the enhanced content of network modifiers (e.g. BaO and SrO), not to be 

incorporated in the crystal structure, favor viscous flow even at relatively low temperatures; 

crystallization can be coupled with a satisfactory densification (residual porosity of about 3.5%) even 

with finite heating rate (20 °C/min). The semi-quantitative phase analysis provided by the Match! 

program package suggests a 60/40 nepheline/leucite weight proportion; considering the composition 

of N3 glass, this would be associated to an approximate crystallization degree of 65%. 

As reported in table XI.3, the strength of nepheline-leucite glass-ceramics from N3 glass 

(approximately 70 MPa) is far below that of nepheline glass-ceramics from N1 and N2, but it 

increases sensibly after the ion exchange treatment in molten potassium nitrate without any 

degradation of the sample surface, as shown by figure IX.5a. 
 

 

Figure IX.5: Details of the surface of sintered glass-ceramics from N3 glass: a,b) after sintering; c) after first 

treatment, in molten K-nitrate; d) after second treatment, in molten Na-sulphate 

 

The glancing incidence diffraction patterns of figure IX.6 show the occurrence of nepheline-to-

kalsilite transformation, in N3 glass-ceramic, after 8 h in K-nitrate, and its reversibility, after 

additional 4 h in Na-sulphate. Nepheline, not recognizable in the pattern after the first treatment, is 

found again after the second treatment, along with leucite and kalsilite, according to sodium diffusion. 
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The partial restoration of nepheline is testified by the distribution of potassium and sodium 

(determined by energy-dispersive x-ray spectroscopy (EDS) analysis) along the thickness of samples, 

as shown in figure IX.7.  

Figure IX.5 also testifies that glass-ceramics from N3 glass were subjected to a sort of 

“recrystallization” during ion exchange treatments. In fact, crystals change from a quite uniform 

distribution in untreated sample (Figure IX.5b) to an almost bimodal distribution, with larger crystals 

(diameter of about 5 µm) surrounded by smaller ones, in treated samples (Figure IX.5c and d); the 

amorphous phase, clearly recognizable from the light coloration in backscattered images (associated to 

heavier elements, such as Ba and Sr), is also modified, being more concentrated in some points. This 

suggests an “active” role of the residual glass phase during the crystallization; a glass network with 

relatively larger free volume, due to large ions (again, Ba and Sr), likely promotes the diffusion of 

alkali ions. 

The presence of a point of maximum potassium concentration below the surface (20-25 µm) 

(Figure IX.7) can be correlated to a maximum compressive stress at that depth, as reported for an 

“engineered stress profile” (ESP) (Green et al., 1999; Sglavo et al., 2001; Sglavo et al., 2004). Like in 

ESP glass (Sglavo et al., 2001; Sglavo et al., 2004), the main effect does not concern the level of 

strength (reduced at approximately 100 MPa), but the scatter of the data. As reported in table IX.3 the 

standard deviation of strength is well below 10% of the average level, and Weibull modulus exceeds 

18. 

 
Figure IX.6: Diffraction patterns of glass-ceramics form N3 glass, before ion exchange (powder analysis) and 

after ion exchange treatments (glancing incidence) 
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A final remark concerns the possible impact of the proposed approach. To the authors’ opinion 

the strengthening and the dramatic decrease of dispersion of strength data could be an opportunity for 

glass-ceramic components loaded in bending, especially thinking at porous materials. As well 

discussed by Gibson and Ashby (2005), the strength of open-celled foams is conditioned by the 

bending strength of the cell edges (“bending-dominated” behavior); improvements in the bending 

strength of the solid phase could lead to an impressive strengthening of foams, to be variously 

exploited (construction of lightweight cores for sandwich structures, impact absorbers, filters etc.) 

(Gibson and Ashby, 2005). The possibility to apply a sintering approach would greatly simplify the 

manufacturing of highly porous foams, as previously mentioned (Bernardo, 2007). Finally, it should 

be observed that nepheline may be found as one of the main phases in waste-derived glass-ceramics 

(Bernardo et al., 2005; Leroy et al., 2001; Zhang et al., 2007): the fabrication of high strength foams, 

after sintering and ionic exchange treatment, could allow high value applications for waste glasses. 

 

 
Figure IX.7: Trend of K/Na ratio with increasing distance from the surface of a sample subjected to double ion 

exchange treatment 

 

 
Table IX.3 – Sintering conditions, porosity and mechanical properties, before and after ion exchange treatments, 

of sintered glass-ceramics from the investigated glasses 
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IX.1.4 Conclusions 

Ion exchange-induced nepheline-kalsilite transformation has been observed in glass-ceramics 

produced by sintering sodium-potassium alumino-silicate glasses. The transformation could not be 

exploited for glass-ceramics with only nepheline as crystalline phase; the intense stresses developed 

upon ion exchange, combined with a limited but not negligible residual porosity, led to the rupture of 

samples upon the chemical treatment. Successful treatments were applied to nepheline-leucite glass-

ceramics, obtained by re-using a significant content of waste glass. The reversibility of nepheline-

kalsilite transformation was found to be suitable, more than for strengthening, for an impressive 

reduction of the scatter of strength data. This fact could find applications in the manufacturing of 

(especially porous) reliable glass-ceramics. 
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IX.2 Sinter-crystallization: case study #2. Oil shale ash-derived glass-

ceramics 

 

Note: work mainly conducted by Enrico Bernardo and Mauro Marangoni, at the University of 

Padova, and R. Kuusik, (University of Tallinn). My contribution concerned paper editing, data 

analysis and plotting [related paper: Strong and chemically inert sinter crystallized glass 

ceramics based on Estonian oil shale ash, by Marangoni M., Ponsot I., Kuusik R., Bernardo E, 

Adv Appl Ceram (2014) 113 [2], 120-128]. 
 

IX.2.1 Introduction 

Oil shale is a fine-grained sedimentary rock containing organic matter. The organic matter is 

divided in a soluble fraction, bitumen, and an insoluble fraction which is named kerogen. Upon 

suitable thermal treatments, kerogen releases crude oil or natural gas that are used as fossil fuels 

(Yen, 1976). Oil shales deposits are distributed all over the world and range from small 

occurrences to those of enormous size that contain many billions of barrels of potentially 

extractable shale oil. Total world resources of shale oil are conservatively estimated at 2.8 trillion 

barrels. Today, shale oil is more expensive to produce than crude oil because of the further costs of 

mining and processing, the deposits being extensively exploited are only in Brazil, China, Estonia, 

Germany and Israel (World Energy Council, 2010). However, owing to the increasing cost of 

petroleum-based products and the decline of petroleum supplies, economical interest in oil shale 

resources is arising, as testified by the intensive research on novel mining techniques (e.g. 

“fracking”)(Howard et al., 2011). 

A major issue of oil shale processing is the relatively low combustible fraction, 35-46 wt.% of 

the starting mass, compared to the amount of ashes generated and needing some stabilization, 

owing to the significant traces of heavy metals (mostly Cd, Pb, Cr, Zn, Tl, As and Ni)(Aunela-

Tapola et al., 1998; Adamson et al., 2010; Blinova et al., 2012). Management of ashes is 

particularly important in Estonia, where oil shale is processed in an amount of 14.6 million 

tons/year (2005), 75% being used for electricity generation, 5% for heat generation and 20% for 

production of shale oil and coke production (World Energy Council, 2007; Ots, 2006). 

Oil shale ash has been object of valuable studies concerning its stabilization and valorization in 

glass-ceramics to be applied as building materials (Gorokhovsky 
et al., 2001, 2002a and 2002b; 

Luan et al., 2010), basically because of the composition, suitable for the preparation of glasses of 

the CaO-Al2O3-SiO2 system, a well-recognized reference for waste-derived glasses (Höland and 

Beall, 2006; Hreglich and Cioffi, 2009; Fernandes et al., 2009; Vasilopoulos et al., 2009; Bernardo 

et al., 2012). The present paper aims at evidencing the feasibility of a sintering approach for the 

production of strong and chemically stable glass-ceramics, based on glass frits. More precisely, the 

cost of overall glass-ceramic manufacturing can be significantly lowered, comparing to a 

conventional nucleation and growth process, if we consider that no refining of the parent glass is 

required for glass frits. Furthermore surface crystallization, operating on fine glass powders, may 

lead to substantial crystallization by application of very short sintering treatments (fast heating – 

40  °C/min – and limited holding stage), so that nucleating agents to promote crystallization are 

not needed (Bernardo, 2008; Gutzow et al., 1998; Karamanov, 2009).  
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IX.2.2 Characterization of the raw materials 

 

 
Tab. IX.4: Chemical composition of the starting raw materials and formulation of the investigated glasses 

* Average of the heavy metals concentration reported by Bilinova et al. for oil-shale fly ashes obtained by 

pulverized firing (ESP 1) and circulating fluidized bed (ESP 2). 

 
The raw materials employed mainly consisted of fly ash residues, collected from electrostatic 

precipitator, formed after combustion of Estonian oil shale at Estonian Power Plant (Estonia), in 

two distinct conditions, causing some differences in the overall chemical compositions (Table 

IX.4). ESP1 is formed operating with pulverized oil shale, at temperatures 1200 °C to 1400 °C, 

whereas ESP2 derives from circulating fluidized bed combustion of lumpy oil shale, at 

temperatures 750 °C to 830° (Kuusik et al., 2005). The ashes were mixed with secondary 

components such as rhyolite, i.e.an inexpensive alumino-silicate volcanic rock (abundant, but with 

limited use in the ceramic industry), provided by Ce.Ri.Col. (Centro Ricerche Colorobbia, Vinci, 

Italy) and recovered soda lime cullet (Sail SPA, Biella, Italy). Recovered soda lime glass 

corresponds to the fraction of recycled material which is hardly reused, after color selection and 

removal of metallic and polymeric residues, for the preparation of new glass articles, owing to the 

presence of ceramic contaminations. The chemical composition of the raw materials, according to 

X-ray (Philips XRF Sequential Spectrometer PW 2400, Eindhoven, The Netherlands) fluorescence 

analysis, is reported in table IX.4.  

The choice of the thermal treatment was accomplished by selecting the materials with the 

highest crystallization and densification degrees. Indeed, a high degree of crystallization 

guarantees an improvement of the mechanical properties (i.e. by crack deflection) whereas a high 

densification improves the strength of the material by reducing the porosity. The evaluation of the 

density degree, δ, was estimated from the density of a sample, determined by means of the 

Archimedes’ method, divided by the maximum value in the whole set of density data. The 

evaluation of the crystallization degree was performed using a semi-quantitative approach. In fact, 

Rietveld refinements of multiphase glass-ceramics require crystallographic data, for each phase, 
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associated to a well-defined stoichiometry; these data are difficult to be collected due to the 

formation of many solid solutions. It is well known, however, that the intensity of diffraction 

peaks is proportional to the quantity of a given phase. For comparison purposes, for each phase 

“i”, we identified a single characteristic diffraction peak. For a given sintering condition, the 

evaluation of the degree of crystallization, αi, was estimated by dividing the total counts associated 

to the distinctive peak by the maximum counts associated to the same peak in the whole set of 

samples.  

Since densification (by viscous flow) and crystallization occur simultaneously, in sinter-

crystallized material, for each sample we considered an index, Σ, arbitrarily set as: 

∑α+δ⋅=Σ
i

in2

1

2

1
, where n is the number of the crystal phases.  

 

 
Fig. IX.8: DTA plots for fine and coarse glass powders 

 
 

IX.2.3 Results and discussion 

For the investigated waste glasses the thermal analysis, as illustrated by figure IX.8, featured 

several effects. More precisely, ASH1 glass exhibited glass transition (Tg) at 690 °C and 

exothermic peaks, reasonably associated to crystallization of different phases, at about 890, 950 

and 1000 °C. The slight variations in the chemical formulation, for ASH2 glass, determined a 

variation of the Tg, located at 700 °C, and the shift of the exothermic peaks at about 910, 1005 and 

1025 °C. 

For both glasses, some peaks were more pronounced and shifted to slightly lower temperatures 

for fine powders (<63 µm) than for coarse ones (>63 µm), as an evidence of surface mechanism of 
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crystallization (Bernardo and Scarinci, 2008; Bernardo, 2008; Bernardo et al., 2009). The 

exothermic peaks appearing at higher temperatures were less sensitive to the size of glass powders, 

and they were interpreted as an evidence of bulk crystallization which was determined at 1000 °C 

for ASH1 and 1025 °C for ASH2. 
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Fig. IX.9: Diffraction patterns of glass-ceramics from direct sintering of ASH 1: a) 900 °C; b) 950 °C and 

ASH 2: c) 900 °C; d) 1000 °C 

 
The temperatures associated to surface crystallization were taken as references for sintering 

treatments. As a consequence ASH1 glass was processed at 900 and 950 °C, whereas ASH2 glass 

was treated at 900 and 1000 °C. The second exothermic effect, for fine ASH2 powders, almost 

overlapped with the pick attributed to bulk crystallization and a high crystallization degree was 

expected. 
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Figure IX.10: Diffraction patterns of glass-ceramics from optimized sintering treatments (at 950 °C for 

ASH1, at 1000 °C for ASH2)  

 

Sintering treatments of ASH1 glass, as illustrated by figure IX.9a (900 °C) and figure IX.9b 

(950 °C), led to the separation of different phases, in form of a Ca-Fe rich pyroxene (omphacite, 

Fe0.52Al0.48Ca0.47Na0.53Si2O6, PDF#71-1403), a Ca-Na feldspar (sodium exchanged anorthite, 

Na0.45Ca0.55Al1.55Si2.45O8, PDF#85-1415) and β-wollastonite (CaSiO3, PDF#72-2284). Omphacite 

traces are visible even at low temperature, for short holding times, whereas wollastonite and 
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feldspar formed at higher temperature or for long sintering treatments (900 °C 120 min holding 

time). ASH2 glass, as illustrated by figure IX.9c (900 °C) and figure IX.9d (1000 °C), led to a 

more complex phase assemblage, based on the previously identified crystal phases with further 

formation of akermanite ((Ca1.53Na0.51)(Mg0.39Al0.41Fe0.16)(Si2O7), PDF#72-2127), a K-rich 

feldspathoid (leucite, K(AlSi2O6), PDF#851626). Akermanite phase was observed especially at 

low temperature and for short treatments; at higher temperature or for longer holding times 

akermanite practically disappeared, replaced by the other phases. 
 

 
Table IX.5: Results from preliminary densification/crystallization evaluation 

 
The weighted index conceived in order to consider both crystallization and densification, as 

shown by table IX.5, allowed a rough but rapid selection of optimum sintering conditions. 30 min 

at 950 °C, for ASH1 glass, and 30 min at 1000 °C, for ASH2, were sufficient to yield high indices, 

not significantly increased with longer treatments. Sinter-crystallization is confirmed as an 

extremely efficient process for glass-ceramic manufacturing, for very short (and consequently cost 

effective) thermal treatments. 

The manufacturing of larger sintered glass-ceramic samples was associated to some 

refinements, concerning the impact of binders. In fact, kaolin performs two important functions in 

ceramic bodies. The first function is due to the adhesion forces among kaolin and powders mixed 

with it (Ring, 1996), the second is related to the reactions occurring upon firing. Kaolin is 

subjected to dehydration into metakaolinite at about 550 °C, in turn decomposing at about 925 °C 

into fine-grained mullite and silica (Shackelford and Doremus, 2010; Ring, 1996). From the XRD 

patterns we can note that for kaolin-containing mixtures mullite did not form; however, it is also 

evident that anorthite peaks become more significant compared to those associated to wollastonite. 

This is interpreted as a further evidence of the reaction between CaO and metakaolinite, already 

observed in mixtures including a Ca-rich waste glass and clay (Bernardo et al., 2010).  

The introduction of PEG, as expected, did not modify substantially the phase assemblage, 

compared to the one without binders, because of its organic nature (PEG burn out was performed 

at about 300 °C, according to Han et al. (1997), much below the transition temperature of the two 

glasses, i.e. much before any possibility of viscous flow). However, slight differences in the peaks 

intensity are visible, especially for ASH2 glass, between the sample without any binder and the 

one with PEG. This could be associated to the different heating conditions, since the sample 

without binder was sintered by direct insertion at 1000 °C. In these conditions crystallization could 

be somewhat enhanced (the peak associated to wollastonite is higher) by the availability of a 

remarkable amount of free glass surfaces. On the contrary, the sample with binder, heated at 40 
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°C/min, could experience some sintering before starting to crystallize; consequently the reduction 

of the specific surface inhibits the nucleation of crystal phases.  

 

 
Table IX.6: Mechanical properties of optimized sintered glass-ceramics 

 

 
Figure IX.11: SEM backscattered electron image of glass-ceramics from ASH1 glass: a,b) glass with 

Kaolin; c,d) glass mixed with PEG 

 

The values of bending strength, Young’s modulus and Vickers microhardness compare 

favorably with other waste-based glass-ceramics (Bernardo et al., 2010). The bending strength, in 

particular, is quite high if we consider an amount of total porosity estimated not to be lower than 

6% (reasonable owing to the gas release from PEG or kaolin residues, upon firing), from image 

analysis of polished surfaces.  

The weakening effect of residual porosity was likely well compensated by intensive crack 

deflection at glass/crystal interfaces, similarly to the case of dental glass-ceramics (Chen et al., 
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2011). The fracture surfaces of figure IX.11a and figure IX.11c, for glass-ceramics from ASH1 

glass, as well as figure IX.12a and figure IX.12c, for glass-ceramics from ASH2 glass, on one 

hand confirm the internal porosity, on the other they feature a remarkable roughness, especially for 

the stronger sample, that from ASH2 glass powders bound with PEG (applying Weibull’s statistic 

approach, the characteristic strength of 99 MPa is related to a remarkable Weibull’s modulus (m), 

exceeding 10). 

The difference in strength could be due to different microstructures. Samples containing kaolin 

clay (figure IX.11b and figure IX.12b) feature quite small and poorly interconnected crystals, as 

well as some amorphous areas (see “Am” in ASH1 glass). On the contrary, samples processed 

with PEG addition, exhibit long interlocking fibrous microcrystals (figure IX.11d and figure 

IX.12d). The lower strength of glass-ceramic samples from ASH1 glass, compared to those from 

ASH2 glass is not yet clear; we can observe, however, that the pores in samples form ASH1 glass 

are less homogenous (big pores, like that at the top of figure IX.11d could provide a more 

intensive stress concentration)  and the crystals are slightly thinner. 
 

 
Figure IX.12: SEM backscattered electron image of glass-ceramics from ASH2 glass: a,b) glass with 

Kaolin; c,d) glass mixed with PEG 

 
Because of the high m value, a limited degradation of strength, for the sample from ASH2 

glass, is expected when passing to the scale of conventional floor tiles, i.e. panels with dimensions 

of 300 × 300 × 8 mm.  
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In the hypothesis of flaws occurring with a volume distribution, such as residual pores, and 

following the scaling equations provided by Quinn (2003), the bending strength data measured on 

small bars subjected to 4 point bending were analyzed thus to predict an “equivalent” bending 

strength, for panels (σeq), well exceeding the limit (35 MPa) for the best tiles for building 

applications (BIa group, ISO 10545-4). 

Mechanical strength is not the only key issue for a waste-derived material to be effectively 
employed in building applications. In fact, any waste-derived material should be chemical stable, 
i.e. provide a permanent immobilization of pollutants. Table IX.7  reports the results from leaching 
test: the best material (ASH2 with PEG binder) features limited release of ions, but cannot be 
considered as inert, according to current Italian standards (D.M., 2010). An interesting strategy for 
stabilization, according to recent studies (Bernardo and Dal Maschio, 2011), is not associated to 
the reformulation of waste-derived glasses, but to the sintering with a secondary glass. Considering 
the high percentage of fly ash employed (65-67 wt%), the amount of heavy metals present in the 
parent glass is not negligible. 

  

 
Table IX.7: Results from leaching tests of selected sintered glass-ceramics 

 

 
Figure IX.13: Details of sintered glass-ceramics from the mixing of ASH2 glass with borosilicate glass: a) 

visual appearance; b) high magnification SEM image (backscattered electrons) 

 

Hence after firing a part of the metal ions participate to the formation of crystal phases and part 

of them are stabilized by the amorphous phase; consequently under leaching conditions the heavy 

metals may be released both from the crystallites and the amorphous phase. The increased 

chemical stabilization achieved by adding an inert secondary glass to the waste derived glass may 
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be due to the further dilution and embedding of both the crystallites and the heavy metals present 

in a chemically inert glass-ceramic. In other words, it is possible to improve the chemical stability 

not only before vitrification, but even after it by adding a more stable glass to a waste derived 

glass-ceramic. In the present case, ASH2 glass was mixed with recycled pharmaceutical glass 

(composition shown in table IX.4, in the proportion 7:3, and processed with PEG binder, leading 

to the glass-ceramic sample shown in figure IX.13a. Although related to a lower content of ASH2 

glass, the mechanical properties of the new sample (after sintering at 1000 °C for 30 min), remain 

substantial, as testified by table IX.6. Despite a lower degree of crystallization, evident from the 

comparison with the glass-ceramic from ASH2 glass alone, shown in figure IX.14 (see the lower 

intensity of peaks), the strength could be reasonably enhanced by the fine distribution of crystals, 

as illustrated by figure IX.13b. As reported in table IX.7, the new formulation caused the leaching 

of pollutants to be well below the limits for a material to be considered as inert. 

 

 
Figure IX.14: Comparison of x-ray diffraction patterns of optimized glass-ceramics from ASH2 glass 

 
Further studies will certainly dedicated to extending the present approach, in terms of 

compositions to be tested and manufacturing procedures. It would be interesting, as an example, to 

evaluate samples from double-pressing operations, in which a strong core based on ASH2 glass 

would be accompanied by a chemically resistant top layer, acting as a glaze, based on a mixture of 

ASH2 glass and borosilicate glass. 
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IX.2.4 Conclusions 

We may conclude that: 

• Selected kinds of Estonian oil shale ash may be employed as the main raw material (being 

used in an amount exceeding 60 wt.%) in the formulation of waste-derived glasses, to be 

converted into glass-ceramics; 

• Sinter-crystallization, found to be active for the investigated compositions, allowed the 

obtainment of glass-ceramics by very fast and cost effective firing treatments (sintering at 

temperatures not exceeding 1000 °C, holding time of 30 min, fast heating); 

• Optimized formulations, in terms of composition and selection of binders, led to strong 

glass-ceramics, with a high reliability (Weibull’s modulus exceeding 10); 

• The chemical stability of the sintered glass-ceramics may be improved by mixing waste-

derived glass with recycled borosilicate glass. 

 



Appendices 

187 

IX.3 Polymer-derived SiC-boron carbide composites 

 

Note: work mainly conducted by Enrico Bernardo and Salvatore Grasso, at the University of 

Padova, and Nanoforce, (Queen Marie College, London). My contribution concerned the pyrolysis 

of polycarbosilane-based mixtures and the mechanical characterization, by indentation (related 

paper: Polymer-derived SiC ceramics from polycarbosilane/boron mixtures densified by SPS, by 

E. Bernardo, I. Ponsot, P. Colombo, S. Grasso, H. Porwal, M.J. Reece), Ceram Int, 40 (2014) 

14493-14500) 

 

Spark plasma sintering (SPS) is considered as an efficient method for densification of advanced 

ceramics. Since commercially available prepyrolized polycarbosilane could not be densified by 

SPS even at 2050 °C, the addition of amorphous boron was investigated.  Aiming to control 

dispersion of boron in the powder mixture, the preceramic polymer was mixed either before or 

after pyrolysis.  Boron worked as sintering additive resulting in dense monoliths with good 

combination of Vickers hardness and indentation fracture toughness. Toughening mechanisms 

were mainly attributed crack deflection of finely distributed boron carbide phase. The mixing 

before pyrolysis was found to provide a more homogenous distribution of the second phase. 

 

IX.3.1 Introduction 

Our work aims to investigate the manufacture bulk dense advanced ceramics derived from a 

polymer precursor. Effect of sintering additives as boron was also investigated.  

The SPS invention in the 1930s led to the elaboration of reinforced ceramics, thanks to its 

ability to heat fast and at very high temperatures. A wide range of innovative products in fields 

such as cutting tools and hard materials, biomaterials, materials for nuclear energy applications, 

and materials with low coefficient of thermal expansion have been elaborated using this process 

(Suarez et al., 2013; Grasso et al., 2009 and 2013; Vasylkiv et al., 2012). By applying SPS after 

pyrolysis of pre-ceramic polymers in reducing atmosphere, it is possible to consolidate the 

obtained ceramics and give them high hardness, density and fracture toughness. 

Some investigations on the impurities in silicon carbide have demonstrated the positive effect 

on the fracture toughness, especially considering B4C; the role of boron, however, is examined for 

percentages well below 5 wt% (Kazumori et al, 2008; Maître et al., 2008). This study is focused 

on weight percentages of boron even exceeding 5%. In fact, we will refer to composites with a 

boron content of 5% and 10%. Composite compositions in traditional studies (Zhang et al., 2013), 

present a ratio of B to Si superior or equal to 1. Few percentages like those presented here are not 

frequently described. 

The addition of a secondary component in SiC is supposed to decrease both the sintering 

temperature necessary for full densification, which is known to be problematic, and mechanical 

properties. In this study, by taking into account the fact that sintering of B4C by SPS shows 

excellent mechanical properties (Moshtaghioun et al., 2013), composite formulations allowing 

both fast SPS process and relevant mechanical properties were elaborated. Then, mechanical 

properties were expected to be equivalently good to those of B4C and SiC. 

A second novelty of the present investigation concerns the origin of SiC, i.e. a commercial 

polycarbosilane. This specific type of preceramic polymer is a well-known precursor for silicon 
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carbide, especially when considering the manufacturing of fibers (with the commercial names of 

“Nicalon” and “Tyranno”) (Colombo et al., 2010). General advantages of preceramic polymers are 

the low processing temperatures and, above all, the possibility of using polymer processing 

techniques, like fiber spinning. However, heating of preceramic polymers generally leads to the 

formation of cracks and pores in the ceramic products, if not thin-walled (i.e. if not in form of 

fibers, microcellular foams, thin films), due to the release of a great amount of gases (mainly 

hydrocarbons) (Wild and Buhler, 1991;  Renlund et al., 1991) during the polymer-to-ceramic 

conversion (at T > ~500 °C), which results also in a significant volume contraction of up to 60%. 

Monoliths can be produced only by applying hot pressing to pre-ceramized materials, or including 

fillers, which can either react with the preceramic precursor (reaction with the main ceramic 

residue, with gaseous by-products or with the atmosphere) or remain inert during firing. 

Densification of polymer-derived ceramics by SPS has been seldom applied (Gash et al., 2001; 

Wan et al., 2003; Duan et al., 2004; Sandua et al., 2012; An et al., 2014). 

The introduction of fillers takes advantage of the features of the preceramic polymers: in fact, 

fillers can be easily and homogeneously dispersed in liquids, obtained from the melting or from 

the dissolution in solvents of polymer precursors (Colombo et al., 2013b). In the present case, 

boron can react with the different components of the ceramic residue from the pyrolysis of the 

preceramic polymer, i.e. free carbon, oxygen (present as a contamination in polycarbosilanes) and 

possibly even silicon. 

 

IX.3.2 Experimental Procedure 

A commercial polycarbosilane (PCS, Nipusi® type S, Nippon Carbon Co., Ltd.) was used as 

SiC precursor. Boron was provided in the form of micro-sized particles (< 1 µm, supplied by 

Sigma Aldrich with purity>95% ) and mixed with the SiC precursor in two different ways. In the 

first case, B powders (“B pwd”) were dry mixed with pre-pyrolized PCS by means of a rotary mill 

(ball milled at 350 rpm using QM planetary ball mill (Nanjing University Instrument Plant) and 

zirconia balls (diameter-10 mm) for 4 h with a powder-to-ball weight ratio of 1:20.). In the second 

case (“B sol”) B powders were cast in solutions of PCS in acetone (50 ml of solvent for 10 g of 

PCS), under magnetic stirring. The B-containing dispersions were dried at 60 °C overnight and the 

resulting solid residues were first ground into fine powders and then subjected to pre-pyrolysis.  

Pre-pyrolysis treatments, for both pure PCS and PCS/B mixtures, consisted of a heating stage at 

1000 °C for 1 h in nitrogen (2 °C/min heating rate, natural cooling). B was added in an amount of 

5 and 10 wt%; when considering PCS/B mixtures, the weight proportions of polymer and filler 

were adjusted on the basis of the ceramic yield of the polymer (68 wt%) (Li et al., 2008). 

The polymer-derived powder mixtures were sintered using a SPS furnace (FCT HP D 20; FCT 

Systeme GmbH, Rauenstein, Germany) under vacuum (5 Pa). The samples were heated up to the 

sintering temperature at a rate of 100 °C/min. The samples were kept at the sintering temperature 

for 5 or 10 minutes.  The pressure was held constant to 16 MPa up to the sintering temperature, 

afterwards the pressure was raised up to 50 MPa in 5 minutes.  The initial low pressure allowed for 

the complete degasification during SPS heating.  

The apparent density of the SiC-based ceramics obtained by SPS was measured by means of 

the Archimedes’ principle. X-ray diffraction analyses (Bruker D8 Advance, Karlsruhe, Germany) 

were performed directly on disc samples, employing CuKα radiation (0.15418 nm), in the interval 



Appendices 

189 

2θ=15-65°. Phase identification was achieved by means of the Match! program package (Crystal 

Impact GbR, Bonn, Germany), supported by data from PDF-2 database (ICDD-International 

Centre for Diffraction Data, Newtown Square, PA). 

Polished samples were employed for Vickers indentation tests, which yielded the hardness (Hv) 

and the indentation fracture toughness (KC) of the investigated materials. The fracture toughness 

was calculated by measuring the length of the cracks emanating from the corners of the Vickers 

indents. At low load (10 N, Palmqvist crack system), we considered the empirical simplified 

equation (see eq. 1) provided by Niihara et al. (1982) and already applied to SiC ceramics (Zhang 

et al., 2012a): 

( ) 5.0
vC LHP036.0K ⋅⋅=                  (1) 

where P is the applied load, Hv is the Vickers hardness, L is the length of emanated Palmqvist-

type cracks.  

At high load (20 N), for the densest samples, we used the well-known equation (eq. [2]) 

provided by Anstis et al., (1981) as follows: 

( ) ( )5.15.0
vC cPHEK ⋅⋅ξ=                    (2) 

where c is the length of emanated half-penny cracks and ξ is a calibration factor 

(ξ=0.016±0.004). E is the elastic modulus of the material, supposed to be equal to that of SiC (430 

GPa). 

 

IX.3.3 Results and Discussion 

 Table IX.8 summarizes the processing conditions applied to the investigated SiC-based 

ceramics, together with some measured properties.  

 
Table IX.8: Summary of processing conditions and properties of polymer-derived SiC-based ceramics 

 

The first system to be processed with SPS was that of pure SiC, from powders of pre-pyrolized 

PCS, without additives. Due to the low pre-pyrolysis temperature, the precursor powders were X-

ray amorphous and contained some oxygen contaminations and some residual H as well, (Li et al., 

2001; Sorarù et al., 1990)  i.e. they were expected to undergo further transformations during SPS 

treatment, as effectively found observing the variations in the SPS chamber pressure, with gas 

release, shown in figure IX.15a.  
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Fig.IX.15: SPS Temperature profiles for pure pre-pyrolized PCS: a) overall plot;  

b) high magnification detail 

 

In particular, the pressure peak at approximately 1050 °C was likely due to crystallization, in 

turn associated to H2 release (from decomposition of residual      –CH2– units in the polymer 

backbone) (Sorarù et al., 1990; Bouillon et al., 1991), or to carbothermal reduction reaction 

occurring between boron oxide and C (Corradetti et al., 2013). The second pressure peak (less 

intense), at about 1600 °C, could be ascribed to carbothermal reactions involving the oxygen 

contamination, generally found in the ceramic residue of polycarbosilanes. Carbothermal reactions 

imply the release of both CO and SiO, and usually take place starting from 1450 °C (Kim et al., 

2008). This is consistent with the high magnification detail of SPS chamber pressure plot in figure 

IX.15b, showing that the second gas evolution actually started at about 1500 °C. 
 

 

Figure IX.16: Shrinkage plots for different polymer-derived SiC-based ceramics processed by SPS 

 

The boron addition had a remarkable impact on SPS processing, as highlighted by the density 

data reported in table IX.8. The values for samples from pure pre-pyrolized PCS were quite far 

from the theoretical density for SiC (∼3.21 g/cm3 for all polytypes) (Harris, 1995). This fact is 

confirmed by the relative shrinkage plots in figure IX.16: some densification of pure pre-pyrolized 

PCS started only at the end of the heating stage, when the maximum SPS temperature (set at 2050 

°C) was reached. Sintering experiments with maximum temperature at 1900 °C were consequently 
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inadequate.  At 2050 °C, nearly one half of the holding time was necessary to achieve a relative 

shrinkage of only 2 %. On the contrary, B-containing samples exhibited some shrinkage already 

during the heating stage, i.e. starting from 1600 °C; at 2050 °C, the shrinkage was well above 2 %. 

The expected higher homogeneity of B distribution, using the “B sol” mixing approach, was 

associated to an improvement of the shrinkage, from 3.5-4 % to 4.5-5 %. 

 

 
Figure IX.17: X-ray diffraction patterns: a) comparison of samples with different boron addition (SPS at 

2050°C, for 10 min); b) refined analysis for the 10% B sol sample 

 

From the X-ray diffraction patterns in figure IX.17a we can note some differences among the 

ceramic from pure PCS and the ceramics developed with B addition, sintered at 2050 °C, also in 

terms of phase composition. Pure PCS led to practically phase pure cubic SiC (β-SiC, PDF#74-

2307). The additional shoulder located at 2θ∼34° is attributable to stacking faults (Kurtenbach et 

al., 1998). B-doped SiC, with 5% B, developed by powder mixing [B pwd] is significantly 

different from the other B-doped ceramics: while the first one features traces of hexagonal SiC (α-

SiC, PDF#29-1127) and, above all, boron carbide (B6.5C or B13C2, PDF#78-1574), the other ones 

feature traces of hexagonal SiC in a second polymorphic variant (α-SiC, PDF#73-1663) and 

graphitic carbon (PDF#75-1621). The peaks attributable to boron carbide were particularly weak, 

as highlighted also by the higher resolution detail reported in figure IX.17b (see the dotted lines, 

corresponding to the most intense peaks of B6.5C). Except for the sample with 5% B [P pwd], 

boron likely concentrated in a well-distributed nano-crystalline boron carbide phase. 
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Figure IX.18: SEM micrographs of SiC-based ceramics processed by SPS: a,b) pure PCS;                                                       

c,d) 5% pwd; e,f) 10% B pwd 

 

 

 The poor densification of samples from pure PCS is further testified by the micrographs in 

figure IX.18. The fracture surface of the sample from pure PCS, in figure IX.18a, reveals the 

presence a number of distinct dense granules, partially joined at the interface. These granules most 

probably correspond to the former particles of pre-pyrolized PCS, transformed into dense 

agglomerates of SiC crystals. The transformation was confirmed by the indentation analysis 

applied on the same densified zones, after polishing, as illustrated in figure IX.18b; both hardness 

and fracture toughness values match well those of SiC ceramics (Noviyanto et al., 2013). The poor 
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densification could be explained on the basis of an analogy with frit-derived glass-ceramics, where 

the viscous flow of fine glass powder may be inhibited by a substantial surface crystallization, 

according to the remarkable viscosity increase provided by the same crystal inclusions (A.R. 

Boccaccini, 1998). In the present case, the crystallization of SiC hindered any viscous flow of the 

amorphous residue from PCS. 

The samples from PCS and B, with boron added to pre-pyrolized PCS powders [B pwd], were 

much denser, but still had a quite heterogeneous microstructure. More precisely, figure IX.18c 

shows the sample with 5% B, exhibiting quite large irregular voids (in particular, see the voids at 

the bottom), uniform grey zones and zones with a multitude of darker micro-sized spots. The voids 

are attributed to a limited packing of former particles of pre-pyrolized PCS, while the uniform grey 

zone correspond to agglomerates of SiC crystals. The zones with dark grey micro-spots are 

particularly interesting: the spots, according to EDS analysis, actually correspond to a secondary, 

boron rich phase, surrounded by the main SiC phase. In our opinion, the bi-phasic zones originated 

upon interaction between the surface of granules of pre-pyrolized PCS with B particles; the 

chemical interaction between B and the oxygen contaminations provided a borate liquid phase, 

that helped the densification by a dissolution and precipitation mechanism, and later converted into 

a boron carbide phase, by carbothermal reduction occurring already at around 1000 °C (Corradetti, 

et al., 2013).  

A higher boron content led to a more homogenous biphasic structure, shown in figure IX.18e 

and f. Figure IX.18e (bottom part) shows the persistent presence of relatively large defects; figure 

IX.18f illustrates the particular fracture surface, comprising a lot of steps (more pronounced than 

in the case of 5% B). These steps are probably caused by crack deflection in SiC crystals (zones 

with a lighter colour), around boron carbide phase, favored by the thermo-elastic mismatch 

between the two phases. Figure IX.19a, referring to the polished surface of a B sol 5% sample, 

clearly shows light grey boundaries between adjacent former granules of pre-pyrolized material; 

high magnification details, see figure IX.19b, highlight the formation of a number of SiC 

microcrystals (light grey), surrounded by a multitude of darker spots, attributed to both the 

segregation of a boron rich phase and micropores; some larger pores and irregularly shaped dark 

grey areas are also visible. figure IX.19c and d clarify that these dark zones do not represent voids, 

but a further phase. 

The structure of the matrix around the dark inclusion, attributed to graphitic carbon, in figure 

IX.19d, is quite similar to that of B pwd samples, but on a much finer scale (very rough surface, 

from multiple crack deflections around microcrystals and dark spots). figure IX.19e, referring to a 

sample with higher B content (B sol 10%), confirms this situation. Finally, the crack deflection 

occurring around the microcrystals is further testified by the image of the crack path on a polished 

surface (see figure IX.19f , details of a crack emanating from a Vickers indent). Further proofs of 

the optimum dispersion of B-rich secondary phase and of the multiple deflections of cracks are 

reported in figure IX.20. 
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Figure IX 19: SEM micrographs of SiC-based ceramics processed by SPS: a-d) 5% B sol ; e,f) 10% B sol 

 

The differences in hardness between samples with the same B content, but different mixing 

procedures, are reputed to be insignificant; in fact, the measurements on B sol samples were made 

considering much wider indents, i.e. the properties were averaged on a much wider volume, 

including the above described micro-pores. In any case, even considering the lowest values, the 

mechanical properties of the B-containing samples, reported in table IX.8 compare favorably with 

those of SiC monoliths (Noviyanto et al., 2013). The good values of hardness derive however from 

the influence of the entire microstructure of the samples; if the presence of micropores would give 

a decrease in hardness, this is increased by the presence of boron carbide sub-micron inclusions 

(B13C2 is in fact classified as a super-hard phase). (Zhang et al., 2012b) 
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Figure IX.20: a) high magnification details of multiple crack deflections in sample 10% B sol; b) evidence of 

sub-micrometric B-rich secondary phase 

 

The prepared SiC-based composites for structural components, to the authors’ opinion, have 

some potential for structural components. However, further efforts will be needed to verify the 

feasibility of much larger samples, essential for the effective assessment of any toughening effect 

provided by the boron carbide phase (e.g. by measurement of the bending of chevron-notched 

bars).  

 

IX.3.4 Conclusions 

The main findings of this study may be summarized as follows: 

• Spark plasma sintering (SPS) can provide dense SiC-based ceramic composites, starting 

from a commercial polycarbosilane (PCS); the presence of a boron filler is essential for 

the effective densification since the crystallization of SiC hinders any viscous flow of the 

ceramic residue of the preceramic polymer; 

• The incorporation of B can be achieved both by operating with the ceramic residue of PCS 

(mixing of powders after pyrolysis of PCS) and by operating with the starting polymer (B 

added as a filler); 

• The two types of mixing lead to similar microstructures, comprising fine boron-carbide 

crystals in a SiC matrix; the addition of B in the polymer leads to a more homogeneous 

distribution of secondary phase. 
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IX.4 Short Life Cycle Analysis of a glass-ceramic tile from waste recycling 

 

IX.4.1 Introduction 

The construction field, which is in constant evolution, is experiencing a singular revolution, in 

which sustainability plays in important role. A lot of building materials nowadays are submitted to the 

evaluation of environmental impact. Buildings manufacturing may require an optimized LCA 

(Ramesh et al., 2010), particularly when considering external insulation and means employed for the 

optimization of energy recovery in a “passive system” (Mora, et al., 2011; Stazi et al., 2012; Radhi et 

al., 2013; Stephan et al., 2013), and sometimes focusing specifically on the façades (Blom et al., 2010; 

Kim, 2011; Taborianski et al., 2012). Some LCA in the construction field focus on the type of 

materials used (Blengini, et al., 2010; Chau et al., 2012). Very often, new alternative materials appear, 

that are partly or totally made by recycling inorganic waste. The Life Cycle Analysis (LCA) tool is 

able to give an overview of the economic as well as environmental impact of such alternatives, 

generally on a comparison basis. The possibility of producing waste-based panels assessed by LCA 

would enable to ensure public opinion of the validity of the process in the sustainable aspect. To 

consider the specific life-cycle of a waste as secondary raw material instead of an End-of-use 

substance, recently LCA methods for waste management systems (Alexis et al., 2014) are available. 

The environmental impact of construction materials concerns also waste based materials (Garcia et al., 

2007; Coelho et al., 2012). Glass and ceramics have been the subject of environmental studies, 

particularly regarding the end-of-life stage, the carbon footprint and the energy consumption (Vellini 

et al., 2009; Quinteiro et al., 2012a and 2012b). This review has for objective to summarize the LCA 

analysis comparing waste based innovative materials to traditional ones, in the construction field. 

Materials considered are among: i) Glass foams for lightweight concretes from recycled glass 

(Blengini et al., 2012); ii) Lightweight glass-ceramics for ventilated façades. According to Cabeza et 

al. (2014), in a study of LCA in the building sector, construction materials such as concrete and steel 

can account for most of the materials –related environmental impacts, and use-phase energy 

consumption can account for 50% of total life-cycle impacts. For this reason, it would be interesting to 

improve the manufacturing of the construction materials in a way to decrease their environmental 

impact. In this idea, LCA has already been done on glass foam aggregate from waste glass (Blengini et 

al., 2012). Beyond enhancing energy saving during the operational phase of buildings, such products 

are expected to increase recyclability of the building as a whole. A recent study of LCA (de Gracia et 

al., 2014) on ventilated façades, a target application of lightweight waste-based ceramics, is an ideal 

support to this study. The raw material chosen corresponds to the type of waste investigated in chapter 

V.2. The LCA methodology followed here corresponds to ISO 14040 (2006) and ISO14044 (2006), in 

the purpose to answer an environmental issue on the aspects of physical good: by designing new 

product and comparing improvements in competing products and service, through the greening of the 

building industry. The analysis is presented in two particular ways: the first one sets the functional unit 

as a quantity of produced material in kg whereas in the second one, a superficial area in m² is 

considered.  
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IX.4.2 Goal and scope definition 

 

IX.4.2.a Objective of the study 

Manufacturing of waste based ceramic tile relative to that of composite plastic tile (comparative 

LCA, see table IX.9. The purpose is also to determine if the introduction of waste in the raw materials 

composition gives lower potential environmental impacts. The results will be used by the company to 

take decision on whether to launch a parallel production using this process and how to equip the 

production site.  
 

 Life span façade systems 

Building life 

span 

Façade 

area 

covered 

Plastic 

composite 

panels 

Waste 

Ceramic 

tiles 

Metal frame 

(supporting 

structure) 

Baseline 

LCA 
10 years 20 years 40 years 40 years 4 x 5m² 

Table IX.9: comparison between various materials for this application 

 

IX.4.2.b Function (wall system) and functional unit 

According to ISO 14040, the functional unit is a quantified description of product systems’ 

performances. The adopted function is covering a wall surface of 1000 m². The product is supposed to 

have a thickness of around 10 mm and volume mass of 2 kg/m3 so this surface is equivalent to 2 T 

(FU). The second opportunity is to consider a façade area of 4 x 5 m², 40 years service, life span 10 

years and 20 years.  

 

IX.4.2.c Product systems: cradle to the grave (pre-use, use, post-use).  

All the processes involved in the production, distributed and disposal of the tile in Italy.  

 

IX.4.3 Inventory- first analysis 

In the first analysis, an appropriate inventory would be described as following (see figure IX.22).  

 

 
Figure IX.22: input and output data of the tile waste-to-production chain 
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The waste glass and waste lime, instead of going to landfill storage, are recovered as raw materials 

for the production, together with clay. The glass-ceramic process may proceed by a fast process, such 

as sinter-crystallization or direct sintering, for a short holding time and at temperatures lower than 

1100 °C due to the low softening temperature of the mixture, as presented in the bibliography 

(Bernardo, 2008; Bernardo and Scarinci, 2008; Bernardo et al., 2009; Bernardo et al., 2010; Ponsot et 

al., 2012) and in chapter V.1. This may bring a recovery of energy, from the fact that the waste 

material may be already partially ground, and so the milling process would be reduced, and from the 

optimized thermal treatment. The delta input – output waste is positive, which means that there is a 

decrease of the waste production in this cycle (table IX.10). 

 

Wastes input Waste output 

1.8 T as raw material  
Mixing with reused waste from pressing 0.1 T Pressing 0.1 T 
 Thermal process : used filters and dusts from 

abatement fume system (0.1 T) 
 Delivery and client use : 
Total : 1.9 T Total : 0.3 T 

Table IX.10: quantity of input and output waste 

 

IX.4.3.a Suppliers 

The raw materials suppliers chosen in the study correspond to companies that are susceptible to 

produce regularly the waste glass, waste lime and clay by direct or indirect ways. The glass 

manufacturing company, to provide the waste glass, in amounts estimated of 1,8 × 70% = 1,26 T/year, 

may produce an estimated average of waste production by producing 100 T/year glass pieces, among 

them 1 % scrap. The ceramic plant, to provide waste lime, may dispose of furnaces zones, with a 

regular use of exhausted lime in its fume abatement system. The supplied quantity obtained by 

calculation may be of 1,8 × 20 % = 0,36 T/year. Regarding clay, the quantity imported would come 

from an extraction plant of which impact on price depend on plants geographic position (see table 

IX.11). 

 

Materials Proportion 

[wt%] 

Supply Emissions Energy 

consumption 

Waste glass 70 Glass manufacturing 
company 

Gas, CO2, non-dangerous 
waste glass. (part of the 
emission are taken as 
raw materials) quantity 
5% 

 

waste lime 20 from fume abatement 
system : glass and 
pigments plant 

 

clay 10 extraction plant H2O, CO2 (emissions 
into air), waste kaolin 
(emissions into soil). 
quantity 5% 

Extracting 
process 

Table IX.11: repartition of the emissions and energy consumption per material supplied 
 

IX.4.3.b Transport 

 If the transport is made by road (or boat), the energy consumptions depend on oil or fuel 

consumption parameters. The quantity supplied by road set at 0.36 T/year waste lime on 500 km and 

1,26 T/year waste glass on 100 km (in the case where the production plant is located near to a glass 

manufacturer, for example). During the delivery to the client and the transportation to landfill, 2 
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T/year new panel and 2 T/year waste panel is supposed to be transported on a distance of about 500 

km. We deduce an estimation of the emissions, into air, in CO2, gas, PF and hydro carbides. 

 

IX.4.3.c Manufacturing 

In the manufacturing processes, most of the various emissions and energy consumption comes from 

the thermal treatment at 900 °C. The other steps of the process are non-negligible, particularly because 

of the heat and fine particles emissions, but solutions exist to recover the dissipated heat and to act on 

a reduction of the particles emissions places. 

 

IX.4.3.d Use 

The final use corresponds to the installation of 2 T panels covering the surfaces of non-residential 

and residential buildings. The waste and dusts emitted should not be more than a 5% quality target 

(see table IX.12). 

 

Process Energy consumption Emissions into air Emissions into water and 

soil 

Raw materials mixing in 
50 wt% water (tanks) - 
important water usage 
here 
 

electricity for rotors 
 

H2O vapor, CO2, gas, heat 
(emissions into air), waste 
and (indirectly from 
electricity production 
CO2, H2O) 

liquid waste mixture 
 

Drying (spray drying) gas or electricity or both – 
constant T° around 150 
°C 

H2O vapor, CO2, gas, heat waste 

Pressing gas or electricity or both – 
pressure of around 400 
bars 
 

CO2, gas, dusts 
(emissions into air, and 
soil indirectly) 

waste 

Drying and thermal 

treatment 

gas or electricity or both – 
constant T° around 

CO2, gas, heat, (major 
contribution) 

waste final product 
(discharge) 

Other: maintenance (here not taken into 
consideration, but maybe 
relevant) 
 

Oil, grease, metallic 
scrap, plastic… 

 

Packaging: 1 Palette and 
1 T paper boxes, glue 

electricity or gas for 

the packing machine 
 

CO2, heat into water: dusts from and 
cleaning process before 
packing 
into soil: waste paper, 
waste final product, waste 
glue (resin) 

Table IX.12: repartition of the impacts on a Ceramic plant for the manufacturing of tiles 

 

IX.4.3.e Disposal 

Depending on acceptance conditions, the building waste (coming from panels dismantlement or 

replacement) after certification of non-hazard, can be recycled in road construction (emissions into 

water and soil) and aggregates for concrete if properties are certified according to the related rules and 

regulations. The other part is sent to landfill storage for non-dangerous waste. The emissions into 

water and soil may be present. 
Note: 

Data source: see IX.4.7 and bibliography;  

Reference process and technology: traditional ceramic process and technology; Geographical area: Italy;  
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Monitoring details and measurement method (specific unit of measurement, method for calculating average 

values, variance and irregularities in the measurements): to be determined. 

 

IX.4.4 Inventory - second analysis 

In the second analysis, the inventory may focus merely on separate the product cycle in 3 stages: 

pre-use, use and post-use, as presented on figure IX.23.  

 

 
Figure IX.23: flow diagram and system boundary (Kim, 2011) 

 

 

Components Plastic composite Glass waste 

 Mass (kg) 5% wastage Total Mass (kg) 5% wastage total 
PMMA (acrylic) 876 49     
Biofiber composite 185 9     
Epoxy 4 0     
Aluminum 53 3  164 8  
Silicon (rubbers) 52 3  49 3  
Waste glass    1899 95  
Total input (kg)  64 1234   2217 

Table IX.13: materials for the generation of ventilated façade panels (Kim, 2011) 

 

 
Table IX.14: list of the embodied energy (MJ) and gas for the consumption of each material (Kim, 2011) 

 

Supporting metallic structures are made of Al and Silicon. The other components of the panels are 

either PMMA, biofibers, epoxy resin, or waste glass. For each component, the equation (1) is applied 

using data from table IX.14. Results are described in histogram views (figure IX.24). 
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e 

 
f 

Figure IX.24: histogram representations of gas (left part) and energy consumption (right part) in the  

 “Pre-use” (a;b), “use”(c;d) and “post-use”(e;f) systems 

 

 

a b

c d

e f 
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IX.4.5 Impact assessment 

 

IX.4.5.a Classification 

In table IX.14 are summarized the various impact levels. 

 

Environment Impact 

Global Greenhouse effect (CO2, H2O), ozone layer (other gases and fumes), consuming 
nonrenewable resources, (kaolin clay, gas) trouble to human health (dusts, heat) 

Regional Soil acidification, eutrophication, chronical toxicity (if present in incoming 
waste), poor water resources (water use) 

Local Human health (breath), soil degradation, biodiversity 

Table IX.14: how does the system affect the environment? 

 

IX.4.5.b Characterization 

The quantitative characterization of the emitted product EP is based on the following equation, 

with Q, the quantity and EQ (j)i the substance contribution level: 

 

EP (j)i = Q × EQ (j)i, (1) 

 

As an example, the total emission of CO2 during the whole process, EP (CO2), is reparsed among 

each step involved in CO2 emission: transport, supply, manufacturing, packaging, use and finally 

disposal, which is written: 

 

EP (CO2) = Q1 x EQ(CO2) transport + Q2 EQ (CO2) supply + Q3 EQ (CO2) manufacturing + Q4 EQ 

(CO2) packaging + Q5 EQ (CO2) use + Q6 EQ (CO2) disposal 

 

Free softwares (such as Gemis www.oeko.de/service/gemis/, Eiolca www.eiolca.net or CMLCA 

http://www.leidenuniv.nl/interfac/cml/ssp/software/cmlca/) enable to extend and quantify the analysis 

with non-theory values. Excel, as used here, enable to make a pre-estimation of the interest to pursuit 

such study, to get a general overview and also to point out eventual particularities. 

 

IX.4.6 Discussion of results 

 

IX.4.6.a Results from inventory analysis and impact assessment 

The results presented in the second estimation show three stages of energy consumption. Pre use, 

use, and post use. In the pre-use stage, waste based ceramic is preferable to plastic. Indeed, the 

production of plastic itself is energy consuming. In the use and post-use stages, plastic is preferable. 

One explanation is firstly by considering the shaping energy, which is quite high in the case of 

ceramics, as they require a thermal treatment, at least up to. Even if nowadays, energy consumption of 

furnaces is very well optimized, in the case of plastic, we go only to a maximum of 600 °C. Another 

explanation for this would be that the manipulation energy would depend on materials weight, it could 

be seen that some ceramic from waste can have the same mechanical properties as those of plastic 

composites (lightweight and strong). In the post use stage, dismantlement would effectively be energy 

consuming as well as landfill disposal. Nowadays, plastic, once used, is easily recycled and then there 
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is an environmental benefit for using it. However, plastic material is easier degraded than ceramic and 

then it is expected to be replaced after 10 years use instead of 20 years in the case of ceramics. 

 

IX.4.6.b Conclusions and recommendations 

At pre use and use stages, the sub-process that should be improved first would be the filtration of 

fumes and dusts, and the energy recovery by heat redistribution (heat from furnace can be redistributed 

to spray dryer for example). At use and post use stages, the mechanical and thermal properties of the 

ceramic can be improved to increase the performance of the building. Working on the feasibility of 

such waste based ceramic materials would enable to improve the parameters that favor the use of 

plastic. The reason is not that plastic is not good, but plastic could be used in another application 

where it would not degrade easily. 

 

IX.4.6.c Limitations 

LCA cannot address local impacts. The European law does not authorize easily the thermal 

treatment of waste, particularly when they are classified dangerous. It requires specific installation that 

can be a heavy additional cost. It says nothing on social aspects. LCA does not include the 

environmental impact that was induced to the LCA of the owner of incoming waste. 
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