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Abstract

Small non-coding RNAs are widespread in all kingdoms of life (Michaux et al.
2014) where they participate in RNA-mediated silencing pathways to regulate and
fine-tune gene expression, through transcriptional gene silencing (TGS) and post-
transcriptional gene silencing (PTGS) mechanisms. Not all mechanisms of RNA
interference (RNAI) are conserved among organisms, which is true for example
for the TGS pathway termed RNA-directed DNA methylation (RdDM). RdDM
occurs in the nucleus to repress target genes at the transcriptional level, it is an
epigenetic pathway because it does not alter the DNA sequence but instead
causes gene expression variation by small RNA-guided modifications of
chromatin, for example cytosine methylation and histone modifications. In plants
RdDM is unique among small RNA-mediated chromatin modifications because it
depends on two plant-specific RNA polymerase enzymes called Pol IV and Pol V
(Matzke and Mosher 2014). This increases the complexity of RNAi mechanisms in
plants, which have been investigated for a large amount of studies in the model
species Arabidopsis thaliana (hereafter referred to as Arabidopsis). Small RNAs
(sRNAs) and RNAi mechanisms play fundamental roles in many biological
processes; in particular, their observed participation in the phenomena of hybrid
vigor, stress-response and formation of epialleles makes them an important
source of growth in crop production. Arabidopsis shows many differences in
genome size, structure and dynamics compared to crops, therefore it is
necessary, and challenging, to transfer the knowledge acquired in this model plant
to crop species (Mirouze and Vitte 2014). Maize is one of the most important food
and feed crops in the world and has a wide range of industrial applications as well.
The maize genome has unique characteristics, such as the unusual number of
well-characterized active transposable elements (Lisch D 2012), which are the
main targets of RADM. For these reasons it is of particular importance the
research aimed to expand our knowledge on how sRNAs control genome activity

in maize.
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This is the general background to this PhD project, whose aim was to
characterize the endogenous sRNA population of maize leaf in terms of genomic
annotation and abundance, to further examine its influence on gene expression
and its response to abiotic stresses. To analyse the sRNA control of gene
expression, in addition to wild type maize plants, the rmr6-1 mutant was also
studied: impaired in Pol IV function this mutant is characterized by the absence of
siRNAs participating in RdDM that require Pol IV for their biogenesis (Erhard et al.
2009). The absence of Pol IV-dependent siRNAs allowed testing what was their
impact on genome stability. The sSRNA population was characterized through the
analysis of sRNA-seq data obtained from our samples. Gene annotation and
expression level in wt and mutant plants was retrieved from the analysis of total
RNA-seq data obtained by our laboratory from the same samples. To assess the
role of sSRNAs in stress response we examined the sRNA population of wild type
and rmr6-1 mutant plants subjected to abiotic stresses. The abiotic stresses
studied were field-mimicked conditions of drought, salinity and the combination of
the two, drought plus salinity, because these are the most crucial abiotic stresses
that limit the production of the world crops (Munns R 2011). In particular,
salinization constitutes a problem also in Mediterranean coastal areas (Flowers TJ
2004) and, considering the region of Veneto, in the coastal soils of the Venice
Lagoon (Carbognin and Tosi 2003).

The PhD started with the collaborative project between the laboratories of
Prof.ssa S. Varotto, Prof. F. Morari and Dr. F. Meggio. The aim of the project was
to set up a reproducible protocol for the application of drought and salinity
conditions to maize plants that was agronomically realistic and representative of
field stress conditions. To mimic field progressive stress conditions, drought,
salinity and the combination of the two, drought plus salinity, were applied to
plants progressively for ten days and the stress response was evaluated at
different time points during the stress application. In field conditions after a period
of stress, environmental conditions usually turn more favourable, therefore after
ten days of treatment the stresses were removed and plants were grown in
optimal conditions to test their recovery capacity. Two different lines were studied:
the stress-sensitive inbred line B73 and a stress-resistant F1 commercial hybrid.

At the time points of stress application and recovery from the stress, plants
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responses were analysed with agronomic, physiological and genetic parameters.
Agronomic parameters were evaluated by the laboratory of Prof. F. Morari and
physiological parameters by Dr. F. Meggio. Our collaboration consisted in the
study of the genetic responses of plants. In particular, literature was investigated
to identify a set of genes known to be differentially expressed (DE) by stress or
belonging to the main pathways involved in abiotic stress response and their
transcript level was analysed in our experiment using real time quantitative PCR
(qQRT-PCR). All the analysed parameters confirmed that the applied treatments
were effective in inducing a stress condition in plants. Therefore our stress
protocol represents a valid tool for further studies concerning the stress response
in maize, which retain their value under field conditions, thus increasing the result
translatability for crop improvement. The combination of the examined agronomic,
physiological and genetic parameters allowed gaining insights into the
mechanisms regulating the different tolerance to the stress of the stress-sensitive
and stress-resistant lines.

The main work of the PhD project was dedicated to the analysis of sSRNA-
seq data obtained from wt and rmr6-17 mutant plants, to characterize the
endogenous sRNA population of the maize leaf and investigate its effect on gene
expression and its stress response. 48 sRNA-seq libraries were sequenced from
leaf samples of wt and mutant plants, in control conditions or subjected to abiotic
stresses and after the recovery from the stresses. Reads from each library were
pre-processed and the quality of the clean reads was verified. Reads were then
mapped to the reference maize B73 genome, revealing the typical maize sRNA
population profile with the highest abundance of 24-nt sRNAs, followed by the 22-
nt and the 21-nt sRNAs. The bioinformatics tools ShortStack was used to de novo
identify the maize genome loci responsible for a significant production of sSRNAs in
the leaf, starting from the merged set of SRNAs of the 48 samples. The identified
MIRNA loci were examined first. We found differences between our microRNA
annotation and that reported in miRBase that might reflect inaccurate annotation
in miRBase or leaf-specific differences in MIRNA processing patterns. The
prediction of the microRNA targets was performed on the transcripts annotated in
the transcriptome assembly reconstructed from RNA-seq. This allowed identifying

a newly annotated transcript as target of a conserved microRNA, helping
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elucidating the role of this microRNA in maize. Putative novel microRNAs were
identified: a number of them had characteristics of bona fide microRNAs while
others appeared to be new 'proto-miRNAs' or instead siRNAs. The other identified
sRNA loci categories were analysed in terms of co-occupancy with protein-coding
genes, transposon and long non-coding RNA (IncRNA) transcripts. A significant
enrichment of the loci predominated by the production of 24-nt sSRNAs was found
in the flanking regions of all the analysed set of genes. In particular, expressed
genes were flanked by sRNA loci of 24-nt size class with higher frequencies
compared to the non-expressed genes. In the rmr6-1 mutant, despite the dramatic
loss of siRNAs observed mainly in gene flanking regions, the number of DE genes
compared to wt was 1013 and the downregulation of an sRNA locus was not
generally sufficient not even necessary to predict the up or downregulation of its
close gene. Therefore, the absence of siRNAs had little impact on the genome
stability of the maize leaf, indeed leaves of mutant plants did not have
morphological defects and were identical to those of wt plants. The mechanisms
that maintain gene silencing when siRNAs are lost and thus RdDM control of gene
expression is impaired still remains to be elucidated. Literature data show
evidences that the RdDM pathway might be essential to ensure the
transgenerational transmission of the epigenetic information. In this hypothesis, to
elucidate the role of siRNAs in the control of gene expression it would be helpful
to study the activity of siRNAs and the effects of RADM mutations in other cell
types such as the gametes. Alternatively, it would be helpful to study epigenetic
changes of gene expression in multiple generations of plants. The absence of
siRNAs, although it was not found to compromise the genome stability in the leaf,
did have some effects on gene expression that appeared to be secondary effects
of the mutation. In particular, in the rmr6-1 mutant it was registered the
upregulation of stress-responsive genes and cytochromes and the downregulation
of genes involved in the regulation of cell cycle and genes encoding core histone
proteins. Finally, the sRNA stress response was examined. We applied the stress
protocol previously set up and found a few numbers of miRNAs and sRNA loci of
the other categories that were DE in stress conditions. Although the DE sRNAs

were less numerous compared to previous works assessing the sRNA stress
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response in crops, they might be better candidates for stress-tolerance studies

because they were found to be DE during stresses mimicking field conditions.

Published works cited here are reported in the ‘References’ section of Chapter 2.
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Riassunto

| piccoli RNA non codificanti sono stati riscontrati in tutti i regni della vita (Michaux
et al. 2014). Essi partecipano ai meccanismi di regolazione genica di
silenziamento del DNA mediato da RNA, che si distinguono in meccanismi di
silenziamento genico trascrizionale (TGS) e post-trascrizionale (PTGS). Non tutti
questi pathway sono conservati negli organismi, come ad esempio il meccanismo
chiamato di metilazione del DNA RNA-dipendente (in inglese ‘RNA-directed DNA
methylation’, RADM). Esso avviene nel nucleo, dove induce la repressione delle
sequenze target a livello trascrizionale. Il pathway RdDM & un esempio di
meccanismo epigenetico di controllo dell’espressione genica, in quanto la
variazione di espressione viene indotta senza alterazioni di sequenza del DNA,
attraverso modificazioni della cromatina guidate dall’azione dei piccoli RNA, come
ad esempio la metilazione delle citosine o le modifiche istoniche. Nelle piante il
pathway RdADM prevede l'azione di due RNA polimerasi specifiche del regno
vegetale, 'RNA polimerasi IV (Pol IV ) e 'RNA polimerasi V (Pol V) (Matzke and
Mosher 2014). La specificita di questi enzimi riservata al regno vegetale € indice
che le piante hanno evoluto un livello aggiuntivo di complessita dei meccanismi di
silenziamento del DNA RNA-dipendenti, che sono stati studiati soprattutto nella
pianta modello Arabidopsis thaliana (abbreviata d’ora in poi con il nome
Arabidopsis). | piccoli RNA e i meccanismi di silenziamento del DNA RNA-
dipendenti ricoprono ruoli fondamentali in diversi processi biologici. In particolare,
il loro coinvolgimento nei fenomeni quali il vigore dell’ibrido, la risposta allo stress
e la formazione di epialleli li rende un’importante fonte di studio al fine del
miglioramento delle piante da coltivazione. Il genoma della pianta Arabidopsis
presenta molteplici differenze in termini di dimensione, struttura ed organizzazione
dinamica rispetto ai genomi delle piante da coltivazione. Queste differenze
sostanziali rendono necessario, ma anche difficoltoso, il trasferimento delle
conoscenze acquisite in Arabidopsis da questa pianta modello alle piante da

coltivazione (Mirouze and Vitte 2014). Il mais & una delle piu importanti
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coltivazioni a livello mondiale per la produzione di alimenti e mangimi e viene
utilizzato in diverse catene industriali. || suo genoma possiede caratteristiche
uniche, come ad esempio la presenza di un inusuale elevato numero di elementi
trasponibili attivi (Lisch D 2012), che sono i principali target del pathway RADM.
Per queste ragioni &€ di particolare importanza la ricerca scientifica volta ad
aumentare la conoscenza dei meccanismi di controllo dell’attivita del genoma di
mais guidati dai piccoli RNA.

L’attivita del progetto di Dottorato si inserisce all’'interno di questo quadro
di ricerca. Il principale scopo del progetto € stato la caratterizzazione della
popolazione di piccoli RNA endogeni in foglia di mais, in termini di annotazione
genomica e abbondanza, che ha permesso poi di valutare gli effetti dei piccoli
RNA sull’espressione genica e la loro risposta a stress abiotici. Al fine di indagare
il controllo esercitato dai piccoli RNA sull’espressione genica sono state studiate
due linee di mais, la linea inbred B73 e il mutante rmr6-1. Questo mutante
presenta una forma non funzionale della Pol IV che provoca la mancata
produzione dei piccoli RNA che partecipano al pathway RdDM e che dipendono
dalla Pol IV per la loro biogenesi, i quali sono chiamati siRNA, dall’inglese ‘small
interfering RNA’ (Erhard et al. 2009). L’assenza dei siRNA ha permesso di
valutarne gli effetti sulla stabilita del genoma. La popolazione dei piccoli RNA &
stata caratterizzata attraverso I'analisi di dati di sequenziamento di piccoli RNA
ottenuti dai nostri campioni. L’annotazione dei geni e i loro livelli di espressione
sono stati ottenuti nel nostro laboratorio attraverso [lanalisi di dati di
sequenziamento di RNA totale proveniente dagli stessi campioni. Al fine di
valutare il ruolo dei piccoli RNA nella risposta allo stress la loro espressione &
stata analizzata in piante wild type e mutanti sottoposte a stress abiotici. |
protocolli di stress utilizzati sono stati trattamenti che mimano gli episodi di stress
idrico, salino e la combinazione dei due, idrico piu salino, che si verificano in
condizioni di campo. Sono stati scelti questi stress abiotici in quanto sono le
tipologie di stress piu frequenti che abbassano le rese della produzione delle
piante da coltivazione a livello mondiale (Munns R 2011). In particolare, la
salinizzazione costituisce un problema anche nelle zone costiere del Mediterraneo
(Flowers TJ 2004) e, a livello della regione Veneto, nei suoli costieri della laguna
di Venezia (Carbognin and Tosi 2003).
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Il lavoro del Dottorato € iniziato con la partecipazione ad un progetto di
collaborazione tra i laboratori della Prof.ssa S. Varotto, del Prof. F. Morari e del
Dr. F. Meggio. Lo scopo del progetto € stato la messa a punto di un protocollo
riproducibile per l'applicazione di stress idrico, salino e idrico piu salino in
combinazione a piante di mais, che fosse realistico a livello agronomico e quindi
simile alle condizioni di stress che avvengono in campo. Al fine di mimare gli
episodi stress progressivo che si verificano in campo, gli stress idrico, salino e la
loro combinazione sono stati applicati alle piante in modo progressivo per dieci
giorni e la risposta delle piante allo stress & stata esaminata in diversi momenti
durante la sua applicazione. In condizioni di campo solitamente accade che dopo
un episodio di stress le condizioni ambientali tornino favorevoli, quindi dopo i dieci
giorni di applicazione di stress quest’ultimo & stato rimosso e le piante sono state
cresciute in condizioni ottimali per valutarne la capacita di recupero dallo stress.
Due diverse linee di mais sono state esaminate: la linea inbred B73 sensibile agli
stress e un ibrido commerciale F1 selezionato per la sua resistenza agli stress. In
diversi momenti durante I'applicazione dello stress e poi durante la fase di
recupero dallo stress la risposta delle piante € stata valutata attraverso I'analisi di
parametri agronomici, fisiologici e genetici. | parametri agronomici sono stati
studiati dal laboratorio del Prof. F. Morari e i parametri fisiologici dal Dr. F.
Meggio. L’attivita svolta nel lavoro di Dottorato ha riguardato lo studio della
risposta delle piante a livello genetico. In particolare, sono stati cercati in
letteratura geni per i quali fosse nota I'espressione differenziale in seguito agli
stress studiati o I'appartenenza alle principali vie molecolari di risposta a stress
abiotici. Il loro livello di espressione € stato studiato nei nostri campioni attraverso
la tecnica della PCR quantitativa in real-time. Tutti i parametri analizzati hanno
confermato che i trattamenti sono stati efficaci nell'indurre la condizione di stress
nelle piante. Di conseguenza, il protocollo messo a punto costituisce un valido
strumento per studi successivi riguardanti la risposta di piante di mais a questi
stress, i cui risultati mantengano validita in caso di applicazione in campo
agronomico. Lo studio combinato dei parametri agronomici, fisiologici e genetici
ha permesso di approfondire i meccanismi che regolano la diversa tolleranza allo

stress delle due linee di mais studiate.
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Il lavoro principale del Dottorato ha riguardato I'analisi bioinformatica di
dati di sequenziamento di piccoli RNA, ottenuti da piante wild type e mutanti rmr6-
1, con lo scopo di caratterizzare la popolazione dei piccoli RNA endogeni della
foglia di mais, esaminarne gli effetti sul’espressione genica e la risposta a stress
abiotici. 48 librerie di piccoli RNA sono state sequenziate da campioni di foglia di
piante wild type e mutanti, cresciute in condizioni di controllo, in condizioni di
stress abiotici e di recupero dallo stress. Le sequenze ottenute sono state pre-
processate e la loro qualita & stata inizialmente verificata. Dopodiché esse sono
state allineate al genoma di B73 e le sequenze allineate hanno mostrato il tipico
profilo dei piccoli RNA di mais: i piu abbondanti con lunghezza di 24-nt, seguiti da
quelli con lunghezza di 22-nt e poi di 21-nt. Il progamma bioinformatico
ShortStack & stato utilizzato per identificare de novo i loci genomici responsabili di
una produzione significativa di piccoli RNA in foglia di mais, partendo dall'insieme
di tutte le sequenze prodotte dai 48 campioni sequenziati. | loci MIRNA identificati
sono stati i primi a essere analizzati. Sono state riscontrate delle differenze tra la
nostra annotazione prodotta dei microRNA e quella riportata nel database
miRBase, le quali potrebbero riflettere un’inaccurata annotazione presente in
miRBase o differenze specifiche della foglia nel processamento dei precursori dei
microRNA. La predizione dei target dei microRNA & stata eseguita sui trascritti
annotati nel trascrittoma di mais ricostruito dai dati di sequenziamento di RNA
totale. Un trascritto nuovo annotato € stato predetto come target di un microRNA
di mais che & conservato in diverse specie vegetali, aiutando a capire la funzione
di questo microRNA in mais. Nuovi putativi microRNA sono stati identificati: una
parte di essi ha presentato le caratteristiche per essere considerati microRNA
bona fide, invece altri hanno presentato caratteristiche tipiche dei 'proto-miRNA' o
dei siRNA. Le altre categorie identificate di loci di piccoli RNA sono state
analizzate in termini di co-occupancy con i geni codificanti proteine, con i trascritti
di trasposoni e con i lunghi RNA non codificanti (IncRNA). | loci con produzione
primaria di piccoli RNA di 24-nt di lunghezza sono stati trovati significativamente
arricchiti nelle regioni fiancheggianti di tutte e tre le tipologie di geni considerate.
In particolare, i geni espressi hanno mostrato una maggiore probabilita di essere
fiancheggiati da loci di piccoli RNA di lunghezza di 24-nt rispetto ai geni non

espressi. Nel mutante rmr6-1, nonostante la perdita sostanziale dei siRNA
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osservata soprattutto nelle regioni fiancheggianti dei geni, un totale di 1013 geni
sono stati trovati differenzialmente espressi (DE) rispetto al wild type e la
downregolazione di un locus di piccoli RNA non ¢ risultato in generale un criterio
sufficiente @ nemmeno necessario per predire la up o downregolazione del suo
gene vicino. Di conseguenza, I'assenza dei siRNA non ha mostrato avere un
grosso impatto nella stabilita del genoma in foglia di mais, infatti, le foglie del
mutante non hanno evidenziato difetti morfologici e sono state osservate essere
identiche a quelle delle piante wild type. | meccanismi coinvolti nel mantenimento
del silenziamento genico quando i siRNA non sono presenti e il pathway RdDM &
alterato nella sua funzione rimangono ancora sconosciuti. Dati di letteratura
evidenziano la possibilita che il pathway RADM sia essenziale per garantire la
trasmissione transgenerazionale dell’informazione epigenetica. In questa ipotesi,
al fine di approfondire il ruolo dei siRNA nel controllo dell’espressione genica,
risulterebbe informativo lo studio dell’attivita dei siRNA e delle mutazioni del
pathway RADM in altri tipi cellulari, ad esempio i gameti. Risulterebbe informativo
anche lo studio delle variazioni epigenetiche di espressione genica in generazioni
successive di piante. La mancanza dei siRNA, nonostante sia stato verificato non
compromettere la stabilita del genoma nella foglia, &€ stato osservato indurre
cambiamenti di espressione genica che sono apparsi come effetti secondari della
mutazione. In particolare, nel mutante rmr6-1 € stata registrata 'upregolazione di
geni di risposta allo stress e di geni codificanti citocromi e la downregolazione di
geni coinvolti nella regolazione del ciclo cellulare e di geni codificanti proteine
istoniche. Infine & stata esaminata la risposta allo stress dei piccoli RNA. Sono
stati applicati i trattamenti di stress precedentemente messi a punto ed & stato
identificato un piccolo numero di microRNA e loci di piccoli RNA delle altre
categorie differenzialmente espressi in condizioni di stress. Nonostante questo
numero sia risultato inferiore rispetto a quello trovato in precedenti lavori che
hanno analizzato la risposta dei piccoli RNA allo stress, i piccoli RNA DE
identificati potrebbero essere candidati migliori per studi di tolleranza allo stress,
in quanto la loro espressione differenziale € stata indotta da condizioni di stress

simili a quelle che si verificano in campo.

| lavori qui citati sono riportati nella bibliografia del secondo capitolo di questa tesi.
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AGO
ARF
bp

C
ChIP
CLSY1
D
D+S
DCL
DDL
DDM1
DE
DME
DMS3
DRD1
DRM2
dsRNA
DTF1/SHH1

EVD
FLC
FWA
GO

GRF
H2B

H3
H3K4
H3K9me

Abbreviations

ARGONAUTE

AUXIN RESPONSE FACTOR

base pair

control non-stressful conditions

chromatin immunoprecipitation

CLASSY 1

drought stress alone

drought and salinity stress combined

DICER-LIKE

DAWDLE

DECREASE IN DNA METHYLATION 1

differentially expressed

DEMETER

DEFECTIVE IN MERISTEM SILENCING 3
DEFECTIVE IN RNA-DIRECTED DNA METHYLATION 1
DOMAINS REARRANGED METHYLTRANSFERASE 2
double-stranded RNA

DNA-BINDING TRANSCRIPTION FACTOR 1/SAWADEE
HOMEODOMAIN HOMOLOG 1

Evadé

FLOWERING LOCUS C

FLOWERING WAGENIGEN

Gene Ontology

GROWTH-REGULATING FACTOR

histone 2B

histone 3

unmethylated lysine 4

methylated lysine 9
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H3K9me2 dimethylation of lysine 9

hc-siRNA heterochromatic siRNA

HDAG6 HISTONE DEACETYLASE 6

HEN1 HUA ENHANCER 1

HESO1 HEN1 SUPPRESSOR 1

HP loci hairpin loci

hpRNA hairpin RNA

HST HASTY

HYLA1 HYPONASTIC LEAVES1

INV invariant method

IPS1 INDUCED BY PHOSPHATE STARVATION 1
JMJ14 JUMONJI 14

kb kilobase

KTF1 KOW DOMAIN-CONTAINING TRANSCRIPTION FACTOR 1
LTR long-terminal repeat

MCM MINICHROMOSOME MAINTENANCE

MET1 METHYLTRANSFERASE 1

MIR MIRNA

miRNA microRNA

MITE Miniature Inverted—Repeat Transposable Element
mop1-1 Mediator of paramutation1-1

mMRNA messenger RNA

Mu Mutator

MULE Mutator-like element

NAM NO APICAL MERISTEM

NAT-siRNA natural antisense transcript siRNA

NGS Next Generation Sequencing

non-HP loci non-hairpin loci

NRPD1 NUCLEAR RNA POLYMERASE D1

NRPD2/NRPE2 NUCLEAR RNA POLYMERASE D2/NUCLEAR RNA
POLYMERASE E2
NRPD2a NUCLEAR RNA POLYMERASE D2a
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NRPE1
nt
phasiRNA
PHB
Pol 1l
Pol IV
Pol V
pre-miRNA
PTGS
RdDM
RDM1
RDR2
RDR6
RISC
rmr1
rmr2
rmré
rmr7
RNAI
ROS
ROS1/ DML1
RPM
S

SA
SAM
SAM
SDN
SE
SINE
siRNA
SOD
SPCH

NUCLEAR RNA POLYMERASE E1
nucleotide

phased secondary siRNA

PHABULOSA

RNA polymerase |l

RNA polymerase IV

RNA polymerase V

precursor miRNA

post-transcriptional gene silencing
RNA-directed DNA methylation
RNA-DIRECTED DNA METHYLATION 1
RNA-DEPENDENT POLYMERASE 2
RNA-DEPENDENT RNA POLYMERASE 6
RNA-induced silencing complex
Required to maintain repression1
Required to maintain repression2
Required to maintain repression6
Required to maintain repression7

RNA interference

reactive oxygen species

REPRESSOR OF SILENCING 1/DEMETER-LIKE1
Reads Per Million

salinity stress alone

salicylic acid

significance analysis of microarrays
shoot apical meristem
SMALL-RNA-DEGRADING NUCLEASE
SERRATE

short interspersed nuclear element
small interfering RNA

SUPEROXIDE DISMUTASES
SPEECHLESS

Abbreviations
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SPL SQUAMOSA PROMOTER BINDING PROTEIN-LIKE
sRNA small RNA

ssRNA single-stranded RNA

tasiRNA frans-acting siRNA

TCP TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING
CELL FACTOR1

TE transposable element

TF transcription factor

TGS transcriptional gene silencing

TIR Terminal Inverted Repeat

TMM trimmed mean of M value

TSS transcription start site

UBP26 UBIQUITIN-SPECIFIC PROTEASE 26

UTR untranslated region

VSN variance stabilization

wt wild type
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Abstract

Drought and salinity are abiotic stresses that reduce plant growth and have a
strong impact on crop yield. These stresses will have a high future impact on crop
productivity, due to both the increase competition for land, water, energy and
climate changes. The response to drought (D), salinity (S) and the combined
stress (D+S) was monitored in time course of stress applications in two maize
genotypes: the inbred line B73 and a F1 commercial hybrid selected for its
tolerance to stress. To mimic field progressive stress conditions, a stress protocol
was developed and the stress conditions analyzed in terms of effect on plant
growth at different time points, indicating that all the applied stresses were
effective in limiting growth in the hybrid and arresting it in the inbred line. When
subjected to salt stress conditions, the two genotypes had different ion
accumulation and translocation capacity, particularly for Na* and CI. The
response of the two genotypes to stresses was physiologically different: the hybrid
rapidly reduced all the analyzed physiological parameters and kept them reduced
until the recovery, while the B73 decreased more gradually all physiological
parameters, being mainly affected by S stress. Both genotypes recovered better
from the D stress compare to the other stresses. Expression analysis of stress
marker genes indicated that gene expression was modulated in response to the
applied stresses in the two genotypes. Gene expression patterns were not
coincident and reflected the different capacity of the two genotypes to cope with
D, S and D+S treatments. Combining agronomic and physiological data with gene
expression analyses yielded insight into the mechanisms regulating the different
tolerance to the stress of the two genotypes.
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Introduction

Drought and salinity are abiotic stresses that adversely affect plant growth and
productivity, because they negatively influence both photosynthesis and plant
reproduction. In the future these stresses will have a high impact on crop yield,
due to both the increase competition for land, water, energy and climate changes
(FAO 2002, Ahuja et al. 2010). In particular, competition for water resources
among different social and economic sectors is growing, with agriculture being
progressively forced to use lower quality water (Araus J-L 2004). For example, the
problem of salinity is becoming increasingly serious particularly near coastal
areas. The exploitation of groundwater involves the increase of saline intrusion
with implications in salt accumulation and soil degradation. On the other hand,
irrigation-induced salinity represents a main constraint limiting productivity for
many crops. Selecting more drought and salt-tolerant genotypes is a desirable
way of improving crops (Tester and Langridge, 2010). Maize, one of the most
important food, feeding and industrial crops, has a pronounced susceptibility to
drought and salinity (Banziger and Araus 2007): improving the stress resistance of
this crop is thus of strategic significance.

A fair amount of studies has been focusing on the comparison of the differential
responses of crops to water and salt stresses (eg. Hu et al. 2007, Munns R 2002,
Elmetwalli et al. 2012) as they both lower soil water potential, normally leading to
similar physiological responses. The effects of water deficiency stress on plants
are well known: reduction of the photochemical activity of the chlorophyll (Souza
et al. 2004), reduced activity of the roots in the adsorption of nutrients from the
soil, and slacken roots to shoots nutrient transport (Kramer and Boyer 1995).
Even at high moisture content, soil salinity induces disequilibrium in the ionic
ratios in the plant (Grattan and Grieve 1999), resulting in physiological drought
with the abovementioned effects on plants (Corwin DL 2005). On the other hand,
soil salinity can also cause specific ion toxicity (Rhoades et al. 1999), and
compromise the repartition of macro- and micronutrients within leaves (Hu et al.
2007, Neves-Piestun and Bernstein 2005).

In many plant species, genetic studies have shown that drought and salinity stress
tolerance is a complex trait. However, its understanding can be facilitated by the
adoption of expression analysis approaches, which help elucidating the molecular
basis of stress adaptation and identifying the numerous pathways important for
the plant growth under limiting water or in saline soil (Shinozaki and Yamaguchi-
Shinozaki 2007, Bartels and Sukar 2005, Deinlein et al. 2014). These pathways
tend to be conserved among plant species, indeed one of the most obvious
features of the adaptation to drought and salinity is the change in transcript
profiles for genes involved in many biochemical, cellular and physiological
processes, from transcription regulation to signal transduction, protein
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biosynthesis and decay, membrane trafficking and photosynthesis (Vinocur and
Altman 2005). For example, from genetic studies it is evident that plant adaptation
to drought is a complex biological processes, which includes up or downregulation
of specific genes, transient increase in ABA levels, build-up of compatible solutes
and protective enzymes, increasing levels of antioxidants and inhibition of energy-
consuming pathways (Salekdeh et al. 2009). However, the conservation of
pathways and genes is not sufficient to translate results from one species and
even genotype to another because the high conservation of the core gene
machinery between plants may not correlate with the expression timing of the
stress-induced genes. A diverse stress tolerance between two genotypes may
reflect differences in the timing of up or/and downregulation of specific gene sets
(Skirycz et al. 2011).

Another important aspect of abiotic stress studies in plants is the need to apply
stress conditions that retain their value under field conditions, thus improving
translational research from model plants to crops, for agronomical solutions. In
many experimental works dealing with stress response, tolerance is assessed
predominantly in severe conditions in which plant survival would be compromised
in the case of prolonged treatment application. However, in field conditions, limited
resource availability rarely causes plant death and after a period of stress,
environmental conditions usually turn more favourable, determining reduced crop
yields but without compromising the survival of plants (Skirycz et al. 2011,
Deikman et al. 2012).

In this work, we analysed the stress response to drought, salinity and the
combined stress in two maize genotypes: the reference inbred line B73 for which
genomic tools are available and a F1 hybrid selected for its tolerance to stress.
We developed a protocol with the aim to mimic field progressive stress conditions
and evaluate the stress response of the two genotypes in time course of stress
application and after four days of recovery. The strategies adopted by the two
diverse genotypes to cope with stresses were evaluated using agronomic,
physiological and genetic parameters.
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Materials and Methods

Experimental set-up

The experiment was carried out at the experimental farm of the University of
Padova, Italy (45°21’ N, 11°58’ E, 6 m a.s.l.) in the period May-July 2012. The
response to drought and salinity was tested on two varieties of maize (Zea mays
L.): the hybrid PR32P26 (hereafter simply called P26, Pioneer Hi-Bred ltalia,
Gadesco Pieve Delmona, Italy) and the inbred line B73. In a field provided with an
automatic mobile roof avoiding rainfall input, pots (diameter 23 cm, height 23 cm,
volume 9500 cm?®) were filled with a 50%-weight mixture of native sandy loam and
silica sand. The resulting substrate (66% sand, 27.5% silt, and 6.5% clay) was
sub-alkaline (pH 7.8), had an organic carbon content of 0.40%, and was non-
saline (saturated paste electrical conductivity, ECe,= 0.8 dS m'1). The substrate
was packed in the pots in order to obtain a bulk density of 1.42 + 3.6*10° g cm™.
Pot water capacity and wilting point were 0.154 + 1.94*10° cm® cm™ and 0.072 +
0.9*10* cm® cm™, respectively. Before sowing, 0.50 g N, 0.22 g P,Os and 0.15 g
K20 were added to each pot. Maize seeds were pre-germinated for 2 days in wet,
rolled paper towels at 25 °C, after which 3 germinating seeds were transferred in
each pot. The seedlings were thinned to one per pot after 7 days.

The two varieties of maize were tested under the factorial combinations of two
water regimes and two salt concentrations in the soil, in four treatments: C
(unstressed plants, the control), D (drought stress), S (salt stress) and D+S
(drought and salt stress combined). The experimental design consisted in a
randomized block with 3 replications. Since destructive plant samplings were
performed on 5 dates, a total of 120 pots were prepared.

During the experiment pots were weighted daily. Water-unstressed plants were
grown at a water content of 100% available water capacity, replenishing every day
the water lost by evapotranspiration. On the contrary, water-stressed plants were
watered replenishing only the 60% of daily evapotranspiration to a minimum water
content threshold of 0.10 cm® cm™ (i.e. 40% of the available water capacity). The
saline water (electrical conductivity=20 dS m—1) consisted in a controlled mix of
ions (Cristal Sea Marinemix®: 54.92% CI”; 30.82% Na*; 7.68% S04°7; 3.81%
Mg*; 1.21% Ca*"; 1.12% K*; 0.44% NaHCO,) reproducing saline groundwater
typically found in the coastal soils of the southern margin of the Venice Lagoon,
Italy (Scudiero et al. 2012). D+S plants were watered replenishing only the 60% of
daily evapotranspiration, like in D, with saline water, like in S. The use of this
protocol implied that the quantity of ions mix was lower in the pots of D+S
treatments compared to S.

Stress treatments started on June 18" and were applied to V6 plants. Until that
day, water content was maintained at the pot water capacity in each pot. Plants
were sampled at the beginning of the treatments (T0), on June 20™ (T2), on June
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22 (T4), on June 28" (T10), and on July 2" (T14). To verify the plant recovery
capacity from water and salt stress conditions, from June 28" to July 2" all plants
were watered twice a day with non-saline water, up to a water content of 0.30 cm®
cm™, in order to promote salt leaching and optimal soil moisture status.

Physiological analyses

Single-leaf gas exchange measurements were performed with a LI-6400 portable
photosynthesis system (Li-Cor Inc. Lincoln, Nebraska, USA). Analyses were
performed using the circular 2 cm? leaf cuvette equipped with the 6400-40
fluorometer as the light source. Measurements were subjected to at least 10-min
acclimation at a constant saturating photosynthetic photon flux density (PPFD) of
1500 pmol of photons m?s™, a CO, concentration of 390 pumol mol”" and relative
humidity (RH) between 60 and 70% allowing ~ 1.7 vapor pressure deficit (VPD)
inside the chamber. Block temperature was maintained at 27°C allowing leaf
temperature to range between 29 and 36°C. In addition to net assimilation rate
(An, ymol CO; m'zs'1) and stomatal conductance (gs, mmol H,O m'zs'1) the
incorporated fluorometer allowed determination of the actual photochemical
efficiency of photosystem Il (¢pPSIl). This was determined by measuring steady-
state fluorescence (Fs) and maximum fluorescence during a light-saturating pulse
of ¢. 8000 umol m™2 s (F'm), following the procedures of Genty etal. (1989):
QPSII=[(F’ - Fs) F'm]. Measurements were performed on fully expanded leaves
per plant comprising at least three leaves per treatment at regular times during the
experimental period, between 11.00 am and 2.00 pm solar time.

Chemical analyses on plants and soil

Once physiological analyses were performed, plants were weighted and analyzed
for ions composition and soil was sampled for salinity assessment. Roots and
shoots were dried at 60°C for 48 hours and dry weights were measured. Powered
biomass was analyzed for cations (Na*, K*, Mg®*, Ca** and NH,") and anions (CI’,
S0.%, and PO,¥) by ion chromatography (ICS 900, Dionex, Sunnyvale, CA, USA)
according to Nicoletto et al. (2013). The soil in the pots was air dried and sieved at
0.5 cm and then analyzed for saturated paste electrical conductivity (EC,)
(Rhoades et al. 1999). The osmotic potential of the saturated extract was then
analyzed with the WP4-T Dewpoint PotentiaMeter (Decagon Devises Inc.,
Pullman, WA,USA).

Real time quantitative PCR (QRT-PCR)

The last expanded leaf was collected for RNA extraction. Three biological
replicates were used for the two time points June 28" T10 and July 2" T14 of
each treatment: C, D, S, and D+S. Biological replicates were pooled together and
total RNA was extracted from maize leaves using the RNeasy Plant Mini Kit
(QiAgen) and subjected to on-column DNase treatment (QiAgen). cDNA synthesis

Materials and Methods 23



was performed with the SuperScript Il reverse transcriptase kit (Invitrogen),
according to the manufacturer’s instructions. One microgram of total RNA was
used as a template together with 1yl of oligo(dT)2_1s (0.5ug/ul — Invitrogen).
Quantitative Real-Time PCR expression analysis was performed using a
StepOnePlus™ Real-Time PCR Systems (AppliedBiosystems) and the FAST
SYBR® GREEN PCR MasterMix (Life Technologies), following the manufacturer’s
guidelines. Real-time conditions were: 20 s at 95 °C, 40 cycles of: 3 s at 95 °C and
30 s at 60 °C. For each reaction, we observed product melting curves by heating
from 60 to 95 °C at 0.2 °C/s. For all transcripts, this procedure allowed
identification of a single product, which we confirmed by analysis on 2% agarose
gel. Three technical replicates were carried out for each primer combination. The
constitutively expressed GAPC2 gene was used as housekeeping internal control
of the cDNA/RNA quantity. Relative quantification of gene expression (normalized
to GAPC2 transcript quantities) was performed with the Pfaffl method (Pfaffl 2001)
using previously determined amplification efficiencies for each gene. Specific
primers were designed using Primer BLAST
(http://www.ncbi.nim.nih.gov/tools/primer-blast/) or were selected from published
papers (Supp.Table 1).

Statistical Analyses

A tree-way ANOVA (mixed model with repeated measures) by maize variety,
salinity level and water regime was used to analyze agronomic and physiological
parameters. Comparison between means was performed by adjusted Tukey’s
test. In order to estimate a possible linear relationship between parameters the
Pearson correlation coefficient was calculated. The general structure of the
interdependences existing between physiological response, plant growth,
chemical composition, and gene expression was finally evaluated performing a
correlation-based principal component analysis (PCA) on 12 variables measured
before (T10) and after the recovery (T14): leaf dry matter, leaf and root Na®, leaf
CI', ratio K'/Na" in root, net assimilation (A,), expression patterns for PMP3-4,
HSP70, CAT1, CoAred and SUS. Variables were selected according to Kaiser’s
measure of sampling adequacy (MSA). The overall MSA was 0.74 indicating that
PCA was suitable (Kaiser, 1974). Rotated orthogonal components (varimax
normalized method of rotation) with eigenvalues >1 were extracted (Kaiser, 1960)
and the relative scores were determined. Statistical analyses were performed with
STATISTICA 7.0 (Statsoft Inc., Tulsa, OK, USA) and SAS 9.3 (Cary, NC, USA).
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Supplemental Table 1 List of gqRT-PCR primers

Gene (Genbank Acc. No. or MaizeGDB Acc. No.)* Sequence (5'->3")
ZmGAPC2 (GRMZM2G180625) sense AATGGCAAGCTCACTGGC
antisense CTGTCACCGGTGAAGTCG
ZmLEA3 (NM_001153473) [1] sense GTCCGTGACCCTGTTTGC
antisense CCGCCCGACTCGTTTA
ZmPMP3-4 (EU954642.1) sense TTCTGGATCGACCTCTTGCT
antisense TCCTCCTCTTCGCACAACTT
ZmHSP70 (CA404511) [2] sense GATCCCCTCAAGCTCCTTCAT
antisense AGATCGAAGATGCCGTTGACA
ZmCAT1 (NM_001111945.1) sense CCTGTGGTACAAACCCTGCT
antisense ATCCTTGCTGCATCTGTCCG
ZmPP2C (EF195257.1) sense CTGATGATATCAGTGTCGTGATCGTGCAG
antisense CGCCAGCGAAGTAACATATCATGTCTACC
putative B2/DP1 HVA22 (GRMZM2G154735) sense ATCCTCACTCACCTCCACTCCCTAGC
antisense GAGCTCGTACCAGATGGGGATCCAGTAT
putative calcium-binding EF-hand (GRMZM5G827398) sense TGTCCGCTTGGAGTTCAGTCACTACG
antisense GAGCTCAGGTTACCATCGCAGTTAGC
putative hydroxymethylglutaryl-coenzymeA reductase sense AGACAAACGTACAGGCTCTCG
(C0O440726) [2] antisense GCTGCCACAATGTTACTTGC
ZmSUS (X02382) [3] sense CCCTTCAATGCCTCCTTTCCTC
antisense TCAACATCATCGTCGTGCCC
ZmIVR1 (U16123.1) [4] sense GCTGCCTTCCTTATCCTTCTTGTG
antisense CCTGCTCCCTGCTCCTCTTATC
ZmGLN1 (NM_001254779.1) [2] sense GGCGGGTTTGAAGAGATCAA
antisense CCAGTCAGTCTTCTTTCATTTCCTT
putative Rab GTPase (GRMZM2G018619) sense ACTAGTGCGTATTACCGAGGCGCTGT
antisense CGGTAGATCTGAGCTAGGACTTCTGC
ZmB-EXP7 (AF332180) [5] sense CAACCTTGTCCTCCACAGTAG
antisense GTGAGGTCGGAGGCGTTAAA
ZmNHX4 and ZmNHX5 (NM_001112473.1 and sense AATCTCTCTCGGCGCAATAG
NM_001111753.1) antisense CACAGAATCCGTTGCAGAAA
ZmRMR6 (NM_001195895.1) [6] sense GAGGGTTTGAATCCATTGGAATGTC
antisense GGAGTCCTCTAAACCATTGACCG
ZmHDA108 (GRMZM2G136067) sense AGACTACTACTACGGGCAAG
antisense CACGCCTGTGGAACTTGAGGAGCTCG
putative Really Interesting New Gene Zn-finger sense GCTCGGCCTCCTCAAGGTTATGCTATAC
(GRMZM2G148908) antisense GTTCTCCCTAGTCAAGGTATCCGTGTCC
putative RNA-binding KH domain-containing protein sense GAGTTGAAGCTACTACAGGTTGCCGTGT
(AC218972.3_FG007) antisense GGTTTCAGCAATCCTCCAGTATCTC

*Gene bank numbers according to http://www.ncbi.nim.nih.gov/. Maize GDB numbers
according to http://www.maizegdb.org.

[1]Liu Y et al. 2013.

[2] under MTA contract with Biogemma, 8 rue des freres Lumiére, 63100 Clermont-
Ferrand, France.

[3] Wang et al. 2003.

[4] Kakumanu et al. 2012.

[5] Geilfus et al. 2010.

[6] primers provided by Dr. V.Rossi, Consiglio per la Ricerca e la Sperimentazione in
Agricoltura, Unita di Ricerca per la Maiscoltura, Via Stezzano 24, 1-24126 Bergamo,
Italy
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Results

Plant development in response to stress

To analyze the effect of the stress on plant growth we measured both shoot and
root dry weight of control and stressed plants of the two genotypes, during stress
applications (at T2, T4 and T10) and after the recovery from the stresses (T14).
Genotypes were different in their growing capacity being the hybrid more
productive than the B73 inbred for both shoots and roots (P<0.01; Table1).

Shoot dry weight accumulation indicated that the P26 hybrid coped better with the
stress conditions with respect to the B73 inbred line (Fig.1a,b). In hybrid,
compared with control treatment (C) both drought (D) and salinity (S) reduced
shoot growth that was, however, stopped in D+S (Fig.1a). B73 shoots were
affected in their growth by D+S, than D and S (Fig.1b). D influenced the growth of
plant roots with a reduction of almost 50% compared with control plants both in
the hybrid and inbred line (Fig.1c,d). In the time course of stress applications, in
P26 root growth was less reduced in D and D+S whose effects were similar if
compared to C. In this genotype, S blocked the root growth (Fig.1c). In B73, both
S and D+S arrested root growth, whereas root growth was reduced in D (Fig.1d).
The two genotypes showed a different capacity to recover from the stresses. The
shoots of hybrid plants increased their growth soon after the D and S were
removed, whereas the removal of the D+S did not promote shoot growth (Fig.1a).
The shoot growing capacity of the B73 plants did not change after the stresses
removal and even decreased in D (Fig.1b). In the case of root, D removal affected
the growth capacity of P26 hybrid plants that accelerated their growth after the
recovery (Fig.1c). Conversely, root d.w. of the hybrid decreased after D+S
removal and in S recovery root d.w. did not varied at all (Fig.1c). No increase in
root d.w was observed in B73 plants after recovery from any of the different
stresses (Fig.1d). These results indicated that D and D+S reduced the growth of
hybrid shoot and root compared to C, whereas S completely inhibited the growth
of this genotype that showed a reduced recovery capability in terms of d.w. at
T14. B73 plant shoots and roots did not grow during S and D+S time course and
recovery. Relatively more tolerance to D was showed by the inbred line that,
anyway, was not able to recover at T14 as the hybrid did.
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ECs Soil yn | Shoot dw Root dw| Leafy, Leafyn A, g, Dygyy
uS em’! MPa g g MPa MPa umol CO,m”s” mmol H,0 m™s” efficiency
Variety
wild 4585 ns -0.31 ns 148 b 1.37b| -230 ns -2.41 ns| 14.06 b 0.10 b 0.09 ns
hybrid 5675 ns -0.35 ns 290 a 2.65al|-235 ns -2.06 ns 17.55 a 0.12 a 0.10ns
Water salinity
no salt 1736 b -0.24 a 266 a 257al|-227 ns -191 a 21.64 a 0.14 a 0.12a
salt 8524 a -043 b 1.73 b 146 b| -237 ns -2.55 b 997 b 0.07 b 0.06 b
Soil water content]
60 % 4050 ns -0.30 ns 1.79 b 1.75ns| -2.29 ns -2.34 ns 13.06 b 0.09 b 0.08 b
100 % 6209 ns -0.36 n 260 a 227ns| -2.35 ns -2.12 ns| 18.55 a 0.13 a 0.11a
Day
T2 4133 b -028 b 107 ¢ 1.19¢|-1.70 a -2.09 ab| 19.57 ns 0.13 a 0.11ns
T4 5942 b -031 b 133 ¢ 123¢|-290 b -2.25 ab 15.26 ns 0.10 ab 0.09 ns
T10 9593 a -0.55 ¢ 246 b 246 b|-2.66 b -283 b 13.93 ns 0.09 b 0.09 ns
T14 851 ¢ -0.20 a 391 a 3.17a|-203a -175a 14.45 ns 0.11 a 0.09 ns

Table 1 Factor analysis of electrical conductivity (ECs), soil osmotic potential (y1r),
shoot and root dry weight (d.w.), leaf turgor potential (y), leaf osmotic potential (y1r),
net CO, assimilation (A,), stomatal conductance (gs) and quantum efficiency of
photosystem Il (®pgy)).
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Figure 1 Dry weight (d.w.) of: (a) P26 shoots, (b) B73 shoots, (c) P26 roots and (d)

B73 roots of plants grown for 2, 4 and 10 days under control (C), drought (D), salinity

(S), or the combination of drought and salinity (D+S) and after 4 days of recovery from

the stresses. Values represent means (+SE) of two independent replicates.
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lon contents

To verify the mechanisms of uptake and translocation of ions in the two
genotypes, we measured the ion contents in both leaves and roots. lon
concentrations were measured during stress application at T2, T4 and T10 and
after 4 days of recovery (T14) in B73 and hybrid plants (Fig.2, Fig.3 and Table 2).
Na* concentration was significantly higher in both leaves and roots of hybrid and
B73 plants grown under S and D+S compared with D and C treatments (Fig.2 and
Table 2). At T10, Na* concentration in roots of hybrid plants grown under S and
D+S treatments was about three and two times higher, respectively, than those
found in plants grown under C and D (Fig.3c). At the same time point, in B73 Na*
root concentration in D+S and S was about three and four times higher
respectively than in D and C (Fig.2d). Considering Na® accumulation, the
response of P26 hybrid plants to S and D+S was very rapid in roots, being the
increase of Na* concentrations observed already at T2, whereas in B73 roots the
increase was began to be evident at T4. In leaves of S treated plants Na*
concentration increase was detected at T4 in both genotypes (Fig. 2a,b).
Considering the effect of recovery in the hybrid, it is interesting to note that the
Na® concentration in roots dropped to the same value of C under S, while
recovery had no effects under D+S (Fig.2c). An opposite Na* concentration trend
was observed in hybrid leaves (Fig.2a). The recovery had no effect on plant
leaves grown under S and a decrease in Na* concentration was instead observed
in shoots grown under D+S. In B73 plant roots grown under S and D+S, Na*
concentration dropped to the concentration level of non-treated and D treated
plants after recovery application while in leaves grown both under S and D+S a
reduced concentration of Na* was observed after the recovery (Fig. 2b). However,
Na® concentration remained four times (S) and two times (D+S) higher than the
concentration measured in C and D plant leaves. Factor analysis revealed that the
ratio between leaf Na* and root Na* was significantly different between the hybrid
and B73, 0.57 and 1.29 respectively (P<0.01), and interestingly, that this ratio
significantly increased from T10 to the recovery at T14, 0.78 to 1.80 respectively
(P<0.01) (Table 2).

In plants grown under C and D, CI concentrations were very similar for the two
genotypes, and no significant variations were found in the time course of 10 days
of stress application in leaves and roots (Fig.3 and Table 2). However, when
plants were grown in S and D+S a significant increase in CI" concentration was
found in shoot of the hybrid and B73 plants starting at T2 in roots and at T4 in
leaves. An evident difference in concentration values of ClI between the leaves of
the hybrid compared with those of the inbred line was observed (Fig.3a,b). B73
leaves accumulated up to 50mg/g of CI" after ten days of salt stress while hybrid
leaves reached the maximum concentration of 14mg/g. Conversely, CI
concentration values in the roots of the two genotypes were quite similar
(Fig.3c,d).
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The effect of recovery in the hybrid leaves was different after the S and D+S. After
4 days of recovery from the D+S, the concentration of CI" was reduced of about
50% in the leaves of the hybrid whereas it continued to increase during the
recovery from the S (Fig.3a). In the B73 leaves, CI" concentrations decreased
during recovery both from S and D+S, but the ion amount remained higher in S
compared to the other treatments (Fig.3b). Also in the root of the two genotypes,
the effect of recovery from the stresses determined a reduction in CI
concentrations that reached the values of the C and D, with the exception of the
hybrid roots in D+S where the CI" concentration was only partially reduced
(Fig.3c,d). As observed for Na*, also the repartition of the CI” between leaf and
root was significantly different between the hybrid and B73, with a ratio of 1.43
and 5.94 respectively (Table 2).

Potassium (K*) concentration resulted unaffected by treatments in both leaves
and roots with the exception of S that decreased K* concentration in roots, from
5.75 to 4.38 mg g™ (Table 2).

S increased the concentrations of the other analyzed cations, NH;*, Mg?* and
Ca®, in the leaves of the two genotypes while no significant effects were
observed for roots (Table 2). Moreover, leaf Mg and Ca*" concentration were
both affected by the variety, with higher values in B73 than hybrid; an opposite
behavior was observed for Ca* in the roots (Table 2). No significant difference in
leaf and root content of PO,> was observed between genotypes or due to the
stress treatments. Leaf SO* concentration was significantly higher in B73
compare to the hybrid. Root SO* concentration increased subsequently to D.
Considering the recovery, its effect was significant for the concentration of K,
Mg*, Ca®" in the leaf and Mg?®* Ca®* PO* and SO* in the roots (Table 2).

Taken together these data showed that the two genotypes have different ion
accumulation and translocation capacity when subjected to stress conditions. This
is particularly evident in the case of Na* and CI" accumulation in roots and in
leaves of the two genotypes grown under S.
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Figure 2 Na’ concentration of: (a) P26 leaves, (b) B73 leaves, (c) P26 roots and (d)
B73 roots of plants grown for 2, 4 and 10 days under control (C), drought (D), salinity
(S), or the combination of drought and salinity (D+S) and after 4 days of recovery from
the stresses. Values represent means (+SE) of two independent replicates.
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Figure 3 CI concentration of: (a) P26 leaves, (b) B73 leaves, (c) P26 roots and (d)
B73 roots of plants grown for 2, 4 and 10 days under control (C), drought (D), salinity
(S), or the combination of drought and salinity (D+S) and after 4 days of recovery from
the stresses. Values represent means (+SE) of two independent replicates.
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Leaf (L) Root (R)
at + + M 2+ g 2+ T 3- S 2- N + + N + Y 2+ alt - 3. S 2-
Na K NH,” Mg” Ca o PO So, 2’ K H, Mg Ca a pososor|
mg g" mgg ! mgg' mgg ! mgg' mgg ! mgg' mgg !

Variety
wild  8.02 a 12.73 ns 1.65 ns4.96 a  9.23 a16.36 a 1.00 ns 0.70 a| 7.89b 5.01ns 0.88ns 2.53ns 6.93ns 6.80ns 0.61ns 3.27ns| 1.29a 5.94a

hybrid |5.53 b 13.40 ns 1.73 ns3.65 b 6.62 b 7.11 b 0.74 ns 031 b[10.32a 5.12ns 0.85ns 2.32ns 7.54ns 7.15ns 0.49ns 3.54ns| 0.57b 1.43b
Water salinity
no salt 3.6251232 ns 1.31 b 406 b 759 b 585 b 0.89 ns 0.40 n{ 6.82b5.75a 0.95ns 2.41ns 7.31ns 3.78b 0.55ns 3.20ns| 0.57b 1.75b

salt 993 a13.82 ns2.07 a 455 a 826 al17.62 a0.84 ns 0.61 ng 11.40a 4.38h 0.78ns 2.43ns 7.16ns 10.17a 0.55ns 3.61ns| 1.29a 5.61a

Soil water
content

60% 556 b 11.81 b 1.60 ns4.12 ns 7.51 b10.17 b 0.78 ns 0.45 n{ 8.44b 4.84ns 0.86ns 2.27b 7.20ns 6.66ns 0.48ns 2.97b | 0.88ns 2.80ns

100% [7.99 a 14.33 a 1.78 ns4.49 ns 8.35 a13.30 @ 0.96 ns 0.57 n{ 9.77a 5.29ns 0.87ns 2.57a 7.27ns 7.29ns 0.62ns 3.83a | 0.98ns 4.57 ns

Day
2 4.15b1555a 1.78 ns440 b 850 b 7.69 b 1.12 ab 0.66 a| 7.97c 6.53a 1.04ns 2.58a 7.08b 7.70ab 0.80a 4.60a | 0.57b 1.44b

T4 |536b1558 a 1.83 ns2.83 ¢ 4.03 ¢11.44 b0.55 b 027 b| 9.97b5.87a 0.96ns 2.70a 8.0lab 7.41b 0.46ab 3.75a| 0.57b 1.93b

T10 [9.72a12.01 b 1.60 ns5.69 a 10.19 a17.33 @ 1.22 ab 0.77 a|11.67a 4.51b 0.72ns 2.75a 8.43a 9.69a 0.60ab 3.60a | 0.78b 1.70b

T4 7.87a 9.12 b 1.53 ns429 b 9.00 »10.49 b 0.59 ab 0.33 b| 6.82¢ 3.36h 0.74ns 1.65b 542¢ 3.10c 0.33h 1.66b| 1.80a 9.67a

Table 2 Factor analysis of leaf and root cations and anions and leaf/root ratio of Na*
and CI.

Photosynthetic parameters

To determine the physiological response of plants to the stresses, net
assimilation, stomatal conductance and quantum efficiency of photosystem Il were
studied (Fig.4 and 5). Net assimilation (A,) measured in the control condition (C)
was 19.48 £ 5.85 and 23.33 = 2.43 ymol CO, /(mz*s) for P26 and B73 genotypes,
respectively. At the same time, stomatal conductance (gs) and quantum efficiency
of photosystem Il (®pg)) were 133.99 + 27.95 mol H,O/(m?**s) and 0.10 + 0.03 for
P26 and 148.10 + 19.68 mol HZO/(mz*s) and 0.13 = 0.02 for B73. As a
consequence of D, S and their combination D+S, A,, gs and ®pg; decreased in
both genotypes, as shown on a percentage of control basis in Fig.4. The stress
effect became evident already at early stages (T4) in P26 with reductions of ~ 60
% for all parameters measured compared to C. On the contrary, after the same
time, in B73 only a small reduction (~20 %) was measured for D and S
treatments, for D+S the effect was higher leading to a halving of all three
parameters measured. When stress conditions became more severe (T10) their
effect was progressively higher in B73 than in P26, becoming evident and
statistically significant between genotype and treatment. After 10 days, no
significant differences were measured among genotypes for D and D+S
treatments. Under S, while in P26 values similar to those for D were measured, an
almost complete inhibition of photosynthetic apparatus (A, ®ps;) and quasi-
complete stomatal closure (gs) were detected in B73. At T14, a recovery capacity
upon re-watering up to values of 50-70 % compared to C was measured for both
genotypes under D. Under S and D+S, while B73 demonstrated, although small, a
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recover capability to values of 30-40 %, P26 showed no significant differences
from the previous time point (T10) for both treatments, leading to values of about
20-30 % compared to C. These results indicated that the response of the two
genotypes to the applied stresses is physiologically different: at T4 the hybrid
perceived the stress, reduced all the analyzed physiological parameters,
particularly in D+S, and kept them reduced until the recovery, where it reacted
better to the D compare to the other stresses. B73 decreased more gradually all
physiological parameters until T10, being mainly affected by S, and recovered
immediately after the stress removal, especially from D.

The dependence of A, on gs (i.e. their ratio or leaf intrinsic water use efficiency,
iIWUEes1) as well as of g5 on soil osmotic potential (soil Yo) was analyzed (Fig.5).
Data comprising C, D, S and D+S for both genotypes are presented, and the best-
fitting regression curves are shown. When gs is plotted against A, (Fig.5a,b) and
against soil Yy (Fig.5¢,d) a linear and exponential growth function, respectively,
satisfactorily fitted data from both genotypes. The evaluation of these regressions
enabled the detection of three distinct phases, which were characterised by a
‘mild or no stress’, a ‘moderate stress’ and a ‘severe stress’ phase, respectively
(Fig.5). The results revealed a similar pattern of photosynthetic response for both
D and S stress and their combination D+S, but with different ranges between the
two genotypes. In the early stages of the mild or no stress phase, A, values for
P26 were higher than those detected for B73 (Fig.5a,b). After an early stress
effect resulting in partial stomatal closure (phase 2, Fig.5a,b, moderate stress),
further reduction of gs was evident as stress gradually proceeded leading to
severe conditions (T10), with a simultaneous dramatic reduction of gs (phase 3)
and an almost complete inhibition of A, for P26 under D+S treatment (Fig.5a). In
contrast, for B73 an even higher stomatal closure leading to a complete inhibition
of A, was measured instead under S conditions (Fig.5b). When gs is plotted
against soil Yq (Fig.5¢,d) only plants for T2 and T10 were used and the results
revealed a similar pattern of soil Yy response for both D, S stress and their
combination (D+S) following the same g; threshold observed for A./gs
relationship. These results underlined how under severe stress (T10) plants of
both genotypes under S and D+S experienced lowest soil Y, values up to values
of ~-1 MPa on average.
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Figure 4 Effects of water stress (D), salt stress (S) and their combination (D+S) on the
(a,b) net CO, assimilation (A,), (c,d) stomatal conductance (gs) and (e,f) quantum
efficiency of photosystem Il (®pg), for P26 (left) and B73 (right) genotype plants.
Average +SE values of A, gs and @®pg; are expressed as a proportion of the control.
Arrows show the times of sampling during stress treatments (2,4,10) and recovery
(14).
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Figure 5 Stomatal conductance (gs) in (@) P26 [y = -2.75+(265.79-x)/(1367.33+Xx), R?
=0.91] and in (b) B73 [y = -0.89+(220.5-x)/(1312.94+x), R? = 0.88] as a function of net
CO, assimilation rate (An), and of soil osmotic potential (Yo) in (c) P26 [y = 287.83:-
0.18/(-0.18+x), R® = 0.54] and in (d) B73 [y = 299.73--0.16/(-0.16+x), R* = 0.37] in well
watered (P ), water stressed (O ) salt stressed (A ) and their combination (¢ ) plants of
the two genotypes, P26 and B73. Each point corresponds to measurements on
different sampling days (2, 4, 10 and 14). The curve of best fit for (a,b) and (c,d) plots
was a single rectangular hyperbola and a hyperbola decay function, respectively.
Three main regions were distinguished along the curves using gs as a reference
parameter: mild or no stress (Phase 1), moderate (Phase 2) or severe stress (Phase
3).
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Gene expression analyses

To assess whether the diverse stress tolerance between the B73 inbred line and
the commercial hybrid P26 was related to a difference in the type and timing of
specific gene up or/and downregulation, a gene expression analysis was
performed. The transcript level of genes known to be differentially expressed by
stress or belonging to the main pathways involved in abiotic stress response was
analysed using real time quantitative PCR (qRT-PCR). The expression analysis
was performed at two time points: after ten days of stress application (T10) and
after four days of recovery (T14) from the stress. For each genotype, gene
expression was normalized to GAPC2 transcript quantity and then expressed as
the fold change relative to the expression level of the control non-stressed sample
at T10 (Supp. Table 2; see Materials and methods for details). To highlight the
expression pattern of the genes and for a better understanding of the results
obtained, the log, of these values were reported in a heatmap as coloured cells:
from red, corresponding to negative log, fold change values, to blue,
corresponding to positive values (Fig.6).

Late embryogenesis abundant (LEA) proteins are major hydrophilic proteins,
which can reduce the damage caused by adverse environmental conditions (Liu Y
et al. 2013). Both genotypes showed the highest induction of LEA3 expression in
response to S and, at less extent, to the combined D+S stress. B73 upregulated
LEAS3 transcript during the stress treatments and the transcript decreased after the
recovery. Conversely, hybrid P26 upregulation of LEA3 transcript was observed
during the recovery time. To compare directly the two genotypes, LEA3
expression of all samples of both B73 and P26 was normalized to the control
sample of B73 at T10 (data not shown): LEAS3 transcript level in P26 C sample
was one third of the B73 C sample level and the stress-dependent upregulation of
the transcript was higher in the hybrid compared to the B73. However, the final
transcript levels reached during S in B73 and after the recovery from salt stress in
hybrid P26 were similar. Interestingly, the final transcript level reached after the
recovery from D+S in hybrid was higher than the final level reached in B73 sample
in D+S.

Plasma membrane protein 3 (PMP3) is class of small molecular weight
hydrophobic proteins, its members were observed to respond to abiotic stresses
in maize (Fu et al. 2012) and one member was reported to participate in
maintaining intracellular ion homeostasis in Arabidopsis (Mitsuya et al. 2005).
PMP3-4 was a second gene characterized by a diverse expression pattern in B73
in comparison with P26. In control conditions, both genotypes showed an increase
in PMP3-4 transcript level when considering the timing of leaf collection, indicating
that the gene expression might be influenced by the developmental stage. At T10
in S and D+S, B73 significantly upregulated PMP3-4 transcription while in D the
transcript increased only slightly. At T10, the P26 hybrid showed the same
upregulation trend of B73 but with a considerably lower fold change. After the
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recovery from D, both genotypes upregulated PMP3-4 abundance. B73 slightly
downregulated PMP3-4 abundance after the recovery from S, conversely, the
hybrid significantly upregulated it. Both genotypes upregulated PMP3-4
abundance after the recovery from D+S, but the hybrid had a considerably greater
increase.

The HSP70 heat shock protein family encompasses many chaperones, which
have an important role in the folding and assembly of proteins during synthesis
and in the removal and disposal of non-functional and degraded proteins; they are
usually induced by environmental stress and developmental stimuli (Bartels and
Sunkar 2005). B73 and hybrid P26 genotypes had a similar trend of HSP70
transcription after stress applications. Expression induction after the recovery from
S and D+S was higher in the hybrid compared to the B73, on the contrary after
the recovery from D, B73 showed a greater fold change compared to the hybrid.
Catalases (CAT) eliminate hydrogen peroxide that is produced in plant cells under
biotic or abiotic stresses. The expression of maize CAT1 was shown to be
upregulated more in drought-sensitive maize lines than in drought-tolerant lines
(Zheng et al 2010). CAT1 was induced by both S and D+S in B73 and the
transcript was maintained at high levels after the recovery. A similar trend but with
lower fold changes were observed in the hybrid.

Protein phosphatases 2Cs are serine/threonine phosphatases and their
involvement in stress is well known, in particular PP2C action was studied in
relation to ABA signalling (Bartels and Sunkar 2005). In both genotypes, D caused
an induction of PP2C transcription and after the recovery the transcript level was
partially decreased. In B73 S caused an upregulation of PP2C that remained high
after the recovery, while in P26 S did not affect PP2C transcript levels compared
to control samples. In D+S samples, the transcript level increased only after the
recovery in B73, while it increased at T10 in P26.

HVAZ22 is an early ABA-inducible gene, which is thought to encode for a highly
conserved stress-inducible protein playing an important role in protecting cells
from damage under stress conditions (Shen et al. 2001). A putative maize HVA22
gene was analysed (GRMZM2G154735, simply called here HVA22). Control
samples of both genotypes showed a transcript abundance increase of about
three times at the second considered time point. B73 upregulated HVA22
transcript in all stress conditions, particularly during D and D+S and in samples
that experienced the salt application high fold changes were detected after
recovery. In the hybrid the upregulation observed was higher compared to B73,
especially for D+S, but with similar patterns at both T10 and T14.

The involvement of Ca** signalling in response to osmotic and ionic stress is well
documented (Bartels and Sunkar 2005) and the EF-hand motif is the most
common calcium-binding motif found in proteins. In B73 the considered abiotic
stresses did not alter the transcription of a gene encoding a putative calcium-
binding EF-hand protein (GRMZM5G827398, simply called here EF-hand), except
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of S that only slightly increased it. In the hybrid, all stress treatments caused an
upregulation of the EF-hand transcription that was maintained high at T14.
3-Hydroxy-3-methylglutaryl Coenzyme A Reductase (CoAred) is a protein
involved in plants isoprenoid metabolism that regulates the synthesis of mevalonic
acid (Stermer et al. 1994). A gene encoding a putative CoAred (C0O440726,
simply called here CoAred) was analysed. Following stress treatments, the two
genotypes differed in their response: B73 upregulated CoAred transcript in S and
D+S both at T10 and T14, whereas in the hybrid same treatments slightly affected
its expression only at T14.

Sucrose synthase (SUS) is one of the key enzymes involved in sucrose synthesis
metabolism. In Arabidopsis mature leaves it was reported to be very low
expressed under normal physiological conditions, while its expression was
stimulated during stress condition (Déjardin et al. 1999). In maize its upregulation
was reported under salt stress in roots (Wang et al. 2003). S treatment induced
SUS expression with different timing in B73 (at T10) and P26 hybrid (T14). D and
D+S had a slight effect on both genotypes at T10, while only D+S induced SUS at
T14 in P26.

IVR1 is a soluble invertase that was previously reported to show drought-
mediated increased transcript abundance in the basal leaf meristem (Kakumanu
et al. 2012). B73 upregulated /VR1 transcription mainly during S and the D+S and
high fold changes were maintained after the recovery. P26, instead, upregulated
IVR1 transcription at T10 during all kind of stresses, but only in D and S single
stresses at T14.

Under water stress, total Glutamine Synthetase activity was observed to be
significantly decreased in roots and leaves in wheat and rice (Nagy et al. 2013,
Singh and Ghosh 2013). The stress-dependent decrease in maize Glutamine
Synthetase1 (GLN1) expression was delayed in P26 compared to B73, with the
inbred line responding already at T10 and the hybrid responding at T10 in D+S
and only at T14 in D and S.

The Rab protein family is the largest member of the Ras superfamily of
monomeric G proteins, also referred to as small ATPases. Along with their
essential function in intracellular vesicular trafficking, they have also been
implicated in defence and stress signalling pathways (Hong et al. 2013). The
applied abiotic stresses only slightly decreased the expression of a putative Rab
GTPase ecoding gene (GRMZM2G018619, simply called here Rab GTPase) in
P26 after S and D+S application.

It has been proposed that regulation of expansin mRNA pools likely contributes to
fast adjustment of cell wall-loosening in maize under water deficit conditions
(Geilfus et al. 2010). In our study, both genotypes significantly upregulated B3-
EXP7 abundance only in D at T10. B73 strongly reduced its expression in all the
three treatments at T14, while only weak variation characterized the hybrid.
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Tonoplast-associated Na'/H'-antiporters are responsible for detoxifying the
cytoplasm by pumping Na® into the vacuole. Efficient Na* exclusion significantly
improves the salt tolerance in maize. Under salt stress a drought-sensitive maize
line was reported to induce the expression of these Na'/H'-antiporters only in
roots and not in shoots, while no changes were reported in a drought-tolerant line
(Zorb et al. 2005). In all stress treatments B73 upregulated NHX4 and NHX5
(NHX4-5) expression at both T10 and T14, especially in S. Conversely, hybrid
P26 did not upregulated NHX4-5 at T10, but at recovery and exclusively in S and
D+S.

Finally, the expression patterns of four genes involved in gene expression
regulation and protein-protein interaction were analysed in response to stresses.
Two were maize epiregulators: RMR6, coding for a subunit of Pol IV (Erhard et al.
2009), and HDA108, coding for a histone deacetylases (Forestan et al.
submitted). A putative RING Zn-finger coding gene (GRMZM2G148908, simply
called here RING fing) was analysed because the overexpression of another
maize gene of the same family was observed to be involved in drought tolerance
(Liu J et al. 2013) and a putative RNA-binding KH domain-containing protein
coding gene (AC218972.3_FGO007, simply called here RNA-binding KH) was
analysed because a gene with the same domain was reported to participate to
stress response in Arabidopsis (Guan et al. 2013). With a few exceptions, these
genes were not differentially expressed in both genotypes, both at T10 and T14.
Taken together our results indicated that gene expression was modulated in
response to the applied stresses in the two genotypes. However, gene expression
patterns were not coincident and reflected the different capacity of the two
genotypes to cope with D, S and D+S and to differently respond at the recovery.
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Principal Component Analysis (PCA)

The PCA was done to establish the general structure of the interdependences
existing between the changes in the levels of genetic stress markers and the
fluctuations in the selected environmental parameters associated with D, S and
D+S. The PCA referred to those markers related to ion homeostasis and to the
maintenance of cellular osmotic balance: water content in plants (estimated as dry
weights in shoots), inorganic ions related to stress applications (leaf and root CI’,
leaf and root Na™ root K'/Na" ratios) and A,. We also included in this analysis a
set of genes markers of stress and belonging to different stress responsive
pathways. As determined by qRT-PCR, PMP3-4, CoAred and SUS presented a
dissimilar expression patterns in the two genotypes, B73 and the hybrid, in
response to stress; HSP70 had upregulation levels mainly related to the kind of
applied stress and CAT1 shared the same expression pattern in the two
genotypes.

Application of PCA to data allowed extracting 3 components explaining more than
80 % of the total variability. The first component (PC1), which accounted for the
56 % of the variance, was highly correlated (factor loadings = 0.78) with leaf
characteristics: Na* and CI" contents and upregulated stress-responsive genes
(CAT1 and CoAred). The second (PC2) and third (PC3) components explained
the 19 % and 8.8 % of the variance, respectively, and were correlated with Na*
and CI contents in roots and with PMP3-4 and HSP70 expression.

Plotting data according to PC1 and PC2 (Fig.7) allowed identifying a cluster in
quadrant 3, including mainly the plants not subjected to S irrespectively of the
recovery application. They were associated to high An and leaf d.w. values. In the
opposite quadrant 1, were grouped B73 plants under S and D+S treatments
before the recovery. Salt concentration in leaf (Na* and CI) and expression of
PMP3-4, CAT1 and SUS were the primary clustering factors. After the recovery,
D+S B73 was shifted toward the group of unstressed plants of quadrant 3, while S
B73 was positioned in quadrant 2 driven by the reduction of salt concentration in
roots (PC2<0) and persisting of high Na* and CI" concentration in leaves
(PC1>1.5). Finally, hybrid under S and D+S was clustered in quadrant 4 by both
higher and lower concentration of Na* and CI" in root and leaf, respectively. The
effect of recovery was depicted by the shift of the hybrid under S treatment in
quadrant 3 whereas hybrid under D+S treatment remains unaffected.

The analysis confirmed that the inbred line B73 was very sensitive to S and more
sensitive to S than the combined D+S in our condition. The recovery from the D+S
condition showed a positive effect on this genotype, while less evident was the
effect of recovery after the S application. The analysis also indicated that the
hybrid recovered very well from the S and was only slightly affected by the D and
D+S.
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Figure 7 Site score plot of the studied variables on the two principal components
(PC1, PC2). PCAs included, as the analysed variables, those related to osmotic
adjustment or those related to gene expression. Plotted points belong to the
genotypes (squares and triangles), time points during stress application (1 and 2) and
stress types (blue and red, background and border) variables. (1)-(2)-(3)-(4) are
quadrants 1-2-3-4.
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Discussion

This study was conceived to compare the response of two different maize
genotypes (the B73 inbred line for which genomic tools are largely available and
the P26 commercial hybrid) to a progressive time-limited (10 days) application of
drought, salinity and a combination of both stresses. These genotypes were
already known having different ability to cope with stress, although the genetic
basis of P26 tolerance to stress was not known. The idea was to apply the
stresses reproducing the real stressful field conditions experienced by maize
plants during growth in our region and assess whether, after 4 days from the
removal of the stresses, plants could recover to complete their life cycle. Both
drought and salinity are major abiotic stresses that limit growth and affect crop
productivity in many areas of the world. They are due to the reduced availability of
water and increasing use of poor quality of water for irrigation and soil salinization
(Trembort et al. 2014, Rozema and Flowers 2008). With the aim to investigate the
effect of these two abiotic stresses, this work compared a realistic stress protocol
(for salinity alone S, drought alone D and combined drought plus salinity stress
D+S) simulating a field environment, in which combined salinity plus drought is
achieved watering with a reduced quantity of saline water. The agronomic data
demonstrated that the combined stress D+S represented a less severe salinity
stress condition for the plants, due to the lower ECs values reached with this
treatment than S. As outlined in previous works, apply realistic protocols,
standardizing the measure and description of plant stresses makes findings in
crops more valuable for data comparisons or for translating the findings to crop
breeding (Skirycz et al. 2011, Nelson et al. 2007, Talame et al. 2007).

To achieve our primary objective we monitored the stress response using a
combination of agronomic, physiological and genetic parameters and elaborated
the retrieved data sets to depict a complete picture of stress response and
recovery ability of the two genotypes. Firstly, the stress conditions were analyzed
in terms of effect on plant growth, indicating that all the applied stresses were
effective in limiting both shoot and root growth in the hybrid and arresting the
growth in the inbred line. After four days from the removal of the stress conditions,
B73 leaf d.w. slightly increased only for S and D+S while the hybrid showed a
better recovery capability in both D and S, but not in D+S. These results indicated
that a longer recovery time is needed to the inbred line shoots to start growing
again. Even more complex was the recovery capability at root level, since no
effect on growth after stress removal was observed in both genotypes, with the
exception of hybrid following D. These observations on growth inhibition are
consistent with the physiological data on net assimilation, stomatal conductance
and quantum efficiency of photosystem Il. Furthermore, these data indicated that
the tolerance to stress is not necessarily associated to a prompt recovery
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capability of a genotype (Efeoglu et al. 2009, Nayyar and Gupta, 2006). However,
it would be important to breed for maize varieties with a high recovery capability,
especially in those regions where drought and salinity stresses can have limited
time duration in the growing season because water availability is naturally
restored after a period of drought (Nelson et al. 2007).

When uptake and translocation of ions were considered, it was evident that the
two genotypes had significantly different concentrations of Na* and CI in their
tissues, both during S and D+S, and also after recovery from these two stress
conditions. Interestingly, we observed that B73 and the hybrid accumulated similar
concentration of Na* at root level; however Na® concentration was significantly
different in the leaves of the two genotypes, suggesting that B73 accumulated
higher level of Na® in the leaf through translocation from the roots, during S and
D+S. As expected, after the recovery from S and D+S, the Na* concentration in
B73 root dropped to C level and clearly decreased in the leaf, remaining, however,
at high levels when compared with both the C and hybrid. A very similar trend was
observed when considering the CI" accumulation in the roots and leaves in the two
genotypes that had equal concentration of CI" in their roots but a drastically
different concentration of this ion in their leaves during both S and D+S. Also in
the case of CI' the recovery determined an evident reduction in this ion
concentration in B73 root and leaf, where the CI” concentration remained very high
after the removal of S. The data on ions uptake and translocation clearly indicated
that the different ability to cope with stress, particularly with S and D+S, of the two
genotypes is somehow associated to a different dynamic in Na® and CI
translocation in the shoot. Indeed the hybrid accumulated both Na* and CI in
roots and might not (or only partially) translocated them to the shoot in S and D+S
compared to the D and C conditions while, under the same stress conditions, B73
increased the amount of Na* and CI in roots and particularly in leaves, where CI
reached a very high concentration. It is well known that an important mechanism
of salinity tolerance is the ability to limit the quantity of Na* entering the plant
through the roots (Laurie et al. 2002, Tester and Davenport 2003, Munns and
Tester 2008). In particular, the control of Na® transport by secreting and
sequestering it in cellular compartments such as tissues, cells or organelles where
Na® is less toxic, is also critical to cope better with salinity (Munns and James
2003; Parida and Das 2005). Indeed, salinity stress is due to the accumulation of
high concentrations of Na* in the leaf cell cytoplasm (Jha et al. 2010). However, in
some species Cl is the main stressful ion (Prior et al. 2007) because these
species are better at excluding Na* than CI" (Munns and Tester 2008). When both
Na* and CI" are taken up in large amount by the roots, they negatively affect plant
growth by impairing metabolic processes and decreasing photosynthetic efficiency
(Deinlein et al. 2014). Interestingly, in our study a clear relationship between Na*
and CI exclusion and salinity tolerance in P26 hybrid does exist. Further
investigations are needed for the understanding of the mechanisms involved in
the uptake and movement of Na* and CI" throughout the plant of P26 hybrid as
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well as the identifications of genes involved in Na* and CI" homoeostasis in this
genotype, to elucidate the mechanisms that mediated its salinity tolerance.

To assess the water and salt stresses actually endured by plants, net assimilation,
stomatal conductance and quantum efficiency of photosystem Il were recorded.
These parameters provided precise information on the drought and salinity stress
intensity occurring in the plant, and allowed the definition of three phases (mild or
no stresses, moderate and severe) during the progressive application of D, S and
D+S. The physiologically parameters confirmed that P26 was less tolerant to D+S
and B73 very sensitive to S and enabled to establish a more accurate correlation
between gene expression variation and stress progression. It has been observed
that the kinetics of stress treatments are particularly important and should be
carefully considered in experimental designs, especially when genes expression
analyses are performed to identify stress responsive genes (Deyholos 2010). In
our work, the genetic analysis was performed determining the transcript levels of
genes previously showed to be markers of drought and salinity stresses and
belonging to different stress response pathways. It is worth noting that in many out
of the previous works the expression of these and others stress-marker genes
was monitored on samples collected from plants subjected to high-intensity stress
treatments frequently developed in a very short time after the application of the
stress (Kawasaki et al. 2001, Kreps et al. 2002, Ozturk et al. 2002, Seki et al.
2002, Rabbani et al, 2003, Rensink and Buell 2005), whereas we monitored the
transcript level at the end of the progressive stress application (T10)
corresponding to the severe phase of stress and after four days of recovery from
the stresses (T14). Therefore, due to the particular design of this experiment,
gene expression was specifically affected both by the stress duration and severity
and it cannot be excluded that some drought and/or tolerance-related genes could
be activated earlier, to prepare the plant to a developing water and salt stress.
This expression analysis permitted both to confirm the stress-marker nature of
some transcripts for a specific type of stress and highlight possible differences
between the expressions of these marker genes in the two genotypes, having a
high correlation with the stress condition at physiological level. The transcript level
variations observed at the two considered time points in our experiments were
broad and depended upon both the applied stress and the genotype. In our
conditions, some genes were confirmed to be good markers of stress: HVA22 was
upregulated at T10 and T14 in D, S and D+S in both genotypes, confirming
previous observation in other plant species (Shen et al. 2001). EF-hand was a
good marker of the three stresses in P26 at both time points: it is well known that
most of the Ca®* sensors bind Ca®* using a helix-loop-helix motif termed as the
‘EF hand’ or the elongation factor, which binds a single Ca*" molecule with high
affinity (Tutejaa and Mahajan 2007) and it is also well known that ca* signalling
play a pivotal role in stress response (Knight H 2000). Also LEA3 and HSP70
represented good markers of S and D+S, but with a distinction between the two
genotypes: both these genes were upregulated in B73 at T10 while their transcript
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increase was more evident at T14 in P26, indicating that the two genotypes might
regulate the expression of these genes, commonly expressed in different stress
conditions (Liu et al. 2013; Wang et al. 2003), with different timing. Previous
observations reported different transcript levels of CAT1 in stress-susceptible and
tolerant maize inbred lines (Zheng et al. 2010), the upregulation of maize SUS a
few hours after salt stress application (Wang et al. 2003) and the increased
transcript abundance of /VR1 in the leaf meristem following drought stress
(Kakumanu et al. 2012). These genes appeared to be good markers of salinity
stress at least in B73: CAT1, SUS, IVR1 and also CoA-red transcripts were all
upregulated in S and less in D+S at both T10 and T14, suggesting that four days
of recovery were not a sufficient time to resume the transcript levels observed in
the control condition. In P26 the transcripts of these genes had more variable
trends, depending on the stress but also on the time point and the overall results
indicated that they are not good markers of stress for this genotype. Some genes
were downregulated during stress applications: this was the case of GLN1, whose
trend confirmed reported data (Singh and Ghosh, 2013), and Rab GTPase that
was slightly downregulated in S and D+S in P26 but not in B73. Being part of a
large protein family, it is possible that other Rab-GTPases could be differently
regulated in B73 as observed in other crop species (Hong et al. 2013). Finally, -
EXP7 was upregulated by the D in both genotypes, but strongly downregulated in
B73 after the recovery from all the three stresses. Also in this case the presence
of many paralog genes in the maize genome could result in different expression
timing and levels of the different genes, as previously reported in different maize
genotypes (Geilfus et al. 2010).

PCA, that was used to combine some selected and correlated parameters, clearly
showed the exiting difference in stress tolerance between the two genotypes: it
associated the tolerance of the hybrid to leaf d.w. and An. It also correlated B73
low tolerance to the CI" and Na® concentration in leaf and root and to the
expression of genes that are good marker of stress for the inbred line.
Interestingly, it highlighted the effect of recovery that was evident for the hybrid
under S, whereas it had no effect under D+S.

The ultimate aim of this work was to set reproducible D, S and D+S protocols in
which these three time-limited stress conditions were verified at agronomic,
physiological and genetic levels, allowing reproducing these stress protocols in
following experiments and analyze their effect at epigenetic and genetic genome-
wide level. It would be interesting to better dissect the characteristic of the
recovery response in both tolerant e susceptible genotypes, to evaluate the effect
of these transitory stresses on plant productivity and investigate whether a
transitory stress can cause a sort of “memory” for subsequent stressful events of
the same kind. Indeed the stress protocols described in this work were set and
reproduced for a genome-wide analysis that was performed using the B73 inbred
line coupling data of RNA-seq, sRNA-seq and ChIP—seq that are currently being
processed with the aim to continue our investigations.
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Chapter 2






1 Introduction

1.1 Plant small RNAs

Plant small RNAs (sRNAs) are a pool of 20-nucleotides (nt) to 24-nt non-coding
RNAs that participate in a set of pathways termed RNA-mediated silencing, or
RNA interference (RNAI), controlling the expression of genes, the quiescence of
viruses and the movement of transposable elements (TEs). sRNAs exert RNAI
through different mechanisms: the post-transcriptional gene silencing (PTGS) or
the transcriptional gene silencing (TGS). In PTGS, occurring in the cytoplasm,
sRNAs target complementary messenger RNAs (mRNAs), inducing their
degradation or translational repression. In TGS, occurring in the nucleus, sRNAs
direct repressive epigenetic modifications, such as DNA cytosine methylation and
histone methylation, to homologous regions of the genome (Matzke and Mosher
2014).

There are exogenous sRNAs, produced from transgene-derived or virus-
derived ftranscripts, and endogenous sRNAs, produced from endogenous
transcripts. Exogenous sRNAs were first discovered in 1999 in plants by Hamilton
and Baulcombe (1999): they uncovered the presence of sRNAs corresponding to
transgenes, only in plants undergoing PTGS of the transgenes, and sRNAs
corresponding to viral sequences, in plants infected with viruses. Endogenous
sRNAs in plants were found later with the cloning of the first-discovered
Arabidopsis microRNAs (Llave et al. 2002, Park et al. 2002, Reinhart et al. 2002).

Since their discovery, sRNAs have been the focus of extensive studies
that led to the comprehensive appreciation of their biogenesis, modes of actions
and biological functions. It became clear that sRNAs, as regulators molecules,
influence almost all aspects of plant biology, playing important roles in genome
stability maintenance, plant growth and development, adaptation to abiotic

stresses and responses to biotic pathogens.
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1.2 Classification of plant endogenous small RNAs

Plant endogenous sRNAs share common features in their biogenesis and function
mechanisms. They are produced from the processing of helical RNA precursors
into small double-stranded duplexes, varying in size from 20-nt to 24-nt, by the
endonuclease activities of DICER-LIKE (DCL) proteins, which are RNAse |lI
enzymes. An ARGONAUTE (AGO) protein, contained in the RNA-induced
silencing complex (RISC), binds to one strand of the initial duplex, which then
becomes available to match target RNAs, by sequence complementarity, and
subsequently direct their repression. Longer sRNAs, from 30-nt to 40-nt, sharing
many common features with known sRNAs, have been identified in Arabidopsis
upon pathogen infection or under specific growth conditions (Katiyar-Agarwal et
al. 2007). Longer sRNAs, as well as exogenous sRNAs, are not described here
because they have not been the focus of this study.

The categorization of endogenous sRNAs, based on differences in
biogenesis and function, is here reported following the classification system of
Axtell MJ (2013a) (Figure 1). sRNAs can be primarily divided into two main
categories that differ in the structure of the helical RNA precursor. One group is
composed by the hairpin RNAs (hpRNAs), which are produced from single-
stranded RNA (ssRNA) precursors that have intramolecular nucleotide sequence
complementarity resulting in a hairpin loop structure. The other group is
composed by the small interfering RNAs (siRNAs), which are produced from
double-stranded RNA (dsRNA) precursors that are formed by the intermolecular
hybridization of two complementary RNA strands. hpRNAs and siRNAs can be
further subdivided in different child categories. A hairpin RNA precursor can be
processed in a precise way, producing one or a few functional sRNAs called
microRNAs (miRNAs), or in an imprecise way, producing sRNAs from diverse
regions of the hairpin. miRNAs can be conserved in different species or can be
specifically detected only in one species or a few closely related species. miRNAs
are usually 20-nt to 22-nt long but longer 23-nt and 24-nt forms of miRNAs have
been found that function similarly to siRNAs. The majority of siRNAs are
heterochromatic siRNAs (hc-siRNAs), which are 23-nt or 24-nt long and are
produced mainly from intergenic and/or repetitive regions where they direct the

deposition of repressive epigenetic marks. Less numerous categories of siRNAs
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are the secondary siRNAs and the natural antisense transcript siRNAs (NAT-
siRNAs). Secondary siRNAs biogenesis requires the initial cleavage of an RNA
transcript directed by other sRNAs and its subsequent conversion into a dsRNA
that is then processed by DCL proteins. Secondary siRNAs can be processed in
phase (phasiRNAs), for example the trans-acting siRNAs (tasiRNAs), or not. NAT-
siRNAs are a less described category of sRNAs derived from two distinct,
homologous, and interacting mRNAs that are transcribed from overlapping or

nonoverlapping genes.
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Figure 1: Plant endogenous sRNAs classification (from Axtell MJ 2013a).
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1.3 MicroRNAs

1.3.1 MicroRNA biogenesis

Mature plant miRNAs range in size from 20-nt to 24-nt but most of them are 21-nt
long, their biogenesis is summarized in Figure 2. miRNAs are encoded by
endogenous MIRNA (MIR) genes that are located in intergenic or genic regions
and can be found both in exons and introns of their host genes. MIR genes are
transcribed by the RNA polymerase Il (Pol Il; Xie et al. 2005) into capped and
polyadenylated pri-miRNAs that range from approximately 70 to thousands of
bases and contain imperfect, self-complementary foldback regions. Pri-miRNAs
are presumably stabilized by the RNA-binding protein DAWDLE (DDL; Yu et al.
2008). In the nuclear processing centres called D-bodies, pri-miRNAs are
processed to precursor miRNAs (pre-miRNAs) by DCL1 protein, necessitating the
activity of the dsRNA-binding protein HYPONASTIC LEAVES1 (HYL1) and the
C2H2-zinc finger protein SERRATE (SE; Fang and Spector 2007). Pre-miRNAs
are stem-loop structures subjected to subsequent cleavages by DCL1 to form
miRNA/mMiRNA* duplexes with 3’ overhangs. The 3’ ends of the miRNA/mMiRNA*
duplex are 2’-O-methylated by the nuclear S-adenosyl methionine-dependent
methyltransferase HUA ENHANCER 1 (HEN1) protein (Yu et al. 2005), which
blocks uridylation by HEN1 SUPPRESSOR 1 (HESO1; Zhao et al. 2012) and
decay of miRNAs by 3'-5' exoribonucleases SMALL-RNA-DEGRADING
NUCLEASE 1 (SDN1), SDN2 and SDN3 (Ramachandran and Chen 2008). Most
miRNAs exit the nucleus and enter the cytoplasm with the assistance of the plant
homolog of Exportin-5, HASTY (HST; Park et al. 2005); an additional export
pathway seems to be involved but it remains unknown. In the cytoplasm, the
miRNA/miRNA* duplex is loaded onto AGO1 protein: the miRNA* passenger
strand is removed and only the miRNA guide strand is retained, to carry out the
silencing reactions. The miRNA* is usually rapidly degraded but there are
documented cases in which it has similar or higher abundance levels than the
corresponding canonical miRNA and it appears to regulate specific targets (Zhang
et al. 2011, Manavella et al. 2013).
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Figure 2: Biogenesis of plant microRNAs (from Voinnet O 2009).

1.3.2 MicroRNA mechanisms of action

The miRNA loaded onto the AGO1 protein guides the RISC complex to target
mRNAs through base pairing. In plants, targets are recognized when the base
pairing is extensive: there are only few examples with more than five mismatches
between the miRNA and the target. The critical region of the base pairing is
between positions 2-13 from the 5’-end of the miRNA: here a single mismatch is
tolerated but rare (Axtell MJ 2013a). miRNAs with high levels of sequence
similarity belong to the same ‘miRNA family’ and are assigned the same number.
Most plant miRNA families have zero to ten known targets (usually from the same
gene family) in a single genome (Jones-Rhoades MW 2012). Multiple different
mechanisms of miRNA target repression have been reported and are described
below.

The recognized mRNA, target of a miRNA, can be cleaved by the
endonucleolytic activity of AGO1 between positions 10 and 11 of the alignment
and then followed by RNA degradation. Alternatively, the miRNA can induce
mRNA translational inhibition. For many targets both the mRNA cleavage and

translational repression are known to co-occur (Voinnet O 2009). Some specific
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miRNAs target and cleave TAS transcripts, which are consequently made double-
stranded and processed in a 21-nt phasing manner from either 5’ or 3' of the
miRNA-cleaved fragments; the resulting 21-nt tasiRNAs act in frans to regulate
target MRNAs as well as miRNAs (Yoshikawa et al. 2013).

In addition to post-transcriptionally mechanisms of miRNAs target
repression, some cases have been described in which miRNAs cause
transcriptional gene repression: in Arabidopsis, the miR165/166 is though to bind
to the newly synthetized and processed PHABULOSA (PHB) mRNA to direct
methylation of the corresponding PHB template DNA (Bao et al. 2004). In rice a
number of long MiRNAs of 24-nt, in some cases produced by dual-coding
precursors that give rise to both a canonical miRNA and the 24-nt species, direct
DNA methylation both in cis, at loci where they are originated, and in trans, at
target genes (Wu et al. 2010, Hu et al. 2014).

In plants, there is only one documented case in which the pairing between
the miRNA and the target is interrupted by a central mismatched loop that
prevents the slicing of the target and instead causes the sequestration of the
miRNA by target. This is the case of the Arabidopsis transcript encoded by the
non-coding gene INDUCED BY PHOSPHATE STARVATION1 (IPS1) that
sequesters the phosphate (P;) starvation—induced miRNA miR399 (Franco-Zorrilla
et al. 2007). By sequestering the miR399, IPS1 transcript modulates the activity of
the miRNA by competing with its canonical target gene PHOZ2 encoding an
ubiquitin-conjugating E2 enzyme, which is a major component for the

maintenance of Pi homeostasis (Bari et al. 2006).

1.3.3 MIRNA gene evolution

Two different models of MIR gene evolutionary emergence have been proposed
(Axtell et al. 2011). One mode in which MIR genes are thought to evolve is
through the duplications of intragenomic regions. This hypothesis is based on the
observation that the young MIR genes share extensive sequence
complementarity with their targets (Allen et al. 2004), suggesting that inverted
duplication of genes formed the young ‘proto-MIRs’. The proto-MIR transcripts are
initially imprecisely processed by one or more DCL enzymes to produce

heterogeneous sRNAs of multiple size classes (Dunoyer et al. 2007). The proto-
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MIRs further accumulate mutations that can make them inert. Contrarily, when
their target regulation is beneficial for the host, they are positively selected by
evolution to become young MIR genes: they acquire both mutations that cause
fold-back mispairing and DCL1 dependence that leads to the precise processing
of the precursors into the mature miRNA and miRNA* sequences. The
intragenomic duplications giving rise to MIR genes involve protein-coding genes
and also TEs (Li et al. 2011). Pre-existing intragenomic duplications
characteristics of the DNA-type nonautonomous elements Miniature Inverted—
Repeat Transposable Elements (MITEs) also appear to be a source of MIR gene
genesis. MITEs transcripts form small imperfect hairpins typical of miRNA
precursors (Piriyapongsa and Jordan 2008) and several young MIR genes have
been found to map to MITEs. A recent accurate analysis of the rice TE-derived
MIR genes revealed that at least some of them are bona fide miRNAs (Li et al.
2011). Another mode in which MIR genes are thought to evolve is through the
‘spontaneous evolution’ from random fold-backs sequences found in the genomes
(Voinnet O 2009). When the occasional regulation mediated by the emerging
miRNA confers benefits to the plant, the gene can be selected and gains
competence for miRNA biogenesis, accumulating mutations that improve the
hairpin cleavage by DCL1 and the gene transcriptional capacity (Axtell et al.
2011).

MIR genes appear to have high rates of birth and death because the
majority of miRNAs in any given plant species are not conserved and only found
in one species or closely related species. The lineage-specific miRNAs tend to
show characteristics of the young miRNAs: they are often expressed at low levels,
processed in a heterogeneous way from their precursors and lack targets. These
observations indicate that many of the lineage-specific miRNAs are likely to be

proto-miRNAs, transient, nonfunctional entities (Axtell MJ 2013a).
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1.3.4 MicroRNA roles in drought and salinity stress response and
tolerance

Drought and salinity are among the major environmental stresses worldwide,
which adversely affect plant growth and productivity. To tolerate stresses in their
sessile lifestyle, plants have evolved networks of molecular events that confer
them developmental plasticity. Plant stress responses involve transcriptional and
post-transcriptional gene regulation: several genes and miRNAs have been
observed to be up or downregulated in many species under abiotic stress
conditions. Stress tolerance is a complex genetic trait, for this reason breeding for
stress tolerance and the creation of stress-tolerant transgenic plants is challenging
(Bartels and Sunkar 2005, Jewell et al. 2010). Similarly, the fact that a miRNA is
differentially regulated in response to an environmental stress does not
necessarily mean that the miRNA is involved in stress adaptation responses
(Khraiwesh et al. 2012), but presumably as the understanding of the roles of
miRNAs during stress deepens, the possibilities for using miRNA-mediated gene
regulation to enhance plant stress tolerance would significantly increase (Sunkar
et al. 2012).

To study the role of miRNAs in drought and salinity stress response and
tolerance many works have been done subjecting plants to stress conditions and
detecting the expression of miRNAs, in some works also of their targets, in both
control and stressed samples. Drought and/or salinity-responsive miRNAs that
have been detected in maize are summarized below (Table 1). These are the
results of many works where the stress response has been studied focusing on
different aspects: the comparison between stress sensitive and tolerant varieties
(Ding et al. 2009, Wang et al. 2014a) or between inbred lines and hybrids (Kong
et al. 2010), the study of the time-course of the stress response (Ding et al. 2009,
Wei et al. 2009, Wang et al. 2014a, Luan et al. 2015) or the study of the miRNA
precursor expression instead of that of miRNAs (Zhang et al. 2014). Diverse
responses of an individual miRNA family to a stress condition can be due either to
different behaviors of its distinct members or to different behaviors observed in
diverse genetic lines, time points of stress application or stress protocols. For
example, maize roots of plants grown with salty water show different expressions

of miR164 and miR167 between salt-tolerant and salt-sensitive lines that could
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contribute to their diverse level of stress tolerance (Ding et al. 2009). In this
experiment miR164 is initially upregulated in both lines after the stress application
but while it remains upregulated in the salt-sensitive line, it decreases its
expression in the salt-tolerant line after 24 hours of treatment. miR167 is salt-
repressed only in the salt-tolerant line and remains unaffected in the salt-sensitive
line. The specific downregulation of miR164 and miR167 families in the salt-
tolerant line could lead to a higher accumulation of their predicted targets,
respectively transcripts of NO APICAL MERISTEM (NAM) and AUXIN
RESPONSE FACTOR (ARF) genes (Zhang et al. 2009). The higher accumulation
of these targets could enhance the auxin response and thus enhance shoot and
root development, accumulating more biomass to counteract the wastage brought
on by the salt shock. Furthermore, these effects could contribute to the adaptive

advantage of the salt-tolerant line (Ding et al. 2009).

drought stress

salinity stress

miR156
miR159
miR160
miR162
miR164
miR166
miR167
miR168
miR169
miR171
miR172
miR319
miR390
miR365
miR396
miR397
miR398
miR399
miR408
miR528
miR529
miR827
miR1432

(+) 81 (-) [2] (+/-) [3]
(+/-) [8]
() [21 (+F-) [8]
(+) [5]
(+/-) [8]
(+) 31 (-) [2] (+/-) [8]
(+) [4] (+/-) [2;9]
() [2;3] (+/-) [5]
(+1-) [4;6]
(+1-) [5]
(+) 4]
(+) [8] (+/-) [3]
(*1-)[8]

(+1-) [2:8]
() [8]

() [2] (+/-) [8]
(-) [4] (+/-) [5]
() B1C)[2]
() [2] (+/-) [8]
()81
(-) [4] (+/-) [5]
(*1) [9]

(+) 31 (+/-) [1]
()01
QI

(+1-) [1]

() 31 (+/-) [1]
(+) 31 (+/-) [1]
G
(+-) 1]
(+/-) [6]

() B1 (+F-) [1]

() 31 (+/-) [1]
(+) [1]
G

QIU

Table 1: Summary of drought- and/or salinity-responsive miRNAs or miRNA
precursors in maize. Stress responsive miRNAs: [1] Ding et al. 2009 [2] Wei et al.
2009 [3] Kong et al. 2010 [5] Wang et al. 2014a [6] Luan et al. 2015. Stress
[4] 2014.

=downregulated. +/-=some members were upregulated, some were downregulated or

responsive miRNA precursors: Zhang et al. +=upregulated. -

different miRNA trends were found in diverse genetic lines, time points of stress

application or stress protocols.
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The involvement of miRNAs in drought and salinity stress response and
tolerance has been suggested for many miRNA families, in maize and other
species, as described in the following examples. In Arabidopsis, miR156 targets
SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes, as well as in
maize (Chuck et al. 2007). SPLs play a role in the regulation of leaf cell number
and size (Usami et al. 2009), thus miR156 could contribute to the modulation of
leaf and shoot development under stress conditions (Ding et al. 2009). A similar
role could be played by miR319 and miR396 families. In Arabidopsis, miR319
targets TEOSINTE  BRANCHED1/CYCLOIDEA/PROLIFERATING  CELL
FACTORT1 (TCP) genes, as also predicted in maize (Zhang et al. 2009), thus
playing a role in the regulation of leaf cell proliferation (Palatnik et al. 2003, Martin-
Trillo and Cubas 2010); miR396 in Arabidopsis targets GROWTH-REGULATING
FACTOR (GRF) genes, as also predicted in maize (Zhang et al. 2009), thus
contributing to the regulation of cell expansion in leaf (Wang et al. 2011). Finally,
in Arabidopsis miR398 targets Cu/Zn SUPEROXIDE DISMUTASES (SOD) genes,
which are directly involved in stress responses because they are important for the
scavenging of reactive oxygen species (ROS; Sunkar et al. 2006) that are
produced in excess under drought and salinity conditions. Similarly, in maize
miR528 is predicted to target Cu/Zn SODs (Zhang et al. 2009).

1.3.5 MicroRNA annotation and expression profiling through massive
parallel sequencing of small RNAs
The first step when studying miRNAs is the cloning of the miRNA sequence. Once
the presence of the miRNA has been demonstrated, downstream and upstream
analyses are used to complete its functional characterization. Downstream
analyses include the expression profiling of the miRNA, the validation of its
predicted targets and the study of its activity regulation. Upstream analyses are
aimed to understand the miRNA expression modulation that can be exerted at the
chromatin level or at the RNA level (Chen et al. 2010).

Several strategies are employed to clone miRNAs: bioinformatics
prediction based on criteria for plant miRNA definition (Meyers et al. 2008), mutant
screening, genetic cloning, microarrays and massive parallel sequencing of

sRNAs. In each case the expression of a certain miRNA should be detected
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through Northern hybridization or qRT-PCR (Chen et al. 2010). Microarrays,
widely employed in the past, suffer from background and cross-hybridization
problems and measure only the relative abundances of known microRNAs. They
have been gradually replaced by the more accessible technique of massive
parallel sequencing, also called high-throughput sequencing or Next Generation
Sequencing (NGS) that allows measuring the absolute abundance of miRNAs in a
wider range than microarrays and permits the discovery of new miRNAs
(Creighton et al. 2009).

NGS technology is therefore employed not only to clone known miRNAs
and to annotate new MIRNA loci but also to annotate other sRNA species and
define their expression pattern, with a cost that is significantly decreasing over

time with increasing performances.

1.3.5.1 NGS: annotation of MIRNA loci and detection of miRNA variants
sRNA sequencing experiments produce a huge number of reads (millions) for
each analyzed library that must be pre-processed before to be analyzed. The pre-
processing includes a filter to select reads with a minimum quality score, the
trimming of the adapter and a second filter to remove low complexity reads;
variants of the pre-processing step exist, such as performing the mapping of the
reads against the Escherichia coli genome to filter out reads coming from potential
contaminants. After the reads have been cleaned they are aligned against the
genome of the studied species.

In order to identify and annotate MIRNA loci the regions of the genome
that can be potentially folded into single-stranded, stem-loop hairpin structures are
first selected. To classify a predicted hairpin as a MIRNA locus the pattern of
aligned reads within its sequence must satisfy some strict criteria that have been
defined to distinguish bona fide miRNAs from other sRNAs or RNA degradation
products (Figure 3). Hairpins with single reads, heterogeneously processed reads
or reads without the 3’ overhangs do not show evidence of a precise DCL-
dependent processing typical of miRNAs and thus are not considered putative
MIRNA loci (Figure 3a). Hairpins that show preferential mapping of reads in the
candidate miRNA/miRNA* duplex region but lack precise 5/3’ ends of reads or the

presence of the miRNAs* are considered as MIRNA loci ‘candidates’ and require
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further studies to be confirmed (Figure 3b). A high-confident MIRNA locus
generates relatively precise miRNA/miRNA* duplexes with 3’ overhangs (Figure
3c).

(a) Non-miRNA hairpins with reads [?egrat?alion fr_agmenls Non-RNase Ill duplex ends
mixed sizes, mixed starts
Singleton read ?
) i i
i — —
2
(b) miRNA ‘candidates’ (C) confident miRNA hairpins

Candidate duplex, but imprecise 5'/3'ends  Specific 21-24 nt species, but no miRNA* read 3’ Overhang
: ; . miRNA
: — b |
\': P: ‘J IJ
1 —— ) ! .
e feeeeee———
—_ NA !
' ' |

miRNA*

« loci may become confident with companion data from mutants and/or Ago-IP v
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Figure 3: Possible patterns of aligned reads to predicted hairpins. (a) Examples of loci
that should not be annotated as MIRNA loci. (b) Examples of loci that have low
evidence for miRNA biogenesis. (c) Reads alignment pattern of high-confident loci for
miRNA biogenesis (from Axtell et al. 2011).

Annotations of MIRNA loci and miRNA/miRNA* mature sequences are
reported in the database miRBase (Kozomara and Griffiths-Jones 2011). A recent
study in Arabidopsis by Coruh et al. (2014) has shown that the mature sequences
annotated in miRBase are not always identical to the most abundant sRNA
species mapping within a MIRNA locus, detected from sRNA sequencing
experiments. This reflects the presence of inaccurate annotations in miRBase
and/or the fact that nearly all known MIRNA loci produce more than a single
product. Indeed, two previous works in Arabidopsis and rice demonstrated that the
sRNA sequencing of samples from different tissues, of plants with diverse genetic
backgrounds, wild type (wt) and mutants with impaired sRNA biogenesis
pathways, subjected to different environmental and nutrient stresses, allows the
detection of products resulting from the alternative processing of the MIRNA
hairpins (Jeong D-H et al. 2013, Jeong D-H et al. 2011). The alternative
processing of a MIRNA precursor can give rise to sequences that are length
and/or sequence variants of the annotated mature miRNA, named isomiRs, or to

sequences that originates from a different, nonoverlapping region of the hairpin.
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isomiRs are categorized into three main classes: 5 isomiRs, 3’ isomiRs
and polymorphic isomiRs. 5’ and 3’ isomiRs show differences compared to mature
annotated miRNA respectively in the 5'- and in the 3’-end of the sequence, while
polymorphic isomiRs harbor different internal nucleotide sequences. 5 and
polymorphic isomiRs are rare while 3’ isomiRs are observed frequently. isomiRs
can derive from the activity of exoribonucleases, nucleotidyl transferases and in
animals also the RNA editing process is though to modify miRNA sequences
(Neilsen et al. 2012). It is still unclear if isomiRs are functionally significant but
there are some evidences: 5 isomiRs can influence miRNA target selection in
Arabidopsis (Jeong D-H et al. 2013) and 3’ isomiRs can influence the stability of
miRNAs in Arabidopsis, rice and maize (Zhai et al. 2013).

Another alternative to the canonical MIRNA precursor processing is the
formation of a more abundant sequence nonoverlapping with the annotated
mature miRNA. In Arabidopsis it has been observed that such variants can
influence the preferential AGO loading (Jeong D-H et al. 2013). A specific case
falling under this category of alternative hairpin processing is when the miRNA*
accumulates at higher levels compared to the miRNA. Also miRNAs* can be
loaded by AGO proteins and several miRNA*s have known functions (Zhang et al.
2011, Manavella et al. 2013).

1.3.5.2 NGS: expression profiling of miRNAs
sRNA sequencing experiments return for each analyzed library the number of
sequenced reads corresponding to each unique detected sRNA sequence, which
is used to examine the absolute abundance of miRNAs in each individual sample
or compare the expression of miRNAs between distinct samples. To perform
differential expression analysis of mMiRNAs between two or more samples it is first
necessary to normalize their expression in each sequenced library, to reduce the
impact of nonbiological sources of variation that can add noise to sRNA
sequencing experiments. Many normalization methods have been developed to
normalize the abundance of sRNAs, which are classified into two categories,
according to the application of linear scaling or not.

Linear scaling methods include scaling, upper quartile, global, Lowess and

trimmed mean of M value (TMM). For miRNA normalization the most frequently
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used method is total count scaling (Smyth et al. 2003), which divides gene counts
of a sample by its normalization baseline and multiplies by a fixed number, such
as the mean total count across all the samples of the dataset. The normalization
baseline can be the total number of reads sequenced or the total number of
aligned reads to the genome or, in experiments focusing on a specific RNA type,
such as miRNAs, it can be the total number of these sequences. Upper quartile
(Bullard et al. 2010) is similar to the total count scaling, instead that the
normalization baseline is the upper quartile of total counts. In sRNA sequencing
the 75th-percentile sRNA are found at only one or two copies per library,
furthermore this method needs to be modified to be applied to sRNA data
(McCormick et al. 2011). Less used are global (Smyth et al. 2003), Lowess
(Smyth et al. 2003) and TMM (Robinson and Oshlack 2010) methods. TMM
assumes that most genes are not differentially expressed (DE) between samples
and thus that their true relative expression levels should be pretty similar: it
calculates, for each baseline element, the log expression ratio of the experimental
sample to a control sample (or the mean or median of all samples) and uses their
trimmed mean as a linear scaling factor. TMM is good for dataset including tens of
thousands RNA species, furthermore its use is discouraged for studies limited to
the smaller datasets of miRNAs (McCormick et al. 2011, Garmire and
Subramaniam 2012).

Nonlinear scaling methods include quantile (Bolstad et al. 2003), variance
stabilization (VSN) (Huber et al. 2002), invariant method (INV) (Pradervand et al.
2009) and two-step nonlinear regression (Taslim et al. 2009). For miRNA
normalization the most frequently used is quantile, which assumes that most
genes are not DE between samples and that the true expression distribution is
similar between different samples: the highest values of each sample take the
values of the average of the all the highest values and the procedure is repeated
for every set of next highest values.

There are several tools to perform differential expression analysis
available at Bioconductor (www.bioconductor.org). The most frequently used for
miRNAs are: edgeR (Robinson et al. 2010) and baySeq (Hardcastle and Kelly
2010), which use a model based on negative binomial distribution to estimate

differential expression, and DESeq (Anders and Huber 2010), which assumes that
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the mean is a good predictor of the variance and tests for differences between the
base means of two conditions. SAM-seq method (Fahlgren et al. 2009) adapts the
significance analysis of microarrays (SAM) to sequencing data. It is not frequently
used because to guarantee a good power of DE genes detection it requires a

number of replicates that is usually not reached by sequencing experiments.

1.4 Small interfering RNAs

Following the classification of the endogenous sRNA described above (Axtell MJ
2013a), siRNAs include secondary siRNAs, NAT-siRNAs and hc-siRNAs: only the
latter are described here, because the others were not the focus of this study.
Heterochromatic-siRNAs are so called because they derive mainly from intergenic
and/or repetitive genomic regions where they direct the de novo deposition of
repressive chromatin marks through an epigenetics process named RNA-directed
DNA methylation (RdDM). RdDM s involved in the transcriptional silencing of
these regions (Matzke et al. 2009) and it is defined as an epigenetic pathway
because it does not affect the DNA sequence of its target but it influences their
regulation by modifying the chemical properties of DNA and chromatin, such as
inducing DNA methylation and post-translational modifications of histone tails.

In maize, a recent work has demonstrated that the genomic loci
undergoing RdDM, defined by their production of siRNAs, are characterized by a
different chromatin environment compared to that of heterochromatin, traditionally
defined as chromatin regions that remain condensed throughout the cell cycle
(Gent et al. 2014) (Figure 4). Briefly, regions that are not targeted by siRNAs and
RdDM are characterized by inaccessible, transcriptionally inactive
heterochromatin and are enriched in DNA symmetric methylation (CG and CHG
contexts, where H = A, C, or T) and dimethylation of lysine 9 (H3K9me2). In
contrast, loci targeted by siRNAs, thus by RdDM, are characterized by accessible,
transcriptionally active chromatin and are enriched in asymmetric DNA
methylation (CHH context) and show relatively low H3K9me2. Here the production
of siRNAs ensures the silencing of these regions in a transcriptionally active
environment. Unlike heterochromatic regions, RdDM loci are preferentially located
next to genes, which are characterized by accessible, active euchromatin and

relatively low levels of DNA methylation, allowing for mRNA production.
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Considering this result, siRNAs associated with RdDM in the silencing of DNA,
before named as hc-siRNAs, will be hereafter named with the general name of
SiRNAs.

transcriptionally-inactive heterochromatin RdDM-active chromatin (CHH islands) igenicly-active euchromatin
! !

'
siRNA synthesis ' protein synthesis
'

T W

X unidentified chromatin innaccessibility factor ¥ H3 lysine 9 dimethylation ¥ CG methylation ¢ CHG methylation | CHH methylation

Figure 4: Three major chromatin environments in maize (from Gent et al. 2014).

1.4.1 Small interfering RNA biogenesis and function in the canonical
RNA-directed DNA methylation pathway

The canonical RADM pathway is summarized in Figure 5. The production of
siRNAs participating in RdADM requires the transcription of template DNA by the
plant-specific RNA polymerase IV (Pol IV) (Zhang et al. 2007), which is assumed
to transcribe ssRNAs. The mechanisms by which Pol IV selects its targets are not
completely clear: up to now it has been demonstrated that for a large subset of the
most active sites of siRNA production Pol IV is directed to DNA by the interaction
with  the  DNA-BINDING TRANSCRIPTION FACTOR  1/SAWADEE
HOMEODOMAIN HOMOLOG 1 (DTF1/SHH1), which interacts directly with the
chromatin remodeling protein CLASSY 1 (CLSY1) and binds to the methylated
lysine 9 (H3K9me) and unmethylated lysine 4 (H3K4) (Law et al. 2013, Zhang et
al. 2013). RNA-DEPENDENT POLYMERASE 2 (RDR2) physically associates with
Pol IV and generates dsRNAs using Pol IV transcripts as templates, with the
assistance of CLSY1 (Law et al. 2011, Smith et al. 2007). The dsRNAs are
cleaved by DCL3 into 24-nt siRNA duplexes (Kasschau et al. 2007), which are
stabilized by methylation at their 3'-OH groups by HEN1 (Ji and Chen 2012) and
transported to the cytoplasm for AGO4 loading. Loaded with the guide strand
AGO4 is imported back to the nucleus where it associates with non-coding
transcripts produced by a second plant-specific RNA polymerase V (Pol V)
through complementarity to the siRNAs (Wierzbicki et al. 2009). The slicer activity

of AGO4 is required for the cleavage of the passenger strand of the initial siRNA
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duplex: it is therefore necessary for the siRNA loading (Ye et al. 2012) but it is still
unknown whether it is necessary for the mechanism of target recognition. The
scaffolding transcripts produced by Pol V thus form the set of siRNA targets
(Axtell MJ 2013a). Perfect complementarities between siRNAs and Pol V
transcripts are functional for target selection but it is still unknown if other base-
pairing patterns are also functional. As for Pol IV, the mechanisms of Pol V
selection of its targets remain incompletely understood although some insights
into its binding site preferences have been revealed. Pol V-occupied loci, detected
by experiments of chromatin immunoprecipitation followed by sequencing (ChIP—
seq), are associated with 24-nt siRNAs and CHH methylation. However, a subset
of loci does not show these characteristics, suggesting that Pol V occupancy
alone is not sufficient for RADM (Wierzbicki et al. 2012). The Pol V-occupied loci
are preferentially found in euchromatic regions, in the immediate 5' proximal
region next to known Pol Il promoters, especially where “young” TEs are located
(Zhong et al. 2012). Pol V transcription and association with chromatin depends
critically on the DDR complex (Zhong et al. 2012), which comprises the putative
chromatin remodeller DEFECTIVE IN RNA-DIRECTED DNA METHYLATION 1
(DRD1), the hinge-domain protein DEFECTIVE IN MERISTEM SILENCING 3
(DMS3) and the single-stranded DNA-binding protein RNA-DIRECTED DNA
METHYLATION 1 (RDM1) (Law et al. 2010). The recruitment of Pol V to some
targets is helped by three members of the SU(VAR)3-9 histone methyltransferase
family, SUVH2, SUVH9, which bind methylated DNA, and SUVR2 (Johnson et al.
2014, Liu et al. 2014). The KOW DOMAIN-CONTAINING TRANSCRIPTION
FACTOR 1 (KTF1) is associated with Pol V and is supposed to act as an
organizer by interacting with AGO4 and methylated DNA (Bies-Etheve et al. 2009,
He et al. 2009). The association between siRNA-loaded AGO4 and Pol V
transcripts leads to the recruitment of the DOMAINS REARRANGED
METHYLTRANSFERASE 2 (DRM2) which catalyses the de novo DNA
methylation in all cytosine context, including CHH, at the homologous genomic
sites of the Pol V transcripts (Pélissier et al. 1999, Matzke and Mosher 2014). A
subset of siRNAs requires the AGO4 slicer activity for their accumulation (Qi et al.
2006). Furthermore, it has been suggested that the association between siRNA-

loaded AGO4 and Pol V transcripts might cause the AGO4-mediated cleavage of
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a subset of Pol V transcripts (Axtell MJ 2013a). De novo DNA methylation by
DRM2 consequently directs chromatin modifications that transcriptionally silence
the target loci: the nucleosome positioning, adjusted by the SWI/SNF complex
(Zhu et al. 2013), and the deposition of repressive histone marks, such as
H3K9me by SUVH4, SUVH5 and SUVHG6 (Enke et al. 2011), which is facilitated by
the removal of active marks by HISTONE DEACETYLASE 6 (HDAG) (To et al.
2011), JUMONJI 14 (JMJ14) (Searle et al. 2010) and UBIQUITIN-SPECIFIC
PROTEASE 26 (UBP26) (Sridhar et al. 2007).
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Figure 5: Canonical RdADM pathway (from Matzke and Mosher 2014).

There are evidences that RdDM is a self-reinforcing system. Both Pol IV
and Pol V are preferentially associated with methylated DNA in vivo (Wierzbicki et
al. 2012, Zhong et al. 2012, Law et al. 2013). Three proteins facilitating Pol V
association with chromatin all bind to methylated DNA: RDM1, which is part of the
DDR complex and also interacts with both AGO4 and DRM2 (Gao et al. 2010),
and SUVH2 and SUVH9, which aid the Pol V recruitment to a subset of targets
(Johnson et al. 2014, Liu et al. 2014). Pol V is required for the accumulation of
siRNAs at some but not all loci (Mosher et al. 2008), indicating that DNA
methylation promotes Pol [V activity: indeed mutants with impaired DNA
methylatransferase activity show reduced siRNA accumulation (Lister et al. 2008,
Stroud et al. 2014).
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1.4.2 Control of transposon silencing by canonical and non-canonical
RNA-directed DNA methylation pathways

The vast majority of siRNAs is transcribed from TEs and other repeats, which are
the major targets of RdDM: siRNAs play crucial roles in the control of TE

transcriptional silencing and inhibition of transposition.

1.4.2.1 RdDM: establishment and stabilization of transposon
transcriptional silencing

Different mechanisms have been suggested for the three steps in TE
transcriptional silencing: i) the establishment of TE silencing through diverse non-
canonical RdADM pathways ii) the stabilization of silencing through the canonical
RdDM pathway and iii) the maintenance of silencing through RdDM-independent
pathways (Kim and Zilberman 2014).

The recognition of a transcriptionally active TE and the subsequent
initiation of its silencing is achieved through different mechanisms upon the
presence or not of a homologous sequence in the host genome. In the case of
cross-hybridization within a single species or closely related species it is likely that
the host genome can contain a homologous TE copy to the newly entered active
TE. If the homologous TE copy has been previously silenced and its silencing has
been stabilized through the canonical RADM pathway, the 24-nt siRNAs matching
the TE can recognize the active TE and quickly target it, resulting in homology-
dependent trans-silencing of the active TE through RdDM (Nuthikattu et al. 2013,
Panda and Slotkin 2013).

In the case of horizontal transfer it is likely that the incoming TE is unique
to the genome it enters, so the cell is not able to silence it based on homology. In
this case a non-canonical RADM pathway seems to act to initiate TE silencing. An
active TE is transcribed by Pol Il and its transcripts are recognized as being
somehow aberrant and copied by RNA-DEPENDENT RNA POLYMERASE 6
(RDRG6) to produce dsRNAs. It is not known how active TEs are recognized, but
there are evidences suggesting that the mobilization of active TEs often produces
natural rearrangements or TE tandem or inverted duplications that drive the
production of dsRNAs, triggering siRNA production and TGS (Slotkin et al. 2005).
dsRNAs are processed by DCL2 and DCL4 into 21-nt and 22-nt siRNAs. These
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siRNAs are loaded onto AGO1 and guide the cleavage of TE transcripts in a
typical PTGS pathway, representing the first layer of defense of the cell against
the new TE. Some of these siRNAs are loaded onto other AGO proteins, which
might be AGO2 or AGO6, and act in the nucleus targeting Pol V scaffolding
transcripts to initiate DRM2-dependent de novo DNA methylation at the active TE
site. It is not known how Pol V is initially recruited at these loci, if particular targets
are selected or if all regions are targeted by low-level or transient Pol V
transcription (Nuthikattu et al. 2013, Panda and Slotkin 2013). At some low-copy
number loci it has been observed that Pol Il transcription or transcripts can
function to recruit Pol IV and Pol V (Zheng et al. 2009). If the TE is methylated at
the promoter or other regulatory sequences, Pol Il transcription is therefore
attenuated or shut off (Inagaki and Kakutani 2013). The established low-level DNA
methylation at the TE is then reinforced and stabilized by canonical RdDM that
consequently ensures TGS at the TE, independently from Pol Il transcription.

An alternative mechanism of TE silencing initiation and transition from
PTGS to TGS has been described in Arabidopsis for a member of the
evolutionarily young, low-copy ATCOPIA93 family of long-terminal repeat (LTR)
retrotransposons, Evadé (EVD). Mutants impaired in DNA methylation
maintenance mechanisms activate EVD transcription, as well as other
endogenous TEs in the cell. Pol Il EVD transcripts are copied by RDR6 into
dsRNAs that are processed by DCL2 and DCL4 into 21-nt and 22-nt siRNAs,
which are loaded onto AGO1-AGO2 to partly degrade EVD RNA through PTGS.
Over generations of mutants EVD increases the number of new inserted copies in
the genome, when it reaches the threshold of ~40 copies dsRNAs levels saturate
DCL2 and DCL4 and become available for processing by DCL3 into 24-nt siRNAs,
which are loaded onto AGO4 and in the nucleus direct de novo EVD methylation.
Over a few subsequent generations EVD TGS is eventually achieved to through
canonical RdDM (Mari-Ordofiez et al. 2013).

Once DNA methylation is established at a certain TE sequence, through
the mechanisms described above, it is commonly stabilized through canonical
RdDM pathway. Over time, depending on its size, chromatin environment and
likely intrinsic sequence features, a TE can exit the RADM cycle and proceed to a

deeply silenced status, in which CHH methylation is lost or reduced and the TE
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silencing is maintained and propagated through generations by CG and CHG
methylation (Panda and Slotkin 2013, Kim and Zilberman 2014). According to this
model, TEs and other repeats can be silenced through different mechanisms,
depending or not on RADM. Short TEs that reside near genes depend on RdDM
for constant DNA methylation reinforcement to achieve TGS. In these regions
RdDM allows the silencing of TEs in a transcriptionally compatible chromatin
environment required by close genes (Kim and Zilberman 2014, Gent et al. 2014).
Longer TEs distant from genes only depend on symmetrical DNA methylation for
silencing, they can be not transcribed at all, in intergenic inaccessible
heterochromatin regions, or they can still produce 24-nt siRNAs required to initiate
RdDM homology-dependent silencing of any incoming active TEs with sequence
similarity (Nuthikattu et al. 2013, Kim and Zilberman 2014, Gent et al. 2014). In
confirmation of this model, in Arabidopsis most TEs produce 24-nt siRNAs
(Mosher et al. 2008) but mutants impaired in symmetrical DNA methylation
maintenance show the reactivation of a greater number of transposons compared
to mutants impaired in RADM pathway, indicating that many TEs are still targeted
by RdDM but do not depend on it for silencing (Zemach et al. 2013).

1.4.2.2 RdDM: repression of transposon mobility

There are evidences in Arabidopsis that RdADM control of transposon silencing is
involved in avoiding the mobilization of activated TEs. EVD is activated when
METHYLTRANSFERASE 1 (MET1), which propagates CG methylation, is
mutated but its transposition is only observed during inbreeding of hybrid
epigenomes consisting of met1- and wt-derived chromosomes. When combining
MET1 mutation with a mutated version of NUCLEAR RNA POLYMERASE
D2/NUCLEAR RNA POLYMERASE E2 (NRPD2/NRPEZ2), encoding the common
subunit of Pol IV and Pol V, or a mutated version of SUVH4, the transposition is
activated instantaneously and inbreeding is not required (Mirouze et al. 2009).
Another Copia-type retrotransposon, ONSEN, is activated by heat stress to
synthetize extrachromosomal DNA that can potentially transpose. The level of
ONSEN transcripts or extrachromosomal DNA is higher in mutants impaired in
siRNA biogenesis, indicating that siRNAs play a role in the regulation of ONSEN

expression. The TE transposition is not observed in vegetative tissues of the wt
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and the mutant of NUCLEAR RNA POLYMERASE D1 (NRPD1), encoding the
largest subunit of Pol IV, but only in the progeny of stressed nrpd1 plants (lto et al.
2011). These findings demonstrate that RADM functions not only to suppress TE
transcription but also to suppress TE transposition but it is still unknown if siRNAs
are able to avoid transposition by targeting extrachromosomal DNA for
degradation or by inhibiting their integration into the host genome or through a
combination of the two mechanisms (lto 2012). Moreover, observations on
ONSEN transposition events indicate that its mobilization happens before
gametogenesis and that the siRNA control of TE transposition occurs in the
somatic cells that produce the gametes, so in a developmental or tissue-specific

manner (lto et al. 2011).

1.4.3 Biological roles of RNA-directed DNA methylation pathways

Canonical and non-canonical RADM pathways control TE transcriptional silencing
and mobility inhibition, preventing potentially deleterious effects caused by TE
movements and participating in the maintenance of genome stability (Ito 2012). In
addition to this general role, RdDM is involved in many biological processes of
plant development, morphogenesis and reproduction, revealing its great biological

importance (Matzke and Mosher 2014).

1.4.3.1 Reinforcement of TE silencing in gametes and seed

The proposed models for reinforcement of TE silencing in gametes and seed in
Arabidopsis are reviewed in (Feng et al. 2010). In the female gametophyte the
central cell is actively demethylated by DEMETER (DME), leading to the activation
of TEs and upregulation of RADM. The TE-derived siRNAs direct de novo DNA
methylation of TEs in the central cell and might move to the egg cell where they
enhance TE silencing. In the male gametophyte several key RdDM proteins are
downregulated and DECREASE IN DNA METHYLATION 1 (DDM1), a chromatin
remodeler required for DNA and histone methylation and transposon silencing, is
only expressed in the sperm cells and not in the vegetative nucleus, leading to the
activation of TEs and downregulation of RdADM in the vegetative cell. As for the
female gametophyte, TE-derived siRNAs might travel from the vegetative nucleus

to the sperm cells where they reinforce TE silencing. Similarly in the seed,
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maternal TEs stay activated in the endosperm and produce siRNAs, which might
move to the embryo to reinforce silencing. In all cases a similar mechanism
seems to occur: the production of TE-derived siRNAs happens in cells not
contributing to the genetic information of the next generation. Furthermore, the
massive activation of TEs in these cells is not deleterious for the next generation
and allows the reinforcement of the TE silencing in the germ line and embryo,
which is important to avoid TE transposition being transmitted to the next

generation.

1.4.3.2 Genomic imprinting

Genomic imprinting is the phenomenon by which different epigenetic marks are
deposited in maternal and paternal alleles resulting in a parent-of-origin-specific
expression of genes. There are evidences that genomic imprinting is associated
with RADM. In Arabidopsis and rice seed endosperm, Pol IV-dependent siRNAs,
derived in part from TEs and repetitive elements, specifically originates from
maternal chromosomes (Mosher et al. 2009, Rodrigues et al. 2013). Moreover, all
known imprinted genes in Arabidopsis are either proximal to or overlapping with
siRNA loci (Gehring et al. 2009).

1.4.3.3 Genome interaction

The crossing between two different varieties of the same species or two distinct
but closely related species produces intraspecific or interspecific hybrids,
respectively. There are evidences that RdAdDM mediates the epigenetic interactions
between maternal and paternal genomes during hybridization and that could
contribute to hybrid vigor (Matzke and Mosher 2014). Both in Arabidopsis and
maize intraspecific hybrids show non-additive levels of 24-nt siRNAs and DNA
methylation relative to their parental species (Groszmann et al. 2011, Barber et al.
2012, Greaves et al. 2012). It has been suggested that the non-additive
methylation and siRNA expression is probably due to interallelic RADM: if one
allele produces high levels of siRNAs they could target in trans the sister non-
expressing allele which becomes subjected to RdADM and produces additional
siRNAs and becomes methylated; if one allele produces low levels of siRNAs they

could be insufficient to target the sister non-expressing allele and not even to
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maintain RdDM to the original allele (Greaves et al. 2012). In Arabidopsis, both
interspecific hybrids and allopolyploids show alteration of siRNA production and
TE expression, indicating that siRNAs serve as a buffer against the genomic
shock occurring in F1. These changes are stably maintained through generations,
suggesting that stable inheritance of transposon-associated siRNA maintains

chromatin and genome stability (Ha et al. 2009).

1.4.3.4 Stress responses

The possible influence of environmental stresses on epigenetic silencing
mechanisms controlling TEs and the consequent effects in the host are reviewed
in (Mirouze and Vitte 2014) (Figure 6). Briefly, silencing pathways like RdDM can
be destabilized by biotic or abiotic stresses, inducing DNA hypomethylation. TEs
hypomethylation can cause their activation or the activation of nearby genes. An
activated TE can produce siRNAs that target a gene in trans and lead to its
decrease in expression. Alternatively, an activated TE can transpose and its
insertion into a new genomic position can lead to cis effects on close regions.
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Figure 6: Possible influence of environmental stresses on TE epigenetic silencing
pathways and consequences on genome, epigenome and transcriptome. red blocks:

TEs. grey blocks: genes. lollipops: DNA methylation (from Mirouze and Vitte 2014).
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The influence of abiotic stresses on the methylome has been observed in
several cases. For example, low growth temperatures activate the TE Tam3 to
transpose in Antirrhinum majus and its activity is strictly suppressed at high
growth temperatures (Carpenter et al. 1987). DNA methylation of the activated
Tam3 is markedly lower than that of the silent TE, suggesting that at low
temperatures the siRNA-mediated methylation might decrease, leading to the
expression of the previously silenced TE (Hashida et al. 2006). DNA methylation
is also altered in plants by biotic stresses. For example, in Arabidopsis the
infection with the bacterial pathogen Pseudomonas syringae causes active
demethylation and the impairment of RdDM, which transcriptionally activate TEs
(Yu et al. 2013).

Stress-induced demethylation and activation of TEs can cause the
simultaneous activation of nearby genes. For example, the exposure of
Arabidopsis plants to the salicylic acid (SA) hormone causes the differential
methylation status of a number of TE-associated regions, which show
upregulation of 21-nt siRNAs and are often coupled with differential expression of
the TE and/or the proximal gene (Dowen et al. 2012).

An example of a TE-derived siRNA produced following the TE activation
and regulating in trans a gene involved in stress response has been described in
Arabidopsis. When retrotransposons of the Athila family are epigenetically
activated the siRNA854 is produced and regulates in frans at post-transcriptional
and translational levels the UBP1b mRNA, which encodes an RNA-binding protein
involved in stress granule formation. The siRNA854 repression of UBP1b mRNA
results in a phenocopy of the stress-sensitive ubp7b mutant phenotype. This
demonstrates that the epigenetic activity of TEs can modulate the host organism’s
stress response (McCue et al. 2012a).

The Arabidopsis TE ONSEN is an exemplar case in which an abiotic
stress transcriptionally activates the TE and the RdDM pathway plays a
fundamental role to impede its transgenerational transposition and avoid
potentially consequent deleterious effects on the progeny (lto et al. 2011).
However, in the second generation of mutants plants impaired in RdDM treated
with heat stress the retrotransposition of ONSEN has an impact on the

transcriptional regulation of endogenous loci harbouring new ONSEN insertions,
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which become heat responsive (lto et al. 2011). The acquired new regulation of
these loci could be advantageous for stress adaptation, indicating that TE
movements are not always deleterious and can contribute to new phenotypic
variation important for evolution.

Stress conditions can alternatively cause DNA methylation of TEs with
consequent repression of TE nearby genes. In Arabidopsis, low relative humidity
induces methylation at a TE sequence and upregulation of TE-derived siRNAs. TE
methylation spreads into regulatory and genic regions of the close locus
SPEECHLESS (SPCH), which becomes methylated and decreases in expression.
In the same stress conditions another gene, FAMA, without close TEs, becomes
methylated, siRNAs from its genic sequences are upregulated and it decreases in
expression. Both stress-altered genes are involved in stomatal development and
their repression is correlated with the reduction in stomatal index that follows
stress application. This example indicates that gene expression alteration
resulting from environmental stress-induced epigenetic modifications has a
measurable biological effect on the plant development and can contribute to the
plant stress response. (Tricker et al. 2012)

Environmental stresses have also been documented to cause genome-
wide alterations of the siRNA profile: in foxtail millet PEG-simulated drought
conditions alter the expression of thousands of sRNA loci (Qi et al. 2013) and in
Brachypodium cold, heat and salinity stresses provoke the differential expression
of hundreds of siRNA sequences with predicted effects on gene expression
regulation (Wang et al. 2014b).

1.4.3.5 Formation of epialleles

Epialleles are alleles with identical DNA sequence but different expression levels
due to different epigenetic regulation, frequently changes in DNA methylation.
They are classified into three groups based on their dependence on genotype: i)
obligate epialleles completely depend on a genetic variant, ii) facilitated epialleles
depend on a genetic variant only their formation but not for their maintenance and
iii) pure alleles, which are independent of any genetic variation. An example of
obligate epiallele is that described in Arabidopsis for the FLOWERING LOCUS C

(FLC) locus, a central repressor of flowering. The natural Arabidopsis thaliana
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accession Columbia lacks an insertion in the first intron of FLC and the gene
express normally. Another natural accession, Landsberg erecta, has an insertion
of a Mutator-like element (MULE) TE into the first intron of FLC. The resulting
transcript in Ler, containing the MULE sequence, is targeted by RdDM and
produces siRNAs that induces the deposition of repressive chromatin modification
at the FLC locus. This results in reduced FLC-Ler expression and vernalization-
independent early flowering of Ler (Liu et al. 2004). An example of facilitated
epiallele, recovered from a mutagenesis experiment, is that described for the
FLOWERING WAGENIGEN (FWA) locus in Arabidopsis. FWA is an imprinted
gene specifically expressed in the endosperm but silent in vegetative tissues. The
tissue-specific imprinted expression of FWA depends on siRNA-targeting and
DNA methylation of its promoter, comprised of two direct repeats homologous to a
short interspersed nuclear element (SINE). The heterochromatic spreading of the
TE silencing influences the expression of the nearby FWA gene. Mutants that alter
siRNA processing or DNA methylation can result in ectopic expression of FWA,
resulting a late flowering phenotype (Kinoshita et al. 2007). Pure epialleles have
been observed in Arabidopsis through the study of its DNA methylome at single
base pair (bp) resolution. These studies uncovered a rate of base level
spontaneous variation in DNA methylation that in some cases significantly
influenced the transcription level of the affected locus (Becker et al. 2011, Schmitz
etal. 2011).

TEs and their control by RADM are a source of epialleles formation and
thus of genome evolution. This system can act in cis or in trans, depending if TE
polymorphisms influence the expression of nearby or distant genes, respectively.
An example of cis effects of RdADM TE regulation on gene expression is the case
of FWA: the heterochromatic spreading of the close TE silencing influences the
expression of the FWA gene. At the genome-wide level TE methylation spreading
to flanking regions does not exist in Arabidopsis (Cokus et al. 2008, Ahmed et al.
2011) and it is restricted to particular TE families in maize (Eichten et al. 2012). In
Arabidopsis also trans effects of RADM TE regulation on gene expression have
been documented: in two reported cases, TE-derived siRNAs can regulate the
expression of an endogenous gene in frans (McCue and Slotkin 2012b, McCue et
al. 2013).
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There are several cases in which epialleles determine phenotypic
consequences for the organism, for example the peloric epiallele in Linaria
vulgaris (Cubas et al. 1999), the colorless non-ripening epiallele in Solanum
lycopersicum (Manning et al. 2006) and the B' epiallele in maize (Stam et al.
2002). Epialleles could theoretically be positively selected by evolution in the case
in which the phenotypic variation they determine is advantageous for the
organism, but whether natural selection operates on epialleles is still not known
(Hirsch et al. 2012). The importance of epialleles in crop phenotypic variation and
domestication remains unknown, but it has been suggested (Mirouze and Vitte
2014). As reviewed by Springer NM (2013), the generation of epiRILs can create
substantial variation for several quantitative traits. epiRILs are individuals of a
population of recombinant inbred lines that differ primarily in epigenetic
information. They are generated by exposing the genome to a mutation able to
remove DNA methylation and then segregating away the mutation and allowing
for segregation of genomic segments with altered DNA methylation patterns. It
might be possible to use a genetic approach similar to the epiRILs to generate
variation in crop plants, but there are several difficulties arising from the nature of
the crop plant genomes that would require more studies for the development of

these strategies.

1.4.3.6 Genome evolvability

The hypothesis for which epigenetic mechanisms, such as RdDM, have evolved
to control invading, parasitic TEs and minimize their deleterious effects on host
genomes (Yoder et al. 1997) has been interestingly discussed by Fedoroff NV
(2012). The suggested thesis is that epigenetic silencing mechanisms of TEs have
evolved to control their activity not simply with the aim to reduce their deleterious
effects but also to allow at the same time their accumulation in the host. For
example, epigenetic mechanisms also control homology-dependent
recombination, without these mechanisms, ectopic, homology-dependent
recombination among dispersed TEs would rapidly eliminate them. The
maintenance and accumulation of TEs in host genomes is hypothesized to
function as a source of genome evolvability: TE activity induces genetic and

epigenetic variability and if the TE-induced variation has an adaptive advantage
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for the host it could be positively selected by evolution. Because of their sessile
lifestyle, plants have no recourse to behavioral responses in coping with stressful
environments, so probably they developed a more complex and redundant array
of epigenetic silencing mechanisms than animals to keep TEs in their genome as
a source of adaptation. Moreover, TEs activity can cause rapid genome

restructuring, which is at the heart of eukaryotic evolvability.

1.4.4 Mutations on RNA-directed DNA methylation pathways much
greatly affect the phenotype of crops than Arabidopsis

RdDM pathways are involved in many important biological processes of plants
and both Arabidopsis and crops RADM mutants show many TEs and genes with
altered expression levels. Surprisingly, mutants of single RdADM components show
little or no phenotype in Arabidopsis, while crop plants show more severe
phenotypes when the same components are mutated. For example, rice DMR2
mutants are sterile (Moritoh et al. 2012) and DCL3 mutants show significantly
reduced plant height at heading stage, increased bending angle of the lamina joint
and smaller panicles (Wei et al. 2014), while in Arabidopsis these mutations have
no such phenotypes (Cao and Jacobsen 2002). Maize mutants for the orthologs of
Arabidopsis RDR2 and NRPD1, have striking, albeit stochastic or not fully
penetrant pleiotropic, developmental phenotypes, including altered leaf
morphogenesis, stunting and flowering defects like feminized tassels (Dorweiler et
al. 2000, Parkinson et al. 2007), while in Arabidopsis these mutations have no
such dramatic phenotypes (Pikaard et al. 2008). Mutations on Arabidopsis
NRPD1, NUCLEAR RNA POLYMERASE E1 (NRPE1, encoding the largest
subunit of Pol V), RDR2, DCL3, AGO4 and DRM loci, although non-essential in
terms of viability, nonetheless play roles in development: under short-day
conditions mutants flowering is significantly delayed, as an effect of altered DNA
methylation status at the FWA locus that affects its expression (Pontier et al.
2005, Chan et al. 2004). These data indicate that RADM disruption affects multiple
plant developmental processes, in particular plant reproduction systems, in a
more severe way in crops compared to Arabidopsis, suggesting that the
epigenetic control of genome stability in crops might be more essential for proper

plant development than it is for Arabidopsis (Mirouze and Vitte 2014). RdDM
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might be more important in crops compared to Arabidopsis because of their
different content and genomic distribution of TEs and repeats, which are under the
RdDM silencing control. Arabidopsis has a low amount of TEs that have not been
observed to be active in wt plants (Bucher et al. 2012), while TEs are highly
abundant in crops and some TEs are active in wt rice and maize plants (Nakazaki
et al. 2003, Lisch D 2012). Moreover, Arabidopsis TEs have a clear tendency
toward clustering in the gene-poor pericentromeric regions (The Arabidopsis
Genome Initiative 2000) while maize TEs are widely distributed throughout the
genome (Meyers et al. 2001), more interspersed with genes and more frequently

inserted into gene introns (Haberer et al. 2005).

1.4.4.1 maize RADM mutants characterized by loss of siRNAs

Maize mutants of RADM components characterized by the loss of siRNAs that
have been identified so far are described below. All of them have been identified
in mutant screens for plants unable to maintain paramutation at the p/71, b1, and r1

alleles.

Mediator of paramutation1-1 (mop1-1) is the mutated allele of MOP1, the ortholog
of Arabidopsis RDR2. The mop71-1 mutation, identified in the K55 genetic
background, causes deleterious pleiotropic phenotypes when compared with the
wt, including delayed flowering, shorter stature, spindly and barren stalks, and
aberrant development resulting in feminized tassels. Differences in flowering time
are reproducible, whereas other abnormalities are variably penetrant and
expressive and seem to be influenced by environmental factors (Dorweiler et al.
2000). The mop1-1 mutation has been initially shown to affect TE methylation: it
reduces the cytosine methylation of some elements of the DNA transposon super-
family Mutator (Mu) (Lisch et al. 2002); in particular, the Terminal Inverted Repeat
(TIR) regions of the Mu gene mudrA become hypomethylated immediately in the
mop1-1 background, while the gene is progressively and stochastically reactivated
after several generations in the mop1-1 background (Woodhouse et al. 2006). In
further studies, mop7-1 genome-wide profiles of sRNAs and genes have been
analyzed. mop7-1 shows a dramatic reduction of the 24-nt siRNAs but the

retention of the highly abundant TE-derived ~22-nt class of sSRNAs (Nobuta et al.
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2008). In shoot apical meristems (SAMs) of mop7-1 mutants, most DE DNA TEs
are upregulated, while most DE retrotransposons are downregulated, suggesting
that distinct silencing mechanisms are applied to different silencing templates. In
addition, more than 6000 genes are DE, including nearly 80% of genes in
chromatin modification pathways and key regulators of SAM development,
consistently with the different SAM morphology between mop7-1 and wt plants
(Jia et al. 2009). In ear shoots of mop7-1 mutants, introgressed in the B73 genetic
background, cell nuclei show increased chromatin accessibility at chromosome
arms. In the same mutants 349 genes are upregulated and 413 are
downregulated, suggesting a role for MOPT1 in regulation of higher-order
chromatin organization where loss of MOP1 activity at a subset of loci triggers a
broader cascade of transcriptional consequences and genome-wide changes in
chromatin structure. A subset of the DE genes have been identified as direct
targets of the MOP1-mediated RdDM activity, based on multiple signals that
include accumulation of 24-nt siRNAs and the presence of specific classes of
gene-proximal transposons, but neither of these attributes alone has been found
to be sufficient to predict transcriptional misregulation in mop7-1 homozygous
mutants (Madzima et al. 2014). The role of MOP1 in the phenomenon of hybrid
vigor has been investigated: despite mop7-1 mutation significantly reduces plant
height and cob weight, delays flowering and, at molecular level, causes a dramatic
loss of 24-nt siRNAs, it has little impact on the degree of hybrid vigor displayed by
B73xMo17 (Barber et al. 2012). Recently it has been demonstrated that RdDM
loci, defined as genomic loci showing loss of 24-nt siRNAs in mop7-1, are
characterized by relatively high CHH methylation, while non-RdDM loci has low
CHH methylation; high CG and CHG methylation are present at all genomic loci
except genes (Gent et al. 2014).

Required to maintain repression1 (rmr1) is the mutated allele of RMR1, identified
in the B73 genetic background. RMR1 belongs to a subfamily of Snf2 proteins
defined by Rad54, an ATPase involved in homologous recombination via
interactions with single-stranded and double-stranded DNA, as well as CLSY1
and Arabidopsis DRD1 (Hale et al. 2007). rmr1 mutation is not associated with

any obvious perturbation of genome homeostasis: the mutants do not show any
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gross morphological or sterility phenotype, are not affected in plant height or
flowering time, do not show obvious pollen sterility and do not have any large
scale cytological defects. Instead, the loss of RMR1 appears to dampen the
phenotypic variances typical of inbreeding depression. RMR1 is necessary for the
accumulation of the majority of 24-nt siRNAs and the accumulation of the non-
polyadenylated RNA transcripts of two families of LTR retrotransposons, as well
as RDR2, in a manner that is distinct from the role of Pol IV, which is necessary
for the repression of polyadenylated transcripts from the same sampling of
elements that are targeted by RMR1 and RDR2. Furthermore, it has been
suggested a model in which Pol IV functions independently of the sRNA
accumulation facilitated by RMR1 and RDR2 and support that a loss of Pol IV
leads to RNA Polymerase ll-based transcription (Hale et al. 2009).

Required to maintain repression2 (rmr2) is the mutated allele of RMR2, encoding
the founding member of a small clade of plant-specific proteins whose molecular
function is not obvious. RMR2 affects paramutation at p/71 allele but not at r1
allele, is required for the accumulation of 24-nt siRNAs from both repetitive and
unique genomic regions, which are not absolutely required to promote
paramutation at either p/7 or r1. RMR2 is required for the maintenance of a 5-
methylcytosine pattern distinct from that maintained by RNA polymerase IV.
These data indicate that RMR2 plays a role in the establishment of paramutation
specifically at p/1 and that it has both Pol IV—overlapping functions and functions
distinct from Pol IV, representing a novel component of the increasingly diverse
set of nuclear systems available to generate and maintain heritable epigenetic

variation in maize (Barbour et al. 2012).

Required to maintain repression6 (rmr6) is the mutated allele of RMRG6, the
ortholog of Arabidopsis NRPD1, identified in a genetic background different from
B73 (Hollick et al. 2005). Compared to wt, plants homozygous for rmr6 show
pleiotropic phenotypes, including delayed flowering, reduced stature, shorter
vegetative internodes, delayed juvenile-to-adult transition and compressed apical
inflorescence architecture due primarily to decreased tassel internode length. rmré

mutant plants show also other phenotypes: altered abaxial leaf fates, defects on
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lateral meristem repression and feminized tassel, which appear for the first time
among rmr6 mutant plants after one or two generations of homozygous sibling
crosses, that is after the genome had been exposed to a meiotic division in the
absence of RMRG6 function. This behavior suggests that RMR6 acts to maintain
epigenetic marks at its target loci through meiosis. rmr6 mutants rarely produce
any seed past the S3 generation or any morphologically normal plants past the S2
generation (Parkinson et al. 2007). RMR6 has been demonstrated to be required

for the accumulation of the vast majority of 24-nt siRNAs (Erhard et al. 2009).

Required to maintain repression7 (rmr7) is the mutated allele of RMR7, the
ortholog of Arabidopsis NUCLEAR RNA POLYMERASE D2a (NRPD?2a), identified
in a genetic background different from B73. NRPD2a encodes the sole second
largest subunit shared between Arabidopsis Pol IV and Pol V. RMRY7 is one of
three maize loci predicted to encode a protein similar to AINRPD2a, which appear
to express RNA more or less constitutively throughout growth and development.
All these three proteins are predicted to be functional. Like RMR6, RMR7 affects
paramutation at p/7 allele and is required for the vast majority of all 24-nt siRNA
accumulation, consistent with a Pol IV-type function. In contrast to rmr6, rmr7
mutants do not show any obvious developmental abnormalities. Therefore, the
loss of RMR7 function does not completely mimic the loss of RMR6, as rmr7
mutants have unique molecular, genetic, and morphological phenotypes. These
contrasting results suggest that the individual RMR7-type subunits overlap only for
certain RNA polymerase functions and that RMRY7 is required for only a subset of
presumed Pol IV functions, supporting the hypothesis that maize utilizes
functionally distinct Pol IV-type RNA polymerases defined by a shared RMRG6
together with one or the other RMR7-type subunits (Stonaker et al. 2009).
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1.4.5 Small interfering RNA annotation and expression profiling through
massive parallel sequencing of small RNAs

The experimental methods that can be used to study siRNAs are the same of
those used for miRNAs. Usually siRNA sequences are identified at genome-wide
level by massive parallel sequencing of sSRNAs and their effective participation in
RdDM is confirmed by their absence in RADM mutants known to be impaired in
siRNA production. As for miRNAs, the expression of a certain siRNA can be
confirmed through Northern hybridization or gRT-PCR. Downstream and
upstream analyses are also performed on siRNAs to characterize their expression
profiles, validate their targets, examine their consequences on transcriptional and
post-transcriptional silencing of targets and understand their expression

modulation.

1.4.5.1 NGS: annotation of siRNA loci

sRNA reads obtained by massive parallel sequencing experiments are first
preprocessed and aligned to the reference genome, as describe for miRNA
analysis. sSRNA sequences can be analyzed as unique individual entities but more
frequently they are clustered to identify significant genome loci of sRNA
production. Several approaches have been used to identify sSRNA loci, in all cases
the effective participation of sSRNAs in RADM must be experimentally verified, in
order to distinguish siRNA loci from non-siRNA loci.

To identify sRNA loci a simple method is to split the genome sequence
into nonoverlapping loci of identical length and select those with sSRNA reads
overlapping with them for a minimum fraction of their length. For example, in
(Gent et al. 2014) among all the maize sRNA loci identified with this approach,
those found in intergenic regions with at least 3-fold expression decrease in the
mutant of the maize homologous to Arabidopsis RDRZ2 are defined as participating
in the RADM pathway. Possible problems of this method are that sSRNAs that arise
from different transcripts might frequently be inappropriately assigned to the same
group or, similarly, sSRNAs that arise from the same transcript might be assigned
to different groups. To limit these problems an alternative approach is to define a
cluster as a group of sRNAs in which each sRNA is separated from its next

nearest sRNA by at maximum a set number of nucleotides, and select those
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containing a minimum set number of SRNA reads (Moxon et al. 2008, Johnson et
al. 2009). There are a number of bioinformatics tools that identify SRNA loci from
sRNA-seq data applying different methods and statistics. segmentSeq (Hardcastle
et al. 2012) looks for regions of the genome with high densities of SRNA matches,
inferring a segmentation of the genome into regions of biological significance. The
segmentation is performed simultaneously from multiple samples, taking into
account replicate data, in order to create a consensus segmentation of the
genome, by an empirical Bayesian method. ShortStack (Axtell MJ 2013b) utilizes
a diverse two-step procedure to identify sRNA loci: first, islands with a minimum
set coverage of sRNA are identified, second, the initial islands are “padded” up
and downstream by a set number of nucleotides and are merged to next
overlapping islands to form a cluster. Padding is important to smooth the data
when accumulation of sRNAs varies substantially from different regions of the
same precursor, which is expected for sRNA loci as the result of differential
stabilization of the initial SRNAs based upon AGO loading preferences and strand
selection from initial SRNA duplexes (Axtell MJ 2013b). With the same command,
in addition to identify sSRNA loci, ShortStack also annotates hairpin-associated loci
and MIRNA loci, tests for the phasing of aligned sRNAs and analyzes loci based

on sRNA size composition, strandedness, and repetitiveness.

1.4.5.2 NGS: expression profiling of siRNAs

The same statistics described for miRNAs can be applied to perform differential
expression analysis of siRNAs between different samples. First, the abundance of
the individual siRNAs or the identified siRNA loci must be normalized with linear o
non-linear scaling methods. In contrast to miRNAs, the number of obtained unique
siRNAs or siRNA loci is sufficiently high to apply the TMM method for their
normalization (Robinson and Oshlack 2010). Differential expression analysis can
then be performed, as for miRNAs, with many tools as edgeR (Robinson et al.
2010), baySeq (Hardcastle and Kelly 2010) and DESeq (Anders and Huber 2010).
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2 Materials and Methods

2.1 Plant materials

Maize (Zea mays L.) stocks used had the following genetic backgrounds:

- inbred line B73;

- rmr6-1 homozygous mutant introgressed in the B73 reference genome: the rmr6-
1 allele is a loss of function allele resulting from a point mutation in its 8" exon that

creates a premature nonsense codon (Erhard et al. 2009).

rmr6-1 seeds were obtained by hand pollination, applying pollen from rmr6-1
heterozygous plants to the emerging silks of heterozygous rmr6-1 plants. To
select homozygous plants among the segregating F1 population, each plant was

genotyped to reveal the presence of the mutation in the RMRG6 alleles.

2.2 Phenol/chloroform extraction and ethanol precipitation of genomic
DNA

Genomic DNA was extracted from approximately 100 mg of leaf sample stored at
-80°C. The leaf sample was ground to obtain powder and 500uL of Extraction
Buffer were added to the tube. The solution was resuspended by vortexing for 2
minutes and then incubated at 65°C for 5 minutes. The resuspension and
incubation steps were repeated. 500uL of phenol:chloroform:isoamyl alcohol mix
(25:24:1) were added to the tube. The solution was resuspended by vortexing for
2 minutes and than centrifuged at 12,000 g for 10 min at room temperature. The
pellet was discarded and 400uL of supernatant were collected and transferred into
a new tube. 400uL of isopropanol were added to the tube and the solution was
gently resuspended by inverting the tube multiple times. The solution was
centrifuged at 12,000 g for 10 min at room temperature. The supernatant was
discarded. 190uL of 70% cold ethanol were added to the tube and the solution

was centrifuged at 12,000 g for 10 min at room temperature. The supernatant was
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accurately discarded and the pellet was dried at 37°C. DNA was finally

resuspended in 50uL of sterile H,0.

Extraction Buffer composition:

-NaCl 0.2M
-EDTA 25mM
-Tris ph7.5 50mM
-SDS 0.5%

2.3 Polymerase Chain Reaction (PCR)

PCR was performed to amplify a region of the RMR6 allele. The reaction was
performed with the Tag DNA Polymerase recombinant (Invitrogen™) in a 25l
volume as follows: 0.5ul of genomic DNA extracted with the phenol/chloroform
protocol, dNTPs (InvitrogenTM) 0.2mM, MgCl, 3mM, 1x 10x-PCR buffer minus
Mg**, forward and reverse oligonucleotide primers 0.4uM each, Tag DNA
Polymerase recombinant (InvitrogenTM) 1 unit, sterile H,O to reach final volume.
Thermal cycling consisted of 5 minutes at 96°C (1 cycle); 1 minute at 95°C, 30
seconds at 57°C, 50 seconds at 72°C (45 cycles); 12 minutes at 72 °C (1 cycle).
The length of the amplified RMR6 region is 283bp.

forward primer: 5-GAGGGTTTGAATCCATTGGAATGTC-3’

reverse primer: 5-GGAGTCCTCTAAACCATTGACCG-3

The primers were provided by Dr. V.Rossi (Consiglio per la Ricerca e la
Sperimentazione in Agricoltura, Unita di Ricerca per la Maiscoltura, Via Stezzano
24, 1-24126 Bergamo, ltaly).

2.4 Restriction enzyme digestion

The amplified region of the RMR6 allele was digested with the Mwol (Fermentas)
restriction enzyme. The reaction was performed directly on the PCR product
solution in a 25uL volume as follows: 20uL PCR product solution, Mwol
(Fermentas) restriction enzyme 10 units, 1x 10x-Buffer Tango™, sterile H,O to
reach final volume. The digestion was performed over night at 37 °C. Digestion
products (10ul) were analyzed by electrophoresis on 1X TAE agarose gels (2%

w/v) and visualized by SYBR® Safe (Life Technologies) staining.
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In the amplified region, the wt RMRG6 allele has one Mwol restriction site, which is
lost in the mutated rmr6-1 allele. The digestion of the wt allele released three
bands: 38bp, 97bp, 148bp, only the 97bp and 148bp bands were visualized in the
gel. The digestion of the rmr6-1 mutant allele released two bands: 38bp and
245bp, only the 245bp band was visualized in the gel.

Examples of obtained products (Figure 1): 1) 1kb Plus DNA Ladder (Invitrogen™),
2) non-digested PCR product, 3)-4)-6)-8) heterozygous RMR6/rmr6-1 plants, 5)-7)

homozygous rmr6-1/rmr6-1 plants, 9) wt plant.

=2 R .t3
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Figure 1: examples of Mwol digestion products.

2.5 Stress protocols and tissue collection

Plants from inbred B73 and rmr6-1 stocks were grown in pots in a greenhouse at
the “Lucio Toniolo” experimental Farm of the University of Padova (Legnaro, PD,
Italy), with temperatures between 28°C to 30°C at day and 20°C to 22°C at night
and relative humidity between 60% to 80%. Plants were watered till pot saturation
until the V5/V6 developmental stage, when stress treatments were applied as
described in detail in Chapter 1, with some changes compared to the original
protocol. Briefly, control plants were watered with 75% of disposable water at
0.1dS/m salt concentration (C); drought-stressed plants with 25% of disposable
water at 0.1dS/m salt concentration (D); salinity-stressed plants with 75% of
disposable water at 15dS/m salt concentration (S); drought plus salinity-stressed
plant with 25% of disposable water at 15dS/m salt concentration (D+S). To mimic

the composition of highly saline soils, a complex mixture of salts (Cristal Sea
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Marinemix®) was added to water to reach the defined electrical conductivity
values. Treatments were applied daily for 10 days and in the 10" day of treatment
the youngest wrapped leaf was harvested from each of a subset of plants that
were after eliminated. Subsequently, the remaining plants were watered to pot
capacity for 7 days to recover from stress; in the 7" day of recovery (+7) the
youngest wrapped leaf was harvested from each plant. Leaf samples of same
genotype, treatment and sampling time point were pooled together, flash-frozen in
liquid nitrogen and stored at -80°C. The complete experiment was replicated three

times (R1, R2, R3).

2.6 RNA extraction and sRNA sequencing

Total RNA was extracted from frozen tissue using the Spectrum Plant Total RNA
Kit (SIGMA), using “Protocol A” with 750uL of Binding Solution, to recover more of
the small-sized RNA, and subjected to On-Column DNase Digestion (SIGMA).
Total RNA was quantified spectrophotometrically using a Nanodrop™ 1000
Spectrophotometer (Wilmington, USA) and integrity checked by agarose gel
electrophoresis. A total of 48 sRNA libraries (two genotypes, four treatments, two
time points, three biological replicates) were produced using the TruSeQ® small
RNA Sample Preparation Kit (lllumina) and sequenced on a lllumina Hiseq2000
platform at the Istituto di Genomica Applicata (Udine, ltaly). Samples of the R1
biological replicate were sequenced with a multiplexing level of 8, while those of

R2 and R3 biological replicates were sequenced with a multiplexing level of 16.

2.7 sRNA data handling

3’ and 5’ adapters were removed from sequences using cutadapt (Martin M 2011),
with default parameters except for the following: “-m 15”, to remove reads shorter
than 15-nt. Low quality sequences, containing only two different nucleobases,
were removed through a customized Perl script. FastQC (Andrews S.) was used
to evaluate the libraries quality. ShortStack version 1.2.3 (Axtell, 2013) with
default parameters was used in “Mode 2” to map the reads to the maize reference
genome (RefGen ZmB73 Assembly AGPv3); ShortStack aligns the reads using
bowtie (Langmead et al. 2009), allowing up to one mismatch and randomly

selecting one valid alignment per read. The .bam files of the 48 libraries were
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merged together and used as input to ShortStack in “Mode 3”, setting the “plant”
parameters for the MIRNA loci identification and the “--inv_file” produced by the
"invert_it.pl" script included in the ShortStack TUTORIAL. Phased loci were
identified with ShortStack, the p-values were corrected for multiple testing and a

Benjamini-Hochberg adjusted significance level of 0.05 was used.

2.8 Gene and transcript annotation and classification

The same samples used to perform sRNA-seq were sequenced for total RNA at
the Istituto di Genomica Applicata and the RNA-seq data were analyzed by my
colleagues: from the analysis of these data we recovered the reannotation of the
maize transcriptome. Genes and transcripts annotated in this transcriptome
assembly were used in our analyses and were distinguished in: ‘protein-coding
genes’, ‘TE transcripts’, IncRNA transcripts’. Protein-coding genes were identified
from the set of annotated genes following the “protein-coding” classification of the
RefGen ZmB73 Annotation AGPv3.20 (gene biotypes and descriptions reported in
tables of the ‘Results’ section were recovered from the same source). IncRNA and
TE transcripts were instead identified from the set of annotated transcripts.
Potential IncRNA transcripts were recovered from the analysis performed by our
lab with the collaboration of Sequentia Biotech (Barcelona, Spain). Transcripts
were classified as TEs when their sequence overlapped for their entire length, on
the same strand, with TEs or repetitive regions annotated in the RefGen ZmB73
repeat-masked Assembly AGPv3, using the superfamilies classification reported
in the assembly. TEs of unknown classification were called ‘TXX’ and repetitive
regions of unknown classification were called ‘XXX'. The annotation of the
complete set of TEs and repetitive regions recovered from the RefGen ZmB73
RepeatMasked Assembly AGPv3 was named ‘repeats’. Gene names were
obtained from the Maize Genetics and Genomics Database
(http://alpha.maizegdb.org), both ‘classical genes’ and ‘MaizeGDB curated genes’.
The 484 chromatin-associated transcripts reported in the Chromatin Database
(Gendler et al. 2008) were mapped to the transcripts sequences using criteria of
85% identity and 95% coverage, to identify their correspondent transcripts in the
annotation employed. Best Arabidopsis and rice BLASTP hits (Altschul et al.

1990) of translated genes were obtained from the Phytozome v10.0 Annotation
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vba. sRNA loci were considered masked by repeats when they overlapped for at
least 50% of their length with repeats. Gene Ontology (GO) annotation of genes
was obtained by integrating the public Phytozome v10.0 GO Annotation v6a with

that produced by our lab with the collaboration of Sequentia Biotech.

2.9 MicroRNA analysis

Mature sequences of known MIRNA loci confirmed by our data were manually
compared to those annotated in miRBase 20. Data used to make S-plots were
obtained with a customized Perl script from the ShortStack “MIRNA detail files”.
New MIRNA loci mature and hairpin sequences were aligned against those
reported in miRBase with BLASTN (Altschul et al. 1990), setting “-strand plus”: a
new MIRNA locus was considered a member of a known family when its mature
sequences had at most three mismatches with the known miRNAs and miRNA*s.
With the same criterion, new MIRNA loci mature and hairpin sequences were then
aligned against themselves to find new miRNA families. The miRNA targets were
predicted using TargetFinder (Fahlgren et al. 2007), the analysis was performed
twice: setting the miRNA:alignment penalty score cut-off to the stringent value of
2.5 and to the more permissive value of 3.5. Targets were predicted among the
transcripts annotated in the reconstructed assembly performed by my colleagues.
Blast2GO (Conesa et al. 2005) was used to perform the GO term enrichment
analysis of targets, with the one-tailed “Fisher’'s Exact Test” function, setting the
FDR<5%. The Blast2GO function “GO Distribution by Level” was used to obtain
the number of targets associated to each GO term for “Biological Process” and
“Molecular Function”. InterProScan 5 (Jones et al. 2014) was used to find
structural domains in the putative proteins encoded by the genes
GRMZM2G381709 and GRMZM2G149108.

2.10 Genomic distributions of sRNA loci and co-occupancy analysis

The length fractions of the chromosome 1-Mb domains covered by each class of
sRNA loci were calculated with the BEDTools (Quinlan and Hall 2010) function
“coverageBed”, with default parameters. For the co-occupancy analysis the count
of the observed non-redundant overlapping nucleotides between a sRNA loci

class and a genomic feature was obtained with a customized Perl script provided
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by Dr. Axtell MJ. The expected number of non-redundant overlapping nucleotides
was calculated as follows: ((reference total non-redundant nt/genome size)*(query
total non-redundant nt/genome size))*genome size. Enrichment/depletion was
calculated as follow: log, (observed overlapping nt/expected overlapping nt). The
genomic features studied were: protein-coding genes, their exons and introns, TE
transcripts, INcRNA transcripts, the 2-kilobases (kb) flanking regions of genes and
transcripts, and the repeats. The sRNA loci categories studied were the hairpin

and non-hairpin loci with size class from 20-nt to 24-nt.

2.11 Distribution of 23-nt and 24-nt size class sRNA loci in gene and
transcript flanking regions

RPKM values of genes and transcripts for wt control samples collected after ten
days of experiment were obtained from the analysis of RNA-seq data performed
by my colleagues. Protein-coding genes were divided into four equivalent
quartiles, from lowest to highest RPKM value. TE and IncRNA transcripts were
divided into five groups: one group contained all non-expressed transcripts,
corresponding to 72.9% and 51.3% of the total TE and IncRNA transcripts,
respectively; the other four groups contained all expressed transcripts, divided into
four equivalent quartiles, from lowest to highest RPKM value, each including
6.77% and 12.19% of the total TE and IncRNA transcripts, respectively. The
presence or absence of 23-nt and 24-nt size class sRNA loci in each of the gene
and transcript upstream and downstream region was obtained with the BEDTools
(Quinlan and Hall 2010) function “coverageBed” with the parameter “-d”. A
customized Perl script was used to calculate the fraction of genes and transcripts
having a close sRNA locus at each position of the flanking regions. The number of
overlaps between the flanking regions of genes and transcripts and the sRNA loci
with size class of 23-nt and 24-nt, reporting the strand polarity of the two features
when defined, was obtained with the BEDTools (Quinlan and Hall 2010) function

“intersectBed” with the parameter “-wo”.

2.12 Differential expression analysis
The counts of the miRNA and miRNA* sequences were extracted from each

library using a customized Perl script and subjected to pairwise differential
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expression analysis using edgeR, setting the FDR<1%. The counts of all identified
sRNA loci were obtained from the ShortStack “Results.txt” files of each library and
subjected to pairwise differential expression analysis using edgeR, applying the
TMM normalization method and setting the FDR<1%. Gene differential expression
results, obtained with the tool Cuffdiff (http://cole-trapnell-lab.github.io/cufflinks/),
were recovered from the analysis of RNA-seq data performed by my colleagues;
for the comparison of genes between the wt and rmr6-1 mutant, the control
samples collected after ten days of experiment were used. Genes with at least
one spliced transcript classified as INcRNA were categorized as ‘IncRNAs’, genes
with at least one spliced transcript classified as TE were categorized as ‘TEs'.
Blast2GO was used to perform the GO term enrichment analysis of up and
downregulated genes, with the one-tailed “Fisher’s Exact Test” function, setting
the FDR<5%. GO terms of up and downregulated DE genes were also scored
with the Blast2GO function “Distribution by Level”. In the comparison between
rmr6-1 and wt control samples, overlaps between the total and DE sRNA loci with
size class from 20-nt to 24-nt and the flanking regions of genes and transcripts
were calculated with the BEDTools function “intersectBed” with the parameter “-
wo”. Similarly, overlaps between the non-DE and DE sRNA loci with size class
from 20-nt to 24-nt and gene body and flanking regions of DE genes were

calculated with the BEDTools function “intersectBed” with the parameter “-wo”.
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3 Results

3.1 De novo identification of maize leaf sRNA loci by high-throughput
sequencing

In order to characterize the sRNA population of maize leaf sSRNA-seq experiments
were performed on rmr6-1 homozygous mutants and wt leaf samples of V5/V6
plants grown for ten days under control conditions (C), drought (D), salinity (S)
and drought plus salinity (D+S) stresses and subsequently for seven days of
watering to pot capacity (+7), to recover form the stress. Three biological
replicates were made for each of these 16 conditions (R1, R2, R3). The lllumina
sequencing of the sRNA-seq libraries of the 48 samples yielded a total of 4.88E8
raw reads. After removing the low quality sequences and trimming the adapters
we obtained 3.59E8 clean reads, which had Q scores = 28 across all bases. A
total of 3.36E8 of these reads could be aligned to the maize genome (ZmB73
AGPv3) allowing up to one mismatch: the average value of mapped reads over
total reads was 71.8% in wt samples and 63.9% in rmr6-1 samples.

The length distribution of the majority of aligned reads was observed in the
range of 17-nt to 30-nt; a smaller but still considerable number of aligned reads
was detected in the range of 32-nt to 37-nt. Focusing on the control samples
collected after ten days (Figure 1), wt samples had two major peaks at 24-nt
(22%) and 22-nt (7.8%) and five minor peaks at 30-nt (4.8%), 23-nt (4.5%), 21-nt
(4.3%), 17-nt (3.4%) and 20-nt (2.1%). In rmr6-1 mutant samples we observed a
reduction of 23-nt and 24-nt sRNAs (respectively 4% and 4.7%), as described in
(Erhard et al. 2009). In contrast, the other sRNA size classes were increased in

rmr6-1 mutants compared to wt (by 0.4% to 3.5%).
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Figure 1 Length distribution and abundance of aligned reads in wt and rmr6-1
mutant control samples (C). The abundance is reported as fraction of reads with a
specific length on the total aligned reads; values are averages of the three biological

replicates of control samples collected after ten days (+ standard deviation).

The length distribution was consistent across samples with same
genotype (Figure 2): neither the stress treatments nor the different developmental
stage of plants (+7 samples) caused substantial alterations in the size distribution
of the sRNA population. (The rmr6-1 samples D+S,R1 and S,+7,R1 had higher
proportions of 24-nt reads compared to the other rmr6-1 samples because from a
genotype screening, performed on the pools of leaves that were sequenced, they
resulted to be contaminated by wt samples, so their read abundances were not

further considered in the analyses).
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Figure 2 Length distribution and abundance of aligned reads in the 48 samples.
The abundance is reported as fraction of reads with a specific length on the total
aligned reads. A) B) C) plots refer to samples of biological replicates 1, 2, 3,

respectively.
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To obtain a comprehensive de novo annotation of sRNA loci we used
ShortStack (Axtell MJ 2013) to predict sSRNA clusters from the merged set of all
sRNA reads. A total of 188,938 clusters were identified (Table 1), differentiated in
MIRNA loci, hairpin loci (HP) and non-hairpin loci (non-HP). A size class indicating
the most abundant sRNA size observed at the locus was assigned to each cluster
(20-nt, 21-nt, 22-nt, 23-nt, 24-nt and N, indicating sizes out of the range from 20-nt
to 24-nt). To estimate the consistency of this value across the individual libraries
we calculated, for every library separately, for each expressed locus, the fraction
of mapping reads with length equal to the size class assigned to the locus.
Average and median values of these fractions were calculated for each of the 15
sRNA loci categories considered (MIRNA, HP, non-HP loci, of size class from 20-
nt to 24-nt) (Appendix A): in wt, 11 categories showed values greater than 0.5 in
all libraries, four categories (20-nt HP, 21-nt non-HP, 23-nt HP and 23-nt non-HP,
which were among the less numerous), showed a few number of libraries with
values smaller than 0.5. In rmr6-1 mutant, in addition to these four categories,
also those with size class of 24-nt exhibited values smaller than 0.5 in the quite
totality of libraries, which is explained with the specific loss of 24-nt sRNAs
observed in the mutant. These data indicate that for the vast majority of libraries
the size class assigned to the loci from the merged set of all sSRNA reads still
represent the most abundant sRNA size when analyzing the alignments
individually for each library.

The majority of reads mapped within loci with size class <20-nt or >24-nt,
therefore they were not examined because they were not likely generated by the
catalytic activity of DCL proteins. The majority of sSRNA loci of 22-nt and 24-nt size
class were classified as non-HP precursors of sRNAs, which also accounted for
the majority of sRNA alignments within the loci with these size classes. The
majority of sRNA loci with 20-nt and 21-nt size class were classified as non-HP
precursors of sSRNAs, but the greatest numbers of reads mapping within the loci
with these size classes were produced from MIRNA loci (Table 1).

About 10% of the total sRNA loci were predicted to have a hairpin
secondary structure (HP loci) but did not meet the criteria for MIRNAs. We
analyzed the maximum delta G/stem length (AG/sl) values of both the HP and the
MIRNA loci. Values for the HP loci were distributed in the range from -0.5 (the
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maximum value accepted to call an hairpin) and -2.4, with a median value of -0.7.
Values for the MIRNA loci were distributed in the range from -0.6 and -2, with a
median of -1.1. While 50% of the HP loci had a AG/sl value = -0.7, only 2.8% of
the identified MIRNA loci had a AG/sl value = -0.7. MIRNA loci are considered
high confidence hairpins, therefore the differences observed in the frequency
distributions of the AG/sl parameter between MIRNA and HP loci indicate that a
subset of the predicted HP loci might likely be false positives and lack an effective

hairpin structure.

Table 1 Summary of total identified sRNA loci

Size class Non-HP loci HP loci MIRNA loci Non-HP alignments® HP alignments® miRNA alignments?®
<20-ntor >24-nt 41210 93 0 285406093 4628 0

20-nt 32 26 12 16317 4881 21630

21-nt 520 215 91 904194 757480 2387852

22-nt 17678 1181 12 4109758 623932 105208

23-nt 31 121 2 175044 15739 72513

24-nt 109729 17679 26 19983173 2353610 6064

alignments=total number of reads that mapped within the sSRNA loci categories.

Among the loci with 21-nt size class, 19 were predicted to have a phasing
pattern of sSRNA production (Appendix B). Four mapped within known maize TAS
genes, TAS3a-TAS3d (Nogueira et al. 2007). Six others overlapped with known
maize MIRNA loci (MIR159b, MIR159f, MIR160b, MIR167h, MIR390b, MIR399¢).
The other nine phased clusters were not previously annotated, one of these was a
novel MIRNA locus identified in this study, which overlapped with a protein-coding
gene as well as other five loci. Over these nine, four were masked by repeats
(RefGen ZmB73 RepeatMasked Assembly AGPv3) of the following super-families:
MITE, Gypsy and CACTA. We did not find any potential phase-initiating miRNA
for the identified phased-loci. In some species it has been demonstrated that
TAS3 transcripts are targeted and cleaved by miR390 to direct the synthesis of
trans-acting siRNAs (Fei et al. 2013) but in our analysis we did not find any
potentially cleavable site of miR390 in TAS3 transcripts because the
miR390:TAS3 alignments did not satisfy the criteria set by TargetFinder to predict

a canonical miRNA target site.
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3.2 Annotation of conserved maize microRNAs can be refined
specifically for the young leaf tissue

143 MIRNA loci were identified with the applied de novo method (Appendix C).
These included 70 out of the 159 maize MIRNA loci and 25 out of the 29 maize
miRNA families annotated in miRBase 20 (Kozomara and Giriffiths-Jones 2011).
To evaluate the precision of the existing miRBase miRNA annotations when
applied to our young leaf samples, we analyzed the 70 loci that mapped within
known maize MIRNA loci and compared their mature sequences with those
previously annotated. 36 loci had identical miRNA and miRNA* annotations and
the mature sequences of all members of the miR390, miR394, miR398, miR528
and miR529 families were exactly confirmed in our data. 34 loci showed different
precursor processing that generated mature miRNAs being isomiRs of the
annotated sequences (members of the miR156, miR162, miR164, miR166,
miR167, miR168, miR171, miR172, miR319, miR393, miR395, miR396, miR397
and miR399 families), or that resulted in a higher expression of the annotated
miRNA* compared to the miRNA (members of the miR167, miR169, miR171,
miR172, miR393, miR396 and miR399 families), or in a higher expression of
unrelated sequences, nonoverlapping with their precursor’s annotated miRNA and
miRNA* (two members of the miR169 family). We observed that for all these 34
cases the identified mature sequences had higher expression than those
previously annotated. These patterns were consistent across all of our libraries.
Six representative examples are shown in S-plots (Figure 3), where the
abundance of sequences from all 48 libraries that matched to any point within the
miRNA precursors were plotted against the 5’ positions of the same sequences
within the precursors (Jeong et al. 2011). It is possible that the discrepancies
found with miRBase annotation reflect leaf-specific differences in MIRNA

processing patterns, or they may also reflect inaccurate annotations in miRBase.
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Figure 3 S-plots of MIRNA loci producing different mature sequences compared
those previously annotated. The abundance of sequences from the merged set of
all 48 libraries that matched to any point within the miRNA precursors is plotted
against their 5’ positions within the precursors. Blue circle, miRNA identified in this
study; blue triangle, miRNA reported in miRBase; red circle, miRNA* identified in this
study; red triangle, miRNA* reported in miRBase. A) MIR171m, B) MIR396d and C)
MIR397b loci: examples of MIRNA loci producing mature sequences being isomiRs of
those annotated in miRBase. D) MIR172¢c and E) MIR393c loci: examples of MIRNA
loci producing mature miRNAs corresponding to the miRBase annotated miRNA*
sequences F) MIR169b locus: example of MIRNA loci producing mature sequences

that do not overlap with those annotated in miRBase.

Not all of the 159 annotated maize MIRNA loci in miRBase 20 were
confirmed: over the 89 that our de novo analysis did not find to have strong
MIRNA evidence, 25 simply had little or no sRNA reads in our libraries (members
of the miR159, miR160, miR169, miR171, miR2118, miR2275, miR395, miR397,
miR399 and miR482 families). The other 64 overlapped with regions of significant
sRNA production from our samples. Over these 64 loci, one locus, the MIR396h,
was not confirmed because sRNAs were produced only from the opposite strand

where the MIR396b locus is located. Over the total 64 loci, 33 were classified as
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hairpins: six of these were not predicted to have a possible miIRNA/miRNA*
duplex within the precursor (members of the miR159, miR160 and miR319
families) and 27 lacked required evidence for miRNA* expression (members of the
miR1432, miR159, miR160, miR164, miR166, miR167, miR169, miR171, miR319,
miR395 and miR399 families). Over the total 64 loci, 30 did not have a size class
between 20-nt to 24-nt or were not classified as hairpins (members of the miR156,
miR159, miR164, miR166, miR167, miR168, miR169, miR171, miR172, miR2118,
miR395, miR396 and miR827 families). We found that a subset of the loci lacking
a valid hairpin structure according to our methods had an identified length much
larger than those previously annotated, because of proximal mapping reads that
extended their extremities, likely leading the program to fail to fold the entire
sequences as hairpins. This was evident for the following MIRNA loci that are
located in tandem in the genome: MIR166k, MIR166m and MIR2118b, MIR2118d.
In two other cases the known loci were found to be extended and included a
previously unannotated, highly expressed sRNA. In the case of the MIR169j
locus, the new abundant sRNA mapped on the same strand of the miR169j and
showed homology with the miR169 family. In the case of the miR827 locus, the
new abundant sRNA mapped on the opposite strand compared to the miR827 and
did not show significant homology with any of the miRBase annotated miRNAs.
The MIRNA methods used were set to minimize false positives, and as
consequence, we expected some false negatives (Axtell MJ 2013). Because of
this reason we believe that a number of the non-confirmed loci might still be bona
fide MIRNA loci.

Curiously, none of the members of the most numerous maize miRNA
family, miR169 with 17 members, was exactly confirmed by our analysis: three
loci were confirmed as MIRNA loci but the mature sequences were inverted
miRNA/miRNA* or unrelated sequences; three loci did not show the expression of
the miRNA*; five loci expressed mature sequences of 19-nt (out of the 20-nt to 24-
nt range considered for a likely Dicer-like activity biogenesis); three loci did not

show a hairpin structure and three loci were not expressed in our samples.
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3.3 Novel MIRNA loci are enriched in class Il DNA transposable elements
Due to the essential role of miRNAs in the negative regulation of gene expression
at the posttranscriptional level it is important to search for new uncharacterized
miRNAs. The putative novel MIRNA loci were predicted based on the merged set
of sRNA sequencing data of the 48 samples. We applied an abundance threshold,
keeping only those MIRNA loci whose predicted mature sequence showed at
least five reads in at least one library: 15 loci did not pass the filter and were not
included in further analyses, while 58 loci passed the filter and were considered as
new MIRNA loci (Appendix C). Over the total 58 loci, five were new members of
the known miRNA families miR156, miR166 and miR167: four of them (MIR-
NEW156m, MIR-NEW1660, MIR-NEW166p, MIR-NEW167k) showed 99%
identity with M/IRNA loci reported in miRBase but lacking a genome annotation
(respectively, MIR156¢c, MIR166g, MIR166b, MIR167i). Over the total 58 loci, 53
were new loci with novel mature sequences, belonging to 46 new miRNA families.
They had low expression levels on the individual samples, which is typical of the
less-conserved miRNAs (Ma et al. 2010). Compared to the conserved MIRNA loci
that are located mainly in intergenic (53%) and exon (34%) regions, the predicted
novel MIRNA loci were found mainly in intergenic regions (40%) and in exon and
intron regions with the same probability (~23%) (Appendix C). 37 out of the 53
new loci with novel mature sequences were masked by repeats, mainly TIR TEs
and MITEs super-families: 19 miRNAs were 24-nt long and 15 out of 19 had the 5’
terminal A, which are typical characteristics of siRNAs. These results suggest that
of the 37 loci masked by repeats some of them migth be new 'proto-miRNAs', as it
has been shown for a number of TE-derived miRNAs (Li et al. 2011), or siRNAs
actively transcribed from TE rearrangements, involved in the establishment of

transcriptional silencing (Lisch D 2012).
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3.4 Target prediction of conserved miRNAs can be improved including
assembled transcripts from total RNA-seq experiments

In order to assess the function of miRNAs, the potential targets of the conserved
and the putative novel miRNAs were predicted with the tool TargetFinder
(Fahlgren et al. 2007). We decided to use the set of transcripts that were
reconstructed from total RNA-seq data obtained from the same samples used in
this study to perform sRNA-seq. This allowed testing if previously unannotated
transcripts found to be expressed in our samples could be the targets of miRNAs.
Among the total transcripts, TEs and potential IncRNAs were identified as
described in the chapter Materials and Methods.

We first predicted the potential targets of the conserved miRNAs. The
penalty score cutoff applied to the identified miRNA:target alignments was
stringent (<2.5) (Appendix D) but still allowed us to capture most of the miRNAs
targets that were conserved across different plant species, including Arabidopsis
(Adai et al. 2005) and rice (Sunkar et al. 2005). Analysis of target enrichment in
GO molecular function and biological process categories showed that targets of
conserved miRNA were enriched in activities related to the DNA-dependent
regulation of transcription, confirming that the majority of them were transcription
factors (TFs) (targets of miR156, miR159, miR160, miR164, miR171, miR172,
miR319, miR396 and miR529 families) (Zhang et al. 2009). We confirmed target
prediction also for the following miRNA families: miR390, miR393, miR394,
miR395, miR397, miR408 (Zhang et al. 2009), miR162 (Zhang Z et al. 2008).
Known targets of miR166, miR2275 and miR528 families (Liu et al. 2014, Zhang
et al. 2009) were confirmed by our analysis only when using a more permissive
miRNA:target alignment penalty score cut-off (<3.5) (not reported). For the
miR166 family we also predicted other targets with better scores than the
canonical targets: two uncharacterized transcripts, one of which was classified as
a potential IncRNA, and a TE transcript.

Even with more permissive scores, known targets of four miRNA families
were not detected in our study: miR2118 was predicted to target an
uncharacterized transcript, for miR168 and miR398 we failed to predict any
targets, while miR167 was predicted to target homologous proteins of Arabidopsis

and rice pumilio-family RNA binding proteins instead of the previously reported
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ARF TFs (Zhang et al. 2009). The miR169 known targets, NFYA TFs (Zhang et al.
2009), were also not detected because only 3 out of the 17 annotated M/IR169 loci
were confirmed by our study: all were found to produce mature sequences
unrelated to those previously annotated, one was also found to produce a second
mMiRNA/mMiRNA* duplex where the mature miRNA corresponded to the annotated
miRNA*, but none of the identified mature sequences was predicted to have
targets.

We obtained an interesting result for the miR399 family. In Arabidopsis
miR399 targets the PHO2 gene (UBC24, encodes an ubiquitin-conjugating E2
enzyme), which is a major component for the maintenance of Pi homeostasis
(Bari et al. 2006). The miR399 is upregulated by Pi starvation and its target is
downregulated, through transcript cleavage (Allen et al. 2005) and probably also
through translational repression (Bari et al. 2006). The miR399 contributes to the
regulation of the Pi homeostasis and it was hypothesized to act as a long-distance
Pi starvation signal (Pant et al. 2008). In Arabidopsis, miR399 has been
experimentally verified to cleave the 5’-untranslated region (UTR) of the PHO2
gene at five target sites distributed in a range of 300-bp (Allen et al. 2005). In
maize, miR399 was previously described to target genes encoding inorganic
phosphate transporters, a number of genes with unknown function (Zhang et al.
2009) and, more recently, the GRMZM2G149108 gene encoding a putative
ubiquitin-like 1-activating enzyme E1A (Wang et al. 2014a). While the Arabidopsis
PHOZ2 gene possess the structural domains ubiquitin-conjugating enzyme/RWD-
like (IPR016135) and ubiquitin-conjugating enzyme, E2 (IPR000608), the
GRMZM2G149108 gene was found to have three different domains: NAD(P)-
binding domain (IPR016040), molybdenum cofactor biosynthesis, MoeB
(IPR009036) and UBA/THIF-type NAD/FAD binding fold (IPR000594), so the
previously reported miR399 maize targets are not homologous to the Arabidopsis
PHOZ2 gene. We predicted three targets for the miR399 family: an uncharacterized
transcript, previously reported (Zhang et al. 2009), that resulted to be a potential
INcRNA, a TE transcript and a new transcript detected in our samples. The new
transcript, named TCONS 00124738, was found to harbor up to six putative
miR399 target sites, distributed in a range of 417-bp: six sites for the miR399a,
miR399c, miR399e and miR399j and five for the miR399f, with alignment penalty
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scores between 1.5 and 3.5 (Figure 4A). This miRNA:target binding pattern was
very similar to that described in Arabidopsis between miR399 and the PHO2
transcript. The TCONS 00124738 transcript 3’-end was located 93 bp upstream
of the gene GRMZM2G381709 (Figure 4B) that has a short annotated 5-UTR of
52-nt and encodes a putative ortholog of the Arabidopsis PHO2 (Calderon-
Vazquez et al. 2011). We compared the amino acid sequences of the two proteins
and found that 97% of the maize sequence was covered, with 45% identity, by the
Arabidopsis sequence. Moreover, the structure of the coding sequence was
conserved in these two species, except that one of the exons was split into two in
maize. We suggest that the previously unannotated transcript, identified through
total RNA-seq, may constitute the complete 5-UTR of the downstream gene,
which could therefore be the target of the miR399.

A)

TCONS_00124738

3’ ACGGUUUCCUCUUAAUGGGUC 5' 3’ ACGGUUUCCUCUAAACGGGCU 5'

B)

GRMZM2G381709 TCONS_00124738

il

(T |

Figure 4 miR399 predicted target sites on the newly annotated transcript
TCONS_00124738. A) miR399:TCONS_00124738 alignments for the miR399e-
miR399j mature sequence. ":", ordinary Watson-Crick base pair; ".", G:U base pair; " ",
mismatch. The arrows indicate the position of the alignments on the
TCONS_00124738 zoomed region. B) RNA-seq reads from the wt control sample
(R2) mapping to the GRMZM2G381709 gene and the newly identified
TCONS_00124738 transcript. Gene exons are represented as red blocks, introns as
black lines, 5-UTR and 3’-UTR as grey blocks, arrows indicates the genes are located

in the negative strand of chromosome 6.
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3.5 Predicted targets of maize-specific miRNAs have different
characteristics compared to those of conserved miRNAs

The potential targets for 28 out of the 53 unique putative novel miRNAs were
successfully predicted (Appendix D). Compared to the predicted targets of the
conserved miRNAs, those of the novel, maize-specific miRNAs showed a number
of differences: i) in most cases the targets were uncharacterized transcripts,
without any sequence homology with both Arabidopsis and rice proteins, or the
matched sequences were not annotated in these reference species; ii) none of the
GO molecular function and biological process terms assigned to the targets were
enriched: the targets of novel miRNAs had diverse biological functions and, unlike
conserved miRNAs, we also found many TE transcripts among them; iii) some
putative novel miRNAs resulted to target multiple genes belonging to different
cellular pathways.

Even if not significantly enriched, the GO terms related with the DNA-
dependent regulation of transcription were the most represented, for example
miR-NEW12 was predicted to target a putative MYB TF and miR-NEW19 a
putative WRKY TF. Two miRNAs, miR-NEW18 and miR-NEW20, both of which
overlapped with MITEs, resulted to have the same putative target gene encoding
a putative ABC transporter, while two potassium transporters were predicted to be
the target of miR-NEW1. Zinc finger C3HC4 type domain containing proteins were
a common predicted target family for miR-NEW10, miR-NEW21, miR-NEW22 and
miR-NEW28.

The observed differences between the predicted targets of the conserved
and the putative novel miRNAs may confirm our hypothesis: the putative novel
miRNAs might be transient pre-evolved miRNAs, only a subset of them with an
effective selective value (Axtell MJ 2008), or they migth be siRNAs and not
miRNAs.
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3.6 Most abundant miRNAs are conserved miRNA/miRNA* sequences

The expression of the mature miRNAs irrespective of their genomic origins were
analyzed. The conserved miRNAs were evaluated first and they varied
significantly in expression levels. The miR166 family showed the highest
abundance in all libraries (from 2000 to 16000 Reads Per Million, RPM=(number
of miRNA reads/total number of reads aligned to the genome)*1076); in maize,
miR166 pattern accumulation in the leaf establishes organ adaxial/abaxial polarity
(Juarez et al. 2004). The other miRNA involved in the same control mechanism of
the leaf dorsoventral polarity, miR390 (Nogueira et al. 2007), showed lower
abundances (from 30 to 270 RPM). The miR168 was highly expressed in all
samples (from 190 to 1600 RPM): by the targeting of AGO1, miR168 maintains
the steady-state balance of the RNA silencing machinery (Vaucheret et. al 2004).
Also the miR168* showed high expression levels (from 57 to 900 RPM) in all
libraries. Among the most abundant miRNAs there was also the miR396 family,
which is involved in the regulation of cell expansion in leaf (Wang et al. 2011); the
two members miR396¢ and miR396d showed significantly higher expression (from
47 to 550 RPM) than the other members (< 22 RPM), like it was previously
reported for juvenile tissues (Zhang et al. 2009). This result suggests that the
regulatory role of a miRNA family can be exerted by a restricted number of its
members in the young leaf tissue. This behaviour was observed also for other
miRNA families highly abundant in all leaf samples that preferentially expressed
the following members: miR399e and miR399j; miR160b and miR160g; miR156a,
miR156b, miR156d, miR156f, miR156g, miR156h, miR156] and miR156m:;
miR167e, miR167f, miR167g, miR167k, miR167d (identical to the miR167d*
annotated in miRBase) and miR167k*. The following miRNA families were
expressed at low levels in all libraries (< 25 RPM): miR171, miR172, miR2118,
miR2275, miR169, miR393, miR394, miR395 and miR529. The miR172 and
miR156 families are involved in the vegetative phase change and they are
characterized by anti-correlated expression levels in the juvenile and adult phases
of development (Chuck et al. 2009). Indeed we observed that in our samples the
miR156 was highly expressed while the miR172 had low abundances. Other
miRNAs were very low expressed possibly because they were active in different

tissues, as it was previously observed for the miR529, that shares the same
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targets, SBP-box TFs, with the miR156, but has a tassel-specific expression
(Zhang et al. 2009), and for the miR2118 and miR2275 families that in rice are
mainly or exclusively expressed in the stamens (Song et al. 2012). A number of
MIRNA loci were not detected in our dataset (members of the miR159, miR160,
miR169, miR171, miR2118, miR2275, miR395, miR397, miR399 and miR482
families). The miR482 family consists of only one member and was absent in our
samples, indicating that its expression may be developmental and/or tissue-
specific.

The vast majority of the putative novel miRNAs had very low abundances
(< 10 RPM) in all samples. The most expressed miRNA family was the miR-
NEW10, homologous to Mu repeat elements, with four members, each predicted
to give rise to two miRNA/miRNA* duplexes. The mature sequence produced by
one of the two duplexes, named miR-NEW10.1, was identical between the four
miR-NEW10 family members and had higher abundances (from 45 to 300 RPM)
compared to the sequences produced by the other duplex, named miR-NEW10.2.
Since the four members of the miR-NEW10 family shared the same miR-
NEW10.1 mature sequence, which only mapped to these four genomic locations,
we could not assess if all the loci were effectively responsible for the production of
the miRNAs. The putative novel miRNA miR-NEW58 had high expression levels
in all samples (from 35 to 250 RPM), its locus was not masked by repeats and its
predicted target, a low confidence gene, was not detected in our samples through
RNA-seq. Other four putative novel miRNAs showed an abundance > 10 RPM:
miR-NEW4, miR-NEW?24, miR-NEW26 and miR-NEW34, whose loci were all

masked by repeats.
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3.7 Long-term abiotic stresses and plant development affect the
expression of a few numbers of miRNAs

The unique mature miRNA sequences were tested for differential expression
(logoFC >1 or <-1) with the tool edgeR (Robinson et al. 2010) (Table 2). We also
included the sequences of the conserved miRNAs whose precursors were not
confirmed by our analysis or that lacked a genome annotation in miRBase, to see
if there were DE sequences among them. The 25 miRNAs that we earlier found to
be not expressed in our samples were excluded from the analysis. The effects of
the abiotic stresses applied to the plants for the long interval of ten days, of the
recovery from the stresses and of the plant development (samples in control
conditions at +7) were evaluated: none of them caused strong effects on miRNA
expression. Only the DE miRNAs, more numerous than the DE miRNA*’s, are
discussed below.

The conserved miRNAs were evaluated first. Two mature sequences of
the conserved miR156 family (one encoded by the MIR156a, MIR156¢c, MIR156¢,
MIR156f, MIR156g, MIR156h, MIR156i, MIR156/ and MIR156m precursors and
the other encoded by the MIR156b and MIR156d precursors) were upregulated in
the wt after ten days of drought stress. In rmr6-1 mutant only the miR156
sequence encoded by the miR156b and miR156d precursors was upregulated
following both the drought and the salinity stresses. We found that the miR156d
precursor gave rise to the canonical miIRNA/miRNA* duplex annotated in
miRBase (here renamed 156d.1) and to a second putative duplex (named
miR156d.2), without sequence homology with the miR156 family. The miR156d.2
mature sequence was upregulated in wt following the drought stress treatment
and its expression decreased after the recovery time; it was altered also in the
rmr6-1 mutant, showing an upregulation after all the three applied stresses, but
the expression remained high after the recovery. We failed to predict any target
for the miR156d.2, so its biological role remains to be elucidated. Four miRNAs
were DE only in the wt following the ten days of drought stress: miR397b and the
miR398 family were upregulated, while one mature sequence of the miR166
family (encoded by the MIR166b, MIR166c, MIR166e, MIR166f, MIR166g and
MIR166h precursors) and one mature sequence of the miR396 family (encoded
by the MIR396e and MIR396f precursors) were downregulated. The miR166 was
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the only DE miRNA encoded by miRNA precursors not confirmed by our analysis
and showed differential expression also in wt samples in control conditions
between the two time points of sample collection. Three miRNAs were DE only in
the rmr6-1 mutant following the ten days of drought plus salinity stress: the
miR319c was upregulated and the miR399b and miR528 family were
downregulated. Except for the miR156d.2, all the other DE miRNAs remained up
or downregulated after the recovery, suggesting that the pathways regulated by
the miRNAs responsive to the long-term abiotic stresses might continue to be
altered even when the stress has been removed.

The differential expression analysis of the novel miRNAs revealed that
miR-NEW46 oppositely responded to the drought plus salinity stress in the two
genotypes. The mature sequences of the two miRNA/mMiRNA* duplexes produced
by the miR-NEW46 precursor were named miR-NEW46.1 and miR-NEW46.2:
miR-NEW46.2 was downregulated in the rmr6-1 mutant after the ten days of
treatment, while both miR-NEW46.1 and miR-NEW46.2 were upregulated in wt
after the recovery from the stress. miR-NEW46.1 was predicted to target a
putative AP2 TF and both miR-NEW46.1 and miR-NEW46.2 were predicted to
target a TE transcript; both transcripts were not detected in our samples in these
conditions through RNA-seq. Three other putative novel miRNAs were DE only in
wt: miR-NEW24 was upregulated following the ten days of drought stress, and
miR-NEW34 (encoded by the MIR-NEW34a and MIR-NEW34c precursors) and
miR-NEW58 were upregulated in control conditions at +7.

None of the predicted targets of the DE miRNAs were found to be DE in our
samples, according to the differential expression analysis performed on gene

counts obtained through RNA-seq.
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Table 2 DE miRNAs in stress conditions and/or at the developmental stage of

plants at +7
miRNA? Comparison® log,FC®
miR156a-miR156f-miR156g-miR156h-miR1561-miR-NEW156m-miR156¢c-miR156e-miR156i wt, D vs C 1.2
miR156b(isoMIR)-miR156d.1(isoMIR) wt,Dvs C 1.86
rmr6-1, D vs C 1.1
rmr6-1,Svs C 1.1
miR156d.2(unrelated) wt,Dvs C 25
wt, D, +7 vs +0 2

rmr6-1,D vs C 1.5
rmr6-1,Svs C 1.5
rmr6-1,D+Svs C 1.3
miR166b-miR166¢c-miR166e-miR166f-miR166g-miR166h wt,Dvs C -1.23
wt, C, +7 vs +0 -1.35

miR319¢(isoMIR)

rmr6-1, D+S vs C

miR396f*(MiRNA)-miR396e wt,Dvs C 1.86
miR397b(isoMIR) wt, Dvs C 1.2
miR398a-miR398b wt, Dvs C 1.5
miR399b rmr6-1,D+Svs C -2.6
miR528a-miR528b rmr6-1,D+Svs C -1.8
miR-NEW24 wt, Dvs C 1.5
miR-NEW34a-miR-NEW34c wt, C, +7 vs +0 1.65
miR-NEW46.1 wt, D+S, +7vs +0 2.7
miR-NEW46.2 wt, D+S, +7vs +0 3.7
rmr6-1,D+Svs C -3.7
miR-NEW58 wt, C, +7 vs +0 1.8

%()=when the identified miRNA sequence was not identical to that reported in
miRBase, their relationship is indicated: isoMIR=isoMIR of the miRNA annotated in
miRBase; unrelated=nonoverlapping with miRBase annotated sequences. miRNAs in
italic are sequences whose precursor was not confirmed by our analysis or that lacked
a genomic annotation in miRBase.

®C=control; D=drought stress; S=salinity stress; D+S=drought+salinity stress. +0=ten
days of treatment; +7=seven days of recovery.

‘FDR<1%.

3.8 Among the putative novel miRNAs homologous to repeat elements
only the 24-nt species are Pol IV-dependent

Some differential expression of miRNAs between wt and rmr6-1 were also
observed (Table 3). Three mature miRNAs were upregulated in the rmr6-1 mutant
compared to the wt: miR156d.2, miR-NEW10a.2-miR-NEW10b.2 and miR-
NEW24. The following mature miRNAs were instead downregulated in the rmr6-1
mutant compared to the wt: miR-NEW1, mir-NEW4, miR-NEW5, miR-NEW15,
miR-NEW26 (encoded by the MIR-NEW26a and MIR-NEW26b precursors), miR-
NEW29 and miR-NEW30. When performing the differential expression analysis on

MIRNA loci rather than individual mature miRNAs, we confirmed the
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downregulation of the reported miRNAs and also found six other loci
downregulated in the mutant: miR-NEW8, miR-NEW22, miR-NEW?27, mir-NEW?28,
miR-NEW31 and miR-NEW32. The 14 downregulated miRNAs (mature sequence
or locus) were all 24-nt long and masked by repeats. Five other putative novel
miRNAs with the same characteristics were not downregulated in rmr6-1. None of
the 21-nt and 22-nt putative novel miRNAs homologous to repeat elements
showed a downregulation in the rmr6-1 mutant. These results suggest that only
the 24-nt putative novel miRNAs homologous to repeat elements depend for their
transcription on the activity of the Pol IV enzyme and therefore are the most likely
to be siRNAs instead of bona fide miRNAs.

Table 3 DE miRNAs and MIRNA loci in rmr6-1 mutant compared to wt (C)

Differentially expressed miRNA? log,FC"

both miRNA and MIRNA locus miR156d.2(unrelated) 1.3
miR-NEW1 -6.4
miR-NEW4 -9.3
miR-NEW5 -6.8
miR-NEW10a.2-miR-NEW10b.2 1.9
miR-NEW15 -7.3
miR-NEW24 1.4
miR-NEW26a-miR-NEW26b -6.2
miR-NEW29 -7
miR-NEW30 -6.4

only MIRNA locus miR-NEW8 -5.4
miR-NEW22 -5.3
miR-NEW27 -3.4
miR-NEW28 -6.9
miR-NEW31 -4.9
miR-NEW32 -5.5

%()=when the identified miRNA sequence was not identical to that reported in
miRBase, their relationship is indicated: unrelated=nonoverlapping with miRBase
annotated sequences.

®FDR<1%. For those miRNAs for which both the mature sequence and the precursor
were DE, the log,FC of the mature miRNA is reported. For those miRNAs for which
only the precursor was DE, the log,FC of the MIRNA locus is reported.

Results 117



3.9 Gene flanking regions tend to be enriched in sRNA loci of 21-nt, 23-nt
and 24-nt size class and depleted in sRNA loci of 22-nt size class

The vast majority of the identified sRNA loci were non-MIRNA loci, so to complete
the characterization of the sRNA population of maize leaf we analyzed all the
sRNA loci excluding the MIRNA loci, both those identified in our work and those
previously annotated in miRBase but not confirmed by our analysis. These sRNA
loci, divided by size class, from 20-nt to 24-nt, and by precursor structure, HP and
non-HP, were first examined for their genomic and genic distributions.

We evaluated the genomic distribution of the sSRNA loci locations (not their
abundances) by plotting for all the chromosomes, for each of their 1-Mb domains,
the fraction of the domain length covered by the sRNA loci. The sRNA loci with a
size class of 22-nt and 24-nt, the most numerous size classes, were analyzed first
(Figure 5). Both the HP and non-HP loci with a size class of 22-nt showed uniform
low levels of chromosome domain occupancy across the chromosomes length,
with a number of spikes observed in both chromosome arms and centromere
regions. The non-HP loci with a size class of 24-nt, the most numerous category
of sRNA loci, occupied mainly the chromosomes arms, with highest fractions of
chromosome domains covered bases towards the telomeres and lowest fractions
towards the centromeres. The HP loci with a size class of 24-nt showed the same
trend of the non-HP loci with same size class but with less marked differences
between the centromere and the chromosome arms.

The sRNA loci with a size class of 20-nt, 21-nt and 23-nt were analyzed
separately from the other loci because they were less numerous (Figure 6). Each
of these categories was composed by a small numbers of loci, therefore their
observed fractions of chromosome domains covered bases were zero across all
the chromosomes length, with a few number of spikes mainly concentrated in the
chromosomes arms. The observed chromosomal distribution of the sRNA loci
confirmed the previously described chromosomal distributions of the sRNA
abundances (Gent et al. 2012) and the sRNA loci (He et al. 2013), respectively

obtained in maize root tips and seedlings shoots and roots.
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Figure 5 Chromosomal distribution of sSRNA loci with size class of 22-nt and 24-
nt. For each chromosome, for each of its 1-Mb domain is plotted the fraction of the
domain length covered by the sRNA loci. A) - J) chromosomes 1 - 10. Centromere

positions are indicated by black arrows.
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Figure 6 Chromosomal distribution of sRNA loci with size class of 20-nt, 21-nt
and 23-nt. For each chromosome, for each of its 1-Mb domain is plotted the fraction
of the domain length covered by the sRNA loci. A) - J) chromosomes 1 - 10.

Centromere positions are indicated by black arrows.

120 Results



Previous results showed that the sRNA loci of all size classes, except of
the 22-nt, covered with the highest densities the chromosomes arms, which are
genes-enriched regions (Schnable et al. 2009). Therefore, we decided to study in
detail the relative position of SRNA loci and genes. Among the total genes, and
their transcripts, annotated in the reconstructed transcriptome assembly, we
analyzed the following three sets of loci: protein-coding genes (total
number=39252), TE transcripts (total number=33132) and potential IncRNA
transcripts (total number=16730), identified as described in the chapter Materials
and Methods. The following genomic features were also considered: the exons
and introns of protein-coding genes, the immediate flanking regions of three sets
of loci and the repeats (the complete set of TEs and repetitive regions). Between
the three sets of loci there was redundancy: 234 protein-coding genes had at least
one of their spliced transcript classified as TE; 3294 protein-coding genes had at
least one of their spliced transcript classified as INncRNA and 2406 TE transcripts
were also classified as INncRNAs. Theoretically, the same locus cannot be at the
same time coding and non-coding, however a gene could have only one of its
spliced transcript classified as IncRNA and the identified IncRNAs were potential
IncRNAs, not experimentally verified. For these reasons and because the
redundancy between the three sets of loci involved a minor percentage of the total
units, we decided to use hereafter the redundant classification of these sets of
loci.

To assess the level of enrichment/depletion of each of the sRNA loci
categories in each of the above-mentioned genomic features, the analysis of co-
occupancy was performed to compare the number of expected and observed non-
redundant overlapping nucleotides between them (Figure 7; Appendix E). For
each size class, the HP and non-HP sRNA loci showed very similar trends of
enrichment/depletion in the different genomic features, indicating that the length of
the sRNAs is more influential than their precursor secondary structure in
explaining their genomic locations relative to the genomic features studied.

The sRNA loci categories were divided in three main groups depending on
their trends of enrichment/depletion. The first group comprised the sRNA loci of
23-nt and 24-nt size class (both HP and non-HP), which were depleted in body

regions of TE and IncRNA transcripts and in exons of protein-coding genes but
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were enriched in introns of protein-coding genes and in flanking regions of all the
analyzed sets of loci. While the sRNA loci of 23-nt size class showed a higher
enrichment in downstream regions of genes/transcripts, those of 24-nt size class
showed the opposite trend with higher enrichment values in upstream regions of
genes/transcripts. In total, 51.8% of the 2-kb upstream regions of protein-coding
genes and ~29% of those of TE and IncRNA transcripts exhibited an overlap with
at least one non-HP sRNA locus of 24-nt size class, while 9.1% of the 2-kb
upstream regions of protein-coding genes and ~5% of those of TE and IncRNA
transcripts showed an overlap with at least one HP sRNA locus of 24-nt size
class. On the other hand, 19.8% and 23.1% of the HP and non-HP sRNA loci of
24-nt size class, respectively showed overlap with the flanking regions of protein-
coding genes and ~9% and ~5% of the total sRNA loci of 24-nt size class
exhibited an overlap with the flanking regions of TE and IncRNA transcripts
respectively. The percentages of both the overlapping genes/transcripts and
SRNA loci were only slightly lower when considering the downstream regions. The
second group included the sRNA loci of 21-nt size class (both HP and non-HP),
which were depleted in repeats and in TE transcripts but enriched in protein-
coding genes, in INcRNA transcripts and in flanking regions of all three sets of loci.
The third group comprised the sRNA loci of 20-nt and 22-nt size class (both HP
and non-HP), which were enriched in protein-coding genes and IncRNA
transcripts but were mainly depleted in their flanking regions.

The genomic features analyzed were also divided in groups depending on
the sRNA loci categories they were enriched/depleted in. The first group
comprised protein-coding genes, their exons and IncRNA transcripts, indicating
that the non-coding feature of INncRNAs had co-occupancy results most similar to
the coding feature of protein-coding genes. These genomic features were
characterized by a high enrichment in sRNA loci of 20-nt and 21-nt size class. The
protein-coding genes also exhibited a low level of enrichment in the other sRNA
loci size classes, which was due to a significant overlap of these sRNA loci with
the protein-coding genes in their introns and not in their exons, where the sRNA
loci were clearly depleted. The second group was made by repeats and TE
transcripts, both depleted or only slightly enriched in sRNA loci of all size classes,

even though the latter overlapped with these elements with high percentages. The

122 Results



exception were the sRNA loci with 22-nt size class and the non-HP loci with 20-nt
size class, which showed a considerable enrichment (log;[observed/expected] >
0.85) in TE transcripts. The third group included the flanking regions of TE
transcripts and the introns of protein-coding genes, characterized by the
enrichment, at variable levels, in sRNA loci of all size classes, with the only
exceptions of the non-HP loci of 20-nt size class and patrtially of the non-HP loci of
23-nt size class. Finally, the forth group comprised the flanking regions of protein-
coding genes and IncRNA transcripts, confirming the similarity of these two
genomic features in the spatial association with different sRNA loci categories.
These regions were clearly enriched in sRNA loci of 21-nt, 23-nt and 24-nt size
class and depleted in those of 22-nt size class, while the trend of the 20-nt class

varied upon the precursor structure.
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Figure 7 Co-occupancy analysis results. For each sRNA loci category-genomic
feature combination the level of enrichment/depletion is reported as the log, (observed
overlapping nt/expected overlapping nt) between them. R (R Development Core Team
2013) function “heatmap.2” with the default parameters “Rowv=TRUE” and
“Colv=TRUE” was used to perform the clustering of both the sRNA loci categories and

the genomic features.
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The sRNA loci with size class of 22-nt and 24-nt were the most numerous
sRNA loci categories, for which it was therefore easier to observe genome-wide
trends. Both the genomic and genic distributions evidenced considerable
differences between these categories. In summary, the sRNA loci of 22-nt size
class: i) had a homogenous distribution across the chromosomes length, ii) the
vast majority of them (>93%) mapped to repeats, iii) they were enriched in body
regions of TE transcripts but less in their flanking regions, iv) they were enriched
in introns of protein-coding genes and v) clearly depleted in the flanking regions of
protein-coding genes and IncRNA transcripts. In contrast, the sRNA loci of the 24-
nt size class: i) were found preferentially in the chromosome arms where genes
are more densely arranged, ii) they were associated with repeats to a lesser
extent (~76% of the total loci), iii) they showed little enrichment in body regions of
TE transcripts but considerable higher enrichment in their flanking regions and in
those of protein-coding genes and IncRNA transcripts, and iv) they exhibited the
lowest levels of enrichment observed in introns (together with the non-HP loci of
20-nt size class). These data suggest that the sRNA loci with a size class of 22-nt
are more directly correlated to the position of repeats compared with those with a
size class of 24-nt. It was previously demonstrated that maize 24-nt sRNAs tend
to be concentrated very close to the ends of full-length cDNA genes (Wang et al.
2009), protein-coding genes (Gent et al. 2013), pseudogenes and TEs (Xin et al.
2014). We confirmed this trend providing statistical evidence and extended it for
the IncRNA transcripts. Therefore, sRNA loci of 24-nt size class, together with
those of 23-nt size class showing similar co-occupancy results, might play a role
in the control of gene transcription, in a way independent from the coding or non-

coding nature of the gene they are close to.

3.10 Expressed genes are flanked by upstream sRNA loci of 23-nt or 24-
nt size class with higher probabilities compared to non-expressed genes
In order to examine the relationship between gene expression and the occupancy
of flanking sRNA loci we plotted the distribution of the sSRNA loci with size class of
23-nt and 24-nt along these regions, separately for genes with different
expression levels (Figure 8). We analyzed these three sets of loci: protein-coding

genes, TE and IncRNA transcripts. Only sRNA loci with size class of 23-nt and 24-
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nt were included because they were enriched in the flanking regions of these sets
of loci and had similar co-occupancy results. We used the gene/transcript
expression levels measured through RNA-seq in the wt samples in control
condition after ten days of experiment. Protein-coding genes were divided into
four groups of equivalent number of elements based on expression level. TE and
IncRNA transcripts were divided into five groups because the non-expressed
transcripts where more than 25% of the total elements: one group contained only
non-expressed transcripts (that accounted for the 72.9% of the TE transcripts and
51.3% of the IncRNA transcripts) and the other four groups consisted of the
expressed transcripts divided into four numerically equivalent sets, based on their
expression level. The plots (Figure 8) show the fraction of genes having a close
sRNA locus, for each gene/transcript expression level and in each position of the
2-kb flanking regions. All the analyzed sets of loci had a higher probability to be
flanked by a 23-nt or 24-nt size class sRNA locus in their upstream region than in
their downstream region. Protein-coding genes showed the highest values of
fraction of genes with flanking sRNA loci, followed by INcRNA and TE transcripts.
Protein-coding genes and IncRNA transcripts exhibited the highest peak of sSRNA
loci occupancy in the interval between 300 and 400 bp upstream of the
transcription start site (TSS), while TE transcripts in the interval between 150 and
200 bp upstream of the TSS. A positive correlation between the expression level
of genes and the occupancy of upstream sRNA loci was evident for the protein-
coding genes. Similar results were obtained by Gent et al. (2013) for the
expression level of genes in the filtered gene set (version 5b) and the abundance
of their 2-kb flanking 24-nt sRNA sequences. Non-expressed TE and IncRNA
transcripts were characterized by a lower probability to have upstream sRNA loci
compared to the expressed transcripts but none evident correlation was observed
when considering only the transcripts that were expressed at different levels. All
the sets of loci did not show any correlation in their downstream regions. A drop of
sRNA loci occupancy at the level of the TSS was observed for all the sets of loci:
protein-coding genes and TE transcripts showed low but still appreciable values of
sRNA loci occupancy at the TSS, while IncRNA transcripts at the same position

had zero or close to zero sRNA loci occupancy values.
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Figure 8 Distribution of sRNA loci with size class of 23-nt and 24-nt in gene
flanking regions. The fraction of genes/transcripts overlapping in their 2-kb flanking
regions with sRNA loci with size class of 23-nt and 24-nt is reported for each 50-bp
interval of the flanking regions, separately for genes/transcripts with different
expression levels. A) protein-coding genes, total number=39252. They were divided
into four equivalent groups from low to high expression. B) TE transcripts, total
number=33132 C) IncRNA transcripts, total number=16730. Both TE and IncRNA
transcripts were divided into five groups: one group of non-expressed transcripts,
“RPKM=0", and four equivalent groups of expressed transcripts from low to high

expression. TSS, transcription start site. TTS, transcription termination site.
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In maize, it has been demonstrated that protein-coding genes,
pseudogenes and TEs have higher densities of 24-nt sRNAs on their upstream
antisense strand than on their upstream sense strand (Xin et al. 2014). We
examined the overlaps between sRNA loci with size class of 23-nt and 24-nt and
the flanking regions of protein-coding genes, TE and IncRNA transcripts (Table 4).
The results obtained did not confirm the trend demonstrated for the 24-nt sRNAs
densities: from 44.5% to 49% of cases the overlaps involved sRNA loci with no
strand polarity, in the other cases the overlaps involved sRNA loci with strand
polarity but we did not observe a significant bias towards the antisense strand
compared to the sense strand, both for the upstream and the downstream

regions.

Table 4 Overlaps between sRNA loci with size class of 23-nt and 24-nt and gene

flanking regions

Genel/transcript flanking regions Overlaps with sRNA loci of 23-nt and 24-nt size class
total % overlaps with sSRNA loci % overlaps with sSRNA loci with strand polarity:
overlaps without strand polarity in the same strand in the opposite strand

protein-coding genes 2-kb upstream regions 30150 49.07 27.25 23.68

protein-coding genes 2-kb downstream regions 24439 46.10 25.75 28.15

TE transcripts 2-kb upstream regions 13648 45.80 23.46 30.74

TE transcripts 2-kb downstream regions 11769 45.81 26.81 27.38

IncRNA transcripts 2-kb upstream regions 7281 46.98 28.07 24.95

IncRNA transcripts 2-kb downstream regions 6686 44.48 27.61 27.91

3.11 Long-term abiotic stresses and plant development affect the
expression of a few numbers of sRNA loci

Environmental stresses can influence the expression of different categories of
sRNAs. In addition to miRNAs, siRNAs are altered in their expression to
consequently modulate target genes as part of the plant response to the stress
(Tricker et al. 2012) or to defend the genome from the potentially deleterious
effects caused by the stress-induced movements of TEs (lto et al. 2011). To test
the effects of the stress treatments and the different developmental stage of plants
(+7 samples) on non-MIRNA sRNA loci, we analyzed their counts for differential
expression with the tool edgeR, applying the TMM normalization method in
addition to the scaling on the total number of reads mapping within the sRNA loci
per library (logoFC>1 or <-1, FDR<1%). For each pairwise comparison, the

obtained DE sRNA loci with size class from 20-nt to 24-nt, which in all the three
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biological replicates were expressed with at least one read in at least one of the
two libraries subjected to the comparison were selected (Appendix F). Neither the
long-term abiotic stresses applied to the plants nor the different plant
developmental stage (+7 samples) caused strong effects on siRNA loci
expression: in total 19 loci resulted DE. Hundreds of sRNA sequences were
reported to be DE after cold, heat and salinity stresses in Brachypodium (Wang et
al. 2014b) and thousands of sRNA loci showed differential expression after PEG-
simulated drought conditions in foxtail millet (Qi et al. 2013). Compared to these
works, we detected a lower number of DE sRNA loci, maybe because we
analyzed the effects of the treatments after ten days of stress application, not in
the immediate hours after the stress application.

Over the total 19 DE sRNA loci, 12 showed differential expression only in
the wt during drought stress and three only in the rmr6-1 mutant in drought or
drought plus salinity stresses; four of these DE sRNA loci, all with 22-nt size class,
showed a similar level of differential expression in the non-stressed samples at
+7. Four DE sRNA loci showed differential expression only in the wt after the
recovery from the drought stress. Salinity stress alone had no significant effects
on sRNA loci expression, consistent with the lower effects observed on miRNA
expression compared to the other stresses. In general the DE sRNA loci showed
no bias towards a particular size class, precursor structure, repeats masking,
genomic location or differential expression trend. 11 over 19 DE sRNA loci were
DE also in the comparison between rmr6-1 mutant and wt in control conditions,
ten of these showed a similar trend of differential expression (up or
downregulation) in the stress or developmental stage comparisons and in the
genotype comparison.

The majority of DE sRNA loci were located in genic regions: 12 over the
total 19. Two sRNA loci, both upregulated in the wt in drought conditions,
overlapped with exons of genes homologous to Arabidopsis zinc transporter
precursors; four were located in introns of genes homologous to Arabidopsis
genes with diverse functions; one was found in antisense to a gene encoding a
(S)-beta-macrocarpene synthase and the other five sRNA loci overlapped with
uncharacterized protein-coding genes or low confidence genes. The expression of

these genes and of the genes located in the 10-kb flanking regions of each DE
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sRNA locus was retrieved from the RNA-seq data. None of the genes found in the
10-kb flanking regions was DE in the same conditions where the close sRNA
locus resulted DE, while in two cases both the sRNA locus and its overlapping
gene were upregulated in the same stressed samples and their expression did not
significantly decrease after the recovery.

In one of these two cases, the drought stress caused the upregulation,
only in the wt, of the sRNA locus Cluster_63380 (log,FC=1.6) and its overlapping
gene GRMZM2G093276, which was one of the two genes homologous
Arabidopsis zinc transporter precursors (logo,FC=1.26, g-value=0.041). The gene
comprises three exons that were all covered by an sRNA locus with size class of
21-nt. The Cluster_63380 was one these loci, the most abundant among them
and the only one DE as the gene. It showed a preferential processing to one
individual abundant sRNA sequence. The discrepancy in the expression of the
three sRNA loci might be due to the wrong mapping position assigned to the
abundant sRNA sequence included in the Cluster_63380: the sequence had two
possible genome positions, the other one inside the Cluster_63370, which was the
other DE sRNA locus overlapping with a gene homologous to an Arabidopsis zinc
transporter precursor. Alternatively, this might be explained in the hypothesis that
the Cluster 63380 was the only one among the three sRNA loci to generate a
functionally active sRNA that had a role in the response to drought stress and thus
increased its abundance during the stress treatment.

In the other case, drought and drought plus salinity stresses caused the
upregulation, in the rmr6-1 mutant, of the sRNA locus of 24-nt size class
Cluster_99151 (log,FC=2.28 and log,FC=2.73 respectively) but only in drought
conditions the overlapping gene AC216891.3_FGO004_X was upregulated
(logoFC=1.92, g-value=0.04). The wt showed upregulation of the gene following
drought treatment (log,FC=1.8, g-value=0.023), but not of the sRNA locus. These
data indicate that in drought-stressed samples the upregulation of the sRNA locus
observed in the rmr6-1 mutant did not influence the expression of the overlapping
gene, which increased in the two genotypes at a similar extent. The final gene
expression level reached in the drought-stressed rmr6-1 mutant samples was
higher (Reads Per Kilobase per Million (RPKM)=16.63) compared to that reached

in the stressed wt samples (RPKM=4.11), because its basal expression in control
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condition was significantly higher in the rmr6-1 mutant compared to the wt
(logoFC=2.24, g-value 0.004). The Cluster 99151 showed lower abundances in
the rmr6-1 mutant compared to the wt in control conditions but the difference was
not significant. The AC216891.3 FG004_X gene was previously unannotated and
newly detected in our samples, overlapping on the opposite strand with the
AC216891.3_FG004 gene, which is not characterized and does not have
homologs in Arabidopsis or rice. The sequence of the newly detected
AC216891.3 FGO004_X gene was analyzed and resulted to be part of a LTR
retrotransposon. The LTR TE appears to be a TE-relic because it does not
possess complete LTR regions and all the protein domains required for its
retrotransposition. We visualized this locus in the MaizeGDB Genome Browser
(Sen et al. 2010) and found that the LTR regions of this TE-relic are methylated in
B73 according to Eichten et al. (2011). Taken together these observations
suggest that the gene might be a TE-relic targeted by 24-nt sRNAs that are at
least in part independent of the Pol IV activity, that do not function to repress the
TE-relic expression and that increase in abundance following the drought stress
only in the absence of a functional Pol IV enzyme.

Our data suggest that the plant response to the stress treatments applied
for ten days did not involve the action of sRNAs (all SRNA categories except
miRNAs) as a general strategy to modulate gene expression; indeed the rmr6-1
mutants did not show more severe phenotypes in stress conditions compared to
the wt.

3.12 The majority of sRNA loci located in gene flanking regions are of
Pol IV-dependent

RMR6 gene encodes for the largest subunit of RNA Pol IV and its loss of function
allele, rmr6-1, is responsible for the reduction of the vast majority of ~24-nt RNA
species (Erhard et al. 2009). To confirm this result the abundances of the sRNA
loci were compared between the wt and rmr6-1 samples collected after ten days
of experiment in control growing conditions, with the tool edgeR. To normalize the
expression values the TMM method was used in addition to the scaling on the
total number of reads mapping within the sRNA loci per library. Since TMM

assumes that most elements are not differentially expressed between samples we
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included in the analysis all the identified sSRNA loci, also those with size class <20-
nt or >24-nt, which accounted for the majority of mapping reads and are not
supposed to change in the mutant. Among the sRNA loci with size class in the
range from 20-nt to 24-nt, a total of 147,492 (51.5%) were DE (logoFC>1 or <-1,
FDR<1%) between the two genotypes (Table 5). To assess the influence of the
normalization method used on the number of DE sRNA loci, the same comparison
was performed without the TMM normalization and only 0.83% more DE sRNA
loci with size class in the range from 20-nt to 24-nt were obtained: given the small
difference, to retrieve stringent results the comparison with the TMM normalization
was finally considered. Among the sRNA loci with size class <20-nt or >24-nt, a
total of 6.9% were DE, confirming that these loci did not undergo big changes in
the mutant. Results for the sRNA loci with size class in the range from 20-nt to 24-
nt are summarized in Table 5. Only 0.3% of the total sRNA loci were upregulated
in the rmr6-1 mutant, while 51.2% were downregulated, consisting primarily of loci
with size class of 24-nt. While the DE sRNA loci with size class of 23-nt and 24-nt
were for the most part downregulated in the rmr6-1 mutant, those with size class
of 20-nt to 22-nt were in most cases upregulated, both HP and non-HP loci. sSRNA
loci with size class from 20-nt to 24-nt downregulated in the mutant were therefore
dependent on Pol IV for their biogenesis, so they were called siRNA loci because

they showed evidence for participation in the RADM pathway.

Table 5 DE sRNA loci between rmr6-1 mutant and wt

sRNA loci® total % DE® % upregulated® % downregulated®
all 147492 51.48 0.28 51.20
20-nt HP 26 11.54 11.54 0.00
21-nt HP 215 6.05 5.58 0.47
22-nt HP 1181 5.76 5.00 0.76
23-nt HP 121 26.45 4.96 21.49
24-nt HP 17679 48.49 0.06 48.43
20-nt non-HP 32 3.13 3.13 0.00
21-nt non-HP 520 8.27 6.92 1.35
22-nt non-HP 17678 1.98 1.52 0.46
23-nt non-HP 311 18.97 2.89 16.08
24-nt non-HP 109729 60.87 0.01 60.86

®sRNA loci with size class in the range from 20-nt to 24-nt, except MIRNA loci.
®log,FC>1 or <-1, FDR<1%.
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In the wt, the majority of the Pol IV-dependent siRNA loci were expressed
between 1 and 10 RPM (average of the three biological replicate values,
calculated on the total number of reads aligned to the genome for each library),
while in the rmr6-1 mutant the 90.9% of them were not expressed (Figure 9). In
the wt, the total Pol IV-dependent siRNA loci accounted for the 75% of the total
number of reads mapping within sRNA loci with size class in the range from 20-nt
to 24-nt and the subset of Pol IV-dependent siRNA loci with 0 RPM in the mutant
accounted for 62.3% of these reads. Together these results confirmed the
previously described dramatic loss of 23-nt and 24-nt sRNAs occurring in the
rmr6-1 mutant (Erhard et al. 2009).
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Figure 9 Abundance distribution of Pol IV-dependent sRNA loci. The abundance
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of the sRNA loci with size class between 20-nt and 24-nt downregulated in rmr6-1
mutant compared to wt is reported as average of the three biological replicates. RPM

are calculated on the total number of reads aligned to the genome for each library.

Considering all genes annotated in the transcriptome assembly used, over
the total number of Pol IV-dependent siRNA loci, the 65.1% overlapped with their
2-kb flanking regions, of those the 86.2% overlapped with the 2-kb flanking
regions of protein-coding genes, TE and IncRNA transcripts. These results are
consistent with the previous finding that RADM loci, defined in the mutant mop1-1
by their loss of 24-nt sRNAs, are primarily limited to regions close to genes, that
are accessible chromatin environments where siRNAs are thought to repress

transposons (Gent et al. 2014). A substantial proportion of Pol IV-dependent
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siRNA loci were not located in the immediate proximity of genes, suggesting that
RdDM control of transcriptional silencing might not be restricted to these regions.
In the co-occupancy analysis, the partial redundancy between the
analysed genomic features and the fact that the same sRNA locus could
theoretically overlap with different genomic features and vice versa, made
impossible to sum the fraction values to obtain general results for a single sRNA
loci category or genomic feature. Therefore, the total non-redundant number of
sRNA loci with size class from 20-nt to 24-nt overlapping with gene flanking
regions was calculated. Considering all genes annotated in the transcriptome
assembly used, over the total number of sRNA loci with size class from 20-nt to
24-nt, the 54.3% overlapped with their 2-kb up or downstream regions, of those
the 61.3% were Pol IV-dependent. Considering only protein-coding genes and TE
and IncRNA transcripts, over the total number of sSRNA loci with size class from
20-nt to 24-nt, the 46.4% overlapped with their 2-kb up or downstream regions, of
those the 61.9% were Pol IV-dependent. We then analyzed separately: i) the
protein-coding genes from the TE transcripts and from the IncRNA transcripts, ii)
their different expression levels and iii) the upstream regions from the downstream
regions (Table 6). In each case, over the total overlapping sRNA loci with size
class from 20-nt to 24-nt in gene/transcript flanking regions, the number of
upregulated loci was never >1% and the number of downregulated loci was pretty
constant around ~61%. For protein-coding genes and IncRNA transcripts the
percentage of downregulated loci was lower for the non-expressed or lowly
expressed units compared to the expressed units, both for up and downstream
regions. These results indicate that over the total loci located in the immediate
gene flanking regions, the Pol IV-dependent siRNA loci are always the majority,
with similar proportions, around 61%, when considering different coding and non-

coding units, with different expression levels, in their up and downstream regions.
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Table 6 Total and DE sRNA loci overlapping with gene/transcript flanking

regions
Genesl/transcripts Expression level sRNA loci® overlapping with 2-kb up: gi sRNA loci® overlapping with 2-kb downstream regions
total % upregulated %downregulated total % up lated %downregulated
protein-coding genes  low 5312 0.09 62.22 4857 0.12 60.68
mid-low 7363 0.14 66.33 6131 0.10 62.47
mid-high 8778 0.01 68.43 6594 0.00 62.22
high 8660 0.02 68.71 6718 0.06 61.04
TE transcripts RPKM =0 8960 0.15 59.19 8026 0.30 57.53
low 1072 0.09 62.50 808 0.87 57.55
mid-low 1057 0.66 61.49 901 0.22 55.60
mid-high 1030 0.49 58.74 897 0.56 55.96
high 915 0.33 57.16 855 0.23 57.89
IncRNA transcripts RPKM =0 3063 0.13 61.51 2888 0.14 60.39
low 970 0.00 66.39 870 0.00 64.60
mid-low 1051 0.00 66.13 904 0.33 61.17
mid-high 967 0.10 66.80 858 0.12 60.49
high 969 0.21 65.53 948 0.00 63.29

#sRNA loci with size class in the range from 20-nt to 24-nt, except MIRNA loci and

miRBase annotated MIRNA loci not confirmed by our analysis.

About 40% of the total sRNA loci in gene flanking regions were not
significantly differentially expressed in rmr6-1 mutant. The 96% of them decreased
in expression in rmr6-1 compared to wt but not at significant levels and at a lower
extent (average log,FC=-3) compared to Pol IV-dependent loci (average log,FC=-
5.8). In the wt these loci had already on average four-fold lower expression levels
compared to the Pol IV-dependent loci. However, in the mutant the 90% of them
were not expressed at all, similarly to the Pol IV-dependent loci. These data
suggest that these loci were either not targeted by RdDM or were undergoing

RdDM at a much lower extent compared to the Pol IV-dependent loci siRNA loci.

3.13 Pol IV mutation induces gene expression changes in leaves of rmr6-
1 mutants without altering their morphology

To evaluate the effects of siRNAs loss and subsequent RdADM impairment on
gene expression, gene counts of wt and rmr6-1 mutant samples were subjected to
pairwise differential expression analysis with the tool Cuffdiff (logoFC>1 or <-1,
FDR<5%). As performed for sRNA loci differential expression analysis, only
samples collected after ten days of experiment in control conditions were used to
evaluate the effects of the rmr6-1 mutation on genes. Despite the global loss of
siRNAs occurring in the mutant and their enriched position in gene flanking
regions, Pol IV-mutation did not cause dramatic changes in leaf gene expression:

a total of 1013 genes were DE between wt and rmr6-1 (Appendix G). Results
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were similar to the number of DE genes detected in mop7-1 mutant immature ears
(~762 DE genes; Madzima et al. 2014), while in mop7-1 SAMs the number of DE
genes detected was higher (~6000 DE genes; Jia et al. 2009).

At the time point of sample collection, rmr6-1 mutant plants did not show
any gross morphological defects. However, rmr6-1 plants were delayed in
development compared to wt and we noted that when grown in field they showed
even more delay in development and flowering time and reduced fertility. The
developmental delay was also observed in heterozygous RMR6/rmr6-1 plants, but
attenuated. Since the rmr6-1 mutation was not induced in B73 but was
introgressed in this background, these results might be due to the not 100%
identical genetic background between wt and mutant plants. At the time point of
sample collection, leaves were identical between mutant and wt plants. Altered
abaxial leaf fates were described in rmr6-1 mutants but this phenotype was
observed only after one or two generations of homozygous sibling crosses
(Parkinson et al. 2007), while we employed homozygous plants derived by the
crossing of heterozygous individuals. Reduced fertility was only observed in
homozygous rmr6-1/rmr6-1 plants. Both rmr6-1 and mop7-1 mutants have been
described to be most strongly affected in the development of floral organs and
reproduction processes, although also these phenotypes are not fully penetrant or
are visible only after one or two generations of homozygous sibling crosses
(Dorweiler et al. 2000, Parkinson et al. 2007).

These data indicate that the effects of loss of siRNAs on genome
homeostasis primarily negatively affect reproductive organ development and that
phenotypes on vegetative organs become more severe after generations of
homozygous crossing. Indeed we did not observe morphological defects on

leaves, despite the observed gene expression changes.

3.14 Gene expression changes induced by the loss of siRNAs are not
predictable upon the relative position of siRNAs and genes

Differential expression was performed on genes, not on transcripts, therefore we
decided to classify a gene as TE and/or IncRNA when it had at least one of its
spliced transcripts classified as TE and/or IncRNA. Therefore, there was

redundancy between the following categories: one protein-coding gene was also
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classified as TE, 31 protein-coding genes were also classified as IncRNAs and 14
TEs were also classified as INcRNAs (Appendix G). Theoretically, the same locus
cannot be at the same time coding and non-coding but because a gene could
have only one of its spliced transcript classified as IncRNA and because the
identified potential IncRNAs were not verified experimentally, we decided to keep
both the coding and non-coding classification for the 31 redundant genes. This
redundancy involved a few number of loci, therefore it could not have significant
impact on the following analysis. Genes that could not be classified neither as
protein-coding genes, nor as TEs and IncRNAs were named ‘genes not classified’.

Over the total 1013 DE genes, 777 were upregulated and 236 were
downregulated in rmr6-1 compared to wt (Table 7). About half of the total DE
genes were protein-coding genes, about one third were genes that could not be
assigned to one of the classification used, 154 were IncRNAs and 191 were TEs.
As expected based on the mechanism associated with the RdDM silencing
pathway, for each category and especially for TEs, IncRNAs and unclassified
genes, the number of upregulated genes was greater than the number of
downregulated genes. Among the 167 upregulated TEs, 109 belonged to the
class | TE order of LTR, mainly of Copia and Gypsy superfamilies; 13 upregulated
TEs belonged to the class Il TE order of TIR; the other 45 upregulated TEs lacked
a specific classification (Appendix G).

Over the total DE genes, 489 were expressed only in rmr6-1 mutant, of
these 142 were TEs and 116 were IncRNAs, and 45 were expressed only in wt, of
these 11 were TEs and 14 were IncRNAs. Therefore, the majority of DE TEs and
IncRNAs were expressed specifically in only one genotype and most of them were
expressed only in the mutant. Over the total DE genes, 248 were not previously
annotated, of these 206 were expressed only in rmr6-1, about half were TEs,
indicating that the loss of siRNAs caused the activation of TEs and other genes
that were not previously detected. Among the genes that were not classified, 196

were expressed only in the mutant and of these 81 were new loci (Appendix G).
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Table 7 DE genes between rmr6-1 mutant and wt

Genes?® total DE® upregulated® % upregulated® downregulated® % downregulated®
all 1013 777 76.70 236 23.30
protein-coding genes 418 267 63.88 151 36.12
TEs 191 167 87.43 24 12.57
IncRNAs 154 132 85.71 22 14.29
genes not classified 296 249 84.12 47 15.88

®the classification of genes into protein-coding, TE and IncRNA was redundant for a
total of 46 genes.
®log,FC>1 or <-1, FDR<5%.

In rmr6-1 mutant compared to wt, thousands of sRNA loci were DE, while
1013 genes were DE, indicating that the loss of siRNAs is not itself sufficient to
predict the differential expression of a close gene. In order to verify if the presence
of a DE sRNA locus were a necessary requisite for the differential expression of a
close gene or was increasing significantly its probability to be DE, we calculated
the fraction of DE genes overlapping with DE and non-DE sRNA loci in their gene
body or flanking regions (Figure 10). The presence of only one DE gene
associated with an upregulated sRNA locus, found across its gene body and
downstream region, was likely due to the much smaller number of upregulated
sRNA loci detected in the mutant compared to the number of downregulated loci.
For each of the analysed subset of DE genes, up and downregulated protein-
coding genes, TEs and IncRNAs, the fraction of genes with inner or flanking DE
sRNA loci was never >50%, with very similar behaviour between up and
downregulated genes of the same category. These results suggest that the
downregulation of an sRNA locus is not generally sufficient not even necessary to
predict the up or downregulation of its close gene. However, we cannot exclude
that in single cases the differential expression of a gene required the DE

expression of its inner or proximal sRNA loci.
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Figure 10 Frequencies of DE genes overlapping with DE and non-DE sRNA loci.
For each category of up and downregulated protein-coding genes, TEs and IncRNAs
in rmr6-1 compared to wt, the fraction of genes overlapping with at least one sRNA
locus in their gene body or 2-kb flanking regions are reported. DE and non-DE sRNA
loci refer to the same genotype comparison: rmr6-1 versus wt. A=upregulated gene or

sRNA locus. W=downregulated gene or sRNA locus.

3.15 Gene expression changes occurring in rmr6-1 are indicative of a
secondary response directed by the mutant against its loss of Pol IV-
dependent siRNAs and RdDM impairment
To understand how rmr6-1 plants responded to the absence of siRNAs and
consequent RADM impairment in term of modulation of gene expression in the
leaf, the GO enrichment analysis was performed on the DE genes in rmr6-1
compared to wt (Table 8). All the GO categories were analysed: molecular
function, biological process and cellular component. Among the total 777
upregulated genes, 251 were assigned to at least one GO term and 152 genes
resulted having enriched GO terms. Among the total 236 downregulated genes,
132 were assigned to at least one GO term and 59 genes resulted having
enriched GO terms. Best Arabidopsis and rice BLASTP hits of translated genes
and correspondent transcripts in the Chromatin Database were also analyzed
(Appendix G).

Among the upregulated genes, 16 were assigned to the enriched GO term

of heme binding (and its parent term tetrapyrrole binding) and a subset of them
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also to the terms monooxygenase activity and iron ion binding. Among these
genes, 12 had homology with Arabidopsis and rice cytochrome P450 proteins, two
with peroxidases and one with oxygenases proteins. Cytochromes P450 are
heme-dependent oxidase enzymes that generally catalyze the insertion of one
oxygen atom in a substrate after activation of molecular oxygen. They catalyze
different kind of reactions and are involved in many different metabolic processes:
the synthesis of secondary metabolites, the biosynthesis and catabolism of
phytohormones and the synthesis of many compounds which are essential for the
normal growth and development of plant cells, like sterol and xanthophylls, or that
are important structural components, UV protectants, antioxidants or
antimicrobials (Mizutani M 2012).

All upregulated genes with enriched GO terms were assigned to the GO
term of catalytic activity, which is too generic and thus not informative. To examine
more in detail the upregulated genes, we looked at their highest scored GO terms
(score>10) of the biological process category. In fact even if they were not
enriched they were useful to understand what were the mostly affected processes
in the mutant. The most scored GO terms were: oxidation-reduction process (38
genes), response to cadmium ion (14 genes), response to oxidative stress (20
genes), proteolysis (19 genes), response to cold (12 genes) and response to salt
stress (13 genes). Other GO terms related to response to abiotic stresses had
lower scores but equally represented in terms of number of genes. Examples of
upregulated genes encoding proteins typically involved in stress responses were:
heat shock proteins, glutathione S-transferases and chaperonins. The maize gene
encoding cystatin2, a cysteine proteinase inhibitor, was upregulated: in
Arabidopsis the overexpression of two cystatin proteins have been demonstrated
to increase tolerance to salt, drought, oxidation and cold stresses (Zhang X et al.
2008). Two genes encoding homologs of Arabidopsis HVA22 proteins were also
upregulated: in Arabidopsis the levels of HVA22 mRNA has been observed to
increase following cold, salt, dehydration stresses and ABA treatment (Chen et al.
2002).

Among the upregulated genes, another GO term had a high score: the
regulation of transcription, DNA-templated (21 genes). Indeed, many upregulated

genes were found to encode putative o characterized TFs, belonging to the
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following families: WRKY, GRAS, MYB, MADS-box and homeobox. The most
numerous family was the homeobox, which plays a variety of important roles in
plant development: three genes were predicted and three genes were annotated
as encoding homeobox TFs. Two genes encoded MADS-box TFs, one of them
was homologous to Arabidopsis AGAMOUS-like 8. MADS-box genes regulate
reproductive organ identity during floral development and function through
interactions with chromatin-associated proteins and other transcriptional
regulators (Ng et al. 2009). The upregulation of TF encoding genes has also been
observed in mop7-1 mutant (Madzima et al. 2014). As suggested for mop1-1, the
loss of silencing observed at TFs might trigger secondary responses in rmr6-1.

Downregulated genes in the mutant were enriched in GO terms related to
the regulation of development. Among them, many genes were specifically related
to the regulation of cell cycle. For example, one gene had homology to
Arabidopsis and rice cyclin-dependent kinases, involved in regulation of the G2/M
transition of the mitotic cell cycle, and another had homology with cyclin-
dependent kinase inhibitors. Two genes were homologous to RPA proteins that in
Arabidopsis have been suggested to play a role in DNA damage repair (Aklilu et
al. 2014). Another gene had homology with the Arabidopsis gene encoding the
RETINOBLASTOMA-RELATED protein, a cell cycle regulator that controls cell
proliferation, differentiation, and regulation of a subset of Polycomb Repressive
Complex 2 genes and MET1 in the male and female gametophytes, as well as cell
fate establishment in the male ad female gametophytes (Johnston et al. 2010).
One gene had homology with an Arabidopsis gene encoding a
MINICHROMOSOME  MAINTENANCE (MCM) protein. MCMs  form
heterohexameric complex to serve as licensing factor for DNA replication to make
sure that genomic DNA is replicated completely and accurately once during S
phase in a single cell cycle (Tuteja et al. 2011). The downregulation of this gene
has been observed also in mop1-1 (Madzima et al. 2014)

Among downregulated genes involved in the regulation of development, a
subset was enriched in GO terms related to the chromatin organization. For some
of them their transcripts had a correspondent in the Chromatin Database of
chromatin-associated genes. Two genes encoded the core histone 3 (H3)
(ChromDB names: HTR103, HTR106), three genes encoded the core histone 2B
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(H2B) (ChromDB names: HTB104, HTB105, HTB107) and one gene encoded the
component subunit D of the condensin complex (ChromDB name: CPD101),
homolog of the Schizosaccharomyces pombe Cnd1 protein, essential for mitotic
condensation (Sutani et al. 1999). The downregulation of chromatin-associated
genes has been observed also in mop7-1 mutant SAMs: numerous chromatin-
related genes have been detected to change expression in mop7-1 and the vast
majority of them were downregulated (Jia et al. 2009). In contrast to these results
obtained in mop1-1, we did not observe significant changes in the expression of
RdDM-related genes.

The homolog of Arabidopsis REPRESSOR OF SILENCING 1 (ROS1)/
DEMETER-LIKE1 (DMLT), encoding a DNA glycosylase protein that actively
demethylates DNA (Morales-Ruiz et al. 2006, Agius et al. 2006), was significantly
downregulated in rmr6-1 compared to wt. Its downregulation has also been
observed in mop1-1 (Jia et al. 2009, Madzima et al. 2014) and in several
Arabidopsis RADM mutants, such as pol IVa, IVb, rdr2, and drd1 (Huettel et al.
2006, Li et al. 2012). DNA demethylation is thought to regulate epigenome
dynamics in opposition to the RdDM pathway. The downregulation of DNA
demethylation activity might be a strategy adopted by the cell to counteract the
effects provoked by the perturbation of RdDM gene silencing control.

Together these results suggest that many DE genes might be part of an
orchestrated network activated in the mutant to respond to its dramatic loss of
siRNAs and consequent RdADM impairment. This would mean that many DE
genes were not direct targets of the mutation but instead secondary targets
triggered to buffer the effects provoked by the misregulation of the gene silencing
mechanism controlled by RdADM. The upregulation of stress-related genes might
indicate that mutant plants were sensing as a stress condition the alteration of cell
homeostasis likely provoked by the RdDM impairment. An increased activity of
cytochromes might be important to ensure the proper development of plants. The
downregulation of genes involved in the regulation of cell cycle suggests that
mutant plants experienced a misregulation of cell proliferation mechanisms.
Decreased amount of core histone proteins may cause a slowdown of the cell
cycle and increased accessibility of chromatin. Indeed, mop7-1 mutation has been

demonstrated to alter the chromatin accessibility by increasing it at the
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chromosome arms and decreasing it at pericentromeric regions (Madzima et al.

2014). The activation of TFs also suggests the involvement of a secondary

response occurring in the mutant. Finally, the downregulation of the homolog of

ROS1/DML1 strongly suggests that mutant cells respond to the alteration of the

RdDM epigenetic pathway modulating the activity of another distinct epigenetic

mechanism of gene expression control.

Table 8 Enriched GO terms among DE genes

Enriched GO term DE genes All genes
name category® FDR® rmré6-1/wt total % on DE genes® total % on all genes®

G0:0003824 catalytic activity F 1.69E-02  upregulated 152 60.56 16111 45.82
G0:0020037 heme binding F 3.48E-02  upregulated 16  6.37 594 1.69
G0:0046906 tetrapyrrole binding F 4.17E-02  upregulated 16  6.37 629 1.79
G0:0004497 monooxygenase activity F 4.17E-02  upregulated 12 478 370 1.05
G0:0005506 iron ion binding F 4.37E-02  upregulated 15 5098 582 1.66
GO0:0006996 organelle organization P 1.63E-02 downregulated 35 26.52 4086 11.58
G0:0050793 regulation of developmental process P 2.14E-02 downregulated 19  14.39 1606 4.55
G0:0044772 mitotic cell cycle phase transition P 2.14E-02 downregulated 6 4.55 126 0.36
G0:0044770 cell cycle phase transition P 2.14E-02 downregulated 6 4.55 126 0.36
G0:0048833 specification of floral organ number P 2.37E-02 downregulated 3 2.27 1 0.03
G0:0032993 protein-DNA complex o} 2.37E-02 downregulated 6 4.55 143 0.41
GO0:1902749 regulation of cell cycle G2/M phase transition P 2.37E-02 downregulated 5 3.79 94 0.27
G0:0010389 regulation of G2/M transition of mitotic cell cycle P 2.37E-02 downregulated 5 3.79 94 0.27
GO0:0000086 G2/M transition of mitotic cell cycle P 2.37E-02 downregulated 5 3.79 95 0.27
G0:0044839 cell cycle G2/M phase transition P 2.37E-02 downregulated 5 3.79 95 0.27
G0:0048832 specification of organ number P 2.37E-02 downregulated 3 227 15 0.04
GO0:1902589 single-organism organelle organization P 2.37E-02 downregulated 22 16.67 2274 6.45
G0:0006260 DNA replication P 2.37E-02 downregulated 11  8.33 652 1.85
GO0:0006325 chromatin organization P 2.37E-02 downregulated 14  10.61 1040 2.95
GO:0007010 cytoskeleton organization P 2.66E-02 downregulated 14  10.61 1058 3.00
GO0:0006259 DNA metabolic process P 2.86E-02 downregulated 21 1591 2158 6.12
G0:0006275 regulation of DNA replication P 4.00E-02 downregulated 6 4.55 185 0.52
G0:0006323 DNA packaging P 4.01E-02 downregulated 5 3.79 116 0.33
G0:0048731 system development P 4.01E-02 downregulated 35 26.52 4900 13.89
GO0:1901990 regulation of mitotic cell cycle phase transition P 4.01E-02 downregulated 5 3.79 119 0.34
GO0:1901987 regulation of cell cycle phase transition P 4.01E-02  downregulated 5 3.79 119 0.34
G0:0016043 cellular component organization P 418E-02 downregulated 41  31.06 6194  17.56
G0:0051567 histone H3-K9 methylation P 4.38E-02 downregulated 7 5.30 288 0.82
G0:0005662 DNA replication factor A complex [} 4.57E-02 downregulated 2 1.52 3 0.01
GO0:0006261 DNA-dependent DNA replication P 4.99E-02 downregulated 7 5.30 300 0.85
G0:0008283 cell proliferation P 4.99E-02  downregulated 8 6.06 403 1.14

®F=Molecular Function. P=Biological process. C= Cellular component.

°FDR<5%.

percentages are calculated on the total DE genes with an assigned GO term and on

the total annotated genes in the assembly with an assigned GO term.
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4 Discussion

The main goals of this PhD project were: i) the identification and characterization
of the maize genome loci responsible for a significant production of SRNAs in the
leaf, ii) the analysis of the sRNA effects on gene expression and genome stability
through the study of the rmr6-1 mutant line lacking the Pol IV-dependent small
interfering RNAs (siRNAs) and iii) the evaluation of the sRNAs response to field-
mimicked stress conditions. To achieve these goals the Next Generation
Sequencing technique was employed to collect data, sRNA-seq and RNA-seq.
Many studies have been published where NGS of plant biological samples was
used to obtain a picture of gene and small RNA expression of wild type and
mutant plants impaired in the RNA-directed DNA methylation (RdDM) pathway of
gene expression regulation, but very few were conducted in maize (Nobuta et al.
2008, Jia et al. 2009). So far, no sRNA-seq or RNA-seq experiment has been
published for the maize mutant of Pol IV, rmr6-1. Moreover, while several NGS
studies have been performed to study the effects of abiotic stresses on maize
miRNAs, there are currently no NGS studies investigating these effects on the

maize siRNAs.

4.1 Small RNA sequencing: data processing and identification of sRNA
loci

For each of the sequenced 48 leaf samples, the profile of length distribution and
abundance of the reads aligned to the maize genome was analysed. Wild type
leaf samples showed a predominance of 24-nt sRNAs, followed by the 22-nt
sRNAs. This observation confirmed previous data obtained in immature ears and
tassels (Nobuta et al. 2008) indicating that maize is an exception even within
monocots: it possesses a more abundant group of 22-nt sSRNAs compared to the
group of 21-nt sRNAs. High abundances of reads out of the range from 20-nt to
24-nt were obtained, in particular at 17-nt, 30-nt and from 32-nt to 42-nt. The

analysis of the most abundant reads with these sizes revealed they were mainly
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part of tRNAs, rRNAs, signal recognition particles (SRPs) and Ribulose-1,5-
bisphosphate carboxylase/oxygenase (RuBisCO) subunit mRNAs; in particular a
sequence of 30-nt homologous to rRNAs, was conserved in all the analyzed
libraries where it made up to 1% of the total reads. These data indicated that at
least part of the reads with size class out of the range from 20-nt to 24-nt were not
likely derived by the processing of DCL proteins and might be degradome,
therefore, they were not further analyzed. Mutant leaf samples showed the
expected dramatic loss of 24-nt sRNAs (Erhard et al. 2009) and a slight increase
in abundance of all other sRNA sizes compared to wt, which was expected as a
result of the loss of siRNAs (Nobuta et al. 2008). The sRNA loci differential
expression analysis between rmr6-1 and wt revealed that a significant
upregulation affected only 1% of the total identified loci and 0.3% of the total loci
with size class from 20-nt to 24-nt, indicating that the upregulation of sRNA loci
was not a widespread effect in the mutant and interested a limited number of loci.
The consistent profile of read length distribution and abundance between samples
of the same genotype and with previous published works confirmed the quality of
the sequenced data that was a necessary pre-requisite to verify for proceeding
with the analyses.

The first aim of this work was the annotation of the sRNA loci expressed in
the maize leaf based upon the sRNA-seq data. Clustering the sRNA reads into
sRNA loci was preferable to analyse the individual sequences, because MIRNA
loci usually give rise to one or few functionally sequences but siRNA loci can show
heterogeneous processing in different samples, resulting in distinct sequences
originating from the same functional locus, especially in the case of low abundant
loci. Considering also that less is known about siRNA sequence requirements for
target selection, the approach to identify and study the sRNA loci was preferred.
Starting from a set of 48 sRNA-seq libraries, it was necessary to find an
appropriate method to work with this large amount of data that was both accurate
and computationally achievable. The tool segmentSeq was initially tested, which
has the advantage of taking into account replicate data in its process of de novo
identification of sRNA loci (Hardcastle et al. 2012): it was computationally too
intensive and we were not able to apply it to our complete set of data. The tool

ShortStack is characterized by good performances in terms of sensitivity and
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specificity of de novo sRNA loci identification, providing detailed description of the
found loci (Axtell MJ 2013b): it was successfully applied to our data and allowed to
identify a total of 188,938 clusters in the time of few days. This software has now
been updated including a tool producing small RNA-seq alignments where
multimapped sRNAs tend to be placed near regions of confidently high density
(Axtell MJ 2014), increasing the balancing between precision and sensitivity. The
alignment of multimapping reads is a critical step in the identification of genomic
loci effectively producing sRNAs, especially in maize due to its highly repetitive
genome: in our further analysis of sRNA-seq data we will test this updated
ShortStack version with the aim to improve the sRNA loci annotation step.

As expected from the profiles of read length distribution and abundance,
the most numerous categories of sSRNA obtained with the size class in the range
of interest (from 20-nt to 24-nt) were the hairpin (HP) and non-hairpin (non-HP)
loci with size class of 24-nt and 22-nt. A fraction of sRNA loci was predicted to
have an HP secondary structure but did not meet the criteria for MIRNAs: these
loci comprised the 10% of the total identified loci and the 13% of the total loci with
size class between 20-nt and 24-nt. The analysis of the maximum delta G/stem
length (AG/sl) values suggested that a fraction of the predicted HP loci might be
false positives. It was observed that HP and non-HP loci with the same size class
(between 20-nt and 24-nt) showed very similar enrichment/depletion patterns
relative to the investigated genomic features in the co-occupancy analysis. We
calculated the fraction of each of these sRNA category masked by each of the
transposable element (TE) superfamilies annotated in RefGen ZmB73
RepeatMasked Assembly AGPv3 (data not shown in the ‘Results’ section) and
found no differences among HP and non-HP with the same size class. Moreover,
HP and non-HP loci with the same size class were similarly affected in the mutant:
the 22-nt HP and non-HP loci were the most numerous upregulated categories
and the 24-nt HP and non-HP loci were the most numerous downregulated
categories. In summary, HP and non-HP loci with the same size class were not
differentiated in terms of co-occupancy with genes, TE superfamily association
and expression trend in the mutant, confirming the hypothesis that a fraction of the
predicted HP loci might not be real hairpins. We will further investigate this

hypothesis examining publically available mop7-1 sRNA data sets (Nobuta et al.
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2008). These data were obtained in different tissues than the leaf, nevertheless
they could help confirming our hypothesis because real HP loci should be

unaffected by mop7-1 mutation for the generation of sRNAs.

4.2 Analysis of MIRNA loci and microRNA mature sequences

Over the total 159 maize MIRNA loci annotated in miRBase, 70 were confirmed by
our data, including 25 over the total 29 annotated miRNA families. About half of
the confirmed loci produced mature sequences that were variants of those
reported in miRBase. The discrepancies found in miRBase might reflect
inaccurate annotation in miRBase or leaf-specific differences in MIRNA
processing patterns, confirming that many known M/IRNA hairpins produce more
than a single product (Coruh et al. 2014, Jeong D-H et al. 2013, Jeong D-H et al.
2011). The same targets for the known mature miRNAs and their detected
variants were predicted, suggesting that the observed variations in MIRNA loci
processing did not probably alter miRNA target selection. In a number of known
miRNA families, some members were expressed at higher levels compared to
others. As suggested for the miRNA variants, also the preferential expression
within @ miRNA family of a subset of its MIRNA loci members might reflect a
tissue-specific regulation (Zhang et al. 2009). The de novo identification of MIRNA
loci did not confirm 64 miRBase loci, while 25 were simply not expressed. Among
the non-confirmed loci, we believe that at least some of them might be instead
real MIRNA loci, because the MIRNA method used was set to minimize false
positives, and as consequence, we expected some false negatives (Axtell MJ
2013). For example, 27 were rejected because they lacked evidence of the
miRNA* expression but the absence of the miRNA* might be due to the very low
stability of this sequence. Furthermore, known MIRNA loci that are located in
tandem in the genome were rejected because the program identified a single
locus comprising all of them failing to identify distinct hairpins inside the same
locus. Although the approach followed might have led to the loss of real MIRNA
loci we preferred to retrieve more reliable results at the cost of some false
negatives, especially for the other classes of sSRNA loci where less is known about

their annotation.
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Previously reported targets of the maize known miRNAs were confirmed
by the prediction performed with TargetFinder applying low penalty score cutoff
values, except for miR167, miR168, miR169, miR2118 and miR398. miR167 is a
conserved miRNA among different species, previously predicted to target ARF
TFs by Zhang et al. (2009). In our analysis miR167 was predicted to target two
putative homologs of pumilio proteins, which in human are general regulators of
miRNA accessibility to targets (Incarnato et al. 2013) and are themselves targeted
by miRNAs (Fiore et al. 2014). miR168 is another conserved miRNA, previously
predicted to target AGO1 (Zhang et al. 2009): this prediction was not confirmed by
our analysis and none target was predicted for miR168 probably because of the
stringent parameters used. miR168* showed lower abundances compared to
miR168 but was the only miRNA* with high expression levels only registered for
the mature miRNAs. This indicate that for miR168 also the star sequence might
have a functional role: however none target was predicted for miR168* so its
potential role remains unknown. We failed to predict any target also for miR398.
The function of the sole miR398 target gene in maize is unknown (Xu et al. 2011).
A previous work predicted miR398 to target SOD genes (Pei et al. 2013), which
are the validated targets for miR398 in Arabidopsis (Sunkar et al. 2006), instead
other works predicted only one unknown gene as miR398 target (Zhang et al.
2009, Xu et al. 2011). These results suggest that the function of miR398 might not
be conserved in maize. Interestingly, in our analysis the miR399 was predicted to
target an uncharacterized transcript, previously reported (Zhang et al. 2009), and
also a TE transcript and a new transcript detected in our samples through the total
RNA sequencing. Evidences that this new transcript could be the 5-UTR of its
downstream gene encoding a putative ortholog of the Arabidopsis PHOZ2
(Calderon-Vazquez et al. 2011) were showed. Moreover, in some preliminary
PCR results (data not shown in the ‘Results’ section) primers designed spanning
the gap between the two genes allowed detecting a single transcript of the
expected length, in the hypothesis the two genes were not separate but were
effectively the same gene. The miR399 targeting of PHO2 was showed to be a
conserved regulatory mechanism across a number of species including
Arabidopsis, rice, poplar and Medicago (Bari et al. 2006) but never reported

before in maize. Therefore, the experimental validation of the targeting prediction
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and the function of the predicted target would be important to verify if it is
conserved also in maize.

Plant MIRNA loci are transcribed by Pol Il (Xie et al. 2005), therefore the
14 putative novel miRNAs that were dependent for their transcription on the
activity of the Pol IV enzyme were thought to be most likely siRNAs instead of
bona fide miRNAs. These miRNAs were all 24-nt long and homologous to repeat
elements and 12 of them had the 5 terminal A. Among the other putative novel
miRNAs homologous to repeats, five that were 24-nt long were not downregulated
in rmr6-1 and none of the 21-nt and 22-nt was Pol IV-dependent. Moreover, none
of the putative novel miRNAs without homology to repeat elements was
downregulated in the mutant. These results indicated that the simultaneous
presence of all these characteristics: i) homology to repeat elements, ii) length of
24-nt and iii) 5’ terminal A, could be a good predictor for the Pol IV-dependence of
a miRNA. We believe that the Pol IV-dependent putative novel miRNAs were
instead siRNAs transcribed from TEs with precursors lacking the predicted hairpin
structure, or actively transcribed from TE rearrangements, involved in the
establishment of transcriptional silencing (Lisch D 2012). The non-Pol IV-
dependent putative novel miRNAs were the best candidate to be bona fide
miRNAs, including those homologous to repeat elements (Li et al. 2011). Among
these, some were not DE between wt and mutant in control conditions, were 21-nt
long and had a predicted target being a putative protein-coding gene: miR-NEW12
and miR-NEW19 were predicted to target TFs, miR-NEW18 and miR-NEW20
were predicted to target a gene encoding a putative ABC transporter and miR-
NEW21 was predicted to target a putative Zinc finger C3HC4 type domain
containing protein. Even if expressed at low levels, these miRNAs would be the
best candidate of being true new miRNAs because they showed the typical
characteristics of known miRNAs: absence of TE-homology, 21-nt length,
presence of target with a putative function and most of them had the 5’ terminal U.
The identified putative novel miRNA family miR-NEW10, had four members
encoding 21-nt and 22-nt mature sequences homologous to Mutator elements:
their high expression, their upregulation observed in rmr6-1 mutant and the

presence of predicted targets, low confidence genes and a putative Zinc finger
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C3HC4 type domain containing protein, made them another interesting case for

experimental validation.

4.3 Analysis of sRNA loci and their effects on gene expression and
genome stability

Later, all the other classes of sRNA loci except MIRNA were analyzed. Maize is
unique even among monocots in possessing a more abundant 22-nt sRNA
population than that of 21-nt, suggesting an additional layer of sSRNA complexity
existing in maize (Nobuta et al. 2008). A previous work demonstrated that in
mop1-1 mutant 24-nt SRNAs were in general downregulated while 22-nt sRNAs
were instead retained (Nobuta et al. 2008). Our analysis performed on the sRNA
loci confirmed this data in rmr6-1 mutant: <1% of the sRNA loci with size class of
22-nt was downregulated, about 6% and 2% of the HP and non-HP loci
respectively were upregulated and the vast majority was not DE. The sRNA loci
with size class of 22-nt, both HP and non-HP, were found to be strongly
associated to the presence of repetitive elements: the majority of them (>93%)
mapped to repeats and they were enriched in body regions of TE transcripts and
in introns of protein-coding genes, where TEs are commonly inserted in maize
(Schnable et al. 2009). On the contrary, they were less enriched in TE transcript
flanking regions and clearly depleted in the flanking regions of protein-coding
genes and IncRNA transcripts. Together these data suggested that most of the
22-nt sRNAs did not participate to canonical RdDM and were produced by a
different pathway preferentially targeting repetitive elements. This might be the
RDR6/DCL4 pathway (Nobuta et al. 2008), which is involved in the silencing
initiation of Pol ll-actively transcribed TEs (Slotkin et al. 2005). Indeed the maize
genome has an unusual number of well-characterized active transposable
elements compared to other plants (Lisch D 2012) and this might explain its
unusual high abundance of 22-nt sRNAs. Therefore, to confirm this hypothesis we
will further investigate in the wt the association between the sRNA loci with size
class of 22-nt and the actively transcribed repetitive elements, identified through
RNA-seq expression data. Data obtained in the rmr6-1 mutant already confirm this
hypothesis: only four genes were found to be upregulated in rmr6-1 compared to

wt and at the same time overlapping with an upregulated sRNA locus and in all
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cases the sRNA locus was processed predominantly into 22-nt sRNAs. Over
these four genes, two were unclassified genes expressed only in the mutant and
sharing the same overlapping 22-nt size class sRNA locus that was also
expressed in the wt but at lower levels. The other two genes were TEs: in both
cases, both the TE and the overlapping 22-nt size class sRNA locus were
specifically expressed only in the mutant. The reason why only two over the total
167 upregulated TEs in the mutant were targeted by 22-nt sRNAs remains
unknown: it might be possible that only these two were recognized as aberrant
transcripts and targeted by non-canonical RdDM pathways for silencing. It would
be interesting to examine their CHH methylation levels to confirm this hypothesis.

The sRNA loci with size class of 24-nt, both HP and non-HP, which were
the most abundant, were preferentially found in the chromosome arms where
genes are more densely arranged and they showed high enrichment in the
flanking regions of protein-coding genes, TEs and IncRNAs. sRNA loci with 24-nt
size class included almost all of the Pol IV-dependent siRNA loci, which were the
majority among the loci located in the flanking regions of genes. In a previous
work, it was demonstrated that near-gene transposons induced de novo CHH
methylation independent of transposon sequence or identity (Gent et al. 2013).
Together these observations indicated that in gene flanking regions the major
cause for RdDM loci was not the nature of the gene or the type of TE found in its
flanking regions but instead the proximity to the gene itself.

All the analyzed sets of genes showed a higher probability to be flanked
by sRNA loci with size class of 24-nt in their upstream region than in their
downstream region. In gene-upstream regions, the sRNA loci with size class of
24-nt were correlated to the presence of actively transcribed genes while this
correlation of not detected for the gene downstream regions. Only for protein-
coding genes a similar positive correlation was also found when considering only
the expressed genes, between the expression level of genes and the occupancy
of upstream sRNA loci. These results suggested a possible influence of sSRNAs on
the expression of downstream genes, more evident for protein-coding genes. We
preferred to investigate this correlation plotting the fraction of genes with flanking
sRNA loci occupancy regardless of the sRNA abundance because plotting the

average sRNA coverage in gene flanking regions, the approach followed by Gent
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et al. (2013), was not a good method to show the general trend: the median
values were zero, thus the average sRNA coverage was too much influenced by
the high expression of a few sRNA loci.

Considering the enrichment of RdDM loci next to genes, the role of RADM
in DNA silencing and the positive correlation between 24-nt sRNA loci occupancy
and the expression of the downstream genes, the observed consequences of the
absence of siRNAs on gene expression in the mutant were not expected. Indeed
the number of DE genes in rmr6-1 was 1013 in contrast to the thousands siRNA
loci that were lost in the mutant and the downregulation of an sRNA locus was not
generally sufficient not even necessary to predict the up or downregulation of its
close gene. Without excluding that in some cases the differential expression a
gene could require the DE expression of its inner or proximal sRNA loci, our data
indicated that this was not a general trend. These results together with the
absence of morphological defects in the leaves indicated that the lack of siRNAs
did not have a great impact on the genome stability of the leaf. It might be
possible that different mechanisms maintained DNA silencing in gene proximal
regions, where TEs are usually found in maize, in the absence of siRNAs. To help
discussing this open question we primarily referred to results previously obtained
in Arabidopsis RADM mutants and in the maize mutant mop7-1, which is the only
maize RdADM mutant for which NGS data have been analysed. A possible
mechanism was proposed in Arabidopsis observing that the demethylase
ROS1/DML1 was significantly downregulated in rdr2 mutants: the decrease in
production of the ROS1 might lead to hypermethylation at CG sites and additional
protection against the activation of transposons (Penterman et al. 2007). The
maize homolog of ROS7 was found to be downregulated in maize mop7-1 mutant
(Jia et al. 2009, Madzima et al. 2014) and in rmr6-1 mutant according to our RNA-
seq data, therefore the same mechanism proposed in Arabidopsis might be active
in maize. However, a recent work demonstrated that in mop7-7 DNA methylation
in all C contexts was decreased at genomic loci targeted by RdDM and it was not
significantly altered in other genomic loci (Gent et al. 2014). In mop1-1 CHH
methylation was decreased at loci targeted by RdDM but not completely removed
and it was suggested that the residual CHH methylation could be triggered by
MOP1-independent siRNAs or by siRNA-independent DNA methylase activity at
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these loci (Gent et al. 2014). Lower levels of residual CHH methylation might still
be sufficient to ensure DNA silencing. In this hypothesis, however, it still remains
unclear why do plants engage Pol IV-dependent production of siRNAs in gene
flanking regions when the silencing of these regions can be maintained even in
the absence of siRNAs.

A possible answer to the open question regarding the roles of siRNAs in
the control of gene expression could be the hypothesis in which siRNAs would be
essential for the maintenance of genome stability ensuring the transgenerational
transmission of the epigenetic information. Indeed it has been demonstrated in
Arabidopsis that siRNAs prevented the transposition of stress-activated TEs and
that this control happened in the somatic cells that produce the gametes (lto et al.
2011). Moreover, in Arabidopsis it has been demonstrated that dc/2 and dcl3
deficiency mutants were partially impaired in the establishment of
transgenerational changes in homologous recombination frequency and DNA
methylation in the progeny of heat-stressed plants (Boyko et al. 2010). Finally,
there are evidences that RADM could have fundamental roles during meiosis. For
example, it has been previously described that the effects on development
appeared among rmr6 mutant plants only after the genome had been exposed to
a meiotic division in the absence of RMRG6 function (Parkinson et al. 2007).

TEs distant from genes can only depend on symmetrical DNA methylation
for silencing or can still produce 24-nt siRNAs required to initiate RdDM
homology-dependent silencing of any incoming active TEs with sequence
similarity (Nuthikattu et al. 2013, Kim and Zilberman 2014), many TEs are still
targeted by RdDM but do not depend on it for silencing (Zemach et al. 2013). This
could contribute explaining why the loss of siRNAs did not cause a widespread
activation of TEs in the mutant. Indeed, about 35% of the total identified Pol IV-
dependent siRNA loci were not located in the 2-kb flanking regions of genes
annotated in our reconstructed transcriptome assembly.

The absence of siRNAs, although it was not found to compromise the
genome stability in the leaf, did have some effects on gene expression. In rmr6-1
the DE genes associated with Pol IV-dependent siRNA loci constituted <50% of
the total DE genes, indicating that many DE genes were likely not direct targets of

RdDM but instead secondary targets of the mutation. Considering the protein-
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coding genes, altering their expression as a secondary effect of the absence of
siRNAs might imply that these genes had specific roles involved in the response
of the cell to the misregulation of the gene silencing mechanism controlled by
RdDM and might explain why only a specific set of genes was DE in the mutant.
The first evidence was the activation of TFs, because their function is the
expression regulation of other precise sets of genes carrying specific sequence
characteristics. Many upregulated genes with associated stress-response
functions were found, which might be an indicator of a stress-like condition
experience by cells in which RdDM is impaired. In this hypothesis, the
upregulation of genes encoding cytochromes might be important to ensure the
proper development of plants. Another indicator of altered cell homeostasis
occurring in mutants was the downregulation of genes involved in the regulation of
cell cycle, suggesting a misregulation of cell proliferation mechanisms provoked
by the absence of a functional RADM pathway of gene expression regulation. A
decrease in the expression of genes encoding core histone proteins was detected
in the mutant and this might contribute to cause a slowdown of the cell cycle. In
the youngest wrapped leaf collected in our experiment, in addition to actively
dividing cells a population of cells undergoing expansion was present: here a
decrease amount of core histone proteins might cause the alteration of the
chromatin organization with consequences on chromatin accessibility. Indeed,
mop1-1 mutation has been demonstrated to alter the chromatin accessibility by
increasing it at the chromosome arms and decreasing it at pericentromeric regions
(Madzima et al. 2014). It might be possible that an altered chromatin organization
was induced in rmr6-1 in the leaf cells and also in other cell types where it would
have greater impact on gene expression. Indeed, the mop7-1 mutation was
observed to induce the differential expression of a substantial greater number of
genes in the SAM (Jia et al. 2009) compared to the ear shoots (Madzima et al.
2014).

TEs are the main targets of siRNAs, so their upregulation observed in the
Pol IV mutant rmr6-1 was expected to be more directly linked to the loss of
siRNAs. Surprisingly, only ~10% of the upregulated TEs in rmr6-1 was associated
with a downregulated sRNA locus in their body regions or flanking regions and the

fraction of downregulated TEs associated with downregulated sRNA loci was
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higher. This result suggested that for the majority of DE TEs their higher
expression level in the mutant compared to the wt could be RdDM-independent.
Over the total 167 upregulated TEs in the mutant, 142 were not expresses at all in
the wt, so they were expressed specifically in the mutant. The non-100% identical
genetic background between the wt and the rmr6-1 mutant might explain part of
this apparent RdDM-independent differential expression of TEs, especially for
those detected only in the mutant. We have sequenced the wt sibling of the rmr6-
1 mutant and the analysis of these data would help distinguishing the genotype

effects from the mutation effects on the expression of genes and in particular TEs.

4.4 Small RNA stress response evaluation

Stress response of both the miRNAs and the other sRNA categories was
determined in wt and rmr6-1 plants. Known miR156 mature sequences were
upregulated after ten days of drought stress both in wt and mutants, while salinity
stress affected their expression only in mutant plants. In Arabidopsis, the miR156
targeting of a subset of SPL proteins plays a role in the regulation of leaf cell
number and size (Usami et al. 2009): this mechanism might be altered in the plant
response to stress, indeed the stress treatments, in particular the drought and the
drought plus salinity combined stress, caused visible alteration of the shape of the
expanded leaves. The collected youngest wrapped did not show such damage but
could anyway differentially express the miR156 as a result of the stress primarily
sensed by the oldest leaves, especially in drought conditions. The newly identified
miRNA called 156d.2 mapped within the same precursor of the conserved known
miR156d sequence (here called miR156d.1) but didn’'t share homology with any
miRNA annotate in miRBase. It was upregulated in the wt following drought stress
and in the rmr6-1 mutant following all the applied stresses and showed
downregulation after the recovery from drought only in wt. In control conditions its
expression was very low but in stress conditions it was >10RPM, suggesting a
possible functional role for this new miRNA, which remains unknown because the
miRNA was not predicted to have any targets. Four miRNAs were differentially
expressed (DE) only in the wt following the ten days of drought stress. The
upregulated were: the miR397b, previously reported to be upregulated in

Arabidopsis in drought conditions (Sunkar and Zhu 2004) and downregulated in
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rice in drought conditions (Zhou et al. 2010), and the miR398 family that plays a
role in the oxidative stress response in Arabidopsis (Sunkar et al. 2006) but whose
target function still remains unknown in maize. The downregulated were: one
mature sequence of the miR166 family, which was previously reported to be
instead upregulated following drought stress in a drought-sensitive maize line
(Wang et a. 2014a), and one mature sequence of the miR396 family, previously
reported to show different regulations caused by drought stress depending upon
the species (Sunkar et al. 2012). Three miRNAs were DE only in the rmr6-1
mutant following the ten days of drought plus salinity combined stress: the
miR319c was wupregulated and the miR399b and miR528 family were
downregulated. The miR319 family has been previously demonstrated to be
upregulated in leaves of both drought-sensitive and drought-tolerant maize
varieties during PEG-induced drought stress (Wang et al. 2014a), and its role in
the regulation of leaf cell proliferation by the targeting of the TCP TFs has been
demonstrated in Arabidopsis (Palatnik et al. 2003, Martin-Trillo and Cubas 2010).
The miR399 has been previously reported to be involved in different stress
conditions in Arabidopsis (Pant et al. 2008). The miR528 family predicted targets
are multicopper-oxidase and laccase genes involved in energy metabolism and
scavenging of the oxidative species produced during stress (Zhang et al. 2009);
we observed a down-regulation of the miR528 family after the combined stress,
accordingly to its down-regulation observed in Triticum dicoccoides in shock
drought stress (Kantar et al. 2011) but opposite to previous data in sugarcane
(Ferreira et al. 2012) and Brachypodium (Budak and Akpinar 2011, Bertolini et al.
2013), where it was found to be upregulated after drought stress. In summary,
only the miR156 family was DE in both wt and mutant plants, all the other miRNAs
were DE only in one specific genotype, suggesting a possible influence of the
rmr6-1 mutation in the stress response of plants. Salt stress, alone and in
combination with drought, influenced the expression of known miRNAs only in the
rmr6-1 mutant, which might was more susceptible to salt than the wt. Except for
the miR156d.2, all the other DE miRNAs in stress conditions did not significantly
change their expression after the recovery, suggesting that the pathways
regulated by the long-term abiotic stress-responsive miRNAs might continue to be

altered even when the stress has been removed. In total, a few numbers of
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miRNAs were DE following the stresses. One putative novel miRNA family, miR-
NEWA46, showed an opposite response to the drought plus salinity combined
stress in the two genotypes: it was downregulated in the rmr6-1 mutant after ten
days of treatment compared to control conditions and it was upregulated in wt
after the recovery from the stress compared to before the recovery during the
stress. One of the two mature sequences encoded by the miR-NEW46 precursor
was predicted to target a putative AP2 TF, as for miR172 family, and both the two
mature sequences were predicted to target a TE transcript. Although this miRNA
showed low expression levels in all samples, its differential expression could be
experimentally tested to validate its different behavior in the two genotypes. In
addition to miRNAs, 19 sRNA loci of the other categories also responded to the
applied stresses: 12 showed differential expression only in the wt during drought
stress and three only in the rmr6-1 mutant in drought or drought plus salinity
stresses. The majority of the DE sRNA loci were located in genic regions but only
in two cases both the sRNA locus and the overlapping genes were DE. In these
cases the stress caused the upregulation of both the sRNA locus and the gene,
suggesting that the gene might be the precursors of the sRNAs. We predicted the
potential targets of the most abundant sRNA species within the DE sRNA loci
applying the same method for miRNAs: none of the predicted target was found to
be DE in stress conditions (data not shown in the ‘Results’ section). The function
of the DE sRNAs remains unclear because we didn’t find for them any evidence of
having an influence on the expression of genes in cis and in trans. Our data
suggested that the plant response to the applied stress treatments did not involve
the action of siRNAs as a general strategy to modulate gene expression; indeed
the rmr6-1 mutants did not show more severe phenotypes in stress conditions
compared to the wt.

Considering the literature assessing the mMIiRNA stress response to
drought and salinity in maize, one work found a similar number of DE miRNAs
compared to our analysis (Kong et al. 2010), whereas tens to hundreds of
miRNAs were found DE following these stresses in other works (Ding et al. 2009,
Wei et al. 2009, Wang et al. 2014a). A difference in terms of the extent of
differential expression induced by abiotic stress was also noted for the other

classes of sRNAs, for example hundreds of sSRNA sequences were reported to be
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DE after cold, heat and salinity stresses in Brachypodium (Wang et al. 2014b) and
thousands of sRNA loci showed differential expression following drought stress in
foxtail millet (Qi et al. 2013). This diversity might de due to the different applied
stress protocols: previous works applied more severe stress conditions, such as
PEG-simulated drought conditions (Qi et al. 2013, Wang et al. 2014a) or applied
the stress to younger plants at the seedling-stage (Ding et al. 2009) or detected
the stress effects after a shorter period of treatment application, at most of three
days (Wei et al. 2009, Wang et al. 2014b). We applied realistic stress conditions
and examined the stress effects in the leaf of adult plants, after ten days of
treatment application. Therefore, we cannot exclude that a greater number of
sRNAs could responded to the stress in the earlier stages of its application,
returning to basal levels after ten days of stress, or in different tissues than the
youngest wrapped leaf. The followed approach to identify stress responsive
sRNAs that could be involved in stress tolerance mechanisms, although allowed
retrieving less numerous DE sRNAs, could have a greater translatability for crop
improvement because we applied stress episodes mimicking the field conditions:
we applied agronomically realistic drought and salinity conditions that were

reached gradually (see Chapter 1 for the set up of the stress protocols).
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Appendix A

Evaluation of sRNA loci size class consistency across individual
libraries

C = control; D = drought stress; S = salinity stress; D+S = drought+salinity stress.
+7=seven days of recovery.
R1, R2, R3 = biological replicate 1,2,3.

wt wt wt wt wt wt wt wt wt wt wt wt
sRNA loci category parameter* Cc Cc Cc D D D S S S D+S D+S D+S

R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3
20-nt MIRNA average 075 082 070 0.83 091 083 075 086 078 0.87 0.87 0.83

stdev of average 0.27 0.22 031 0.19 0.5 0.16 032 0.18 022 0.17 0.17 0.17
1° percentile 055 083 050 082 091 080 074 083 080 085 0.89 0.80
2° percentile 090 089 089 091 094 085 088 089 08 091 0.93 0.84
3° percentile 092 095 091 093 1.00 094 092 1.00 089 0.98 0.94 0.90
20-nt HP average 055 051 051 064 047 034 060 052 064 048 0.63 0.61
stdev of average 0.36 0.35 0.39 039 040 035 036 044 039 044 0.41 0.39
1° percentile 032 038 033 031 0.00 0.00 038 010 051 0.00 0.38 0.43
2° percentile 050 050 050 075 054 040 050 040 0.71 0.34 0.75 0.53
3° percentile 083 070 100 100 069 056 100 1.00 100 1.00 1.00 1.00
20-nt non-HP average 057 057 068 069 055 075 069 062 063 0.69 0.65 0.65
stdev of average 0.36 0.33 0.38 0.37 045 031 040 038 039 0.34 0.41 0.40
1° percentile 033 048 045 045 0.00 050 055 050 046 0.50 0.43 0.45
2° percentile 063 056 08 086 0.72 087 087 067 067 0.78 0.90 0.78
3° percentile 092 082 100 100 100 1.00 1.00 1.00 100 1.00 1.00 1.00
21-nt MIRNA average 079 080 080 077 077 081 084 077 077 0.83 0.74 0.75
stdev of average 0.23 0.25 021 026 028 021 019 028 023 0.20 0.31 0.28
1° percentile 068 072 067 060 065 067 073 067 067 0.73 0.58 0.60
2° percentile 085 087 083 083 085 087 09 087 082 091 0.82 0.82
3° percentile 096 099 098 098 099 1.00 099 1.00 094 0.99 0.99 0.99
21-ntHP average 067 065 060 066 061 067 065 064 063 0.63 0.66 0.65
stdev of average 0.38 040 039 036 042 040 037 040 039 036 0.39 0.39
1° percentile 043 033 022 041 0.00 040 043 030 033 034 0.33 0.38
2° percentile 085 083 072 079 082 083 084 081 075 073 0.84 0.78
3° percentile 1.00 100 1.00 100 100 100 1.00 100 1.00 100 1.00 1.00
21-nt non-HP average 054 052 050 049 049 053 051 051 050 0.50 0.47 0.49
stdev of average 0.39 0.40 039 0.39 041 042 039 039 040 0.36 0.40 0.40
1° percentile 0.14 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.21 0.00 0.00
2° percentile 0.50 050 050 050 050 050 050 050 050 0.50 0.44 0.50
3° percentile 1.00 100 1.00 100 100 100 100 100 1.00 0.83 1.00 1.00
22-nt MIRNA average 059 067 055 057 065 073 058 061 062 065 0.62 0.60
stdev of average 0.27 0.22 0.19 020 029 019 023 026 027 0.15 0.28 0.25
1° percentile 045 052 047 048 055 055 052 049 050 055 0.49 0.53
2° percentile 062 063 060 054 066 069 059 066 063 065 0.62 0.59
3° percentile 069 079 064 065 081 091 064 071 077 069 0.75 0.67
22-nt HP average 069 069 070 070 067 0.69 069 067 069 0.68 0.69 0.68
stdev of average 0.35 0.36 035 036 040 038 036 038 037 0.32 0.37 0.38
1° percentile 050 050 050 050 044 050 050 050 050 0.50 0.50 0.50
2° percentile 079 083 082 08 100 088 083 083 090 075 0.85 0.83
3° percentile 1.00 100 1.00 100 100 100 1.00 100 1.00 100 1.00 1.00
22-nt non-HP average 078 077 077 077 077 077 077 076 076 0.76 0.77 0.77
stdev of average 0.31 0.33 033 0.32 035 034 032 034 035 027 0.34 0.34
1° percentile 067 062 062 067 063 062 064 056 058 0.67 0.60 0.62
2° percentile 1.00 100 1.00 100 100 100 1.00 100 100 0.83 1.00 1.00
3° percentile 100 100 1.00 100 100 100 1.00 100 1.00 100 1.00 1.00
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wt wt wt wt wt wt wt wt wt wt wt wt
sRNA loci category parameter* C+7 C+7 C+7 D+7 D+7 D+7 S+7 S+7 S+7 D+S+7 D+S+7 D+S+7
R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3

20-nt MIRNA average 083 070 079 0.86 087 083 088 091 068 079 0.82 0.79
stdev of average 0.21 0.32 021 020 0.19 0.19 0.17 0.18 0.31 0.30 0.20 0.36
1° percentile 071 067 062 087 084 081 090 093 057 078 0.74 0.80
2° percentile 093 078 090 093 093 088 092 09 080 0.90 0.80 0.97
3° percentile 097 088 093 1.00 1.00 095 100 100 084 096 1.00 1.00
20-nt HP average 057 036 049 070 056 058 064 070 067 052 0.34 0.58
stdev of average 042 0.44 044 035 045 042 042 035 037 038 0.40 0.41
1° percentile 0.08 0.00 0.00 033 0.00 022 031 050 051 0.29 0.00 0.33
2° percentile 0.67 0.17 045 1.00 060 060 100 067 068 058 0.27 0.58
3° percentile 1.00 073 1.00 100 100 1.00 1.00 1.00 1.00 0.75 0.50 1.00
20-nt non-HP average 075 059 075 066 076 060 061 067 056 061 0.63 0.64
stdev of average 0.34 041 0.31 037 032 034 037 040 044 042 0.38 0.37
1° percentile 049 032 052 042 066 045 035 055 0.00 0.15 0.42 0.49
2° percentile 1.00 057 083 080 093 065 051 080 075 0.77 0.73 0.67
3° percentile 1.00 1.00 1.00 100 100 0.83 100 1.00 0.98 1.00 1.00 1.00
21-nt MIRNA average 082 078 077 0.78 079 079 081 082 077 0.80 0.76 0.79
stdev of average 0.20 0.28 0.28 0.25 0.23 022 022 022 026 024 0.26 0.24
1° percentile 071 065 065 065 067 062 067 069 062 066 0.66 0.66
2° percentile 089 090 084 083 086 083 090 092 083 0.89 0.84 0.85
3° percentile 1.00 100 099 099 099 099 100 1.00 0.99 1.00 0.97 0.99
21-ntHP average 063 067 062 067 065 066 061 063 060 070 0.66 0.66
stdev of average 0.41 040 040 038 040 040 041 039 041 0.36 0.38 0.41
1° percentile 020 038 033 036 033 033 014 033 0.09 050 0.42 0.33
2° percentile 080 093 079 085 085 085 080 083 074 087 0.82 0.90
3° percentile 1.00 1.00 1.00 100 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00
21-nt non-HP average 051 047 052 053 053 052 050 047 047 054 0.50 0.49
stdev of average 0.40 043 040 041 041 041 041 041 040 041 0.40 0.42
1° percentile 0.00 0.00 0.00 0.00 0.00 0.0 000 000 0.00 0.00 0.00 0.00
2° percentile 050 050 050 050 050 050 050 050 050 0.50 0.50 0.50
3° percentile 1.00 100 1.00 100 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00
22-nt MIRNA average 054 052 059 056 067 066 053 063 057 0.56 0.67 0.65
stdev of average 0.34 0.27 025 0.20 0.17 025 024 024 025 021 0.21 0.12
1° percentile 039 052 056 040 054 055 046 056 050 0.50 0.53 0.57
2° percentile 063 058 068 068 064 063 050 066 060 0.56 0.69 0.62
3° percentile 070 068 070 0.70 0.79 082 070 072 066 0.62 0.77 0.73
22-ntHP average 067 071 070 0.71 069 068 069 068 072 068 0.68 0.68
stdev of average 0.38 0.39 037 037 038 038 040 038 035 0.39 0.39 0.39
1° percentile 048 050 050 050 050 050 037 050 050 044 0.50 0.48
2° percentile 080 100 089 1.00 091 086 100 085 09 100 0.86 1.00
3° percentile 1.00 1.00 1.00 100 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00
22-nt non-HP average 077 076 077 077 077 077 077 076 076 077 0.77 0.76
stdev of average 0.33 0.36 0.34 035 035 035 036 035 034 036 0.34 0.35
1° percentile 064 054 060 060 060 060 060 057 057 0.60 0.60 0.58
2° percentile 1.00 100 1.00 100 100 1.00 100 1.00 1.00 1.00 1.00 1.00
3° percentile 1.00 100 1.00 100 100 1.00 100 1.00 1.00 1.00 1.00 1.00
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rmr6-1 rmr6-1 rmr6-1 rmr6-1 rmr6-1 rmr6-1 rmr6-1 rmr6-1 rmr6-1 rmr6-1 rmr6-1

sRNA loci category parameter* c c c D D D S S S D+S D+S
R1 R2 R3 R1 R2 R3 R1 R2 R3 R2 R3
20-nt MIRNA average 087 080 083 080 08 075 085 085 075 079 0.82
stdev of average 0.18 020 0.18 0.22 0.19 030 020 0.16 031 020 020
1° percentile 086 077 082 082 081 072 086 086 083 079 0.79
2° percentile 093 085 09 085 087 086 092 089 08 085 091
3° percentile 096 092 093 092 099 093 097 092 089 0091 0.92
20-ntHP average 058 059 054 043 049 056 078 068 054 060 046
stdev of average 0.33 0.38 046 040 042 037 033 036 038 0.38 0.43
1° percentile 036 034 013 0.00 0.00 035 043 049 034 038 0.0
2° percentile 056 053 044 044 050 050 1.00 067 050 0.54 0.33
3° percentile 0.88 100 100 0.73 1.00 100 100 100 094 1.00 1.00
20-nt non-HP average 063 069 046 066 053 065 075 062 078 065 0.77
stdev of average 0.43 0.34 036 043 042 043 034 042 0.31 0.43 0.30
1° percentile 031 048 0.00 017 000 031 053 027 062 031 0.59
2° percentile 0.84 075 050 0.89 050 084 096 079 093 086 091
3° percentile 1.00 1.00 067 100 1.00 100 100 1.00 1.00 1.00 1.00
21-nt MIRNA average 078 080 078 080 0.80 081 080 079 077 079 083
stdev of average 0.27 0.22 027 026 024 022 026 027 024 0.26 0.21
1° percentile 069 070 061 073 0.69 069 068 067 066 069 070
2° percentile 086 086 088 089 089 088 090 089 082 088 0.89
3° percentile 098 099 100 099 1.00 100 100 100 097 099 099
21-ntHP average 073 068 073 072 076 073 072 070 072 071 0.72
stdev of average 0.36 0.37 0.36 036 032 036 036 036 034 035 034
1° percentile 050 046 050 050 051 050 050 042 050 0.50 0.50
2° percentile 091 083 098 092 095 097 095 089 086 0.89 0.86
3° percentile 1.00 1.00 1.00 1.00 1.00 100 100 1.00 1.00 1.00 1.00
21-nt non-HP average 059 059 055 058 056 056 057 056 056 057 056
stdev of average 0.37 0.38 0.39 038 039 040 038 040 039 0.38 0.38
1° percentile 033 028 020 025 022 014 025 020 022 027 025
2° percentile 056 060 050 056 050 056 055 054 051 0.56 0.50
3° percentile 100 1.00 100 1.00 100 100 1.00 1.00 1.00 1.00 1.00
22-nt MIRNA average 072 065 068 062 058 079 069 062 069 059 0.58
stdev of average 0.16 0.26 0.14 031 022 016 015 033 017 032 034
1° percentile 063 063 059 064 054 066 060 059 058 059 0.48
2° percentile 072 068 066 067 062 068 062 065 060 063 062
3° percentile 078 078 072 073 068 100 075 084 075 0.80 0.72
22-nt HP average 072 071 071 072 072 069 073 073 072 072 0.73
stdev of average 0.34 0.35 038 035 035 039 034 036 035 0.35 0.34
1° percentile 050 050 050 050 050 050 050 050 050 050 050
2° percentile 086 088 1.00 092 09 100 093 100 089 093 0.89
3° percentile 100 1.00 100 1.00 100 100 1.00 1.00 1.00 1.00 1.00
22-nt non-HP average 078 078 078 0.78 0.78 077 077 079 077 077 0.77
stdev of average 0.31 0.32 0.35 032 032 034 032 032 034 032 032
1° percentile 067 067 065 067 067 060 067 067 061 0.67 0.64
2° percentile 100 1.00 100 100 100 100 1.00 1.00 1.00 1.00 1.00
3° percentile 1.00 1.00 1.00 1.00 1.00 100 100 1.00 1.00 1.00 1.00
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rmr6-1 rmr6-1 rmr6-1 rmr6-1 rmr6-1 rmr6-1 rmr6-1 rmr6-1 rmr6-1 rmr6-1 rmr6-1
sRNA loci category parameter* C+7 C+7 C+7 D+7 D+7 D+7 S+7 S+7 D+S+7 D+S+7 D+S+7
R1 R2 R3 R1 R2 R3 R2 R3 R1 R2 R3

20-nt MIRNA average 071 084 084 068 0.79 084 082 086 073 0.85 0.85
stdev of average 0.38 0.18 024 035 020 0.18 0.19 020 0.29 0.17 0.22
1° percentile 061 085 0.78 048 0.76 085 083 0.85 072 0.84 0.89
2° percentile 088 089 09 085 0.83 089 087 092 083 0.88 0.92
3° percentile 096 091 1.00 089 0.88 094 089 098 086 0.95 1.00
20-nt HP average 053 063 054 026 059 053 068 037 053 077 0.48
stdev of average 0.35 0.42 040 033 038 036 0.37 040 0.41 0.34 0.41
1° percentile 033 035 0.33 0.00 0.38 037 040 0.00 025 0.0 0.00
2° percentile 050 0.83 0.50 0.27 058 048 0.83 029 054 1.00 0.48
3° percentile 0.77 100 1.00 033 1.00 088 1.00 063 100 1.00 1.00
20-nt non-HP average 055 053 056 066 0.80 069 053 062 067 0.61 0.57
stdev of average 0.43 040 045 039 031 039 032 044 037 038 0.43
1° percentile 0.06 0.06 0.00 048 0.72 048 045 0.19 040 0.36 0.04
2° percentile 071 063 067 083 099 088 050 086 079 0.69 0.73
3° percentile 099 091 1.00 1.00 1.00 1.00 071 1.00 1.00 1.00 0.98
21-nt MIRNA average 082 080 079 080 082 079 081 076 080 0.81 0.76
stdev of average 0.23 0.23 0.26 025 022 024 023 025 025 0.23 0.27
1° percentile 071 068 068 067 0.71 067 067 062 074 0.71 0.66
2° percentile 091 088 0.85 090 0.89 082 090 083 089 0.86 0.86
3° percentile 098 099 1.00 1.00 1.00 099 1.00 098 1.00 0.99 0.98
21-ntHP average 071 076 067 070 0.73 0.71 0.74 0.68 0.70 0.67 0.72
stdev of average 0.34 0.32 038 036 034 038 0.34 038 0.36 0.38 0.35
1° percentile 050 060 050 043 050 050 050 033 035 035 0.50
2° percentile 083 097 0.86 092 093 096 093 0.88 087 0.84 0.92
3° percentile 1.00 1.00 1.00 100 100 1.00 1.00 1.00 1.00 1.00 1.00
21-nt non-HP average 061 056 055 060 059 051 055 049 0.61 0.53 0.59
stdev of average 0.35 0.37 041 037 038 040 040 039 0.38 0.39 0.38
1° percentile 039 027 0.03 032 025 000 015 0.00 033 0.14 0.30
2° percentile 059 053 054 065 066 050 050 050 067 0.50 0.60
3° percentile 1.00 1.00 1.00 100 100 1.00 1.00 096 1.00 1.00 1.00
22-nt MIRNA average 0.58 067 0.58 051 0.60 069 053 053 060 0.75 0.63
stdev of average 0.28 0.20 0.14 030 030 020 0.33 025 0.1 0.17 0.17
1° percentile 048 054 048 058 051 063 037 051 056 065 0.54
2° percentile 068 065 061 063 0.68 065 059 056 063 0.71 0.63
3° percentile 071 077 066 067 0.69 0.76 0.78 0.66 067 0.88 0.70
22-nt HP average 072 072 074 070 0.74 071 071 070 0.70 0.70 0.71
stdev of average 0.34 0.35 036 038 035 036 037 037 037 0.36 0.37
1° percentile 0.50 050 050 050 0.50 050 050 050 050 0.50 0.50
2° percentile 0.83 092 1.00 1.00 1.00 095 1.00 1.00 0.97 0.88 1.00
3° percentile 1.00 1.00 1.00 100 100 1.00 1.00 100 1.00 1.00 1.00
22-nt non-HP average 0.78 078 0.78 0.77 0.78 0.78 0.77 0.78 0.78 0.77 0.77
stdev of average 0.30 0.33 035 035 033 034 034 035 033 0.33 0.34
1° percentile 067 067 067 062 0.67 066 061 065 067 0.67 0.60
2° percentile 1.00 1.00 1.00 100 100 1.00 1.00 100 1.00 1.00 1.00
3° percentile 1.00 1.00 1.00 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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wt wt wt wt wt wt wt wt wt wt wt wt
sRNA loci category parameter* c c Cc D D D S S S D+S D+S D+S
R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3
23-nt MIRNA average 070 073 073 072 072 078 074 071 066 0.78 0.73 0.76
stdev of average 0.20 0.16 0.17 022 0.12 023 0.16 0.17 0.13 0.16  0.17 0.21
1° percentile 063 068 067 064 068 070 069 065 062 073 0.67 0.68
2° percentile 070 073 073 072 072 078 074 071 066 0.78 0.73 0.76
3° percentile 077 079 079 080 0.77 086 080 0.77 0.71 0.84 0.78 0.83
23-nt HP average 052 051 051 054 048 049 047 056 057 052 0.54 0.48
stdev of average 0.33 0.36 0.38 035 039 037 039 038 041 0.30 0.39 0.40
1° percentile 036 025 0.18 033 000 021 000 025 013 0.33 0.12 0.00
2° percentile 050 050 050 050 050 050 050 060 060 0.52 0.57 0.45
3° percentile 067 084 1.00 100 100 095 081 1.00 100 0.69 1.00 1.00
23-nt non-HP average 054 051 055 056 054 048 052 044 054 056 0.55 0.50
stdev of average 0.35 041 040 038 044 042 040 040 039 0.30 0.41 0.40
1° percentile 0.33 0.00 0.17 025 0.00 0.00 0.00 0.00 000 040 0.00 0.00
2° percentile 0.57 050 050 057 050 050 050 050 050 0.56 0.50 0.50
3° percentile 0.80 1.00 1.00 100 100 100 100 1.00 100 0.75 1.00 1.00
24-nt MIRNA average 0.86 081 080 087 08 080 083 083 085 0.81 0.74 0.82
stdev of average 0.19 029 020 023 029 030 023 022 0.21 0.26 0.32 0.20
1° percentile 071 060 067 084 081 071 068 076 083 079 0.50 0.71
2° percentile 095 1.00 080 094 098 088 093 091 089 0.90 0.88 0.87
3° percentile 100 1.00 1.00 100 100 1.00 1.00 1.00 1.00 093 1.00 1.00
24-nt HP average 085 085 085 08 08 086 085 086 085 0.86 0.86 0.87
stdev of average 0.23 0.25 0.24 023 027 026 024 025 027 017 0.25 0.24
1° percentile 076 0.77 076 080 083 083 078 0.80 075 0.79 0.81 0.80
2° percentile 1.00 100 1.00 1.00 1.00 1.00 1.00 100 1.00 0.91 1.00 1.00
3° percentile 1.00 100 1.00 1.00 1.00 1.00 1.00 100 1.00 1.00 1.00 1.00
24-nt non-HP average 083 084 084 084 08 08 084 085 083 085 0.85 0.85
stdev of average 0.21 023 022 021 025 024 022 023 024 0.16 0.24 0.22
1° percentile 076 075 075 076 079 079 075 076 075 0.79 0.77 0.78
2° percentile 089 094 091 091 100 100 091 1.00 094 088 1.00 1.00
3° percentile 070 073 073 072 072 078 074 071 066 078 0.73 0.76
wt wt wt wt wt wt wt wt wt wt wt wt
sRNA loci category parameter* C+7 C+7 C+7 D+7 D+7 D+7 S+7 S+7 S+7 D+S+7 D+S+7 D+S+7
R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3
23-nt MIRNA average 070 061 072 072 073 071 072 075 069 0.76 0.72 0.76
stdev of average 0.07 0.01 0.18 020 0.16 0.15 0.12 0.13 0.14 026 0.16 0.18
1° percentile 067 060 066 065 067 066 068 070 064 067 0.66 0.70
2° percentile 070 061 072 072 073 071 072 075 069 0.76 0.72 0.76
3° percentile 072 061 079 079 079 076 077 079 074 0.86 0.78 0.83
23-nt HP average 052 059 058 047 047 052 046 054 050 055 047 0.60
stdev of average 040 0.38 0.39 039 039 041 043 040 037 040 0.37 0.39
1° percentile 0.00 033 033 000 000 000 0.00 0.08 022 023 0.00 0.33
2° percentile 050 056 059 044 047 053 044 055 050 0.50 0.50 0.53
3° percentile 1.00 100 1.00 1.00 1.00 1.00 1.00 100 1.00 1.00 0.80 1.00
23-nt non-HP average 055 056 052 056 054 050 055 051 049 0.58 0.50 0.55
stdev of average 041 044 043 041 042 041 041 040 041 0.41 0.42 0.42
1° percentile 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000 0.00 0.00 0.00
2° percentile 058 058 050 050 050 050 060 050 050 0.60 0.50 0.50
3° percentile 1.00 100 1.00 1.00 1.00 1.00 1.00 100 1.00 1.00 1.00 1.00
24-nt MIRNA average 0.81 089 091 088 078 072 084 078 088 0.83 093 0.86
stdev of average 0.21 0.23 0.17 0.19 035 033 023 028 0.15 0.30 0.13 0.22
1° percentile 075 084 087 083 075 060 072 067 080 078 0.90 0.76
2° percentile 0.86 1.00 1.00 100 090 080 086 086 090 1.00 1.00 1.00
3° percentile 097 100 100 100 1.00 1.00 100 1.00 1.00 100 1.00 1.00
24-nt HP average 085 085 085 084 08 086 085 086 085 0.84 0.85 0.86
stdev of average 0.27 0.29 0.26 028 027 027 029 025 025 0.29 0.27 0.27
1° percentile 080 083 080 079 080 080 081 080 078 0.80 0.80 0.80
2° percentile 1.00 100 1.00 1.00 1.00 1.00 1.00 100 1.00 1.00 1.00 1.00
3° percentile 1.00 100 1.00 1.00 1.00 1.00 1.00 100 1.00 1.00 1.00 1.00
24-nt non-HP average 084 084 084 083 084 084 084 085 084 083 0.84 0.84
stdev of average 0.24 0.28 025 027 025 025 027 024 023 0.27 0.25 0.26
1° percentile 076 075 075 075 075 075 075 078 075 0.75 0.75 0.75
2° percentile 098 1.00 1.00 100 100 100 100 1.00 093 1.00 1.00 1.00
3° percentile 100 100 1.00 100 100 100 1.00 1.00 100 100 1.00 1.00
Appendixes 193



rmr6-1 rmr6-1 rmr6-1 rmr6-1 rmr6-1 rmr6-1 rmr6-1 rmr6-1 rmr6-1 rmr6-1 rmr6-1D

sRNA loci category parameter* Cc [ Cc D D D S S s D+S +S
R1 R2 R3 R1 R2 R3 R1 R2 R3 R2 R3
23-nt MIRNA average 075 072 076 076 070 0.74 070 0.76 0.75 0.72 0.73

stdev of average 0.19 0.17 0.19 0.14 0.12 0.17 0.15 0.19 0.16 0.17 0.16
1° percentile 069 066 069 071 066 068 065 069 069 0.66 0.68
2° percentile 075 072 076 076 0.70 074 0.70 0.76 075 0.72 0.73
3° percentile 082 078 083 081 074 080 0.76 0.82 081 0.77 0.79
23-ntHP average 052 048 055 045 052 050 055 052 054 054 0.60
stdev of average 0.35 040 041 040 040 041 039 039 039 041 0.39
1° percentile 0.33 000 0.16 0.00 0.08 000 025 0.06 029 0.00 0.25
2° percentile 050 049 050 044 050 050 0.50 0.50 050 0.50 0.67
3° percentile 083 100 100 089 1.00 100 1.00 1.00 100 1.00 1.00
23-nt non-HP average 059 050 049 055 052 048 045 045 050 0.52 0.57
stdev of average 0.39 043 042 038 042 042 041 042 042 043 0.42
1° percentile 0.33 000 0.00 0.25 0.00 000 0.00 0.00 0.00 0.00 0.00
2° percentile 067 050 050 056 050 050 046 045 050 0.50 0.54
3° percentile 1.00 100 100 100 1.00 100 1.00 100 1.00 1.00 1.00
24-nt MIRNA average 044 041 030 077 070 026 0.69 0.24 046 0.32 0.80
stdev of average 0.50 045 045 033 033 043 025 038 044 031 0.30
1° percentile 0.00 0.00 0.00 044 041 000 047 0.00 025 0.00 0.67
2° percentile 047 043 030 077 0.70 026 0.68 0.17 044 0.32 0.80
3° percentile 100 071 050 100 1.00 030 0.78 033 086 0.50 1.00
24-nt HP average 035 030 026 032 031 032 028 032 031 0.29 0.34
stdev of average 0.44 042 040 044 043 044 042 043 043 042 0.44
1° percentile 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2° percentile 0.00 0.00 0.00 0.00 0.00 000 0.00 0.00 0.00 0.00 0.00
3° percentile 1.00 075 050 100 0.79 1.00 067 080 0.78 067 1.00
24-nt non-HP average 023 020 0.17 021 025 021 021 022 020 0.23 0.20
stdev of average 0.40 0.39 0.36 039 041 040 039 040 038 041 0.38
1° percentile 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2° percentile 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3° percentile 0.33 0.00 0.00 0.01 050 000 0.00 020 0.00 0.33 0.00
rmr6-1 rmr6-1 rmr6-1 rmr6-1 rmr6-1 rmr6-1 rmr6-1 rmr6-1rmr6-1 rmr6-1 rmr6-1
sRNA loci category parameter* C+7 C+7 C+7 D+7 D+7 D+7 S+7 S+7 D+S+7D+S+7 D+S+7
R1 R2 R3 R1 R2 R3 R2 R3 R1 R2 R3
23-nt MIRNA average 0.75 070 074 068 0.71 074 0.71 077 076 0.78 0.74
stdev of average 0.18 0.06 0.19 0.11 020 0.20 0.16 025 020 0.15 0.22
1° percentile 068 068 067 064 064 066 065 068 069 0.72 0.66
2° percentile 075 070 0.74 068 0.71 074 071 077 076 0.78 0.74
3° percentile 081 072 081 071 078 081 076 0.86 083 0.83 0.82
23-nt HP average 0.57 048 054 060 0.58 052 057 062 050 047 0.49
stdev of average 0.38 041 044 041 038 045 040 042 039 0.39 0.42
1° percentile 0.28 0.00 000 026 033 0.00 0.13 0.22 0.10 0.00 0.00
2° percentile 0.50 050 067 069 051 050 067 089 050 0.50 0.50
3° percentile 1.00 100 100 100 1.00 100 100 100 1.00 0.94 1.00
23-nt non-HP average 055 054 043 048 053 048 051 047 056 0.53 0.48
stdev of average 0.39 042 044 041 042 043 043 042 041 042 0.42
1° percentile 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2° percentile 0.50 058 038 050 050 050 0.50 050 050 0.50 0.50
3° percentile 1.00 1.00 100 100 1.00 1.00 1.00 100 1.00 1.00 1.00
24-nt MIRNA average 0.19 040 050 0.71 050 054 069 025 026 0.31 0.64
stdev of average 0.27 055 0.53 048 055 042 046 029 037 047 0.37
1° percentile 0.00 0.00 0.00 054 0.00 044 044 0.06 0.00 0.00 0.33
2° percentile 0.19 040 052 079 052 052 069 0.27 027 0.20 0.64
3° percentile 0.33 100 100 1.00 1.00 075 1.00 050 0.32 0.60 1.00
24-nt HP average 032 035 028 036 0.28 031 030 029 040 0.36 0.22
stdev of average 0.43 045 041 046 042 044 043 043 046 045 0.38
1° percentile 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2° percentile 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3° percentile 086 100 062 100 067 084 075 075 100 1.00 0.45
24-nt non-HP average 025 025 0.18 022 019 019 019 020 025 0.23 0.17
stdev of average 0.41 042 037 040 037 038 038 039 041 041 0.36
1° percentile 0.00 0.00 0.00 0.00 0.00 000 0.00 0.00 0.00 0.00 0.00
2° percentile 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3° percentile 0.50 050 0.00 0.00 0.00 0.00 0.00 0.00 050 0.33 0.00
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*parameter = the statistical parameter calculated on the total values of fraction
(fraction of mapping reads with length equal to the size class assigned to a locus)
of a sRNA loci category in a library:

"average" = indicates the mean of the fraction values;

"stdev of average" = indicates the standard deviation of the mean;

"1° percentile" = indicates the first percentile, 0.25, of the fraction values;

"2° percentile" = indicates the second percentile, 0.5, the median, of the fraction
values;

"3° percentile" = indicates the third percentile, 0.75, of the fraction values.
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Appendix B

List of phased loci and related overlapping genes
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Appendix C

List of MIRNA loci

MIRNA loci in grey = loci whose predicted mature sequence did not pass the
abundance filter of at least five reads in at least one library.

*Ul = Uniqueness Index of MIRNA loci as defined by ShortStack program.
**location = genomic location of MIRNA loci based on the transcriptome
reannotation obtained from our RNA-seq experiment:

"exon" or "intron" = indicates that the locus is located within an exon or an intron
for its entire length;

"exon-intron" = indicates that the locus overlaps with an intron and an exon of a
gene;

"antisense" = indicates that the locus is antisense to a gene;

"intergenic" = indicates that the locus is located between genes for its entire
length.

***total reads = reads abundance in the merged set of 48 sRNA-Seq libraries as
calculated by ShortStack program.

****name = indicates the name of the known maize MIRNA loci, as reported in
miRBase 20, and the name of the putative novel MIRNA loci identified in this
study, as "zma-MIR-NEW..."
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List of predicted targets

miRNA:

Appendix D

() = when the identified miRNA or miRNA* sequences are not identical to those
reported in miRBase, their relationship is indicated:
isoMIR = isoMIR of the miRNA annotated in miRBase; miRNA* = miRNA*
annotated in miRBase; miRNA* isoMIR = isoMIR of the miRNA* annotated in
miRBase; unrelated = nonoverlapping with miRBase annotated sequences.

miRNAs and miRNA*'s in italic = sequences whose precursor was not confirmed
by our analysis or that lacked a genome annotation in miRBase.

miRNA

target transcript ID*

Arabidopsis
homolog

Arabidopsis
annotation

miR156a-miR156f-miR156g-
miR156h-miR1561-miR-NEW156m-
miR156¢-miR156e-miR156i

GRMZM2G101511_T01

GRMZM2G163813_T01
GRMZM2G126018_T01
AC233751.1_FGT002

GRMZM2G097275_T04
GRMZM2G163813_T02
GRMZM2G106798_T02

GRMZM5G878561_T01

GRMZM2G065451_T02

GRMZM2G097275_T04_j_1

GRMZM2G065451_T01

GRMZM5G806833_T01_j_1

GRMZM2G460544_T01
GRMZM2G163813_T04
GRMZM2G061734_T01

GRMZM2G097275_T01
GRMZM2G097275_T03
GRMZM2G148467_T02
GRMZM2G414805_T05
GRMZM2G160917_T03
GRMZM2G052921_T01
GRMZM2G126018_T02
GRMZM2G414805_T07

GRMZM2G371 033:T01J71

GRMZM2G101511_T02

GRMZM2G414805_T03
GRMZM2G160917_T02
GRMZM2G160917_T01
GRMZM5G806833_T01
GRMZM2G106798_T03

GRMZM2G371033_T01

GRMZM2G414805_T04
GRMZM2G414805_T01
GRMZM2G307588_T01
GRMZM2G106798_T01

GRMZM2G414805_T02
GRMZM2G148467_T01

AT5G50670.1

AT5G43270.1
AT2G42200.1
AT5G50670.1

AT5G43270.1
AT5G43270.1
AT5G50670.1

AT5G50670.1

AT5G43270.1

AT5G43270.1

AT2G42200.1

AT5G50670.1

AT5G43270.1

AT5G43270.1

AT1G27370.1
AT2G42200.1

AT2G42200.1

AT5G50670.1

AT1G27370.1
AT2G42200.1
AT2G42200.1

AT5G50670.1

AT5G50670.1

AT1G27370.1

AT2G42200.1

AT5G50670.1

AT5G43270.1
AT1G27370.1

Appendixes

Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

squamosa promoter binding protein-like 2
squamosa promoter binding protein-like 9
Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

squamosa promoter binding protein-like 2
squamosa promoter binding protein-like 2
Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

squamosa promoter binding protein-like 2

squamosa promoter binding protein-like 2
squamosa promoter binding protein-like 9

Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

squamosa promoter binding protein-like 2
squamosa promoter binding protein-like 2

squamosa promoter binding protein-like 10
squamosa promoter binding protein-like 9

squamosa promoter binding protein-like 9

Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

squamosa promoter binding protein-like 10
squamosa promoter binding protein-like 9
squamosa promoter binding protein-like 9

Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

squamosa promoter binding protein-like 10

squamosa promoter binding protein-like 9
Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

squamosa promoter binding protein-like 2
squamosa promoter binding protein-like 10
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miR156b(isoMIR)-miR156d.1(isoMIR)

miR156].1(isoMIR)

204

GRMZM2G097275_T02

GRMZM2G414805_T03_j_1

GRMZM2G067624_T02
GRMZM2G126827_T01
GRMZM2G113779_T01
GRMZM2G067624_T01
GRMZM2G156621_T01
GRMZM2G065451_T02
GRMZM2G065451_T01

GRMZM2G097275_T04_j_1

GRMZM2G097275_T02
GRMZM2G097275_T03
GRMZM2G160917_T01
GRMZM2G097275_T01
GRMZM2G097275_T04
GRMZM2G460544_T01
GRMZM2G160917_T02
GRMZM2G160917_T03
GRMZM2G307588_T01
GRMZM2G126018_T01
GRMZM2G126018_T02

GRMZM2G414805_T03_j_1

GRMZM5G878561_T01

GRMZM2G414805_T01
GRMZM2G414805_T03
GRMZM2G414805_T05
GRMZM2G414805_T02
GRMZM2G414805_T07
GRMZM2G163813_T01
GRMZM2G101511_T01

GRMZM2G163813_T02
GRMZM2G414805_T04
AC233751.1_FGT002

GRMZM2G101511_T02
GRMZM2G371033_T01

GRMZM2G163813_T04

GRMZM2G371033_T01_j_1

GRMZM2G052921_T01
GRMZM2G061734_T01

GRMZM2G148467_T02
GRMZM2G106798_T01

GRMZM2G148467_T01
GRMZM2G106798_T02

GRMZM2G106798_T03

GRMZM5G806833_T01

GRMZM5G806833_T01_j_1

GRMZM2G126827_T01
GRMZM2G156621_T01
GRMZM2G061734_T01

GRMZM2G148467_T02
GRMZM2G106798_T01

GRMZM2G148467_T01
GRMZM2G106798_T02

GRMZM2G106798_T03

GRMZM5G806833_T01

GRMZM5G806833_T01_j_1
GRMZM2G414805_T03_j_1

GRMZM5G878561_T01

AT5G43270.1

AT1G53160.1
AT1G27370.1
AT3G15270.1
AT1G53160.1
AT1G27370.1
AT5G43270.1
AT5G43270.1

AT5G43270.1
AT5G43270.1
AT2G42200.1
AT5G43270.1
AT5G43270.1
AT2G42200.1
AT2G42200.1
AT2G42200.1
AT2G42200.1
AT2G42200.1
AT2G42200.1

AT5G50670.1

AT1G27370.1
AT1G27370.1
AT5G43270.1

AT5G43270.1
AT5G50670.1

AT5G43270.1
AT1G27370.1
AT5G50670.1

AT5G50670.1

AT5G50670.1

AT5G50670.1

AT5G50670.1

AT1G27370.1
AT5G50670.1

AT5G50670.1

AT1G27370.1

AT1G27370.1
AT5G50670.1

AT5G50670.1

AT1G27370.1
AT5G50670.1

AT5G50670.1

AT5G50670.1

Appendixes

squamosa promoter binding protein-like 2

squamosa promoter binding protein-like 4
squamosa promoter binding protein-like 10
squamosa promoter binding protein-like 5
squamosa promoter binding protein-like 4
squamosa promoter binding protein-like 10
squamosa promoter binding protein-like 2
squamosa promoter binding protein-like 2

squamosa promoter binding protein-like 2
squamosa promoter binding protein-like 2
squamosa promoter binding protein-like 9
squamosa promoter binding protein-like 2
squamosa promoter binding protein-like 2
squamosa promoter binding protein-like 9
squamosa promoter binding protein-like 9
squamosa promoter binding protein-like 9
squamosa promoter binding protein-like 9
squamosa promoter binding protein-like 9
squamosa promoter binding protein-like 9

Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

squamosa promoter binding protein-like 10
squamosa promoter binding protein-like 10
squamosa promoter binding protein-like 2

squamosa promoter binding protein-like 2
Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

squamosa promoter binding protein-like 2
squamosa promoter binding protein-like 10
Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

squamosa promoter binding protein-like 10
Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

squamosa promoter binding protein-like 10
squamosa promoter binding protein-like 10
Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

squamosa promoter binding protein-like 10
Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein



miR156k.1

GRMZM2G414805_T01
GRMZM2G065451_T02
GRMZM2G414805_T03
GRMZM2G414805_T05
GRMZM2G065451_T01

GRMZM2G097275_T04_j_1

GRMZM2G097275_T02
GRMZM2G097275_T03
GRMZM2G160917_T01
GRMZM2G414805_T02
GRMZM2G414805_T07
GRMZM2G163813_T01
GRMZM2G097275_T01
GRMZM2G101511_T01

GRMZM2G163813_T02
GRMZM2G097275_T04
GRMZM2G460544_T01
GRMZM2G414805_T04
AC233751.1_FGT002

GRMZM2G101511_T02

GRMZM2G160917_T02
GRMZM2G160917_T03
GRMZM2G307588_T01
GRMZM2G126018_T01
GRMZM2G067624_T01
GRMZM2G126018_T02
GRMZM2G067624_T02
GRMZM2G371033_T01

GRMZM2G163813_T04

GRMZM2G371033_T01_j_1

GRMZM2G052921_T01
GRMZM2G113779_T01
GRMZM2G126827_T01
GRMZM2G156621_T01
AC233751.1_FGT002

GRMZM2G414805_T01

GRMZM5G806833_T01_j_1

GRMZM2G097275_T03
GRMZM2G148467_T02
GRMZM2G052921_T01
GRMZM5G806833_T01

GRMZM2G414805_T03_j_1

GRMZM2G097275_T02
GRMZM2G414805_T07

GRMZM2G371033_T01_j_1

GRMZM2G414805_T03
GRMZM2G160917_T01
GRMZM2G106798_T02

GRMZM2G160917_T02
GRMZM5G878561_T01

GRMZM2G097275_T04
GRMZM2G460544_T01
GRMZM2G106798_T03

GRMZM2G097275_T01
GRMZM2G371033_T01

GRMZM2G106798_T01

GRMZM2G126018_T02
GRMZM2G414805_T05
GRMZM2G160917_T03
GRMZM2G126018_T01
GRMZM2G101511_T01

GRMZM2G101511_T02

AT5G43270.1
AT1G27370.1
AT1G27370.1
AT5G43270.1

AT5G43270.1
AT5G43270.1
AT2G42200.1
AT5G43270.1

AT5G43270.1
AT5G43270.1
AT5G50670.1

AT5G43270.1
AT5G43270.1
AT2G42200.1
AT1G27370.1
AT5G50670.1

AT5G50670.1

AT2G42200.1
AT2G42200.1
AT2G42200.1
AT2G42200.1
AT1G53160.1
AT2G42200.1
AT1G53160.1
AT5G50670.1

AT3G15270.1
AT1G27370.1
AT1G27370.1
AT5G50670.1

AT5G43270.1

AT5G43270.1

AT1G27370.1
AT2G42200.1
AT5G50670.1

AT2G42200.1
AT5G50670.1

AT5G43270.1
AT2G42200.1
AT5G50670.1

AT5G43270.1
AT5G50670.1

AT5G50670.1

AT2G42200.1
AT1G27370.1
AT2G42200.1
AT2G42200.1
AT5G50670.1

AT5G50670.1

Appendixes

squamosa promoter binding protein-like 2
squamosa promoter binding protein-like 10
squamosa promoter binding protein-like 10
squamosa promoter binding protein-like 2

squamosa promoter binding protein-like 2
squamosa promoter binding protein-like 2
squamosa promoter binding protein-like 9
squamosa promoter binding protein-like 2

squamosa promoter binding protein-like 2
squamosa promoter binding protein-like 2
Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

squamosa promoter binding protein-like 2
squamosa promoter binding protein-like 2
squamosa promoter binding protein-like 9
squamosa promoter binding protein-like 10
Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

squamosa promoter binding protein-like 9
squamosa promoter binding protein-like 9
squamosa promoter binding protein-like 9
squamosa promoter binding protein-like 9
squamosa promoter binding protein-like 4
squamosa promoter binding protein-like 9
squamosa promoter binding protein-like 4
Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

squamosa promoter binding protein-like 5
squamosa promoter binding protein-like 10
squamosa promoter binding protein-like 10
Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

squamosa promoter binding protein-like 2

squamosa promoter binding protein-like 2

squamosa promoter binding protein-like 10
squamosa promoter binding protein-like 9
Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

squamosa promoter binding protein-like 9
Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

squamosa promoter binding protein-like 2
squamosa promoter binding protein-like 9
Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

squamosa promoter binding protein-like 2
Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

squamosa promoter binding protein-like 9
squamosa promoter binding protein-like 10
squamosa promoter binding protein-like 9
squamosa promoter binding protein-like 9
Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein
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miR156k.2(isoMIR)

miR159a-miR159f-miR159b-miR159j-
miR159k

206

GRMZM2G163813_T01
GRMZM2G061734_T01

GRMZM2G163813_T04
GRMZM2G148467_T01
GRMZM2G414805_T02
GRMZM2G414805_T04
GRMZM2G307588_T01
GRMZM2G163813_T02
GRMZM2G065451_T01
GRMZM2G065451_T02

GRMZM2G097275_T04_j_1

GRMZM2G126827_T01
GRMZM2G113779_T01
GRMZM2G067624_T01
GRMZM2G156621_T01
GRMZM2G067624_T02
GRMZM2G065451_T02

GRMZM2G097275_T04_j_1

GRMZM2G065451_T01
GRMZM2G097275_T02
GRMZM2G097275_T03
GRMZM2G160917_T01
GRMZM2G097275_T01
GRMZM2G097275_T04
GRMZM2G460544_T01
GRMZM2G160917_T02
GRMZM2G160917_T03
GRMZM2G307588_T01
GRMZM2G126018_T01
GRMZM2G126018_T02

GRMZM2G414805_T03_j_1

GRMZM5G878561_T01

GRMZM2G414805_T01
GRMZM2G414805_T03
GRMZM2G414805_T05
GRMZM2G414805_T02
GRMZM2G414805_T07
GRMZM2G163813_T01
GRMZM2G101511_T01

GRMZM2G163813_T02
GRMZM2G414805_T04
AC233751.1_FGT002

GRMZM2G101511_T02

GRMZM2G371033_T01

GRMZM2G163813_T04

GRMZM2G371033_T01_j_1

GRMZM2G052921_T01
GRMZM2G061734_T01

GRMZM2G148467_T02
GRMZM2G106798_T01

GRMZM2G148467_T01
GRMZM2G106798_T02

GRMZM2G106798_T03

GRMZM5G806833_T01

GRMZM5G806833_T01_j_1

GRMZM2G126827_T01
GRMZM2G156621_T01
GRMZM2G167088_T01

GRMZM2G416652_T02
GRMZM2G416652_T01

GRMZM2G423833_T01_j_1
GRMZM2G423833_T01_j_1
GRMZM2G093789_T02_j_1

GRMZM2G093789_T01
GRMZM2G004090_T01

AT5G43270.1
AT5G50670.1

AT1G27370.1
AT5G43270.1
AT1G27370.1
AT2G42200.1
AT5G43270.1
AT5G43270.1
AT5G43270.1

AT1G27370.1
AT3G15270.1
AT1G53160.1
AT1G27370.1
AT1G53160.1
AT5G43270.1

AT5G43270.1
AT5G43270.1
AT5G43270.1
AT2G42200.1
AT5G43270.1
AT5G43270.1
AT2G42200.1
AT2G42200.1
AT2G42200.1
AT2G42200.1
AT2G42200.1
AT2G42200.1

AT5G50670.1

AT1G27370.1
AT1G27370.1
AT5G43270.1
AT5G43270.1
AT5G50670.1

AT5G43270.1
AT1G27370.1
AT5G50670.1

AT5G50670.1

AT5G50670.1

AT5G50670.1

AT5G50670.1

AT1G27370.1
AT5G50670.1

AT5G50670.1

AT1G27370.1
AT1G27370.1
AT2G32460.1

AT2G32460.1
AT2G32460.1

AT2G32460.1
AT2G32460.1
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squamosa promoter binding protein-like 2
Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

squamosa promoter binding protein-like 10
squamosa promoter binding protein-like 2
squamosa promoter binding protein-like 10
squamosa promoter binding protein-like 9
squamosa promoter binding protein-like 2
squamosa promoter binding protein-like 2
squamosa promoter binding protein-like 2

squamosa promoter binding protein-like 10
squamosa promoter binding protein-like 5
squamosa promoter binding protein-like 4
squamosa promoter binding protein-like 10
squamosa promoter binding protein-like 4
squamosa promoter binding protein-like 2

squamosa promoter binding protein-like 2
squamosa promoter binding protein-like 2
squamosa promoter binding protein-like 2
squamosa promoter binding protein-like 9
squamosa promoter binding protein-like 2
squamosa promoter binding protein-like 2
squamosa promoter binding protein-like 9
squamosa promoter binding protein-like 9
squamosa promoter binding protein-like 9
squamosa promoter binding protein-like 9
squamosa promoter binding protein-like 9
squamosa promoter binding protein-like 9

Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

squamosa promoter binding protein-like 10
squamosa promoter binding protein-like 10
squamosa promoter binding protein-like 2

squamosa promoter binding protein-like 2
Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

squamosa promoter binding protein-like 2
squamosa promoter binding protein-like 10
Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

squamosa promoter binding protein-like 10
Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

squamosa promoter binding protein-like 10
squamosa promoter binding protein-like 10
myb domain protein 101

myb domain protein 101
myb domain protein 101

myb domain protein 101
myb domain protein 101



GRMZM2G075064_T01 AT3G11440.1 myb domain protein 65
AC209015.3_FGT004

miR160b-miR160b-miR160g- GRMZM2G390641_T01_j_1

miR160a-miR160c-miR160d-

miR160e
GRMZM2G159399_T01 AT4G30080.1 auxin response factor 16
GRMZM2G153233_T01 AT4G30080.1 auxin response factor 16
GRMZM2G390641_T01 AT4G30080.1 auxin response factor 16
GRMZM2G390641_T02 AT4G30080.1 auxin response factor 16
GRMZM2G005284_T01 AT4G30080.1 auxin response factor 16
AC207656.3_FGT002 AT4G30080.1 auxin response factor 16
GRMZM5G808366_T01 AT1G77850.1 auxin response factor 17
GRMZM2G081406_T01 AT4G30080.1 auxin response factor 16
GRMZM2G081406_TO01_j_1

miR160f GRMZM2G390641_T01_j_1
GRMZM2G159399_T01 AT4G30080.1 auxin response factor 16
GRMZM2G153233_T01 AT4G30080.1 auxin response factor 16
GRMZM2G390641_T01 AT4G30080.1 auxin response factor 16
GRMZM2G390641_T02 AT4G30080.1 auxin response factor 16
GRMZM2G005284_T01 AT4G30080.1 auxin response factor 16
AC207656.3_FGT002 AT4G30080.1 auxin response factor 16
GRMZM5G808366_T01 AT1G77850.1 auxin response factor 17
GRMZM2G081406_T01 AT4G30080.1 auxin response factor 16
GRMZM2G081406_T01_j_1

miR162(isoMIR) GRMZM2G040762_T01_j_1
GRMZM2G040762_T01 AT1G01040.1 dicer-like 1

miR164b-miR164c-miR164d- GRMZM2G114850_T01 AT1G56010.2 NAC domain containing protein 1

miR164a-miR164g
GRMZM2G063522_T01 AT1G56010.2 NAC domain containing protein 1
GRMZM2G393433_T01_j_1
GRMZM2G393433_T01_j_1

GRMZM2G393433_T01 AT5G53950.1 NAC (No Apical Meristem) domain
transcriptional regulator superfamily protein
GRMZM2G139700_T01 AT5G53950.1 NAC (No Apical Meristem) domain

transcriptional regulator superfamily protein
miR166a-miR166d(isoMIR)- GRMZM5G845891_T01
miR166i(isoMIR)-miR-NEW1660-
miR-NEW166p-miR-NEW166q
GRMZM2G499154_T01
GRMZM5G897556_T01
GRMZM5G845891_T01

miR167e-miR167f-miR167h-miR167i- ~ GRMZM2G042623_T01 AT2G29200.1 pumilio 1

miR167j
GRMZM2G042623_T02 AT2G29200.1 pumilio 1
GRMZM2G112769_T01 AT2G29200.1 pumilio 1

miR167g(isoMIR)-miR-NEW167k GRMZM2G042623_T01 AT2G29200.1 pumilio 1
GRMZM2G042623_T02 AT2G29200.1 pumilio 1
GRMZM2G112769_T01 AT2G29200.1 pumilio 1

miR171m(isoMIR) GRMZM5G825321_T02 AT4G00150.1 GRAS family transcription factor
GRMZM2G098800_T02 AT4G00150.1 GRAS family transcription factor
GRMZM2G037792_T01 AT4G00150.1 GRAS family transcription factor
GRMZM2G098800_T01 AT4G00150.1 GRAS family transcription factor
GRMZM2G079470_T01 AT4G00150.1 GRAS family transcription factor
GRMZM2G051785_T01 AT4G00150.1 GRAS family transcription factor
GRMZM5G825321_T01 AT4G00150.1 GRAS family transcription factor
GRMZM2G176124_T01 AT4G00150.1 GRAS family transcription factor
GRMZM2G418899_T02 AT4G00150.1 GRAS family transcription factor
GRMZM2G418899_T01 AT4G00150.1 GRAS family transcription factor
GRMZM2G011947_T01 AT4G00150.1 GRAS family transcription factor
GRMZM2G118913_T01
AC187788.3_FGT008 AT4G00150.1 GRAS family transcription factor
GRMZM5G825321_T02 AT4G00150.1 GRAS family transcription factor
GRMZM2G098800_T02 AT4G00150.1 GRAS family transcription factor
GRMZM2G098800_T01 AT4G00150.1 GRAS family transcription factor
GRMZM5G825321_T01 AT4G00150.1 GRAS family transcription factor
GRMZM2G037792_T01 AT4G00150.1 GRAS family transcription factor
GRMZM2G079470_TO01 AT4G00150.1 GRAS family transcription factor
GRMZM2G051785_T01 AT4G00150.1 GRAS family transcription factor
GRMZM2G176124_T01 AT4G00150.1 GRAS family transcription factor
GRMZM2G418899_T02 AT4G00150.1 GRAS family transcription factor
GRMZM2G418899_T01 AT4G00150.1 GRAS family transcription factor
GRMZM2G011947_T01 AT4G00150.1 GRAS family transcription factor
AC187788.3_FGT008 AT4G00150.1 GRAS family transcription factor
GRMZM2G110579_T01 AT4G00150.1 GRAS family transcription factor
GRMZM2G317338_T01
GRMZM2G060265_T01 AT4G00150.1 GRAS family transcription factor

miR172b(isoMIR)-miR172c*(isoMIR) GRMZM2G416701_T01_j_1
GRMZM5G862109_T02 AT2G28550.3 related to AP2.7
GRMZM5G862109_T03 AT4G36920.1 Integrase-type DNA-binding superfamily

protein

GRMZM2G700665_T01 AT5G60120.2 target of early activation tagged (EAT) 2
GRMZM2G700665_T01_j_1
GRMZM2G700665_T03 AT2G28550.3 related to AP2.7
GRMZM2G700665_T02 AT2G28550.1 related to AP2.7
GRMZM2G176175_T02 AT2G28550.3 related to AP2.7
GRMZM2G176175_T01 AT2G28550.3 related to AP2.7
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GRMZM5G862109_T01 AT2G28550.3 related to AP2.7
GRMZM2G416725_T01

siRNA_Z27kG1_07922

GRMZM5G878615_T03_j_1

GRMZM5G878615_T04

GRMZM5G878615_T07

GRMZM5G878615_T03

GRMZM5G878615_T02

GRMZM5G878615_T06 AT3G53750.1 actin 3
GRMZM5G878615_T05
GRMZM2G017847_T01 AT3G12110.1 actin-11
GRMZM2G383472_T01
miR319¢(isoMIR) GRMZM2G115516_T01 AT4G18390.1 TEOSINTE BRANCHED 1, cycloidea and

PCF transcription factor 2
GRMZM2G089361_T01_O_1
GRMZM2G089361_T01 AT4G18390.1 TEOSINTE BRANCHED 1, cycloidea and
PCF transcription factor 2
GRMZM2G115516_T02
GRMZM2G020805_T01 AT4G18390.1 TEOSINTE BRANCHED 1, cycloidea and
PCF transcription factor 2
GRMZM2G020805_T01_j_1
GRMZM2G028054_T02_j_1

GRMZM2G028054_T01 AT3G11440.1 myb domain protein 65
GRMZM2G028054_T02 AT3G11440.1 myb domain protein 65
GRMZM2G028054_T03 AT3G11440.1 myb domain protein 65
miR390a-miR390b GRMZM2G304745_TO01_j_1
GRMZM2G304745_T01 AT1G63430.1 Leucine-rich repeat protein kinase family
protein

miR393a*(isoMIR)-miR393b(isoMIR)-  GRMZM5G848945_T02_j_1
miR393c*(isoMIR)

GRMZM5G848945_T02 AT3G26810.1 auxin signaling F-box 2
GRMZM2G135978_T01 AT3G62980.1 F-box/RNI-like superfamily protein
miR394a-miR394b GRMZM2G119650_T01 AT1G27340.1 Galactose oxidase/kelch repeat superfamily
protein
GRMZM2G064954_T01 AT1G27340.1 Galactose oxidase/kelch repeat superfamily
protein

miR395a(isoMIR)-miR395e(isoMIR)- GRMZM2G042171_T01_j_1
miR395h(isoMIR)

GRMZM2G042171_T01 AT5G10180.1 sulphate transporter 2;1
GRMZM2G149952_T01 AT4G14680.1 Pseudouridine synthase/archaeosine
transglycosylase-like family protein
GRMZM2G051270_T01 AT4G14680.1 Pseudouridine synthase/archaeosine
transglycosylase-like family protein
GRMZM2G051270_T03 AT4G14680.1 Pseudouridine synthase/archaeosine

transglycosylase-like family protein
GRMZM2G051270_T02_j_1

GRMZM2G051270_T02 AT3G22890.1 ATP sulfurylase 1
miR396¢(isoMIR)-miR396d(isoMIR) GRMZM2G041223_T01_j_1
GRMZM2G041223_T01 AT3G13960.1 growth-regulating factor 5

GRMZM2G119359_T01_j 1
GRMZM2G098594_T03_j_1
GRMZM2G033612_T02_j_1
GRMZM2G098594_T04

GRMZM2G034876_T01 AT3G13960.1 growth-regulating factor 5
GRMZM5G850129_T04 AT3G13960.1 growth-regulating factor 5
GRMZM2G129147_T02
GRMZM2G018414_T01 AT4G37740.1 growth-regulating factor 2
GRMZM2G119359_T01
GRMZM2G067743_T01 AT4G37740.1 growth-regulating factor 2
GRMZM5G850129_T02 AT3G13960.1 growth-regulating factor 5
GRMZM2G105335_T01 AT3G13960.1 growth-regulating factor 5
GRMZM2G105335_T02 AT3G13960.1 growth-regulating factor 5
GRMZM2G098594_T01 AT3G13960.1 growth-regulating factor 5
GRMZM2G098594_T02 AT3G13960.1 growth-regulating factor 5
GRMZM2G034876_T02 AT3G13960.1 growth-regulating factor 5
GRMZM5G850129_T03 AT3G13960.1 growth-regulating factor 5
GRMZM2G067743_T02 AT3G13960.1 growth-regulating factor 5
GRMZM2G033612_T02 AT4G37740.1 growth-regulating factor 2
GRMZM5G850129_T01 AT3G13960.1 growth-regulating factor 5
GRMZM2G129147_T01 AT3G13960.1 growth-regulating factor 5
GRMZM2G018414_T02 AT4G37740.1 growth-regulating factor 2
GRMZM2G098594_T06 AT3G13960.1 growth-regulating factor 5
GRMZM2G034876_T03 AT3G13960.1 growth-regulating factor 5
GRMZM2G098594_T03
GRMZM5G893117_T01 AT3G13960.1 growth-regulating factor 5
GRMZM2G045977_T01 AT2G36400.1 growth-regulating factor 3
GRMZM2G124566_T01 AT2G36400.1 growth-regulating factor 3
GRMZM2G124566_T02 AT2G36400.1 growth-regulating factor 3
IncRNA_Z27kG1_06923

miR397b(isoMIR) GRMZM2G072808_T01 AT5G60020.1 laccase 17
GRMZM2G400390_T01 AT3G09220.1 laccase 7
GRMZM2G132169_T02 AT5G05390.1 laccase 12
GRMZM2G336337_T01 AT5G05390.1 laccase 12
GRMZM2G132169_T01 AT5G05390.1 laccase 12
GRMZM2G132169_T01_j_1

miR399a-miR399¢c-miR399h TCONS_00124738
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miR399b
miR399d(miRNA*)

miR399e-miR399j-miR399i
miR399f

miR408b.1-miR408a

miR408b.2(isoMIR)

miR529

miR-NEW1

TCONS_00124738

GRMZM2G165734_T01
GRMZM2G165734_T01
GRMZM2G165734_T01
GRMZM2G125378_T01

GRMZM2G165734_T01
TCONS_00124738

TCONS_00124738

GRMZM2G068186_T01
GRMZM5G866053_T01
GRMZM2G004012_T01
GRMZM2G004012_T01
GRMZM2G352678_T01
GRMZM5G866053_T01
GRMZM2G097851_T01
GRMZM2G101511_T01

AC233751.1_FGT002

GRMZM2G101511_T02

GRMZM2G414805_T03_j_1

GRMZM2G414805_T01
GRMZM2G414805_T03
GRMZM2G414805_T05
GRMZM2G414805_T02
GRMZM2G414805_T07
GRMZM2G414805_T04
GRMZM2G160917_T01
GRMZM2G061734_T01

GRMZM2G460544_T01
GRMZM2G160917_T02
GRMZM2G160917_T03
GRMZM2G307588_T01
GRMZM2G126018_T01
GRMZM2G126018_T02
GRMZM5G806833_T01

GRMZM5G806833_T01_j_1

GRMZM2G148467_T02
GRMZM2G148467_T01

GRMZM2G171279_T01_j_1

GRMZM2G020766_T01

GRMZM2G114704_T01_j_1

GRMZM2G046909_T01
GRMZM2G076468_T01
GRMZM2G150674_T01
GRMZM2G314692_T04

GRMZM2G099297_T01
GRMZM2G314692_T03

GRMZM2G314692_T03_j_1

GRMZM2G123703_T01
GRMZM2G349651_T01
GRMZM2G151997_T01
GRMZM2G314692_T01

GRMZM2G054481_T01
GRMZM2G449257_T01
GRMZM2G314692_T02

GRMZM2G349651_T01_j_1

GRMZM2G149375_T01

GRMZM2G510905_T01
GRMZM2G484444_T01
GRMZM2G157243_T01
GRMZM2G541399_T01
GRMZM2G112986_T01
GRMZM2G432757_T01
GRMZM2G100253_T01
GRMZM5G854179_T01
GRMZM2G532329_T01
GRMZM2G022792_T01
GRMZM2G009136_T01
GRMZM2G559355_T01
GRMZM2G582910_T01

GRMZM2G061728_T01_j_1

GRMZM2G122767_T01

GRMZM2G171022_T02_j_1

AT1G60170.1

AT2G02850.1
AT2G02850.1
AT2G02850.1
AT2G02850.1
AT2G02850.1
AT2G32300.1
AT5G50670.1

AT5G50670.1

AT5G50670.1

AT1G27370.1
AT1G27370.1
AT5G43270.1

AT1G27370.1
AT2G42200.1
AT5G50670.1

AT2G42200.1
AT2G42200.1
AT2G42200.1
AT2G42200.1
AT2G42200.1
AT2G42200.1

AT1G27370.1
AT3G02050.1

AT3G50910.1
AT5G61650.1

AT4G13400.1

AT4G35160.1
AT4G13400.1

AT5G59970.1
AT5G01750.2
AT4G13400.1
AT5G58375.1

AT4G31730.1
AT4G13400.1

AT2G19090.1

AT1G68090.1

AT3G18190.1
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pre-mRNA processing ribonucleoprotein
binding region-containing protein

plantacyanin

plantacyanin

plantacyanin

plantacyanin

plantacyanin

uclacyanin 1

Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

squamosa promoter binding protein-like 10
squamosa promoter binding protein-like 10
squamosa promoter binding protein-like 2

squamosa promoter binding protein-like 10
squamosa promoter binding protein-like 9
Squamosa promoter-binding protein-like
(SBP domain) transcription factor family
protein

squamosa promoter binding protein-like 9
squamosa promoter binding protein-like 9
squamosa promoter binding protein-like 9
squamosa promoter binding protein-like 9
squamosa promoter binding protein-like 9
squamosa promoter binding protein-like 9

squamosa promoter binding protein-like 10

K+ uptake transporter 3

CYCLIN P4;2

2-oxoglutarate (20G) and Fe(ll)-dependent
oxygenase superfamily protein
O-methyltransferase family protein
2-oxoglutarate (20G) and Fe(ll)-dependent
oxygenase superfamily protein

Histone superfamily protein

Protein of unknown function (DUF567)
2-oxoglutarate (20G) and Fe(ll)-dependent
oxygenase superfamily protein
Methyltransferase-related protein
glutamine dumper 1

2-oxoglutarate (20G) and Fe(ll)-dependent
oxygenase superfamily protein

Protein of unknown function (DUF630 and
DUF632)

annexin 5

TCP-1/cpn60 chaperonin family protein
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miR-NEW2

miR-NEW4

miR-NEW6
miR-NEW10a.2 - miR-NEW10b.2

miR-NEW10c.2 - miR-NEW10d.2
miR-NEW11
miR-NEW12
miR-NEW13

miR-NEW14
miR-NEW15

miR-NEW18

miR-NEW19

miR-NEW20a -miR-NEW20b

miR-NEW21

miR-NEW22

miR-NEW28
miR-NEW29

210

GRMZM2G061728_T01
GRMZM2G038384_T01
GRMZM2G074423_T01

GRMZM2G038384_T01_j_1

GRMZM2G171022_T02

GRMZM2G074423_T01_j_1

GRMZM2G113347_T01
GRMZM2G171022_T01
GRMZM2G171236_T02
GRMZM2G137239_T01

GRMZM2G171236_T03
GRMZM2G120084_T01
GRMZM2G578161_T01
GRMZM2G474537_T01
GRMZM2G137541_T01

GRMZM2G148773_T01
GRMZM2G011731_T02
GRMZM2G011731_T01
siRNA_Z27kG1_23954

GRMZM2G146490_T01
GRMZM2G146490_T02
GRMZM2G028228_T01
GRMZM2G478553_T01
GRMZM2G412850_T01
GRMZM2G167151_T01
GRMZM5G884800_T01
GRMZM2G040592_T01
GRMZM2G384536_T01
GRMZM2G338785_T01
GRMZM2G100709_T01

GRMZM2G088349_T01_j_1

siRNA_Z27kG1_20468

GRMZM2G088349_T01_j_1

GRMZM2G119322_T01
GRMZM2G062567_T01

GRMZM2G168909_T06_j_1

GRMZM2G168909_T05
GRMZM2G168909_T04
GRMZM2G168909_T06
GRMZM2G484653_T01
GRMZM2G081541_T01

GRMZM2G134753_T01_j_1

GRMZM2G134753_T01
GRMZM2G134753_T02
GRMZM2G068255_T02

GRMZM2G068255_T01

GRMZM2G032348_T02_j_1

GRMZM2G163418_T01
GRMZM2G163418_T02

GRMZM2G383240_T02_j_1

GRMZM2G383240_T07
GRMZM2G020450_T01

GRMZM2G455687_T01_j_1

GRMZM2G455687_T01
shRNA_Z27kG1_15518
GRMZM2G154900_T01

GRMZM2G020450_T01_j_1

GRMZM2G521946_T01
GRMZM5G837999_T01
GRMZM2G081541_T01
GRMZM2G347056_T01
GRMZM2G151223_T01

GRMZM2G380668_T01

GRMZM2G056645_T01_j_1

GRMZM2G056645_T01

GRMZM2G055116_T01

GRMZM2G144841_T01_j_1

GRMZM2G144841_T01
GRMZM2G115658_T03
GRMZM2G364703_T01

GRMZM2G109464_T01
GRMZM2G109464_T02

GRMZM5G837999_T01
GRMZM2G392003_T02
GRMZM2G094699_T02
GRMZM2G055116_T01
GRMZM5G837999_T01

AT5G26770.1
AT3G19460.1
AT3G10250.1

AT5G39250.1

AT5G39250.1
AT2G43040.1
AT3G03070.1
AT5G20610.1
AT1G68920.1
AT1G34320.1
AT4G10080.1
AT4G10080.1

AT1G80420.1
AT1G80420.1

AT1G72310.1

AT2G40260.1

AT2G26310.2
AT5G14105.1
AT2G26310.2
AT5G60790.1
AT2G39340.1
AT2G39340.1
AT3G04500.1
AT3G04500.1
AT4G23810.1
AT2G46400.1

AT4G24400.2
AT2G24960.1

AT5G38840.1

AT5G60790.1
AT2G44160.1
AT2G01830.2
AT1G65720.1

AT1G03060.1

AT1G32370.2
AT5G13750.2
AT1G14130.1
AT2G02960.1
AT2G02960.1

AT4G31490.1
AT4G31490.1
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Reticulon family protein
Plant protein 1589 of unknown function

F-box family protein

F-box family protein

tetratricopeptide repeat (TPR)-containing
protein
NADH-ubiquinone oxidoreductase-related

basic helix-loop-helix (bHLH) DNA-binding
superfamily protein
Protein of unknown function (DUF668)

BRCT domain-containing DNA repair protein
BRCT domain-containing DNA repair protein

RING/U-box superfamily protein

Homeodomain-like superfamily protein

Chalcone-flavanone isomerase family protein
Chalcone-flavanone isomerase family protein
ABC transporter family protein

SAC3/GANP/Nin1/mts3/elF-3 p25 family
SAC3/GANP/Nin1/mts3/elF-3 p25 family
RNA-binding (RRM/RBD/RNP motifs) family
protein

RNA-binding (RRM/RBD/RNP motifs) family
protein

WRKY family transcription factor
WRKY DNA-binding protein 46

CBL-interacting protein kinase 8

SMAD/FHA domain-containing protein

ABC transporter family protein
methylenetetrahydrofolate reductase 2
CHASE domain containing histidine kinase
protein

Beige/BEACH domain ;WD domain, G-beta
repeat protein

tobamovirus multiplication 2B

zinc induced facilitator-like 1

2-oxoglutarate (20G) and Fe(ll)-dependent
oxygenase superfamily protein
RING/FYVE/PHD zinc finger superfamily
protein

RING/FYVE/PHD zinc finger superfamily
protein

Coatomer, beta subunit
Coatomer, beta subunit



GRMZM2G174537_T01 AT4G00170.1 Plant VAMP (vesicle-associated membrane
protein) family protein
siRNA_Z27kG1_18385

GRMZM2G036123_T01 AT2G37690.1 phosphoribosylaminoimidazole carboxylase,
putative / AIR carboxylase, putative
GRMZM2G152925_T01 AT1G22450.1 cytochrome C oxidase 6B
GRMZM2G151223_T01 AT2G01830.2 CHASE domain containing histidine kinase
protein
miR-NEW30 GRMZM2G034551_T01 AT2G30080.1 ZIP metal ion transporter family
miR-NEW33 TCONS_00122037

GRMZM5G890787_TO01
GRMZM2G504151_TO01
miR-NEW35 GRMZM2G151807_T03_j_1
GRMZM2G561630_T01_X_1
GRMZM2G056829_T03_j_1
GRMZM2G056829_T04
GRMZM2G169899_T04
GRMZM2G000741_T01 AT1G72820.1 Mitochondrial substrate carrier family protein
GRMZM2G066755_T01 AT3G55960.1 Haloacid dehalogenase-like hydrolase (HAD)
superfamily protein
shRNA_Z27kG1_24208
shRNA_Z27kG1_14549
GRMZM2G102616_T01

miR-NEW41 GRMZM2G144362_T03_j_1
GRMZM2G144362_T04 AT2G44420.1 protein N-terminal asparagine
amidohydrolase family protein
GRMZM2G144362_T03 AT2G44420.1 protein N-terminal asparagine
amidohydrolase family protein
GRMZM2G144362_T02 AT2G44420.1 protein N-terminal asparagine
amidohydrolase family protein
GRMZM2G144362_T05 AT2G44420.1 protein N-terminal asparagine
amidohydrolase family protein
GRMZM2G144362_T01 AT2G44420.1 protein N-terminal asparagine
amidohydrolase family protein
miR-NEW45 GRMZM2G056526_T01
miR-NEW46.1 GRMZM2G156006_T01 AT5G25190.1 Integrase-type DNA-binding superfamily
protein
AC186377.3_FGT006
miR-NEW46.2 AC186377.3_FGT006
miR-NEW48 GRMZM2G134329_T02 AT5G67610.2 Uncharacterized conserved protein
(DUF2215)
GRMZM2G134329_T01_j_1
GRMZM2G134329_T03 AT5G67610.2 Uncharacterized conserved protein
(DUF2215)
GRMZM2G134329_T04 AT5G67610.2 Uncharacterized conserved protein
(DUF2215)
GRMZM2G134329_T01 AT5G67610.2 Uncharacterized conserved protein
(DUF2215)
GRMZM2G389462_T01 AT5G42340.1 Plant U-Box 15
GRMZM5G878732_T01 AT1G49850.1 RING/U-box superfamily protein
GRMZM5G878732_T02
AC225718.2_FGT005 AT3G28920.1 homeobox protein 34
GRMZM5G878732_T01 AT1G49850.1 RING/U-box superfamily protein
GRMZM2G098420_T03 AT5G17290.1 autophagy protein Apg5 family
GRMZM2G098420_T02 AT5G17290.1 autophagy protein Apg5 family
GRMZM2G098420_T01 AT5G17290.1 autophagy protein Apg5 family
GRMZM2G098420_T01_j_1
AC207358.3_FGT003
GRMZM2G318689_T01 AT3G04580.1 Signal transduction histidine kinase, hybrid-
type, ethylene sensor
GRMZM2G068688_T01 AT1G05820.1 SIGNAL PEPTIDE PEPTIDASE-LIKE 5
GRMZM2G068688_T02 AT1G05820.1 SIGNAL PEPTIDE PEPTIDASE-LIKE 5
GRMZM2G542515_T01
GRMZM2G082823_T01 AT1G12040.1 leucine-rich repeat/extensin 1
GRMZM2G475170_T01 AT2G28670.1 Disease resistance-responsive (dirigent-like
protein) family protein
GRMZM2G130358_T02 AT1G75350.1 Ribosomal protein L31
GRMZM2G130358_T01 AT1G75350.1 Ribosomal protein L31
GRMZM2G026556_T02 AT2G41370.1 Ankyrin repeat family protein / BTB/POZ
domain-containing protein
GRMZM2G358619_T01 AT5G47910.1 respiratory burst oxidase homologue D
AC204619.3_FGT003
GRMZM5G894582_T01
GRMZM2G093716_T03 AT5G22370.1 P-loop containing nucleoside triphosphate
hydrolases superfamily protein
GRMZM2G093716_T02 AT5G22370.1 P-loop containing nucleoside triphosphate
hydrolases superfamily protein
GRMZM2G093716_T01 AT5G22370.1 P-loop containing nucleoside triphosphate

hydrolases superfamily protein
GRMZM2G093716_T05

GRMZM2G467466_T01 AT1G02020.1 nitroreductase family protein
GRMZM2G485880_T01

GRMZM2G122108_T02 AT5G15330.1 SPX domain gene 4
GRMZM2G122108_T03 AT5G15330.1 SPX domain gene 4
GRMZM2G122108_TO01 AT5G15330.1 SPX domain gene 4

GRMZM2G122108_T01_j_1
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GRMZM5G815881_T01

IncRNA_Z27kG1_02332

GRMZM5G896805_T01

IncRNA_Z27kG1_02332

GRMZM2G031917_T01_j_1

GRMZM2G171518_T03 AT2G43970.1 RNA-binding protein
GRMZM2G031917_T01

GRMZM2G031917_T02

GRMZM2G171518_T02 AT2G43970.1 RNA-binding protein
GRMZM2G171518_T01 AT2G43970.1 RNA-binding protein
GRMZM2G485880_T01
GRMZM2G325580_T01 AT3G06390.1 Uncharacterised protein family (UPF0497)
GRMZM2G082508_T01 AT3G11810.1
GRMZM2G386209_T01 AT5G47530.1 Auxin-responsive family protein
GRMZM2G386209_T02 AT5G35735.1 Auxin-responsive family protein
GRMZM2G386209_T03 AT5G35735.1 Auxin-responsive family protein
GRMZM2G386209_T05 AT5G35735.1 Auxin-responsive family protein
GRMZM2G090779_TO01 AT1G51760.1 peptidase M20/M25/M40 family protein
GRMZM2G386209_T04 AT5G35735.1 Auxin-responsive family protein
GRMZM2G448687_T03 AT1G58250.1 Golgi-body localisation protein domain ;RNA
pol Il promoter Fmp27 protein domain
GRMZM2G448687_T01 AT1G58250.1 Golgi-body localisation protein domain ;RNA
pol Il promoter Fmp27 protein domain
GRMZM2G034206_T01 AT4G24972.1 tapetum determinant 1

GRMZM2G369839_TO01

GRMZM2G107162_T01

GRMZM5G827174_T01 AT1G10020.1 Protein of unknown function (DUF1005)
GRMZM2G054020_T02

GRMZM2G024838_T01_O_1

GRMZM2G487776_T01 AT2G16190.1

GRMZM2G024838_T01 AT5G13510.1 Ribosomal protein L10 family protein

GRMZM2G092797_T01 AT3G56990.1 embryo sac development arrest 7

GRMZM2G054020_TO01 AT2G03510.1 SPFH/Band 7/PHB domain-containing
membrane-associated protein family

GRMZM2G173724_T01 AT5G05350.1 PLACS family protein

GRMZM2G399333_T01 AT5G11550.1 ARM repeat superfamily protein

GRMZM2G371159_T01 AT1G02900.1 rapid alkalinization factor 1

GRMZM2G074974_T02

GRMZM2G074974_T01

GRMZM2G092165_T02 AT2G40780.1 Nucleic acid-binding, OB-fold-like protein

GRMZM5G816314_T01 AT2G44940.1 Integrase-type DNA-binding superfamily
protein

GRMZM2G318530_TO01

GRMZM2G360023_T01

GRMZM5G822928_T01

GRMZM5G873917_TO01 AT3G52710.1

GRMZM2G092165_T01 AT2G40780.1 Nucleic acid-binding, OB-fold-like protein

GRMZM2G306105_T01

GRMZM2G306105_T02

GRMZM5G868875_T02 AT1G11510.1 DNA-binding storekeeper protein-related
transcriptional regulator

GRMZM2G454189_T01

GRMZM2G367459_T01

GRMZM2G382591_T01

GRMZM2G306105_T01

GRMZM2G127853_T01 AT1G69295.1 plasmodesmata callose-binding protein 4

GRMZM5G868875_T01 AT1G11510.1 DNA-binding storekeeper protein-related
transcriptional regulator

GRMZM2G028007_T01 AT1G23270.1

GRMZM2G382591_T01

AC214448.3_FGT007_O_1

GRMZM2G118515_T01_j_1

GRMZM2G073943_T01 AT1G33800.1 Protein of unknown function (DUF579)

GRMZM2G382591_T02

GRMZM2G010505_T01_j_1

GRMZM2G118515_T02 AT5G48970.1 Mitochondrial substrate carrier family protein

GRMZM2G139031_T01 AT1G21710.1 8-oxoguanine-DNA glycosylase 1

GRMZM2G118515_T01 AT5G48970.1 Mitochondrial substrate carrier family protein

GRMZM2G073943_T01_O_1

GRMZM2G166430_T01 AT1G79060.1

GRMZM2G012999_T01 AT5G07900.1 Mitochondrial transcription termination factor
family protein

GRMZM2G010505_T01 AT3G06910.1 UB-like protease 1A

GRMZM5G877941_T02 AT5G06580.1 FAD-linked oxidases family protein

GRMZM2G428470_T01 AT2G44730.1 Alcohol dehydrogenase transcription factor
Myb/SANT-like family protein

GRMZM5G877941_T01 AT5G06580.1 FAD-linked oxidases family protein

GRMZM5G877941_T03 AT5G06580.1 FAD-linked oxidases family protein

GRMZM2G034430_T01 AT5G11350.1 DNAse I-like superfamily protein

GRMZM5G877941_T03_j_1

GRMZM2G000739_T01 AT5G40850.1 urophorphyrin methylase 1

AC214448.3_FGT007_O_1
GRMZM2G033829_T02_j_1

GRMZM2G033829_TO01 AT5G60640.1 PDI-like 1-4
GRMZM2G035601_T01_O_1
GRMZM2G035601_T01 AT3G58030.1 RING/U-box superfamily protein

212 Appendixes



GRMZM2G152419_T01
GRMZM2G357804_T03

GRMZM2G357804_T02

GRMZM2G000739_T02

GRMZM2G357804_T01_j_1

GRMZM2G357804_T01

GRMZM2G000739_TO01_j_1

GRMZM2G116086_T01
GRMZM2G026639_T01

GRMZM2G021483_T01_j_1

GRMZM2G479717_T01
GRMZM2G024264_T06
GRMZM2G386095_T01
GRMZM2G024264_T05
GRMZM2G024264_T01
GRMZM2G024264_T04
GRMZM2G024264_T03
GRMZM2G133620_T02
GRMZM2G174558_T01
GRMZM2G009892_T02
GRMZM2G072274_T01
GRMZM2G133620_T01
GRMZM2G009892_T01
GRMZM2G359038_T03
GRMZM2G009892_T03

GRMZM2G359038_T01_j_1

GRMZM5G894569_T01
GRMZM2G005939_T05

GRMZM2G027043_T01
GRMZM2G005939_T02
GRMZM2G005939_T01

GRMZM2G005939_T06

GRMZM2G005939_T01_j_1

GRMZM2G101080_T03
GRMZM2G005939_T04

GRMZM2G101080_TO01_j_1

GRMZM2G005939_T03

GRMZM2G024264_T02
GRMZM2G158831_T01
GRMZM2G130868_T02
GRMZM2G323309_T01

GRMZM2G359038_T01
GRMZM2G130868_T01
GRMZM2G144843_T01

GRMZM2G359038_T02
GRMZM2G358219_T01
GRMZM2G028763_T02
GRMZM2G028763_T01
GRMZM2G403636_T01
GRMZM2G091293_T01

GRMZM2G158520_T01
AC226227.2_FGT003

GRMZM2G102790_T01_O_1

GRMZM2G134756_T02
GRMZM2G134756_T01

GRMZM2G102790_T01

GRMZM2G424491_T01_j_1

GRMZM5G836475_T01

GRMZM2G057247:T01J71

GRMZM2G057247_T01
GRMZM5G871489_T01
GRMZM2G378217_T01
GRMZM2G134759_T01
GRMZM2G086628_T01
GRMZM2G134759_T02
GRMZM2G436688_T01
GRMZM2G047255_T01

GRMZM2G158034_T04

AT2G32480.1
AT3G11540.1

AT3G11540.1
AT5G40850.1
AT3G11540.1
AT3G03940.1
AT5G47400.1
AT4G37700.1
AT3G12490.2
AT3G13850.1
AT3G12490.2
AT3G12490.2
AT3G12490.2
AT3G12490.2
AT3G12490.2
AT1G28280.1
AT5G61430.1
AT2G45430.1
AT3G12490.2
AT5G61430.1
AT1G80300.1
AT5G61430.1
AT1G27660.1
AT2G45150.3
AT1G05710.1
AT1G05710.1
AT1G05710.1
AT2G38800.1
AT1G27660.1
AT1G27660.1
AT3G12490.2
AT2G20815.1
AT1G71110.1
AT2G15630.1
AT1G80300.1
AT1G71110.1
AT1G59720.1
AT1G80300.1
AT3G13062.2
AT3G13062.2
AT2G42520.1
AT1G56020.1
AT4G06744.1
AT2G33840.1
AT2G33840.1

AT5G16770.1

AT5G67470.1

AT3G02790.1
AT2G32300.1
AT3G02790.1
AT4G18570.1

AT4G00100.1
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ARABIDOPSIS SERIN PROTEASE
Tetratricopeptide repeat (TPR)-like
superfamily protein
Tetratricopeptide repeat (TPR)-like
superfamily protein

urophorphyrin methylase 1

Tetratricopeptide repeat (TPR)-like
superfamily protein

Protein kinase family protein

cystatin B

LOB domain-containing protein 22
cystatin B

cystatin B

cystatin B

cystatin B

cystatin B

VQ motif-containing protein

NAC domain containing protein 100
AT-hook motif nuclear-localized protein 22
cystatin B

NAC domain containing protein 100
nucleotide transporter 1

NAC domain containing protein 100

basic helix-loop-helix (bHLH) DNA-binding
superfamily protein

cytidinediphosphate diacylglycerol synthase
4

basic helix-loop-helix (bHLH) DNA-binding
superfamily protein
basic helix-loop-helix (bHLH) DNA-binding
superfamily protein
basic helix-loop-helix (bHLH) DNA-binding
superfamily protein

Plant calmodulin-binding protein-related
basic helix-loop-helix (bHLH) DNA-binding
superfamily protein

basic helix-loop-helix (bHLH) DNA-binding
superfamily protein

cystatin B

Family of unknown function (DUF566)

Pentatricopeptide repeat (PPR) superfamily
protein
nucleotide transporter 1

Tetratricopeptide repeat (TPR)-like
superfamily protein
nucleotide transporter 1

Polyketide cyclase/dehydrase and lipid
transport superfamily protein

Polyketide cyclase/dehydrase and lipid
transport superfamily protein

P-loop containing nucleoside triphosphate
hydrolases superfamily protein

Leucine-rich repeat (LRR) family protein

Tyrosyl-tRNA synthetase, class Ib,
bacterial/mitochondrial
Tyrosyl-tRNA synthetase, class Ib,
bacterial/mitochondrial
myb domain protein 9

formin homolog 6

zinc finger (C2H2 type) family protein
uclacyanin 1
zinc finger (C2H2 type) family protein

Tetratricopeptide repeat (TPR)-like

superfamily protein
ribosomal protein S13A
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GRMZM2G158034_T01 AT4G00100.1 ribosomal protein S13A
GRMZM2G452695_T01_O_1

GRMZM2G452695_T01 AT5G05550.2 sequence-specific DNA binding transcription
factors
GRMZM2G407513_T01
GRMZM2G121878_T01 AT5G14740.2 carbonic anhydrase 2
GRMZM2G121878_T02 AT5G14740.2 carbonic anhydrase 2
GRMZM2G121878_T03 AT1G70410.1 beta carbonic anhydrase 4
GRMZM2G121878_T05 AT5G14740.1 carbonic anhydrase 2
GRMZM2G121878_T01_j_1
GRMZM2G121878_T06 AT5G14740.1 carbonic anhydrase 2
miR-NEW56 GRMZM2G098331_T01 AT1G20080.1 Calcium-dependent lipid-binding (CaLB
domain) family protein
GRMZM2G098331_T02 AT1G20080.1 Calcium-dependent lipid-binding (CaLB
domain) family protein
GRMZM2G034551_T01 AT2G30080.1 ZIP metal ion transporter family
GRMZM5G837999_TO01
miR-NEW58 GRMZM5G872943_T01

*transcript annotation = transcriptome assembly reconstructed from our RNA-seq
experiment
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Co-occupancy analysis results
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Appendix F

Differentially expressed sRNA loci (not MIRNA loci) in stress conditions
and/or at the developmental stage of plants at +7

C = control; D = drought stress; S = salinity stress; D+S = drought+salinity stress.
+0=ten days of treatment; +7=seven days of recovery.

*log2 fold change = only values with FDR <1% are reported.

**Ul = Uniqueness Index of sRNA loci as defined by ShortStack program.
***location = genomic location of sRNA loci based on the transcriptome
reannotation obtained from our RNA-seq experiment:

"exon" or "intron" = indicates that the locus is located within an exon or an intron
for its entire length;

"exon-intron" = indicates that the locus overlaps with an intron and an exon of a
gene;

"antisense" = indicates that the locus is antisense to a gene;

"intergenic" = indicates that the locus is located between genes for its entire
length;

"genic-intergenic" = indicates that the locus partially overlaps with a gene.
****gene annotation = transcriptome assembly reconstructed from our RNA-seq
experiment.
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Appendix G

Differentially expressed genes in rmr6-1 mutant compared to wt (control
conditions, after ten days of experiment)

*gene annotation = transcriptome assembly reconstructed from our RNA-seq
experiment. Genes named as "Cluster..." and "XLOC..." were new loci, previously
not annotated.

**log2 fold change = only values with FDR <5% are reported. "inf" indicates that
genes were expressed only in rmr6-1 mutant. "-inf" indicates that genes were
expressed only in wt.
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