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CHAPTER 1

Compactness

Summary of Chapter 1. Compactness estimates for the
∂̄−Neumann problem hold whenever ∀ ε∃ cε such that: ‖u‖2 ≤
εQ(u, u) + Cε‖u‖−1, ∀u ∈ Dom(∂̄∗). These yield regularity of the
∂̄−Neumann problem; by taking ε = cs where cs is a bound from above
for the coefficients of [Ds, ∂̄] and [Ds, ∂̄∗] and by applying them for
u replaced by Dsu, one has Hs−regularity. A sufficient condition for
compactness estimates is the celebrated P−property: the existence of
an uniformly bounded family of weights which satisfies: ∂∂̄ϕε > ε−1.
The same problem can be investigated over an abstract pseudoconvex
oriented compact hypersurface-type manifold. Compactness is defined
by ‖u‖2 ≤ εQ(u, u) +Cε‖u‖−1 and P−property is replaced by the (CR
P−property), that is: (∂b∂̄b − ∂̄b∂b)ϕε ≥ ε−1 for ϕε bounded. The ap-
proach consists of a tangential basic estimate in the formulation given
by Khanh in his thesis which refines former work by Nicoara [37]. It
has been proved by Raich[?] that if the CR manifold is embedded in
the complex Euclidean space and orientable, property “(CR− P )” for
1 ≤ q ≤ n−1

2
implies compactness estimates for the Kohn-Laplacian

�b in any degree k satisfying 1 ≤ k ≤ n− 2. The same result is stated
by Straube[?] without the assumption of orientability. We regain these
results by a simplified method and extend the conclusions to CR
manifolds which are not necessarily embedded nor orientable. In this
general setting, we also prove compactness estimates in degree k = 0
and k = n − 1 under the assumption of (CR − P ) and, when n = 2,
of closed range for ∂̄b. Notice that, if M is embedded, this assumption
can be dispensed[?] to a recent result by Baracco[?]. For n ≥ 3, this
refines former work by Raich and Straube and separatly by Straube.
In fact, our setting is slighly more general when pseudoconvexity is
replaced by q−pseudoconvexity.

1.1. Introduction

Definition 1.1.1. We say that N is compact if for any bounded
sequence {uj} the sequence {N(uj)} has a convergent subsequence.

1



2 1. COMPACTNESS

Definition 1.1.2. We say that a pseudoconvex domain Ω has
global compactness estimates for the ∂̄−Neumann problem if for every
positive number M and for any u ∈ C∞(Ω)k ∩ Dom(∂̄∗) there exists
CM > 0 such that

(1.1.1) ‖u‖2 ≤ εQ(u, u) + Cε‖u‖2
−1.

Remark 1.1.3. It is easy to observe that (1.1.1) implies for u ∈
Dom(�):

(1.1.2) ‖u‖2 ≤ ε‖�(u)‖2 + Cε‖u‖2
−1.

Proposition 1.1.4. For a pseudoconvex domain Ω, the following
are equivalent:

(1) the compactness of the Neumann operators Nk, for 1 ≤ k ≤
n− 1;

(2) the compactness of the embedding jk of the space Dom(∂̄)k ∩
Dom(∂̄∗)k, provided with the graph norm ‖u‖+ ‖∂̄u‖+ ‖∂̄∗u‖,
into H0(Ω)k;

(3) the validity of global compactness estimates.

Proof. First we prove (3) ⇒ (1). We want to prove that for any
bounded sequence {un} ⊂ H0(Ω)k the sequence {Nk(un)} admits a
convergent subsequence. Since Nk is a bounded operator in H0(Ω)k we
observe that {Nk(un)} is a bounded sequence in H0(Ω)k. Hence there
exists a subsequence vj = unj such that {N(vj)} converges in H−1(Ω)k

since H0(Ω)k is compactly embedded in H−1(Ω)k. To conclude it is
sufficient to prove that {Nk(vj)} is a Cauchy sequence. We observe
that estimate (1.1.2) applied to Nk(vj − vl) give us:

‖Nk(vj − vl)‖ ≤ ε‖vj − vl‖+ Cε‖Nk(vj − vl)‖−1.

Fixed δ > 0, we get the conclusion choosing ε such that ε‖vj − vl‖ ≤ δ
2

for any j, l and M ∈ N such that Cε‖Nk(vj−vl)‖ ≤ δ
2

for any j, l ≥M .
Now we prove that (1) ⇒ (2). It is easy to observe that Nk = j∗k ,

when the range Dom(∂̄) ∩Dom(∂̄∗) is endowed with the graph norm.
On the other hand, compactness is stable under adjuction.

Finally we prove (2) ⇒ (3). If the compactness estimate does not
hold we can choose a sequence {un} such that Q(un, un) = 1 and

(1.1.3) 1 ≥ ‖un‖2 ≥ ε+ n‖un‖2
−1

for any n ∈ N. By compactness of the embedding there exists a subse-
quence vj = unj which converges in H0(Ω)k and hence also in H−1(Ω)k.
From (1.1.3) the common limit is 0. But this contradicts the fact that,
again by (1.1.3), ‖un‖ ≥ ε. �
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Lemma 1.1.5. Let {Uν}Nν=1 be a finite covering of bΩ by a local
pathcing. If compactness estimates hold in each Uν:

‖u‖2 ≤ εQ(u, u) + Cε‖u‖1 ∀u ∈ C∞c (Ω̄ ∩ Uν)
then we have global compactness.

Proof. Let {ζν}Nν=0 be a partition of the unity such that ζ0 ∈
C∞c (Ω), ζν ∈ C∞c (Uν), ν = 1, . . . , N and

N∑
ν=0

ζ2
ν = 1 on Ω̄.

For u ∈ C∞(Ω̄)k∩Dom(∂̄∗), we wish to prove (1.1.1). From the interior
elliptic regularity of Q we have ‖ζ0u‖2

1 . Q(ζ0u, ζ0u). On the other
hand, by the interpolation estimates for Sobolev spaces, we have:

‖ζ0u‖ . ε‖ζ0u‖1 + Cε‖ζ0u‖−1.

It follows

‖ζ0u‖ . εQ(ζ0u, ζ0u) + Cε‖ζ0u‖2
−1

. εQ(u, u) + ε‖[Q, ζ0]u‖+ Cε‖u‖−1.

Similarly, for ν = 1, . . . , N , using the hypothesis, we have

‖ζνu‖ . εQ(ζνu, ζνu) + Cε‖ζνu‖2
−1

. εQ(u, u) + ε‖[Q, ζν ]u‖+ Cε‖u‖−1.

Summing up over ν and absorbing commutators in the left, we get the
proof of the lemma. �

Proposition 1.1.6. Let Ω be a pseudoconvex domain. A compact-
ness estimate implies boundedness of the Neumann operator Nk in
Hs(Ω)k for any s > 0 and 1 ≤ k ≤ n− 1.

Proof. By a standard fact of elliptic regularization, we only have
to prove the a priori estimates:

(1.1.4) ‖u‖s ≤ ‖�u‖s + ‖u‖0

for any u ∈ C∞(Ω̄)k and for any positive integer s. We can prove the
result in a patching {Uν}ν in which there are well defined the pseu-
dodifferential tangential operators Λs and the related tangential norm
‖|u‖|s = ‖Λsu‖. By non characteristicity it is enough to prove

(1.1.5) ‖Λsu‖ ≤ ‖Λs�u‖+ s.c.‖u‖s + ‖u‖0.

In fact, since ‖u‖s ∼
∑s

m=0 ‖|∂mr u‖|s−m, it is sufficient to observe that
the following two estimates hold:

(1.1.6) ‖|∂ru‖|s−1 ≤ C(‖|�u‖|s + ‖Λsu‖)
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and

(1.1.7) ‖|∂k+2
r u‖|s−k−2 .

k∑
j=0

‖|∂jr�u‖|s−j + ‖Λsu‖

for integer k ≥ 0. The first inequality follows from

‖∂ru‖2 ≤ ‖L̄nu‖2 + ‖Λu‖2 ≤
. Q(u, u) + ‖|u‖|21,

and is then obtained by substituting Λs−1u for u. The second inequality
is obtained as follows. Since � is elliptic we can solve the equation
�u = α for the second derivatives with respect to r:

∂2
ruI =

∑
K

aKI αK +
∑
K,i,j

bKijI

∂2uK
∂xi∂xj

+
∑
K,i

cKiI
∂2uK
∂xi∂r

+ first order.

The second inequality is then obtained by applying Λs−k−2∂kr to
the above equation and taking L2−norm. Now we pass to (1.1.5);
the idea of the proof is very simple. Using the compactness esti-
mates for ε ∼ c−1

s where cs is an upper bound for the coefficients of
[Λs, ∂̄], [Λs, ∂̄∗], [∂̄∗, [Λs, ∂̄]] and [∂̄, [Λs, ∂̄∗]] we have,

‖Λsu‖2 ≤ ε(‖∂̄Λsu‖2 + ‖∂̄∗Λsu‖2) + Cε‖|u‖|s−1

= ε(‖Λs∂̄u‖2 + ‖Λs∂̄∗u‖2 + ‖[∂̄,Λs]u‖2 + ‖[∂̄∗,Λs]u‖2)

+Cε‖|u‖|s−1

≤ ε
(
‖Λs∂̄u‖2 + ‖Λs∂̄∗u‖2 + cs(‖|u‖|2s + ‖|∂ru‖|2s−1)

)
+Cε‖|u‖|s−1

≤ ε
(

(Λs�u,Λsu) + ‖[∂̄,Λs]u‖2 + ‖[∂̄∗,Λs]u‖2(1.1.8)

+‖[∂̄, [∂̄∗,Λs]]u‖2 + ‖[∂̄∗, [∂̄,Λs]]u‖2

+cs(‖|u‖|2s + ‖|∂ru‖|2s−1)
)

+ Cε‖|u‖|s−1

≤ ‖Λs�u‖2 + εcs(‖|u‖|2s + ‖|∂ru‖|2s−1 + ‖|∂2
ru‖|2s−2)

+Cε‖|u‖|s−1

≤ ‖Λs�u‖+ s.c.‖u‖+ Cε‖u‖s−1

We then reduce (s− 1) to 0−norm by iteration and get (1.1.5) �

Definition 1.1.7. We say that a pseudoconvex domain Ω satisfies
the P−property if there exists a family of weights {ψε}ε∈R such that:

(1) ψε are bounded,
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(2) for any ε > 0 we have

∂∂̄ψε(z)(u, u) ≥ 1

ε
|u|2

for any u ∈ Cn and z ∈ bΩ.

Remark 1.1.8. By the basic estimate it is obvious that P−property
for Ω implies compactness; whether the opposite holds, is not known.

In the next proposition we present an obstruction to P−property.

Proposition 1.1.9. If there exists an analytic disc in the boundary
of Ω ⊂ Cn then P−property does not hold.

Proof. Let A : ∆ → Cn be the parametrization of the analyc-
tic disc in the boundary of Ω. By the P−property we have that
∆ψε(A(z)) > 1

ε
. In polar coordinate we have that

∆ =
1

4
(∂2
r +

1

2
∂r +

1

r2
∂θ).

Hence ∫ 2π

0

1

4
(∂2
r +

1

2
∂r +

1

r2
∂θ)ψε(A(r, θ)) dθ ≥ 1

ε
2π

Note that the term under integration which contains the derivation in
θ vanishes. By multiplication by r in both sides of the above inequality
we obtain: ∫ 2π

0

1

4
(r∂2

r +
1

2
∂r)ψε(A(r, θ)) dθ ≥ 1

ε
2πr.

Hence with the notation Mε(r) = 1
2π

∫ 2π

0
ψε(A(r, θ)) dθ:

rM
′′

ε (r) +M
′

ε(r) ≥
1

ε
r

i.e.

(rM
′

ε)
′
(r) ≥ 1

ε
r.

Then by the monotonicity of the integration, we have:

rM
′

ε(r) ≥
1

2ε
r2

and so

Mε(r) ≥Mε(0) +
1

4ε
r2.

The previous inequality contradicts the boundedness of ψε. �
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We pass to consider compactness estimates for ∂̄b in an abstract CR
manifold M . This is the main content at the present chapter. Let M
be a compact CR manifold endowed with the Cauchy-Riemann struc-
ture T 1,0M . By this, we mean T 1,0M ∩ T 0,1M = 0. T 1,0 and T 0,1 are
involutive, that is, [Li, Lj] ∈ T 1,0M whenever L1, L2 ∈ T 1,0M . We
call dimC( C⊗TM

T 1,0M⊕T 0,1M
) the CR codimension of M . We say that M is

hypersurfice type whenever the codimension is 1. We choose a basis
L1, ..., Ln−1 of T 1,0M , the conjugated basis L̄1, ..., L̄n−1 of T 0,1M , and
a transversal, purely imaginary, vector field T . We also take a her-
mitian metric on the complexified tangent bundle in which we get an
orthogonal decomposition CTM = T 1,0M⊕T 0,1M⊕CT . We denote by
ω1, ..., ωn−1, ω̄1, ..., ω̄n−1, γ the dual basis of 1-forms. We denote by LM
the Levi form defined by LM(L, L̄′) := dγ(L, L̄′) for L, L′ ∈ T 1,0M . The
coefficients of the matrix (cij) of LM in the above basis are described
through Cartan formula as

cij = 〈γ, [Li, L̄j]〉.

We denote by Bk the space of (0, k)-forms u with C∞ coefficients; they
are expressed, in the local basis, as u =

∑′
|J |=k

uJ ω̄J for ω̄J = ω̄j1∧...∧ω̄jk .

Associated to the Riemaniann metric 〈·, ·〉z, z ∈M and to the element
of volume dV , there is a L2-inner product (u, v) =

∫
M
〈u, v〉zdV . We

denote by (L2)k the completion of Bk under this norm; we also use the
notation (Hs)k for the completion under the Sobolev norm Hs. The
de-Rham exterior derivative induces a complex ∂̄b : Bk → Bk+1. This
is defined as follows: ∂̄b = πk+1 ◦ d, where d is the exterior derivative
on M and πk+1 is the projection of a (k + 1)−form into Bk+1. We
denote by ∂̄∗b : Bk → Bk−1 the adjoint and set �b = ∂̄b∂̄

∗
b + ∂̄∗b ∂̄b. Let

ϕ be a smooth function, denote by (ϕij) the matrix of the Levi form

Lϕ = 1
2
(∂b∂̄b − ∂̄b∂b)(ϕ) in the basis above, and by λϕ

ε

1 ≤ ... ≤ λϕ
ε

n−1

the ordered eigenvalues of Lϕ. Let L2
ϕ be the L2 space weighted by e−ϕ

and, for ϕj := Lj(ϕ), denote by Lϕj = Lj − ϕj the L2
ϕ-adjoint of −L̄j.

The following is the tangential version of the celebrated Hörmander-
Kohn-Morrey basic estimate. We present here the refinement by Khanh
[34] of a former statement by Nicoara [37]. Le zo ∈ M ; for a suitable
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neighborhood U of zo and a constant c > 0, we have

‖∂̄bu‖2
ϕ + ‖∂̄∗b,ϕu‖2

ϕ + c‖u‖2
ϕ

≥
∑′

|K|=k−1

∑
i,j

(ϕijuiK , ujK)ϕ −
∑′

|J |=k

qo∑
j=1

(ϕjjuJ , uJ)ϕ

+
∑′

|K|=k−1

∑
i,j

(cijTuiK , ujK)ϕ −
∑′

|J |=k

qo∑
j=1

(cjjTuJ , uJ)ϕ

+
1

2

( qo∑
j=1

‖Lϕj u‖2
ϕ +

n−1∑
j=qo+1

‖L̄ju‖2
ϕ

)
,

(1.1.9)

for any u ∈ Bkc (U) where qo is any integer with 0 ≤ qo ≤ n − 1. We
introduce now a potential-theoretical condition which is a variant of
the “P -property” by Catlin [31]. In the present version it has been
introduced by Raich [40].

Definition 1.1.10. Let zo be a point of M and q an index in the
range 1 ≤ q ≤ n − 1. We say that M satisfies property (CR − Pq) at
zo if there is a family of weights {ϕε} in a neighborhood U of zo such
that

(1.1.10)

|ϕ
ε(z)| ≤ 1, z ∈ U

q∑
j=1

λϕ
ε

j (z) ≥ ε−1, z ∈ U and kerLM(z) 6= {0}.

It is obvious that (CR− Pq) implies (CR− Pk) for any k ≥ q.

Remark 1.1.11. Outside a neighborhood Vε of ker dγ, the sum∑
j≤qo

λϕ
ε

j can get negative; let −bε be a bound from below. Now, if cε is

a bound from below for dγ outside Vε, by setting aε := ε−1+bε
qcε

, we have,

(1.1.11)
∑
j≤qo

λϕ
ε

j + aεdγ =
∑
j≤qo

λϕ
ε

j + qaεcε ≥ ε−1 on the whole U.

Conversely, (1.1.11) readily yields the second of (1.1.10). This equiv-
alence was already noticed in [41] and justifies our abuse of notation:
in fact, (1.1.11) is named (CR − Pq) by [41] in accordance with [40],
whereas (1.1.10) is named “property (Pq) in the nullspace of the Levi
form”.

Again, (1.1.11) for q implies (1.1.11) for any k ≥ q.

We state now one of the two main results of the paper
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Theorem 1.1.12. Let M be a compact pseudoconconvex CR mani-
fold of hypersurface type of dimension 2n− 1. Assume that (CR− Pq)
holds for a fixed q with 1 ≤ q ≤ n−1

2
over a covering {U} of M . Then

we have compactness estimates: given ε there is Cε such that

(1.1.12) ‖u‖2 ≤ ε(‖∂̄bu‖
2

+ ‖∂̄∗bu‖
2
) + Cε‖u‖2

−1

for any u ∈ Dk
∂̄∗b
∩Dk

∂̄b
and k ∈ [q, n − 1 − q], where Dk

∂̄∗b
and Dk

∂̄b
are

the domains of ∂̄∗b and ∂̄b respectively.

The argument of Proposition (1.1.6), adapted to the present sit-
uation, shows that compactness estimate imply Hs regularity of the
Green operator G, the inverse of �b, in degree q ≤ k ≤ n − 1 − q
By Hodge duality between forms of complementary degree, we need
the double constraint k ≥ q (for the positive microlocalization) and
k ≤ n − 1 − q (for the negative one); this forces q ≤ n−1

2
. For M em-

bedded and orientable, Theorem 1.1.12 is contained in [40]. The same
is proved in [41] without the assumption of orientability. The proof of
this, as well as of the theorem which follows, is given in Section 1.2.
Let Hk = ker ∂̄b ∩ ker ∂̄∗b be the space of harmonic forms of degree k.
As a consequence of (1.1.12), we have that for q ≤ k ≤ n − 1 − q,
the space Hk is finite-dimensional, �b is invertible over Hk⊥ (cf. [37]
Lemma 5.3) and its inverse Gk is a compact operator. When k = 0 and
k = n− 1 it is no longer true that it is finite-dimensional. However, if
q = 1, we have a result analogous to (1.1.12) also in the critical degrees
k = 0 and k = n− 1.

Theorem 1.1.13. Let M be a compact, pseudoconvex CR manifold
of hypersurface type of dimension 2n− 1. Assume that property (CR−
Pq) holds for q = 1 over a covering {U} of M and, in case n = 2, make
the additional hypothesis that ∂̄b has closed range. Then for any ε there
is Cε such that

(1.1.13) ‖u‖2 ≤ ε(‖∂̄bu‖
2

+ ‖∂̄∗bu‖
2
) + Cε‖u‖2

−1

for any u ∈ Hk⊥, k = 0 and k = n − 1. In particular, Gk is compact
for k = 0 and k = n− 1.

For n ≥ 3 and M a boundary of a domain in Cn, resp. embedded
and orientable, Theorem 1.1.13 is contained in [39] (resp. [41]).

Acknowledgements. The authors are grateful to Emil Straube for fruit-
ful discussions.
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1.2. Proofs

Proof of Theorem 1.1.12. We choose a local patch U where a local
frame of vector fields is found for which (1.1.9) is fulfilled. The key point
is to specify the convenient choices of qo and ϕ in (1.1.9). Let 1 = ψ+ 2+
ψ− 2 +ψ0 2 be a conic, smooth partition of the unity in the space R2n−1

dual to the space to which U is identified in local coordinates. Let Ψ
±
0 be

the pseudodifferential operators with symbols ψ
±
0 and let id = Ψ+Ψ+ ∗+

Ψ−Ψ−∗+ Ψ0Ψ0 ∗ be the corresponding microlocal decomposition of the
identity. For a cut off function ζ1 ∈ C∞c (U) we decompose a form u as

(1.2.1) u
±
0 = ζ1Ψ

±
0u u ∈ Bkc (U), ζ1|suppu ≡ 1.

For u+ we choose qo = 0 and ϕ = ϕε. We also need to go back to
Remark 1.1.11. Now, if aε has been chosen so that (1.1.11) is fulfilled,
we remove T from our scalar products observing that, for large ξ, we
have ξ2n+1 > aε over suppψ+. In the same way as in Lemma 4.12 of
[37], we conclude that for k ≥ q∑′

|K|=k−1

∑
ij

((cijT + ϕεij)u
+
iK , u

+
jK)ϕε ≥

∑′

|K|=k−1

∑
ij

((aεcij + ϕεij)u
+
iK , u

+
jK)ϕε

− C‖u+‖2

ϕε − Cε‖u
+‖2

−1,ϕε − Cε‖ζ
2Ψ̃0u+‖2

ϕε

≥ ε−1‖u+‖2

ϕε − Cε‖u
+‖2

−1,ϕε − Cε‖ζ
2Ψ̃0u+‖2

ϕε ,

where Ψ̃0 � Ψ0 and ζ2 � ζ1 in the sense that ψ̃0|suppψ0 ≡ 1 and
ζ2|supp ζ1 ≡ 1 respectively. (Here ‖u+‖−1,ϕε = ‖Λ−1u+‖ϕε where Λ−1 is
the standard tangential pseudodifferential operator of order −1 in the
local patch U .) Note that there is an additional term −Cε‖u+‖2

−1,ϕε

with respect to [37]. The reason is that (cijξ2n−1 +ϕεij) can get negative
values, even on suppψ+, when ξ2n−1 < aε. Integration in this compact
region, produces the above error term. It follows that for any k =
1, ..., n− 1:
(1.2.2)

‖u+‖2

ϕε ≤ ε(‖∂̄bu+‖2

ϕε + ‖∂̄∗b,ϕεu+‖2

ϕε
) + Cε‖u+‖2

−1,ϕε + Cε‖ζ2Ψ̃0u+‖2

ϕε .

By taking the composition χ(ϕε) where χ = χ(t) is a smooth function
on R+ satisfying χ̇ > 0 and χ̈ > 0, we get

(χ(ϕε))ij = χ̇ϕεij + χ̈|ϕεj|2κij,
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where κij is the Kronecker symbol. We also notice that

|∂̄∗b,χ(ϕε)u|2 ≤ 2|∂̄∗bu|2 + 2χ̇2
∑′

|K|=k−1

|
∑

j=1,...,n

ϕεjujK |2.

Remember that {ϕε} are uniformly bounded by 1. Thus, if we choose
χ = 1

4
e(t−1), then we have that χ̈ ≥ 2χ̇2 for t = ϕε. For this reason, with

this modified weight, we can replace the weighted adjoint ∂̄∗b,ϕε by the

unweighted ∂̄∗b in (1.2.2). By the uniform boundedness of the weights,
we can also remove them from the norms and end up with the estimate

(1.2.3) ‖u+‖2 ≤ ε
(
‖∂̄∗bu+‖2

+ ‖∂̄bu+‖2
)

+ Cε‖u+‖2

−1 + Cε‖ζ2Ψ̃0u‖2
,

for k = q, ..., n−1. For u−, we choose qo = n−1 and ϕ = −ϕε. Observe
that for |ξ| large we have −ξ2n−1 ≥ aε over suppψ− (cf. [37] Lemma
4.13); thus, we have in the current case, for k ≤ n− 1− q∑′

|K|=k−1

∑
ij

((cijT − ϕεij)u−iK , u
−
jK)−ϕε −

∑′

|J |=k

∑
j=1,...,n

((cjjT − ϕεjj)u−J , u
−
J )−ϕε

≥ −
∑′

|K|=k−1

∑
ij

((aεcij + ϕεij)u
−
iK , u

−
jK)−ϕε

+
∑′

|J |=k

∑
j=1,...,n

((aεcjj + ϕεjj)u
−
J , u

−
J )−ϕε − C‖u−‖

2

ϕε − Cε‖u
−‖2

−1,ϕε − Cε‖ζ
2Ψ̃0u−‖2

ϕε

≥ ε−1‖u−‖2

ϕε − C‖u
−‖2

ϕε − Cε‖u
−‖2

−1,ϕε − Cε‖ζ
2Ψ̃0u−‖2

ϕε .

Thus, we get the analogous of (1.2.2) for u+ replaced by u− and, re-
moving again the weight from the adjoint ∂̄∗b,ϕε and from the norms, we
conclude
(1.2.4)

‖u−‖2 ≤ ε(‖∂̄bu−‖
2
+‖∂̄∗bu−‖

2
)+Cε‖u−‖

2

−1,ϕε+Cε‖ζ
2Ψ̃0u‖2

, k = 0, ..., n−1−q.

In addition to (1.2.3) and (1.2.4), we have elliptic estimates for u0

(1.2.5) ‖u0‖2

1 <∼
‖∂̄u0‖2

+ ‖∂̄∗bu0‖2
+ ‖u‖2

−1.

The same estimate also holds for u0 replaced by ζ2Ψ̃0u. We put together
(1.2.3), (1.2.4) and (1.2.5) and notice that

‖∂̄b(ζ1Ψ
±
0u)‖

2

≤ ‖ζ1Ψ
±
0 ∂̄bu‖

2

+ ‖[∂̄b, ζ1Ψ
±
0 ]u‖

2

≤ ‖ζ1Ψ
±
0 ∂̄bu‖

2

+ ‖ζ2ζ̃Ψ
±
0u‖

2

+ ‖ζ2Ψ̃0u‖2
,

(1.2.6)
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for ζ2 � ζ1 and Ψ̃0 � Ψ0. The similar estimate holds for ∂̄b replaced by
∂̄∗b . Since ζ1|suppu ≡ 1, then

‖u‖2 ≤
∑

+,−,0

‖ζ1Ψ
±
0u‖

2

+Op−∞(u)

≤ ε
∑

+,−,0

(‖(∂̄bu)
±
0‖

2

+ ‖(∂̄∗bu)
±
0‖

2

) + Cε‖u‖2
−1,

and therefore

(1.2.7) ‖u‖2 ≤ ε(‖∂̄bu‖
2

+ ‖∂̄∗bu‖
2
) + Cε‖u‖2

−1, q ≤ k ≤ n− 1− q.

We consider now u globally defined on the whole M instead of a local
patch U . To pass from local to global compactness estimates is imme-
diate (cf. e.g. [30]). We cover M by {Uν} so that in each patch there
is a basis of forms in which the basic estimate holds. In the identifica-
tion of Uν to R2n−1, we suppose that the microlocal decomposition by

the operators Ψ
±
0 which occur in (1.2.6) is well defined. We then get

(1.2.7) and apply it to a decomposition u =
∑

ν ζνu for a partition of
the unity

∑
ν ζν = 1 on M . We point out that we first take summation

over +,−, 0 on each patch Uν and next summation over ν; this is why
orientability of M is needless.

We observe that [∂̄b, ζν ] and [∂̄∗b , ζν ] are 0-order operators and, since
they come with a factor of ε, they are absorbed in the left side of
(1.2.7); thus (1.2.7) holds for any u ∈ Bk. Finally, by the density of
smooth forms Bk into Sobolev forms (H1)k, (1.2.7) holds in fact for
any u ∈ Dk

∂̄∗b
∩Dk

∂̄b
. The proof is complete.

�

Proof of Theorem 1.1.13. We prove estimates in degree 0 (those in
degree n− 1 being similar). We first discuss the case n > 2. We make
repeated use of (1.2.7) in degree 1. This first implies that ∂̄∗b has closed
range on 1-forms. In particular,

H0⊥ = (ker ∂̄b)
⊥

= range ∂̄∗b .

Thus, if u ∈ H0⊥, then there exists a solution v ∈ (L2)1 to the equa-
tion ∂̄∗b v = u. Moreover, we can choose v belonging to (ker ∂̄∗b )

⊥. In
particular, to this v, the following estimate applies

(1.2.8) ‖v‖2
0 <∼
‖∂̄∗b v‖

2

0 for any v ∈ (ker ∂̄∗b )
⊥.
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This can be proved by contradiction. If (1.2.8) is violated, there exists
a sequence vν ∈ (ker ∂̄∗b )

⊥ such that ‖vν‖2
0 ≡ 1 and ‖∂̄∗b vν‖0 → 0.

Any subsequential L2-weak limit vo of vν is 6= 0 but satisfies vo ∈
ker ∂̄∗b ∩ (ker ∂̄∗b )

⊥, a contradiction. We also have

(1.2.9) ‖v‖2
−1 ≤ ε‖∂̄∗b v‖

2

0 + cε‖∂̄∗b v‖
2

−1, for any v ∈ (ker ∂̄∗b )
⊥.

The argument is similar. If (1.2.9) is violated, then there is a sequence
vν ∈ (ker ∂̄∗b )

⊥ such that ‖vν‖−1 ≡ 1, ‖∂̄∗b vν‖−1 → 0 and ‖∂̄∗b vν‖0 ≤ c.
But we also have from (1.2.8), ‖∂̄∗b vν‖0 >

∼
‖vν‖0 ≥ ‖vν‖−1 = 1. Thus

any subsequential L2-weak limit of ∂̄∗b vν must be 0 and 6= 0.

We point out now that (ker ∂̄∗b )
⊥ ⊂ range ∂̄b ⊂ ker ∂̄b; in particular,

our solution v satisfies ∂̄bv = 0. We are ready to conclude the proof for
n > 2. We use the notation lc and sc for a large and small constant
respectively. We have for any function u

‖u‖2 = (u, ∂̄∗b v)

= (∂̄bu, v)

≤ ‖∂̄bu‖‖v‖
≤

(1.2.7) for v
‖∂̄bu‖(ε‖∂̄∗b v‖+ cε‖v‖−1)

<
∼

(1.2.9)

‖∂̄bu‖(ε‖u‖+ cε‖u‖−1)

≤ lc1 ε
2‖∂̄bu‖

2
+ sc1‖u‖2 + lc2 c

2
ε‖u‖

2
−1 + sc2‖∂̄bu‖

2

≤ ε′‖∂̄bu‖
2

+ cε′‖u‖2
−1 + sc1‖u‖2,

(1.2.10)

for ε′ = lc1 ε
2 + sc2 and cε′ = lc2 c

2
ε . By choosing sc1 so that sc1‖u‖2

is absorbed in the left, (1.2.10) yields (1.2.7) for u in degree 0. This
concludes the proof of the case n > 2 for functions.

Let n = 2; we have only estimates for positively microlocalized 1-forms
and for negatively microlocalized functions. We have to show how to
get estimates for positively microlocalized functions (the argument for
negative 1-forms being similar). We use our extra assumption of closed
range for ∂̄b; thus for any u ∈ (ker ∂̄b)

⊥ there is v ∈ (ker ∂̄∗b )
⊥ such that

∂̄∗b v = u. Moreover, for this v, we have the estimates (1.2.8) and (1.2.9).
On each Uν we consider the positive microlocalization Ψ+, take a pair
of cut-off functions ζν , ζ

1
ν ∈ C∞c (Uν) with ζ1

ν |supp ζν ≡ 1, and define
Ψ+
ν := ζ1

νΨ+ζν . Note that the commutators [∂̄∗b ,Ψ
+
ν ] and [∂̄b,Ψ

+
ν ] are

operators with symbols of type ζ̇1
νψ

+ζν , ζ
1
ν ψ̇

+ζν and ζ1
νψ

+ζ̇ν . All these
symbols have support contained in the positive half-space ξ2n−1 > 0 and
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hence we have compactness estimates for 1-forms if their coefficients
are subjected to the action of the corresponding pseudodifferential op-
erators. We denote by a common symbol Φ+

ν all these operators coming
from commutators. We have

‖Ψ+
ν v‖ ≤ ε‖∂̄∗bΨ+

ν v‖+ cε‖Ψ+
ν v‖−1 + cε‖ζ2

ν Ψ̃0ζνv‖
≤ ε‖Ψ+

ν ∂̄
∗
b v‖+ ε‖Φ+

ν v‖+ cε‖Ψ+
ν v‖−1 + cε‖ζ2

ν Ψ̃0ζνv‖
≤ ε‖u‖+ ε‖v‖+ cε‖v‖−1

≤
(1.2.8) and (1.2.9)

ε‖u‖+ cε‖u‖−1.

(1.2.11)

The same estimate also holds for ‖Φ+
ν v‖. It follows

‖Ψ+
ν u‖

2
= (Ψ+

ν u,Ψ
+
ν ∂̄
∗
b v)

= (Ψ+
ν ∂̄bu,Ψ

+
ν v) + (Φ+

ν u,Ψ
+
ν v) + (Ψ+

ν u,Φ
+
ν v)

≤ (‖Ψ+
ν ∂̄bu‖+ ‖Φ+

ν u‖+ ‖Ψ+
ν u‖)(‖Φ+

ν v‖+ ‖Ψ+
ν v‖)

≤
(1.2.11)

(‖Ψ+
ν ∂̄bu‖+ ‖u‖)(ε‖u‖+ cε‖u‖−1)

<
∼
ε‖Ψ+

ν ∂̄bu‖‖u‖+ cε‖Ψ+
ν ∂̄bu‖‖u‖−1 + ε‖u‖2 + cε‖u‖−1‖u‖

≤ lc1 ε
2‖Ψ+

ν ∂̄bu‖
2

+ sc1‖u‖2 + sc2‖Ψ+
ν ∂̄bu‖

2
+ lc2 c

2
ε‖u‖

2
−1 + ε‖u‖2 + sc3‖u‖2 + lc3 c

2
ε‖u‖2

−1

≤ ε′‖Ψ+
ν ∂̄bu‖

2
+ sc4‖u‖2 + cε′‖u‖2

−1,

(1.2.12)

where ε′ = lc1 ε
2 + sc2, cε′ = lc2 c

2
ε + lc3 c

2
ε and sc4 = sc1 + ε + sc3.

We have to recall now that the same estimate as (1.2.12) also holds

for ‖Ψ−ν u‖
2

(the one for ‖Ψ0
νu‖

2
being trivial by ellipticity). Taking

summation over +, − and 0 on each Uν , we get

‖ζνu‖2 ≤ ε‖ζ1
ν ∂̄bu‖

2
+ cε‖u‖2

−1 + sc‖u‖2.

We take now summation over ν and choose sc so that the related term
is absorbed by

∑
ν ‖ζνu‖

2 ∼ ‖u‖2 and end up with

‖u‖2 ≤ ε‖∂̄bu‖
2

+ cε‖u‖2
−1 for any function u.

�





CHAPTER 2

Global regularity

Summary of Chapter 2. We have seen in Chapter 1 that com-
pactness implies the regularity of the ∂̄−Neumann problem in the
sobolev spaces Hs, that is, the Hs continuity of the Neumann oper-
ator N . It is classical that regularity can hold under weaker conditions
than compactness. The first approach to regularity in geometric terms
has been done by Boas Straube[?] through the method of the “good
vector field” T or “good defining function” r < 0, condition. This con-
sists in assuming, ∀ ε, the existence of T ε purely immaginary tangential
vector filed such that |〈[∂̄, T ε], Ln〉||bΩ ≤ ε, where Ln is the (1, 0) vector
field dual to ∂r. On the one hand, this condition yields regularity (?,?);
on the other this condition is fulfilled, if there exists a plurisubharmonic
defining function r. Notice that any circular complete domain satisfies
this condition by the choice of T as the angular vector field. However,
in a Reinhardt domain the presence of a disc in the boundary pre-
vents from compactness; this exhibits the essiest example of regularity
without compactness.

The vector field condition has been weekened by Straube (?) to a
multiplier condition: ∀ ε∃T ε such that ‖[∂̄∗, T ε]u‖ ≤ εQ1(u, u) +Cε‖u‖
(the original notation is slighly different). Thus is also refered to as
“weak compactness” and it is sufficient for regularity. In Kohn[?]
has given a quantitative version of this statement (not explicitly
stated): if the multiplier conditions holds for a certain ε, thus we
have s−regularity for a related s (under some additional condition
of uniformity for exhaustion; this condition was latter bypassed by
Straube). Also, what is mostly interesting in [?] is that Kohn is able
to relate the constants ε to the number 1

1−δ where δ is the Diederich
Fornaess index. Strictly speaking, Kohn only proves regularity for the
Bergmann projection on functions. The main purpouse of this section
is to extend the conclusion for any degree of forms.

15
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2.1. Introduction

It is well known that compactness is not a necessary condition for
global regularity. We start from the following statement about failure
of compactness estimate.

Proposition 2.1.1 (cf. [34]). Let Ω be a smooth bounded pseudo-
convex domain of Cn with a (n− 1)−”’Reinhardt flat”’ piece of bound-
ary. This means that, in some choice of coordinate

bΩ ⊃ b∆×∆n−1
ε

where ∆ is the unit disc in C and ∆n−1
ε the ε−polydisc in Cn−1. Then

compactness of Nk does not hold for k ≥ 1.

Remark 2.1.2. This result generalizes the one by Krantz [38] and
is close to further developments by Boas Straube in [?]. In the original
statement, Reinhardt complete domains having a flat portion of the
boundary, are considered. Here the domain is not required to be fully
Reinhardt.

Proof. We prove the propisition for the case n = 2 and k = 1,
since the general proof is identical. Let ψ ∈ C∞c (R) satisfies

ψ(t) =

{
1 if t ≤ ε

2
0 if t > ε

For m ∈ Z+, set

um(z1, z2) =
√

2(m+ 1)zm1 ψ(|z2|2)dz̄2.

Then, we have

rz1(um)1 + rz2(um)2 = 0

on the boundary, that is, um ∈ Dom(∂̄∗). Moreover, we have

‖um‖ = 2(m+ 1)

∫
Ω

|z1|2mψ(|z2|2) dV

∼ 2(m+ 1)

∫
D(0,1)×D(0, ε

2m
)

|z1|2m dV ∼ 1.(2.1.1)

On the other hand, one checks readily that ∂̄um = 0 and ∂̄∗um =√
2(m+ 1)zm1 z̄2∂z2ψ; This yields ‖∂̄∗um‖2 . 1. In conclusion,

(2.1.2) ‖um‖0 & Q(um, um).

Since {um}m∈Z+ is an H0−bounded sequence and it converges point-
wise to zero, we have that um converges H0−weakly to 0. Since H0 is
compactly embedded in H−1 there exists a subsequence umj which is
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H−1−convergent; by uniqueness the limit must be 0. This, in combi-
nation with (2.1.2), violates compactness estimates. �

More generally, a disc contained in the boundary of a pseudoconvex
domain in C2 is an obstruction to compactness (unpublished observa-
tion by Catlin). This fact can be generalized to the case of a pseudo-
convex domain in Cn that contains in the boundary a (n−1)−complex
manifold. However, when n ≥ 3, whether an analytic disc in the bound-
ary (say, of a smooth domain) is an obstruction to compactness is an
open problem. This is known only in special cases: when Ω is convex
or convexifiable.

For global regularity, there are several criteria which do not require
compactness. The first is the so called Condition (T) (cf. [33] pag 129).
We fix a defining function r of Ω and of a normal vector field

Ln =
1∑n

j=1 |rzj |2
n∑
j=1

rz̄j∂zj ,

We then ask that for any ε there is a vector field T = Tε, tangent to
the boundary of Ω and whose component along Ln− L̄n has a uniform
lower bound, such that

(2.1.3) |〈[T, S], Ln〉||bΩ < ε

for any S ∈ C ⊗ TCn. We refer to [33] Theorem 6.2.1 for the proof
that condition (T ) implies global regularity. We recall briefly the idea
which it is (?). In the proof of the estimate (1.1.8) we do not have ε for
the full right hand side. However

[∂̄∗, T s] = εT s + terms containing S ∈ S

[∂̄, T s] = εT s + terms containing S ∈ S

These terms are absorbed as well.
An easy application of this result is:

Proposition 2.1.3. Let Ω be a Reinhardt complete, smooth
bounded, pseudoconvex domain of Cn. Then, the ∂̄−Neumann op-
erator Nk on (0, k)−forms is exactly regular in Sobolev norms, that
is

(2.1.4) ‖Nkα‖s ≤ Cs‖α‖s

for s ≥ 0 and all α ∈ Hs(Ω)k.
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Proof. The proof goes through Condition (T). Since Ω is Rein-
hardt, then in particular it is circular, that is, invariant under multi-
plication by eiθ ∈ S1 and therefore

T : = i
n∑
j=1

zj∂zj − i
n∑
j=1

z̄j∂z̄j ,

when restricted to bΩ, is tangent to bΩ (since T (z) = πz,∗

(
∂
∂θ
|θ=0

)
where π is defined by:

π : S1 × Ω→ Ω

(eiθ, z)→ eiθz(2.1.5)

where S1 is the unitary circle). It is an easy exercise to check that in
order that condition (T) is fullifiled, it is sufficent to show that T is
not complex tangential, that is,

(2.1.6) (
n∑
j=1

zj∂zj(r))|bΩ 6= 0.

To prove (2.1.6) we reason by contradiction. If (
∑n

j=1 zj∂zj(r))|bΩ = 0

at some z0 ∈ bΩ, then the vector z0 − 0 is orthogonal to ∂r(z0) and
therefore, there are other points z1 ∈ Ω such that |z1

j | > |z0
j | for any

j. Since Ω is Reinhardt complete, this is a contradiction which proves
(2.1.6). Thus condition (T) is verified and the proposition is proved. �

On the other hand, We have already seen in Proposition (2.1.1)
that there exists a complete Reinhardt domain that does not have
compactness. In particular, compactness is not necessary for regularity.

Definition 2.1.4. An exhaustion of a domain Ω is an increasing
family of relatively compact subsets {Ωρ}ρ∈R+ of Ω, such that:

∪ρΩρ = Ω.

Proposition 2.1.5. Let Ω be a pseudoconvex domain. If Ω admits
a defining function r such that (∂∂̄r)|bΩ ≥ 0 then there exists a strongly
pseudoconvex C2−bounded exhaustion.

Proof. It is sufficient to observe that rρ(z) = r(z) + ρ expA|z|
2
,

ρ ↘ 0, is a family of defining function for a strictly pseudoconvex
exhaustion, once A is choosen to be large enough. �

For the converse we have:

Proposition 2.1.6. If there exists C2+ε−bounded strongly pseudo-
convex exhaustion {Ωρ} of Ω then there exists a defining function r for
Ω such that (∂∂̄r)|bΩ ≥ 0.
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Proof. Let {rρ} be the C2+ε−bounded family of defining functions
for {Ωρ}. It is not restrictive suppose that the family {rρ} is defined in
a neighborhood of Ω̄. Since C2+ε(Ω̄) is compactly embedded in C2(Ω̄),
there exists a subsequence rρj that converge in C2(Ω̄) to some function
r ∈ C2(Ω̄). Since r is a defining function for Ω and

∂∂̄rρj → ∂∂̄r in C0(Ω̄)−norm

we have the conclusion. �

There are always strongly pseudoconvex exhaustions. Problem
is that they are not C2−bounded in general. The regularity of the
∂̄−Neumann problem is related to the existence of good totally real
tangential vector field, or equivalently, to the existence of good defining
functions. By this we mean, for any ε > 0 the existence of a definig
function rε such that

(2.1.7)
∣∣∑

i

rεi,j̄r
ε
ī

∣∣
|bΩ
≤ ε for any j.

that is,

(2.1.8)
∣∣〈[∂z̄i , Tε], ∂r〉∣∣|bΩ ≤ ε

writing Tε = Im(
∑n

i ∂zir∂z̄i). It is under these conditions that the
regularity problem was pionered by Boas-Straube. In particular, they
were able to prove that the existence of a plurisubharmonic functions
implies the two equivalent conditions above. A more recent condition
which weakens (2.1.7) is:

For any ε > 0 there exists a defining function rε for Ω (with ‖rε‖C1 ∼
1)
(2.1.9)

‖
∑

rεij r̄i
εuj‖ ≤ εQ(u, u) + Cε‖u‖−1 for any u ∈ Dom(∂̄) ∩Dom(∂̄)

that is

(2.1.10) ‖[∂̄∗, Tε]u‖ ≤ εQ1(u, u) + Cε‖u‖−1.

We also remark that the tangentiality of Tε in (2.1.8) and (2.1.10)
can be replaced by “approximate tangentiality”. We will discuss from
a modified point of view how these conditions yield regularity and
relate these to the Diederich-Fornaess index δ which approches 1. In
all cases, we will give the quantified version of the result (that is, the
precise relation between s, 1

ε
and 1

1−δ ). A first way to enjoy the bigger
flexibility of (2.1.9) with respect to (2.1.7) consists in the fact that
the existence of a plurisubharmonic defining function readdly implies
(2.1.9) for a single vector field T . Instead, Boas Straube prove that it
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implies (2.1.7); in this case a full family of Tε is needed and the proof
is much more involved. But the new point is that (2.1.9) covers indeed
a reacher range of relations.

We deform the defining function r to rε = gεr and, accordingly,

we deform the vector field T = 2Im
∑
i rī∂zi∑
i |ri|2

to Tgε = 2Im
∑
i(rε )̄i∂zi∑
i |(rε)i|2

. The

condition of approximate tangentiality turns into |Im gε| < ε. These
two deformations are related by [∂̄∗, Tgε ] ∼ (∂∂̄rε | ∂̄rε)Tgε modulo an
error whose restriction to bD belongs to T 1,0bD⊕T 0,1Cn|bD; hence, the
existence of rε such that

(2.1.11) |∂∂̄rε | ∂̄rε| ≤ εQ+ cεΛ
−1,

for |∂rε| ∼ 1, implies (2.1.10). (Here Λ is the standard elliptic operator
of order 1.) This is indeed the assumption under which Straube proves
in [29] Hs-regularity for any s. In particular, this condition is fulfilled
when there is a smooth defining function r such that ∂∂̄r|bD ≥ 0;
in this case one takes, for any ε, rε = r in (2.1.11) and Tε = T in
(2.1.10) respectively (cf. the proof of Theorem 2.2.4 below). Note that,
historically, the conclusion was obtained, instead, through the “good
vector fields” condition. However how this follows from the fact that
there exists r which is plurisubharmonic on bD is not immediate (Re-
mark 2.2.6 below). In any case, (2.1.8) calls into play a full family {Tε}
and the way of getting Tε from the initial T is involved. In [27], Kohn
has given a quantitative result on regularity: he has specified, for given
s, and by allowing a full flexibility in the choice of g, not necessar-
ily g ∼ 1, which is the constant Es,g which is needed in (2.1.10) or
(2.1.11) for Hs-regularity. This is not explicitly stated, but is entirely
contained in [27] which, in turn, goes back to [19]. If this is separated
from the body of the paper, as we do in Theorem 2.2.3, and under
an additional assumption of uniformity under exhaustion, it gives Hs-
estimates; this separation only requires minor modifications and yields
a conclusion which naturally extends to forms of any degree k ≥ q on
q-pseudoconvex domains.

It has been proved by Diederich-Fornaess in [20] that every domain
possesses an index δ with 0 < δ ≤ 1 such that −(−rδ)δ is plurisub-
harmonic; this number δ is called the Diederich-Fornaess index. Again,
rδ is in the form rδ = gδr for some gδ. It is important to observe the
following two facts:

(1) Locally δ → 1, because a possible choice of gδ is exp( 1
1−δ |z|

2)

and this satisfies |∂( 1
1−δ |z|

2)| ∼ 1
1−δ |z| << 1 near the origin;

(2) if P−property holds for Ω then δ → 1. In this case one uses
gδ(z) = exp(ψδ(z)).



2.2. WEAK s-COMPACTNESS AND Hs-REGULARITY 21

With rδ in hands, we ca define a smooth bounded strictly plurisubhar-
monic exhaustion of Ω by

{−(−rδ)δ + ρδ ≤ 0}ρ.

On the other hand, it has been proved by Barret [17] that given a
Sobolev index s↘ 0, one can find a domain D in which the Bergmann
projection Bk fails Hs-regularity; according to [20], for these domains,
one has δ ↘ 0. So the relation between the index of regularity s and
the Diederich-Fornaess index δ is an attractive problem. Indeed, what
is explicitly stated by Kohn and is by far the most interesting content
of [27], is the way of obtaining Es,g out of δ. This is described through
the estimate of the Levi form

(−rδ)
δ
2

∣∣∣∂∂̄(−(−rδ)δ) | ∂̄rδ
∣∣∣ <
∼

(1− δ)
1
2Q

(−rδ)
δ
2
.

(For an operator Op, such as Op= (−rδ)δ, we defineQOp byQOp(u, u) =

‖Op∂̄u‖2
+ ‖Op∂̄∗u‖2

.) In this estimate, one enjois the presence of the

factor (1 − δ)
1
2 . When (1 − δ)

1
2 ≤ Es,g, one expects s-regularity by

what has been said above, but this is not given for free because

one encounters the unpleasant factor (−rδ)
δ
2 . It is well known that

(−rδ)
δ
2 ∼ (T+)−

δ
2 when the action is restricted to harmonic functions.

For this reason, Kohn can prove regularity for the projection B0 on
0-forms, since this factorizes through the projection over harmonic
functions. The main task of the present paper is to develop an ac-
curate pseudodifferential calculus at the boundary which relates the

action of (−rδ)
δ
2 and (T+)−

δ
2 over general functions by describing the

error terms by means of ∆. In this way, when (1 − δ)
1
2 ≤ Es,g, we

get Hs-regularity of Bk in general degree k ≥ 0 on a pseudoconvex
domain.

Recent contribution to regularity of the Bergman projection by the
method of the “multiplier” is given by Straube in the already mentioned
paper [29] and Herbig-McNeal [22]; a combination of the “multiplier”
and “potential” method (inspired to the “(P)-Property” by Catlin) is
developed by Khanh [34] and Harrington [21].

2.2. Weak s-compactness and Hs-regularity

Let D be a bounded smooth domain of Cn defined by r < 0 for
∂r 6= 0. We modify the defining function as gr for g ∈ C∞ and use
the notation rg or rg for gr. We use the lower scripts i and j̄ to denote
derivative in ∂zi and ∂z̄j respectively and work with various vector fields
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such as

(2.2.1) Ng =

∑
i r
g
ī
∂zi∑

i |r
g
i |2

, Lgj = ∂zj − r
g
jNg, Tg = −i(Ng − N̄g).

The Lgj ’s are complex-tangential; Tg is the complementary real-

tangential vector field. We consider an orthonormal basis D̄1, ..., D̄n

of antiholomorphic 1-forms and general forms u of degree k, that is,
expressions of type u =

∑′
|J |=k

uJD̄J where J = j1 < ...jk are ordered

multiindices and D̄J = D̄1 ∧ ... ∧ D̄k. We use the notations

S = Span{Lgj , ∂z̄j , for j = 1, ..., n}, Qs(u, u) = ‖∂̄u‖2
s + ‖∂̄∗u‖2

s.

We have (cf. [19] p. 83) for u ∈ C∞(D̄),

(2.2.2) ‖Su‖2
s−1 <∼

Qs−1(u, u) + ‖u‖s‖u‖s−1 for any S ∈ S.

Since S ⊕ CTg = C⊗ TCn, then (2.2.2) implies

(2.2.3) ‖u‖2
s <∼

Qs−1(u, u) + ‖T sg u‖2 + ‖u‖s‖u‖s−1.

With the notation θ̄j := − 1∑
i |r

g
i |2
∑

i r
g
ij̄
rg
ī
, we define

(2.2.4)


Θ̄gu =

∑′
|K|=k−1

∑
ij

(
θ̄gjuiK − θ̄

g
i ujK

)
+ error,

Θ̄∗gu =
∑′

|K|=k−1

∑
j θ

g
jujK + error.

We have the crucial commutation relation between Tg and the Eu-
clidean derivatives ([27] Lemma 3.33)

(2.2.5) [∂z̄j , Tg] = θ̄jTg modulo S.

This implies

(2.2.6) [∂̄, Tg] = Θ̄gTg modulo S.

As for the commutation of the adjoint ∂̄∗, we need a modification of Tg
which preserves the condition of membership to D∂̄∗ . To this end, we
define T̃g by

(2.2.7) (T̃gu)jK = TgujK +
rg
j̄∑

i |rī|2
∑
i

[Tg, r
g
i ]uiK .

Thus u ∈ D∂̄∗ implies T̃gu ∈ D ¯̄∂∗ . Note that T̃g differs from Tg by a
0-order operator. With these preliminaries, (2.2.5) yields

(2.2.8) [∂̄∗, T̃g] = Θ̄∗gT̃g modulo S.
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Definition 2.2.1. Let s be a positive integer and let 1 ≤ q ≤ n−1.
We say that T sg well commutes with ∂̄∗ in degree ≥ q when

(2.2.9) ‖Θ̄∗gu‖2 ≤ Es,gQ(u, u) + cg‖u‖2
−1, for any u of degree ≥ q,

and for Es,g ≤ c2
1e
−2c2s diam2 D inf

(
1
|g|s

)−1

or, alternatively, for Es,g ≤

c2
1e
−2c2s diam2D sup(1+

|g′|
|g| ), where c1 is a small constant and c2 is controlled

by the C2 norm of rg.

We introduce the notion of q-pseudoconvexity of D; this consists in
the requirement that, for the ordered eigenvalues λ1 ≤ λ2 ≤ ... ≤ λn−1

of the Levi form ∂∂̄r|∂r⊥ , we have
q∑
j=1

λj ≥ 0. The basic estimates show

that the complex Laplacian � is invertible over k-forms for k ≥ q. We
denote by Nk the inverse; we also denote by Bk : L2,k → L2,k ∩ ker ∂̄
the Bergman projection. Recall Kohn’s formula Bk = Id− ∂̄∗k+1Nk+1∂̄k.
We say that Bk is regular, resp. s-exactly regular, when it preserves
C∞, respectively Hs, the s-Sobolev space.

Remark 2.2.2. Assume that for any s there is rg with |∂rg| ∼ 1,

that is |g| ∼ 1, such that |Θ∗gu| ≤ c1e
−c2s diam2D; then there is exact

s-regularity for any s.

We recall from [18] that s-exact regularity of Nk is equivalent to
s-exact of the triplet Bk−1, Bk, Bk+1.

Theorem 2.2.3. Let D be q-peudoconvex and assume that for some
g, T sg well commutes with ∂̄∗ in degree ≥ q. Assume also that this
property of good commutation holds, with a uniform constant Es,g, for
a strongly q-pseudoconvex exhaustion of D. Then for any form f ∈ Hs

we have that Bkf ∈ Hs and

(2.2.10) ‖Bkf‖s ≤ c‖f‖s, for any k ≥ q − 1.

The proof is intimately related to [19]. Formally, it follows the lines
of [27] but also contains ideas taken from [34].

Proof. We first assume that we already know that Bk is regular
for any k ≥ q − 1 and prove (2.2.10) for a constant c which only
depends on (2.2.9). In other terms, we show that (2.2.10) holds for c if
we knew from the beginning that it holds for some c′ >> c. We reason
by induction. An n form is 0 at bD ; thus Nn “gains two derivatives”
by elliptic regularity of � in the interior and hence Bn−1 is regular.
We assume now that Bk is s-regular and prove that the same is true
for Bk−1. We use the notation f for the test form in our proof; the
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notation u, which occurs in (2.2.9), will be reserved to ∂̄Nkf . It suffices
to estimate ‖T sgBk−1f‖ since, by (2.2.3), this controls the full norm
‖Bk−1f‖s. We have

‖T sgBk−1f‖2 =
(
T sgBk−1f, T

s
g f
)
−
(
T sgBk−1f, T

s
g ∂̄
∗Nk∂̄f

)
=
(
T sgBk−1f, T

s
g f
)︸ ︷︷ ︸

(a)

−
(
T s∗g T

s
g ∂̄Bk−1f,Nk∂̄f

)︸ ︷︷ ︸
(b)

−
(
[∂̄, T s∗g T

s
g ]Bk−1f,Nk∂̄f

)︸ ︷︷ ︸
(c)

.

(2.2.11)

Now, (a) ≤ sc‖T sgBk−1f‖2+lc‖T sg f‖
2, whereas (b) = 0. The term which

comes with small constant can be absorbed because we know a-priori
that ‖T sgBk−1f‖ <∞. As for the last term, we replace T sg by T̃ sg modulo
an operator of order s − 1, that we regard as an error term, describe
the commutator in the left of (c) by Θ̄g according to (2.2.6), switch it
to the right as Θ̄∗g and end up with

|(c)| ≤
∣∣∣ (2sΘ̄gT̃

s
gBk−1f, T̃

s
gNk∂̄f

) ∣∣∣+ error

≤ sc‖T sgBk−1f‖2 + lc s‖Θ̄∗gT sgNk∂̄f‖
2

+ error.
(2.2.12)

The error includes terms in (s−1)-norm and terms in which derivatives
belonging to S occur (cf. (2.2.2)). We use the hypothesis (2.2.8) under

the choice Es,g ≤ c2
1c
−2c2s diam2D sup 1

|g|2s and get, with the notation

u = Nk∂̄f

‖Θ̄∗gT̃ sg u‖
2 ≤ sup

1

|g|2s
‖Θ̄∗gT̃ su‖

2

≤ Es,g sup
1

|g|2s
Q(T̃ su, T̃ su) + error

≤ Es,g sup
1

|g|2s
(
QT̃ s(u, u) + ‖[∂̄, T̃ s]u‖2

+ ‖[∂̄∗, T̃ s]u‖2
)

+ error.

(2.2.13)

(In case Es,g ≤ c2
1e
−2c2s diam2D(1+sup

|g′|
|g| ) we have not to replace T̃ sg by T̃ s

and, instead, use the estimate

(2.2.14) |[T̃ sg , ∂̄]v| <
∼
c2 sup(1 +

|g′|
|g|

)|T̃gv| modulo Sv for S ∈ S,

and similarly for ∂̄ replaced by ∂̄∗; the proof will proceed similarly as
below.)
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Now,
QT̃ s(u, u) <

∼
‖T sf‖2 + ‖T sBk−1f‖2 + error.

Next,

‖[∂̄, T̃ s]u‖2 ≤ c2s
2 ‖T sNk∂̄f‖

2
+ error.

We now observe that

Nk∂̄ = BkNk∂̄(Id−Bk−1)

= Bke
−ϕsNk,ϕs ∂̄e

ϕs(Id−Bk−1),
(2.2.15)

where Nk,ϕs is the ∂̄-Neumann operator weighted by e−ϕs = e−c2s|z|
2
.

Since [Ds, ∂̄] is an operator of degree s with coefficients controlled by sc2

for c2 ∼ ‖r‖C2 , then Nk,ϕs ∂̄ is continuous in Hs
ϕs with a continuity con-

stant that we can assume to be unitary. We use that c2s
2 e−2c2s diam2D ≤

inf
z∈D

e−2c2s|z|2 (for different c2) in order to remove weights from the norms.

We also use the inductive assumption that (2.2.10) holds for Bk. In this
way, we end up with

Es,g sup
1

|g|2s
c2s

2 ‖T s∂̄Nkf‖
2 ≤ c2

1

(
‖T sf‖2 + ‖T sBk−1f‖2)+ error

≤ c2
1(‖T sg f‖

2 + ‖T sBk−1f‖2) + error,

(2.2.16)

where the last inequality follows trivially from the fact that Tg = 1
g
T for∣∣∣1g ∣∣∣ >> 1. Here, Es,g takes care of sup 1

|g|2s and also of the constant which

arises from removing weights owing to Es,g ≤ c2
1e
−2sc2diam2D sup 1

|g|2s .

Altogether, up to absorbable terms, ‖T sgBk−1f‖2 has been estimated

by lc‖T sg f‖
2 + error. This concludes the proof of Theorem 2.2.3 if we

are able to remove the assumption that we already know that (2.2.10)
holds for some c′ >> c. For this, we recall that we are assuming that
there is a strongly q-pseudoconvex exhaustion Dρ ↗ D which satisfies
(2.2.9) uniformly with respect to ρ. We observe that (2.2.10) holds over
Dρ for c′ = c′ρ. What has been proved above shows that it holds in fact
with c independent of ρ. Passing to the limit over ρ we get (2.2.10) for
D.

�

Theorem 2.2.4. (Boas-Straube [19]) If there is a defining function
r such that for the eigenvalues µ1 ≤ ... ≤ µn of the full Levi form

∂∂̄r (not restricted to ∂r⊥) we have
q∑
j=1

µj ≥ 0, then, Bk is exactly

Hs-regular for any s and any k ≥ q − 1.
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Proof. The proof consists in proving that (2.2.9) holds for any ε
and uniformly over an exhaustion of D. More precisely, we will show
that for any ε, for Θ̄∗ independent of ε (associated to a normalized
defining function r), and for suitable cε, we have

(2.2.17) ‖Θ̄∗u‖2 ≤ εQ(u, u) + cε|||u|||−1 for u in degree k ≥ q;

moreover, we will prove that (2.2.17) holds for a strongly q-pseudoconvex
exhaustion. (Here, the triplet ||| · ||| denotes the tangential norm (cf.
[26]).)
(a) We begin by noticing that ∂∂̄r + O(|r|)Id ≥ 0 over k-forms for
k ≥ q. We can then apply Cauchy-Schwartz inequality and get

(2.2.18) (rij̄)(u, ∂r) ≤ (rij̄)(u, u)
1
2 +O(|r|

1
2 )|u|.

(b) The Levi form is a “1
2
-subelliptic multiplier” (cf. [26]), that is

(2.2.19) |||
(
(rij̄)(u, u)

) 1
2 |||21

2
≤ Q(u, u).

This can be proved from the basic estimate∫
D

(rij̄)(Tu, u)dV ≤ Q(u, u),

by using the microlocalization T+ and its decomposition T+ =
(T+)

1
2 (T+)

1
2
∗. (Here dV is the element of volume.) Also, by Sobolev

interpolation, we have

‖(rij̄)(u, u)
1
2‖

2
≤ ε‖(rij̄)(u, u)

1
2‖

2

1
2

+ cε‖u‖2
−1

≤ εQ(u, u) + cε‖u‖2
−1,

(2.2.20)

where cε ∼ ε−1||r||C2 . Finally, we estimate the norm of the last term in
(2.2.18). We have

‖(−r)
1
2u‖

2
≤ ε‖ζεu‖2

0 + ‖(1− ζε)u‖2
0

≤ ε‖u‖2
0 + ‖(1− ζε)u‖2

0 <∼
εQ(u, u) + ‖(1− ζε)u‖2

0,

(2.2.21)

where ζε is a cut-off outside of the ε-strip such that |ζ̇ε| <
∼

1
ε
(with ζε ≡ 1

at bD). Moreover, we have

(2.2.22) ‖(1− ζε)u‖2
0 ≤ ε3‖(1− ζε)u‖2

1 + cε‖(1− ζε)u‖2
−1,



2.2. WEAK s-COMPACTNESS AND Hs-REGULARITY 27

and,

ε3‖(1− ζε)u‖2
1 <∼

(i)

ε3Q0((1− ζε)u, (1− ζε)u)

<
∼
ε3Q0(u, u) + ε3‖ζ̇εu‖

2

0

<
∼
ε3Q0(u, u) + ε3ε−2‖u‖2

0

<
∼

(ii)

2εQ0(u, u),

(2.2.23)

where (i) is Garding inequality applied to (1 − ζε)u|bD ≡ 0 and (ii)
follows from applying the basic estimate to ‖u‖2

0. Putting together
(2.2.18)–(2.2.23), we get (2.2.17).
(c) We consider the exhaustion of D by the domains Dρ defined by

rρ < 0 for rρ = r + ρeA|z|
2
; by a suitable choice of A, these domains

are strongly q-pseudoconvex. We remark that ∂∂̄rρ >
∼
−‖r‖C2|rρ| Id ≥

−c|rρ| Id over k forms for k ≥ q. By Cauchy-Schwarz inequality we get

(2.2.24) (rρ
ij̄

)(u, ∂r) ≤ (rρ
ij̄

)(u, u)
1
2 + c|rρ|

1
2 |u| for u of degree k ≥ q.

The Levi form (rρ
ij̄

) is a 1
2
-subelliptic multiplier (uniformly over ρ) and

can be estimated as in (b) as well as the term with O(|rρ|
1
2 ). Altogether,

for fixed ε for any ρ ≤ ρε and for Θ̄∗ρ associated to the definng function
rρ, we have got

(2.2.25) ‖Θ̄∗ρu‖
2 ≤ εQDρ(u, u) + cε‖u‖2

−1,

uniformly with respect to ρ. Passing to the limit over ρ, yields (2.2.17).
�

Theorem 2.2.5. Let D be q-pseudoconvex and assume that for any
ε there is |gε| ∼ 1 such that

(2.2.26) |Θ̄∗gε(u)| ≤ ε|u|2 on bD for u in degree k ≥ q.

Then Bk is exactly Hs-regular for any s and any k ≥ q − 1.

Proof. (2.2.26) readily implies
(2.2.27)

‖Θ̄∗gεu‖
2
<
∼
ε‖u‖2 + ‖gεr‖C2‖(1− ζε)u‖2 for u in degree k ≥ q.

By plugging (2.2.26) with the basic estimate ‖u‖2 <
∼
Q(u, u) and the

Garding inequality ‖gεr‖C2‖(1− ζε)u‖2 <
∼
εQ(u, u) + cε‖u‖2

−1, we get

(2.2.28) ‖Θ̄∗gεu‖
2
<
∼
εQ(u, u) + cε‖u‖2

−1 for u ∈ D∂̄∗ of degree k ≥ q.
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This would give the Hs-regularity of Bk if we were able to prove the
stability of (2.2.26) under a strongly q-pseudoconvex exhaustion. For
this, we fix εo and gεor and approximate D by Dρ defined by gεor +

ρeA|z|
2
; for suitable fixed A, these are strongly q-pseudoconvex for any

ρ. Also, if we rewrite gεor + ρeA|z|
2

= gεo,ρrρ for a normalized equation
rρ of Dρ, we have gεo,ρ →C2

gεo ,

rρ →
C2
r.

Hence
Θ̄∗εo,ρ(u)→ Θ̄∗εo(u) uniformly over u.

We then apply Theorem 2.2.3 to each Ωρ and by uniformity of the
estimate with respect to ρ we get that Bkf belongs to Hs and satisfies
(2.2.10).

�

Remark 2.2.6. We can give an alternative proof of Theorem 2.2.3
which uses Theorem 2.2.5. First, according to the lemma in [19], the
existence of a plurisubharmonic defining function r implies the vector
fields condition (2.1.8). (If r is only q-plurisubharmonic, (2.1.8) must
be adpted by considering, similarly as in (2.2.26), the action over forms
u of degree k ≥ q.) If we knew that the good vector fields Tε are of
type Tgε = −i(Ngε − N̄gε), then, by (2.2.8) we would get (2.2.26) and
reach the conclusion from Theorem 2.2.5. In the general case, by [30]
Proposition 5.26, the condition of good vector fields implies (2.2.26).
(In that proposition, it is proved a generalization of (2.2.8). For any
tangential vector field Tε, not necessarily defined by (2.2.1), if we denote
by gε its (N − N̄)-component, we have [∂̄∗, Tε]|bD = Θ̄∗gε |bDTε modulo

elliptic multipliers (r and ∂r) and 1
2
-subelliptic multipliers (∂∂̄r).)

Remark 2.2.7. We point out that in [29], Straube proves that
(2.2.28) suffices for exact Hs-regularity for any s. This requires heavy
work since, differently from (2.2.26), (2.2.28) is not tranferred from Ω
to Ωρ.

2.3. Pseudodifferential calculus at the boundary

There is an important theory about the equivalence between (−r)σ
and microlocal powers T−σ over harmonic functions; we need to develop
this theory and allow the action over general functions controlling errors
coming from the Laplacian. In this discussion, we do not modify r to
rg and T nor Tg. Also, we still write T but mean in fact its positive
microlocalization T+ which represents over v+ the full elliptic standard
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operator Λ; for this reason, negative and fractionl powers of T make
sense. We denote by U a neighborhood of bD,

Lemma 2.3.1. We have
(2.3.1)

‖(−r)
δ
2 rσT σv‖ <

∼
lc‖(−r)

δ
2v‖+sc‖T−

δ
2v‖+sc‖−rT−1− δ

2 ∆v‖ for any v ∈ C∞(D̄ ∩ U) and σ > −1

2
.

This is a generalization of [27] Lemma 2.6 in which the extra terms
with power δ

2
do not occur.

Proof. We have

‖(−r)
δ
2 rσT σv‖2 = ((−r)δ+2σT 2σv, v)

= −(∂r(−r1+2σ+δ)T 2σv, v)

= 2Re ((−r)1+2σ+δ∂rT
2σv, v)

≤ lc‖(−r)
δ
2v‖2 + sc‖(−r)1+2σ+ δ

2∂rT
2σ+ δ

2
− δ

2v‖
2

≤
(∗)
lc‖(−r)

δ
2v‖

2
+ sc‖T−

δ
2v‖

2
+ sc‖−rT−1− δ

2 ∆v‖
2
,

where (∗) follows from [27] (2.4) applied for 1 + 2σ + δ
2
> 0.

�

In [27] there is a result, Lemma 2.6, which applies to powers > −1
2

of −r; we need a variant, still for negative powers, for terms involving
∂rv.

Lemma 2.3.2. We have
(2.3.2)

‖(−r)σ∂rT σv‖ <
∼
‖v‖+‖rT−1∆v‖+‖T−2∆v‖, v ∈ C∞(D̄∩U), σ > −1

2
.

Proof. We have(
∂r(−r)2σ+1∂rT

2σ−2v, ∂rv
)

= −2Re
(

(−r)2σ+1∂2
rT

2σ−2v, ∂rv
)
.

Write ∂2
r = ∆ + Tan∂r + Tan2 ∼ ∆ + T∂r + T 2. For the three terms

∆, T 2 and T∂r, we have the three relations below, respectively

(
T−2∆v, (−r)2σ+1T 2σ∂rv

)
≤ ‖T−2∆v‖2

+ ‖v‖2,(
(−r)2σ+1T 2σv, ∂rv

)
=
(

(−r)2σ+1T 2σ+1v, ∂rT
−1v
)

<
∼
‖v‖2 + ‖−rT−1∆v‖2

,(
(−r)2σ+1∂rT

2σ−1v, ∂rv
)

=
(

(−r)2σ+1∂rT
(2σ+1)−1v, ∂rT

−1v
)

≤ ‖v‖2 + ‖−rT−1∆v‖2
,
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where the three inequalities come from Cauchy-Schwartz inequality
combined with repeated use of [27] (2.4) (always under the choice s = 0
with the notations therein). Finally, we have to estimate the error term

(2.3.3)
(

(r)2σ+1[∆, T 2σ−2]v, ∂rv
)
.

We express the commutator in (2.3.3) as

[∆, T 2σ−2] = T 2σ−1 + ∂rT
2σ−2.

Thus (2.3.3) splits into two terms to which the two inequalities below
apply

(
(−r)2σ+1T 2σ−1v, ∂rv

)
=
(

(−r)2σ+1T (2σ+1)−1v, T−1∂rv
)

≤ ‖v‖2 + ‖−rT−1∆v‖2
,(

(−r)2σ+1∂rT
2σ−2v, ∂rv

)
=
(

(−r)2σ+1∂rT
2σ−1v, T−1∂rv

)
≤ ‖v‖2 + ‖−rT−1∆v‖2

.

�

We are ready for the main technical tool in interchanging powers
of −r and T .

Proposition 2.3.3. We have

(2.3.4) ‖T−
δ
2v‖ <

∼
‖(−r)

δ
2v‖+ ‖−rT−1− δ

2 ∆v‖+ ‖(−r)
δ
2T−2∆v‖.

Proof. We start from [27] Lemma 2.11

‖T−
δ
2v‖ <

∼
‖(−rδ)

δ
2v‖+ ‖−rT−1− δ

2 ∆v‖

+
∑
j

‖(−rδ)
δ
2∂z̄jT

−1v‖.

Now, the first and second terms in the right are good (in the right side
of the estimate we wish to end with). As for the last, we have

∑
j

(
(−rδ)

δ
2∂z̄jT

−1v, (−rδ)
δ
2∂z̄jT

−1v
)
≤
∣∣∣((−rδ)

δ
2 ∆T−2v, (−rδ)

δ
2v
)∣∣∣

+ 2
∑
j

∣∣∣Re([(−rδ)δ, ∂zj ]∂z̄jT−1v, T−1v
)∣∣∣.

(2.3.5)
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The first term in the right is estimated by∣∣∣((−rδ)
δ
2 ∆T−2v, (−rδ)

δ
2v
)∣∣∣ ≤ lc‖(−r)

δ
2v‖+ sc‖(−r)

δ
2 (∂2

r + ∂rT + T 2)T−2v‖

≤ lc‖(−r)
δ
2v‖+ sc

(
‖(−r)

δ
2T−2∂2

rv‖+ ‖(−r)
δ
2∂rT

−1v‖
)

≤ lc‖(−r)
δ
2v‖+ sc

(
‖(−r)

δ
2T−2∆v‖+ ‖T−

δ
2v‖
)
.

The second term in the right of (2.3.5) has the estimate∣∣∣Re([(−rδ)δ, ∂zj ]T−1v, T−1v
)∣∣∣ <
∼

∣∣∣((−r)−1+δ+εT−1+ δ
2

+εv, (−r)−εT−
δ
2
−εv
)∣∣∣︸ ︷︷ ︸

(i)

+
∣∣∣((−r)−1+δ∂rT

−1v, T−1v
)∣∣∣︸ ︷︷ ︸

(ii)

.

To estimate (i), we write −1 + δ + ε = δ
2

+ (−1 + δ
2

+ ε) = δ
2

+ σ

under the choice of ε > 1
2
− δ

2
so that −1 + δ

2
+ ε > −1

2
. We then apply

Lemma 2.3.1 and get the estimate of (i)

(i) ≤ lc‖(−r)
δ
2v‖

2
+ sc(‖T−

δ
2v‖

2
+ ‖−rT−1− δ

2 ∆v‖).

As for (ii) we have

(ii) =
∣∣∣((−r)−1+δ+(1− δ

2
−ε)∂rT

−1−εv, (−r)−1+ δ
2

+εT−1+εv
)∣∣∣

<
∼
sc
(
‖T−

δ
2v‖

2
+ ‖−rT−1∆v‖+ ‖T−2∆v‖

)
+ lc

(
‖(−r)

δ
2v‖

2
+ ‖−rT−1− δ

2 ∆v‖
)
.

In fact, the term with lc in the last line comes from Lemma 2.3.1 applied
for σ = −1 + ε (which requires ε > 1

2
). The term with sc is estimated

by the aid of Lemma 2.3.2

‖(−r)−1+δ+(1− δ
2
−ε)∂rT

−1−εv‖ = ‖(−r)
δ
2
−ε∂rT

−1+( δ
2
−ε)− δ

2v‖

<
∼

(2.3.2)

‖T−
δ
2v‖+ ‖−rT−1∆v‖+ ‖T−2∆v‖.

�

We decompose now v = v(h) + v(0) where v(h) is the harmonic ex-
tension and v(0) := v − v(h); note that v(0)|bD ≡ 0. We also recall the
modification T̃ of T defined by (2.2.7) and designed to preserve D∂̄∗ .
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Proposition 2.3.4. We have

(2.3.6) ‖[T̃ s−
δ
2 , ∂̄∗]v(h)‖ <

∼
‖(−r)

δ
2 [T̃ s, ∂̄∗]v(h)‖, v ∈ C∞(D̄ ∩ U).

Remark 2.3.5. In turn, by (2.2.8), we have [T̃ s, ∂̄∗] = sΘ̄T̃ s, and
therefore (2.3.6) implies

(2.3.7) ‖[T̃ s−
δ
2 , ∂̄∗]v(h)‖ <

∼
s‖(−r)

δ
2 Θ̄T̃ sv(h)‖.

Proof. In fact, Jacobi identity yields

[T̃ s, ∂̄∗] = −T̃ s−
δ
2 [T̃

δ
2 , ∂̄∗] + T̃

δ
2 [T̃ s−

δ
2 , ∂̄∗] + [T̃ s−

δ
2 [T̃

δ
2 , ∂̄∗]].

It follows

(2.3.8) T̃
δ
2 [T̃ s−

δ
2 , ∂̄∗] = [T̃ s, ∂̄∗] + T̃ s−

δ
2 [T̃

δ
2 , ∂̄∗]− [T̃ s−

δ
2 [T̃

δ
2 , ∂̄∗]].

We apply T̃−
δ
2 to both sides of (2.3.8) and use Proposition 2.3.3. The

conclusion will follow once we are able to show that−rT̃−1− δ
2 [∆, [T̃ s, ∂̄∗]]

and (−r) δ2T 2[∆, T s∂̄∗] are error terms. In fact, we write

[∆, [T̃ s, ∂̄∗]] = [∂2
r + ∂rTan+ Tan2, Tans + ∂rTan

s−1]

= Tans−1 + ∂rTan
s <
∼
T̃ s+1 + ∂rT̃

s modulo S.

It follows
‖−rT−1 δ

2 [∆, [T̃ s, ∂̄∗]]v(h)‖ <
∼
‖−rT s− δ2v(h)‖+ ‖−r∂rT s−1− δ

2v(h)‖ <
∼

[27] (2.4)

‖T s−1− δ
2v(h)‖,

‖(−r) δ2T−2[∆, [T̃ s, ∂̄∗]]v(h)‖ <
∼
‖(−r) δ2T s−1v(h)‖+ ‖(−r) δ2∂rT s−2v(h)‖ <

∼
[27] (2.4)

‖T s−1− δ
2v(h)‖.

�

2.4. Non-smooth plurisubharmonic defing functions

Definition 2.4.1. We say that D has a Diederich-Fornaess index
δ = δs for 0 < δ ≤ 1 which controls the commutators of ∂̄ and ∂̄∗

with Ds over forms in degree k ≥ q, when there is rδ = gδr for gδ ∈
C∞, gδ 6= 0, such that
(2.4.1)

−(−rδ)δ is q-plurisubharmonic, that is, the sum of the first

q eigenvalues of ∂∂̄(−(−rg)δ) is non-negative

(1− δs) ≤ Es,g,

where Es,g can be chosen so that Es,g ≤ c1e
−c2s diam2D sup

(
1
|g|s

)−1

or,

alternatively, Es,g ≤ c1e
−c2s diam2D sup(1+

|g′|
|g| ).
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Related to the above notion, is the condition

(2.4.2) ‖(−rδ)
δ
2 Θ̄∗gu‖

2
≤ Es,gQ

(−rδ)
δ
2
(u, u),

for δ ≤ 1.

Theorem 2.4.2. If D is q-pseudoconvex and has a Diederich-
Fornaess index δ = δs which controls the commutators of (∂̄, ∂̄∗) with
Ds in degree k ≥ q, then Bk is s-regular for k ≥ q.

Remark 2.4.3. The proof consists in showing that (2.4.1) implies
(2.4.2) (points (a) and (b) below) and then showing that (2.4.2) implies
the conclusion. Note that, when δ = 1, we have in fact the better
conclusion contained in Theorem 2.2.4.

Proof. We decompose a form as u = uτ + uν where uτ and uν are
the tangential and normal component respectively. We have

(2.4.3)



‖uν‖2
1 ≤

∑
i ‖∂z̄iuν‖

2
0 <∼

Q(u, u)

Q(uτ , uτ ) ≤ Q(u, u) +Q(uν , uν)

<
∼
Q(u, u) + ‖uν‖2

1

<
∼
Q(u, u).

Hence it suffices to prove (2.4.2). The same conclusion also applies to
the decompositin u = u(h) + u(0) and, in general, to any decomposition
in which either of the two terms is 0 at bD.
(a) We have

(2.4.4)
∣∣∣∂∂̄rδ(uτ , ∂rδ)∣∣∣ <

∼
(1− δ)

1
2 (−rδ)−

δ
2

(
∂∂̄(−(−rδ)δ)(uτ , uτ )

) 1
2
.

To see it, we start from

∂∂̄(−(−rδ)δ) = δ(−rδ)δ−1∂∂̄rδ + (−rδ)δ−2δ(1− δ)∂r ⊗ ∂̄r.

In particular,

∂∂̄rδ =
1

δ
(−rδ)1−δ∂∂̄(−(−rδ)δ)− (−rδ)−1(1− δ)∂r ⊗ ∂̄r.
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We suppose that δ is bounded away from 0 and, indeed, that it ap-
proaches 1; thus we disregard it in the following. We have

∂∂̄rδ(u, ∂rδ) ∼ (−rδ)1−δ∂∂̄(−(−rδ)δ)(u, ∂rδ)− (−rδ)−1(1− δ)∂rδ ⊗ ∂̄rδ(u, ∂rδ)

≤ (−rδ)1−δ
(
∂∂̄(−(−rδ)δ)(u, u)

) 1
2
(

(−rδ)−2+δ(1− δ)|∂rδ|2 +O((−rδ)−1+δ)
) 1

2

+ (1− δ)|∂rδ|2(−rδ)−1|∂rδ · u|

<
∼

(
(1− δ)

1
2 (−rδ)−

δ
2 +O(−rδ)

1
2
− δ

2 )
)(
∂∂̄(−(rδ)

δ)(u, u)
) 1

2
+ (1− δ)|∂rδ|2(−rδ)−1|∂rδ · u|.

Evaluation for u = uτ , yields (2.4.4).
(b) We prove now (2.4.2) using the basic estimates. Generally, these
apply to smooth plurisubharmonic defining functions. However, in [27],
Kohn has a version for Hölder continuous plurisubharmonic functions
such as −(−rδ)δ. This implies the inequality (∗) below

‖(−rδ)
δ
2 Θ̄∗gu

τ‖
2
'
∫
D

(−rδ)δ
∣∣∣∂∂̄rδ(uτ , ∂rδ)∣∣∣2dV

<
∼

(2.4.4)

(1− δ)
∫
D

∂∂̄(−(−rδ)δ)(uτ , uτ )dV

<
∼
(∗)

(1− δ)Q
(−rδ)

δ
2
(uτ , uτ )

<
∼

(2.4.1)

Es,gQ
(−rδ)

δ
2
(uτ , uτ ).

(2.4.5)

This proves (2.4.2)
(c) We are therefore in the same situation as in Definition 2.2.1 apart
from the term (−rδ)δ which occurs in the integral in the left of (2.4.5)
and in Q

(−rδ)
δ
2
. As above, we continue to write T but take in fact its

positive microlocalization T+ which represents the full action of Λ over
u+. To carry on the proof, we suppose from now on that f ∈ C∞(D̄)
and that Bk is Hs regular for some continuity constant c′; we prove that
this implies continuity for a constant c which is solely related to the
constants which occur in (2.4.1). An exhaustion by domains endowed
with Hs-regular projections Bk, k ≥ q, will be discussed only at the
end. We start from (2.2.11)

‖T s−
δ
2

g Bk−1f‖ <
∼
sc‖T s−

δ
2

g Bk−1f‖
2

+ lc‖T s−
δ
2

g f‖

+ lc‖[∂̄∗, T s−
δ
2

g ]Nk∂̄f‖.
(2.4.6)
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At this point, we need to convert T
s− δ

2
g into (−rδ)

δ
2T sg in the last term

of (2.4.6) in order to enjoy (2.4.2). We also replace Nk∂̄f by (Nk∂̄f)(h)

where the supscript (h) denotes the harmonic extension. We apply the
crucial estimate (2.3.6) to the last term in (2.4.6), regard as errors the
terms which come in (s− 1)-norm or in which vector fields of S occur,
and get

||[∂̄∗, T̃ s−
δ
2

g ](∂̄Nkf)(h) ≤
(2.3.6)

‖(−rδ)
δ
2 [T̃ sg , ∂̄

∗](∂̄Nkf)(h)‖
2

<
∼
s2‖(−rδ)

δ
2 Θ̄∗gT̃

s
g (∂̄Nkf)(h)‖

2
+ error

<
∼
s2‖(−rδ)

δ
2 Θ̄∗gT̃

s
g (∂̄Nkf)(h) τ‖

2
+ error

<
∼
s2 sup

1

|g|2s
‖(−rδ)

δ
2 Θ̄∗gT̃

s(∂̄Nkf)τ‖
2

+ E (0) + error

<
∼
s2Es,g sup

1

|g|2s
(
Q

(−rδ)
δ
2 T̃ s

((∂̄Nkf)τ , (∂̄Nkf)τ )

+ ‖(−rδ)
δ
2 [∂̄, T̃ s](∂̄Nkf)τ‖

2
+ ‖(−rδ)

δ
2 [∂̄∗, T̃ s](∂̄Nkf)τ‖

2
)

+ E (0) + error

<
∼
s2Es,g sup

1

|g|2s
(
Q

(−rδ)
δ
2 T̃ s

(∂̄Nkf, ∂̄Nkf)

+ ‖(−rδ)
δ
2 [∂̄, T̃ s]∂̄Nkf‖

2
+ ‖(−rδ)

δ
2 [∂̄∗, T̃ s]∂̄Nkf‖

2
)

+ E (0) + error

<
∼
s2Es,g sup

1

|g|2s
(
‖(−rδ)

δ
2T s∂̄∗∂̄Nkf‖

2
+ c2s

2‖(−rδ)
δ
2T s∂̄Nkf‖

2
)

+ E (0) + error

<
∼
s2Es,g sup

1

|g|2s
(
‖(−rδ)

δ
2T s∂̄∗∂̄Nkf‖

2
+ e2c2 s diam2Dc2s

2‖(−rδ)
δ
2T s∂̄∗∂̄Nkf‖

2
)

+ E (0) + error

<
∼

(2.4.1)

sc‖(−rδ)
δ
2T s∂̄∗∂̄Nkf‖

2
+ E (0) + error,

(2.4.7)

where we have used the notation E (0) := ‖(−rδ)
δ
2 Θ̄∗gT̃

s
g (∂̄Nkf)(0) τ‖

2
.

Here in (2.4.1) we have chosen the first alternative s2Es,gec2s diam2D sup
(

1
|g|s

)
≤

c1 = sc (for a new c2). (The other alternative Es,gec2s diam2D sup(1+
|g′|
|g| ≤

c1 = sc can be handled similarly as in Theorem 2.2.3 without replacing
Tg by T . It is at this point, where the continuity of Bk in Hs, not just
in C∞, is needed; in fact, in formula (2.2.15) Nϕs is Hs, not C∞, con-

tinuous. We have to reconvert now (−rδ)
δ
2 into T−

δ
2 . We first suppose

that we had started from f (h) and wished to prove the regularity for
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Bk−1f
(h). We have

‖(−rδ)
δ
2T s∂̄∗∂̄Nk(f

(h))‖ <
∼

[27] (2.4)

‖T s−
δ
2 ∂̄∗∂̄Nkf

(h)‖︸ ︷︷ ︸
(i)

+‖−rT s−
δ
2
−1∆∂̄∗∂̄Nkf

(h)‖︸ ︷︷ ︸
(ii)

.

Now,

(i) <
∼
‖T s−

δ
2f (h)‖

2
+ ‖T s−

δ
2Bk−1f

(h)‖
2
,

where the first term in the right is good and the second can be absorbed
since it comes, inside (2.4.7), with sc. As for (ii),

(ii) = ‖−rT s−
δ
2
−1(∂̄∗∂̄ + ∂̄∂̄∗)∂̄∗∂̄Nkf

(h)‖+ error

= ‖−rT s−
δ
2
−1(∂̄∗∂̄(∂̄∂̄∗ + ∂̄∗∂̄)Nkf

(h)‖+ error

= ‖−rT s
δ
2
−1∂̄∗∂̄f (h)‖+ error.

We have {
∂̄∗∂̄ = Tan2 + ∂rTan+ ∂2

r ∼ T 2 + ∂rT + ∂2
r ,

∂2
r = ∆ + Tan2 + ∂rTan ∼ ∆ + T 2 + ∂rT,

which implies

∂̄∗∂̄ ∼ T 2 + ∂rT + ∆.

It follows

‖−rT s−
δ
2
−1∂̄∗∂̄f (h)‖ = ‖−rT s−

δ
2
−1(T 2 + ∂rT + ∆)f (h)‖

≤ ‖−rT s−
δ
2

+1f (h)‖+ ‖−rT s−
δ
2∂rf

(h)‖

<
∼

[27] (2.4)

‖T s−
δ
2f (h)‖,

(2.4.8)

which is good. As for the term f (0), the regularity of Bk−1f
(0) follows

readily, without using the machinery (a)–(c) above, from elliptic regu-
larity

(2.4.9) ‖T sNk−1f
(0)‖ <

∼
‖T s−2f (0)‖.

(Note thatNk−1 makes sense even for k−1 = 0 when acting on f (0)|bD ≡
0 because � is, under this restriction, invertible.)

We pass to the term which has been omitted in the estimate of Θ̄∗g,

that is, E (0). The use of elliptic regularity is different here and applies
to (∂̄Nkf)(0) instead of f (0); it then passes though Q instead of � and
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through Boas-Straube formula. We have

||(−rδ)
δ
2 Θ̄∗gT̃

s
g (∂̄Nkf)(0) τ ||2 <

∼
sup

1

|g|2s
‖(−rδ)

δ
2 Θ̄∗gT̃

s(∂̄Nkf)(0)τ‖
2

<
∼
Es,g sup

1

|g|2s
(
Q

(−rδ)
δ
2 T̃ s

((∂̄Nkf)(0)τ , (∂̄Nkf)(0)τ)) + error

+ ‖(−rδ)
δ
2 [∂̄, T̃ s](∂̄Nkf)(0)τ‖

2
+ ‖(−rδ)

δ
2 [∂̄∗, T̃ s](∂̄Nkf)(0)τ‖

2
)

+ error

<
∼
Es,g sup

1

|g|2s
(
Q

(−rδ)
δ
2 T̃ s

(∂̄Nkf, ∂̄Nkf) + error

+ ‖(−rδ)
δ
2 [∂̄, T̃ s]∂̄Nkf‖

2
+ ‖(−rδ)

δ
2 [∂̄∗, T̃ s]∂̄Nkf‖

2
)

+ error

(2.4.10)

This is the same as (2.4.7) with the advantage that in the last line
the Sobolev indices have decreased by −1 since terms with superscript
(0) vanish at bD; these are therefore error terms. Also there remain to

control ‖T− δ2 Θ̄∗gT̃
s
g (∂̄Nkf)(0)‖ and ‖−r δ2 Θ̄∗gT̃

s
g (∂̄Nkf)ν‖; but these are

controlled by elliptic regularity as in (2.4.10). Summarizing up, we have
proved that for a suitable c, only related to the constants in (2.4.1), we
have

(2.4.11) ‖Bkf‖s ≤ c‖f‖s
if we knew that it holds for some c′ >> c. We show now that we
can exhaust D by domains Dρ endowed with continuous projections
Bk, k ≥ q − 1 for some c′ and which inherit the assumption of The-
orem 2.4.2 with uniform constants with respect to ρ. For this, we de-
fine Dρ = {z : rδ(z) + ρ < 0}. We first notice that, bDρ being also
defined by −(−rδ)δ + ρδ < 0, it has a smooth q-plurisubharmonic
defining function. Hence, by Theorem 2.2.4, Bk is Hs-regular for any
k ≥ q−1. Coming back to the initial defining function rδ+ρ, this satis-
fies ∂∂̄(−(−rδ−ρ)δ) ≥ ∂∂̄(−(−rδ)δ; thus the Diederich-Fornaess index
of Dρ is ≥ δ. Also, if for the new boundary we rewrite rδ + ρ = gδ,ρrδ,
for a normalized equation rρ of Dρ, and if Es,g,ρ are the constants which
occur in (2.4.1), then gδ,ρ →C2

gδ,

Es,g,ρ →
C2
Es,g.

Thus, the estimate (2.4.11) passes from the Dρ’s (in which it has been
proved thanks to the regularity of the Bk (for a different c′)) to the
initial domain D.

The proof is complete. �





CHAPTER 3

Hypoellipticity and loss of derivatives

Summary of Chapter 3. In this chapter, we discuss some a-
priori localized estimates in Sobolev spaces for various systems of com-
plex vector fields in R2n−1 for n ≥ 2 with particular care for the case
n = 2. A complex vector field in R2n−1 is a partial differential operator
of degree one of the type: L(x) =

∑2n−1
j aj(x)∂xj where the aj(x)’s

are smooth, complex valued, functions in R2n−1. An a-priori localized
Sobolev estimate for a system of complex vector fields: {L1, . . . , Ln},
is meant to be an estimate of type: ‖ζ0u‖s ≤ ‖ζ1L1u‖s+l + · · · +
‖ζ1Lnu‖s+l+‖u‖0 for any s ∈ R+, where ‖·‖s is the s−Sobolev norm,
u ∈ C∞(R2n−1) and ζ0, ζ1 are cutoff functions with support in a neigh-
borhood U of some point p such that ζ1|supp(ζ0)

≡ 1 and ζ0|U′ ≡ 1 where

p ∈ U ′ b U ; in this situation, we write ζ0 ≺ ζ1. If l is positive we say
that the system has a loss of regularity; instead, if l is negative we say
that the system has a gain of regularity.

Using the method of elliptic regularization [24], it is a well known
fact that these estimates, both for the case of gain or loss, imply hy-
poellipticity (i.e. if Li(u) = fi for i = 1, . . . , n and fi|U ∈ C

∞(U) then
u ∈ C∞(U ′)).

The vector fields considered in this chapter are modifications of
vector fields that satisfy certain properties. These modifications are
obtained by multiplying the vector fields by smooth functions which
vanish at a certain order at 0. In Section (3.1), they satisfy the finite
type condition and have therefore subelliptic estimates; the related loss
in the estimates is a balance between the vanishing order and the type.
We also consider in that Section the problem of local hypoellipticity
for sums of squares, that is, second order differential operators �k =∑
j=1,...,n

L∗jLj, where L∗j are the L2−adjoints of Lj.

In Section (3.3) we consider, instead, vector fields of infinite type
and point our attention to the exponential type with related logarith-
mic estimates; in particular, we focus our attention to the case of su-
perlogarithmic estimates. For the modified system, we prove estimates
with arbitrarly small fractional loss.

39



40 3. HYPOELLIPTICITY AND LOSS OF DERIVATIVES

3.1. Introduction

A system of real vector fields {Xj} in TRn is said to satisfy the
bracket finite type condition if
(3.1.1)

commutators of order ≤ h− 1 of the Xj’s span the whole TRn.

Explicitly: Span{Xj, [Xj1 , Xj2 ], ..., [Xj1 , [Xj2 , ..., [Xjh−1
, Xjh ]]...]} =

TRn. This system enjoys δ-subelliptic estimates for δ = 1
h

and there-
fore it is hypoelliptic according to Hörmander [6]. (See also [5] and
[24] for elliptic regularization which yields regularity from estimates.)
This remains true for systems of complex vector fields {Lj} stable
under conjugation (both in C ⊗ TRn or C ⊗ TCn) once one applies
Hörmander’s result to {ReLj, ImLj}. Stability under conjugation can
be artificially achieved by adding {εL̄j} in order to apply Hörmander’s

theorem ‖u‖2
δ ≤

∑
j(cε‖Lju‖

2 + ε‖L̄ju‖
2
) + cε‖u‖2, u ∈ C∞c . (Pre-

cision about ε and cε is not in the statement but transparent from

the proof.) On the other hand, by integration by parts ‖L̄ju‖
2
<
∼

‖Lju‖2 + |([Lj, L̄j]u, u)| + ‖u‖2 <
∼
‖Lju‖2 + ‖u‖2

1
2

+ ‖u‖2. Thus if the

type is h = 2, and hence δ = 1
2
, the 1

2
-norm is absorbed in the left:

{εL̄j} can be taken back and one has 1
2
-subelliptic estimates for {Lj}.

The restraint h = 2 is substantial and in fact Kohn discovered in [9] a
pair of vector fields {L1, L2} in R3 of finite type k + 1 (any fixed k)
which are not subelliptic but, nonetheless, are hypoelliptic. Precisely,
in the terminology of [9], they loose k−1

2
derivatives and the related

sum of squares L̄1L1 + L̄2L2 looses k − 1 derivatives. The vector fields
in question are L1 = ∂z̄ + iz∂t and L2 = z̄k(∂z− iz̄∂t) in C×R. Writing
t = Imw, they are identified to L̄ and z̄kL for the CR vector field
L̄ tangential to the strictly pseudoconvex hypersurface Rew = |z|2
of C2. Consider a more general hypersurface M ⊂ C2 defined by
Rew = g(z) for g real, and use the notations g1 = ∂zg, g11̄ = ∂z∂z̄g and
g11̄1̄ = ∂z∂z̄∂z̄g. Suppose that M is pseudoconvex, that is, g11̄ ≥ 0 and
denote by 2m the vanishing order of g at 0, that is, g = 02m. Going
further in the analysis of loss of derivatives, Bove, Derridj, Kohn and
Tartakoff have considered the case where

(3.1.2) g1 = z̄|z|2(m−1)h(z) and g11̄ = |z|2(m−1)f(z) for f > 0.

If L = ∂z − ig1∂t is the (1, 0) vector field tangential to Rew = g for
g satisfying (3.1.2), they have proved loss of k−1

m
derivatives for the

operator LL̄+ L̄|z|2kL.
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We consider here a general pseudoconvex hypersurface M ⊂ C2;
ζ and ζ ′ will denote cut-off functions in a neigborhood of 0 such that
ζ ′|supp ζ ≡ 1.

Theorem 3.1.1. Let {L, L̄} (or better {ReL, ImL}) have type 2m;
then the system {L̄, z̄kL} looses l := k−1

2m
derivatives. More precisely

‖ζu‖2
s <∼
‖ζ ′L̄u‖2

s− 1
2m

+ ‖ζ ′z̄kL̄u‖2
s+l

+ ‖ζ ′z̄kLu‖2
s+l + ‖u‖2

−∞.
(3.1.3)

The estimate (3.1.3) says that the responsible of the loss l is z̄kL
(plus the extra vector field z̄kL̄) and not L̄. The proof of this here, as
well as the two theorems below, follows in Section 3.2. What underlies
the whole technicality is the basic notion of subelliptic multiplier; also
the stability of multipliers under radicals is crucial (hidden in the inter-
polation Lemma 3.2.2 below). We point out that though the coefficient
of the vector field L̄ gains much in generality (+ig1̄ instead of +iz or
+iz|z|2(m−1) as in [9] and [1] respectively), instead, the perturbation
z̄k of L remains the same. This is substantial; only an antiholomorphic
perturbation is allowed. We introduce a new notation for the perturbed
Kohn-Laplacian

(3.1.4) �k = LL̄+ L̄|z|2kL for L = ∂z − ig1∂t.

Theorem 3.1.2. Let {L, L̄} have type 2m and assume moreover,
that

(3.1.5) |g1| <
∼
|z|g11̄ and |g11̄1̄| <∼ |z|

−1g11̄.

Then �k looses l = k−1
m

derivatives, that is

(3.1.6) ‖ζu‖2
s <∼
‖ζ ′�ku‖2

s+2l + ‖u‖2
−∞.

Differently from vector fields, loss for sums of squares requires the
additional assumption (3.1.5); whether finite type suffices is an open
question. Now, (3.1.3) and (3.1.6) yield hypoellipticity. Reason is that
loss of derivatives takes place only in ∂t and, on the other hand, the
coefficients of the vector fiels and of the sum of squares are constant
in t. (In contrast, these vector fields and sum of squares are elliptic
in z.) Thus, if we regularize with respect to t the component u+ of
u (positively microlocalized in +t (cf. §3)) as u+

ν → u+ and use that
L̄u+

ν = (L̄u+)ν (and the same for the other operators), then (3.1.3) and
(3.1.4) applied to u+

ν

Corollary 3.1.3. In the situation of Theorem 3.1.1 and 3.1.2,
the system (L̄, z̄kL), resp. the operator �k, are hypoelliptic with loss
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of l (resp. 2l) derivatives: (L̄u, z̄kLu) ∈ Hs (resp. �ku ∈ Hs) implies
u ∈ Hs−l (resp. u ∈ Hs−2l).

Example 3.1.4. Consider the boundary defined by Rew = g with
g(z) = 02m and assume

(3.1.7) g11̄ >∼
|z|2(m−1).

This boundary is pseudoconvex, has bracket finite type 2m and (3.1.5)
is satisfied. Thus Theorem 3.1.2 applies and we have (3.1.6). This is
more general than [1] where it is assumed (3.1.2). Thus, for example,
for the domain graphed by g with

g = |z|2(m−1)x2h(z) for h > 0 and h11̄ > 0,

we have (3.1.7) though the second of (3.1.2) is never true, not even for
h ≡ 1. For general h, neither of (3.1.2) is fulfilled.

There is a result for sum of squares which stays close to Theo-
rem 3.1.1 and in particular only assumes finite type without the addi-
tional hypothesis (3.1.5). This requires to modify the Kohn-Laplacian
as

�̃k = Λ−2l
t LL̄+ L|z|2kL̄+ L̄|z|2kL,

where Λ−2l
t is the standard pseudodifferential operator of order −2l in

t.

Theorem 3.1.5. Let {L, L̄} have type 2m; then

(3.1.8) ‖ζu‖2
s <∼
‖ζ ′�̃ku‖2

s+2l + ‖u‖2
−∞.

We restate in higher dimension the above results; in doing so we
can better appreciate the different role which is played by the finite
type with respect to (3.1.5). This discussion is a direct consequence of
the results of Section 3.1 (plus ellipticity and maximal hypoellipticity
related to microlocalization) and therefore it does not need a specific
proof. In Cn × Rt we start from L1 = ∂z1 − ig1(z1)∂t and complete L1

to a system of smooth complex vector fields in a neighborhood of 0

Lj = ∂zj − igj(z)∂t, j = 1, ..., n for gj|0 = 0.

For a system of vector fields, we denote by Lie2m the span of com-
mutators of order ≤ 2m − 1 belonging to the system. We have
‖u0‖2

1 <
∼

∑
j=1,...,n

‖L̄ju0‖2
0 + ‖u‖2

0 and, if for some index j, say j = 1,

∂t ∈ Lie2m1{L1, L̄1}, then ‖u−‖2
1

2m1

<
∼

∑
j=1,...,n

‖L̄ju‖2
0 +‖u‖2

0 (cf. the end
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of Section 3.2). Summarizing up, if we only have (3.1.3) for u+, we get,
for the full u and with l replaced by l1 = k1

2m1
:

(3.1.9)

‖ζu‖2
s <∼

(
‖ζ ′L̄1u‖2

s− 1
2m1

+ ‖ζ ′zk1
1 L̄1u‖2

s+l1
+ ‖ζ ′zk1

1 L1u‖2
s+l1

)
+

n∑
j=2

‖L̄ju‖2
s− 1

2m1

+‖u‖2
0.

We assume that each coefficient satisfy gj = ∂zjg for a real function
g = g(z), z = (z1, ..., zn) ∈ Cn and denote by L the bundle spanned by
the Lj’s. We note that this defines a CR structure because, on account
of gij̄ = gjī,

L is involutive.

Also, this structure is of hypersurface type in the sense that

T (Cn
z × Rt) = L⊕ L⊕ R∂t.

Note that, in fact, the Lj’s commute; therefore, the Levi form is defined
directly by [Li, L̄j] = gij∂t, without passing to the quotient modulo

L⊕L. We also assume that the Levi form (gij̄) is positive semidefinite;
in particular gjj̄ ≥ 0 for any j. (Geometrically, this means that the
hypersurface Imw = g graphed by g, is pseudoconvex.) We choose
κ = (k1, ..., kn) and define the perturbed Kohn-Laplacian

�κ =
∑

j=1,...,n

LjL̄j + L̄j|zj|2kjLj.

Theorem 3.1.6. Assume that for any j, ∂t ∈ Lie2mj{Lj, L̄j}, and
that

(3.1.10) |gj| <
∼
|zj|gjj̄ and |gjj̄j̄| <∼ |zj|

−1gjj̄ for any j = 1, ..., n.

Define lj :=
kj−1

2mj
and put l = max

j

kj−1

2mj
; then

(3.1.11) ‖ζu‖2
s <∼
‖ζ ′�κu‖2

s+2l + ‖u‖2
0.

The proof of Theorem 3.1.6 and Theorem 3.1.7 below, are just a
variation of those of the twin Theorems 3.1.2 and 3.1.5. We define now

�̃κ =
∑

j=1,...,n

(
Λ
−2lj
t LjL̄j +

∑
j=1,...,n

Lj|zj|2kj L̄j + L̄j|zj|2kjLj

)
.

Theorem 3.1.7. Assume that for any j, ∂t ∈ Lie2mj{Lj, L̄j}; then

(3.1.12) ‖ζu‖2
s <∼
‖ζ ′�̃ku‖2

s+2l + ‖u‖2
0.
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The material above will be developped in Section (3.2).
We pass to review the second half of this chapter, that is, the es-

timates of vector fields of the exponential type contained in Section
(3.3). Our requirement is that the degenerancy is not too strong so
that superlogarithmic estimates hold.

A system has a superlogarithmic estimate if it has logarithmic gain
of derivative with an arbitrarily large constant, that is, for any δ and
for suitable cδ

(3.1.13) ‖log(Λ)u‖2 <
∼
δ
∑
j

‖Lju‖2 + cδ‖u‖2
−1, u ∈ C∞c .

A system which satisfies (3.1.13) is “precisely Hs-hypoelliptic” for any
s: u is Hs exactly where the Lju’s are (Kohn [8]). In particular, the
system is C∞-hypoelliptic. Let L = ∂z − ig1(z)∂t for g of infinite type
but exponentially non-degenerate in the sense that

(3.1.14) |z|α| log g11̄| ↘ 0 as |z| ↘ 0 for α ≤ 1.

Under this assumption, {L, L̄} enjoys a superlogarithmic estimate (cf.
e.g. [12]). If we consider the perturbed system {L̄, z̄kL} (any fixed
k ≥ 1), the system has no more superlogarithmic estimate, in general;
if k > 1, a logarithmic loss occurs (Proposition 3.1.11 below). However,
notice that Lie{L̄, z̄kL}, the span of commutators of order≤ k−1, has a
superlogarithmic estimate (since it gains L). We are able to prove here,
in the terminology of Kohn [9], that {L̄, z̄kL} has an arbitrarily small
loss of ε derivatives and thus, in particular, is C∞-, but not exactly
Hs-, hypoelliptic. Let ζ0 and ζ1 be cut-off functions in a neighborhood
of 0 with ζ0 ≺ ζ1 in the sense that ζ1|suppζ0 ≡ 1.

Theorem 3.1.8. Let L = ∂z−ig1(z)∂t and assume that 0 be a point
of infinite type, that is, g11̄ = 0∞ but not exponentially degenerate,
that is, (3.1.14) be fulfilled. Then the system {L̄, z̄kL} (any k) has an
arbitrarily small loss of ε derivatives, that is,

(3.1.15) ‖ζ0u‖2
s <∼
‖ζ1L̄u‖

2

s+ε + ‖ζ1z̄
kLu‖2

s+ε + ‖z̄ku‖2

ε + ‖u‖2
0.

The proof of this, and the two theorems below, follows in Sec-
tion 3.3. Generally, an estimate of type (3.1.15) for smooth u does
not yield finiteness of ‖ζ0u‖s for a Hε-solution u of L̄u = f, zkLu = g
when ζ1f and ζ1g are in Hs+ε. However, L has coefficient t-independent.
Then, since only the “positively microlocalized” component u+ (cf. §2
below) must be controlled, Sobolev t-regularity is equivalent to full
regularity. For this reason, if we use a sequence of pseudodifferential
smoothing operators in t, χν(∂t) → id as in [9] and [1], and remark
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that
L̄(χν(∂t)u

+) = χν(∂t)(L̄u
+) + Order−∞,

then, (3.1.15) applied to Λs
(
χν(∂t)u

+
)

= χν(∂t)
(

Λsu+
)

yields

Corollary 3.1.9. In the situation of Theorem 3.1.8, the system
(L̄, z̄kLu) is hypoelliptic with loss of ε-derivatives: (L̄u, z̄kLu) ∈ Hs+ε,
u ∈ Hε implies u ∈ Hs.

For k = 1 we have an estimate for local regularity without loss

Theorem 3.1.10. In the situation above, assume in addition

(3.1.16) |g1| <
∼
g

1
2

11̄
;

then

(3.1.17) ‖ζ0u‖2
s <∼
‖ζ1L̄u‖

2

s + ‖ζ1z̄Lu‖2
s + ‖u‖2

0.

When k > 1, loss must occur

Proposition 3.1.11. Assume that g = e−
1
|z|α . If

(3.1.18)

‖ζ0u‖2
s <∼
‖(log Λ)rζ1L̄u‖

2

s + ‖(log Λ)rζ1z̄
kLu‖2

s + ‖z̄ku‖2

ε + ‖u‖2
0,

then we must have r >
∼

k−(α+1)
α

.

Some references to current literature are in order. Hypoellipticity
in presence of infinite degeneracy has been intensively discussed in re-
cent years. The ultimate level to which the problem is ruled by a-priori
estimates, are superlogarithmic estimates (Kusuoka and Strooke [10],
Morimoto [13] and Kohn [8]). Related work is also by Bell and Mo-
hammed [2] and Christ [3]. Beyond the level of estimates are the results
by Kohn [7] which develop, in a geometric framework, an early result
by Fedi [4]: the point here is that the degeneracy is confined to a real
curve transversal to the system. This explains also why if the set of
degeneracy is big, superlogarithmicity becomes in certain cases neces-
sary ([13] and [3]). In all these results, however, there is somewhat a
gain of derivatives (such as sublogarithmic). The simplest example of
hypoellipticity without gain (nor loss) is �b + λ id, λ > 0 where �b is
the Kohn-Laplacian of Rew = |z|2 (cf. Stein [15] where the bigger issue
of the analytic-hypoellipticity is also addressed). Loss of derivatives for
L = ∂z − iz̄∂t was discovered by Kohn in [9]. In this case, L is the
(1, 0) vector field tangential to the strictly pseudoconvex hypersurface
Rew = |z|2 and the loss amounts in k−1

2
. The problem was further

discussed by Bove, Derridj, Kohn and Tartakoff in [1] essentially for
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the vector field L = ∂z − iz̄|z|2(m−1)∂t tangential to the hypersurface
Rew = |z|2m and the corresponding loss is k−1

2m
. In both cases the result

extends to the sum of squares LL̄+L̄|z|2kL and the loss doubles to k−1
m

.
For vector fields L = ∂z − ig1(z)∂t tangential to general pseudoconvex
hypersurfaces of finite type (with g11̄ vanishing at order 2(m − 1)),
loss of k−1

2m
derivatives has been proved by the authors in [11]. Under

some additional conditions, the result also extends to sums of squares
(with doubled loss). In the limit position of type ∞, it was natural to
expect for an arbitrarily small loss of ε derivatives. This is what we
prove here for vector fields {L̄, z̄kL} obtained from L = ∂z − ig1(z)∂t
of infinite type, that is, satisfying g11̄ = 0∞, is considered. However as
we have seen, some additional hypothesis such as (3.1.14), must be re-
quired. This guarantees superlogarithmic estimate ([12]), and in turn,
hypoellipticity according to Kohn [8].

3.2. Estimates for vector fields in the subelliptic case and
sum of squares

We identify C× R to R3 with coordinates (z, z̄, t) or (Re z, Im z, t).
We denote by ξ = (ξz, ξz̄, ξt) the variables dual to (z, z̄, t), by Λs

ξ the

standard symbol (1 + |ξ|2)
s
2 , and by Λs (resp. Λs

t) the pseudodiffer-
ential operator with symbol Λs

ξ (resp. Λs
ξt

; this is defined by Λs(u) =

F−1(Λs
ξF(u)) where F is the Fourier transform (and similarly for Λt).

We consider the full (resp. totally real) s-Sobolev norm ‖u‖s := ‖Λsu‖0

(resp. ‖u‖R, s := ‖Λs
tu‖0). In R3

ξ , we consider a conical partition of the

unity 1 = ψ+ + ψ+ + ψ0 where ψ± have support in a neighborhood
of the axes ±ξt and ψ0 in a neighborhood of the plane ξt = 0, and
introduce a decomposition of the identity id = Ψ+ +Ψ−+Ψ0 by means

of Ψ
±
0 , the pseudodifferential operators with symbols ψ

±
0 ; we accord-

ingly write u = u+ + u− + u0. Since |ξz|+ |ξz̄| <
∼
ξt over suppψ+, then

‖u+‖R, s = ‖u+‖s.
We carry on the discussion by describing the properties of commu-

tation of the vector fields L and L̄ for L = ∂z − ig1(z)∂t. The crucial
equality is

(3.2.1) ‖Lu‖2 = ([L, L̄]u, u) + ‖L̄u‖2, u ∈ C∞c ,

which is readily verified by integration by parts. Note here that errors
coming from derivatives of coefficients do not occur since g1 does not
depend on t. Recall that [L, L̄] = g11̄∂t; this implies

(3.2.2) |(g11̄∂tu, u)| <
∼
s.c.‖∂tu‖2 + l.c.‖u‖2.
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We have

‖u0‖2

1 <∼
‖L̄u0‖2

+ ‖Lu0‖2
+ ‖u‖2

≤ 2‖L̄u0‖2
+ sc‖∂tu0‖2

+ lc‖u‖2.
(3.2.3)

To check (3.2.3), we point our attention to the estimate for operator’s
symbols (1 + |ξ|2)|α|2 <

∼
|α|2 + |σ(L̄)α|2 + |σ(L)α|2 (α complex) over

U × suppψ0 for a neighborhood U of 0; in addition to the fact that
[L,Ψ0] is of order 0, this yields the first inequality of (3.2.3). The second
follows from (3.2.1) combined with (3.2.2). As for u−, since g11σ(∂t) < 0
over suppψ−, then

(g11∂tu
−, u−) = −

∣∣(g11Λtu
−, u−)

∣∣ .
Thus (3.2.1) implies ‖Lu−‖ ≤ ‖L̄u−‖ (the second inequality in (3.2.4)
below). Suppose now that {L, L̄} have type 2m; this yields the first
inequality below which, combined with the former, yields

‖u−‖2
1

2m
<
∼
‖Lu−‖2

0 + ‖L̄u−‖2
0 + ‖u‖2

0

<
∼
‖L̄u−‖2

0 + ‖u‖2
0.

(3.2.4)

In conclusion, only estimating u+ is relevant. For this purpose, we have
a useful statement

Lemma 3.2.1. Let |[L, L̄]| 12 be the operator with symbol |g11|
1
2 Λ

1
2
ξt

;
then

(3.2.5) ‖|[L, L̄]|
1
2u+‖2 ≤ ‖Lu+‖2 + ‖L̄u+‖2.

Proof. From (3.2.1) we get

|([L, L̄]u, u)| ≤ ‖Lu‖2 + ‖L̄u‖2.

The conclusion then follows from

[L, L̄] = |[L, L̄]| over suppψ+.

�

We pass to a result about intepolation which plays a central role in
our discussion.

Lemma 3.2.2. Let f = f(z) be smooth and satisfy f(0) = 0. Then
for any ρ, r, n1 and n2 with 0 < n1 ≤ r, n2 > 0

(3.2.6) ‖f ru‖2
0 <∼

sc‖f r−n1u‖2
R,−n1ρ

+ lc‖f r+n2u‖2
R, n2ρ

.
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Proof. Set A := Λρ
t f ; interpolation for the pseudodifferential op-

erator A yields

‖f ru‖2
0 = ‖(Λρf)ru‖2

R−ρr

= (Λρ(r−n1)f r−n1 ,Λρ(r+n1)f r+n1)−ρr

= (Λ−ρn1f r−n1 ,Λρn1f r+n1)0 <
∼
sc‖f r−n1‖2

R,−n1ρ
+ lc‖f r+n1u‖2

R, n1ρ
.

This proves the lemma for n2 = n1; the general conclusion is obtained
by iteration.

�

We have now a result about factors in a scalar product.

Lemma 3.2.3. Let h = h(z) satisfy |h| ≤ |h1||h2| and take f =
f(z, t) and g = g(z, t). Then

(3.2.7) |(f, hg)|R, s <
∼
‖fh1‖2

R, s + ‖gh2‖2
R, s.

Proof. We use the notation Ft for the partial Fourier transform
with respect to t and dλ for the element of volume in Cz ' R2

Re z,Im z.
The lemma follows from the following sequence of inequalities in which
the crucial fact is that h, h1 and h2 are constant in the integration in
ξt:

|(f, hg)R, s| =

∣∣∣∣∣
∫
R2

(∫
R1
ξt

Λ2s
ξtFt(f)hFt(g)dξt

)
dλ

∣∣∣∣∣
≤
∫
R2

(∫
R1
ξt

Λ2s
ξt |Ft(f)h1h2Ft(g)|dξt

)
dλ

≤
∫
R2

(∫
R1
ξt

Λ2s
ξt |Ft(f)h1|2dξt

)
dλ+

∫
R2

(∫
R1
ξt

Λ2s
ξt |Ft(g)h2|2dξt

)
dλ

=
Plancherel

‖fh1‖2
R, s + ‖gh2‖2

R, s.

�

We say a few words for the case of higher dimension. In Cn
z1,...,zn

×Rt,
we consider a full system Lj = ∂zj − igj∂t, j = 1, ..., n with gj|0 = 0.
The same argument used in proving (3.2.3) yields

(3.2.8) ‖u0‖2

1 <∼

∑
j=1,...,n

‖L̄ju0‖2
+ ‖u‖2.

Similarly as above, we have ‖Lju−‖2 ≤ ‖L̄ju−‖2+‖u‖2 for any j. Then,
if at least one index j, say j = 1, the pair {L1, L̄1} has type m = m1,
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we get, in the same way as in (3.2.4)

‖u−‖2
1

2m
<
∼

∑
j=1,...,n

‖L̄ju−‖2 + ‖u‖2.

Again, only estimating u+ is therefore relevant.
Proof of Theorem 3.1.1, Theorem 3.1.2 and Theorem 3.1.5

In an estimate we call “good” a term in the right side (upper bound).
We call “absorbable” a term that we encounter in the course of the es-
timate and which comes as a fraction (small constant or sc) of a former
term. If cut-off are involved in the estimate, and in the right side the
cut-off can be expanded, say passing from ζ to ζ ′, we call “neglectable”
a term which comes with lower Sobolev index and possibly with a big-
ger cut-off. Neglectable is meant with respect to the initial (left-hand
side) term of the estimate, to further terms that one encounters and
even to extra terms provided that they can be estimated by “good”.
These latter are sometimes artificially added to expand the range of
“neglectability”.

Proof of Theorem 3.1.1. According to (3.2.3) and (3.2.4), it suffices
to prove (3.1.3) for u = u+; so, throughout the proof we write u but
mean u+. Also, we use the equivalence, over u+, between the totally
real ‖·‖R, s− with the full ‖·‖s-Sobolev norm; the specification of the
norm will be omitted. Moreover, we can use a cut-off ζ = ζ(t) in t

only. In fact, for a cut-off ζ = ζ(z) we have [L, ζ(z)] = ζ̇ and ζ̇ ≡ 0 at
z = 0. On the other hand, zkL ∼ L outside z = 0 which yields (3.2.9)
below (so that we have gain, instead of loss). Recall in fact that we
are assuming that M has type 2m. It is classical that the tangential
vector fields L and L̄ satisfy 1

2m
-subelliptic estimates, that is, the first

inequality in the estimate below. In combination with (3.2.1) which
implies the second inequality below, we get

‖ζu‖2
s <∼
‖ζL̄u‖2

s− 1
2m

+ ‖ζLu‖2
s− 1

2m
+ ‖ζ ′u‖2

s− 1
2m

<
∼
‖ζL̄u‖2

s− 1
2m

+ ‖ζ
∣∣[L, L̄]

∣∣ 1
2 u‖2

s− 1
2m

+ ‖ζ ′u‖2
s− 1

2m
.

(3.2.9)

Remark that ‖ζ ′u‖2
s− 1

m
(for a new ζ ′) takes care of the error ‖ζ ′L̄u‖2

s− 1
2m
−1

coming from [Λ2s− 1
m , ζ ′]. Now, remember that [L, L̄] = g11̄∂t without

error terms, that is, combinations of L and L̄; recall also that g11̄ ≥ 0.
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We get

‖ζ
∣∣[L, L̄]

∣∣ 1
2 u‖2

s− 1
2m
∼ ‖ζg

1
2

11̄
Λ

1
2
t u‖2

s− 1
2m

<
∼
sc ‖ζu‖2

s + lc ‖ζg
1
2

+ k
2(m−1)

11̄
Λ

1
2
t u‖2

s+l

<
∼

absorbable + ‖ζg
1
2

11̄
zkΛ

1
2
t u‖2

s+l

= absorbable + ‖ζ
∣∣[L, L̄]

∣∣ 1
2 zku‖2

s+l

≤ absorbable + ‖ζL(zku)‖2
s+l + ‖ζL̄(zku)‖2

s+l + ‖ζ ′zku‖2
s+l,

(3.2.10)

where the first “∼” is a way of rewriting the commutator, the second
“<
∼

” follows from Lemma 3.2.2 (under the choice n1 = m− 1, n2 = k,

r = m − 1, ρ = 1
2m

and f = g
1

2(m−1)

11̄
), the third “<

∼
” follows from

|g11̄| <∼ |z|
2(m−1), the fourth “=” is obvious and the last “<

∼
” follows

from Lemma 3.2.1. We go now to estimate, in the last line of (3.2.10),
the two terms ‖ζL̄(zku)‖2

s+l and ‖ζ ′zku‖2
s+l. We start from

(3.2.11) ‖ζL(zku)‖2
s+l ≤ ‖ζzkLu‖2

s+l + ‖ζzk−1u‖2
s+l,

where the last term is produced by the commutator [L, zk]. By writing,
in the scalar product, once zk−1 and once [L, zk], we get

‖ζzk−1u‖2
s+l = (ζzk−1u, ζ[L, zk]u)s+l

= (ζzk−1u, ζzkLu)s+l + (ζzk−1u, ζLzku)s+l.
(3.2.12)

Now,
(3.2.13)

(ζzk−1u, ζzkLu)s+l ≤ sc‖ζzk−1u‖2
s+l︸ ︷︷ ︸

absorbable

+ ‖ζzkLu‖2
s+l︸ ︷︷ ︸

good

(ζzk−1u, ζLzku)s+l = (ζzk−1L̄u, ζzku)s+l + (ζzk−1u, ζ ′zku)s+l

<
∼
‖ζzkL̄u‖2

s+l︸ ︷︷ ︸
good

+ sc‖ζzk−1u‖2
s+l︸ ︷︷ ︸

absorbable

+ ‖ζ ′zku‖2
s+l.

Thus ‖ζzk−1u‖2
s+l has been estimated by ‖ζ ′zku‖2

s+l. What we have
obtained so far is
(3.2.14)
‖ζu‖2

s <∼
‖ζL̄u‖2

s + ‖ζzkL̄u‖2
s+l + ‖ζzkLu‖2

s+l + ‖ζ ′zku‖2
s+l + ‖ζ ′u‖2

s− 1
2m
.

Note that in this estimate, the terms coming with L and L̄ carry the
same cut-off ζ as the left side; it is in this form that Theorem 3.1.1
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will be applied for the proof of Theorems 3.1.2 and 3.1.5. Instead, to
conclude the proof of Theorem 3.1.1, we have to go further with the
estimation of ‖ζ ′zku‖2

s+l (which also provides the estimate of the last
term in (3.2.10)). We have, by subelliptic estimates
(3.2.15)
‖ζ ′zku‖2

s+l <∼
‖ζ ′Lzku‖2

s+l− 1
2m

+ ‖ζ ′L̄zku‖2
s+l− 1

2m
+ ‖ζ ′′zku‖2

s+l− 1
2m
.

To ‖ζ ′Lzku‖2
s+l− 1

2m

we apply (3.2.11) with s+ l replaced by s+ l −
1

2m
. In turn, ‖ζ ′zk−1u‖2

s+l− 1
2m

can be estimated, by (3.2.12), (3.2.13)

and (3.2.15) with Sobolev indices all lowered from s + l to s + l −
1

2m
, by means of “good” + “absorbable” + ‖ζ ′′zku‖2

s+l− 1
2m

. (In fact,

“good” even comes with lower index.) The conclusion (3.1.3) follows
from induction over j such that j

2m
≥ s + l. This completes the proof

of Theorem 3.1.1.
�

Proof of Theorem 3.1.5. We first prove Theorem 3.1.5 instead of The-
orem 3.1.2 because it is by far easier. As it has already been remarked
at the begining of the Section (3.2), it suffices to prove the theorem for
u = u+. Also, in this case, the full norm can be replaced by the totally
real norm. So we write u for u+ and ‖·‖s for ‖·‖R, s; however, in some
crucial passage where Lemma 3.2.3 is on use, it is necessary to point
attention to the kind of he norm. We start from (3.2.14); note that, for
this estimate to hold, only finite type is required. We begin by noticing
that the last term of (3.2.14) is neglectable. We then rewrite the third
term in the right of (3.2.14) as

(3.2.16) (ζzkLu, ζzkLu)s+l = (ζL̄|z|2kLu, ζu)s+l + (ζzkLu, ζ ′zku)s+l,

where we recall that we are using the notation l = k−1
2m

. (Note that the
commutator [L, ζ] is not just ζ ′ but comes with an additional factor
g1, the coefficient of L; but we disregard this contribution here though
it will play a crucial role in the proof of Theorem 3.1.2.) We keep the
first term in the right of (3.2.16) as it stands and put together with the
similar term coming from the first term in the right of (3.2.14) to form
�̃κ. We then apply Cauchy-Schwartz inequality and estimate the first
term by ‖ζ�̃κu‖2

s+2l + sc‖ζu‖2
s. As for the second term in the right of

(3.2.16), it can be estimated, via Cauchy-Schwartz, by sc‖ζzkLu‖2
s+l +

lc‖ζ ′zku‖s+l. To this latter, we apply subelliptic estimates
(3.2.17)
‖ζ ′zku‖2

s+l <∼
‖ζ ′zkL̄u‖2

s+l− 1
m

+‖ζ ′zkLu‖2
s+l− 1

2m
+‖ζ ′zk−1u‖2

s+l− 1
2m

+‖ζ ′′zku‖2
s+l− 1

2m
.
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For the third term in the right, recalling (3.2.12) and (3.2.13), we get

(3.2.18) ‖ζ ′zk−1u‖2
s+l− 1

2m
<
∼

neglectable + ‖ζ ′′zku‖2
s+l− 1

2m
.

Thus ‖ζ ′zku‖2
s+l is controlled by induction over j with j

2m
≥ s + l.

(Recall, once more, that “good” is stable under passing from ζ ′ to
ζ ′′.) We notice that combination of (3.2.17) and (3.2.18) shows that
‖ζ ′zku‖2

s+l is neglectable. We pass to ‖ζ ′zkL̄u‖2
s+l, the second term in

the right of (3.2.14) and observe that it can be treated exactly in the
same way as the third (with L instead of L̄). We end with the first
which does not carry the loss l; we have

‖ζL̄u‖2
s = (ζLL̄u, ζu)s + (ζL̄u, ζ ′g1u)s

= (Λ2lΛ−2lLL̄u, ζu)s + (ζL̄u, ζ ′g1u)s.
(3.2.19)

The first term in the right combines to form �̃k. As for the second, we
notice that |g1| <

∼
|z| and therefore applying Lemma 3.2.2 for n1 = k−1

and n2 = 1

(ζL̄u, ζ ′g1u)s ≤ sc‖ζL̄u‖2
s + lc(‖ζ ′zku‖2

s+l + ‖ζ ′u‖2
s− 1

2m
).

The first term in the right is absorbable, the last neglectable, the mi-
dle has already been proved to be neglectable by subelliptic estimates
(3.2.17). This completes the proof.

�

Proof of Theorem 3.1.2. As before, we prove the theorem for u = u+

and write ‖·‖s for ‖·‖R, s though, in some crucial passage, it is necessary
to point the attention to the kind of the norm. Raising Sobolev indices,
we rewrite (3.2.14) in a more symmetric fashion as

(3.2.20) ‖ζu‖2
s <∼
‖ζL̄u‖2

s+l + ‖ζzkLu‖2
s+l + ‖ζ ′u‖2

s− 1
2m

+ ‖ζ ′zku‖2
s+l.

We handle all terms in the right as in Theorem 3.1.2 except from the
first which comes now with the loss s+ l. We point out that to control
these terms, only finite type has been used. Instead, to control the
remaining term, we need the additional hypothesis (3.1.5). We have

(3.2.21) ‖ζL̄u‖2
s+l = (ζLL̄u, ζu)s+l + (ζL̄u, ζ ′g1u)s+l.

The first term combines to form �k. As for the second, we recall the

estimate |g1| <
∼
|z|g11̄ and apply Lemma 3.2.3 for h = zg11̄, h1 = g

1
2

11̄

and h2 = zg
1
2

11̄
to get

(3.2.22) |(ζL̄u, ζ ′g1u)|s+l ≤ sc‖ζg
1
2

11̄
L̄u‖2

s+2l + lc‖ζ ′zg
1
2

11̄
u‖2

s.
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In the estimate above, we point our attention to the fact that the norms
that we are considering are totally real norms (though we do not keep
track in our notation) and therefore Lemma 3.2.3 can be applied. We
start by estimating the second term in the right. By Lemma 3.2.1 and
next, Lemma 3.2.2 for n1 = 1, n2 = k − 1

‖ζ ′g
1
2

11̄
zu‖2

s <∼
‖ζ ′zLu‖2

s− 1
2

+ ‖ζ ′zL̄u‖2
s− 1

2
+ neglectable

≤ ‖zkζ ′Lu‖2
s− 1

2
+l

+ ‖ζ ′Lu‖2
s− 1

2
− 1

2m
+ ‖ζ ′zL̄u‖2

s− 1
2

+ neglectable,

(3.2.23)

where neglectable comes from the commutators [L, z] and [L, ζ ′]. Also,
the first term in the second line of (3.2.23) is neglectable. As for the
second term, we have, by (3.2.1)

(3.2.24) ‖ζ ′Lu‖2
s− 1

2
− 1

2m
<
∼
‖ζ ′g

1
2

11̄
u‖2

s− 1
2m

+‖ζ ′L̄u‖2
s− 1

2
− 1

2m
+neglectable.

Since both terms in the right of (3.2.24) are neglectable, we conclude

that ‖ζ ′zg
1
2

11̄
u‖2

s itself is neglectable. From now on, we follow closely
the track of [1]. We pass to consider the last and most difficult term
to estimate, that is, the first in the right of (3.2.22). Along with this
term, that we denote by (a), we introduce three additional terms; we
set therefore{

(a) := ‖ζg11̄L̄u‖2
s+2l, (b) := ‖ζz2k−1g

1
2

11̄
u‖s+2l,

(c) := ‖ζz2k−1Lu‖2
s+2l− 1

2

, (d) := ‖LζL̄u‖2
s+2l− 1

2

.

Because of these additional terms, that we are able to estimate, “ne-
glectable” and “absorbable” take an extended range. We first show
that (b) is controlled by (c). This is apparently as in [1] first half of 5.3
but more complicated because our (b) and (c) are different from their
(LHS)5 and (LHS)6 respectively. Now, by Lemma 3.2.1 we get

(b) <
∼

(c) + ‖ζ ′z2k−1g1u‖2
s+2l− 1

2
+ ‖ζz2k−2u‖2

s+2l− 1
2

+ neglectable,

where the central terms in the right come from [L, ζ] and [L, z2k−1]
respectively, and where neglectable, with respect to (a), is the term
which involves L̄u and which comes lowered by −1

2
. The first of the

central terms is neglectable with respect to (b). As for the second, we
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have, using the notation # = s+ 2l − 1
2
− 1

2m

‖ζz2k−2u‖2
s+2l− 1

2︸ ︷︷ ︸
(i)

<
∼
‖ζz2k−2Lu‖#︸ ︷︷ ︸

(ii)

+ ‖ζz2k−2L̄u‖2
#︸ ︷︷ ︸

(iii)

+ ‖ζ ′z2k−2g1u‖2
#︸ ︷︷ ︸

(iv)

+ ‖ζz2k−3u‖2
#︸ ︷︷ ︸

(v)

,

where the two terms of the second line come from [L, ζ] and [L, z2k−2]
respectively. First, (iv) is neglectable with respect to (i). Next, using
Lemma 3.2.2 for n1 = 2k − 2 and n2 = 1

(ii) <
∼
sc‖ζLu‖2

#− 2k−2
2m︸ ︷︷ ︸

(ii)1

+ lc‖ζz2k−1Lu‖2
#+ 1

2m︸ ︷︷ ︸
(ii)2

.

Note that # − 2k−2
2m

= s − 1
2
− 1

2m
and # + 1

2m
= s + 2l − 1

2
; thus

(ii)1 is absorbed by (3.2.24) and (ii)2 is estimated by (c). Next, by
Lemma 3.2.2 for n1 = 2k − 3 and n2 = 1

(v) <
∼
lc‖ζu‖2

#− 2k−3
2m︸ ︷︷ ︸

(v)1

+ sc‖ζz2k−2u‖2
#+ 1

2m︸ ︷︷ ︸
(v)2

.

We have #− 2k−3
2m

= s− 1
2

and, again, # + 1
2m

= s+ 2l− 1
2
; thus (v)1 is

neglectable with respect to ‖ζu‖2
s, the term in the left of the estimate,

and (v)2 is absorbed by (i). Finally, by (3.2.1)

(iii) ≤ ‖ζz2k−2Lu‖#︸ ︷︷ ︸
(iii)1

+ ‖ζz2k−2g
1
2

11̄
u‖2

#+ 1
2︸ ︷︷ ︸

(iii)2

.

Now, applying Lemma 3.2.2 for n1 = k − 2, n2 = 1 in the first line
below and n1 = 2k − 2 and n2 = 1 in the second respectively, we get

(iii)1 <
∼
‖ζz2k−1Lu‖s+2l− 1

2︸ ︷︷ ︸
(c)

+ ‖ζzkLu‖s+l− 1
2︸ ︷︷ ︸

neglectable w.r.to ‖ζzkLu‖2s+l

(iii)2 <
∼
sc‖ζz2k−1g

1
2

11̄
u‖2

s+2l︸ ︷︷ ︸
(b)

+ lc ‖ζg
1
2

11̄
u‖2

s− 1
2m︸ ︷︷ ︸

neglectable w.r.to ‖ζu‖s

.

Summarizing up,
(b) <

∼
(c) + neglectable.

We have to show now that(c) <
∼
‖�ku‖2

s+2l− 1
2

+ absorbable + neglectable,

(a) + (d) <
∼
‖�ku‖2

s+2l− 1
2

+ absorbable + neglectable.
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The first inequality is proved in the same way as the second part of 5.3
of [1]. The second as in 5.4 of [1] with the relevant change that we do
not have at our disposal their estimate |[L̄, |z|2kg11̄]| <

∼
|z|2k−1−2(m−1).

Instead, we have to use, as a consequence of our key assumption (3.1.3)

[L̄, |z|2kg11̄] <
∼
|z|2k−1g11̄ + |z|2k|g11̄1̄

<
∼
|z|2k−1g11̄.

Thus, when we arrive at the two error terms in the second displayed
formula of p. 692 (second terms in the third and fourth lines), we have
the factor z2k−1g11̄. With the notations of our Lemma 3.2.3, we split

this factor as h = h1h2 for h1 = z2k−1g
1
2

11̄
and h2 = g

1
2

11̄
respectively

and then control these error terms as sc (a) and lc (b). The proof is
complete.

�

3.3. Loss of derivatives in the infinite type

We refer to the begining of section (3.2) for the notations which
will be on use. In particular, we recall the standard decomposition
u = u+ + u− + u0 and the alliptic estimate ‖u0‖ ≤ ‖L̄u0‖ + ‖u0‖. As
for u−, recall that [L, L̄] = g11̄∂t and hence g11̄σ(∂t) ≤ 0 over suppψ−.

Thus (3.2.1) yields ‖Lu‖2 <
∼
‖L̄u‖2

. It follows that, if L and L̄ have

superlogarithmic estimate as in our application, then

‖log(Λ)u−‖2 ≤ δ‖L̄u−‖2
+ cδ‖u‖2.

In conclusion, only estimating u+ is relevant. We note here that, over
supp Ψ+, we have g11̄ξt ≥ 0; thus

‖g
1
2

11̄
u+‖

2

1
2

= |([L, L̄]u+, u+)|

≤ ‖Lu+‖2
+ ‖L̄u+‖2

.
(3.3.1)

Following Kohn [8], we introduce a microlocal modification of Λs, de-
noted by Rs; this is the pseudodifferential operator with symbol Rs

ξ :=

(1+|ξ|2)
sσ(x)

2 , σ ∈ C∞c ; often, what is used is in fact the partial operator
in t, Rs

t with symbol Rs
ξt

. The relevant property of Rs is

‖Λsζ0u‖2 <
∼
‖Rsζ0u‖2 + ‖ζ0u‖2 if ζ0 ≺ σ.
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Thus, Rs is equivalent to Λs over functions supported in the region
where σ ≡ 1. In addition, ζRs better behaves with respect to commu-
tation with L; in fact, Jacobi equality yields

(3.3.2) [ζRs, L] ∼ ζ̇Rs + ζ log(Λ)Rs.

Thus, on one hand we have the disadvantage of the additional log(Λ)
in the second term, but we gain much in the cut-off because

(3.3.3) ζ̇Rs is of order 0 if supp ζ̇ ∩ suppσ = ∅.

Property (3.3.3) is crucial in localizing regularity in presence of super-
logarithmic estimate.

Proof of Theorem 3.1.8. As it has already been noticed, it suffices to
prove (3.1.15) only for u+ and for ‖·‖R, s; thus we write for simplicity u
and ‖·‖s but mean u+ and ‖·‖R, s. Moreover, we can use a cut-off ζ =

ζ(t) in t only. In fact, for a cut-off ζ = ζ(z) we have [L, ζ(z)] = ζ̇ and

ζ̇ ≡ 0 at z = 0. On the other hand, zkL ∼ L outside z = 0 which yields
gain of derivatives, instead of loss. We call “good” a term in the right
side (upper bound) of an estimate we wish to prove and “absorbable”
a term which comes as a fraction (small constant or sc) of a formerly
encountered term. We take cut-off functions in a neighborhood of 0:
ζ0 ≺ σ ≺ ζ1 ≺ ζ ′; we have for u ∈ C∞

‖ζ0u‖2
s = ‖ζ0ζ1u‖2

s

<
∼
‖Rsζ0ζ1u‖2 + ‖u‖2

0

<
∼
‖ζ0R

sζ1u‖2
0 + ‖[Rs, ζ0]ζ1u‖2

0 + ‖u‖2
0

<
∼
‖Rsζ1u‖2

0 + ‖u‖2
0

<
∼
‖ζ ′Rsζ1u‖2

0 + ‖u‖2
0,

(3.3.4)

where the inequality in the third line follows from interpolation in
Sobolev spaces and the last from supp(1− ζ ′) ∩ suppσ = ∅. We have

‖ζ0u‖2
s <

∼
by (3.3.4)

‖ζ ′Rsζ1u‖2︸ ︷︷ ︸
(a)

+ ‖u‖2

<
∼

trivial

‖log(Λ)ζ ′Rsζ1u‖2︸ ︷︷ ︸
(b)

+ ‖u‖2

≤ δ
(
‖L(ζ ′Rsζ1)u‖2

+ ‖L̄(ζ ′Rsζ1)u‖2
)

+ cδ‖u‖2,

(3.3.5)
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where the last inequality follows from superlogarithmic estimate. Using
integration by parts, we estimate the first term in the last line

(3.3.6) ‖L(ζ ′Rsζ1)u‖2
<
∼
‖L̄(ζ ′Rsζ1)u‖2

+ ‖[L, L̄]
1
2 (ζ ′Rsζ1)u‖

2
.

We rewrite the term with the commutator. For this we recall an easy
result about interpolation in Sobolev spaces. For positive ε, r, n1, n2

with n1 and n2 integers satisfying 0 < n1 ≤ r and n2 > 0,

(3.3.7) ‖f ru‖2
1
2
≤ sc‖f r−n1u‖2

1
2
−n1ε

+ lc‖f r+n2u‖2
1
2

+n2ε
.

Thanks to the ∞ type of g and the fact that g = 0 only at z = 0, it

follows that g
1
2r

11̄
is a smooth function for any r and is smaller than |zk|

for any k. Thus, under the choice f = g
1
2r

11̄
, n1 = r, ε = 1

2r
, n2 = 1 we

get

‖|[L, L̄]|
1
2 ζ ′Rsζu‖

2
= ‖g

1
2

11̄
ζ ′Rsζu‖

2

1
2

<
∼

sc‖ζ ′Rsζu‖2
0 + lc‖g

1
2

11̄
g

1
2r

11̄
u‖

2

1
2

+ 1
2r

<
∼

sc‖ζ ′Rsζu‖2
0 + lc‖g

1
2

11̄
Λ

1
2 zkζ ′Rsζu‖

2

ε

= sc‖ζ ′Rsζu‖2
0 + lc‖[L, L̄]

1
2 zkζ ′Rsζu‖

2

ε

<
∼
‖ζ ′Rsζu‖2

0 + ‖Lzk(ζ ′Rsζ1)u‖2

ε + ‖zkL̄(ζ ′Rsζ1)u‖2

ε .

(3.3.8)

We wish to first discard the last term in the bottom of (3.3.8). For this,
we recall Jacobi identity, observe that [zk, ζ ′Rsζ] has order arbitrarily
close to s− 1 (because of a logarithmic extra term), and get

[zkL̄, ζ ′Rsζ1] = [L̄, ζ ′]Rsζ1z
k + ζ ′[L̄, Rs]ζ1z

k + ζ ′Rs[L̄, ζ1]zk

∼ ζ̇ ′Rsζ1︸ ︷︷ ︸
0-order by (3.3.3)

zk + ζ ′ log(Λ)Rsζ1︸ ︷︷ ︸
by (3.3.2)

zk + ζ ′Rsζ̇1︸ ︷︷ ︸
0-order by (3.3.3)

zk.

(3.3.9)

Thus we can commutate zkL̄ with ζ ′Rsζ1 in (3.3.8) up to an error as
described in (3.3.9) which yields

‖zkL̄(ζ ′Rsζ1)u‖2

ε <∼
‖(ζ ′Rsζ1)zkL̄u‖2

ε + ‖(ζ ′ log(Λ)Rsζ1)zku‖2

ε + ‖zku‖2

ε .
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On the other hand, since [ζ ′, log(Λ)]Rs = 0(Λ−1), then

‖(ζ ′ log(Λ)Rsζ1)zku‖2

ε <∼
‖(log(Λ)(ζ ′Rsζ1)zku‖2

ε + ‖ζ1z
ku‖2

−1+ε

<
∼

suplog estimate

δ
(
‖L(ζ ′Rsζ1)zku‖2

ε + ‖L̄(ζ ′Rsζ1)zku‖2

ε

)
︸ ︷︷ ︸

absorbed by 2nd line of (3.3.8)

+ ‖ζ1z
ku‖2

−1+ε,

where we are using the equality [Λε
t, L] = 0 as well as [Λε, log(Λ)] = 0.

In the same way, using again (3.3.9), we commutate L̄ with (ζ ′Rsζ1)
in (3.2.6) and (3.3.6). What is left, is to estimate the first term in the
last line of (3.3.8). First, from Jacobi identity we get

[Lzk, ζ ′Rsζ1] ∼ (0-order)zk + ζ ′ log(Λ)Rsζ1z
k + (0-order)zk,

so that we are eventually reduced to estimate ‖(ζ ′Rsζ1)Lzku‖2
. This is

the most difficult operation. We have (by the trivial identity [L, zk] =
zk−1)

‖(ζ ′Rsζ1)Lzku‖2

ε = ‖(ζ ′Rsζ1)zkLu‖2

ε︸ ︷︷ ︸
good

+ ‖(ζ ′Rsζ1)zk−1u‖2

ε .

Next,

‖(ζ ′Rsζ1)zk−1u‖2

ε︸ ︷︷ ︸
(c)

= ((ζ ′Rsζ1)zk−1u︸ ︷︷ ︸
∗

, (ζ ′Rsζ1)[L, zk]u)ε

= −(∗, (ζ ′Rsζ1)zkLu)ε + (∗, (ζ ′Rsζ1)Lzku)ε.

Now,

∣∣(∗, (ζ ′Rsζ1)zkLu)ε
∣∣ ≤ sc‖∗‖2

ε + ‖(ζ ′Rsζ1)zkLu‖2

ε︸ ︷︷ ︸
good∣∣∣(∗, (ζ ′Rsζ1)Lzku)ε

∣∣∣ ≤ ∣∣∣((ζ ′Rsζ1)L̄zk−1u︸ ︷︷ ︸
good

, (ζ ′Rsζ1)zku︸ ︷︷ ︸
absorbed by (3.3.8)

)ε

∣∣∣
+ 2
∣∣∣( ∗︸︷︷︸

absorbed by (c)

, [L, (ζ ′Rsζ1)]zku︸ ︷︷ ︸
(d)

)ε

∣∣∣.
We notice here that to absorbe a term by the last line of (3.3.8) we use
compactness estimates which hold as a byproduct of superlogarithmic.
We estimate (d). We notice that

(3.3.10) [L, (ζ ′Rsζ1)] ∼ ζ ′ log(Λ)Rsζ1 + (0-order).
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We also remark that

(3.3.11)


[Λεζ ′, log(Λ)]Rs = 0(Λ−ε) (i)

[ζ ′,Λε]Rs ∼ 0(Λ−ε) (ii)

[L,Λε] = 0 (iii).

Hence

‖(d)‖2
ε <

∼
by (3.3.10)

‖(ζ ′ log(Λ)Rsζ1)zku‖2

ε + ‖zku‖2

ε

≤
by (3.3.11) (i) and (ii)

‖(log(Λ)ζ ′ΛεRsζ1)zku‖2

0 + ‖zku‖2

ε + ‖ζ1z
ku‖2

−ε

≤
by suplog estimate

δ
(
‖L(ζ ′ΛεRsζ1z

ku‖2
+ ‖L̄(ζ ′ΛεRsζ1)zku‖2

)
+ cδ‖zku‖

2

ε .

(3.3.12)

Now, the term with δ is absorbed by the last term in (3.3.8) (after we
transform Λε into ‖·‖ε to fit into (3.3.8) and use the fact that [Lζ ′,Λε] ∼
Λ1+ε). This concludes the proof of (3.1.15).

�

Proof of Theorem 3.1.10. As above, we stay in the positive microlocal
cone, the support of ψ+, and consider only derivatives and cut-off with
respect to t. From the trivial identity [L, z] = 1, and from [L, ζ0] ∼ ζ̇0g1,
we get

‖ζ0u‖2
s = ([L, z]ζ0u, ζ0u)s

<
∼
‖z̄ζ0L̄u‖

2

s + ‖z̄ζ0Lu‖2
s + ‖z̄g1ζ1u‖2

s + sc‖ζ0u‖2
s.

Now, the last term is absorbed. As for the term before

‖z̄g1ζ1u‖2
s ≤

by (3.1.16)
‖z̄g

1
2

11̄
Λ

1
2 ζ1u‖

2

s− 1
2

≤
by (3.3.1)

‖z̄Lζ1u‖2
s− 1

2
+ ‖z̄L̄ζ1u‖

2

s− 1
2

+ ‖z̄ζ1u‖2
s− 1

2

<
∼
‖ζ1z̄Lu‖2

s− 1
2

+ ‖z̄L̄ζ1u‖
2

s− 1
2

+ ‖z̄ζ2u‖2
s− 1

2
for ζ2 � ζ1.

Now, ‖z̄ζ2u‖2
s− 1

2
is not absorbable by ‖ζ0u‖2

s, but can be estimated by

the 0-norm using induction over j such that j
2
≥ s.

�

Proof of Proposition 3.1.11. As ever, we stay in the positive microlocal
cone and take derivatives and cut-off only in t. We prove the result for
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s replaced by 0 and ε replaced by −η. The conclusion for general s
follows from the fact that ∂t commutes with L and L̄. We define

vλ = e−λ(e
− 1
|z|α −it+(e

− 1
|z|α −it)2) λ >> 0.

We denote by −λA the term at exponent and note that ReλA ∼
λ(e−

1
|z|α + t2). For L = ∂z + ig1(z)∂t, we have L̄vλ = 0 (which is the

key point) and moreover

|z̄kLvλ| ∼ λ|z|k−(α+1)e−λ(e
− 1
|z|α +t2)e−

1
|z|α .

We set

λ(e−
1
|z|α , t) = (θ1,

1√
λ
θ2).

Under this change we have, over supp ζ0 and supp ζ1 which implies
θ1 << λ,

|z|k−(α+1) =
1

(log λ− log θ1)
k−(α+1)

α

.

Hence we interchange

|z̄kLvλ| 99K
1

(log λ)
k−(α+1)

α

 θ1 + θ2
2(

1− log θ1
log λ

) k−(α+1)
α

 e−(θ1+θ2
2).

Notice that θ1 << λ and hence, for suitable positive c1 and c2, we have

c1 <
θ1+θ2

2

(1− log θ1
log λ )

k−(α+1)
α

< c2, uniformly over λ. We also interchange

vλ 99K e
−(θ1+θ2

2).

Taking L2 norms yields

‖z̄kLvλ‖
2 ∼ 1

(log λ)2
k−(α+1)

α

‖vλ‖2.

So, the effect on L2 norm of the action of z̄kL over vλ is comparable
to 1

(log λ)
k−(α+1)

α

. We describe now the effect of the pseudodifferential

operator log(Λt). We claim that

(3.3.13) ‖log(Λt)e
−λt2‖

2
∼ (log λ)2‖e−λt2‖

2
.

This is a consequence of

(3.3.14) log(Λt)e
−λt2 ∼ log λe−λt

2

+
(

log(Λt̃)e
−t̃2
)∣∣∣

t̃=
√
λt
,
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that we go to prove now. Using the coordinate change θ̃ =
√
λθ, ξ̃ =

ξ√
λ
, we get∫
eitξ log(Λξ)

(∫
e−iξθe−λθ

2

dθ
)
dξ

=

∫
eit
√
λξ̃
(

log(
1

λ
+ |ξ̃|2)

1
2 + log(

√
λ)
)(∫

eiξ̃θ̃−θ̃
2

dθ̃
)
dξ̃

= log(
√
λ)e−λt

2

+
(

log(Λλ
t̃ )e
−t̃2
)∣∣∣

t̃=
√
λt
,

where log(Λλ
t̃
) is the operator with symbol log( 1

λ
+ |ξ̃|2)

1
2 . This proves

(3.3.14) and in turn the claim (3.3.13). In the same way, we can check

that ‖Λ−ηt e−λt
2‖2 ∼ λ−2η‖e−λt2‖2

.
We combine now the effect over vλ of z̄kL with that of log(Λt). If

‖ζ0vλ‖2 <
∼
‖ζ1(log Λt)

rz̄kLvλ‖
2

+ ‖vλ‖2
−η,

then, since the right side is estimated from above by(
(log λ)2r(log λ)−2

k−(α+1)
α + λ−2η

)
‖vλ‖2,

we must have that the logarithmic term is not infinitesimal which forces

r ≥ k−(α+1)
α

.
�
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