
Sede Amministrativa: Università degli Studi di Padova

Dipartimento di Scienze Statistiche

Corso di Dottorato di Ricerca in Scienze Statistiche

Ciclo XXX

Structure Learning of Graphs for Count

Data

Coordinatore del Corso: Prof. Nicola Sartori

Supervisore: Prof. Monica Chiogna

Dottoranda: NGUYEN Thi Kim Hue

31 October 2017

Abstract

Biological processes underlying the basic functions of a cell involve complex interactions

between genes. From a technical point of view, these interactions can be represented

through a graph where genes and their connections are, respectively, nodes and edges.

The main research objective of this thesis is to develop a statistical framework for

modelling the interactions between genes when the activity of genes is measured on a

discrete scale. We propose several algorithms. First, we define an algorithm for learning

the structure of a undirected graph, proving its theoretical consistence in the limit

of infinite observations. Next, we tackle structure learning of directed acyclic graphs

(DAGs), adopting a model specification proved to guarantee identifiability of the models.

Then, we develop new algorithms for both guided and unguided structure learning of

DAGs. All proposed algorithms show promising results when applied to simulated data

as well as to real data.

Sommario

I processi biologici che regolano le funzioni di base di una cellula sono caratterizzati

da numerose interazioni tra geni. Da un punto di vista matematico, è possibile rap-

presentare queste interazioni attraverso grafi in cui i nodi e gli archi rappresentano,

rispettivamente, i geni coinvolti e le loro interazioni.

L’obiettivo principale di questa tesi è quello di sviluppare un approccio statistico alla

modellazione delle interazioni tra geni quando questi sono misurati su scala discreta.

Vengono a tal fine proposti vari algoritmi. La prima proposta è relativa ad un algoritmo

disegnato per stimare la struttura di un grafo non orientato, per il quale si fornisce

la dimostrazione di convergenza al crescere delle osservazioni. Altre tre proposte coin-

volgono la definizione di algoritmi supervisionati per la stima della struttura di grafi

direzionali aciclici, basati su una specificazione del modello statistico che ne garantisce

l’identificabilità. Sempre con riferimento ai grafi direzionali aciclici, infine, si propone

un algoritmo non supervisionato. Tutti gli algoritmi proposti mostrano risultati pro-

mettenti in termini di ricostruzione delle vere strutture quando applicati a dati simulati

e dati reali.

Dedication to my family

Acknowledgements

I would like to thank my supervisor, Professor Monica Chiogna, for her patience, en-

couragement and advice in the past three years. She provided endless support, skilful

guidance, and research freedom to me. Her extensive knowledge, enthusiasm have in-

spired me throughout this PhD project.

I thank my colleagues from Department of Statistical Sciences, University of Padova.

I feel incredibly lucky to have shared these three years of ups and downs with such

an amazing group of people. I thank Vera for her help and encouragement at various

times. I thank Elisa for her help on the analysis of gene sequencing data. I thank my

Vietnamese friends for having funny and crazy activities together.

Finally, I thank my family for their constant support and encouragement.

Contents

List of Figures x

List of Tables xii

Introduction 1

Overview . 1

Main contributions of the thesis . 3

1 Background 5

1.1 Conditional independence and graphs 5

1.2 Undirected Graphical Models . 8

1.2.1 Separation in undirected graphs 9

1.2.2 Markov properties on undirected graphs 9

1.2.3 Factorization . 10

1.3 Directed Acyclic Graphical Models . 10

1.3.1 Factorization . 11

1.3.2 d-connection/separation . 11

1.3.3 Markov properties on directed acyclic graphs 12

1.3.4 Moralization . 12

1.3.5 Markov equivalent class . 12

1.4 Faithfulness condition . 13

1.5 Background on Structure Learning . 14

1.5.1 Scoring-based Algorithms . 14

1.5.2 Constraint-based Algorithms . 15

1.5.3 Hybrid Algorithms . 15

2 Poisson graphical models for count data 17

2.1 Model specifications . 17

2.2 Identifiability . 19

2.3 Some Poisson structure learning algorithms 22

2.3.1 LPGM algorithm . 22

2.3.2 PDN Algorithm . 24

2.3.3 ODS algorithm . 25

3 Structure Learning of undirected graphs 27

3.1 The PC-LPGM algorithm . 27

ix

3.2 Statistical Guarantees . 30

3.2.1 Assumptions . 31

3.2.2 Consistency of estimators in local models 32

3.2.3 Consistency of the graph estimator 40

3.3 Empirical study . 42

3.4 Real data analysis: inferring networks from next generation sequencing
data . 52

3.5 Discussion . 54

4 Guided structure learning of DAGs 57

4.1 The PK2 algorithm . 58

4.1.1 Asymptotic property . 59

4.2 The Or-LPGM algorithm . 59

4.2.1 Consistency of the Or-LPGM algorithm 61

4.3 The Or-PPGM algorithm . 61

4.3.1 Consistency of the Or-PPGM algorithm 62

4.4 Empirical study . 63

4.5 Conclusions and remarks . 71

5 Unguided structure learning of DAGs 73

5.1 The learnDAG algorithm . 73

5.1.1 Step 1: preliminary neighbourhood selection (PNS) 74

5.1.2 Step 2: estimating parent sets . 75

5.1.3 Step 3: pruning of the DAG . 78

5.2 Empirical study . 79

5.3 Discussion . 84

6 Conclusions 87

Appendix A 89

A.1 K2 algorithm . 89

A.2 PC algorithm . 90

A.3 VSL algorithm . 92

A.4 GLASSO algorithm . 93

A.5 Extension to the nonparanormal model 94

A.6 MMHC algorithm . 96

Appendix B 97

B.1 Appendix B.1 . 97

B.2 Appendix B.2 . 103

B.3 Appendix B.3 . 108

List of Figures

1.1 An example of a conditional independence displayed graphically 6

3.1 The graph structures for p = 10 employed in the simulation studies: (a)
scale-free; (b) hub; (c) random graph. 44

3.2 The graph structures for p = 100 employed in the simulation studies: (a)
scale-free; (b) hub; (c) random graph. 44

3.3 Number of TP edges recovered by PC-LPGM; LPGM; PDN; VSL; GLASSO;
NPN-Copula; NPN-Skeptic for networks in Figure 3.1 (p = 10) and
sample sizes n = 200, 1000, 2000. First panel row corresponds to high
SNR level (λnoise = 0.5); second panel row corresponds to low SNR level
(λnoise = 5). 46

3.4 PPV (first panel row) and Se (second panel row) for PC-LPGM; LPGM;
PDN; VSL; GLASSO; NPN-Copula; NPN-Skeptic for networks in Fig-
ure 3.1 (p = 10), sample sizes n = 200, 1000, 2000 and λnoise = 0.5. . . . 47

3.5 PPV (first panel row) and Se (second panel row) for PC-LPGM; LPGM;
PDN; VSL; GLASSO; NPN-Copula; NPN-Skeptic for networks in Fig-
ure 3.1 (p = 10), sample sizes n = 200, 1000, 2000 and λnoise = 5. 47

3.6 Number of TP edges recovered by PC-LPGM; LPGM; PDN; VSL; GLASSO;
NPN-Copula; NPN-Skeptic for networks in Figure 3.2 (p = 100) and
sample sizes n = 200, 1000, 2000. First panel row corresponds to high
SNR level (λnoise = 0.5); second panel row corresponds to low SNR level
(λnoise = 5). 48

3.7 PPV (first panel row) and Se (second panel row) for PC-LPGM; LPGM;
PDN; VSL; GLASSO; NPN-Copula; NPN-Skeptic for networks in Fig-
ure 3.2 (p = 100), sample sizes n = 200, 1000, 2000 and λnoise = 0.5. . . . 49

3.8 PPV (first panel row) and Se (second panel row) for PC-LPGM; LPGM;
PDN; VSL; GLASSO; NPN-Copula; NPN-Skeptic for networks in Fig-
ure 3.2 (p = 100), sample sizes n = 200, 1000, 2000 and λnoise = 5. 49

3.9 Distribution of four miRNA-Seq: raw data (top), normalized (bottom)
data. 53

3.10 Breast cancer miRNA network estimated by the PC-LPGM algorithm
(hub nodes coloured red). 54

4.1 The graph structures for p = 10 employed in the simulation studies: (a)
scale-free; (b) hub; (c) random graph. 64

4.2 The graph structures for p = 100 employed in the simulation studies: (a)
scale-free; (b) hub; (c) random graph. 65

xi

xii List of Tables

4.3 Number of TP edges recovered by PKBIC; PKAIC; Or-PPGM; Or-LPGM;
PDN; ODS; MMHC; K2mix; K2cut; PCmix; PClog for networks in Fig-
ure 4.1 (p = 10) and sample sizes n = 200, 1000, 2000. 66

4.4 PPV (first panel row) and Se (second panel row) for PKBIC; PKAIC; Or-
PPGM; Or-LPGM; PDN; ODS; MMHC; K2mix; K2cut; PCmix; PClog
for networks in Figure 4.1 (p = 10), sample sizes 200, 1000, 2000. 67

4.5 Number of TP edges recovered by PKBIC; Or-PPGM; Or-LPGM; PDN;
ODS; MMHC; K2mix; PClog for networks in Figure 4.2 (p = 100) and
sample sizes n = 200, 1000, 2000. 68

4.6 PPV (first panel row) and Se (second panel row) for PKBIC; Or-PPGM;
Or-LPGM; PDN; ODS; MMHC; K2mix; PClog for networks in Figure 4.2
(p = 100), sample sizes n = 200, 1000, 2000. 69

5.1 An example of applying the PNS step on an undirected graph consisting
6 nodes. 75

5.2 An example of adding edge 3→ 4 based on calculating the score matrix. 77

5.3 Number of TP edges recovered by plearnDAG; olearnDAG; llearnDAG;
PDN; ODS; MMHC; PClog for networks in Figure 4.1 (p = 10) and
sample sizes n = 200, 1000, 2000. 80

5.4 PPV (first panel row) and Se (second panel row) for plearnDAG; olearnDAG;
llearnDAG; PDN; ODS; MMHC; PClog for networks in Figure 4.1 (p =
10), sample sizes n = 200, 1000, 2000. 81

5.5 Number of TP edges recovered by plearnDAG; olearnDAG; llearnDAG;
PDN; ODS; MMHC; PClog for networks in Figure 4.2 (p = 100) and
sample sizes n = 200, 1000, 2000. 81

5.6 PPV (first panel row) and Se (second panel row) for plearnDAG; olearnDAG;
llearnDAG; PDN; ODS; MMHC; PClog for networks in Figure 4.2 (p =
100), sample sizes n = 200, 1000, 2000. 82

List of Tables

3.1 Monte Carlo marginal means of TP, FP, FN, PPV, Se obtained by sim-
ulating 500 samples from each of the three networks shown in Figure 3.1
(p = 10). 50

3.2 Monte Carlo marginal means of TP, FP, FN, PPV, Se obtained by sim-
ulating 500 samples from each of the three networks shown in Figure 3.2
(p = 100). 51

4.1 Monte Carlo marginal means of TP, FP, FN, PPV, Se obtained by sim-
ulating 500 samples from each of the three networks shown in Figure 4.1
(p = 10). 69

4.2 Monte Carlo marginal means of TP, FP, FN, PPV, Se obtained by sim-
ulating 500 samples from each of the three networks shown in Figure 4.2
(p = 100). 70

5.1 Monte Carlo marginal means of TP, FP, FN, PPV, Se obtained by sim-
ulating 500 samples from each of the three networks shown in Figure 4.1
(p = 10). 82

5.2 Monte Carlo marginal means of TP, FP, FN, PPV, Se obtained by sim-
ulating 500 samples from each of the three networks shown in Figure 4.2
(p = 100). 83

5.3 Monte Carlo marginal means of TP, FP, FN, PPV, Se obtained by sim-
ulating 500 samples from random network with edge probability 0.03,
p = 100. 85

B.1 Simulation results from 500 replicates of the undirected graphs shown in
Figure 3.1 for p = 10 variables with Poisson node conditional distribution
and level of noise λnoise = 0.5. Monte Carlo means (standard deviations)
are shown for TP, FP, FN, PPV and Se. 97

B.2 Simulation results from 500 replicates of the undirected graphs shown in
Figure 3.1 for p = 10 variables with Poisson node conditional distribution
and level of noise λnoise = 5. Monte Carlo means (standard deviations)
are shown for TP, FP, FN, PPV and Se. 99

B.3 Simulation results from 500 replicates of the undirected graphs shown
in Figure 3.2 for p = 100 variables with Poisson node conditional dis-
tribution and level of noise λnoise = 0.5. Monte Carlo means (standard
deviations) are shown for TP, FP, FN, PPV and Se. 100

xiii

xiv List of Tables

B.4 Simulation results from 500 replicates of the undirected graphs shown
in Figure 3.2 for p = 100 variables with Poisson node conditional dis-
tribution and level of noise λnoise = 5. Monte Carlo means (standard
deviations) are shown for TP, FP, FN, PPV and Se. 102

B.5 Simulation results from 500 replicates of the DAGs shown in Figure 4.1
for p = 10 variables with Poisson node conditional distribution. Monte
Carlo means (standard deviations) are shown for TP, FP, FN, PPV and
Se. 104

B.6 Simulation results from 500 replicates of the DAGs shown in Figure 4.2
for p = 100 variables with Poisson node conditional distribution. Monte
Carlo means (standard deviations) are shown for TP, FP, FN, PPV and
Se. 106

B.7 Simulation results from 500 replicates of the DAGs shown in Figure 4.1
for p = 10 variables with Poisson node conditional distribution. Monte
Carlo means (standard deviations) are shown for TP, FP, FN, PPV and
Se. 108

B.8 Simulation results from 500 replicates of the DAGs shown in Figure 4.2
for p = 100 variables with Poisson node conditional distribution. Monte
Carlo means (standard deviations) are shown for TP, FP, FN, PPV and
Se. 109

Introduction

Overview

Biological processes in a cell involve complex interactions between genes. These depen-

dencies are commonly represented in the form of a graph. Indeed, graphs are transparent

models, easily understood and used by researchers with very different backgrounds. As

the direction of influence between genes is a crucial information, directed graphs are

often used to represent such networks, a representation also particularly effective when

it comes to deal with causal reasoning.

When the problem is to unravel which genes conditionally depend on each other,

dependencies have to be inferred from experimental data. Graphical models, which

powerfully represent complex multivariate distributions using the adjacency structure

of a graph, are widely used to infer gene networks from experimental data. Learning a

graphical model from the data boils down, statistically speaking, to making inference on

the parameters of the multivariate distribution defined on the set of variables at hand.

The state-of-the-art inference procedures assume that data arise from a multivariate

Gaussian distribution. However, high-throughput omics data, such as those from next

generation sequencing, often violate this assumption. Here, data are usually discrete,

high dimensional, contain a limited number of samples, show a large number of zeros,

and come from skewed distributions. A popular choice for adapting to non Gaussian

data the large body of results available under the Gaussian assumption relies on data

transformation. Indeed, some authors simply apply Gaussian graphical modelling to

non Gaussian data after transforming the data by transformations such as log, Box-

Cox, copulas, etc. This approach can work well in some circumstances. For example,

microarray data are typically Gaussian on a log scale. Unfortunately, they can be also

ill-suited, possibly leading to wrong inferences in some circumstances [Gallopin et al.

(2013)]. This feeds the recent interest for new principled statistical procedures that can

deal with different data distributions.

1

2 Overview

The most natural idea relies on employing a joint multivariate distribution that,

beside properly representing the set of relations among the variables, it respects the

nature of the variables. A way to achieve this is to incrementally construct multivariate

distributions through the specification of conditional distributions. Indeed, the so-called

conditional modeling approach, is being recognized as an appealing approach to specify

multivariate models that may contain complex dependence structures. Besag (1974)

discussed a tractable and natural way to construct multivariate extensions of univari-

ate exponential family distributions. The construction begins with specification of the

conditional dependencies present among a finite set of random variables that result in a

Markov random field. These conditional dependencies define which of the entries of the

multivariate random vector can be considered as neighbours of each other. Various mod-

els can then be constructed through specification of local (parametric, semiparametric,

nonparametric) regression models.

In this thesis, we assume that conditional distributions follow a Poisson law (exten-

sions to other count distributions could be obtained on the same lines) and we tackle

structure learning of both undirected and directed acyclic graphs (DAGs). There are

some results in the literature on structure learning of Poisson graphical models for undi-

rected models [Allen and Liu (2013), Yang et al. (2013)], or directed graphical models

that permit cycles on graphs [Hadiji et al. (2015)]. To the best of our knowledge, there

is only one algorithm for structure learning of Poisson DAGs, i.e., Park and Raskutti

(2015).

The outline of the thesis is as follows. In Chapter 1, we briefly review graphical mod-

els and structure learning of graphical models. Poisson graphical models are introduced

in Chapter 2. We address both the directed and the undirected framework, proposing

a model specification proved to be identifiable. Some Poisson structure learning algo-

rithms are also described. Chapter 3 presents our first proposal, aimed at learning the

structure of undirected Poisson graphical models, provides a theoretical analysis of con-

vergence of the algorithm and gives an empirical analysis of its performance. Chapter

4 covers the proposed solutions to guided algorithms. The key ingredient of guided

structure learning is assuming that the topological ordering of the set of nodes is spec-

ified beforehand. Three new algorithms for refining the graphical structure, i.e., PK2,

Or-LPGM, Or-PPGM, are presented along with a theoretical analysis of convergence,

and an empirical comparison with a number of different structure learning algorithms.

In Chapter 5, we turn our attention to unguided structure learning. This is particularly

relevant when the topological ordering may be misspecified, or only a partial ordering

on the set of nodes is specified due to a number of reasons. We present the proposed

Introduction 3

algorithm, and give an empirical analysis of its performance. Chapter 6 contains main

conclusions drawn from this project up to date and possible directions for future re-

search.

Main contributions of the thesis

Main contributions of the thesis can be summarized as follows.

1. Definition of a supervised learning algorithm of undirected Poisson graphs, PC-

LPGM. The algorithm stems from the local approach of Allen and Liu (2013),

where the neighbourhood of each node is estimated in turn by solving a lasso

penalized regression problem and the resulting local structures stitched together

to form the global graph. To face possible inaccurate inferences when dealing with

models of high dimension, we propose to substitute penalized estimation with a

testing procedure on the parameters of the local regressions following the lines of

the PC algorithm, see Spirtes et al. (2000). The PC-LPGM algorithm seems to

be very appealing, since it inherits the potential of the PC algorithm that allows

to estimate a sparse graph even if the number of nodes, i.e., p, is in the hundreds

or thousands.

2. Definition of three partially supervised learning algorithms of DAGs, i.e., PK2,

Or-LPGM, Or-PPGM, applicable in situations when some prior information per-

taining to the topology of the graph is available. The methods are based on a

modification of: a very popular structure learning algorithm, the so-called K2

algorithm [Cooper and Herskovits (1992)]; of the local Poisson graphical model

(LPGM) [Allen and Liu (2013)]; of the PC algorithm [Spirtes et al. (2000)]. The

main strength of these proposals is their simplicity and low computational cost,

since exploiting knowledge of the ordering of the nodes allows to considerably

reduce the search space.

3. Definition of a supervised learning algorithm of DAGs, learnDAG. We present an

algorithm for learning the high dimensional Poisson DAGs, that can be generalized

to the case with high variance. The main idea behind our proposal is based on

estimating the “potential parent” sets from edge selection in a DAG by using a log

likelihood score function. These potential parents are then taken as the input to a

pruning step aimed to remove additional edges. Moreover, to make the algorithm

feasible to deal with a high dimensional setting, we also include a preliminary

neighbourhood selection to reduce dimensionality of the candidate neighbourhood

4 Main contributions of the thesis

sets for each node. Results on experimental data show that this algorithm is quite

promising in recovering the structure from given data alone.

4. Proof of identifiability of Poisson DAGs. We prove that assuming a Poisson node

conditional distributions guarantees identifiability of DAG models.

5. Statistical guarantees (proofs of convergence are provided for most of the pro-

posed algorithms) and extensive empirical studies of performance are given for all

proposed algorithms.

Chapter 1

Background

In this chapter, we provide a brief introduction to graphical models. We will address

both the directed and the undirected framework, including factorizations of probability

distributions, their representations by graphs, and the Markov properties. In detail, we

begin with the relation between conditional independence and graphs in Section 1.1.

Some basic concepts on undirected graphical models, and directed graphical models are

given in Sections 1.2, 1.3 respectively. In Section 1.5, we summarize three approaches

of structure learning of graphical models.

1.1 Conditional independence and graphs

The set of conditional independences among a collection of random variables can be

intuitively represented as relations defined on the sets of vertices of a graph induced

by a certain separation criterion. This connection led Pearl and Paz (1985) to study

conditional independence of variables with the help of graphs, where each variable cor-

responds to a node, and edges of the graph encode the conditional dependences. This

application of graphical methods gives rise to the so called graphical models.

In order to give an overview on graphical models, we start by giving the definition

of conditional independence.

Definition 1.1.1. We say that random variables X and Y are conditionally independent

given the random variable Z and write X ⊥⊥ Y |Z if and only if

P(X ∈ A, Y ∈ B|Z) = P(X ∈ A|Z)P(Y ∈ B|Z),

for any A and B measurable in the sample space of X and Y , respectively.

5

6 Section 1.1 - Conditional independence and graphs

X

Z

Y

Figure 1.1: An example of a conditional independence displayed graphically

Equivalently, we can say that the random variables X and Y are conditionally inde-

pendent given the random variable Z if and only if P(X ∈ A|Y, Z) = P(X ∈ A|Z). This

alternative definition has an intuitive interpretation: knowing Z renders Y irrelevant

for predicting X. It is worth to note that unconditional independence can be seen as a

special case of the above definition for Z trivial. However, the two conditions X ⊥⊥ Y ,

and X ⊥⊥ Y |Z are very different and will typically not both hold unless we either have

X⊥⊥ (Y, Z) or (X,Z)⊥⊥Y , i.e., if one of the variables is completely independent of both

of the others. This fact is a simple form of what is known as Yule-Simpson paradox.

For discrete variables, Definition 1.1.1 is equivalent to

P(X = x, Y = y|Z = z) = P(X = x|Z = z)P (Y = y|Z = z),

where the equality holds for all z such that P(Z = z) > 0; whereas for continuous

variables the requirement is

f(x, y|z) = f(x|z)f(y|z),

where the equality holds almost surely. This conditional independence can be displayed

graphically as in Figure 1.1. Some fundamental properties of conditional independence

are listed bellow.

Proposition 1.1.2. For random variables X, Y, Z, and W it holds

(C1) if X ⊥⊥ Y |Z then Y ⊥⊥X|Z;

(C2) if X ⊥⊥ Y |Z and U = g(Y), then X ⊥⊥ U |Z;

(C3) if X ⊥⊥ Y |Z and U = g(Y), then X ⊥⊥ Y |(Z,U);

Chapter 1 - Background 7

(C4) if X ⊥⊥ Y |Z and X ⊥⊥W |(Y, Z), then X ⊥⊥ (Y,W)|Z;

if density with respect to (w.r.t.) product measure f(x, y, z, w) > 0 and

(C5) if X ⊥⊥ Y |(Z,W) and X ⊥⊥ Z|(Y,W) then X ⊥⊥ (Y, Z)|W.

Conditional independence can be seen as encoding abstract irrelevance. With the

interpretation: knowing C,A is irrelevant for learning B, then (C1) − (C4) can be

translated into:

(I1) if, knowing C, learning A is irrelevant for learning B, then B is irrelevant for

learning A;

(I2) if, knowing C, learning A is irrelevant for learning B, then A is irrelevant for

learning any part D of B;

(I3) if, knowing C, learning A is irrelevant for learning B, it remains irrelevant having

learnt any part D of B;

(I4) if, knowing C, learning A is irrelevant for learning B and, having also learnt A,D

remains irrelevant for learning B, then both of A and D are irrelevant for learning

B.

The property analogous to (C5) is slightly more subtle and not generally obvious. More-

over, the symmetry property (C1) is a special property of probabilistic conditional in-

dependence, rather than that of general irrelevance.

We now recall some important definitions of independence models. Let V be a finite

set. An independence model ⊥⊥σ over V is a ternary relation over subsets of a finite set

V .

Definition 1.1.3 (Semi-graphoid). An independence model is a semi-graphoid if it holds

for all subsets A,B,C,D:

(S1) symmetry, if A⊥⊥σ B|C then B ⊥⊥σ A|C;

(S2) decomposition, if A⊥⊥σ (B ∪D)|C then A⊥⊥σ B|C and A⊥⊥σ D|C;

(S3) weak union, if A⊥⊥σ (B ∪D)|C then A⊥⊥σ B|(C ∪D);

(S4) contraction, if A⊥⊥σ B|C and A⊥⊥σ D|(B ∪ C), then A⊥⊥σ (B ∪D)|C.

Definition 1.1.4 (Graphoid). An independence model is a graphoid if it is a semi-

graphoid and satisfies

(S5) intersection, if A⊥⊥σ B|(C ∪D) and A⊥⊥σ C|(B ∪D) then A⊥⊥σ (B ∪ C)|D.

8 Section 1.2 - Undirected Graphical Models

Definition 1.1.5 (Compositional). An independence model is compositional if it satisfies

(S6) composition, if A⊥⊥σ B|C and A⊥⊥σ D|C then A⊥⊥σ (B ∪D)|C.

Note 1.1.6. The composition property ensures that pairwise conditional independence

implies setwise conditional independence, i.e.,

A⊥⊥σ B|C ⇔ α⊥⊥σ β|C, ∀α ∈ A, β ∈ B.

For a system V of labelled random variables Xv, v ∈ V , with distribution P we can

then define an independence model ⊥⊥P by

A⊥⊥B|C ⇔ XA ⊥⊥P XB|XC ,

where XA = (Xv, v ∈ A) denotes the variables with labels in A. Obviously, gen-

eral properties of conditional independence (C1) − (C4) imply that this independence

model satisfies the semi-graphoid axioms, and the graphoid axioms if the joint density

of the variables is strictly positive. An independence model of this kind is said to be

probabilistic. We note that a probabilistic independence model is not compositional in

general, however when P is a regular multivariate Gaussian distribution, then it is a

compositional graphoid.

1.2 Undirected Graphical Models

In what follows, we consider a p-dimensional random vector X = (X1, . . . , Xp) such that

(s.t.) each random variable Xs corresponds to a node of the graph G = (V,E) with

index set V = {1, 2, . . . , p}. In an undirected graph G = (V,E), an edge between two

nodes s and t, is denoted by (s, t). The neighbourhood of node s ∈ V is defined to be

the set N(s) consisting of all nodes connected to s, i.e., N(s) = {t ∈ V : (s, t) ∈ E}.
A path in G is a sequence of (at least two) distinct nodes j1, . . . , jn s.t. there is an edge

between jk and jk+1 , for all k ∈ {1, 2, . . . , n}. A cycle is a path with the modification

that j1 = jn. If A ⊂ V is a subset of a vertex set it induces a subgraph GA = (A,EA),

where EA ⊂ E is obtained from E so that only edges with both endpoints in A are

kept. A graph is complete if all its nodes are joined by an edge. A subset is complete

if it induces a complete subgraph. A complete set that is maximal is called a clique.

Chapter 1 - Background 9

1.2.1 Separation in undirected graphs

Here, we recall an important concept of undirected graphs that represents the conditional

independence of random variables, i.e., separation.

Definition 1.2.1 (Separation). Let G = (V,E) be finite and simple undirected graph (no

self-loops, no multiple edges). For subsets A,B, S of V , we say that S separates A from

B in G, and denote A⊥⊥G B|S if all paths from A to B intersect S.

Note 1.2.2. It is easy to see that the separation relation on subsets of V is a compositional

graphoid; and the name “graphoid” for such separation relations also comes from this

reason.

1.2.2 Markov properties on undirected graphs

We now review briefly three Markov properties associated with undirected graphs, see

Lauritzen (1996) for a detailed presentation. Let XU = (Xj : j ∈ U ⊂ V) be the

random vector of all variables in U ⊂ V . The random vector X satisfies the pairwise

Markov property w.r.t. G if

Xs ⊥⊥Xt|xV \{s,t},

whenever (s, t) /∈ E. Moreover, X satisfies the local Markov property w.r.t. G if

Xs ⊥⊥XV \{N(s)∪{s}}|xN(s),

for every node s ∈ V . Finally, X satisfies the global Markov property w.r.t. G if

XA ⊥⊥XB|xC ,

for any triple of pairwise disjoint subsets A,B,C ⊂ V such that C separates A and B

in G, i.e., every path between a node in A and a node in B contains a node in C.

Note 1.2.3. For any semigraphoid it holds that the global Markov property implies the

local Markov property, which in turn implies the pairwise Markov property. Although

not true in general, the three Markov properties are equivalent when the independence

relation on G satisfies graphoid axioms, that happens for example, when all variables

Xs, s ∈ V , are discrete with positive joint probabilities, or when X has a positive and

continuous density with respect to Lebesgue measure.

In an undirected graphical model, the pairwise Markov property infers a collection

of full conditional independences encoded in absent edges. For this reason, performing(|V |
2

)
pairwise full conditional independence tests yields a method to estimate the graph

10 Section 1.3 - Directed Acyclic Graphical Models

G. The local Markov property means that every variable is conditionally independent

of the remaining ones, given its neighbours. Hence, this property suggests that each

variable Xs, s ∈ V , can be optimally predicted from its neighbour XN(s), giving rise to

the so called neighbourhood selection method. Under the global Markov property, one

should look for separating sets to find conditional independence relations.

1.2.3 Factorization

Graphical models can also be defined in terms of density factorizations, as the joint dis-

tribution can be expressed as a product of clique-wise compatibility functions. Consider

a graph G = (V,E) with vertex set V = {1, . . . , p} corresponding to p variables and

edge set E ⊂ V × V . Then, the definition of factorization is given as follows.

Definition 1.2.4 (Factorization). Suppose X = (X1, . . . , Xp) has a density w.r.t. a

product measure µ = ⊗ps=1µs on R|V |, where µs is usually a Lebesgue measure if Xs is a

continuous random variable, or counting measure if Xs is discrete. Let C(G) be the set

of all complete subsets (cliques) of G, i.e., C ∈ C(G) if (s, t) ∈ E for all s, t ∈ C. Then,

the distribution of X is said to factorize according to G if it has the density of the form

f(x) =
∏
C∈G

φC(xC),

where the potential function φC(.) is a function of |C| variables. Thus, a graphical model

can be defined by specifying families of potential functions.

Note 1.2.5. If f(.) factorizes, then it satisfies the global Markov property, as well as

all weaker Markov properties (Hammersley and Clifford theorem), and, in the case of a

graphoid, all the properties coincide.

1.3 Directed Acyclic Graphical Models

Consider a p-dimensional random vector X = (X1, . . . , Xp) with index set V = {1, 2, . . . , p}.
A directed graph G = (V,E) is a structure consisting of a finite set V of vertices (also

called nodes) and a finite set E of directed edges (also called arcs) between these ver-

tices. A directed edge from node k to node j is denoted by (k, j) or k → j, k is called a

parent of node j, and j is a child of k. The set of parents of a vertex j, denoted pa(j),

consists of all parents of node j, similarly for the set of children ch(j). If there is a

directed path from k to j, then k is an ancestor of j and j is a descendant of k. The

ancestors of j are an(j) and the descendants are de(k); similarly for sets of nodes A we

Chapter 1 - Background 11

use an(A), and de(A). The non-descendants of a node k are nd(k) = V \({k} ∪ de(k)).

Two nodes that are connected by an edge are called adjacent. A triple of nodes (i, j, k)

is an unshielded triple if i and j are adjacent to k but i and j are not adjacent. An

unshielded triple (i, j, k) forms a v-structure if i→ k and j → k. In this case k is called

a collider. The skeleton of a graph G is the set of all edges in G without direction, and

denoted by ske(G).

Definition 1.3.1 (Partially directed acyclic graph). A graph is said to be a partially

directed acyclic graph (PDAG) if there is no directed cycle, i.e., there is no pair (j, k)

such that there are directed paths from j to k and from k to j.

Definition 1.3.2 (Directed acyclic graph). A directed acyclic graph (DAG) is a PDAG

with all directed edges. In DAGs, a topological ordering j1, . . . , jp is an order of p nodes

such that there are no directed paths from jk to jt if k > t for all k, t ∈ V .

Definition 1.3.3 (Topological ordering). A topological ordering of vertices of a directed

acyclic graph is such that if a variable X is an ancestor of a variable Y in a graph G,

then X precedes Y in that ordering.

Note 1.3.4. Obviously, such an ordering is generally non unique, but always exists.

1.3.1 Factorization

Using the locality defined by the parent-child relationship, the joint probability distri-

bution can be factorized as the product of conditional densities.

Definition 1.3.5 (Factorization). Suppose X has a density with respect to a product

measure. Then, the distribution of X factorizes according to a DAG G = (V,E) if it

has a density of the form

f(x) =
∏
j∈V

f(xj|xpa(j)),

where the f(xj|xpa(j)) are conditional densities with f(xj|x∅) = f(xj).

Note 1.3.6. We note that directed graphical models with directed cycles may not satisfy

the factorization property.

1.3.2 d-connection/separation

In a DAG, independence is encoded by the relation of d-separation, defined below.

Definition 1.3.7 (d-connection/separation). Two nodes j and k in V are d-connected

given S ⊂ V \{j, k} if G contains a path π with endpoints j and k s.t.

(i) for every collider v on π, either v or a descendent of v is in S, and

12 Section 1.3 - Directed Acyclic Graphical Models

(ii) no non-collider on π is in S.

Generalizing to sets, two disjoint subsets A,B ⊂ V are d-connected given S ⊂ V \(A∪B)

if there are two nodes j ∈ A and k ∈ B that are d-connected given S. If this is not the

case, then S d-separates A and B.

1.3.3 Markov properties on directed acyclic graphs

Similarly to what we have done for undirected graphs, we state the counterparts of

Markov properties in DAGs.

A random vector X = (Xv : v ∈ V) satisfies the local Markov property w.r.t. a DAG

G if

Xv ⊥⊥Xnd(v)\pa(v)|Xpa(v),

for every v ∈ V . Similarly, X satisfies the global Markov property w.r.t. G if

XA ⊥⊥XB|XC

for all triples of pairwise disjoint subsets A,B,C ⊂ V s.t. C d-separates A and B in G,

which we denote by A⊥⊥B|C.

Note 1.3.8. It is always true for a DAG that the global property, local Markov property,

and the factorization property are equivalent [Lauritzen et al. (1990)].

1.3.4 Moralization

A moral graph is a concept in graph theory, used to find the equivalent undirected form

of a DAG.

Definition 1.3.9 (Moralization). The moral graph Gm of a DAG G is obtained by adding

undirected edges between unmarried parents and subsequently dropping directions.

Note 1.3.10. If P factorizes w.r.t. G, then it factorizes w.r.t. the moralised graph Gm.

Hence, if P satisfies any of the directed Markov properties w.r.t. G, then it satisfies all

Markov properties for Gm. Moreover, it holds that A⊥⊥GB|S if and only if S separates

A from B in this undirected graph Gm [Lauritzen (1996)].

1.3.5 Markov equivalent class

Every DAG determines a set of conditional independence relations among variables.

It turns out that different directed graphs entail the same d-separation rules. These

Chapter 1 - Background 13

graphs are Markov equivalent and the set of Markov equivalent graphs is called a Markov

equivalence class. The formal definition of Markov equivalence class is as follows:

Definition 1.3.11 (Markov equivalence). Two graphs G1 and G2 are Markov equivalent

if their independence models coincide, i.e., if A⊥⊥G1 B|S ⇔ A⊥⊥G2 B|S
Note 1.3.12. Two directed acyclic graphs G1 and G2 are Markov equivalent if and only

if they have the same skeleton ske(G1) = ske(G2) and the same unshielded collider

tripaths.

The non uniqueness of the graphical representation has important practical conse-

quences in statistical inference: in the problem of inferring the graphical structure from

data, the underlying DAG is not identifiable, i.e., we cannot distinguish between DAGs

in the same equivalence class. Hence, structure learning algorithms usually output an

object representative of the whole equivalence class, the so called complete partially

directed acyclic graph (CPDAG). A CPDAG is a graph that contains both directed

and undirected edges. An edge between nodes i and j is directed in a CPDAG if and

only if the orientation of that edge is the same across all DAGs in the equivalence class,

otherwise we keep it undirected.

1.4 Faithfulness condition

The connection between graphs and probability distributions established by the concept

of Markov property has been presented in Section 1.2 and Section 1.3 for undirected

graphs and DAGs respectively. In particular, if there is a specific type of separation

between nodes i and j of the graph given the node subset C then random variables Xi

and Xj are conditionally independent given the random vector XC in the probability

distribution. However, the “ultimate” connection between probability distributions and

graphs requires the other direction to hold, namely for every conditional independence in

the probability distribution to correspond to a separation in the graph. This connection

has been called faithfulness of the probability distribution [Sadeghi (2017)].

Definition 1.4.1 (Faithfulness). A distribution P is faithful to a graph G if no condi-

tional independence relations other than the ones entailed by the Markov property are

presented.

Note 1.4.2. Let J(G) be the independence model induced by the graph G, and J(P) be

the independence model induced by the distribution P. Then, we say that P is faithful

to G if J(P) = J(G).

The faithfulness condition holds in some cases, such as, for example, the Gaussian

or the discrete case [Meek (1995)]. However, it does not hold in general.

14 Section 1.5 - Background on Structure Learning

1.5 Background on Structure Learning

When talking about learning in the graphical modelling framework, we distinguish two

broad classes of problems: given a structure and a model specification, estimation of the

model; and inferring the structure of the model from observation data. While the former

is usually considered a traditional problem of statistical inference, the latter is usually

covered in the machine learning literature. Here, we consider the latter problem, the

so-called structure learning. In detail, given a set of observations that can be assumed to

be independent and identically distributed (i.i.d.) instances sampled from a probability

distribution P corresponding to a graph G, we aim to recover the structure of the graph

G.

Structure learning algorithms can be roughly divided into two major approaches:

scoring-based algorithms and constraint-based algorithms. Some hybrid algorithms are

often defined mixing the two previous classes. The three approaches are touched upon

in what follows. A description of some algorithms for continuous and categorical data is

also provided in Appendix A, with special focus on the algorithms which we have used

in our empirical studies.

1.5.1 Scoring-based Algorithms

Scoring-based algorithms make use of (i) a score function, such as, for example, the

BIC score [Schwarz (1978)], the AIC score [Akaike (1974)], the Bayesian Dirichlet score

[Heckerman et al. (1995)], the likelihood-equivalence Bayesian Dirichlet score [Heck-

erman et al. (1995)], indicating how well the network fits the data; and (ii) a search

strategy, which searches the model that maximizes the score in a possible structure

space. We recall here the concept of consistency of a scoring criterion.

Definition 1.5.1 (Consistency of a scoring criterion). Assume that data are generated by

some distribution P∗ whose underlying DAG is G∗ (in other words, the set of conditional

independence relations that hold in P∗ coincides with the set of conditional independence

relations implied by G∗). We say that scoring function is consistent if the following

properties hold as the number of observations goes to infinity, with probability that

approaches 1:

i) the structure G∗ will maximize the score;

ii) all structures that are not equivalent to G∗ will have strictly lower score.

Especially when dealing with DAGs, the number of possible structures grows expo-

nentially as a function of the number of nodes. For this reason, they often employ a

Chapter 1 - Background 15

greedy search, since searching over the space of possible networks is NP-hard. Chick-

ering and Meek (2002) derived optimality results stating that the greedy search used

in conjunction with any consistent scoring criterion will, as the number of observations

goes to infinity, identify the true structure (up to an equivalence class).

1.5.2 Constraint-based Algorithms

Constraint-based algorithms make use of some statistical tests, such as, for example,

the χ2 test of independence in contingency tables [Spirtes et al. (2000)], or the test on

partial correlation under the Gaussian assumption [Kalisch and Bühlmann (2007)] to

find conditional independence relations among the variables. When dealing with DAGs,

an additional task needs to be considered, i.e., identifying the direction of edges on the

graph. Here, the results of the conditional independent tests are used in conjunction

with orientation rules to construct DAGs. This approach, in general, does not entail

a unique graph when learning DAGs. As a consequence, results of constraint-based

algorithms are often in the form of a CPDAG, i.e., an object representative of the whole

equivalence class.

1.5.3 Hybrid Algorithms

Another class of methods, called hybrid methods, takes ideas from both the above de-

scribed approaches. This approach is typically designed for learning DAGs. It usually

works in two steps: firstly, conditional independence tests of the constraint based meth-

ods are used to learn the skeleton of a the network; then, search-and-score methods

are performed over the graph structure space that respects the skeleton output to find

the optimal structure. The resulting algorithms inherit advantages of both approaches.

However, results of hybrid algorithms also suffer from disadvantages of both constraint-

based algorithms and score-based algorithms, where algorithms require strong assump-

tions and identify a graph up to Markov equivalence class.

Chapter 2

Poisson graphical models for count

data

In this chapter, we focus on Poisson graphical models. We address both the directed

and the undirected framework, providing model specifications. As identifiability is an

important issue of learning DAGs, we tackle identifiability of Poisson graphical models,

proving that the proposed model specification leads to identifiable models. Some struc-

ture learning algorithms are also described. In detail, Poisson model specification is

given in Section 2.1. We prove that models are identifiable in Section 2.2. The Possion

structure learning algorithms are reviewed in Section 2.3.

2.1 Model specifications

We will take a conditional approach as the starting point to model specification. In

detail, assume that each conditional distribution of node Xs given a conditional set K

follows a Poisson distribution, i.e.,

Xs|xK ∼ Pois(fs(xK)), (2.1)

where K is the set of neighbours of s, -denoted as N(s) in Poisson undirected graphs,

-or the set of parents of s, -denoted as pa(s) in Poisson DAGs. The function fs(.) is an

arbitrary function representing the mean of the conditional distribution.

Different choices of the function fs(.) give rise to different model specifications. The

most usual choice for fs(.) is the link function of the univariate Poisson generalized

17

18 Section 2.1 - Model specifications

linear models, i.e.,

fs(xK,θs) = exp{θs +
∑
t∈K

θstxt} = exp{θs +
∑
t6=s

θstxt}, (2.2)

where θst = 0 if t /∈ K, and θs = {θs, θst, s ∈ V, t ∈ V \{s}}. Then, the node conditional

distribution is

Pθs(xs|xK) = exp
{
θsxs +

∑
t∈K

θstxsxt − log(xs!)− eθs+
∑

t∈K θstxt
}
,

where θs ∈ Θs ⊂ Rp. This specification defines an undirected graph G = (V,E) in

which one edge between node s and node t implies θst 6= 0 and θts 6= 0 (or fs(.) depends

on xt and ft(.) depends on xs). A missing edge between node s and node t corresponds

to the condition θst = 0 or θts = 0 (or fs(.) does not depend on xt or ft(.) does not

depend on xs), implying conditional independence of Xs and Xt given the neighbours

XK, i.e., Xs ⊥⊥Xt|xK.

Similarly, in case of DAGs, the above specification puts an edge from node s to node

t if θst 6= 0 (or fs(.) depends on xt). A missing edge s→ t corresponds to the condition

θst = 0 (or fs(.) does not depend on xt), implying conditional independence of Xs and

Xt given the parents of s, i.e., Xs ⊥⊥Xt|xpa(s).
For DAGs, the joint distribution is easily obtained, since the joint distribution fac-

torizes in terms of conditional distributions, leading to

Pθ(x) =

p∏
s=1

Pθs(xs|xpa(s)) (2.3)

= exp
{ p∑
s=1

θsxs +
∑

(s,t)∈E

θstxsxt −
p∑
s=1

log(xs!)−
p∑
s=1

eθs+
∑

t∈pa(s) θstxt
}
.

where θ = {θs, s ∈ V } ∈ Θ ⊂ Rp×p. In case of undirected structures, if (and only if)

θst ≤ 0 ∀ s, t, the joint distribution over all random variables can be expressed in the

following symbolic form,

Pθ(x) = exp
{ p∑
s=1

θsxs +

p∑
s=1

p∑
t=1

θstxsxt −
p∑
s=1

log(xs!)− A(θ)}, (2.4)

where A(θ) is a normalizing constant, see Allen and Liu (2013). In other words, a unique

consistent joint distribution exists provided that conditional dependencies are all nega-

tive, a condition also known as “competitive relationship” among variables, which highly

Chapter 2 - Poisson graphical models for count data 19

limits use of the distribution in applications. To overcome the above mentioned limi-

tation, some authors suggest to modify base measures (or sufficient statistics) so as to

guarantee the existence of a joint distribution allowing a richer dependence structure.

The approach gives rise to the so called Truncated Poisson Graphical Models (TPGM),

Quadratic Poisson Graphical Models (QPGM), and Sub-linear Poisson Graphical Mod-

els (SPGM) [Yang et al. (2013)]. These three classes of graphical models permit rich

dependence structures between variables, although they still have certain limitations on

types of dependencies, or have a Gaussian-esque thin tail, or allow only a bounded range

data.

But the question is if theoretical existence of a consistent joint distribution is required

in real life applications, in particular when the interest is the structure of dependences.

Indeed, some authors suggest to consider local conditional probability models regard-

less of the existence of the joint distribution. In these cases, various models can be

constructed through specification of local (parametric, semiparametric, nonparametric)

regression models. These, combined with clever estimation solutions, give rise to a wide

set of solutions able to embrace an extremely wide range of real situations. For exam-

ple, to face sparsity of the graph, penalized regression techniques might be applied to

estimate each conditional regression (see Allen and Liu (2013), Gallopin et al. (2013),

Žitnik and Zupan (2015)). A class of semiparametric models is proposed in Yang et al.

(2014) along with an adaptive multistage convex relaxation algorithm to estimate pa-

rameters in the model. The conditional mean could also be an arbitrary function, as in

Hadiji et al. (2015).

2.2 Identifiability

An important issue of learning DAGs is the identifiability of the models. As stated

before, different DAGs can encode the same set of conditional independences. Therefore,

DAG models can be defined only up to their Markov equivalence class. However, in

some cases, it is possible to identify the DAG by exploiting specific properties of the

distribution, see Peters and Bühlmann (2013), Shimizu et al. (2006), Peters et al.

(2012). Here, we prove that the Poisson DAG models in (2.3) are also identifiable.

It is worth remembering that an alternative proof of the identifiability of Poisson

DAG models was also given in Park and Raskutti (2015). The Authors proved their

result assuming a condition (Theorem 2.3.2, Section 2.3.3) which is in fact redundant in

the setting under consideration. For this reason, we report here a detailed proof which

benefits from the ideas developed in the work of Peters and Bühlmann (2013).

20 Section 2.2 - Identifiability

Consider a p-random vector X = (X1, . . . , Xp), and assume that the node conditional

distributions follow a Poisson distribution, i.e.,

Xs|xpa(s) ∼ Pois(exp{θs +
∑
t∈pa(s)

θstxt}), s ∈ V = {1, . . . , p}. (2.5)

For a fixed graph G, let paG(j), chG(j), and ndG(j) be the set of parents, the set of

children, and the set of non-descendants of node j in G, respectively.

Proposition 2.2.1. Let X be a p-random vector defined as in (2.5) and G = (V,E) be

a DAG. Consider a variable Xj, j ∈ V , and one of its parents k ∈ paG(j). For all set S

with paG(j)\{k} ⊆ S ⊆ ndG(j)\{k}, we have Xj ⊥6⊥Xk|XS.

Proof. This proposition can be proved easily by using the definition of d-connection and

the faithfulness assumption. Indeed, for a fixed node j ∈ V , for all k ∈ paG(j) and for

all set S satisfies paG(j)\{k} ⊆ S ⊆ ndG(j)\{k}, there always exists the path k → j

satisfies the definition of d-connection. Hence, Xj ⊥6⊥Xk|XS.

Theorem 2.2.2. The Poisson DAG defined as in (2.5) is identifiable.

Proof. Assume there are two structure models as in (2.5) which both encode the same

set of conditional independences, one with graph G, and the other with graph G′. We

will show that G = G′.

Since DAGs do not contain any cycles, we can always find one node without any

child. Indeed, assume to start at some node, and follow a directed path that contains

the chosen node. After at most #(V − 1) steps, a node without any child is reached.

Eliminating such a node from the graph leads to a new DAG.

We repeat this process on G and G′ for all nodes that have: (i) no children, (ii) the

same parents in G and G′. This process terminates with one of two possible outputs: (a)

no nodes left; (b) a subset of variables, which we call again X, two sub-graphs, which we

call again G and G′, and a node j that has no children in G s.t. either paG(j) 6= paG′(j)

or chG′(j) 6= ∅. If (a) occurs, the two graphs are identical and the result is proved. In

what follows, we consider the case that (b) occurs.

For such a j node, we have

Xj ⊥⊥XV \(paG(j)∪{j})|XpaG(j), (2.6)

thanks to the Markov properties with respect to G. To make our argument clear,

we divide the set of parents paG(j) into three disjoint partitions W,Y, Z representing,

Chapter 2 - Poisson graphical models for count data 21

respectively, the set of common parents in both graphs; the set of parents in G being a

subset of children in G′; the set of parents in G which are not parents in G′. Formalizing,

• Z = paG(j) ∩ paG′(j);

• Y ⊂ paG(j) s.t. chG′(j) = Y ∪ T ;

• W ⊂ paG(j) s.t. W are not adjacent to j in G′.

Thus,

paG(j) = W ∪ Y ∪ Z, chG(j) = ∅,
paG′(j) = D ∪ Z, chG′(j) = T ∪ Y,

where D is not adjacent to j in G. Let U = W ∪Y and consider the following two cases:

• U = ∅. Then, there exists a node d ∈ D or a node t ∈ T , otherwise j would have

been discarded.

– If there exists a node d ∈ D, (2.6) implies Xj ⊥⊥Xd|XQ, for Q = Z ∪D\{d},
which contradicts Proposition (2.2.1) applied to G′.

– If D = {∅}, and there exists a node t ∈ T , then (2.6) implies Xj ⊥⊥Xt|XQ,

for Q = Z ∪paG′(t)\{j}, which contradicts Proposition (2.2.1) applied to G′.

• U 6= ∅. We note that, within the structure of the graph G′, the Poisson assumption

implies

Var
(
Xj|XpaG′ (j)

)
= E

(
Xj|XpaG′ (j)

)
. (2.7)

However, by applying the law of total variance we get

Var
(
Xj|XpaG′ (j)

)
= Var

(
E(Xj|XpaG′ (j)

∪XpaG(j))|XpaG′ (j)

)
+E
(
Var(Xj|XpaG′ (j)

∪XpaG(j))|XpaG′ (j)

)
.

By applying Property (2.6) we can rewrite

Var
(
Xj|XpaG′ (j)

)
= Var

(
E(Xj|XpaG(j))|XpaG′ (j)

)
+ E

(
Var(Xj|XpaG(j))|XpaG′ (j)

)
.

(2.8)

In graph G, we have Xj|XpaG(j) ∼ Pois(fj(XpaG(j))), so that

E(Xj|XpaG(j)) = Var(Xj|XpaG(j)) = fj(XpaG(j)).

22 Section 2.3 - Some Poisson structure learning algorithms

Hence, from Equation (2.8), we get

Var
(
Xj|XpaG′ (j)

)
= Var

(
fj(XpaG(j))|XpaG′ (j)

)
+ E

(
E(Xj|XpaG(j))|XpaG′ (j)

)
(2.9)

= Var
(
fj(XpaG(j))|XpaG′ (j)

)
+ E

(
E(Xj|XpaG(j) ∪XpaG′ (j)

)|XpaG′ (j)

)
= Var

(
fj(XpaG(j))|XpaG′ (j)

)
+ E

(
Xj|XpaG′ (j)

)
,

by applying (2.6). Equation (2.9) implies

Var
(
Xj|XpaG′ (j)

)
> E

(
Xj|XpaG′ (j)

)
,

since Var
(
fj(XpaG(j))|XpaG′ (j)

)
> 0 in general, except at the root node.

2.3 Some Poisson structure learning algorithms

In this section, we briefly review three structure learning algorithms which make use

of the Poisson assumption.

2.3.1 LPGM algorithm

The local Poisson graphical model (LPGM) algorithm is a scoring-based algorithm,

designed to recover undirected Poisson graphical models. Introduced by Allen and Liu

(2013), it assumes that the node conditional distributions follow a Poisson law, where

the function fj(.) is taken to be the link function of the univariate Poisson generalized

linear models. It works by locally fitting a l1- penalized log-linear regression to each

node, i.e., to each random variableXs, given all other variables XV \{s} as predictors. The

estimated graph is constructed as the union over the set of edges, found by employing

the l1- penalized log-linear regressions.

In detail, let X(1), . . . ,X(n) be n independent p-random vectors with the node condi-

tional distribution specified in (2.1), where X(i) = (Xi1, . . . , Xip); and X = {x(1), . . . ,x(n)}
be the collection of n samples drawn from the random vectors X(1), . . . ,X(n), with

x(i) = (xi1, . . . , xip), i = 1, . . . , n. Let XU be the set of n samples of the |U |-random

vector XU , with x
(i)
U = (xij)j∈U , i = 1, . . . , n. Since we are only interested in consid-

ering the structure, we can drop the parameters θs, s ∈ V for simplicity. Thus, we can

Chapter 2 - Poisson graphical models for count data 23

rewrite the node conditional distribution as follows

Xs|xV \{s} ∼ Pois(exp{
∑
t6=s

θstxt}), s ∈ V = {1, . . . , p}. (2.10)

Under the assumption (2.10), for each s ∈ V the node conditional distribution can be

written as

PθV \{s}(xs|xV \{s}) = exp{xs
∑
t6=s

θstxt − log(xs!)− e
∑

t 6=s θstxt} (2.11)

= exp{xs〈θV \{s},xV \{s}〉+ C(xs)−D(〈θV \{s},xV \{s}〉)},

where 〈., .〉 denotes the inner product, θV \{s} = {θst : t ∈ V \{s}}, C(a) = log(a!), a >

0, and D(a) = ea, a ∈ R.
Then, a rescaled negative node conditional log-likelihood is as follows

l(θV \{s},X) = − 1

n
`(θV \{s},X) = − 1

n
log

n∏
i=1

PθV \{s}(xis|x
(i)
V \{s}) (2.12)

=
1

n

n∑
i=1

[
−xis〈θV \{s},x(i)

V \{s}〉+D(〈θV \{s},x(i)
V \{s}〉)

]
,

where `(.) is the log-likelihood function. The parameter θV \{s} is estimated by minimiz-

ing the rescaled negative node conditional log-likelihood (2.12), i.e.,

θ̂V \{s} = argminθV \{s}∈Rp−1l(θV \{s},X). (2.13)

To encourage sparsity of estimated graphs, a l1- regularized conditional log-likelihood is

considered, i.e.,

θ̂V \{s} = argminθV \{s}∈Rp−1l(θV \{s},X)− λ‖θV \{s}‖1.

Given the solution θ̂V \{s}, the set of neighbours of node s is defined as

N̂(s) = {t ∈ V \{s} : θ̂st 6= 0}.

The regularization parameter λ that controls the sparsity of the graph structure is

chosen by employing the stability selection criterion (StARS) as in Liu et al. (2010),

which seeks the regularization parameter λ leading to the most stable set of edges. More

precisely, it considers a range Λ = {λ1, . . . , λk} of values for λ, and fixes a number m,

1 < m < n of observations in one sample. Then, B samples of size m, S1, . . . , SB, are

24 Section 2.3 - Some Poisson structure learning algorithms

generated from x1, . . . ,xn. For each λ ∈ Λ, the graph is estimated by solving a lasso

problem. Let Amλ (S1), . . . , A
m
λ (SB) be estimated adjacency matrices of the graph in the

subsamples. The stability of one edge can be estimated by

εms,t(λ) = 2ψms,t(λ)
(
1− ψms,t(λ)

)
,

where ψms,t(λ) = 1
B

∑B
i=1A

m
λ (Si)st is the estimated probability of one edge between nodes

s and t. The optimal value λopt is defined as the largest value that maximizes the total

stability

D̄m(λ) = sup0≤ρ≤λ
∑
s<t

εms,t(ρ)/

(
p

2

)
,

smaller than a chosen value for the upper bound β, i.e., λopt = sup{λ : D̄B(λ) ≤ β}.

2.3.2 PDN Algorithm

The Poisson dependency network (PDN) algorithm, introduced by Hadiji et al. (2015),

is a nonparametric algorithm for structure learning of both directed and undirected

Poisson graphical models. It is a scoring-based algorithm assuming that local conditional

distributions follow a Poisson law, but fs(.) in (2.1) is set to be an arbitrary function.

Structure learning is achieved by estimating the mean function in a functional space,

employing gradient ascent through gradient tree boosting, and multivariate gradient

boosting.

Here, we consider two choices for the link function: log link function and identity

function. For more comments on the choice of the link, we refer the interested reader

to Hadiji et al. (2015).

For the log link function, we can rewrite the mean function as

fs(xV \{s}) = exp{ψs(xV \{s})},

where ψs(.) is some function of XV \{s}. In order to estimate ψ(xV \s), a gradient ascent

is applied in a function space for some iterations T ,

f ts(xV \{s}) = exp{ψts(xV \{s})} = exp{ψt−1s (xV \{s}) + η∇t
s}, t = 1, . . . , T,

Chapter 2 - Poisson graphical models for count data 25

where η, η > 0 is a step size parameter usually set equal to 1, and the function of

gradient is:

∇t
s =

1

n

n∑
i=1

∂

∂ψt−1s (x
(i)
V \{s})

logP
(
xis|x(i)

V \{s};ψ
t−1
s (x

(i)
V \{s})

)
=

1

n

n∑
i=1

∇t
s(xis,x

(i)
V \{s}).

The initial ψ0
s(xV \s) could be fixed to be constant or equal to the logarithm of the

empirical mean x̄s or to a more complex model. This procedure gives a pointwise

estimate of fs(xV \{s}). However, the interest is in estimating fs(.) at arbitrary values x

other than those in the training sample. Hence, by imposing smoothness on the solution,

the function estimate can be achieved by borrowing from nearby data points. One way

to do it is using regression trees to approximate the true function gradient, i.e., the

following objective is minimized

∑
j

[hts(x
(i)
V \{s})−∇t

s(xis,x
(i)
V \{s})]

2,

where hts(.) is a regression tree function as in Breiman et al. (1984). As some choices

can lead to really slow convergence, a multiplicative boosting approach with the use of

identity link is employed.

For the identity link, i.e., fs(.) = ψs(.), the multiplicative update is specified by the

following theorem.

Theorem 2.3.1. The multiplicative functional gradient ascent using the identity link

function is

ψt+1(xV \{s}) = ψt(xV \{s})EXs,XV \{s}

[
Xs

fs(XV \{s})

]
and the training instance can be generated using

(
x
(i)
V \{s},

xis

fs(x
(i)
V \{s})

)
.

The main contribution of this method is the development of the multivariate gradient

boosting, which is proved to be efficient in increasing the convergence rate, since it selects

the step size automatically without extra computations.

2.3.3 ODS algorithm

The overdispersion score (ODS) algorithm, introduced in Park and Raskutti (2015), is

one of the latest algorithms for learning large-scale Poisson DAGs. It belongs to the class

of scoring-based algorithms and it works in two steps. Firstly, the topological ordering

is estimated by using an overdispersion score function. Once the order is estimated, the

26 Section 2.3 - Some Poisson structure learning algorithms

problem is reduced to an estimation of p classical penalized regression problems. Details

of the ODS algorithm are given in what follows.

Similar to some other structure learning algorithms of DAGs that do not employ

prior knowledge on topological ordering, ODS starts from searching the candidate par-

ent sets by employing existing algorithms for learning undirected structures, such as, for

example, those in Yang et al. (2012), Tsamardinos et al. (2006), or Aliferis et al. (2003).

An estimated parent set is specified by learning a moral graph Gm = (V,Eu) underlying

the data. We recall that the moral graph of one DAG is defined as an undirected graph

that consists of all edges on the original DAG without direction and edges between vari-

ables that share a common child. Then, the algorithm estimates the (causal) ordering

of Poisson DAGs using an overdispersion scoring criterion, which is based on this result:

Theorem 2.3.2. Assume that for any j ∈ V, K ⊂ pa(j) and S ⊂ {1, 2, . . . , p}\K,

Var(fj(Xpa(j)|XS)) > 0.

Then Poisson DAG model is identifiable.

Precisely, the ordering begins from the node for which the difference between mean

and variance is smallest. To identify the next position in the ordering, the j-th element

is chosen from the neighbour set of (j − 1)-th element, for which the difference between

conditional mean and variance on the intersection set between the (j−1) first elements in

the order and its neighbours reaches the minimum value. Once the topological ordering

is known, the structure learning process boils down to p standard regressions which can

be performed by using traditional tools [Friedman et al. (2009)].

The score criterion of ODS exploits a simple property of Poisson DAGs, i.e, overdis-

persion. However, it is also the drawback of this method, since it can not work on data

which are not generated from a Poisson distribution.

Chapter 3

Structure Learning of undirected

graphs

This chapter intends to develop a framework for structure learning of undirected

Poisson graphical models. We propose a new algorithm, called PC-LPGM, designed by

exploiting two existing algorithms, i.e., the LPGM algorithm [Allen and Liu (2013)],

and the PC algorithm [Spirtes et al. (2000)] (see Appendix A for details). Briefly, PC-

LPGM employs the local approach of Allen and Liu (2013), i.e., it assumes, as LPGM

does, that each node conditional distribution follows a Poisson distribution. Then,

the neighbourhood of each node is estimated in turn by a testing procedure on the

parameters of the local regressions, following the lines of the PC algorithm.

The remainder of this chapter is as follows. Section 3.1 is devoted to the introduction

of the proposed method, Section 3.2 provides a theoretical analysis of the algorithm with

detailed proofs. In Section 3.3, we provide some experimental results that illustrate the

practical performance of our method. Real data analysis on level III breast cancer

miRNA expression is given in Section 3.4. Some discussion is provided in Section 3.5.

3.1 The PC-LPGM algorithm

We are considering the problem of learning an undirected (possibly sparse) graphical

structure under model specification (2.10), i.e., each node conditional distribution fol-

lows a Poisson distribution,

Xs|xV \{s} ∼ Pois

(
exp

{∑
t6=s

θstxt
})

, s ∈ V = {1, . . . , p}. (3.1)

27

28 Section 3.1 - The PC-LPGM algorithm

Structure learning can be performed by mean of conditional independence tests aimed at

identifying the set of non-zero parameters θst. In the Poisson case, conditional indepen-

dencies can be inferred from Wald type tests on the parameters θst. Sample estimates

θ̂st can be obtained within a maximum likelihood approach and test statistics built ex-

ploiting the asymptotic normality of the estimators. It has to be said, however, that

estimation might be problematic when the number of random variables p is large, pos-

sibly larger than n. To face this problem, we borrow the solution offered by the PC

algorithm, which relies on controlling the number of variables in the conditional sets, a

strategy particularly effective when sparse graphs are under consideration.

Starting from the complete graph, for each s and t ∈ V \{s} and for any set of

variables S ⊂ {1, . . . , p}\{s, t}, we test, at some pre-specified significance level, the null

hypothesis H0 : θst|K = 0, with K = S ∪ {t}. In other words, we test if data support

existence of the conditional independence relation Xs ⊥⊥Xt|XS. If the null hypothesis

is not rejected, the edge (s, t) is considered to be absent from the graph. A control is

operated on the cardinality of the set S of conditioning variables, which is progressively

increased from 0 to p − 2 or to m, m < (p − 2), where m the maximum number of

neighbours that one node is allowed to have.

In detail, assume

Xs|xK ∼ Pois

(
exp

{∑
t∈K

θst|Kxt
})

, ∀s ∈ V, K ⊂ {1, . . . , p}\{s}, (3.2)

and denote θs|K = {θst|K : t ∈ K}. A rescaled negative node conditional log-likelihood

given the conditioning variables XK = {Xk, k ∈ K} can be written as

l(θs|K, X{s} ;XK) = − 1

n
log

n∏
i=1

Pθs|K(xis|x(i)
K) (3.3)

=
1

n

n∑
i=1

[
−xis〈θs|K,x(i)

K 〉+D(〈θs|K,x(i)
K 〉)

]
,

where the scaling factor is taken for later mathematical convenience. The estimate θ̂s|K

of the parameter θs|K is determined by minimizing the above given rescaled negative

conditional log-likelihood (3.3), i.e.,

θ̂s|K = argminθs|K∈R|K| l(θs|K, X{s} ;XK). (3.4)

Chapter 3 - Structure Learning of undirected graphs for count data 29

A Wald-type test statistic for the hypothesis H0 : θst|K = 0 can be obtained from

asymptotic normality of θ̂s|K, i.e., from the result

√
n(θ̂s|K − θs|K)

d−→ N(0, I(θs|K)−1),

where I(θs|K) denotes the expected Fisher information matrix, i.e.,

I(θs|K) = E
[
n
∂2l(θs|K, Xs ;XK)

∂2θs|K

]
,

which holds under fairly general regularity conditions. The test statistic for the null hy-

pothesis H0 : θst|K = 0 can be obtained on exploiting the marginal asymptotic normality

of the component θ̂st|K.

In practice, the observed information J(θs|K) = n
∂2l(θs|K,X{s};XK)

∂2θs|K
, i.e., the second

derivative of the negative log-likelihood function, is more conveniently used evaluated

at θ̂s|K as variance estimate of maximum likelihood quantities instead of the expected

Fisher information matrix, a modification which comes from the use of an appropriately

conditioned sampling distribution for the maximum likelihood estimators. Following

this line, the test statistic for the hypothesis H0 : θst|K = 0 is given by

Zst|K =

√
nθ̂st|K√[

J(θ̂s|K)−1
]
tt

, (3.5)

where [A]jj denotes the element in position (j, j) of matrix A. It is readily available

that Zst|K is asymptotically standard normally distributed under the null hypothesis,

provided that some general regularity conditions hold [Lehmann (1986), page 185].

The conditional independence tests are prone to mistakes. Moreover, incorrectly

deleting or retaining an edge would result in changes in the neighbour sets of other

nodes, as the graph is updated dynamically. Therefore, the resulting graph is dependent

on the order in which the conditional independence tests are performed. To avoid this

problem, we employ the solution in Colombo and Maathuis (2014), who developed a

modification of the PC algorithm that removes the order-dependence, called PC-stable.

In this modification, the neighbours of all nodes are searched for and kept unchanged at

each particular cardinality l of the set K. As a result, an edge deletion at one level does

not affect the conditioning sets of the other nodes, and thus the output is independent

on the variable ordering.

30 Section 3.2 - Statistical Guarantees

The pseudo-code of our algorithm can be written as in Algorithm 1, where adj(G, s) =

{t ∈ G : (s, t) ∈ E} denotes the set of all nodes that are adjacent to s on the graph G.

Algorithm 1 The PC-LPGM algorithm.

1: Input: n independent realizations of the p-random vector X; i.e., x(1),x(2), . . . ,x(n);
an ordering order(V) on the variables, (and a stopping level m).

2: Output: An estimated undirected graph Ĝ.
3: Form the complete undirected graph G̃ on the vertex set V .
4: l = −1; Ĝ = G̃
5: repeat
6: l = l + 1
7: for all vertices s ∈ V , do
8: let Ks = adj(Ĝ, s)
9: end for

10: repeat
11: Select a (new) ordered pair of nodes s, t that are adjacent in Ĝ s.t.
12: |Ks\{t}| ≥ l, using order(V).
13: repeat
14: choose a (new) set S ⊂ Ks\{t} with |S| = l, using order(V).
15: if H0 : θst|S = 0 not rejected

16: delete edge (s, t) from Ĝ
17: end if
18: until edge (s, t) is deleted or all S ⊂ Ks\{t} with |S| = l have been considered.
19: until all ordered pair of adjacent variables s and t such that |Ks\{t}| ≥ l and
20: S ⊂ Ks\{t} with |S| = l have been tested for conditional independence.
21: until l = m or for each ordered pair of adjacent nodes s, t: |adj(Ĝ, s)\{t}| < l.

We note that the pseudo-code is identical to Algorithm 4.1 in Colombo and Maathuis

(2014). Indeed, the difference lies in the statistical procedure used to test the hypothesis

at line 15.

3.2 Statistical Guarantees

In this section, we address the property of statistical consistency of our algorithm, i.e.,

we will study in detail the limiting behavior of our estimation procedure as the sample

size n goes to infinity and the model size p remains fixed. It should be noted that

we employ maximum likelihood estimation at each local regression, which guarantees

consistency and asymptotic normality of the estimators. However, in what follows, we

will derive consistency explicitly as a function of the sample size, n, the number of

nodes, p, and of the maximum number of neighbours, m. We will begin by stating the

assumptions that underlie our analysis, and then give a precise statement of the main

result. We acknowledge that our results are based on the work of Yang et al. (2015) for

Chapter 3 - Structure Learning of undirected graphs for count data 31

exponential family models, combined with ideas coming from Kalisch and Bühlmann

(2007). In particular, we adapted to our setting the proof of consistency of estimators

in l1 regularized local models given in Yang et al. (2015). Moreover, we exploited the

ideas of Kalisch and Bühlmann (2007) for proving consistency of the graph estimator.

For the readers’ convenience, before stating the main result, we summarize some

notation that will be used through out this proof. Given a vector v ∈ Rp, and a

parameter q ∈ [0,∞], we write ‖u‖q to denote the usual lq norm. Given a matrix A ∈
Ra×a, denote the largest eigenvalue, and the smallest eigenvalue as Λmax(A), Λmin(A)

respectively. We use |||A|||2 to denote the spectral norm, corresponding to the largest

singular value of A, i.e.,

|||A|||2 =
√

Λmax(ATA),

and the l∞ matrix norm is defined as

|||A|||∞ = max
i=1,...,a

a∑
j=1

|Ai,j|.

3.2.1 Assumptions

Let θ∗ = {θ∗V \{s}, s ∈ V } denote the true value of θ. Denote the Hessian matrix of the

node rescale negative conditional log-likelihood at θV \{s} as Qs(θV \{s}) = ∇2l(θV \{s},X).

Note that Qs(θV \{s}) = J(θV \{s})/n.

We note that we will consider the problem of maximum likelihood on a closed and

bounded dish Θ ⊂ R(p−1). For θs|K ∈ R|K|, we can immerse θs|K into Θ ⊂ R(p−1) by

zero-pad θs|K to include zero weights over {V \K}.
We state our assumptions.

Assumption 3.2.1. [Dependency condition] The Hessian matrix corresponding to the

covariates in model (3.1) has bounded eigenvalues; that is, there exists a constant λmin >

0 s.t.

Λmin(Qs(θV \{s})) ≥ λmin, ∀ θV \{s} ∈ Θ.

Moreover, we require that

Λmax(EθV \{s} [X
T
V \{s}XV \{s}]) ≤ λmax, ∀s ∈ V, ∀ θV \{s} ∈ Θ,

where λmax is some constant s.t. λmax <∞.

These conditions ensure that the relevant covariates do not become overly dependent.

32 Section 3.2 - Statistical Guarantees

Assumption 3.2.2. [Sparsity] The coefficients θs|K ∈ Θ for all s ∈ V and all sets

K ⊂ {1, 2, . . . , p}\{s} have an upper bound l2 norm, i.e.,

sup
s,K
‖θs|K‖2 ≤M <∞,

and a lower bound norm,

inf
s,t,K
|θst|K| ≥ c, ∀ θst|K 6= 0,

where t ∈ K.

Assumption 3.2.3. [Regularity] There exist constants κ1 and κ2 s.t. D(κ1 log ν) ≤ nκ2 ,

where ν = max{n, p}, κ1 ≥ 9
2
M (where M is specified in Assumption 3.2.2), and

κ2 ∈ [0, 1
4
].

Assumption 3.2.4. Suppose X is a p-random vector with node conditional distribution

specified in (3.1). Then, for any vector u ∈ Rp satisfying ‖u‖2 ≤ a, and any positive

constant δ, there exists some constant c1 > 0, s.t.

Pθ(|〈u,X〉| ≥ δ log ν) ≤ c1ν
−δ/a, ∀ θ ∈ Θ.

Assumption 3.2.5. Suppose X(1), . . . ,X(n) are n independent p-random vectors with

the node conditional distribution specified in (3.1). Then, for any δ > 0, there exists a

constant c2 > 0 s.t.

PθV \{s}

(
1

n

n∑
i=1

(Xis)
2 ≥ δ

)
≤ 2 exp(−c2nδ2), ∀s ∈ V, ∀ θV \{s} ∈ Θ.

It is worth noting that conditions in Assumption 3.2.4, and Assumption 3.2.5 are

always satisfied in exponential family models (see Yang et al. (2012)). In particular,

they hold under the Poisson assumption if and only if θst ≤ 0, ∀s, t ∈ V . As they are

the key technical conditions under which we can prove the consistency of our algorithm,

we assume them to hold in all other cases. In other words, these conditions specify a

class of node conditional Poisson distribution families, for which the method of Structure

learning is consistent.

3.2.2 Consistency of estimators in local models

We begin by introducing some results for the case K = V \{s} with precise proofs.

Then, the same results for general case K ⊂ V \{s} are deduced. To maintain the same

notation, in what follows, we write l(θs|{V \{s}},X{s};XV \{s}) as l(θV \{s},X).

Chapter 3 - Structure Learning of undirected graphs for count data 33

Proposition 3.2.6. Assume 3.2.2- 3.2.5. Then, for any δ > 0

PθV \{s}(‖∇l(θV \{s},X)‖∞ ≥ δ) ≤ exp(−c4n1−κ2) + c2ν
−5/4 + exp(−c3n), ∀ θV \{s} ∈ Θ,

when n −→∞.

Proof. As we have specified the form of the node conditional log-likelihood function

l(θV \{s},X) in (2.12), then the t-partial derivative of l(θV \{s},X) is:

∇tl(θV \{s},X) =
1

n

n∑
i=1

[
−xisxit + xitD(〈θV \{s},x(i)

V \{s}〉)
]

Let Vis(t) = Xisxit − xitD(〈θV \{s},x(i)
V \{s}〉), then for any constant h > 0, we have

EθV \{s}
[
exp(hVis(t))|x(i)

V \{s}

]
=

∞∑
xis=0

exp

{
h[xisxit − xitD(〈θV \{s},x(i)

V \{s}〉)] (3.6)

+xis〈θV \{s},x(i)
V \{s}〉+ C(xis)−D(〈θV \{s},x(i)

V \{s}〉)
}

=
∞∑

xis=0

exp

{
xis[hxit + 〈θV \{s},x(i)

V \{s}〉] + C(xis)

−hxitD(〈θV \{s},x(i)
V \{s}〉)−D(〈θV \{s},x(i)

V \{s}〉)
}

= exp

{
D(hxit + 〈θV \{s},x(i)

V \{s}〉)−D(〈θV \{s},x(i)
V \{s}〉)

−hxitD(〈θV \{s},x(i)
V \{s}〉)

}
= exp

{
h2

2
(xit)

2D(vhxit + 〈θV \{s},x(i)
V \{s}〉)

}
,

for some v ∈ [0, 1], where we move from line 2 to line 3 by applying eλ =
∑∞

x=0

ex

x!
, and

from line 3 to line 4 by using a Taylor expansion for function D(.) at 〈θV \{s},x(i)
V \{s}〉.

Define the event ζ1 =
{

maxi |vhXit + 〈θV \{s},X(i)
V \{s}〉| ≤ κ1 log ν

}
. We note that

vhXit + 〈θV \{s},X(i)
V \{s}〉 has the form of 〈u,X〉 with ‖u‖2 ≤ 2M . Let ζc1 be the comple-

mentary set of ζ1, then by Assumption 3.2.4

Pθ(ζc1) ≤
n∑
i=1

Pθ(|vhXit + 〈θV \{s},X(i)
V \{s}〉| > κ1 log ν)

≤ c1nν
−κ1/(2M) ≤ c1ν

−5/4

, provided that |h| ≤M,

34 Section 3.2 - Statistical Guarantees

since κ1 ≤ 9
2
M . Therefore, from (3.6) and Assumption 3.2.3, we obtain

1

n

n∑
i=1

logEθV \{s}
[
exp(hVis(t))|x(i)

V \{s})
]
≤ nκ2h2

2

1

n

n∑
i=1

(xit)
2, for |h| ≤M, (3.7)

with probability at least 1− c1ν−5/4.
Similarly,

EθV \{s}
[
exp(−hVis(t))|x(i)

V \{s}

]
=

∞∑
xis=0

exp

{
h[−xisxit + xitD(〈θV \{s},x(i)

V \{s}〉)]

+xis〈θV \{s},x(i)
V \{s}〉+ C(xis)−D(〈θV \{s},x(i)

V \{s}〉)
}

= exp

{
D(−hxit + 〈θV \{s},x(i)

V \{s}〉)−D(〈θV \{s},x(i)
V \{s}〉)

+hxitD(〈θV \{s},x(i)
V \{s}〉

}
= exp

{
h2

2
(xit)

2D(−vhxit + 〈θV \{s},x(i)
V \{s}〉)

}
. (3.8)

Define the event ζ ′1 =
{

maxi | − vhXit + 〈θV \{s},X(i)
V \{s}〉| ≤ κ1 log ν

}
. We also note

that −vhXit + 〈θV \{s},X(i)
V \{s}〉 has the form of 〈u,X〉 with ‖u‖2 ≤ 2M , then by Propo-

sition 3.2.4

Pθ(ζ ′c1) ≤ c1nν
−κ1/(2‖θ‖2) ≤ c1ν

−5/4

, provided that |h| ≤M.

Therefore, from (3.8) and Assumption 3.2.3, we obtain

1

n

n∑
i=1

logEθV \{s}
[
exp(−hVis(t)|x(i)

V \{s})
]
≤ nκ2h2

2

1

n

n∑
i=1

(xit)
2, for |h| ≤M, (3.9)

with probability at least 1− c1ν−5/4.
We define the third event ζ2 =

{
maxt∈V \{s}

1
n

∑n
i=1(Xit)

2 ≤ κ3
}

, for some constant

κ3. By using Assumption 3.2.5, we can establish the upper bound of the complementary

set of the event ζ2, i.e. ζc2 as union of each t,

Pθ(ζc2) ≤
∑

t∈V \{s}

Pθ
(

1

n

n∑
i=1

(Xit)
2 ≥ κ3

)
≤ p exp

(
−c2nκ23

)
= exp

(
−c2nκ23 + log p

)
≤ exp(−c3n),

Chapter 3 - Structure Learning of undirected graphs for count data 35

as long as n >
2 log p

c2κ3
. Then, by combining with Inequality (3.7), we have

1

n

n∑
i=1

logEθV \{s}
[
exp(hVis(t))

∣∣x(i)
V \{s}, ζ1, ζ2

]
≤ nκ2h2κ3

2
, for |h| ≤M. (3.10)

Similarly, we also have

1

n

n∑
i=1

logEθV \{s}
[
exp(−hVis(t))

∣∣x(i)
V \{s}, ζ

′
1, ζ2

]
≤ nκ2h2κ3

2
, for |h| ≤M. (3.11)

Applying Chernoff’s bound for any δ > 0

PθV \{s}

(∣∣∣∣ 1n
n∑
i=1

Vis(t)

∣∣∣∣ > δ|ζ1, ζ ′1, ζ2
)

= PθV \{s}

(
1

n

n∑
i=1

Vis(t) > δ|ζ1, ζ2
)

+ PθV \{s}

(
− 1

n

n∑
i=1

Vis(t) > δ|ζ ′1, ζ2
)

≤
EθV \{s} [

∏n
i=1 exp (hVis(t)) |ζ1, ζ2]

exp(nhδ)
+

EθV \{s} [
∏n

i=1 exp (−hVis(t)) |ζ ′1, ζ2]
exp(nhδ)

=

∏n
i=1 EθV \{s} [exp (hVis(t)) |ζ1, ζ2]

exp(nhδ)
+

∏n
i=1 EθV \{s} [exp (−hVis(t)) |ζ ′1, ζ2]

exp(nhδ)

= exp

{
n.

1

n

n∑
i=1

logEθV \{s} [exp (hVis(t)) |ζ1, ζ2]− nhδ
}

+ exp

{
n.

1

n

n∑
i=1

logEθV \{s} [exp (−hVis(t)) |ζ ′1, ζ2]− nhδ
}

≤ 2 exp

{
n

(
nκ2h2κ3

2
− hδ

)}
, for |h| ≤M.

Let h =
δ

nκ2κ3
, then

PθV \{s}

(∣∣∣∣ 1n
n∑
i=1

Vis(t)

∣∣∣∣ > δ|ζ1, ζ ′1, ζ2
)
≤ 2 exp

(
− nδ2

2nκ2κ3

)
, for n ≥

(
δ

κ3M

)1/κ2

.

36 Section 3.2 - Statistical Guarantees

A bound for W = −∇l(θV \{s},X) can be established as follow

PθV \{s}(‖W‖∞ > δ) = PθV \{s}(max
t∈V \{s}

|∇tl(θV \{s},X)| > δ)

= PθV \{s}

(
max
t∈V \{s}

∣∣∣∣ 1n
n∑
i=1

Vis(t)

∣∣∣∣ > δ

)

= PθV \{s}

(
max
t∈V \{s}

∣∣∣∣ 1n
n∑
i=1

Vis(t)

∣∣∣∣ > δ|ζ1, ζ ′1, ζ2
)

+ Pθ(ζc1)

+Pθ(ζ ′c1) + Pθ(ζc2)

≤ 2p exp

(
− nδ2

2nκ2κ3

)
+ Pθ(ζc1) + Pθ(ζ ′c1) + Pθ(ζc2)

≤ exp(−c4n1−κ2) + c2ν
−5/4 + exp(−c3n),

for n ≥ max

{(
δ

κ3M

)1/κ2

,

(
4 log(2p)κ3

δ2

)1/(1−κ2)
}
.

Theorem 3.2.7. Assume 3.2.1- 3.2.5. Then, there exists a non-negative decreasing

sequence δn → 0, s.t.

PθV \{s}(‖θ̂V \{s}−θV \{s}‖2 ≤ δn) ≥ 1−exp(−c4n1−κ2)+c2ν
−5/4+exp(−c3n), ∀ θV \{s} ∈ Θ,

when n −→∞.

Proof. Let û = θ̂V \{s} − θV \{s}, and define G : Rp−1 −→ R as

G(û) = l(θV \{s} + û,X)− l(θV \{s},X).

In order to show ‖û‖2 ≤ B, for some radius B > 0, it is sufficient to show G(u) > 0,

for all u ∈ Rp−1 s.t. ‖u‖2 = B. Indeed, if ‖û‖2 > B there exists some t ∈ [0, 1] s.t.

‖tû‖2 = B. It is easy to see that G(0) = 0. Moreover, by the definition of θ̂V \{s} in

(2.13), û minimizes G(u) so G(û) ≤ 0. Finally, since G(u) is a convex function, we get

G(tû + (1− t)0) ≤ tG(û) + (1− t)G(0) ≤ 0,

contradicting to G(u) > 0, for all u ∈ Rp−1 s.t. ‖u‖2 = B.

Using Taylor expansion of the node conditional log-likelihood at θV \{s}, we have

G(u) = l(θV \{s} + u,X)− l(θV \{s},X) (3.12)

= ∇l(θV \{s},X)uT + u[∇2(l(θV \{s} + vu,X))]uT ,

Chapter 3 - Structure Learning of undirected graphs for count data 37

for some v ∈ [0, 1]. Let

q = Λmin(∇2(l(θV \{s} + vu,X)))

≥ min
v∈[0,1]

Λmin(∇2(l(θV \{s} + vu,X)))

= min
v∈[0,1]

Λmin

[
1

n

n∑
i=1

D(〈θV \{s} + vu,x
(i)
V \{s}〉)(x

(i)
V \{s})

Tx
(i)
V \{s}

]
.

Using Taylor expansion for D(〈θV \{s} + vu,x
(i)
V \{s}〉) at 〈θV \{s},x(i)

V \{s}〉, we have

1

n

n∑
i=1

D(〈θV \{s} + vu,x
(i)
V \{s}〉)(x

(i)
V \{s})

Tx
(i)
V \{s})

=
1

n

n∑
i=1

D(〈θV \{s},x(i)
V \{s}〉)(x

(i)
V \{s})

Tx
(i)
V \{s} +

1

n

n∑
i=1

D(〈θV \{s} + v′u,x
(i)
V \{s}〉)[vu(x

(i)
V \{s})

T][(x
(i)
V \{s})

Tx
(i)
V \{s}],

for some v′ ∈ [0, 1]. Hence,

q ≥ Λmin

[
1

n

n∑
i=1

D(〈θV \{s},x(i)
V \{s}〉)(x

(i)
V \{s})

Tx
(i)
V \{s}

]

− max
v′∈[0,1]

∣∣∣∣∣∣∣∣∣∣∣∣ 1n
n∑
i=1

D(〈θV \{s} + v′u,x
(i)
V \{s}〉)[u(x

(i)
V \{s})

T]
[
(x

(i)
V \{s})

Tx
(i)
V \{s}

]∣∣∣∣∣∣∣∣∣∣∣∣
2

≥ λmin − max
v′∈[0,1]

∣∣∣∣∣∣∣∣∣∣∣∣ 1n
n∑
i=1

D(〈θV \{s} + v′u,x
(i)
V \{s}〉)[u(x

(i)
V \{s})

T](x
(i)
V \{s})

Tx
(i)
V \{s}

∣∣∣∣∣∣∣∣∣∣∣∣
2

.

It remains to control the spectral norm of the matrix

A(v′) =
1

n

n∑
i=1

D(〈θV \{s} + v′u,x
(i)
V \{s}〉)[u(x

(i)
V \{s})

T](x
(i)
V \{s})

Tx
(i)
V \{s}), for v′ ∈ [0, 1].

Define two new events

ζ3 = {max
i
|〈θV \{s} + v′u,X

(i)
V \{s}〉| ≤ κ1 log ν},

ζ4 = {max
i,s
‖X(i)

V \{s}‖1 ≤ 4 log ν}.

Similarly to the event ζ1, we have Pθ(ζc3) ≤ c3ν
−5/4, provided that B ≤ M , and, as

a consequence, |D(〈θV \{s} + v′u,x
(i)
V \{s}〉)| ≤ nκ2 , with probability at least 1 − c

−5/4
3 .

Moreover, ‖X(i)
V \{s}‖1 has the form of 〈u,X〉, so by Assumption 3.2.4, we obtain Pθ(ζc4) ≤

38 Section 3.2 - Statistical Guarantees

c2npν
−4 ≤ c2ν

−2.

Conditioned on ζ3, ζ4 we have

q ≥ λmin − max
v′∈[0,1]

∣∣∣∣∣∣∣∣∣∣∣∣ 1n
n∑
i=1

D(〈θV \{s} + v′u,x
(i)
V \{s}〉)[u(x

(i)
V \{s})

T](x
(i)
V \{s})

Tx
(i)
V \{s}

∣∣∣∣∣∣∣∣∣∣∣∣
2

≥ λmin − max
v′∈[0,1]

∣∣D(〈θV \{s} + v′u,x
(i)
V \{s}〉)

∣∣∣∣u(x
(i)
V \{s})

T
∣∣∣∣∣∣∣∣∣∣∣∣∣∣ 1n

n∑
i=1

(x
(i)
V \{s})

Tx
(i)
V \{s}

∣∣∣∣∣∣∣∣∣∣∣∣
2

≥ λmin − nκ24 log ν
√
d‖u‖2λmax

= λmin − 4
√
dBλmaxn

κ2 log ν

≥ λmin

2
, provided that B <

λmin

8
√
dλmaxnκ2 log ν

.

Let δ =
λmin

2
B. Then, from Proposition 3.2.6, we have

∇tl(θV \{s},X) > −λmin

2
B,

with probability at least 1− exp(−c4n1−κ2) + c2ν
−5/4 + exp(−c3n), provided that

n ≥ max

{(
λminB

2κ3M

)1/κ2

,

(
8 log(2p)κ3
λ2minB

2

)1/(1−κ2)
}
.

Combining with the inequality of q, we have

G(u) = ∇l(θV \{s},X)uT + u[∇2(l(θV \{s} + vu,X))]uT (3.13)

>
λmin

2
B2 +

λmin

2
B2 = 0 (3.14)

provided that

(
8κ3 log(2p)

λ2minn
1−κ2

)1/2

< B <
λmin

8
√
dλmaxnκ2 log ν

. It means that ‖û‖2 < B.

When n −→∞ we can choose a non- negative decreasing sequence δn s.t.

(
8κ3 log(2p)

λ2minn
1−κ2

)1/2

<

δn <
λmin

8
√
dλmaxnκ2 log ν

, then

PθV \{s}(‖θ̂V \{s} − θV \{s}‖2 ≤ δn) ≥ 1− exp(−c4n1−κ2) + c2ν
−5/4 + exp(−c3n),

when n −→∞.

The proof of the following proposition follows the lines of Proposition 3.2.6. We

note that the set of explanatory variables XK in the generalized linear model Xs given

Chapter 3 - Structure Learning of undirected graphs for count data 39

XK does not include variables Xt, with t ∈ {V \{s}}\K. Suppose we zero-pad the

true parameter θs|K ∈ R|K| to include zero weights over {V \{s}}\K, then the resulting

parameter would lie in R|p−1|. Hence, we have the following proposition.

Proposition 3.2.8. Assume 3.2.2- 3.2.5. Then, for any δ > 0

Pθs|K(‖∇l(θs|K,X{s};XK)‖∞ ≥ δ) ≤ exp(−c4n1−κ2) + c2ν
−5/4 + exp(−c3n), ∀ θs|K ∈ Θ,

when n −→∞.

Theorem 3.2.9. Assume 3.2.1- 3.2.5. Then there exists a non-negative decrease se-

quence δn → 0, s.t.

Pθs|K(‖θ̂s|K − θs|K‖2 ≤ δn) ≥ 1− exp(−c4n1−κ2) + c2ν
−5/4 + exp(−c3n), ∀ θs|K ∈ Θ,

when n −→∞.

Proof. Let û = θ̂s|K − θs|K, and define G : R|K| −→ R as

G(û) = l(θs|K + û,X{s};XK)− l(θs|K,X{s};XK).

We take the same way as in Theorem 3.2.7 in order to show ‖û‖2 ≤ B, for some radius

B > 0. In detail, we also show G(u) > 0, for all u ∈ R|K| s.t. ‖u‖2 = B. Recall the

conditional log-likelihood function:

l(θs|K,X{s};XK) =
1

n

n∑
i=1

[
−xis〈θs|K,x(i)

K 〉+D(〈θs|K,x(i)
K 〉)

]
.

Using Taylor expansion of the node conditional log-likelihood at θs|K, we have

G(u) = l(θs|K + u,X{s};XK)− l(θs|K,X{s};XK) (3.15)

= ∇l(θs|K,X{s};XK)uT + u[∇2(l(θs|K + vu,X{s};XK))]uT .

Let

q = Λmin(∇2(l(θs|K + vu,X{s};XK)))

≥ min
v∈[0,1]

Λmin(∇2(l(θs|K + vu,X{s};XK)))

= min
v∈[0,1]

Λmin

[
1

n

n∑
i=1

D(〈θs|K + vu,x
(i)
s|K〉)(x

(i)
s|K)Tx

(i)
s|K

]
.

40 Section 3.2 - Statistical Guarantees

Using Taylor expansion for D(〈θs|K + vu,x
(i)
s|K〉) at 〈θs|K,x(i)

s|K〉, we have

1

n

n∑
i=1

D(〈θs|K + vu,x
(i)
s|K〉)(x

(i)
s|K)Tx

(i)
s|k) =

1

n

n∑
i=1

D(〈θs|K,x(i)
s|K〉)(x

(i)
s|K)Tx

(i)
s|K

+
1

n

n∑
i=1

D(〈θs|K + v′u,x
(i)
s|K〉)[vu(x

(i)
s|K)T]

[(x
(i)
s|K)Tx

(i)
s|K].

Hence,

q ≥ Λmin

[
1

n

n∑
i=1

D(〈θs|K,x(i)
s|K〉)(x

(i)
s|K)Tx

(i)
s|Kd

]

− max
v′∈[0,1]

∣∣∣∣∣∣∣∣∣∣∣∣ 1n
n∑
i=1

D(〈θs|K + v′u,x
(i)
s|K〉)[u(x

(i)
s|K)T]

[
(x

(i)
s|K)Tx

(i)
s|K
]∣∣∣∣∣∣∣∣∣∣∣∣

2

≥ λmin − max
v′∈[0,1]

∣∣∣∣∣∣∣∣∣∣∣∣ 1n
n∑
i=1

D(〈θs|K + v′u,x
(i)
s|K〉)[u(x

(i)
s|K)T](x

(i)
s|K)Tx

(i)
s|K

∣∣∣∣∣∣∣∣∣∣∣∣
2

.

The second inequality is due to the fact that the smallest eigenvalue of a sub-matrix is

larger than or equal to the smallest eigenvalue of the original matrix. Here, Qs|K(θs|K) =
1
n

∑n
i=1D(〈θs|K,x(i)

V \s〉)(x
(i)
s|K)Tx

(i)
s|K is a sub-matrix of the Hessian matrix Qs(θV \{s}).

Hence,

Λmin

[
1

n

n∑
i=1

D(〈θs|K,x(i)
s|K〉)(x

(i)
s|K)Tx

(i)
s|K

]
≥ Λmin(Qs(θV \{s})) ≥ λmin.

Then, by performing the same analysis as in the proof of Theorem 3.2.7 and Proposition

3.2.8, we get the result.

3.2.3 Consistency of the graph estimator

Now we state the main result of this work for the consistency of the graph estimate.

Assumption 3.2.10. [Faithfulness] Let J(G) be the independence model induced by

the true graphG, and J be the independence model induced by conditional independence

relations on p random variables X1, . . . , Xp in the model (3.1). It holds J = J(G).

Theorem 3.2.11. Assume 3.2.1- 3.2.5, and 3.2.10. Denote by Ĝ(αn) the estimate

from Algorithm 1, and by G the true graph. Then, there exists a numerical sequence

Chapter 3 - Structure Learning of undirected graphs for count data 41

αn −→ 0, s.t.

Pθ(Ĝ(αn) = G) = 1, ∀ θ ∈ Θ,

when n −→∞.

Proof. Let θ̂st|K, and θ∗st|K denote the estimated and true partial weights between Xs

and Xt given Xr, r ∈ S, where S = K\{t} ⊂ {1, . . . , p}\{s, t}. Many partial weights

are tested for being zero during the run of the PC-procedure. For a fixed ordered pair

of nodes s, t, the conditioning sets are elements of

Km
st = {S ⊂ {1, . . . , p}\{s, t} : |S| ≤ m} .

The cardinality is bounded by

|Km
st | ≤ Bpm, for some 0 < B <∞.

Let Est|K denote type I or type II errors occurring when testing H0 : θst|K = 0. Thus

Est|K = EI
st|K ∪ EII

st|K, (3.16)

in which, for n large enough

• type I error EI
st|K: Zst|K > Φ−1(1− α/2) and θ∗st|K = 0;

• type II error EII
st|K: Zst|K ≤ Φ−1(1− α/2) and θ∗st|K 6= 0;

where Zst|K was defined in (3.5), and α is a chosen significance level. Consider an

arbitrary value θs|K = {θsk|K}k∈K ∈ Θ, and let θ0s|K be the vector that has the same

elements as θs|K except θst|K = θ∗st|K = 0. Choose αn = 2(1−Φ(nd)), with 0 < d < 1/2,

then

sup
s,t,K∈Km

ij

Pθ0s|K(EI
st|K) = sup

s,t,K∈Km
st

Pθ0s|K

(
|θ̂st|K| > nd−1/2

√[
J(θ̂s|K)−1

]
tt

)
= sup

s,t,K∈Km
st

Pθ0s|K

(
|θ̂st|K − θ0st|K| > nd−1/2

√[
J(θ̂s|K)−1

]
tt

)
≤ exp(−c4n1−κ2) + c2ν

−5/4 + exp(−c3n), (3.17)

42 Section 3.3 - Empirical study

using Theorem 3.2.9 and the fact that nd−1/2
√[

J(θ̂s|K)−1
]
tt
−→ 0 as n −→ ∞. Fur-

thermore, with the choice of αn above,

sup
s,t,K∈Km

st

Pθs|K(EII
st|K) = sup

s,t,K∈Km
st

Pθs|K

(
|θ̂ij|K| ≤ nd−1/2

√[
J(θ̂s|K)−1

]
tt

)
< sup

s,t,K∈Km
st

Pθs|K

(
|θ̂st|K − θst|K| ≥ nd−1/2

√[
J(θ̂s|K)−1

]
tt

)
,

because infs,t,K |θst|K| ≥ c ≥ 2nd−1/2
√[

J(θ̂s|K)−1
]
tt

, Hence,

|θ̂st|K − θst|K| ≥ |θst|K| − |θ̂st|K|

≥ 2nd−1/2
√[

J(θ̂s|K)−1
]
tt
− nd−1/2

√[
J(θ̂s|K)−1

]
tt

= nd−1/2
√[

J(θ̂s|K)−1
]
tt

Finally, by Theorem 3.2.9, we then obtain

sup
s,t,K∈Km

st

Pθs|K(EII
st|K) ≤ exp(−c4n1−κ2) + c2ν

−5/4 + exp(−c3n), (3.18)

as n −→∞.

Now, by (3.16)-(3.18), we get

Pθ(a type I or II error occurs in testing procedure) (3.19)

≤ Pθs|K(∪s,t,K∈Km
st
Est|K) (3.20)

≤ O(pm+2) sup
s,t,K∈Km

st

Pθs|K(Est|K)

≤ O(pm+2)
[

exp(−c4n1−κ2) + c2ν
−5/4 + exp(−c3n)

]
−→ 0.

as n −→∞.

3.3 Empirical study

In this section, we study the performances of our proposed algorithm by means of

simulated data.

Chapter 3 - Structure Learning of undirected graphs for count data 43

Simulation studies aim at measuring the ability of PC-LPGM to recover the true

structure of the graphs, also in situations where relatively moderate sample sizes are

available. As measure of ability, we adopt the positive predictive value and the sensitivity

of the algorithm. Let Ĝ = (V, Ê) be the estimate of G = (V,E). The number of true

positive (TP), false positive (FP), and false negative (FN) edges are defined to be

TP = #{ number of edges in Ê in E},

FP = #{ number of edges in Ê not in E},

FN = #{ number of edges in E not in Ê},

respectively. Then, the positive predictive value (PPV) and the sensitivity (Se) are

respectively defined as

PPV =
TP

(TP + FP)
, Se =

TP

(TP + FN)
.

In doing these studies, we also aim to compare PC-LPGM to a number of popular

structure learning algorithms. We therefore consider LPGM and PDN. It is worth re-

membering that structure learning for Poisson undirected graphical models is usually

performed by employing methods for continuous data after proper data transformation.

We therefore consider two representatives of approaches based on the Gaussian assump-

tion, i.e., variable selection with lasso (VSL) [Meinshausen and Bühlmann (2006)], and

graphical lasso algorithm (GLASSO) [Friedman et al. (2008)]. Moreover, we consider

two structure learning methods dealing with the class of nonparanormal distributions,

i.e., the nonparanormal-Copula algorithm (NPN-Copula) [Liu et al. (2009)], and the

nonparanormal-SKEPTIC algorithm (NPN-Skeptic) [Liu et al. (2012)]. Details of con-

sidered algorithms are briefly given in Appendix A.

Data generation

For two different cardinalities, i.e., p = 10 and p = 100, we consider three graphs of

different structure: (i) a scale-free graph, in which the node degree distribution follows

a powerlaw; (ii) a hub graph, where each node is connected to one of the hub nodes;

(iii) a random graph, where presence of edges are i.i.d. Bernoulli random variables. To

construct the scale-free and hub networks, we employed the R package XMRF. For the

scale-free network, we assumed a power law with parameter 0.01 for the node degree

distribution. For the hub network, we assumed two hub nodes for p = 10, and 5 hub

44 Section 3.3 - Empirical study

nodes for p = 100. To construct the random network, we employed the R package igraph

with edge probability 0.2 for p = 10, and 0.02 for p = 100. See Figure 3.1 and 3.2 for a

plot of the three chosen graphs for p = 10 and p = 100, respectively.

●

●

●
●

●

●

●

●

●

●

1

2

3

4

5

6

7

8

9

10

(a) scale−free

● ●

●

●

●

●
●

●

●

●

1

2

3

4

5

6

7

8

9

10

(b) hub

●

●

●

●

●

●
●

●

●

●

1

2

3

4

5

6

7

8

9

10

(a) random

Figure 3.1: The graph structures for p = 10 employed in the simulation studies: (a)
scale-free; (b) hub; (c) random graph.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16 17

18

19

20

21

2223

24

25

26

27

28

29

30

31

32
33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64
65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

(a) scale−free

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●
● ●

●

●

●

●

● ●
●

●

● ●
●

●
●●

●

●

●

●

● ●

●

●

●

●
●

●

●●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

● ●

●

●
●

●
●

●
●

●

●

●

●

●

●

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
17

18

19

20

21

22
23

24

25

26 27

28

29

3031

32

33

34

35

36
37

38

39

40

41

42

43

44
45

46
47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62 63

64

65

66

67
68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84
85

86
87

88

89

90

91

92

93

94

95

96

97

98

99

100

(b) hub

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80 81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

(c) random

Figure 3.2: The graph structures for p = 100 employed in the simulation studies:
(a) scale-free; (b) hub; (c) random graph.

Chapter 3 - Structure Learning of undirected graphs for count data 45

For each graph, 500 datasets were sampled for three sample sizes, i.e., n = 200, 1000, 2000.

To generate the data, we followed the approach in Allen and Liu (2013). Let X =

(x(1), . . . ,x(n))T ∈ Rn×p be the set of n independent observations of random vector

X, where x(i) is a p-dimensional count data vector, x(i) ∈ {0, 1, . . . ,∞}p. Then, X is

obtained from the following model

X = YW + ε,

where Y = (yst) is an n × (p + p(p − 1)/2) matrix whose entries yst are realizations of

independent random variables Yst ∼ Pois(λtrue) and ε = (est) is an n × p matrix with

entries est which are realizations of random variables Est ∼ Pois(λnoise). Let W be the

adjacency matrix of a given true graph, then the adjacency matrix is encoded by matrix

W as W = [Ip;P � (1ptri(W)T)]T . Here, P is a p× (p(p− 1)/2) pairwise permutation

matrix, � denotes the element-wise product, and tri(W) is the (p(p−1)/2)×1 vectorized

upper triangular part of W . As in Allen and Liu (2013), we simulated data at two signal-

to-noise ratio (SNR) levels. We set λtrue = 1 with λnoise = 5 for the low SNR level, and

λnoise = 0.5 for the high SNR level.

Results

The considered algorithms are listed below, along with specifications, if needed, of tun-

ing parameters. Algorithms for Gaussian data have been used on log transformed data

shifted by 1. Whenever a regularization parameter λ had to be chosen, the StARS algo-

rithm Liu et al. (2010) was employed, which aims to seek the value of λ ∈ (λmin, λmax),

λopt say, leading to the most stable set of edges. We refer the reader to Section 2.3.1 for

details on the StARS algorithm and its tuning parameters, in particular the variability

threshold β and the number of subsamplings B. It is worth noting that, whenever the

graph corresponding to λopt was empty, we shifted to the fist nonempty graph (if it

existed) in the decreasing regularization path. We therefore considered:

- PC-LPGM: level of significance of tests 1%;

- LPGM: β = 0.05; B = 20;
λmin
λmax

= 0.01; γ = 0.001;

- VSL: β = 0.1; B = 20;

- GLASSO: β = 0.1; B = 20;

- NPN-Copula: β = 0.1; B = 20;

- NPN-skeptic: β = 0.1; B = 20.

46 Section 3.3 - Empirical study

For the two considered vertex cardinalities, i.e., p = 10, 100, and for the chosen sample

sizes n = 200, 1000, 2000, Table 3.1 and Table 3.2 report, respectively, Monte Carlo

means of TP, FP, FN, PPV and Se for each of considered method at low (λnoise = 5) and

high (λnoise = 0.5) SNR levels. Each value is computed as an average of the 1500 values

obtained by simulating 500 samples for each of the three networks. Results disaggregated

by network type are given in Appendix B, Tables B.1 – B.4. These results indicate that

the PC-LPGM algorithm outperforms, on average, Gaussian-based competitors (VSL,

GLASSO), nonparanormal-based competitors (NPN-Copula, NPN-Skeptic) as well as

the state-of-the-art algorithms that are designed specifically for Poisson graphical models

(LPGM, PDN) on average in terms of reconstructing the structure from given data.

500 1000 1500 2000

0
2

4
6

8
10

sample size

Tr
ue

 p
os

tiv
e

●

● ●

● ●
●

●
●

●

scale−free

500 1000 1500 2000

0
2

4
6

8
10

sample size

Tr
ue

 p
os

tiv
e ●

● ●

●

● ●

●

●

●

hub

500 1000 1500 2000

0
2

4
6

8
10

sample size

Tr
ue

 p
os

tiv
e

●

● ●

●
● ●

●
●

●

random

500 1000 1500 2000

0
2

4
6

8
10

sample size

Tr
ue

 p
os

tiv
e

●

●
●

●

● ●

●

●

●

500 1000 1500 2000

0
2

4
6

8
10

sample size

Tr
ue

 p
os

tiv
e

●

●
●

●

●

●

●

●

●

500 1000 1500 2000

0
2

4
6

8
10

sample size

Tr
ue

 p
os

tiv
e

●

●

●

●

●
●

●

●

●

● ● ●LPGM PC−LPGM PDN VSL GLASSO NPN−copula NPN−skeptic True value

Figure 3.3: Number of TP edges recovered by PC-LPGM; LPGM; PDN; VSL;
GLASSO; NPN-Copula; NPN-Skeptic for networks in Figure 3.1 (p = 10) and sample
sizes n = 200, 1000, 2000. First panel row corresponds to high SNR level (λnoise =
0.5); second panel row corresponds to low SNR level (λnoise = 5).

When p = 10, the PC-LPGM algorithm reaches the highest TP value, followed by the

PDN and the LPGM algorithms. When n ≥ 1000, PC-LPGM recovers almost all edges

for both low and high SNR levels, see Figure 3.3. A closer look at the PPV and Se plot

(see Figure 3.4 and Figure 3.5) provides further insight of the behaviour of considered

methods. Among the algorithms with highest PPV, PC-LPGM shows a sensitivity

approaching 1 already at the sample size n = 1000 for both a high and a low SNR level

(Figure 3.4). It is worth noting that LPGM algorithm was successful only for a high

SNR level (λnois = 0.5).

Chapter 3 - Structure Learning of undirected graphs for count data 47

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample size

P
os

iti
ve

 p
re

di
ct

iv
e

va
lu

e

● ● ●
●

● ●● ● ●

scale−free

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample size

P
os

iti
ve

 p
re

di
ct

iv
e

va
lu

e

● ● ●

●

● ●● ● ●

hub

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample size

P
os

iti
ve

 p
re

di
ct

iv
e

va
lu

e

● ● ●

●
● ●

● ● ●

random

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample size

S
en

si
tiv

ity

●

● ●

● ●
●

●
●

●

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample size

S
en

si
tiv

ity

●

● ●

●

● ●

●

●

●

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample size

S
en

si
tiv

ity

●

● ●

●

● ●

●
●

●

● ● ●LPGM PC−LPGM PDN VSL GLASSO NPN−copula NPN−skeptic

Figure 3.4: PPV (first panel row) and Se (second panel row) for PC-LPGM; LPGM;
PDN; VSL; GLASSO; NPN-Copula; NPN-Skeptic for networks in Figure 3.1 (p = 10),
sample sizes n = 200, 1000, 2000 and λnoise = 0.5.

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample size

P
os

iti
ve

 p
re

di
ct

iv
e

va
lu

e

●

● ●

●

●

●

●

● ●

scale−free

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample size

P
os

iti
ve

 p
re

di
ct

iv
e

va
lu

e

●

● ●

●

●

●

●

● ●

hub

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample size

P
os

iti
ve

 p
re

di
ct

iv
e

va
lu

e

●

●
●

●

●

●

●

● ●

random

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample size

S
en

si
tiv

ity

●

●

●

●

●
●

●

●

●

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample size

S
en

si
tiv

ity

●

●

●

●

●

●

●

●

●

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample size

S
en

si
tiv

ity

●

●

●

●

●
●

●

●

●

● ● ●LPGM PC−LPGM PDN VSL GLASSO NPN−copula NPN−skeptic

Figure 3.5: PPV (first panel row) and Se (second panel row) for PC-LPGM; LPGM;
PDN; VSL; GLASSO; NPN-Copula; NPN-Skeptic for networks in Figure 3.1 (p = 10),
sample sizes n = 200, 1000, 2000 and λnoise = 5.

48 Section 3.3 - Empirical study

It is interesting to note that the performance of the PC-LPGM algorithm is far

better than that of the competing algorithms employing the Poisson assumption, i.e.,

PDN and LPGM. This might be explained in terms of difference between penalization

and restriction of the conditional sets. In the LPGM algorithm, as well as in the PDN

algorithm, a prediction model is fitted locally on all other variables, by mean of a series of

independent penalized regressions. In the PC-LPGM algorithm, the number of variables

in the conditional sets is controlled and progressively increased from 0 to p−2 (or to the

maximum number of neighbors m). In our simulations, this second strategy appears to

be more powerful in the network reconstruction.

The Gaussian based methods (VSL, GLASSO) perform reasonably well, with an

inferior score with respect to the leading threesome only for the hub graph at high

SNR level. It is worth noting that sophisticated techniques that replace the Gaussian

distribution with a more flexible continuous distribution such as the nonparanormal

distribution, e.g., NPN-Copula, NPN-skeptic show slight gains in accuracy over the

naive analysis.

500 1000 1500 2000

0
20

40
60

80
10

0
12

0

sample size

Tr
ue

 p
os

tiv
e

●

● ●

●

● ●●

●
●

scale−free

500 1000 1500 2000

0
20

40
60

80
10

0
12

0

sample size

Tr
ue

 p
os

tiv
e

●

●

●

●

●

●

●

●

●

hub

500 1000 1500 2000

0
20

40
60

80
10

0
12

0

sample size

Tr
ue

 p
os

tiv
e

●

● ●

●

● ●

●

●
●

random

500 1000 1500 2000

0
20

40
60

80
10

0
12

0

sample size

Tr
ue

 p
os

tiv
e

●

●

●

●

●

●

●

●

●

500 1000 1500 2000

0
20

40
60

80
10

0
12

0

sample size

Tr
ue

 p
os

tiv
e

●

●

●

●

●

●

●
● ●

500 1000 1500 2000

0
20

40
60

80
10

0
12

0

sample size

Tr
ue

 p
os

tiv
e

●

●

●

●

●

●

●
●

●

● ● ●LPGM PC−LPGM PDN VSL GLASSO NPN−copula NPN−skeptic True value

Figure 3.6: Number of TP edges recovered by PC-LPGM; LPGM; PDN; VSL;
GLASSO; NPN-Copula; NPN-Skeptic for networks in Figure 3.2 (p = 100) and sample
sizes n = 200, 1000, 2000. First panel row corresponds to high SNR level (λnoise =
0.5); second panel row corresponds to low SNR level (λnoise = 5).

Results for the high dimensional setting (p = 100) are somehow comparable, as it

can be seen in Figures 3.6, 3.7 and 3.8. The PC-LPGM outperforms all competing

Chapter 3 - Structure Learning of undirected graphs for count data 49

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample size

Po
si

tiv
e

pr
ed

ic
tiv

e
va

lu
e

●
● ●

●

● ●

●

● ●

scale−free

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample size

Po
si

tiv
e

pr
ed

ic
tiv

e
va

lu
e

●

● ●

●

●

●

●

● ●

hub

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample size

Po
si

tiv
e

pr
ed

ic
tiv

e
va

lu
e

●

● ●

●

● ●

●

● ●

random

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample size

Se
ns

iti
vi

ty

●

● ●

●

●
●●

●
●

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample size

Se
ns

iti
vi

ty

●

●

●

●

●

●

●

●

●

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample size

Se
ns

iti
vi

ty ●

● ●

●

● ●

●

●

●

● ● ●LPGM PC−LPGM PDN VSL GLASSO NPN−copula NPN−skeptic

Figure 3.7: PPV (first panel row) and Se (second panel row) for PC-LPGM; LPGM;
PDN; VSL; GLASSO; NPN-Copula; NPN-Skeptic for networks in Figure 3.2 (p =
100), sample sizes n = 200, 1000, 2000 and λnoise = 0.5.

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample size

Po
si

tiv
e

pr
ed

ic
tiv

e
va

lu
e

●

●
●

●

●

●

●

● ●

scale−free

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample size

Po
si

tiv
e

pr
ed

ic
tiv

e
va

lu
e

●

●

●

●

●

●

●

●

●

hub

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample size

Po
si

tiv
e

pr
ed

ic
tiv

e
va

lu
e

●

●
●

●

●

●

●

● ●

random

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample size

Se
ns

iti
vi

ty

●

●

●

●

●

●

●

●

●

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample size

Se
ns

iti
vi

ty

●

●

●

●

●

●

●

●
●

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample size

Se
ns

iti
vi

ty

●

●

●

●

●

●

●

●

●

● ● ●LPGM PC−LPGM PDN VSL GLASSO NPN−copula NPN−skeptic

Figure 3.8: PPV (first panel row) and Se (second panel row) for PC-LPGM; LPGM;
PDN; VSL; GLASSO; NPN-Copula; NPN-Skeptic for networks in Figure 3.2 (p =
100), sample sizes n = 200, 1000, 2000 and λnoise = 5.

50 Section 3.3 - Empirical study

methods, and differences among algorithms are more evident. The TP score of PC-

LPGM becomes already reasonable when n approaches 2000 observations, as it will be

explained in Section 3.5. It is worth noting that performances of methods based on

l1-regularized regression are overall less accurate and more variable in this scenario. For

example, the number of recovered edges with LPGM is almost comparable to an empty

graph in a number of cases, a result possibly related to the levels of β chosen in the

exercise. To ascertain such explanation, we run some simulations with higher variability

threshold levels, i.e, 0.5 and 0.3 for LPGM (results not reported here). Although the TP

scores improved, they were still unable to compete with the best performing algorithms.

Overall, results seem to demonstrate the good performances of PC-LPGM algorithm

in all considered situations.

Table 3.1: Monte Carlo marginal means of TP, FP, FN, PPV, Se obtained by
simulating 500 samples from each of the three networks shown in Figure 3.1 (p = 10).

λnoise n Algorithm TP FP FN PPV Se

200 PC-LPGM 6.336 0.067 2.023 0.991 0.758

LPGM 3.768 0.255 4.565 0.955 0.449

PDN 5.784 1.035 2.549 0.858 0.696

VSL 4.169 0.033 4.190 0.995 0.498

GLASSO 4.076 0.026 4.283 0.996 0.487

NPN-Copula 4.568 0.029 3.791 0.996 0.546

NPN-Skeptic 4.476 0.034 3.883 0.995 0.534

1000 PC-LPGM 8.359 0.090 0.000 0.990 1.000

LPGM 5.307 1.909 3.027 0.869 0.637

PDN 5.991 0.721 2.342 0.901 0.722

0.5 VSL 4.694 0.000 3.665 1.000 0.562

GLASSO 4.624 0.000 3.735 1.000 0.554

NPN-Copula 4.954 0.000 3.405 1.000 0.592

NPN-Skeptic 4.819 0.000 3.540 1.000 0.576

2000 PC-LPGMC 8.422 0.090 0.000 0.990 1.000

LPGM 7.132 4.639 1.201 0.690 0.856

PDN 5.981 0.694 2.353 0.904 0.721

VSL 5.657 0.000 2.765 1.000 0.675

GLASSO 5.620 0.000 2.802 1.000 0.670

NPN-Copula 5.901 0.000 2.521 1.000 0.702

NPN-Skeptic 5.779 0.000 2.643 1.000 0.688

ine

200 PC-LPGM 2.059 0.704 6.357 0.755 0.245

LPGM 1.589 2.124 6.744 0.495 0.191

PDN 3.465 4.660 4.869 0.435 0.415

VSL 1.849 0.789 6.567 0.768 0.220

GLASSO 1.834 0.787 6.582 0.768 0.218

NPN-Copula 1.952 0.688 6.465 0.802 0.232

NPN-Skeptic 1.768 0.726 6.648 0.775 0.210

Chapter 3 - Structure Learning of undirected graphs for count data 51

Table 3.1 – continued from previous page

λnoise n Algorithm TP FP FN PPV Se

1000 PC-LPGM 7.889 1.063 0.444 0.890 0.946

LPGM 4.115 2.176 4.219 0.686 0.494

PDN 5.853 1.249 2.481 0.833 0.703

5 VSL 3.135 0.012 5.198 0.998 0.377

GLASSO 3.118 0.012 5.215 0.998 0.375

NPN-Copula 3.211 0.006 5.122 0.999 0.386

NPN-Skeptic 3.007 0.008 5.327 0.998 0.362

2000 PC-LPGM 8.355 1.056 0.002 0.897 1.000

LPGM 4.337 2.151 3.996 0.703 0.520

PDN 6.153 0.805 2.180 0.892 0.740

VSL 3.954 0.000 4.404 1.000 0.473

GLASSO 3.931 0.000 4.426 1.000 0.470

NPN-Copula 4.094 0.000 4.264 1.000 0.490

NPN-Skeptic 3.863 0.000 4.494 1.000 0.462

Table 3.2: Monte Carlo marginal means of TP, FP, FN, PPV, Se obtained by
simulating 500 samples from each of the three networks shown in Figure 3.2 (p = 100).

λnoise n Algorithm TP FP FN PPV Se

200 PC-LPGM 54.780 9.430 46.913 0.822 0.535

LPGM 5.879 2.414 94.550 0.786 0.058

PDN 41.476 47.640 59.524 0.493 0.406

VSL 57.990 24.512 43.703 0.703 0.566

GLASSO 56.531 23.983 45.161 0.703 0.552

NPN-Copula 60.315 21.202 41.378 0.737 0.589

NPN-Skeptic 58.967 26.466 42.726 0.695 0.576

1000 PC-LPGM 98.693 13.201 4.398 0.882 0.956

LPGM 34.694 0.377 66.152 0.929 0.339

PDN 68.954 9.723 32.046 0.890 0.688

0.5 VSL 81.930 0.107 21.160 0.999 0.782

GLASSO 81.316 0.129 21.775 0.998 0.776

NPN-Copula 85.150 0.078 17.941 0.999 0.814

NPN-Skeptic 84.277 0.160 18.814 0.998 0.806

2000 PC-LPGMC 101.508 14.405 1.114 0.879 0.990

LPGM 43.743 0.305 57.257 0.872 0.421

PDN 73.431 3.448 27.569 0.953 0.736

VSL 93.355 0.004 9.266 1.000 0.904

GLASSO 93.127 0.004 9.494 1.000 0.902

NPN-Copula 96.317 0.000 6.305 1.000 0.935

NPN-Skeptic 95.303 0.006 7.319 1.000 0.924

ine

200 PC-LPGM 6.170 14.292 94.830 0.288 0.060

52
Section 3.4 - Real data analysis: inferring networks from next generation sequencing

data

Table 3.2 – continued from previous page

λnoise n Algorithm TP FP FN PPV Se

LPGM 7.075 56.433 93.925 0.124 0.068

PDN 11.220 97.543 89.780 0.104 0.110

VSL 7.752 23.011 93.248 0.276 0.076

GLASSO 7.505 21.932 93.495 0.280 0.073

NPN-Copula 8.156 21.971 92.844 0.297 0.079

NPN-Skeptic 7.875 25.844 93.125 0.265 0.077

1000 PC-LPGM 61.903 24.368 39.097 0.692 0.604

LPGM 1.383 2.055 99.617 0.470 0.014

PDN 43.153 49.657 57.847 0.488 0.423

5 VSL 11.901 0.584 87.650 0.953 0.119

GLASSO 11.913 0.583 87.638 0.953 0.119

NPN-Copula 13.537 0.569 86.014 0.958 0.135

NPN-Skeptic 13.036 0.765 86.515 0.945 0.130

2000 PC-LPGM 88.478 26.908 12.522 0.761 0.871

LPGM 1.801 1.368 99.199 0.548 0.018

PDN 60.703 23.902 40.297 0.751 0.600

VSL 21.141 0.017 80.179 0.999 0.206

GLASSO 21.701 0.017 79.618 0.999 0.212

NPN-Copula 26.557 0.011 74.763 0.999 0.260

NPN-Skeptic 25.228 0.017 76.092 0.999 0.247

3.4 Real data analysis: inferring networks from next

generation sequencing data

To make our evaluation of PC-LPGM stronger, we perform some biological validation by

applying the new algorithm to level III breast cancer microRNAs (miRNAs) expression,

retrieved from the Cancer Genome Atlas. Here, we expect to obtain results coherent

with the current biological knowledge.

miRNAs are non-coding RNAs that are transcribed but do not encode proteins.

miRNAs have been reported to play a pivotal role in regulating key biological processes,

e.g., post-transcriptional modifications and translation processes. Some studies revealed

that some disease-related miRNAs can indirectly regulate the function of other miR-

NAs associated with the same phenotype. In this perspective, studying the features of

the interaction pattern of miRNAs in some conditions might help understand complex

phenotype conditions.

Here, we consider level III breast cancer. Our interest lies in the pattern of interac-

tions among miRNAs, with a particular focus on the existence of hubs. In fact, nodes

Chapter 3 - Structure Learning of undirected graphs for count data 53

with atypically high number of connections represent sites of signalling convergence

with potentially large explanatory power for network behaviour or utility for clinical

prognosis and therapy. By applying our algorithm, we expect to obtain results in line

with known associations between miRNAs and breast cancer, and possibly gain more

understanding of the nature of their effect on other genes. In other words, we expect

some miRNAs associated with this phenotype to be the hubs of our estimated structure.

miRNAs expression, obtained by high-throughput sequencing, was downloaded from

The Cancer Genome Atlas (TCGA) portal (https://tcga-data.nci.nih.gov/docs/

publications/brca_2012/). The raw count data set consisted of 544 patients and

1046 miRNAs. As measurements were zero-inflated and highly skewed, with total count

volumes depending on experimental condition, standard preprocessing was applied to

the data (see Allen and Liu (2013)). In particular, we normalized the data by the

75% quantile matching [Bullard et al. (2010)]; selected top 25% most variable mirRNA

across the data; used a power transform Xα for α ∈ [0, 1] with α chosen via the minimum

Kolmogorov-Smirnov statistic [Li et al. (2012)]. The miRNAs with little variation across

the samples were filtered out, leaving 544 patients and 261 miRNAs. The effect of

preprocessing steps on four prototype miRNA are shown in Figure 3.9.

hsa−mir−9−1

raw data

F
re

q
u

e
n

c
y

0 100000 200000 300000

0
1

0
0

3
0

0

hsa−let7d

raw data

F
re

q
u

e
n

c
y

0 4000 8000 12000

0
1

0
2

0
3

0
4

0

hsa−mir−760

raw data

F
re

q
u

e
n

c
y

0 100 200 300 400 500

0
5

0
1

0
0

1
5

0
2

0
0

hsa−let−7a−1

raw data

F
re

q
u

e
n

c
y

0 100000 200000

0
2

0
4

0
6

0

hsa−mir−9−1

Normalized

F
re

q
u

e
n

c
y

2 3 4 5 6 7

0
1

0
2

0
3

0
4

0

hsa−let−7d

Normalized

F
re

q
u

e
n

c
y

3.0 3.5 4.0

0
1

0
3

0
5

0

hsa−mir−7d

Normalized

F
re

q
u

e
n

c
y

0.0 0.5 1.0 1.5 2.0 2.5

0
1

0
2

0
3

0
4

0

hsa−let−7a−1

Normalized

F
re

q
u

e
n

c
y

4 5 6 7

0
1

0
2

0
3

0
4

0

Figure 3.9: Distribution of four miRNA-Seq: raw data (top), normalized (bottom)
data.

Normalized data was used as input to PC-LPGM. A significance level of 5% resulted

in a sparse graph; the network resulting by fixing a significance level of 5% is shown in

Figure 3.10.

https://tcga-data.nci.nih.gov/docs/publications/brca_2012/
https://tcga-data.nci.nih.gov/docs/publications/brca_2012/

54 Section 3.5 - Discussion

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

hsa−mir−21

hsa−mir−10b

hsa−mir−30a

hsa−mir−143

hsa−mir−148a

hsa−mir−10a

hsa−mir−375

hsa−mir−22

hsa−mir−182

hsa−let−7b

hsa−mir−99b

hsa−mir−183

hsa−mir−203

hsa−let−7a−2

hsa−mir−103−1

hsa−mir−92a−2

hsa−mir−30d

hsa−mir−100

hsa−mir−30e

hsa−mir−25

hsa−mir−101−1

hsa−let−7f−2

hsa−mir−200c

hsa−let−7a−3

hsa−let−7a−1

hsa−mir−205

hsa−mir−9−1
hsa−mir−9−2

hsa−mir−28

hsa−let−7c

hsa−mir−29a

hsa−mir−93

hsa−mir−142

hsa−mir−199b

hsa−mir−145

hsa−mir−126

hsa−mir−1−2

hsa−mir−199a−2

hsa−mir−451

hsa−mir−23a

hsa−mir−486

hsa−mir−206

hsa−mir−99a

hsa−mir−133a−1

hsa−mir−181a−1

hsa−mir−107

hsa−mir−1307

hsa−mir−29c

hsa−mir−141

hsa−mir−196a−1

hsa−mir−150

hsa−mir−199a−1

hsa−mir−184

hsa−mir−26a−2

hsa−mir−210

hsa−mir−191

hsa−mir−125b−1

hsa−let−7e

hsa−mir−127

hsa−mir−200a

hsa−mir−1269

hsa−mir−379

hsa−mir−27a

hsa−mir−140

hsa−mir−133b

hsa−mir−23b

hsa−mir−125a

hsa−mir−342

hsa−mir−30c−2

hsa−mir−200b

hsa−mir−338

hsa−mir−106b

hsa−mir−155

hsa−mir−153−2

hsa−mir−144

hsa−mir−193a

hsa−mir−425

hsa−mir−30b

hsa−mir−192

hsa−mir−15b

hsa−mir−181b−1

hsa−mir−378

hsa−mir−148b

hsa−mir−134

hsa−mir−29b−2

hsa−mir−29b−1

hsa−mir−542

hsa−mir−92b

hsa−mir−149

hsa−mir−152

hsa−mir−20a

hsa−mir−139

hsa−mir−223

hsa−mir−500a

hsa−mir−335

hsa−mir−187

hsa−mir−424

hsa−mir−133a−2

hsa−mir−92a−1

hsa−mir−146a

hsa−mir−221

hsa−mir−1247

hsa−mir−105−2

hsa−mir−105−1

hsa−mir−483

hsa−mir−629

hsa−mir−326

hsa−mir−452

hsa−mir−584

hsa−mir−222

hsa−mir−19b−2
hsa−mir−224

hsa−mir−3065

hsa−mir−429

hsa−mir−675

hsa−mir−519a−1

hsa−mir−381

hsa−mir−365−2

hsa−mir−365−1

hsa−mir−20b

hsa−mir−577

hsa−mir−363

hsa−mir−135b

hsa−mir−767

hsa−mir−194−2

hsa−mir−195

hsa−mir−194−1

hsa−mir−181d

hsa−mir−337

hsa−mir−497

hsa−mir−449a

hsa−mir−96

hsa−mir−1266

hsa−mir−934

hsa−mir−431

hsa−mir−345

hsa−mir−190b

hsa−mir−125b−2

hsa−mir−153−1

hsa−mir−1180

hsa−mir−409

hsa−mir−654

hsa−mir−214

hsa−mir−301a

hsa−mir−19a

hsa−mir−615

hsa−mir−33a

hsa−mir−516a−1

hsa−mir−3677

hsa−mir−204

hsa−mir−516a−2

hsa−mir−340

hsa−mir−887

hsa−mir−758

hsa−mir−130b

hsa−mir−106a

hsa−mir−382

hsa−mir−31

hsa−mir−32

hsa−mir−1301

hsa−mir−660

hsa−mir−503

hsa−let−7f−1

hsa−mir−493

hsa−mir−3127

hsa−mir−18a

hsa−mir−3074

hsa−mir−450b

hsa−mir−370

hsa−mir−937

hsa−mir−590

hsa−mir−551b

hsa−mir−1976

hsa−mir−33b

hsa−mir−432

hsa−mir−135a−1

hsa−mir−454

hsa−mir−526b

hsa−mir−196a−2

hsa−mir−940

hsa−mir−1251

hsa−mir−16−2

hsa−mir−4326

hsa−mir−576

hsa−mir−944

hsa−mir−766

hsa−mir−3200

Figure 3.10: Breast cancer miRNA network estimated by the PC-LPGM algorithm
(hub nodes coloured red).

We identified ten hub nodes, in the network, i.e., miR-10b, -30a, -143, -375, -145,

-210, -139, -934, -190b, -590. Almost all of them are known to be related to breast

cancer [Volinia et al. (2012)], providing a biological validation of the potential of the

algorithm to recover the sites of the network with high explanatory power. In particular,

miR-10b and -210 highly express in breast cancer, when high expression is related to

poor prognosis; miR-30a, -143 and -145 appear to be inhibitors of progression, and

should therefore be low in patients with good survival (Zhang et al. (2014), Yan et al.

(2014)). These results play the role of a biological validation of the ability of PC-LPGM

to retrieve structures reflecting existing relations among variables.

3.5 Discussion

The main contribution of this chapter is a careful analysis of the numerical and statistical

efficiency of PC-LPGM, a simple method for structure learning of undirected graphical

models for Poisson data. A key strategy of our approach is controlling the number of

variables in the conditional sets, as done in the PC algorithm. In this way, we control

problems of estimation when the number of random variables p is large.

Our main theoretical result provides sufficient conditions on the triple (n, p,m) and

on the model parameters for the method to succeed in consistently estimating the neigh-

bours of every node in the graph. Indeed, Theorem 3 in Peña et al. (2009) guarantees

Chapter 3 - Structure Learning of undirected graphs for count data 55

that in our setting, there exists a strictly positive distribution that is faithful to G,

and Assumption 3.2.10 excludes, at least theoretically, from the parameter spaces the

subspace on which the faithfulness condition is not satisfied. The possibility of possible

violations of faithfulness in our setting is still under consideration. Moreover, Theorem

4.3.1 not only specifies sufficient conditions but it also provides the probability with

which the method recovers the true edge set. Indeed, Equation (3.19) shows that

Pθ(error occur in PC-procedure) ≤ O(pm+2)
[

exp(−c4n1−κ2) + c2ν
−5/4 + exp(−c3n)

]
,

where ν = max{n, p}. Hence, the right hand sight of the Equation will tend to 0 if

pm+2ν−5/4 → 0. As we are considering the case of a fixed number p of random variables,

then ν = n when n is large enough. Thus, the sufficient condition becomes

pm+2n−5/4 ≤ 1

⇒ (pm+2)4/5 ≤ n. (3.21)

In our simulation setting, we consider sparse graphs. Roughly speaking, the maximum

number of neighbours m is 2 for p = 10, and m = 1 for p = 100. Hence, for p = 10,

Equation (3.21) suggests that 1016/5 ≈ 1000 observations are enough to have consistency

of the proposed algorithm. This result is confirmed by simulation results. Similarly,

when p = 100 and m = 1 the number of observations needed to have convergence is

10012/5 ≈ 10000. This remark explains the reason why we did not get good results for

the case of high dimensional setting, i.e., p = 100, and n = 200, 1000, 2000. However, it

is worth to note that this bound is just a sufficient number.

Chapter 4

Guided structure learning of DAGs

As stated before, we are motivated by the need of defining a statistical framework for

modelling the interactions between genes. As the interest usually lies in the direction

of influence, directed graphs are usually preferred to the undirected graphs. DAGs are

particularly convenient models to present such networks.

In this chapter, we tackle structure learning of DAGs, with the idea of exploiting

available prior knowledge of the domain at hand to guide the search of the best structure.

In particular, we will assume to know the topological ordering of variables in addition

to the given data. Recall that a topological ordering of a directed graph is an ordering

of its nodes s.t., for every directed edge Xi → Xj, Xi precedes Xj in the ordering. The

set of vertices that precedes Xj will be denoted by pre(j).

Although the assumption of knowledge of the topological ordering of variables be-

forehand might restrict the potential of our proposals, it provides an opportunity to

easily include prior knowledge leading to a significant improvement of the accuracy and

a considerable reduction of computational costs as it considerably reduces the search

space.

In detail, we propose three new algorithms based on a modification of: (i) a very

popular structure learning algorithm, i.e., the K2 algorithm; (ii) the LPGM algorithm;

(iii) the PC algorithm. Sections 4.1, 4.2, 4.3 are devoted to the three proposed methods,

i.e., PK2, Or-LPGM, and Or-PPGM. In Section 4.4, we provide some experimental

results that illustrate the performance of our methods in practice. Some conclusions

and remarks are provided in Section 4.5.

We note that exploiting the topological ordering of the variables guarantees that

conditions in order to prove faithfulness of the distribution to the DAG in this setting

are satisfied (see Section 7.4 in Sadeghi (2017)), which allows us to prove consistency of

our algorithms.

57

58 Section 4.1 - The PK2 algorithm

4.1 The PK2 algorithm

A popular guided algorithm for structure learning is the K2 algorithm, which assumes

that data arise from a categorical random variable. A natural choice for using K2 on

non-categorical data is categorization, a choice that can work well in some circum-

stances, but, unfortunately can also be ill-suited. In this section, we follow another

line and extend the K2 algorithm to count data. Our proposal, named PK2 (Poisson

K2), combines the assumption of Poisson node conditional distributions with the greedy

search of the K2 algorithm.

To extend the K2 method to count data, we substitute the K2 score with an alterna-

tive scoring criterion respectful of the nature of the data. When considering alternative

criteria, we restricted our attention to criteria that balance the goodness of fit and model

parsimony.

The first choice is the Bayesian information criterion (BIC), introduced by Schwarz

(1978), which is, in its most general form, given by

BIC = 2`(θ̂,X)− log(n)(number of parameters).

The BIC is one of the most widely known and pervasively used tools in statistical

model selection. Its popularity derives from its computational simplicity and effective

performance in many modeling frameworks, including Bayesian applications where prior

distributions may be elusive.

The second alternative model selection criterion is the Akaike information criterion

(AIC), named after its inventor Akaike Hirotugu [Akaike (1974)]. While playing the

same role as the BIC score, the AIC penalizes the number of parameters less strongly

than the BIC does. In detail, the AIC score is expressed as follow:

AIC = 2`(θ̂,X)− k(number of parameters),

where the default value of k is 2 in the classical AIC.

Although the expressions of BIC and AIC look very similar, they originate from

quite different frameworks. BIC assumes that the true model is included in the set

of candidate models and measures the belief that a certain model is the true data

generating model. In contrast, AIC does not assume that any of the candidate models

is necessarily true, and calculates the Kullback-Leibler discrepancy, i.e., the distance

between the probability density generated by the model and reality. Hence, a formal

comparison in terms of performance between AIC and BIC is very difficult (see Burnham

Chapter 4 - Guided structure learning of DAGs 59

and Anderson (2003), and Wagenmakers and Farrell (2004)).

Once the score is specified, we employ the same search strategy as in the K2 algo-

rithm. This guarantees that PK2 inherits the strengths of the original algorithm, ease

of implementation, and feasibility up to hundreds of nodes.

Let g(.) be the BIC or the AIC score. The pseudo code of the PK2 algorithm identical

to that of K2, but using the difference score function g(.) is given in Algorithm 2.

Algorithm 2 PK2 Algorithm.

1: Input n independent realizations of the p-random vector X, i.e., x(1),x(2), . . . ,x(n);
a topological ordering Ord on nodes, an upper bound for the number u of parents
of a node may have.

2: for i = Ord(1) to Ord(p) do
3: pai ← ∅
4: Pold ← g(i, pai)
5: OKToProceed ← TRUE
6: while OKToProceed and |pai| < u do
7: let z be the node in pre(xi)\pai that maximizes g(i, pai ∪ {z})
8: Pnew ← g(i, pai ∪ {z})
9: if Pnew > Pold then

10: Pold ← Pnew
11: pai ← pai ∪ {z}
12: else OKToProceed ← FALSE
13: end if
14: end while
15: print ”parents of node” xi, ”are” pai.
16: end for

4.1.1 Asymptotic property

Properties of K2 guarantee that the algorithm identifies the true structure up to an

equivalent class as the number of observations goes to infinity when a consistent scoring

criterion is used. As both BIC and AIC are consistent scoring criteria [Haughton et al.

(1988)], this property is inherited by PK2. Moreover, the Poisson model is identifiable

(see Section 2.2). Therefore, the estimator in Algorithm 2 convergences asymptotically

to the true graph.

4.2 The Or-LPGM algorithm

Our second proposal, i.e., Or-LPGM, is the natural extension to Poisson DAGs of the

structure learning algorithm for Poisson undirected graphs, i.e., LPGM.

60 Section 4.2 - The Or-LPGM algorithm

Let i1, i2, . . . , ip be a topological ordering. The conditional distribution of each vari-

able Xis given its precedents pre(is) in the topological ordering i1, i2, . . . , ip follows a

Poisson distribution, i.e.,

Xis|xpre(is) ∼ Pois(exp{
∑

t∈pre(is)

θistxt}), s ∈ V = {1, . . . , p}. (4.1)

Then, the node conditional distribution can be rewritten as

Pθpre(is)(xis|xpre(is)) = exp
{
xis

i(s−1)∑
t=i1

θistxt − log(xis !)− e
∑i(s−1)

t=i1
θistxt

}
(4.2)

= exp
{
xis〈θpre(is),xpre(is)〉+ C(xis)−D(〈θpre(is),xpre(is)〉)

}
.

A rescaled negative node conditional log-likelihood can be written as follows

l(θpre(is),Xis ;Xpre(is)) = − 1

n
log

n∏
t=1

Pθpre(is)(xis|x(t)
pre(is)

) (4.3)

=
1

n

n∑
t=1

[
−xtis〈θpre(is),x(t)

pre(is)
〉+D(〈θpre(is),x(t)

pre(is)
〉)
]
.

Structure learning can be performed by mean of p-local regressions aimed at identifying

the set of non-zero parameters θist. In this case, the parameter θpre(is) is estimated by

minimizing the rescaled negative node conditional log-likelihood (4.3), i.e.,

θ̂pre(is) = argminθpre(is)∈Rs−1l(θpre(is),Xis ;Xpre(is)). (4.4)

To encourage sparsity of estimated graphs, a l1- regularized conditional log-likelihood

can be considered, i.e.,

θ̂pre(is) = argminθpre(is)∈Rs−1l(θpre(is),Xis ;Xpre(is))− λ‖θpre(is)‖1.

Given the solution θ̂pre(is), the set of parents of node s is given by

p̂a(s) = {t ∈ pre(is) : θ̂st 6= 0}.

In summary, the Or-LPGM algorithm takes the topological ordering as a prior knowledge

to restrict the set of candidate parents. Then, the structure learning process boils

down to p (possibly penalized) standard regressions, where the regularization parameter

λ, that controls the sparsity of the graph structure, is chosen by the cross validation

Chapter 4 - Guided structure learning of DAGs 61

method.

Let k be the number of folds, and Si is the training set of i-th fold. The pseudo code

of the Or-LPGM algorithm is given in Algorithm 3.

Algorithm 3 Or-LPGM Algorithm.

1: Input n independent realizations of the p-random vector X, i.e., x(1),x(2), . . . ,x(n);
a topological ordering on nodes.

2: Generate a range value of λ, Λ = {λmax, . . . , λmin}
3: for i = 1 to k do in parallel
4: for j = 1 to p do
5: fitting a l1- penalized log-linear regression to Xj, path-wise for Λ on
6: sub-data Si.
7: end for
8: end for
9: Determine λopt via cross validation method.

10: Return the optimal graph, Gλopt

4.2.1 Consistency of the Or-LPGM algorithm

Consistency of Or-LPGM can be proved easily, as shown in the following theorem.

Theorem 4.2.1. Assume 3.2.1- 3.2.5. Denote by Ĝ(λn) the estimator resulting from

Or-LPGM, and by G the true graph. Then, there exists a numerical sequence λn, s.t.

Pθ(Ĝ(λn) = G) = 1,

when n −→∞.

Proof. For a fixed topological ordering, Theorem 4.2.1 is proved by following the lines of

Corollary 7 in Yang et al. (2015). We note that the set of explanatory variables Xpre(is)

in the generalized linear model Xs given Xpre(is) does not include variable Xt, t ∈
{V \{s}}\pre(s). Suppose we zero-pad the true parameter θ∗pre(s) ∈ R|pre(s)| to include

zero weights over {V \{s}}\pre(s), then the resulting parameter would lie in R(p−1).

It is worth to note that this proof does not depend on the topological ordering since

identifiability of Poisson models guarantees that there is only one distribution associated

to the true graph G.

4.3 The Or-PPGM algorithm

Our third proposal, i.e., Or-PPGM, is based on a modification of the PC algorithm. As

stated before, the PC algorithm can be combined with any consistent statistical test

62 Section 4.4 - Empirical study

of conditional independence. In the Poisson case, conditional independences can be

inferred from Wald type tests on the parameters θst (see Section 3.1). Therefore, one

solution for recovering the underlying structure is performing conditional independence

tests as in the PC-LPGM algorithm (see Section 3.1).

The algorithm starts from a complete DAG, i.e., a DAG obtained from a complete

undirected graph by putting the direction for all edges following the topological ordering.

At each level of the cardinality of the conditioning variable set S, we test, at some pre-

specified significance level, the null hypothesis H0 : θst|K = 0, with K = S ∪ {t}. If

the null hypothesis is not rejected, the edge t → s is considered to be absent from the

graph. We note that the cardinality of the set S increases from 0 to min{ord(s)−1,m},
where ord(s) is the position of Xs in the topological ordering, and m < (p − 2) is the

maximum number of neighbours that one node is allowed to have. For a description

of the conditional independence test, as well as the definition of Z-statistic, we refer

readers to Section 3.1.

Assuming that the order of variables is specified beforehand considerably reduces

the number of conditional independence tests. For example, for each s ∈ V , we test if

data support existence of the conditional independence relation Xs ⊥⊥ Xt|XS only for

t ∈ pre(s) and for any S ⊂ {{1, . . . , p} ∩ pre(s)}\{s, t}.
The pseudo-code of the Or-PPGM algorithm is given in Algorithm 4.

4.3.1 Consistency of the Or-PPGM algorithm

Consistency of Or-PPGM can be proved easily, as shown in the following theorem.

Theorem 4.3.1. Assume 3.2.1- 3.2.5. Denote by Ĝ(αn) the estimator resulting from

Or-PPGM, and by G the true graph. Then, there exists a numerical sequence αn −→ 0,

s.t.

Pθ∗(Ĝ(αn) = G) = 1,

when n −→∞.

Proof. For different topological orderings T1, T2, . . . , Tk, Algorithm 4 performs sequences

of tests S1, S2, . . . , Sk, respectively. We note that Sj, j = 1, . . . k is a subsequence of

the sequence of tests performed in PC-LPGM (Section 3.1). Hence, Theorem 4.3.1

shows that there exists a numerical sequence αn → 0, s.t. the estimators ĜT (αn), T =

T1, T2, . . . Tk convergence to the unique true graph (as the Poisson model is identifiable,

see Section 2.2).

Chapter 4 - Guided structure learning of DAGs 63

Algorithm 4 The Or-PPGM algorithm.

1: Input: n independent realizations of the p-random vector X, i.e., x(1),x(2), . . . ,x(n);
a topological ordering Ord, (and a stopping level m).

2: Output: An estimated DAG Ĝ.
3: Form the complete undirected graph G̃ on the vertex set V .
4: Orient edges on G̃ to form DAG G′.
5: l = −1; Ĝ = G′

6: repeat
7: l = l + 1
8: for all vertices s ∈ V , do
9: let Ks = pa(s)

10: end for
11: repeat
12: Select a (new) ordered pair of nodes s, t that are adjacent in Ĝ s.t.
13: |Ks\{t}| ≥ l.
14: repeat
15: choose a (new) set S ⊂ Ks\{t} with |S| = l.
16: if H0 : θst|S = 0 not rejected

17: delete edge (s, t) from Ĝ
18: end if
19: until edge (s, t) is deleted or all S ⊂ Ks\{t} with |S| = l have been considered.
20: until all ordered pair of adjacent variables s and t such that |Ks\{t}| ≥ l and
21: S ⊂ Ks\{t} with |S| = l have been tested for conditional independence.
22: until l = m or for each ordered pair of adjacent nodes s, t: |adj(Ĝ, s)\{t}| < l.

4.4 Empirical study

Here, we empirically evaluate the ability of our proposals to retrieve the true DAG and

compare them to a number of popular competitors. We again use PPV and Se (see

Section 3.3) to evaluate their ability to reconstruct the true DAGs. As competitors, we

consider structure learning algorithms for both Poisson and non Poisson variables. In

detail, we consider PDN and ODS (see Section 2.3) as representatives of algorithms for

Poisson data. To apply algorithms for categorical data, we categorize our data using two

strategies, i.e., Gaussian mixture models on log transformed data shifted by 1 [Fraley

and Raftery (2002)] and cutting points on the original scale of the data, where the range

of the data is divided into ncut pieces of equal length. To apply algorithms for continuous

data, we log transform the data shifted by 1.

We consider the same cardinalities (p = 10, p = 100) and the same structures as in

Chapter 3, i.e., (i) a scale-free graph; (ii) a hub graph; (iii) a random graph. To convert

them into DAGs, we fix a topological ordering for each graph by taking a permutation

of considered variables. Once the order is defined, undirected edges are oriented to form

64 Section 4.4 - Empirical study

a DAG. See Figure 4.1 and 4.2 for a plot of the three chosen DAGs for p = 10 and

p = 100, respectively.

(a) scale−free

●

●

●

●

●

●

●

●

●

●

1

2

3

4

5

6

7

8

9

10

(b) hub

●

●

●

● ●

●

●

●

●
●

1

2

3

4
5

6

7

8

9
10

(c) random

●

●

●

●

● ●

●

●

●
●

1

2

3

4

5
6

7

8

9

10

Figure 4.1: The graph structures for p = 10 employed in the simulation studies: (a)
scale-free; (b) hub; (c) random graph.

Data generation

In order to simulate data, we first construct an adjacency matrix Adj = (θij) as follows:

1. fill in the adjacency matrix Adj with zeros;

2. replace every entry corresponding to a directed edge by one;

3. replace each entry equal to 1 with an independent realization from a Uniform([−0.5, 0.5])

random variable, representing the true values of parameter θst.

This yields a matrix Adj whose entries are either zeros or in the range [−0.5, 0.5], rep-

resenting positive and negative relations among variables. For each DAG correspond-

ing to an adjacency matrix Adj, 500 datasets are sampled for three sample sizes, i.e.,

n = 200, 1000, 2000 as follows. The realization of the first random variable X(i1) in

the topological ordering i1, i2, . . . , ip is sampled from a Pois(exp(θ1)), where the default

value of θ1 is 0. Realizations of the following random variables are recursively sampled

from

X
(t)
ij
∼ Pois(exp{

i(j−1)∑
k=i1

θijkxtk}).

Chapter 4 - Guided structure learning of DAGs 65

(a) scale−free

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1

2

3 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43
44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73
74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

(b) hub

●
●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●
●

●

●

1
2

3

4

5

6

7

8

9

10

11

12

1314

15
16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31
32

33

34

35

36

37

38

39

40

41

42

43

44

45

4647

48

49

50

51 52

53

54

55 56

57

58

59

60

61

62

63

64

65
66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

8182

83

84

85

86
87

88

89

90

91

92

93

94

95

96

97

98

99

100

(c) random

●

● ●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

1

2 3

4

56

7

8

9

10

11

12

13

1415

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47
48

49

50

51

52

53

54

55

56

57
58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81
82

83

84

85

86

87

88

89

90

9192

93

94

95

96

97

98

99

100

Figure 4.2: The graph structures for p = 100 employed in the simulation studies:
(a) scale-free; (b) hub; (c) random graph.

Learning algorithms

The considered algorithms are listed below, along with specifications, if needed, of tuning

parameters. In this study, beside the topological ordering, we also specify an additional

input, i.e., the upper limit for the set of parents, m, which in this study was set to

m = 5 for p = 10 and m = 3 for p = 100, respectively.

- PKBIC: PK2 using BIC;

- PKAIC: PK2 using AIC;

- Or-PPGM: level of significance of tests 1%;

- Or-LPGM: λ chosen via k-fold cross validation (k = 10);

- PDN;

- ODS: k-fold cross validation (k = 10);

- K2mix: K2 algorithm applied to data categorized by mixture models;

- K2cut: K2 algorithm applied to data categorized by ncut = 3 cutting points;

- MMHC: Max Min Hill Climbing algorithm applied to data categorized by mixture

models, using χ2 tests of independence at the 1% significance level;

- PCmix: PC algorithm applied to data categorized by mixture models, using χ2

tests of independence at the 1% significance level;

66 Section 4.4 - Empirical study

- PClog: PC algorithm applied to log transformed data, using Gaussian conditional

independent tests at the 1% significance level.

We note that ODS, PDN and MMHC employ a preliminary step aimed to estimate

the topological ordering. This makes the comparison with our algorithms not completely

fair. Nevertheless, we decided to consider these algorithms in our numerical studies to

get a measure of impact of the knowledge of the true topological ordering.

It is also worth to note that the PC algorithm returns a PDAGs that consists of both

directed and undirected edges. In this case, we borrow the idea of Dor and Tarsi (1992)

to extend a PDAG to DAG. For details of the algorithm, we refer to Section 5.1 or to

the paper by Dor and Tarsi (1992).

Results

For the two considered vertex cardinalities, i.e., p = 10, 100, and for the chosen sample

sizes, i.e., n = 200, 1000, 2000, Table 4.1 and Table 4.2 report, respectively, Monte Carlo

means of TP, FP, FN, PPV and Se for each of considered method. Each value is com-

puted as an average of the 1500 values obtained by simulating 500 samples for each of

the three networks. Results disaggregated by network types are given in Appendix B,

Tables B.5, and Tables B.6. These results indicate that the three proposed algorithms

outperform, on average, Gaussian-based competitors (PClog), category-based competi-

tors (K2, PCmix, MMHC), as well as the state-of-the-art algorithms that are specifically

designed for Poisson graphical models (ODS, PDN) for p = 10, and they are competitive

to the other approaches when p = 100.

●

● ●

500 1000 1500 2000

0
2

4
6

8
10

Scale−free

sample size

Tr
ue

 p
os

iti
ve

●

●
●

●

● ●

●

●
●

●

● ●● ● ●

●

● ●

500 1000 1500 2000

0
2

4
6

8
10

Hub

sample size

Tr
ue

 p
os

iti
ve

● ● ●●

●

●

●

●

●

●

● ●

● ● ●

●

●

●

500 1000 1500 2000

0
2

4
6

8
10

Random

sample size

Tr
ue

 p
os

iti
ve

●

● ●

●

●

●

●

●

●●

●
●

● ● ●

● ● ● ● ● ●PKBIC PKAIC Or−PPGM PDN ODS MMHC K2mix K2cut PCmix PClog Or−LPGM True value

Figure 4.3: Number of TP edges recovered by PKBIC; PKAIC; Or-PPGM; Or-
LPGM; PDN; ODS; MMHC; K2mix; K2cut; PCmix; PClog for networks in Figure
4.1 (p = 10) and sample sizes n = 200, 1000, 2000.

Chapter 4 - Guided structure learning of DAGs 67

When p = 10, the proposed algorithms reach the highest TP value, followed by the

ODS, the K2mix and the PClog algorithms. A closer look at the PPV and Se plot

(see Figure 4.3) provides further insight into the behaviour of considered methods. The

PK2BIC, the Or-LPGM and the Or-PPGM algorithm always reach the highest PPV

and Se, while the PK2AIC usually have smaller PPV. This result is not surprising

since the PK2AIC using the AIC criterion penalizes less strongly than the BIC one.

As a consequence, the PK2AIC results in graphs with additional edges. This result is

expected as we are considering the case p = 10, i.e., a relatively low dimensional model,

in which the BIC is known to outperform AIC [Wagenmakers and Farrell (2004)].

●

● ●

500 1000 1500 2000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Scale−free

sample size

P
o

si
tiv

e
 P

re
d

ic
tiv

e
 V

a
lu

e

●

● ●

●

● ●

●

● ●

●

●

●

●

●
●

500 1000 1500 2000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Hub

sample size

P
o

si
tiv

e
 P

re
d

ic
tiv

e
 V

a
lu

e

●
● ●

●

● ●

●

●
●

●

●

●

●

●
●

500 1000 1500 2000
0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

Random

sample size

P
o

si
tiv

e
 P

re
d

ic
tiv

e
 V

a
lu

e

●

● ●

●

● ●

●

●

●

●

●

●

●

● ●

500 1000 1500 2000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Scale−free

sample size

S
e

n
si

tiv
ity

●

● ●

●

● ●

●

●
●

●

● ●

●

● ●

500 1000 1500 2000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Hub

sample size

S
e

n
si

tiv
ity

● ● ●●

●

●

●

●

●

●

● ●

●

●

●

500 1000 1500 2000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Random

sample size

S
e

n
si

tiv
ity

●

● ●

●

●

●

●

●

●●

●
●

● ● ● ● ●PKBIC PKAIC Or−PPGM PDN ODS MMHC K2mix K2cut PCmix PClog Or−LPGM

Figure 4.4: PPV (first panel row) and Se (second panel row) for PKBIC; PKAIC; Or-
PPGM; Or-LPGM; PDN; ODS; MMHC; K2mix; K2cut; PCmix; PClog for networks
in Figure 4.1 (p = 10), sample sizes 200, 1000, 2000.

It is interesting to note that the performance of PK2 and Or-LPGM appears to be

better than that of the competing algorithms employing the Poisson assumption, i.e.,

PDN and ODS. The use of the topological ordering overcomes the inaccuracies of the

first step of the ODS algorithm, i.e., identification of the order of variables, as well as the

uncertainties in recovering the direction of interactions in PDN. On the other side, we

68 Section 4.4 - Empirical study

also need to stress the good performances of Or-PPGM related to the difference between

penalization and restriction of the conditional sets. In the PDN algorithm, as well as in

the ODS algorithm, a prediction model is fitted locally on all other variables, by mean

of a series of independent penalized regressions. In contrast, Or-PPGM controls the

number of variables in the conditional sets for node s, which is progressively increased

from 0 to min{m, ord(s)− 1}.

●

●
●

500 1000 1500 2000

0
20

40
60

80
10

0

Scale−free

sample size

Tr
ue

 p
os

iti
ve

●

●

●

●

●

●

●

●
●

500 1000 1500 2000

0
20

40
60

80
10

0
Hub

sample size

Tr
ue

 p
os

iti
ve

●

●

●

●

●

●

●

●

●

500 1000 1500 2000

0
20

40
60

80
10

0

Random

sample size

Tr
ue

 p
os

iti
ve

●

●

●

●

●

●

● ● ●PKBIC Or−PPGM PDN ODS MMHC K2mix PClog OR−LPGM True value

Figure 4.5: Number of TP edges recovered by PKBIC; Or-PPGM; Or-LPGM; PDN;
ODS; MMHC; K2mix; PClog for networks in Figure 4.2 (p = 100) and sample sizes
n = 200, 1000, 2000.

When considering other methods, i.e., category based methods (K2mix, K2cut,

PCmix, MMHC), and Gaussian based method (PClog), we were surprised by the be-

haviour of the two best algorithms, i.e., K2mix, and PClog. Results show that with the

same testing procedure, log transforming the data is better than categorizing data; and

with the same greedy search strategy, data categorizing using mixture models is better

than data categorizing using cutting points. On the basis of these results, we decided

not to perform PCmix and K2cut in the case p = 100.

Results for the high dimensional setting (p = 100) are somehow comparable to the

ones of the previous setting, as it can be seen in Figures 4.5, and 4.6. PK2BIC, Or-

PPGM, and Or-LPGM still rank as the top three best algorithms, but differences among

algorithms are more evident.

As a final remark, we note that the performances of ODS, PDN and MMHC are

overall less accurate and more variable, as expected. This empirically confirms the

relevant role played by the use of the topological ordering in terms of PPV and TP.

Chapter 4 - Guided structure learning of DAGs 69

●

●

●

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Scale−free

sample size

Po
si

tiv
e

P
re

di
ct

iv
e

Va
lu

e

●

●

●

●

● ●

●

●

●

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Hub

sample size

Po
si

tiv
e

P
re

di
ct

iv
e

Va
lu

e

●

●

●

●

●
●

●

●

●

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Random

sample size

Po
si

tiv
e

P
re

di
ct

iv
e

Va
lu

e

●

●

●

●

● ●

●

● ●

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Scale−free

sample size

S
en

si
tiv

ity

●

●

●

●

●
●

●

●
●

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Hub

sample size

S
en

si
tiv

ity

●

●

●

●

●

●

●

●
●

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Random

sample size

S
en

si
tiv

ity

●

●

●

●

●

●

● ● ●PKBIC Or−LPGM PDN ODS MMHC K2mix PClog Or−LPGM

Figure 4.6: PPV (first panel row) and Se (second panel row) for PKBIC; Or-PPGM;
Or-LPGM; PDN; ODS; MMHC; K2mix; PClog for networks in Figure 4.2 (p = 100),
sample sizes n = 200, 1000, 2000.

Table 4.1: Monte Carlo marginal means of TP, FP, FN, PPV, Se obtained by
simulating 500 samples from each of the three networks shown in Figure 4.1 (p = 10).

λnoise n Algorithm TP FP FN PPV Se

200 PKBIC 4.788 0.779 3.545 0.862 0.563

PKAIC 5.789 4.976 2.544 0.541 0.685

Or-PPGM 4.464 0.385 3.869 0.920 0.526

Or-LPGM 5.981 5.652 2.353 0.538 0.708

PDN 2.645 6.805 5.689 0.282 0.314

ODS 3.225 8.285 5.109 0.293 0.381

MMHC 2.186 2.822 6.147 0.468 0.259

K2mix 2.984 0.801 5.349 0.802 0.349

K2cut 1.734 0.433 6.599 0.822 0.202

PCmix 1.237 1.161 7.096 0.409 0.142

PClog 2.345 1.703 5.989 0.517 0.273

1000 PKAIC 6.105 0.275 2.228 0.959 0.722

PKBIC 6.523 4.642 1.811 0.590 0.774

Or-PPGM 6.660 0.314 1.673 0.958 0.791

Or-LPGM 6.637 1.613 1.697 0.825 0.788

70 Section 4.4 - Empirical study

Table 4.1 – continued from previous page

λnoise n Algorithm TP FP FN PPV Se

PDN 2.745 6.449 5.589 0.299 0.328

ODS 4.361 4.386 3.973 0.511 0.516

MMHC 3.465 3.089 4.868 0.524 0.410

K2mix 4.408 0.031 3.925 0.993 0.515

K2cut 2.517 0.071 5.817 0.976 0.294

PCmix 3.271 1.659 5.063 0.638 0.384

PClog 4.655 1.711 3.679 0.730 0.552

2000 PKBIC 6.299 0.183 2.034 0.973 0.746

PKAIC 6.602 4.757 1.731 0.586 0.784

Or-PPGM 6.961 0.385 1.372 0.951 0.829

Or-LPGM 6.657 0.503 1.677 0.938 0.790

PDN 2.703 6.397 5.631 0.298 0.323

ODS 4.855 2.830 3.479 0.644 0.575

MMHC 3.873 2.962 4.460 0.548 0.459

K2mix 4.870 0.015 3.463 0.997 0.573

K2cut 2.920 0.019 5.413 0.994 0.342

PCmix 4.079 1.655 4.254 0.698 0.480

PClog 5.162 1.619 3.171 0.767 0.614

Table 4.2: Monte Carlo marginal means of TP, FP, FN, PPV, Se obtained by
simulating 500 samples from each of the three networks shown in Figure 4.2 (p = 100).

λnoise n Algorithm TP FP FN PPV Se

200 PKBIC 50.513 81.845 50.487 0.378 0.500

Or-PPGM 42.133 98.485 58.867 0.294 0.416

Or-LPGM 50.379 117.833 50.621 0.299 0.498

PDN 18.969 90.596 82.031 0.188 0.188

ODS 21.289 142.525 79.711 0.127 0.209

MMHC 23.533 93.470 77.467 0.199 0.233

K2mix 25.881 113.677 75.119 0.188 0.257

PClog 18.936 38.365 82.064 0.311 0.186

1000 PKBIC 74.626 35.098 26.374 0.678 0.737

Or-PPGM 79.262 88.834 21.738 0.471 0.784

Or-LPGM 78.266 19.186 22.739 0.804 0.775

PDN 37.865 56.137 63.135 0.428 0.379

ODS 37.931 66.563 63.069 0.356 0.372

MMHC 54.885 68.566 46.115 0.446 0.544

K2mix 54.138 4.415 46.862 0.928 0.538

PClog 41.847 55.726 59.153 0.421 0.410

2000 PKBIC 76.930 24.143 24.070 0.758 0.759

Or-PPGM 83.861 86.378 17.007 0.491 0.830

Or-LPGM 82.745 3.945 18.260 0.954 0.819

PDN 39.765 47.931 61.235 0.484 0.398

ODS 45.166 49.116 55.834 0.471 0.443

Chapter 4 - Guided structure learning of DAGs 71

Table 4.2 – continued from previous page

λnoise n Algorithm TP FP FN PPV Se

MMHC 63.094 53.902 37.906 0.541 0.626

K2mix 63.095 1.541 37.905 0.979 0.626

PClog 46.531 60.152 54.469 0.433 0.457

4.5 Conclusions and remarks

We have proposed three guided structure learning algorithms and compared them to

a number of different approaches. Following this comparison, it appears that K2BIC,

Or-LPGM, and Or-PPGM are promising algorithms in terms of prediction accuracy.

It is worth to note that comparison with algorithms designed for categorical or con-

tinuous data are obviously sensitive to the procedure of data transformation. We have

noticed that the mixture based categorization is preferred to the simpler cut-points

based categorization when applying the K2 algorithm; and making the data continu-

ous by log transformation is better than categorizing the data when applying the PC

algorithm. This is an important empirical conclusion that we draw from this study.

Finally, all proposed algorithms assume knowledge of the ordering of variables. This

key ingredient makes the new algorithms more efficient, simple, and easy to implement.

However, it also restricts their applications. Obviously, in many real life problems this

knowledge is not available, or the topological ordering may be misspecified, or only a

partial order on the set of nodes is specified due to a number of reasons. This difficulty

motivated us to the next topic, i.e., unguided structure learning.

Chapter 5

Unguided structure learning of

DAGs

In the previous chapter, our primary goal was to develop a framework to infer the

underlying DAG from a set of given data. The three new algorithms for guided struc-

ture learning of DAGs, that we presented, answered this question when the topological

ordering of the graph is assumed to be available. But, in many real situations, we might

not know the topological ordering or it could be only unprecisely known. For example,

when dealing with biological networks, the topological ordering may be misspecified due

to inaccuracy of pathway representation or to the choices made in translating a pathway

diagram into a fully directed graph.

Here, we turn our attention to unguided structure learning. We develop a new

algorithm for learning DAGs which does not require prior knowledge of the ordering of

variables. The structure of this chapter is as follows. In Section 5.1, we present our

algorithm, learnDAG. Some empirical studies on ability of the algorithm are presented

in Section 5.2. Some discussion is provided in Section 5.3.

5.1 The learnDAG algorithm

We slightly rewrite the joint distribution in (2.3) as

Pθ(x) = exp
{ p∑
j=1

θjxj +
∑

(k,j)∈E

θjkxjxk −
p∑
j=1

log(xj!)−
p∑
j=1

eθj+
∑

k∈pa(j) θjkxk
}

= exp
{ p∑
j=1

θjxj +

p∑
j=1

∑
k 6=j

θjkxjxk −
p∑
j=1

log(xj!)−
p∑
j=1

eθj+
∑

k 6=j θjkxk
}
,

73

74 Section 5.1 - The learnDAG algorithm

where θjk = 0 if k /∈ pa(j). Let x(1),x(2), . . . ,x(n) be n samples independently drawn

from the random vector X, with x(i) = (xi1, xi2, . . . , xip), i = 1, . . . , n. Then, the

log-likelihood function is of the form:

`(θ,X) =
n∑
i=1

{ p∑
j=1

θjxij +

p∑
j=1

∑
k 6=j

θjkxijxik −
p∑
j=1

log(xij!)−
p∑
j=1

eθj+
∑

k 6=j θjkxik

}

=

p∑
j=1

`j(θV \{j},xV \{j}), (5.1)

where `j(θV \{j},xV \{j}) =
∑n

i=1

{
(θj +

∑
k 6=j θjkxik)xij − log(xij!)− eθj+

∑
k 6=j θjkxik

}
, de-

notes the node conditional log-likelihood for Xj|xV \j. Learning DAGs can be performed

by estimating parameters θjk that maximize the log-likelihood function `(θ,X).

As seen in Chapter 3, without constraints on direction of edges, this problem can be

solved by a number of algorithms, for example Yang et al. (2012), Allen and Liu (2013),

Gallopin et al. (2013), Schelldorfer et al. (2014). However, the problem is extremely

complicated by adding the constraint. The learning process is often divided in two

steps: first, the topological ordering is retrieved, then parent sets are estimated. As

already seen, Park and Raskutti (2015) proposed to recover the ordering by using an

overdispersion score that measures the difference between the conditional mean and

variance. However, this approach generally requires a large number of observations.

Here, we propose a new algorithm, called learnDAG. It consists of three main steps:

1) preliminary neighbourhood selection using existing methods for learning undirected

graphs; 2) estimation of candidate parent sets using a log-likelihood score (or a BIC

score); and 3) pruning of the DAG using variable selection algorithms such as Lasso, or

significance tests. The pseudo code of the algorithm for a generic log-likelihood score is

presented in Algorithm 5.

5.1.1 Step 1: preliminary neighbourhood selection (PNS)

The main purpose of Step 1 is to reduce computational complexity by imposing sparsity

on the graph. Indeed, a candidate set of neighbours for each node could potentially

include all nodes. Hence, learnDAG tries to reduce the dimensionality of the candidate

set of neighbours for each node by preliminary estimating an undirected structure (see

Figure 5.1). Any structure learning algorithm for undirected graphs could work to this

aim, see for example Gallopin et al. (2013), Zhang and Mallick (2013), Yang et al.

(2014), Žitnik and Zupan (2015). In what follows, we employ LPGM as in Allen and

Liu (2013), and our proposals, PC-LPGM, presented in Section 3.1.

Chapter 5 - Unguided structure learning of DAGs 75

Algorithm 5 learnDAG algorithm.

1: Input: Data containing n independent samples of the p-random vector X;
x(1),x(2), . . . ,x(n); (and an upper bound npa on the number of parents that a node
may have).

2: Ouput: An estimated DAG
3: Step 1: Estimate the undirected graph underlying data, construct neighbor sets

N(j).
4: Step 2: Estimate potential parent set for each node,
5: for i in 1: B do
6: Perform Algorithm 7.
7: end for
8: Construct potential parent set for each node
9: Step 3: Pruning the estimated DAG

When an estimated undirected graph is obtained, a neighbourhood set for each node

j, denoted as N(j), is built straightforwardly, that consists of all nodes potentially

connected to node j. This simple step considerably reduces the overall computational

complexity and running time, especially with large DAGs, and makes the algorithm

feasible up to high-dimensional DAGs.

1

2

3

4

5

1

2

3

4

5

PNS

Figure 5.1: An example of applying the PNS step on an undirected graph consisting
6 nodes.

5.1.2 Step 2: estimating parent sets

We consider two strategies to estimate the candidate parent sets: (i) orientation rules,

and (ii) a greedy search.

With the first strategy, the result of Step 1 is a set of conditional independences on

the considered variables. These are used to orient some edges of the graph according to

the d-separation rule and the acyclic properties of DAGs. The result is a PDAG, i.e.,

76 Section 5.1 - The learnDAG algorithm

a graph that consists of both directed and undirected edges, in which edges that could

not be oriented with the previous procedure, are left undirected. The PDAG is then

converted into a DAG by an algorithm proposed by Dor and Tarsi (1992). In detail,

while keeping the v- structures, the algorithm starts by searching for a sink node in the

obtained PDAG, G′ say. A vertex s is called a sink if it satisfies the following properties:

(i) there are no directed edges in G′ outward from s;

(ii) for every vertex t adjacent to s, with (s, t) undirected, t is adjacent to all the other

vertices which are adjacent to s.

If such vertex exists, all the edges which are incident to s in G′ are directed toward s.

Then, s and all edges incident to it are removed. This procedure is repeated until all

edges have been oriented or such s is not found. The pseudo code of this procedure is

given in Algorithm 6.

Algorithm 6 Dor and Tarsi algorithm.

1: Input a PDAG G.
2: Let G′ = G; A = G
3: while A is not empty do
4: repeat
5: Select a sink s on A,
6: if s is not found, stop the algorithm
7: if s is found, put direction toward s for all edges connected to s in G′;
8: remove s and all the edges incident to s from A.
9: until A is empty.

10: return G′.

The second strategy takes as input the sets of neighbours N(j), j = 1, . . . , p, returned

from the PNS step, and employs a greedy estimation procedure to estimate the sets of

potential parents. We start with an empty DAG, and add at each iteration the edge

k → j between nodes k and j (where k ∈ N(j)) corresponding to the largest gain in

log-likelihood (or BIC score). More precisely, a score matrix is constructed to keep track

of the change in the score function, where element in position (k, j) indicates how much

the log-likelihood (or BIC) increases after adding the edge k → j. For simplicity, here

we just consider the representation of the log-likelihood score. Algorithms using the

BIC score can be written similarly.

scoremat[k, j] =

{
`j(θ̂pa(j)∪{k},xpa(j)∪{k})− `j(θ̂pa(j),xpa(j)) if k ∈ N(j)

−Inf if k /∈ N(j).

Chapter 5 - Unguided structure learning of DAGs 77

At each iteration, an edge is added corresponding to the largest value in the score matrix.

For example, Figure 5.2 left is an example of a score matrix showing the change in the

log-likelihood score for the graph in the right panel of Figure 5.1, in which the largest

gain (0.8) corresponds to addition of an oriented edge from node 3 to node 4 (Figure

5.2 right).

- - - - -
- - - 0.4 0.7
- - - 0.8 0.3
- 0.1 0.5 - 0.6
- 0.3 0.5 0.2 -

1

2

3

4

5

Figure 5.2: An example of adding edge 3→ 4 based on calculating the score matrix.

After the addition of an edge, only the j-th column of the score matrix needs to be

updated, since the log-likelihood is decomposable as the sum of partial log-likelihoods

over all nodes. In order to avoid cycles, we remove from the matrix all values corre-

sponding to paths and inverse paths on the current graph. The maximum number of

iterations is p(p − 1)/2 corresponding to the iterations needed to achieve a fully con-

nected DAG. The potential parent set of each node is defined to be the parent set on

the resulting DAG. The pseudo code of this procedure is given in Algorithm 7.

Algorithm 7 orienting edges based on score matrix algorithm.

1: Input sets of neighbours N(j), j = 1, . . . , p.
2: Let G′ be an empty DAG on p nodes.
3: Calculate score matrix scoremat.
4: while sum(scoremat ! = −Inf) > 0 do
5: repeat
6: Select the maximum value scoremat[i, j] in scoremat.
7: Add the edge i→ j to G′.
8: Replace values corresponding to paths and inverse paths on G′ by −Inf;
9: Update j-th column of the score matrix..

10: until sum(scoremat ! = −Inf) = 0.
11: return the potential parent sets obtained from G′.

Such greedy search is prone to mistakes, especially when the sample size is small.

To improve the accuracy of Step 2, we propose to employ a bootstrapping technique.

In detail, B samples of size m, S1, . . . , SB are generated from x1, . . . ,xn. For each sub-

sample Si, i = 1, . . . , B, the potential parent sets are estimated by applying the above

78 Section 5.2 - Empirical study

described procedure. The final parent set of each node is defined as the set of nodes

most frequently selected in the boostrap replications. In our experiment, we selected

nodes appearing at least 60% of the times.

Step 2 could be made more efficient by adding an upper limit on the number of parents

that each node can have. Such value could be identified by some prior knowledges on

data; in absence of any prior knowledge, it could be set equal to the number of connected

nodes after performing PNS.

Clearly, if the PNS step is not implemented, the set of neighbours of node j is

N(j) = V \{j}, j = 1, . . . , p. The above described procedure can still be performed

to find potential parent sets, but the whole procedure is more expensive in terms of

computational time.

5.1.3 Step 3: pruning of the DAG

The estimate resulting from (Step 1 and) Step 2 could be a super DAG of the true DAG,

i.e., the true DAG is a subgraph of the estimate. As a consequence, edges identified

through Step 1 and Step 2 might contain some additional edges. The purpose of this

third step is to try to further refine the structure.

We consider two strategies for pruning DAGs: (i) sparse regression techniques; (ii)

significance testing procedures. For the first strategy, a number of methods have been

proposed in Friedman et al. (2010). We apply l1- penalized regressions at each node on

the set representing the potential parent set p̂a(s), s = 1, . . . p, estimated in Step 2. In

detail, consider a l1- regularized conditional log-likelihood, i.e.,

θ̂p̂a(s) = argminθp̂a(s)∈R|p̂a(s)|−1l(θp̂a(s),Xs;Xp̂a(s))− λ‖θp̂a(s)‖1.

Given the solution θ̂p̂a(s), the set of parents of node s is given by

p̃a(s) = {t ∈ p̂a(s) : θ̂st 6= 0}.

For the second strategy, we employ significant tests, for example Wald type tests on

the parameters θst, t ∈ p̂a(s) (see Assumption (3.2)). We test, at some pre-specified

significance level, the null hypothesis H0 : θst|p̂a(s) = 0 (see Section 3.1). If the null

hypothesis is not rejected, the edge t→ s is considered to be absent from the graph.

Chapter 5 - Unguided structure learning of DAGs 79

5.2 Empirical study

As in previous chapters, here we study the performance of learnDAG on simulated

data, and we compare it with other algorithms. We note that learnDAG allows a great

degree of flexibility by accommodating different choices in the various steps. Here,

we consider the version of learnDAG based on the the log-likelihood score, since our

simulation study showed that results for learnDAG using BIC score look similar. The

three possible combinations considered are specified in the following list.

For data generation, we followed the same simulation plan presented in Section 4.4.

Moreover, we applied the same data transformations as in Section 4.4 to make the

counts compatible with algorithms built for non Poisson data. Competing methods are

evaluated w.r.t. their ability to reconstruct the true graph underlying the data.

We considered the following algorithms, listed along with specifications, if needed, of

tuning parameters. In this study, we also specified an additional input, i.e., the upper

limit for the set of parents, m, which was set equal to m = 5 for p = 10 and to m = 3

for p = 100.

- llearnDAG: learnDAG using log-likelihood score, LPGM algorithm and k-fold

cross validation (k = 10) in Step 1, B = 250;

- plearnDAG: learnDAG using log-likelihood score, PC-LPGM algorithm in Step

1, B = 250;

- olearnDAG: learnDAG using PC-LPGM algorithm in Step 1, and Algorithm 7;

- ODS: Overdispersion score algorithm using k-fold cross validation (k = 10);

- PDN;

- PClog: PC algorithm applied to log transformed data, using Gaussian conditional

independent tests at the 1% significance level, and Algorithm 7;

- MMHC: Max Min Hill Climbing algorithm applied to data categorized by mixture

models, using χ2 tests of independence at the 1% significance level.

It is worth to note that for graphs of size p = 100, the LPGM algorithm [Allen and Liu

(2013)] using the stability selection criterion can produce extremely sparse DAGs (see

Table 3.2). Consequently, “true parents” are not included in parent sets after performing

PNS. A solution to this problem could be to employ lasso or elastic-net regularization

path regressions [Friedman et al. (2009)]. Here, we employed lasso regressions and a 10-

fold cross validation to choose the regularization parameter λ in place of StARS.

80 Section 5.2 - Empirical study

Results

For the two considered vertex cardinalities, i.e., p = 10, 100, and for the chosen sample

sizes, i.e., n = 200, 1000, 2000, Table 5.1 and Table 5.2 report, respectively, Monte

Carlo means of TP, FP, FN, PPV and Se for each of considered method. Each value is

computed as an average of the 1500 values obtained by simulating 500 samples for each

of the three networks. Results disaggregated by network type are given in Appendix B,

Tables B.7, and Tables B.8. A graphical representation of the results is offered in Figures

5.3, 5.4, 5.5 and 5.6. These results show that our proposed algorithm is competitive

with the other approaches in terms of reconstructing the structure.

●

●

●

500 1000 1500 2000

0
2

4
6

8
10

Scale−free

sample size

Tr
ue

 p
os

iti
ve

●
● ●

●

●
●

●

●
●

500 1000 1500 2000

0
2

4
6

8
10

Hub

sample size

Tr
ue

 p
os

iti
ve

● ● ●
●

●
●

●

●

●

500 1000 1500 2000

0
2

4
6

8
10

Random

sample size

Tr
ue

 p
os

iti
ve

●

● ●

●

●

●

● ● ●plearnDAG olearnDAG llearnDAG PDN ODS MMHC PClog True value

Figure 5.3: Number of TP edges recovered by plearnDAG; olearnDAG; llearnDAG;
PDN; ODS; MMHC; PClog for networks in Figure 4.1 (p = 10) and sample sizes
n = 200, 1000, 2000.

As far as learnDAG is concerned, in this simulation setting, the use of the log-

likelihood score together with the LPGM approach in the step 1 (see llearnDAG), often

gives rise to the highest TP value. Differences among various combinations in learnDAG

are more evident when p = 100. One possible explanation is that the LPGM approach

outperforms the PC-LPGM approach in restricting the candidate parent sets when the

number of observations is small compared to the number of observations needed to

get convergence (see Section 3.5). Besides, olearnDAG using Dor and Tarsi algorithm

(Algorithm 7) often has higher standard deviation (see Appendix B, Tables B.7, and

Tables B.8). This result is not surprising since the use of the log-likelihood score together

with a bootstrap procedure, as done by llearnDAG and plearnDAG, gives rise to more

stable results.

As expected, known Poisson algorithms, i.e, ODS, and PDN, reach less accurate re-

sults in these scenarios, and their performance is coherent with results stated in previous

Chapter 5 - Unguided structure learning of DAGs 81

●
●

●

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Scale−free

sample size

P
os

iti
ve

 P
re

di
ct

iv
e

Va
lu

e

●

● ●

●

● ●

●
● ●

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Hub

sample size
P

os
iti

ve
 P

re
di

ct
iv

e
Va

lu
e

●
● ●

●

●
●

●

●

●

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Random

sample size

P
os

iti
ve

 P
re

di
ct

iv
e

Va
lu

e

●

● ●●

●

●

●

●

●

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Scale−free

sample size

S
en

si
tiv

ity

●

● ●

●

●
●

●

●

●

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Hub

sample size

S
en

si
tiv

ity

● ● ●

●

●

●

●

●

●

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Random

sample size

S
en

si
tiv

ity

●

● ●

●

●

●

● ● ●plearnDAG olearnDAG llearnDAG PDN ODS MMHC PClog

Figure 5.4: PPV (first panel row) and Se (second panel row) for plearnDAG;
olearnDAG; llearnDAG; PDN; ODS; MMHC; PClog for networks in Figure 4.1
(p = 10), sample sizes n = 200, 1000, 2000.

●

●
●

500 1000 1500 2000

0
20

40
60

80
10

0

Scale−free

sample size

Tr
ue

 p
os

iti
ve

●
●

●
●

●
●

●

●

●

500 1000 1500 2000

0
20

40
60

80
10

0

Hub

sample size

Tr
ue

 p
os

iti
ve

●

●

●

●

●

●

●

●

●

500 1000 1500 2000

0
20

40
60

80
10

0

Random

sample size

Tr
ue

 p
os

iti
ve

●

●
●

●

●
●

● ● ●plearnDAG olearnDAG llearnDAG PDN ODS MMHC PClog True value

Figure 5.5: Number of TP edges recovered by plearnDAG; olearnDAG; llearnDAG;
PDN; ODS; MMHC; PClog for networks in Figure 4.2 (p = 100) and sample sizes
n = 200, 1000, 2000.

82 Section 5.2 - Empirical study

●

● ●

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Scale−free

sample size

P
os

iti
ve

 P
re

di
ct

iv
e

Va
lu

e

●

●

●

●

● ●

●

●
●

500 1000 1500 2000
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Hub

sample size

P
os

iti
ve

 P
re

di
ct

iv
e

Va
lu

e

●

●

●

●

●
●

●

● ●

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Random

sample size

P
os

iti
ve

 P
re

di
ct

iv
e

Va
lu

e

●

●
●●

● ●

●

●
●

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Scale−free

sample size

S
en

si
tiv

ity

●
●

●

●

●
●

●

●

●

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Hub

sample size

S
en

si
tiv

ity

●

●

●

●

●

●

●

●

●

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Random

sample size

S
en

si
tiv

ity
●

●
●

●

●

●

● ● ●plearnDAG olearnDAG llearnDAG PDN ODS MMHC PClog

Figure 5.6: PPV (first panel row) and Se (second panel row) for plearnDAG;
olearnDAG; llearnDAG; PDN; ODS; MMHC; PClog for networks in Figure 4.2
(p = 100), sample sizes n = 200, 1000, 2000.

Chapter.

Finally, the non Poisson based algorithms, i.e., MMHC, and PClog, perform reason-

ably well with an inferior score with respect to the leading algorithms.

Table 5.1: Monte Carlo marginal means of TP, FP, FN, PPV, Se obtained by
simulating 500 samples from each of the three networks shown in Figure 4.1 (p = 10).

λnoise n Algorithm TP FP FN PPV Se

200 plearnDAG 2.083 0.684 6.251 0.747 0.242

olearnDAG 1.815 0.975 6.519 0.596 0.209

llearnDAG 2.565 0.418 5.769 0.875 0.300

PDN 2.645 6.805 5.689 0.282 0.314

ODS 3.225 8.285 5.109 0.293 0.381

MMHC 2.186 2.822 6.147 0.468 0.259

PClog 2.345 1.703 5.989 0.517 0.273

1000 plearnDAG 4.440 1.081 3.893 0.806 0.524

olearnDAG 3.910 1.673 4.423 0.684 0.460

Chapter 5 - Unguided structure learning of DAGs 83

Table 5.1 – continued from previous page

λnoise n Algorithm TP FP FN PPV Se

llearnDAG 5.157 0.440 3.177 0.919 0.609

PDN 2.745 6.449 5.589 0.299 0.328

ODS 4.361 4.386 3.973 0.511 0.516

MMHC 3.465 3.089 4.868 0.524 0.410

PClog 4.655 1.711 3.679 0.730 0.552

2000 plearnDAG 5.086 0.869 3.247 0.854 0.601

olearnDAG 4.325 1.702 4.009 0.709 0.511

llearnDAG 5.881 0.275 2.453 0.953 0.696

PDN 2.703 6.397 5.631 0.298 0.323

ODS 4.855 2.830 3.479 0.644 0.575

MMHC 3.873 2.962 4.460 0.548 0.459

PClog 5.162 1.619 3.171 0.767 0.614

Table 5.2: Monte Carlo marginal means of TP, FP, FN, PPV, Se obtained by
simulating 500 samples from each of the three networks shown in Figure 4.2 (p = 100).

λnoise n Algorithm TP FP FN PPV Se

200 plearnDAG 21.027 15.806 79.609 0.566 0.209

olearnDAG 20.633 16.223 80.004 0.559 0.205

llearnDAG 28.593 8.939 72.044 0.729 0.285

PDN 18.969 90.596 82.031 0.188 0.188

ODS 21.289 142.525 79.711 0.127 0.209

MMHC 23.533 93.470 77.467 0.199 0.233

PClog 18.936 38.365 82.064 0.311 0.186

1000 plearnDAG 47.812 29.507 53.188 0.631 0.475

olearnDAG 47.347 30.902 53.653 0.616 0.469

llearnDAG 58.777 11.786 42.223 0.832 0.582

PDN 37.865 56.137 63.135 0.428 0.379

ODS 37.931 66.563 63.069 0.356 0.372

MMHC 54.885 68.566 46.115 0.446 0.544

PClog 41.847 55.726 59.153 0.421 0.410

2000 plearnDAG 52.307 34.677 48.329 0.608 0.521

olearnDAG 51.012 37.322 49.625 0.583 0.507

llearnDAG 67.935 12.652 32.701 0.842 0.675

PDN 39.765 47.931 61.235 0.484 0.398

ODS 45.166 49.116 55.834 0.471 0.443

MMHC 63.094 53.902 37.906 0.541 0.626

PClog 46.531 60.152 54.469 0.433 0.457

84 Section 5.3 - Discussion

5.3 Discussion

We have proposed an unguided structure learning algorithm and compared it to a num-

ber of different approaches. A key strategy of our approach is to decouple potential

parent sets from edge selection in DAGs. Once the potential parent sets are estimated,

learning DAGs reduces to a simple set of p regression problems. The use of the PC-

LPGM algorithm in Step 1, as well as significance tests in Step 3, makes our algorithm

more efficient than the latest Poisson structure learning algorithm, i.e., ODS. Further-

more, we note that the restriction to the parent sets in addition to a boosting approach

makes the proposed algorithm more stable, with low standard deviation (see Appendix

B, Tables B.7, and Tables B.8).

It is worth to note that final performance of learnDAG depends on the chosen com-

bination. For example, we have noticed that using PC-LPGM in Step 1 is better than

using LPGM when the true graph is not too sparse. Indeed, we simulated a random

graph for p = 100, and an edge probability (0.03) leading to a better performance of

plearnDAG and of olearnDAG over llearnDAG (see Table 5.3).

As stated before, we can dismiss Step 1 with small graphs. Sometimes, experiment

results show that the distance between the DAG recovered without Step 1 and the true

DAG is smaller than the one obtained by implementing Step 1, since PNS can produce

false negatives. However, the PNS step is essential for the algorithm to be feasible when

p is large, as the computational cost is significantly reduced.

The log-likelihood score is used as the key to orient directions of DAGs. This makes

our algorithm quite flexible in applications with respect to the overdispersion scoring in

Park and Raskutti (2015), which fails with data coming from distributions which are

not Poisson. Moreover, we can adapt the proposed method to various likelihood-based

scores (like BIC or AIC).

Finally, Theorem 7 in Meek (1995) shows that violations of faithfulness in discrete

distributions are Lebesgue measure zero. In other words, almost all discrete distributions

that are Markov to a given graph are faithful to it. If we restrict our attention to the

subspace on which the faithfulness condition is satisfied, the consistency of the proposed

algorithm can be deduced from statistical theory. In detail, for the first combination of

learnDAG, i.e., olearnDAG, under the same assumptions in Chapter 3 and Faithfulness

condition, the proof of Theorem 4.3.1 also covers the issue of estimating the correct

skeleton and separation sets. Then, the estimated PDAG from Step 1 convergences to

the true DAG (thanks to Identifiability property in Chapter 2). For other combinations,

i.e., plearnDAG, llearnDAG, the greedy search in Step 2 guarantees that the algorithm

Chapter 5 - Unguided structure learning of DAGs 85

identifies the true structure up to an equivalent class as the number of observations goes

to infinity when a consistent scoring criterion is used [Chickering and Meek (2002)].

As BIC is consistent scoring criterion [Haughton et al. (1988)], the estimated graph

convergences to the true DAG since the Poisson model is identifiable (see Section 2.2).

Table 5.3: Monte Carlo marginal means of TP, FP, FN, PPV, Se obtained by
simulating 500 samples from random network with edge probability 0.03, p = 100.

λnoise n Algorithm TP FP FN PPV Se

200 plearnDAG 83.880 7.973 166.120 0.913 0.336

olearnDAG 83.117 8.600 166.883 0.905 0.332

llearnDAG 75.947 16.410 174.053 0.823 0.304

PDN 34.520 73.837 215.480 0.321 0.138

ODS 73.630 255.840 176.370 0.225 0.295

MMHC 70.267 81.683 179.733 0.463 0.281

PClog 76.877 23.900 173.123 0.763 0.308

1000 plearnDAG 208.497 5.673 41.503 0.974 0.834

olearnDAG 212.967 7.080 37.033 0.968 0.852

llearnDAG 182.130 18.250 67.870 0.909 0.729

PDN 42.820 48.152 207.180 0.467 0.171

ODS 130.940 181.781 119.060 0.419 0.524

MMHC 186.703 65.427 63.297 0.741 0.747

PClog 208.792 13.590 41.208 0.939 0.835

2000 plearnDAG 223.300 5.850 26.700 0.974 0.893

olearnDAG 232.493 7.397 17.507 0.969 0.930

llearnDAG 198.037 19.530 51.963 0.910 0.792

PDN 41.504 43.589 208.496 0.479 0.166

ODS 152.733 143.198 97.267 0.517 0.611

MMHC 217.190 50.053 32.810 0.813 0.869

PClog 233.426 12.167 16.574 0.951 0.934

Chapter 6

Conclusions

The problem of learning the structure of a DAG from a set of given count data is an NP

hard problem, as the number of possible structures grows exponentially in the number of

nodes. Here, we tackled such problem when count data are available. Our first results,

presented in this thesis, show promise. Many open problems await future research, and

we mention some of them here.

Firstly, the proposed algorithms could be extended to other count distributions, as,

for example the negative binomial distribution. The same algorithms could be cus-

tomized making use of the negative binomial assumption instead of the Poisson one

whenever needed. It should be possible and would be interesting to obtain statistical

results to guarantee consistency of the estimators in this wider setting.

Secondly, more work needs to be done to extend our algorithms to general models,

for example considering fs(.) an arbitrary function. We might for example consider

Poisson generalized additive models, where the conditional mean can be written as:

fj(xV \j) =
∑
k 6=j

fjk(xk) + εj,

where fjk(.) 6= 0 if and only if there is a directed edge k → j in G, and ε1, . . . , εp

are independent with εj ∼ N(0, σ2
j), σ2

j > 0.

Thirdly, in this thesis, we adopted a local approach to model specification leading to

possible non existence of the joint distribution when undirected graphs are considered

that contain both positive and negative dependencies. It should be interesting to study

consistency of our class of structure learning algorithms for models that guarantee the

existence of the unique joint distribution, as, for example, TPGM, SPGM, QPGM [Yang

et al. (2013)]. Yang et al. (2015) proved that any exponential distribution produces

Assumption 3.2.4, Assumption 3.2.5. Hence, we should investigate whether these results

remain in this particular modifications of the Poisson family.

87

88 Conclusions

The proposed unguided structure learning algorithm for Poisson DAGs, i.e., learnDAG

contains three steps, and each of them could be customized. Hence, another interesting

avenue for future work is to exploit alternative procedures at each step. For example, in

Step 1, we could consider testing the neighbourhoods as in Verzelen and Villers (2009).

In this thesis, we do not discuss run-time complexity of our algorithms. Clearly,

further work should be developed to explore this issue.

Appendix A

Here, we briefly review some popular non-Poisson structure learning algorithms, that

were used in this thesis.

A.1 K2 algorithm

The K2 algorithm, a representative of the scoring-based approach, was introduced by

Cooper and Herskovits (1992), and is known as one of the first efficient solutions to

the problem of learning DAGs from data. Before its definition, DAGs were usually

constructed by hand, in close collaboration with domain experts. Therefore, a number of

limitations raised as the consequence of this approach, such as the size of the considered

network, the availability of the domain knowledge. These drawbacks feed the need of

developing a procedure that would construct high dimensional DAGs automatically.

Cooper and Herskovits (1992) defined a new Bayesian score function, the K2 score,

that scores individual DAGs reflecting how well they fit the observed data. Then,

structure learning problem boils down to finding the structure that maximizes the score.

However, as a function of the number of nodes, the number of possible structures grows

exponentially. Thus, an exhaustive enumeration of all network structures is not feasible

in most domains. To overcome this difficulty, the K2 algorithm takes as an input in

addition to the data, the ordering of variables. The key idea behind the algorithm is

using a Bayesian scoring function, i.e., the K2 score, that reflects how well individual

graphs fit the data. More precisely, the analytical expression is given in the following

result.

Theorem A.1.1. Let there be n observations of p-discrete variables X1, . . . , Xp, where

Xi has ri possible value assignment: (vi1, . . . , viri). Let G be a DAG containing these

variables. Let pai denote the set of parents of Xi in G. Let ωij denote the j-th unique

realization of pai. Suppose there are qi such unique realizations. Define Nijk to be the

number of observations in which Xi assumes the value vik and pai has the value wij.

89

90 Appendix A

Let

Nij =

ri∑
k=1

Nijk.

If the prior distribution is uniform over a set of all possible DAGs on p nodes, then K2

score of the structure G corresponds up to a constant to its posterior probability and is

given by

g(G) =

p∏
i=1

qi∏
j=1

(ri − 1)!

(Nij + ri − 1)!

ri∏
k=1

Nijk!. (A.1)

In summary, Theorem A.1.1 states that under very mild conditions regarding the

uniform prior distribution, the posterior probability of a DAG structure is given in the

formula (A.1). For the reader interested in the proof, we refer to the original work of

Cooper and Herskovits (1992).

The K2 algorithm aims at searching for the graph that maximizes the K2 score

among the space of all possible DAGs. However, the search is not trivial, since the

number of possible structures grows exponentially with the number of nodes. Thus,

to reduce the search space, the K2 algorithm also requires a topological ordering of

the variables. Once, the order is specified, then a heuristic search method is used. In

particular, the algorithm starts from the first node in the topological ordering. For

a fixed node, it begins by making the assumption that the parent set is empty, and

consider the candidate parent set consists of all variables that precede the fixed node in

the ordering. At each iteration, the K2 score is calculated, then variable that gains most

the score is added to the parent set. This procedure stops when no addition of a single

parent can increase the score (or we get enough m parents, where m is the maximum

number of parents that one node can have), and it moves to the next variable in the

ordering. The pseudo-code is given in Algorithm 8.

A.2 PC algorithm

The PC algorithm [Spirtes et al. (2000)] is the most popular representative of constrained-

based algorithms. It is designed to refine the underlying directed graph from given data,

based one d-separation and acyclic properties. Starting from a completely undirected

graph, edges whose evidence is not supported by the data are in turn removed. Specif-

ically, this procedure consists of a sequence of conditional independence tests.

• For each pair of variables Xi and Xj, test whether they are independent; if so,

remove the edge between them, then update the graph G, and move to the first

order conditional independence.

Appendix A 91

Algorithm 8 K2 Algorithm.

1: Input n observations of p variables X1, . . . , Xp, a topological ordering on nodes Ord,
an upper bound for the number u of parents of a node may have.

2: for i = Ord[1] to Ord[p] do
3: pai ← ∅
4: Pold ← g(i, pai)
5: OKToProceed ← TRUE
6: while OKToProceed and |pai| < u do
7: let z be the node in pre(xi)\pai that maximizes g(i, pai ∪ {z})
8: Pnew ← g(i, pai ∪ {z})
9: if Pnew > Pold then

10: Pold ← Pnew
11: pai ← pai ∪ {z}
12: else OKToProceed ← FALSE
13: end if
14: end while
15: print ”parents of node” xi, ”are” pai.
16: end for

• For each connected pair Xi and Xj, test Xi ⊥⊥ Xj|Xk, for each k ∈ N(i)\{j}. If

the hypothesis is not rejected for some k, remove the edges between Xi and Xk

and move to the second order conditional independence.

• Continue with higher order conditional independence tests until further condition-

ing is impossible.

If all the tests are done, a process to orient some edges of the undirected graph can

be performed by using simple probabilistic considerations, as well as the property of

acyclicity. As a consequence, the output of the PC algorithm is a PDAG, representative

of a certain equivalence class.

Results of the PC algorithm, moreover, depend on the choice of conditional indepen-

dence tests, which in turn, depends on the nature of considered variables. The most

popular choice are χ2 test of independence in case of categorical variables [Spirtes et al.

(2000)]; and the test on partial correlation under the Gaussian assumption [Kalisch and

Bühlmann (2007)]. The sparsity of the final structure depends on the choice of the

significance level of the tests: the higher the significance level, the lower the number of

edges.

92 Appendix A

A.3 VSL algorithm

In Gaussian graphical models, the global, local and pairwise Markov property are equiv-

alent. Thus, two major directions of structure learning are covariance selection, and

neighbourhood selection. We consider a representative of the latter: Variable selection

with the lasso of Meinshausen and Bühlmann (2006). Here, the problem of structure

learning is translated into an optimization problem with a residual squared error and a

lasso constraint.

With neighbourhood selection approach, learning graphical structures boils down

to estimate the conditional independence restrictions separately for each node in the

graph, which is equivalent to variable selection for Gaussian linear models. For each

node s ∈ V , the neighbourhood N(s) is defined as the variables corresponding to non-

zero coefficients in the prediction of Xs on all other random variables XV \{s}. Let

β̂s = (β̂st)t∈V \{s} be the set of coefficients for optimal prediction,

β̂s = argmin βs∈Rp−1E(Xs −
∑

t∈V \{s}

βstXt)
2. (A.2)

Then, the set of neighbours of node s ∈ V is defined as

N(s) = {t ∈ V \{s} : β̂st 6= 0}.

A natural way to estimate the vector β̂s in Equation (A.2) is minimizing the residual

squared error, i.e.,

β̂s = argmin βs∈Rp−1

(
1

n

n∑
i=1

(xis −
∑
t6=s

βstxit)
2

)
.

Prediction accuracy can sometimes be improved by shrinking or setting to 0 some co-

efficients. Meinshausen and Bühlmann (2006) proposed neighbourhood selection with

the lasso, i.e.,

β̂
λ

s = argmin βs∈Rp−1

(
1

n

n∑
i=1

(xis −
∑
t6=s

βstxit)
2 + λ‖βs‖1

)
.

Structure learning is done after performing p standard regressions which can be solved

easily by using the algorithm, knonwn as glmnet, proposed by Friedman et al. (2009).

For each value of the regularization parameter λ, neighbourhood sets are specified as

Appendix A 93

follows

N̂λ(s) = {t ∈ V \{s} : β̂λst 6= 0 or β̂λts 6= 0}.

Thus, the number of non-zero coefficients or the sparsity of the graph estimates depend

on the choice of the regularization parameter λ. Two popular choices for choosing a

suitable parameter λ are: cross validation as in Friedman et al. (2009), and stability

selection criterion (StARS) as in Liu et al. (2010), which seeks the regularization pa-

rameter λ leading to the most stable set of edges. We will take the latter choice for all

algorithms in this work whenever we need to choose a value for λ.

A.4 GLASSO algorithm

The VSL algorithm takes a simple approach to estimate sparse undirected graphical

models by fitting a lasso model to each variable (an approximation to the exact problem).

Friedman et al. (2008) propose a new algorithm for the exact problem, called GLASSO

by using the blockwise coordinate descent. Here, the interest is not in considering

estimation of the precision matrix Γ = Σ−1 directly, but of the covariance matrix Σ

instead. Then, one can deduce an estimate of the inverse covariance matrix relatively

cheaply.

Recently, a number of approaches to structure learning that focus on the problem of

estimating the graph in high dimensional settings under a sparsity assumption. Banerjee

et al. (2008) proposed an estimator based on regularized maximum likelihood minus an

l1 constraint on the entries of Γ, called a block coordinate descent algorithm. Friedman

et al. (2008) use this approach as a launching point to develop a new algorithm for

estimate Σ. Precisely, let W be the estimate of Σ, we partition W and S as follows

W =

(
W11 w12

wT12 w22

)
, S =

(
S11 s12

sT12 s22

)
(A.3)

Friedman et al. (2008) translated the problem of maximizing the penalized log-likelihood

problem to a lasso least square problem

min
β

{
1

2
‖W 1/2

11 β − b‖2 + λ‖β‖1
}
, (A.4)

where b = W
−1/2
11 s12, which can be solved by the standard lasso algorithm. Thus,

GLASSO is really simple algorithm. Each time, we estimate a single row and column of

Γ. Permuting the rows and columns so that the target column is always the last. This

94 Appendix A

procedure repeat until convergence.

Till now, we just discuss how to estimate the covariance matrix Σ. To recover the

structure of the underlying graph, we need the estimate of precision matrix Γ. However,

this matrix can be easily deduced by expending the relation between Γ and the matrix

estimate W , i.e., WΓ = I. Precise expression of the estimate matrix Γ̂ can be found in

Friedman et al. (2008).

A.5 Extension to the nonparanormal model

Exact normality assumption restricts the application of Gaussian models. Liu et al.

(2009) relax this assumption by transforming the variables of interest through some

smooth functions. This transformation extends the class of Gaussian distributions to

a strictly larger class, called the nonparanormal class, which preserves the conditional

independence relations. Thus, structure learning of the original variables can be inferred

from the structure of the transforming data.

Definition A.5.1. A random vector X = (X1, . . . , Xp) has a nonparanormal distribution

if there exists a function f = (f1, . . . , fp) s.t. Z = f(X) ∼ N(µ,Σ), where f(X) =

(f1(X1), . . . , fp(Xp)). We then write

X ∼ NPN(µ,Σ, f).

Liu et al. (2009) proved that when functions fs, s ∈ V are monotonic and dif-

ferentiable functions, the nonparanormal family is equivalent to the Gaussian copula

family. Then, the conditional independence relations are still encoded by zero entries of

Γ = Σ−1, i.e.,

Xs ⊥⊥Xt|xV \{s,t} ⇔ γst = 0.

Therefore, learning the graphical structure that encodes the conditional independence

relationships between the random variables X1, . . . , Xp now is translated into learn-

ing Gaussian graphical model related to multivariate normal distributions f(X) =

(f1(X1), . . . , fp(Xp)), which can be solved by GLASSO.

The problem here is estimating the smooth function f(.). Liu et al. (2009) give an

estimator for the transformation function using a Winsorized estimator of the marginal

distribution function Fs, s ∈ V . Let F̂s be the empirical marginal distribution of Fs.

Appendix A 95

Then, the Winsorized estimator of Fs is defined as follows,

F̃s(x) =


δn if F̂s(x) ≤ δn

F̂s(x) if δ ≤ F̂s(x) ≤ 1− δn
(1− δn) if F̂s(x) > 1− δn.

(A.5)

with δn =
1

4n1/4
√
π log n

as the truncated value. Then the transformation function fs

is

f̃s(x) = µ̂s + σ̂sΦ
−1(F̃s(x)),

where µ̂s, σ̂s are the sample mean and sample variance of random variable Xs respec-

tively.

In summary, the nonparanormal algorithm, called NPN-Copula has two step proce-

dures:

1. For each variable, replace the observations by their respective transformed data.

2. Apply GLASSO algorithm on the transformed data to estimate the undirected

graph.

Liu et al. (2012) also propose an algorithm to learn graphical structure underlying the

nonparanormal assumption, called NPN- skeptic. The name of the method stands for

Spearman/Kedall estimates preempt transformations to infer correlation. It is named

after the main idea behind, i.e., exploiting Spearman’s ρ and Kendall’s τ statistics to

directly estimate the unknown correlation matrix, without explicitly calculating the

marginal transformations fs.

The NPN- SKEPTIC algorithm is formed by keeping the second step in the NPN-

Copula algorithm while replacing Step 1 by an alternative procedure. The key of this

replacing is the connection between Spearman’s ρ and Kendall’s τ to the underlying

Pearson correlation coefficient Σ0 in Kruskal (1958). Assuming X ∼ NPN(µ,Σ0, f),

then

Σ0
st = 2 sin

(π
6
ρst

)
= sin

(π
2
τst

)
. (A.6)

Hence, by replacing the empirical estimations ρ̂st (or τ̂st) of Spearman’s ρst (or Kendall’s

τst) to Equation (A.6), we get an estimate of the correlation matrix Σ0
st. This estimate

is then plugged into GLASSO or alternative algorithms such as CLIME (see Cai et al.

(2011)), the graphical Dantzig selector (see Yuan (2010)) to obtain the final estimate of

the inverse correlation matrix and graph. In this work, we just consider NPN-skeptic

with GLASSO, so when we say NPN-skeptic, it means that we use GLASSO in com-

puting the estimate of the precision matrix.

96 Appendix A

A.6 MMHC algorithm

The MMHC algorithm, introduced by Tsamardinos et al. (2006), is used to learn struc-

ture DAG. This algorithm combines ideas from local learning, constraint based, and

search-and-score techniques. They first learn the undirected graph underlying data by

using a local search algorithm called Max-Min Parents and Children (MMPC). In par-

ticular, fixed a target variable Xi, MMPC identifies all the edges that connect to Xi as

follows:

• In the forward phase, variables enter sequentially into the candidate set of parents

and children (CPC) of Xi by use of a heuristic function. At each iteration, the

variable mostly associated to Xi is selected until no other variables are founded

to be associated to the target.

• In the backward phase, for each Xj in the CPC of Xi, the test Xi ⊥⊥ Xj|S is

performed, where S ⊂ CPC. If there exists some S such that the hypothesis is

not rejected, remove Xj from CPC.

• Checking symmetry: the aim of this procedure is to remove false positive in CPC,

based on checking the parent and children relation.

As every other constraint based learning algorithm, MMPC algorithm depends on

the use of conditional independence tests. The χ2 test independence in contingency

tables is also employed here, since it is relatively easy to compute. However, it is only

asymptotically correct for a general discrete multinomial distribution.

The output of MMPC algorithm, the skeleton of a Bayesian network, will be the input

of the oriented procedure in the next step. Here, search-and-score methods search over

a space of possible structures, guided by a scoring function. Specifically, a greedy hill-

climbing search in the space of Bayesian networks begins with an empty graph. Edges

are added, deleted, or reversed direction such that the BDeu score [Heckerman et al.

(1995)] increases largest. The BDeu score could be seen as the posterior probability of

the structure learned under some certain conditions. Finally, we note, MMHC however

just searches only on the set of edges that was discovered by MMPC.

Appendix B

B.1 Appendix B.1

Table B.1 to Table B.4 report TP, FP, FN, PPV and Se for each of methods considered

in Section 3.3. Two different graph dimensions, i.e., p = 10, 100, and three graph

structures (see Figure 3.1 and Figure 3.2) are considered at one low (λnoise = 5) and

one high (λnoise = 0.5) SNR levels.

Table B.1: Simulation results from 500 replicates of the undirected graphs shown in
Figure 3.1 for p = 10 variables with Poisson node conditional distribution and level of
noise λnoise = 0.5. Monte Carlo means (standard deviations) are shown for TP, FP,
FN, PPV and Se.

Graph n Algorithm TP FP FN PPV Se

200 PC-LPGM 6.838 (1.152) 0.048 (0.230) 2.163 (1.152) 0.994 (0.208) 0.760 (0.169)

LPGM 4.732 (1.407) 0.384 (0.644) 4.268 (1.407) 0.941 (0.097) 0.526 (0.156)

PDN 5.872 (0.741) 0.182 (0.430) 3.128 (0.741) 0.972 (0.065) 0.652 (0.082)

VSL 4.625 (2.056) 0.034 (0.181) 4.375 (2.056) 0.996 (0.021) 0.514 (0.228)

GLASSO 4.502 (1.961) 0.023 (0.151) 4.498 (1.961) 0.997 (0.018) 0.500 (0.218)

NPN-Copula 5.073 (2.169) 0.034 (0.191) 3.927 (2.169) 0.996 (0.023) 0.564 (0.241)

NPN-Skeptic 5.030 (2.177) 0.039 (0.230) 3.970 (2.177) 0.994 (0.023) 0.559 (0.242)

1000 PC-LPGM 9.000 (0.000) 0.071 (0.258) 0.000 (0.000) 0.993 (0.026) 1.000 (0.000)

LPGM 5.780 (1.253) 0.692 (2.730) 3.220 (1.253) 0.964 (0.135) 0.642 (0.139)

PDN 5.780 (0.661) 0.000 (0.000) 3.220 (0.661) 1.000 (0.000) 0.642 (0.073)

Scale-free VSL 4.954 (2.246) 0.000 (0.000) 4.046 (2.246) 1.000 (0.000) 0.550 (0.250)

GLASSO 4.889 (2.234) 0.000 (0.000) 4.111 (2.234) 1.000 (0.000) 0.543 (0.248)

NPN-Copula 5.377 (2.451) 0.000 (0.000) 3.623 (2.451) 1.000 (0.000) 0.597 (0.272)

NPN-Skeptic 5.232 (2.609) 0.000 (0.000) 3.768 (2.069) 1.000 (0.000) 0.581 (0.290)

2000 PC-LPGMC 9.000 (0.000) 0.071 (0.278) 0.000 (0.000) 0.993 (0.027) 1.000 (0.000)

LPGM 7.660 (1.611) 5.180 (4.482) 1.340 (1.611) 0.703 (0.238) 0.851 (0.179)

PDN 5.658 (0.581) 0.000 (0.000) 3.342 (0.581) 1.000 (0.000) 0.629 (0.065)

VSL 5.566 (2.381) 0.000 (0.000) 3.434 (2.381) 1.000 (0.000) 0.618 (0.265)

GLASSO 5.573 (2.381) 0.000 (0.000) 3.427 (2.381) 1.000 (0.000) 0.619 (0.265)

NPN-Copula 6.055 (2.509) 0.000 (0.000) 2.945 (2.509) 1.000 (0.000) 0.673 (0.279)

NPN-Skeptic 5.945 (2.710) 0.000 (0.000) 3.055 (2.710) 1.000 (0.000) 0.661 (0.301)

200 PC-LPGM 6.618 (1.042) 0.104 (0.132) 1.382 (1.042) 0.986 (0.042) 0.827 (0.130)

97

98 Appendix B.1

Table B.1 – continued from previous page

Graph n Algorithm TP FP FN PPV Se

LPGM 3.072 (1.124) 0.136 (0.505) 4.928 (1.124) 0.975 (0.077) 0.384 (0.144)

PDN 6.680 (0.700) 0.560 (0.769) 1.320 (0.700) 0.926 (0.099) 0.835 (0.088)

VSL 4.316 (1.933) 0.030 (0.171) 3.684 (1.933) 0.995 (0.033) 0.540 (0.242)

GLASSO 4.212 (1.903) 0.028 (0.177) 3.788 (1.903) 0.995 (0.033) 0.527 (0.238)

NPN-Copula 4.636 (1.936) 0.024 (0.166) 3.364 (1.936) 0.996 (0.026) 0.580 (0.242)

NPN-Skeptic 4.506 (2.009) 0.032 (0.187) 3.494 (2.009) 0.995 (0.028) 0.563 (0.251)

1000 PC-LPGM 8.000 (0.000) 0.122 (0.345) 0.000 (0.000) 0.987 (0.038) 1.000 (0.000)

LPGM 4.392 (2.669) 1.452 (2.201) 3.608 (2.669) 0.885 (0.169) 0.549 (0.334)

PDN 7.128 (0.395) 0.000 (0.000) 0.872 (0.395) 1.000 (0.000) 0.891 (0.049)

Hub VSL 5.908 (1.920) 0.000 (0.000) 2.092 (1.920) 1.000 (0.000) 0.739 (0.240)

GLASSO 5.842 (1.907) 0.000 (0.000) 2.158 (1.907) 1.000 (0.000) 0.730 (0.238)

NPN-Copula 6.000 (2.094) 0.000 (0.000) 2.000 (2.094) 1.000 (0.000) 0.750 (0.262)

NPN-Skeptic 5.818 (2.337) 0.000 (0.000) 2.182 (2.337) 1.000 (0.000) 0.727 (0.292)

2000 PC-LPGM 8.000 (0.000) 0.132 (0.373) 0.000 (0.000) 0.986 (0.040) 1.000 (0.000)

LPGM 6.252 (2.688) 2.480 (1.904) 1.748 (2.688) 0.790 (0.151) 0.782 (0.336)

PDN 7.216 (0.488) 0.000 (0.000) 0.784 (0.488) 1.000 (0.000) 0.902 (0.061)

VSL 7.110 (1.680) 0.000 (0.000) 0.890 (1.680) 1.000 (0.000) 0.889 (0.210)

GLASSO 7.068 (1.681) 0.000 (0.000) 0.932 (1.681) 1.000 (0.000) 0.884 (0.210)

NPN-Copula 7.006 (2.030) 0.000 (0.000) 0.994 (2.030) 1.000 (0.000) 0.876 (0.254)

NPN-Skeptic 6.794 (2.272) 0.000 (0.000) 1.206 (2.272) 1.000 (0.000) 0.849 (0.284)

200 PC-LPGM 5.492 (1.581) 0.052 (0.231) 2.508 (1.581) 0.991 (0.039) 0.687 (0.198)

LPGM 3.500 (1.120) 0.244 (0.531) 4.500 (1.120) 0.950 (0.107) 0.438 (0.140)

PDN 4.800 (0.752) 2.362 (0.817) 3.200 (0.752) 0.675 (0.085) 0.600 (0.094)

VSL 3.510 (1.655) 0.034 (0.202) 4.490 (1.655) 0.993 (0.040) 0.439 (0.207)

GLASSO 3.464 (1.601) 0.026 (0.171) 4.536 (1.601) 0.995 (0.036) 0.433 (0.200)

NPN-Copula 3.934 (1.823) 0.028 (0.165) 4.066 (1.823) 0.995 (0.030) 0.492 (0.228)

NPN-Skeptic 3.826 (1.859) 0.030 (0.182) 4.174 (1.859) 0.995 (0.031) 0.478 (0.232)

1000 PC-LPGM 8.000 (0.000) 0.078 (0.283) 0.000 (0.000) 0.991 (0.031) 1.000 (0.000)

LPGM 5.748 (1.989) 3.584 (3.752) 2.252 (1.989) 0.758 (0.244) 0.718 (0.249)

PDN 5.066 (0.753) 2.164 (0.634) 2.934 (0.753) 0.703 (0.068) 0.633 (0.094)

Random VSL 3.190 (1.963) 0.000 (0.000) 4.810 (1.963) 1.000 (0.000) 0.399 (0.245)

GLASSO 3.110 (1.897) 0.000 (0.000) 4.890 (1.897) 1.000 (0.000) 0.389 (0.237)

NPN-Copula 3.434 (2.257) 0.000 (0.000) 4.566 (2.257) 1.000 (0.000) 0.429 (0.282)

NPN-Skeptic 3.358 (2.351) 0.000 (0.000) 4.642 (2.351) 1.000 (0.000) 0.420 (0.294)

2000 PC-LPGM 8.000 (0.000) 0.048 (0.214) 0.000 (0.000) 0.995 (0.024) 1.000 (0.000)

LPGM 7.484 (1.073) 6.256 (2.369) 0.516 (1.073) 0.576 (0.140) 0.936 (0.134)

PDN 5.068 (0.730) 2.082 (0.716) 2.932 (0.730) 0.713 (0.080) 0.634 (0.091)

VSL 2.952 (2.011) 0.000 (0.000) 5.048 (2.011) 1.000 (0.000) 0.369 (0.251)

GLASSO 2.828 (1.886) 0.000 (0.000) 5.172 (1.886) 1.000 (0.000) 0.353 (0.236)

NPN-Copula 3.356 (2,261) 0.000 (0.000) 4.644 (2.261) 1.000 (0.000) 0.420 (0.283)

NPN-Skeptic 3.384 (2.321) 0.000 (0.000) 4.616 (2.321) 1.000 (0.000) 0.423 (0.290)

Appendix B 99

Table B.2: Simulation results from 500 replicates of the undirected graphs shown in
Figure 3.1 for p = 10 variables with Poisson node conditional distribution and level
of noise λnoise = 5. Monte Carlo means (standard deviations) are shown for TP, FP,
FN, PPV and Se.

Graph n Algorithm TP FP FN PPV Se

200 PC-LPGM 2.136 (1.617) 0.744 (0.927) 6.864 (1.617) 0.756 (0.267) 0.237 (0.180)

LPGM 1.628 (1.249) 1.920 (1.885) 7.372 (1.249) 0.524 (0.336) 0.181 (0.139)

PDN 3.824 (1.221) 4.200(1.655) 5.176 (1.221) 0.486 (0.164) 0.425 (0.136)

VSL 1.934 (1.142) 0.658 (0.927) 7.066 (1.142) 0.797 (0.277) 0.215 (0.127)

GLASSO 1.914 (1.119) 0.660 (0.937) 7.086 (1.119) 0.796 (0.278) 0.213 (0.124)

NPN-Copula 2.012 (1.214) 0.550 (0.924) 6.988 (1.214) 0.840 (0.260) 0.224 (0.135)

NPN-Skeptic 1.832 (1.302) 0.568 (0.927) 7.168 (1.302) 0.821 (0.237) 0.204 (0.145)

1000 PC-LPGM 8.590 (0.764) 1.060 (0.926) 0.410 (0.764) 0.898 (0.084) 0.954 (0.085)

LPGM 4.352 (1.818) 2.020 (1.699) 4.648 (1.818) 0.719 (0.198) 0.484 (0.202)

PDN 6.148 (0.865) 0.366 (0.604) 2.852 (0.865) 0.948 (0.082) 0.683 (0.096)

Scale-free VSL 3.212 (1.742) 0.008 (0.089) 5.788 (1.742) 0.999 (0.015) 0.357 (0.194)

GLASSO 3.194 (1.734) 0.008 (0.089) 5.806 (1.734) 0.997 (0.015) 0.355 (0.193)

NPN-Copula 3.302 (1.722) 0.004 (0.063) 5.698 (1.722) 0.999 (0.017) 0.367 (0.191)

NPN-Skeptic 3.058 (1.867) 0.004 (0.063) 5.942 (1.867) 0.999 (0.017) 0.340 (0.207)

2000 PC-LPGM 8.996 (0.063) 1.118 (1.017) 0.004 (0.063) 0.898 (0.085) 1.000 (0.007)

LPGM 4.828 (1.812) 2.320 (2.006) 4.172 (1.812) 0.720 (0.178) 0.536 (0.201)

PDN 6.258 (0.803) 0.020 (0.140) 2.742 (0.803) 0.997 (0.020) 0.695 (0.089)

VSL 4.238 (1.984) 0.000 (0.000) 4.762 (1.984) 1.000 (0.000) 0.471 (0.220)

GLASSO 4.222 (1.975) 0.000 (0.000) 4.778 (1.975) 1.000 (0.000) 0.469 (0.219)

NPN-Copula 4.408 (1.931) 0.000 (0.000) 4.592 (1.931) 1.000 (0.000) 0.490 (0.215)

NPN-Skeptic 4.198 (2.102) 0.000 (0.000) 4.802 (2.102) 1.000 (0.000) 0.466 (0.234)

200 PC-LPGM 2.132 (1.535) 0.650 (0.830) 5.868 (1.535) 0.768 (0.278) 0.267 (0.192)

LPGM 1.588 (1.363) 2.188 (2.212) 6.412 (1.363) 0.224 (0.334) 0.099 (0.170)

PDN 3.366 (1.265) 4.876 (1.726) 4.634 (1.265) 0.416 (0.164) 0.421 (0.158)

VSL 1.784 (1.002) 0.896 (1.236) 6.216 (1.002) 0.744 (0.300) 0.223 (0.125)

GLASSO 1.766 (1.003) 0.890 (1.225) 6.234 (1.003) 0.744 (0.301) 0.221 (0.125)

NPN-Copula 1.880 (1.073) 0.806 (1.109) 6.120 (1.073) 0.765 (0.297) 0.235 (0.134)

NPN-Skeptic 1.694 (1.157) 0.842 (1.176) 6.306 (1.157) 0.738 (0.294) 0.212 (0.145)

1000 PC-LPGM 7.608 (0.586) 1.150 (0.985) 0.392 (0.586) 0.879 (0.095) 0.951 (0.073)

LPGM 4.268 (1.175) 2.636 (1.733) 3.732 (1.751) 0.636 (0.188) 0.534 (0.219)

PDN 6.594 (0.864) 0.782 (0.914) 1.406 (0.864) 0.897 (0.116) 0.824 (0.108)

Hub VSL 3.152 (1.628) 0.012 (0.109) 4.848 (1.628) 1.000 (0.019) 0.394 (0.203)

GLASSO 3.142 (1.620) 0.012 (0.109) 4.858 (1.620) 1.000 (0.019) 0.393 (0.202)

NPN-Copula 3.168 (1.647) 0.006 (0.077) 4.832 (1.647) 1.000 (0.016) 0.396 (0.206)

NPN-Skeptic 2.990 (1.737) 0.010 (0.100) 5.010 (1.737) 0.998 (0.021) 0.374 (0.217)

2000 PC-LPGM 7.998 (0.045) 1.160 (0.998) 0.002 (0.045) 0.883 (0.092) 1.000 (0.006)

LPGM 4.612 (2.231) 2.708 (1.901) 3.388 (2.231) 0.632 (0.234) 0.576 (0.279)

PDN 7.158 (0.421) 0.046 (0.210) 0.842 (0.421) 0.994 (0.027) 0.895 (0.053)

VSL 3.900 (1.823) 0.000 (0.000) 4.100 (1.823) 1.000 (0.000) 0.488 (0.228)

GLASSO 3.874 (1.815) 0.000 (0.000) 4.126 (1.815) 1.000 (0.000) 0.484 (0.227)

NPN-Copula 4.026 (1.881) 0.000 (0.000) 3.974 (1.881) 1.000 (0.000) 0.503 (0.235)

NPN-Skeptic 3.730 (2.044) 0.000 (0.000) 4.270 (2.044) 1.000 (0.000) 0.466 (0.255)

100 Appendix B.1

Table B.2 – continued from previous page

Graph n Algorithm TP FP FN PPV Se

200 PC-LPGM 1.685 (1.437) 0.740 (0.973) 6.315 (1.437) 0.716 (0.305) 0.211 (0.180)

LPGM 1.552 (1.189) 2.264 (2.553) 6.448 (1.189) 0.513 (0.349) 0.194 (0.149)

PDN 3.204 (1.038) 4.904 (1.507) 4.796 (1.038) 0.402 (0.137) 0.400 (0.130)

VSL 1.800 (1.103) 0.850 (1.295) 6.200 (1.103) 0.757 (0.310) 0.225 (0.138)

GLASSO 1.805 (1.115) 0.845 (1.300) 6.195 (1.113) 0.758 (0.309) 0.226 (0.139)

NPN-Copula 1.980 (1.194) 0.735 (1.184) 6.020 (1.194) 0.801 (0.281) 0.248 (0.149)

NPN-Skeptic 1.795 (1.213) 0.830 (1.265) 6.205 (1.213) 0.752 (0.291) 0.224 (0.152)

1000 LRTPC 7.470 (0.779) 0.980 (1.044) 0.530 (0.779) 0.895 (0.101) 0.934 (0.097)

LPGM 3.724 (1.660) 1.872 (1.850) 4.276 (1.660) 0.704 (0.250) 0.466 (0.207)

PDN 4.816 (0.709) 2.600 (0.823) 3.184 (0.709) 0.653 (0.081) 0.602 (0.089)

Random VSL 3.042 (1.588) 0.016 (0.126) 4.958 (1.588) 0.997 (0.027) 0.380 (0.198)

GLASSO 3.018 (1.563) 0.016 (0.126) 4.982 (1.563) 0.997 (0.027) 0.377 (0.195)

NPN-Copula 3.164 (1.588) 0.008 (0.089) 4.836 (1.588) 0.998 (0.017) 0.396 (0.199)

NPN-Skeptic 2.972 (1.699) 0.010 (0.100) 5.028 (1.699) 0.998 (0.022) 0.372 (0.212)

2000 LRTPC 8.000 (0.000) 0.848 (0.944) 0.000 (0.000) 0.914 (0.089) 1.000 (0.000)

LPGM 3.572 (1.533) 1.424 (1.304) 4.428 (1.533) 0.758 (0.191) 0.446 (0.192)

PDN 5.044 (0.732) 2.348 (0.645) 2.956 (0.732) 0.685 (0.065) 0.630 (0.091)

VSL 3.665 (1.803) 0.000 (0.000) 4.335 (1.803) 1.000 (0.000) 0.458 (0.225)

GLASSO 3.640 (1.791) 0.000 (0.000) 4.360 (1.791) 1.000 (0.000) 0.455 (0.224)

NPN-Copula 3.785 (1.823) 0.000 (0.000) 4.215 (1.823) 1.000 (0.000) 0.473 (0.228)

NPN-Skeptic 3.610 (2.044) 0.000 (0.000) 4.390 (2.044) 1.000 (0.000) 0.451 (0.256)

Table B.3: Simulation results from 500 replicates of the undirected graphs shown in
Figure 3.2 for p = 100 variables with Poisson node conditional distribution and level
of noise λnoise = 0.5. Monte Carlo means (standard deviations) are shown for TP,
FP, FN, PPV and Se.

Graph n Algorithm TP FP FN PPV Se

200 PC-LPGM 61.585 (4.316) 8.490 (2.887) 37.415 (4.216) 0.880 (0.038) 0.622 (0.044)

LPGM 5.564 (8.084) 0.824 (5.594) 93.436 (8.084) 0.985 (0.067) 0.056 (0.082)

PDN 53.080 (3.283) 26.007 (4.942) 45.920 (3.283) 0.673 (0.052) 0.536 (0.033)

VSL 63.915 (6.489) 22.308 (13.433) 35.085 (6.489) 0.760 (0.095) 0.646 (0.066)

GLASSO 62.755 (6.306) 22.642 (13.114) 36.245 (6.306) 0.754 (0.097) 0.634 (0.064)

NPN-Copula 65.647 (5.734) 18.345 (11.701) 33.352 (5.734) 0.797 (0.088) 0.663 (0.058)

NPN-Skeptic 64.343 (6.316) 22.918 (15.323) 34.657 (6.316) 0.759 (0.102) 0.650 (0.064)

1000 PC-LPGM 98.580 (0.610) 9.589 (2.982) 0.420 (0.610) 0.912 (0.025) 0.996 (0.006)

LPGM 51.520 (11.263) 0.012 (0.109) 47.480 (11.263) 1.000 (0.002) 0.520 (0.114)

PDN 65.357 (1.871) 0.050 (0.218) 33.643 (1.871) 0.999 (0.003) 0.660 (0.019)

Scale-free VSL 94.438 (2.316) 0.089 (0.286) 4.562 (2.316) 0.999 (0.003) 0.954 (0.023)

GLASSO 93.830 (2.507) 0.161 (0.393) 5.170 (2.507) 0.998 (0.004) 0.948 (0.025)

NPN-Copula 94.571 (2.159) 0.054 (0.226) 4.429 (2.159) 1.000 (0.002) 0.955 (0.022)

NPN-Skeptic 94.277 (2.089) 0.134 (0.342) 4.723 (2.089) 0.999 (0.004) 0.952 (0.021)

Appendix B 101

Table B.3 – continued from previous page

Graph n Algorithm TP FP FN PPV Se

2000 PC-LPGMC 99.000 (0.000) 9.759 (3.134) 0.000 (0.000) 0.911 (0.026) 1.000 (0.000)

LPGM 54.185 (2.379) 0.010 (0.100) 44.815 (2.379) 1.000 (0.002) 0.547 (0.024)

PDN 64.370 (1.560) 0.000 (0.000) 34.630 (1.560) 1.000 (0.000) 0.650 (0.016)

VSL 96.821 (1.422) 0.000 (0.000) 2.179 (1.422) 1.000 (0.000) 0.978 (0.014)

GLASSO 96.518 (1.577) 0.000 (0.000) 2.482 (1.577) 1.000 (0.000) 0.975 (0.016)

NPN-Copula 97.375 (1.402) 0.000 (0.000) 1.625 (1.402) 1.000 (0.000) 0.984 (0.014)

NPN-Skeptic 97.214 (1.423) 0.009 (0.000) 1.786 (1.423) 1.000 (0.000) 0.982 (0.014)

200 PC-LPGM 13.393 (2.484) 14.518 (4.082) 81.607 (2.484) 0.486 (0.084) 0.141 (0.026)

LPGM 4.344 (4.368) 5.840 (9.239) 90.656 (4.368) 0.426 (0.330) 0.046 (0.046)

PDN 19.340 (3.834) 84.747 (5.935) 75.660 (3.834) 0.186 (0.038) 0.204 (0.040)

VSL 16.643 (6.546) 26.982 (17.330) 78.357 (6.546) 0.427 (0.128) 0.175 (0.069)

GLASSO 15.991 (6.361) 25.518 (16.665) 79.009 (6.361) 0.434 (0.135) 0.168 (0.067)

NPN-Copula 18.491 (6.864) 26.625 (16.889) 76.509 (6.864) 0.451 (0.121) 0.195 (0.072)

NPN-Skeptic 17.473 (7.408) 31.348 (22.170) 77.527 (7.408) 0.406 (0.123) 0.184 (0.078)

1000 PC-LPGM 84.794 (3.416) 25.238 (5.079) 10.206 (3.416) 0.772 (0.036) 0.893 (0.036)

LPGM 4.555 (6.512) 0.910 (1.349) 90.445 (6.512) 0.792 (0.324) 0.048 (0.069)

PDN 78.487 (3.585) 19.650 (4.209) 16.513 (3.585) 0.800 (0.041) 0.826 (0.038)

Hub VSL 29.651 (12.504) 0.063 (0.303) 65.349 (12.504) 0.998 (0.010) 0.312 (0.132)

GLASSO 29.341 (12.233) 0.056 (0.262) 65.659 (12.233) 0.998 (0.009) 0.309 (0.129)

NPN-Copula 37.746 (15.112) 0.048 (0.248) 57.254 (15.112) 0.999 (0.004) 0.397 (0.159)

NPN-Skeptic 35.476 (16.277) 0.119 (0.412) 59.524 (16.277) 0.998 (0.007) 0.373 (0.171)

2000 PC-LPGM 94.949 (0.221) 26.942 (5.566) 0.051 (0.221) 0.781 (0.036) 0.999 (0.002)

LPGM 7.145 (9.369) 0.625 (0.805) 87.855 (9.369) 0.620 (0.478) 0.075 (0.099)

PDN 93.073 (1.205) 1.113 (1.094) 1.927 (1.205) 0.988 (0.012) 0.980 (0.013)

VSL 69.263 (15.639) 0.013 (0.113) 25.737 (15.639) 1.000 (0.001) 0.729 (0.165)

GLASSO 68.647 (14.931) 0.013 (0.113) 26.353 (14.931) 1.000 (0.001) 0.723 (0.157)

NPN-Copula 77.833 (8.985) 0.000 (0.000) 17.167 (8.895) 1.000 (0.000) 0.819 (0.095)

NPN-Skeptic 74.987 (9.809) 0.013 (0.000) 20.013 (8.985) 1.000 (0.001) 0.789 (0.103)

200 PC-LPGM 62.432 (5.030) 8.656 (2.998) 46.568 (5.030) 0.879 (0.039) 0.573 (0.046)

LPGM 8.190 (2.370) 0.120 (0.326) 100.810 (2.370) 0.987 (0.036) 0.075 (0.025)

PDN 52.007 (3.302) 32.167 (5.283) 56.993 (3.302) 0.619 (0.049) 0.477 (0.030)

VSL 67.032 (8.241) 26.932 (15.060) 41.968 (8.241) 0.735 (0.100) 0.615 (0.076)

GLASSO 64.736 (8.543) 25.440 (15.001) 44.264 (8.543) 0.742 (0.106) 0.594 (0.078)

NPN-Copula 70.520 (7.514) 23.344 (13.387) 38.480 (7.514) 0.769 (0.091) 0.647 (0.069)

NPN-Skeptic 68.956 (8.123) 29.956 (18.522) 40.044 (8.123) 0.722 (0.105) 0.633 (0.075)

1000 PC-LPGM 105.748 (1.504) 8.752 (2.939) 3.252 (1.504) 0.924 (0.024) 0.970 (0.014)

LPGM 43.800 (31.795) 0.300 (0.593) 65.200 (31.795) 0.996 (0.009) 0.402 (0.292)

PDN 63.020 (2.491) 9.470 (1.332) 45.980 (2.491) 0.870 (0.016) 0.578 (0.023)

Random VSL 102.676 (3.506) 0.136 (4.123) 6.324 (3.506) 0.999 (0.003) 0.942 (0.032)

GLASSO 101.904 (4.123) 0.152 (0.142) 7.096 (4.123) 0.999 (0.004) 0.935 (0.038)

NPN-Copula 104.820 (2.159) 0.104 (0.319) 4.180 (2.159) 0.999 (0.003) 0.962 (0.020)

NPN-Skeptic 104.392 (2.237) 0.192 (0.424) 4.608 (2.237) 0.998 (0.004) 0.958 (0.021)

2000 PC-LPGM 106.724 (1.212) 8.664 (2.855) 2.276 (1.212) 0.925 (0.023) 0.979 (0.011)

LPGM 69.900 (7.493) 0.280 (0.577) 39.100 (7.493) 0.996 (0.008) 0.641 (0.069)

102 Appendix B.1

Table B.3 – continued from previous page

Graph n Algorithm TP FP FN PPV Se

PDN 62.850 (2.243) 9.230 (1.439) 46.150 (2.243) 0.872 (0.018) 0.577 (0.021)

VSL 106.836 (1.365) 0.000 (0.000) 2.164 (1.365) 1.000 (0.000) 0.980 (0.013)

GLASSO 106.884 (1.350) 0.000 (0.000) 2.116 (1.350) 1.000 (0.000) 0.981 (0.012)

NPN-Copula 107.376 (1.253) 0.000 (0.000) 1.624 (1.253) 1.000 (0.000) 0.985 (0.011)

NPN-Skeptic 107.124 (1.322) 0.000 (0.000) 1.876 (1.322) 1.000 (0.000) 0.983 (0.012)

Table B.4: Simulation results from 500 replicates of the undirected graphs shown in
Figure 3.2 for p = 100 variables with Poisson node conditional distribution and level
of noise λnoise = 5. Monte Carlo means (standard deviations) are shown for TP, FP,
FN, PPV and Se.

Graph n Algorithm TP FP FN PPV Se

200 PC-LPGM 7.780 (2.843) 14.470 (3.705) 91.220 (2.843) 0.348 (0.100) 0.079 (0.029)

LPGM 10.188 (4.126) 65.352 (20.496) 88.812 (4.126) 0.152 (0.127) 0.103 (0.042)

PDN 13.457 (3.164) 94.817 (6.073) 85.543 (3.164) 0.125 (0.030) 0.136 (0.032)

VSL 9.316 (4.895) 22.496 (16.852) 89.684 (4.895) 0.332 (0.119) 0.094 (0.049)

GLASSO 9.052 (4.775) 21.372 (16.016) 89.948 (4.775) 0.336 (0.120) 0.091 (0.048)

NPN-Copula 10.012 (5.255) 21.924 (16.439) 88.988 (5.255) 0.359 (0.135) 0.101 (0.053)

NPN-Skeptic 9.868 (5.979) 27.424 (24.698) 89.132 (5.979) 0.320 (0.132) 0.100 (0.060)

1000 PC-LPGM 75.130 (4.420) 24.805 (4.647) 23.870 (4.420) 0.753 (0.038) 0.759 (0.045)

LPGM 1.480 (1.696) 1.892 (3.146) 97.520 (1.696) 0.574 (0.412) 0.015 (0.017)

PDN 52.827 (3.386) 31.153 (5.108) 46.173 (3.386) 0.630 (0.049) 0.534 (0.034)

Scale-free VSL 14.844 (6.389) 0.044 (0.224) 84.156 (6.389) 0.998 (0.013) 0.150 (0.065)

GLASSO 14.936 (6.455) 0.044 (0.224) 84.064 (6.455) 0.998 (0.013) 0.151 (0.065)

NPN-Copula 17.124 (7.494) 0.040 (0.196) 81.876 (7.494) 0.998 (0.009) 0.173 (0.076)

NPN-Skeptic 16.708 (8.088) 0.116 (0.419) 82.292 (8.088) 0.996 (0.014) 0.169 (0.082)

2000 PC-LPGMC 96.400 (1.515) 26.500 (5.147) 2.600 (1.514) 0.786 (0.033) 0.974 (0.015)

LPGM 2.800 (2.138) 1.004 (1.455) 96.200 (2.138) 0.785 (0.266) 0.028 (0.022)

PDN 67.917 (2.591) 4.413 (2.140) 31.083 (2.591) 0.939 (0.029) 0.686 (0.026)

VSL 24.579 (11.580) 0.000 (0.000) 74.421 (11.580) 1.000 (0.000) 0.255 (0.117)

GLASSO 25.733 (12.171) 0.000 (0.000) 73.267 (12.171) 1.000 (0.000) 0.264 (0.123)

NPN-Copula 33.672 (14.879) 0.000 (0.000) 65.328 (14.879) 1.000 (0.000) 0.335 (0.150)

NPN-Skeptic 32.267 (15.750) 0.000 (0.000) 66.733 (15.750) 1.000 (0.000) 0.321 (0.159)

200 PC-LPGM 2.690 (1.705) 13.600 (4.476) 92.310 (1.705) 0.166 (0.101) 0.028 (0.018)

LPGM 0.444 (1.175) 34.632 (33.612) 94.556 (1.175) 0.046 (0.152) 0.005 (0.012)

PDN 6.630 (2.373) 103.063 (4.902) 88.370 (2.373) 0.060 (0.021) 0.070 (0.025)

VSL 3.392 (2.233) 23.688 (15.017) 91.608 (2.233) 0.143 (0.097) 0.036 (0.024)

GLASSO 3.304 (2.139) 22.964 (14.511) 91.696 (2.139) 0.145 (0.099) 0.035 (0.023)

NPN-Copula 3.392 (2.189) 21.852 (13.797) 91.608 (2.189) 0.150 (0.097) 0.036 (0.023)

NPN-Skeptic 3.108 (2.297) 23.476 (19.474) 91.892 (2.297) 0.134 (0.091) 0.033 (0.024)

1000 PC-LPGM 29.525 (3.837) 24.635 (5.206) 65.475 (3.837) 0.548 (0.029) 0.311 (0.020)

LPGM 0.892 (2.246) 1.076 (2.639) 94.108 (2.246) 0.439 (0.389) 0.009 (0.012)

Appendix B 103

Table B.4 – continued from previous page

Graph n Algorithm TP FP FN PPV Se

PDN 23.427 (3.516) 84.433 (5.305) 71.573 (3.316) 0.217 (0.033) 0.247 (0.037)

Hub VSL 7.424 (4.075) 1.428 (2.091) 87.576 (4.075) 0.884 (0.137) 0.078 (0.043)

GLASSO 7.364 (4.053) 1.424 (2.095) 87.636 (4.053) 0.883 (0.138) 0.078 (0.043)

NPN-Copula 8.440 (4.399) 1.392 (2.018) 86.560 (4.399) 0.895 (0.126) 0.089 (0.046)

NPN-Skeptic 8.208 (4.629) 1.804 (2.291) 86.792 (4.629) 0.860 (0.134) 0.086 (0.049)

2000 PC-LPGM 65.025 (4.253) 29.855 (5.473) 29.975 (4.253) 0.687 (0.041) 0.684 (0.045)

LPGM 0.392 (0.796) 1.712 (1.971) 94.608 (0.796) 0.187 (0.339) 0.004 (0.008)

PDN 49.100 (4.566) 54.997 (5.883) 45.900 (4.566) 0.472 (0.047) 0.517 (0.048)

VSL 8.983 (6.782) 0.068 (0.284) 86.017 (6.782) 0.996 (0.018) 0.095 (0.071)

GLASSO 8.924 (6.748) 0.068 (0.284) 86.076 (6.748) 0.996 (0.018) 0.094 (0.071)

NPN-Copula 9.797 (7.547) 0.042 (0.241) 85.203 (7.547) 0.998 (0.012) 0.103 (0.079)

NPN-Skeptic 9.305 (7.052) 0.068 (0.284) 85.695 (7.052) 0.995 (0.020) 0.098 (0.074)

200 PC-LPGM 8.040 (2.884) 14.805 (3.878) 100.960 (2.884) 0.350 (0.093) 0.074 (0.026)

LPGM 10.592 (4.318) 69.316 (25.767) 98.408 (4.318) 0.175 (0.189) 0.097 (0.040)

PDN 13.573 (2.989) 94.750 (5.987) 95.427 (2.989) 0.126 (0.029) 0.125 (0.027)

VSL 10.548 (5.213) 22.848 (15.701) 98.452 (5.213) 0.353 (0.119) 0.097 (0.048)

GLASSO 10.160 (5.075) 21.460 (14.871) 98.840 (5.075) 0.358 (0.119) 0.093 (0.047)

NPN-Copula 11.064 (5.327) 22.136 (16.599) 97.936 (5.327) 0.382 (0.131) 0.102 (0.049)

NPN-Skeptic 10.648 (6.242) 26.632 (23.376) 98.352 (6.642) 0.341 (0.134) 0.098 (0.057)

1000 PC-LPGM 81.055 (4.632) 23.665 (4.941) 27.945 (4.632) 0.775 (0.038) 0.744 (0.042)

LPGM 1.776 (2.675) 3.196 (5.107) 107.224 (2.675) 0.397 (0.401) 0.016 (0.025)

PDN 53.207 (3.471) 33.383 (10.084) 55.793 (3.471) 0.616 (0.046) 0.488 (0.032)

Random VSL 14.741 (6.294) 0.022 (0.148) 94.259 (6.294) 0.999 (0.006) 0.135 (0.058)

GLASSO 14.741 (6.291) 0.022 (0.148) 94.259 (6.291) 0.999 (0.006) 0.135 (0.058)

NPN-Copula 16.333 (7.249) 0.022 (0.148) 92.667 (7.249) 0.999 (0.005) 0.150 (0.067)

NPN-Skeptic 15.178 (7.307) 0.044 (0.296) 93.822 (7.307) 0.998 (0.011) 0.139 (0.067)

2000 PC-LPGM 104.010 (1.992) 24.370 (4.706) 4.990 (1.992) 0.811 (0.029) 0.954 (0.018)

LPGM 1.995 (1.800) 1.260 (1.825) 107.005 (1.880) 0.671 (0.360) 0.018 (0.017)

PDN 65.093 (2.892) 12.297 (1.837) 43.907 (2.892) 0.841 (0.021) 0.597 (0.027)

VSL 26.038 (12.457) 0.000 (0.000) 82.962 (12.457) 1.000 (0.000) 0.239 (0.114)

GLASSO 26.327 (12.487) 0.000 (0.000) 82.673 (12.487) 1.000 (0.000) 0.242 (0.115)

NPN-Copula 30.340 (14.496) 0.000 (0.000) 78.660 (14.496) 1.000 (0.000) 0.278 (0.133)

NPN-Skeptic 28.474 (14.777) 0.000 (0.000) 80.526 (14.777) 1.000 (0.000) 0.261 (0.136)

B.2 Appendix B.2

Table B.5, and Table B.6 report TP, FP, FN, PPV and Se for each of methods considered

in Section 4.4. Two different graph dimensions, i.e., p = 10, 100, and three graph

structures (see Figure 4.1 and Figure 4.2) are considered.

104 Appendix B.2

Table B.5: Simulation results from 500 replicates of the DAGs shown in Figure 4.1
for p = 10 variables with Poisson node conditional distribution. Monte Carlo means
(standard deviations) are shown for TP, FP, FN, PPV and Se.

Graph n Algorithm TP FP FN PPV Se

200 PKBIC 7.660 (0.913) 0.776 (0.869) 1.340 (0.913) 0.916 (0.090) 0.851 (0.101)

PKAIC 8.364 (0.648) 4.632 (1.757) 0.636 (0.648) 0.654 (0.095) 0.929 (0.072)

Or-PPGM 6.898 (0.939) 0.270 (0.519) 2.102 (0.939) 0.966 (0.064) 0.766 (0.104)

Or-LPGM 8.550 (0.679) 6.872 (3.155) 0.450 (0.679) 0.577 (0.119) 0.950 (0.075)

PDN 3.600 (0.688) 5.628 (0.680) 5.400 (0.688) 0.390 (0.068) 0.400 (0.076)

ODS 4.724 (1.100) 10.722 (3.344) 4.276 (1.100) 0.318 (0.096) 0.525 (0.122)

MMHC 2.988 (1.120) 4.374 (1.309) 6.012 (1.120) 0.407 (0.143) 0.332 (0.124)

K2mix 5.138 (1.125) 0.732 (0.891) 3.862 (1.125) 0.890 (0.127) 0.571 (0.125)

K2cut 3.094 (0.819) 0.348 (0.619) 5.906 (0.819) 0.917 (0.139) 0.344 (0.091)

PCmix 2.766 (0.968) 0.872 (0.798) 6.234 (0.968) 0.772 (0.207) 0.307 (0.108)

PClog 4.314 (0.868) 2.094 (0.918) 4.686 (0.868) 0.678 (0.114) 0.479 (0.096)

Scale-free 1000 PKBIC 8.970 (0.171) 0.276 (0.518) 0.030 (0.171) 0.973 (0.050) 0.997 (0.019)

PKAIC 8.992 (0.089) 4.134 (1.688) 0.008 (0.089) 0.697 (0.092) 0.999 (0.010)

Or-PPGM 8.930 (0.255) 0.238 (0.500) 0.070 (0.255) 0.977 (0.048) 0.992 (0.028)

Or-LPGM 8.998 (0.045) 2.098 (1.559) 0.002 (0.045) 0.826 (0.108) 1.000 (0.005)

PDN 3.242 (0.477) 5.904 (0.308) 5.758 (0.477) 0.353 (0.040) 0.360 (0.053)

ODS 6.274 (1.081) 5.704 (2.017) 2.726 (1.081) 0.534 (0.121) 0.697 (0.120)

MMHC 4.898 (1.242) 4.294 (1.221) 4.102 (1.242) 0.532 (0.130) 0.544 (0.138)

K2mix 7.716 (0.465) 0.012 (0.109) 1.284 (0.465) 0.999 (0.013) 0.857 (0.052)

K2cut 4.444 (0.616) 0.062 (0.273) 4.556 (0.616) 0.989 (0.047) 0.494 (0.068)

PCmix 5.458 (0.749) 2.244 (0.719) 3.542 (0.749) 0.710 (0.085) 0.606 (0.083)

PClog 6.544 (0.708) 2.434 (0.836) 2.456 (0.708) 0.731 (0.082) 0.727 (0.079)

2000 PKBIC 9.000 (0.000) 0.162 (0.405) 0.000 (0.000) 0.984 (0.039) 1.000 (0.000)

PKAIC 9.000 (0.000) 4.310 (1.699) 0.000 (0.000) 0.687 (0.089) 1.000 (0.000)

Or-PPGM 8.998 (0.045) 0.230 (0.492) 0.002 (0.045) 0.978 (0.047) 1.000 (0.005)

Or-LPGM 9.000 (0.000) 0.702 (0.905) 0.000 (0.000) 0.935 (0.078) 1.000 (0.000)

PDN 3.110 (0.320) 5.986 (0.118) 5.890 (0.320) 0.341 (0.023) 0.346 (0.036)

ODS 6.856 (0.989) 3.922 (1.569) 2.144 (0.989) 0.644 (0.120) 0.762 (0.110)

MMHC 5.534 (0.855) 3.758 (1.038) 3.466 (0.855) 0.598 (0.098) 0.615 (0.095)

K2mix 7.776 (0.417) 0.004 (0.063) 1.224 (0.417) 1.000 (0.007) 0.864 (0.046)

K2cut 4.860 (0.679) 0.014 (0.118) 4.140 (0.679) 0.997 (0.023) 0.540 (0.075)

PCmix 6.378 (0.651) 2.212 (0.551) 2.622 (0.651) 0.743 (0.060) 0.709 (0.072)

PClog 6.770 (0.618) 2.356 (0.814) 2.230 (0.618) 0.744 (0.077) 0.752 (0.069)

200 PKBIC 3.366 (0.722) 0.782 (0.885) 4.634 (0.722) 0.837 (0.167) 0.421 (0.090)

PKAIC 4.132 (0.761) 5.098 (2.084) 3.868 (0.761) 0.469 (0.129) 0.516 (0.095)

Or-PPGM 3.814 (0.785) 0.378 (0.678) 4.186 (0.785) 0.924 (0.128) 0.477 (0.098)

Or-LPGM 4.614 (0.900) 5.150 (2.873) 3.386 (0.900) 0.513 (0.156) 0.577 (0.113)

PDN 1.928 (0.315) 7.548 (0.904) 6.072 (0.315) 0.205 (0.035) 0.241 (0.039)

ODS 2.560 (1.235) 6.882 (3.167) 5.440 (1.235) 0.291 (0.153) 0.320 (0.154)

MMHC 1.116 (0.464) 2.780 (1.194) 6.884 (0.464) 0.309 (0.125) 0.140 (0.058)

K2mix 1.960 (0.554) 0.736 (0.934) 6.040 (0.554) 0.793 (0.233) 0.245 (0.069)

K2cut 1.074 (0.348) 0.448 (0.651) 6.926 (0.348) 0.800 (0.268) 0.134 (0.043)

PCmix 0.802 (0.596) 1.192 (0.490) 7.198 (0.596) 0.356 (0.241) 0.100 (0.075)

PClog 1.644 (0.786) 1.346 (0.734) 6.356 (0.786) 0.541 (0.190) 0.206 (0.098)

Appendix B 105

Table B.5 – continued from previous page

Graph n Algorithm TP FP FN PPV Se

Hub 1000 PKBIC 4.020 (0.140) 0.260 (0.507) 3.980 (0.140) 0.950 (0.094) 0.502 (0.018)

PKAIC 4.446 (0.610) 4.978 (2.008) 3.554 (0.610) 0.494 (0.125) 0.556 (0.076)

Or-PPGM 5.794 (0.443) 0.342 (0.631) 2.206 (0.443) 0.952 (0.084) 0.724 (0.055)

Or-LPGM 5.038 (0.317) 1.432 (1.278) 2.962 (0.317) 0.807 (0.146) 0.630 (0.040)

PDN 2.018 (0.133) 7.152 (0.744) 5.982 (0.133) 0.221 (0.020) 0.252 (0.017)

ODS 3.406 (0.916) 3.354 (1.824) 4.594 (0.916) 0.530 (0.188) 0.426 (0.114)

MMHC 1.146 (0.661) 3.878 (0.932) 6.854 (0.661) 0.230 (0.113) 0.143 (0.083)

K2mix 2.406 (0.500) 0.028 (0.165) 5.594 (0.500) 0.992 (0.048) 0.301 (0.062)

K2cut 1.416 (0.509) 0.080 (0.279) 6.584 (0.509) 0.966 (0.120) 0.177 (0.064)

PCmix 2.320 (0.698) 1.114 (0.407) 5.680 (0.698) 0.664 (0.120) 0.290 (0.087)

PClog 3.560 (0.629) 1.302 (0.687) 4.440 (0.629) 0.737 (0.111) 0.445 (0.079)

2000 PKBIC 4.016 (0.126) 0.172 (0.408) 3.984 (0.126) 0.967 (0.078) 0.502 (0.016)

PKAIC 4.498 (0.612) 4.972 (1.981) 3.502 (0.612) 0.495 (0.118) 0.562 (0.077)

Or-PPGM 5.992 (0.167) 0.380 (0.693) 2.008 (0.167) 0.950 (0.087) 0.749 (0.021)

Or-LPGM 5.010 (0.118) 0.454 (0.649) 2.990 (0.118) 0.928 (0.098) 0.626 (0.015)

PDN 2.004 (0.063) 7.050 (0.823) 5.996 (0.063) 0.223 (0.021) 0.250 (0.008)

ODS 3.824 (0.794) 1.884 (1.234) 4.176 (0.794) 0.686 (0.181) 0.478 (0.099)

MMHC 1.074 (0.538) 4.130 (0.752) 6.926 (0.538) 0.207 (0.084) 0.134 (0.067)

K2mix 2.954 (0.237) 0.018 (0.133) 5.046 (0.237) 0.995 (0.035) 0.369 (0.030)

K2cut 1.626 (0.509) 0.016 (0.126) 6.374 (0.509) 0.994 (0.048) 0.203 (0.064)

PCmix 2.988 (0.465) 1.116 (0.432) 5.012 (0.465) 0.729 (0.081) 0.374 (0.058)

PClog 3.908 (0.390) 1.274 (0.663) 4.092 (0.390) 0.761 (0.093) 0.488 (0.049)

200 PKBIC 3.338 (0.999) 0.780 (0.866) 4.662 (0.999) 0.834 (0.172) 0.417 (0.125)

PKAIC 4.872 (0.979) 5.198 (1.974) 3.128 (0.979) 0.498 (0.122) 0.609 (0.122)

Or-PPGM 2.680 (0.907) 0.508 (0.689) 5.320 (0.907) 0.868 (0.173) 0.335 (0.113)

Or-LPGM 4.778 (1.213) 4.934 (2.739) 3.222 (1.213) 0.523 (0.145) 0.597 (0.152)

PDN 2.406 (0.728) 7.238 (1.023) 5.594 (0.728) 0.250 (0.075) 0.301 (0.091)

ODS 2.390 (1.249) 7.250 (3.219) 5.610 (1.249) 0.268 (0.156) 0.299 (0.156)

MMHC 2.454 (0.987) 1.312 (1.135) 5.546 (0.987) 0.689 (0.244) 0.307 (0.123)

CK2mix 1.854 (0.826) 0.936 (1.034) 6.146 (0.826) 0.721 (0.261) 0.232 (0.103)

CK2cut 1.034 (0.601) 0.504 (0.704) 6.966 (0.601) 0.743 (0.327) 0.129 (0.075)

PCmix 0.144 (0.490) 1.418 (0.800) 7.856 (0.490) 0.066 (0.219) 0.018 (0.061)

PClog 1.076 (1.195) 1.668 (0.918) 6.924 (1.195) 0.331 (0.361) 0.134 (0.149)

Random 1000 PKBIC 5.326 (0.661) 0.290 (0.524) 2.674 (0.661) 0.955 (0.080) 0.666 (0.083)

PKAIC 6.130 (0.628) 4.814 (1.998) 1.870 (0.628) 0.578 (0.117) 0.766 (0.078)

Or-PPGM 5.256 (0.684) 0.362 (0.645) 2.744 (0.684) 0.946 (0.091) 0.657 (0.085)

Or-LPGM 5.874 (0.554) 1.308 (1.271) 2.126 (0.554) 0.841 (0.133) 0.734 (0.069)

PDN 2.974 (0.171) 6.292 (0.729) 5.026 (0.171) 0.323 (0.031) 0.372 (0.021)

ODS 3.402 (1.099) 4.100 (1.827) 4.598 (1.099) 0.469 (0.171) 0.425 (0.137)

MMHC 4.352 (0.889) 1.096 (1.038) 3.648 (0.889) 0.811 (0.169) 0.544 (0.111)

K2mix 3.102 (0.687) 0.052 (0.222) 4.898 (0.687) 0.987 (0.055) 0.388 (0.086)

K2cut 1.690 (0.683) 0.072 (0.274) 6.310 (0.683) 0.972 (0.107) 0.211 (0.085)

PCmix 2.034 (1.003) 1.618 (0.760) 5.966 (1.003) 0.541 (0.239) 0.254 (0.125)

PClog 3.860 (1.088) 1.398 (0.597) 4.140 (1.088) 0.723 (0.137) 0.482(0.136)

2000 PKBIC 5.882 (0.369) 0.214 (0.482) 2.118 (0.369) 0.970 (0.067) 0.735 (0.046)

PKAIC 6.308 (0.523) 4.990 (1.990) 1.692 (0.523) 0.575 (0.107) 0.788 (0.065)

106 Appendix B.2

Table B.5 – continued from previous page

Graph n Algorithm TP FP FN PPV Se

Or-PPGM 5.894 (0.378) 0.544 (0.694) 2.106 (0.378) 0.925 (0.091) 0.737 (0.047)

Or-LPGM 5.960 (0.266) 0.354 (0.581) 2.040 (0.266) 0.951 (0.078) 0.745 (0.033)

PDN 2.994 (0.077) 6.156 (0.664) 5.006 (0.077) 0.329 (0.025) 0.374 (0.010)

ODS 3.884 (1.132) 2.684 (1.517) 4.116 (1.132) 0.604 (0.196) 0.486 (0.141)

MMHC 5.012 (0.840) 0.998 (0.932) 2.988 (0.840) 0.840 (0.140) 0.626 (0.105)

K2mix 3.880 (0.407) 0.022 (0.147) 4.120 (0.407) 0.996 (0.030) 0.485 (0.051)

K2cut 2.274 (0.696) 0.026 (0.159) 5.726 (0.696) 0.992 (0.052) 0.284 (0.087)

PCmix 2.872 (1.072) 1.638 (0.639) 5.128 (1.072) 0.622 (0.165) 0.359 (0.134)

PClog 4.808 (0.590) 1.228 (0.465) 3.192 (0.590) 0.798 (0.066) 0.601 (0.074)

Table B.6: Simulation results from 500 replicates of the DAGs shown in Figure 4.2
for p = 100 variables with Poisson node conditional distribution. Monte Carlo means
(standard deviations) are shown for TP, FP, FN, PPV and Se.

Graph n Algorithm TP FP FN PPV Se

200 PKBIC 66.870 (2.914) 74.880 (7.005) 32.130 (2.914) 0.473 (0.027) 0.675 (0.029)

Or-PPGM 61.836 (2.944) 87.492 (4.288) 37.164 (2.944) 0.414 (0.019) 0.625 (0.030)

Or-LPGM 68.206 (3.438) 118.400 (21.501) 30.794 (3.438) 0.370 (0.040) 0.689 (0.035)

PDN 26.572 (5.971) 72.228 (21.678) 72.428 (5.971) 0.299 (0.123) 0.268 (0.060)

ODS 33.782 (4.472) 152.354 (22.276) 65.218 (4.472) 0.184 (0.032) 0.341 (0.045)

MMHC 32.828 (4.439) 89.412 (7.336) 66.172 (4.439) 0.269 (0.037) 0.332 (0.045)

K2mix 39.004 (3.204) 95.964 (9.510) 59.996 (3.204) 0.290 (0.029) 0.394 (0.032)

PClog 29.180 (3.413) 39.388 (4.964) 69.820 (3.413) 0.427 (0.051) 0.295 (0.034)

Scale-free 1000 PKBIC 83.554 (1.127) 33.038 (5.158) 15.446 (1.127) 0.718 (0.032) 0.844 (0.011)

Or-PPGM 87.610 (1.376) 81.994 (4.577) 11.390 (1.376) 0.517 (0.015) 0.885 (0.014)

Or-LPGM 85.764 (1.689) 17.778 (5.895) 13.236 (1.689) 0.831 (0.046) 0.866 (0.017)

PDN 29.558 (14.034) 39.488 (22.757) 69.442 (14.034) 0.496 (0.160) 0.299 (0.142)

ODS 53.910 (3.960) 64.874 (9.449) 45.090 (3.960) 0.456 (0.048) 0.545 (0.040)

MMHC 61.954 (4.035) 69.644 (7.537) 37.046 (4.035) 0.472 (0.037) 0.626 (0.041)

K2mix 65.576 (2.246) 6.522 (3.992) 33.424 (2.246) 0.912 (0.050) 0.662 (0.023)

PClog 48.790 (4.003) 53.670 (6.318) 50.210 (4.003) 0.477 (0.047) 0.493 (0.040)

2000 PKBIC 84.870 (0.462) 22.912 (4.482) 14.130 (0.462) 0.789 (0.033) 0.857 (0.005)

Or-PPGM 89.400 (5.702) 80.352 (6.891) 9.204 (0.834) 0.525 (0.036) 0.903 (0.058)

Or-LPGM 88.454 (1.105) 3.647 (2.521) 10.546 (1.105) 0.961 (0.025) 0.893 (0.011)

PDN 25.432 (15.366) 28.634 (20.692) 73.568 (15.366) 0.554 (0.167) 0.257 (0.155)

ODS 61.778 (3.832) 44.526 (6.995) 37.222 (3.832) 0.583 (0.050) 0.624 (0.039)

MMHC 68.218 (3.698) 57.378 (6.753) 30.782 (3.698) 0.544 (0.038) 0.689 (0.037)

K2mix 72.686 (1.700) 3.240 (2.826) 26.314 (1.700) 0.959 (0.035) 0.734 (0.017)

PClog 51.812 (5.414) 56.278 (7.107) 47.188 (5.414) 0.480 (0.055) 0.523 (0.055)

200 PKBIC 34.552 (3.696) 89.626 (8.027) 60.448 (3.696) 0.279 (0.030) 0.364 (0.039)

Or-PPGM 23.310 (3.416) 107.178 (4.503) 71.690 (3.416) 0.179 (0.024) 0.245 (0.036)

Or-LPGM 33.604 (5.102) 120.066 (21.818) 61.396 (5.102) 0.221 (0.034) 0.354 (0.054)

PDN 12.786 (2.974) 103.698 (5.743) 82.214 (2.974) 0.110 (0.027) 0.135 (0.031)

Appendix B 107

Table B.6 – continued from previous page

Graph n Algorithm TP FP FN PPV Se

ODS 7.456 (5.303) 139.400 (23.446) 87.544 (5.303) 0.052 (0.038) 0.078 (0.056)

MMHC 15.696 (3.269) 93.386 (8.165) 79.304 (3.269) 0.144 (0.031) 0.165 (0.034)

K2mix 16.492 (3.354) 125.958 (10.452) 78.508 (3.354) 0.116 (0.024) 0.174 (0.035)

PClog 6.548 (2.275) 38.332 (4.218) 88.452 (2.275) 0.145 (0.046) 0.069 (0.024)

Hub 1000 PKBIC 58.894 (1.247) 39.518 (5.958) 36.106 (1.247) 0.601 (0.037) 0.620 (0.013)

Or-PPGM 65.716 (2.282) 93.514 (4.991) 29.284 (2.282) 0.413 (0.016) 0.692 (0.024)

Or-LPGM 67.992 (2.204) 24.026 (6.270) 27.008 (2.204) 0.742 (0.050) 0.716 (0.023)

PDN 48.904 (2.556) 58.606 (3.902) 46.096 (2.556) 0.455 (0.027) 0.515 (0.027)

ODS 17.222 (9.947) 77.704 (14.054) 77.778 (9.947) 0.184 (0.109) 0.181 (0.105)

MMHC 47.918 (5.257) 60.684 (8.779) 47.082 (5.257) 0.443 (0.055) 0.504 (0.055)

K2mix 46.384 (2.678) 3.524 (1.759) 48.616 (2.678) 0.930 (0.033) 0.488 (0.028)

PClog 24.278 (3.993) 61.378 (4.362) 70.722 (3.993) 0.283 (0.038) 0.256 (0.042)

2000 PKBIC 60.594 (0.689) 27.658 (5.061) 34.406 (0.689) 0.689 (0.040) 0.638 (0.007)

Or-PPGM 72.768 (1.396) 88.504 (4.943) 22.232 (1.396) 0.452 (0.014) 0.766 (0.015)

Or-LPGM 72.740 (1.257) 5.704 (2.679) 22.260 (1.257) 0.928 (0.031) 0.766 (0.013)

PDN 56.198 (1.222) 48.538 (2.871) 38.802 (1.222) 0.537 (0.017) 0.592 (0.013)

ODS 22.248 (10.850) 62.810 (14.200) 72.752 (10.850) 0.266 (0.139) 0.234 (0.114)

MMHC 57.448 (6.538) 46.008 (8.379) 37.552 (6.538) 0.557 (0.069) 0.605 (0.069)

K2mix 55.312 (1.498) 0.606 (0.769) 39.688 (1.498) 0.989 (0.013) 0.582 (0.016)

PClog 30.832 (4.414) 68.980 (4.932) 64.168 (4.414) 0.309 (0.039) 0.325 (0.046)

200 PKBIC 50.116 (3.788) 81.028 (7.412) 58.884 (3.788) 0.383 (0.031) 0.460 (0.035)

Or-PPGM 41.254 (3.841) 100.784 (4.320) 67.746 (3.841) 0.290 (0.024) 0.378 (0.035)

Or-LPGM 49.328 (4.380) 115.034 (22.473) 59.672 (4.380) 0.305 (0.040) 0.453 (0.040)

PDN 17.548 (2.600) 95.862 (5.190) 91.452 (2.600) 0.155 (0.024) 0.161 (0.024)

ODS 22.630 (4.154) 135.820 (21.734) 86.370 (4.154) 0.145 (0.030) 0.208 (0.038)

MMHC 22.076 (4.159) 97.612 (7.635) 86.924 (4.159) 0.185 (0.034) 0.203 (0.038)

K2mix 22.148 (3.518) 119.108 (9.842) 86.852 (3.518) 0.157 (0.026) 0.203 (0.032)

PClog 21.080 (3.435) 37.376 (5.092) 87.920 (3.435) 0.362 (0.058) 0.193 (0.032)

Random 1000 PKBIC 81.430 (1.865) 32.738 (4.784) 27.570 (1.865) 0.714 (0.031) 0.747 (0.017)

Or-PPGM 84.460 (1.964) 90.994 (4.553) 24.540 (1.964) 0.482 (0.014) 0.775 (0.018)

Or-LPGM 81.102 (2.351) 15.744 (4.862) 27.898 (2.351) 0.840 (0.041) 0.744 (0.022)

PDN 35.132 (2.159) 70.318 (3.116) 73.868 (2.159) 0.333 (0.020) 0.322 (0.020)

ODS 42.662 (4.883) 57.110 (7.878) 66.338 (4.883) 0.429 (0.055) 0.391 (0.045)

MMHC 54.782 (4.536) 75.370 (8.169) 54.218 (4.536) 0.422 (0.040) 0.503 (0.042)

K2mix 50.454 (2.416) 3.200 (1.653) 58.546 (2.416) 0.941 (0.029) 0.463 (0.022)

PClog 52.474 (3.260) 52.130 (5.727) 56.526 (3.260) 0.503 (0.037) 0.481 (0.030)

2000 PKBIC 85.326 (0.922) 21.860 (4.457) 23.674 (0.922) 0.797 (0.033) 0.783 (0.008)

Or-PPGM 89.416 (0.955) 90.278 (4.744) 19.584 (0.955) 0.498 (0.014) 0.820 (0.009)

Or-LPGM 87.088 (1.512) 2.482 (1.702) 21.912 (1.512) 0.973 (0.018) 0.799 (0.014)

PDN 37.664 (1.724) 66.620 (2.574) 71.336 (1.724) 0.361 (0.016) 0.346 (0.016)

ODS 51.472 (4.955) 40.012 (5.654) 57.528 (4.955) 0.563 (0.056) 0.472 (0.045)

MMHC 63.616 (4.222) 58.320 (6.914) 45.384 (4.222) 0.523 (0.042) 0.584 (0.039)

K2mix 61.286 (2.023) 0.778 (0.864) 47.714 (2.023) 0.988 (0.014) 0.562 (0.019)

PClog 56.950 (3.480) 55.198 (6.063) 52.050 (3.480) 0.509 (0.039) 0.522 (0.032)

108 Appendix B.3

B.3 Appendix B.3

Table B.7, and Table B.8 report TP, FP, FN, PPV and Se for each of methods considered

in Section 5.2. Two different graph dimensions, i.e., p = 10, 100, and three graph

structures (see Figure 4.1 and Figure 4.1) are considered.

Table B.7: Simulation results from 500 replicates of the DAGs shown in Figure 4.1
for p = 10 variables with Poisson node conditional distribution. Monte Carlo means
(standard deviations) are shown for TP, FP, FN, PPV and Se.

Graph n Algorithm TP FP FN PPV Se

200 plearnDAG 4.000 (1.218) 1.350 (0.978) 5.000 (1.218) 0.749 (0.172) 0.444 (0.135)

olearnDAG 3.786 (1.122) 1.620 (0.970) 5.214 (1.122) 0.703 (0.163) 0.421 (0.125)

llearnDAG 4.360 (1.227) 0.752 (0.792) 4.640 (1.227) 0.854 (0.154) 0.484 (0.136)

PDN 3.600 (0.688) 5.628 (0.680) 5.400 (0.688) 0.390 (0.068) 0.400 (0.076)

ODS 4.724 (1.100) 10.722 (3.344) 4.276 (1.100) 0.318 (0.096) 0.525 (0.122)

MMHC 2.988 (1.120) 4.374 (1.309) 6.012 (1.120) 0.407 (0.143) 0.332 (0.124)

PClog 4.314 (0.868) 2.094 (0.918) 4.686 (0.868) 0.678 (0.114) 0.479 (0.096)

Scale-free 1000 plearnDAG 6.748 (1.124) 2.048 (1.153) 2.252 (1.124) 0.769 (0.129) 0.750 (0.125)

olearnDAG 6.220 (1.017) 2.660 (1.007) 2.780 (1.017) 0.701 (0.111) 0.691 (0.113)

llearnDAG 7.686 (1.050) 0.512 (0.718) 1.314 (1.050) 0.854 (0.117) 0.938 (0.086)

PDN 3.242 (0.477) 5.904 (0.308) 5.758 (0.477) 0.353 (0.040) 0.360 (0.053)

ODS 6.274 (1.081) 5.704 (2.017) 2.726 (1.081) 0.534 (0.121) 0.697 (0.120)

MMHC 4.898 (1.242) 4.294 (1.221) 4.102 (1.242) 0.532 (0.130) 0.544 (0.138)

PClog 6.544 (0.708) 2.434 (0.836) 2.456 (0.708) 0.731 (0.082) 0.727 (0.079)

2000 plearnDAG 7.420 (1.231) 1.530 (1.301) 1.580 (1.231) 0.831 (0.142) 0.824 (0.137)

olearnDAG 6.414 (0.897) 2.644 (0.959) 2.586 (0.897) 0.709 (0.102) 0.713 (0.100)

llearnDAG 8.386 (0.789) 0.200 (0.439) 0.614 (0.789) 0.977 (0.050) 0.932 (0.088)

PDN 3.110 (0.320) 5.986 (0.118) 5.890 (0.320) 0.341 (0.023) 0.346 (0.036)

ODS 6.856 (0.989) 3.922 (1.569) 2.144 (0.989) 0.644 (0.120) 0.762 (0.110)

MMHC 5.534 (0.855) 3.758 (1.038) 3.466 (0.855) 0.598 (0.098) 0.615 (0.095)

PClog 6.770 (0.618) 2.356 (0.814) 2.230 (0.618) 0.744 (0.077) 0.752 (0.069)

200 plearnDAG 1.472 (0.903) 0.186 (0.460) 6.528 (0.903) 0.895 (0.254) 0.184 (0.113)

olearnDAG 1.120 (0.779) 0.544 (0.614) 6.880 (0.779) 0.687 (0.356) 0.140 (0.097)

llearnDAG 1.912 (0.765) 0.200 (0.457) 6.088 (0.765) 0.921 (0.178) 0.239 (0.096)

PDN 1.928 (0.315) 7.548 (0.904) 6.072 (0.315) 0.205 (0.035) 0.241 (0.039)

ODS 2.560 (1.235) 6.882 (3.167) 5.440 (1.235) 0.291 (0.153) 0.320 (0.154)

MMHC 1.116 (0.464) 2.780 (1.194) 6.884 (0.464) 0.309 (0.125) 0.140 (0.058)

PClog 1.644 (0.786) 1.346 (0.734) 6.356 (0.786) 0.541 (0.190) 0.206 (0.098)

Hub 1000 plearnDAG 4.232 (0.839) 0.360 (0.675) 3.768 (0.839) 0.922 (0.146) 0.529 (0.105)

olearnDAG 3.488 (0.734) 1.104 (0.615) 4.512 (0.734) 0.760 (0.134) 0.436 (0.092)

llearnDAG 4.120 (0.804) 0.240 (0.463) 3.880 (0.804) 0.948 (0.104) 0.515 (0.101)

PDN 2.018 (0.133) 7.152 (0.744) 5.982 (0.133) 0.221 (0.020) 0.252 (0.017)

ODS 3.406 (0.916) 3.354 (1.824) 4.594 (0.916) 0.530 (0.188) 0.426 (0.114)

MMHC 1.146 (0.661) 3.878 (0.932) 6.854 (0.661) 0.230 (0.113) 0.143 (0.083)

PClog 3.560 (0.629) 1.302 (0.687) 4.440 (0.629) 0.737 (0.111) 0.445 (0.079)

Appendix B 109

Table B.7 – continued from previous page

Graph n Algorithm TP FP FN PPV Se

2000 plearnDAG 4.608 (0.704) 0.356 (0.692) 3.392 (0.704) 0.929 (0.137) 0.576 (0.088)

olearnDAG 3.796 (0.599) 1.170 (0.608) 4.204 (0.599) 0.765 (0.117) 0.474 (0.075)

llearnDAG 4.600 (0.563) 0.170 (0.421) 3.400 (0.563) 0.967 (0.082) 0.575 (0.070)

PDN 2.004 (0.063) 7.050 (0.823) 5.996 (0.063) 0.223 (0.021) 0.250 (0.008)

ODS 3.824 (0.794) 1.884 (1.234) 4.176 (0.794) 0.686 (0.181) 0.478 (0.099)

MMHC 1.074 (0.538) 4.130 (0.752) 6.926 (0.538) 0.207 (0.084) 0.134 (0.067)

PClog 3.908 (0.390) 1.274 (0.663) 4.092 (0.390) 0.761 (0.093) 0.488 (0.049)

200 plearnDAG 0.776 (0.748) 0.516 (0.612) 7.224 (0.748) 0.589 (0.441) 0.097 (0.093)

olearnDAG 0.538 (0.708) 0.762 (0.650) 7.462 (0.708) 0.380 (0.433) 0.067 (0.089)

llearnDAG 1.422 (0.813) 0.302 (0.562) 6.578 (0.813) 0.848 (0.285) 0.178 (0.102)

PDN 2.406 (0.728) 7.238 (1.023) 5.594 (0.728) 0.250 (0.075) 0.301 (0.091)

ODS 2.390 (1.249) 7.250 (3.219) 5.610 (1.249) 0.268 (0.156) 0.299 (0.156)

MMHC 2.454 (0.987) 1.312 (1.135) 5.546 (0.987) 0.689 (0.244) 0.307 (0.123)

PClog 1.076 (1.195) 1.668 (0.918) 6.924 (1.195) 0.331 (0.361) 0.134 (0.149)

Random 1000 plearnDAG 2.340 (1.215) 0.834 (0.832) 5.660 (1.215) 0.728 (0.279) 0.292 (0.152)

olearnDAG 2.022 (1.188) 1.254 (0.817) 5.978 (1.188) 0.591 (0.252) 0.253 (0.149)

llearnDAG 3.664 (0.960) 0.568 (0.706) 4.336 (0.960) 0.870 (0.156) 0.458 (0.120)

PDN 2.974 (0.171) 6.292 (0.729) 5.026 (0.171) 0.323 (0.031) 0.372 (0.021)

ODS 3.402 (1.099) 4.100 (1.827) 4.598 (1.099) 0.469 (0.171) 0.425 (0.137)

MMHC 4.352 (0.889) 1.096 (1.038) 3.648 (0.889) 0.811 (0.169) 0.544 (0.111)

PClog 3.860 (1.088) 1.398 (0.597) 4.140 (1.088) 0.723 (0.137) 0.482(0.136)

2000 plearnDAG 3.230 (1.348) 0.720 (0.784) 4.770 (1.348) 0.802 (0.231) 0.404 (0.168)

olearnDAG 2.764 (1.361) 1.292 (0.803) 5.236 (1.361) 0.653 (0.232) 0.346 (0.170)

llearnDAG 4.656 (0.927) 0.456 (0.643) 3.344 (0.927) 0.914 (0.120) 0.582 (0.116)

PDN 2.994 (0.077) 6.156 (0.664) 5.006 (0.077) 0.329 (0.025) 0.374 (0.010)

ODS 3.884 (1.132) 2.684 (1.517) 4.116 (1.132) 0.604 (0.196) 0.486 (0.141)

MMHC 5.012 (0.840) 0.998 (0.932) 2.988 (0.840) 0.840 (0.140) 0.626 (0.105)

PClog 4.808 (0.590) 1.228 (0.465) 3.192 (0.590) 0.798 (0.066) 0.601 (0.074)

Table B.8: Simulation results from 500 replicates of the DAGs shown in Figure 4.2
for p = 100 variables with Poisson node conditional distribution. Monte Carlo means
(standard deviations) are shown for TP, FP, FN, PPV and Se.

Graph n Algorithm TP FP FN PPV Se

200 plearnDAG 30.320 (3.337) 21.544 (3.841) 68.680 (3.337) 0.586 (0.062) 0.306 (0.034)

olearnDAG 29.432 (3.423) 22.596 (3.818) 69.568 (3.423) 0.567 (0.062) 0.297 (0.035)

llearnDAG 44.134 (3.491) 10.052 (3.487) 54.866 (3.491) 0.816 (0.057) 0.446 (0.035)

PDN 26.572 (5.971) 72.228 (21.678) 72.428 (5.971) 0.299 (0.123) 0.268 (0.060)

ODS 33.782 (4.472) 152.354 (22.276) 65.218 (4.472) 0.184 (0.032) 0.341 (0.045)

MMHC 32.828 (4.439) 89.412 (7.336) 66.172 (4.439) 0.269 (0.037) 0.332 (0.045)

PClog 29.180 (3.413) 39.388 (4.964) 69.820 (3.413) 0.427 (0.051) 0.295 (0.034)

110 Appendix B.3

Table B.8 – continued from previous page

Graph n Algorithm TP FP FN PPV Se

Scale-free 1000 plearnDAG 48.487 (3.300) 39.863 (4.081) 50.513 (3.300) 0.549 (0.039) 0.490 (0.033)

olearnDAG 47.443 (3.887) 41.173 (4.518) 51.557 (3.887) 0.536 (0.045) 0.479 (0.039)

llearnDAG 70.140 (2.985) 12.177 (3.920) 28.860 (2.985) 0.853 (0.043) 0.708 (0.030)

PDN 29.558 (14.034) 39.488 (22.757) 69.442 (14.034) 0.496 (0.160) 0.299 (0.142)

ODS 53.910 (3.960) 64.874 (9.449) 45.090 (3.960) 0.456 (0.048) 0.545 (0.040)

MMHC 61.954 (4.035) 69.644 (7.537) 37.046 (4.035) 0.472 (0.037) 0.626 (0.041)

PClog 48.790 (4.003) 53.670 (6.318) 50.210 (4.003) 0.477 (0.047) 0.493 (0.040)

2000 plearnDAG 51.382 (3.245) 41.598 (4.143) 47.618 (3.245) 0.553 (0.038) 0.519 (0.033)

olearnDAG 49.462 (4.163) 44.010 (4.986) 49.538 (4.163) 0.530 (0.047) 0.500 (0.042)

llearnDAG 75.954 (2.918) 14.522 (3.531) 23.046 (2.918) 0.840 (0.036) 0.767 (0.029)

PDN 25.432 (15.366) 28.634 (20.692) 73.568 (15.366) 0.554 (0.167) 0.257 (0.155)

ODS 61.778 (3.832) 44.526 (6.995) 37.222 (3.832) 0.583 (0.050) 0.624 (0.039)

MMHC 68.218 (3.698) 57.378 (6.753) 30.782 (3.698) 0.544 (0.038) 0.689 (0.037)

PClog 51.812 (5.414) 56.278 (7.107) 47.188 (5.414) 0.480 (0.055) 0.523 (0.055)

200 plearnDAG 9.713 (2.570) 7.810 (2.665) 85.287 (2.570) 0.557 (0.117) 0.102 (0.027)

olearnDAG 9.573 (2.583) 7.647 (2.637) 85.427 (2.583) 0.559 (0.119) 0.101 (0.027)

llearnDAG 10.827 (2.923) 6.533 (2.386) 84.173 (2.923) 0.625 (0.115) 0.114 (0.031)

PDN 12.786 (2.974) 103.698 (5.743) 82.214 (2.974) 0.110 (0.027) 0.135 (0.031)

ODS 7.456 (5.303) 139.400 (23.446) 87.544 (5.303) 0.052 (0.038) 0.078 (0.056)

MMHC 15.696 (3.269) 93.386 (8.165) 79.304 (3.269) 0.144 (0.031) 0.165 (0.034)

PClog 6.548 (2.275) 38.332 (4.218) 88.452 (2.275) 0.145 (0.046) 0.069 (0.024)

Hub 1000 plearnDAG 47.487 (3.031) 15.683 (3.520) 47.513 (3.031) 0.753 (0.049) 0.500 (0.032)

olearnDAG 45.250 (7.329) 17.430 (6.489) 49.750 (7.329) 0.721 (0.110) 0.476 (0.077)

llearnDAG 47.707 (2.452) 10.920 (2.931) 47.293 (2.452) 0.815 (0.042) 0.502 (0.026)

PDN 48.904 (2.556) 58.606 (3.902) 46.096 (2.556) 0.455 (0.027) 0.515 (0.027)

ODS 17.222 (9.947) 77.704 (14.054) 77.778 (9.947) 0.184 (0.109) 0.181 (0.105)

MMHC 47.918 (5.257) 60.684 (8.779) 47.082 (5.257) 0.443 (0.055) 0.504 (0.055)

PClog 24.278 (3.993) 61.378 (4.362) 70.722 (3.993) 0.283 (0.038) 0.256 (0.042)

2000 plearnDAG 53.627 (2.344) 20.957 (3.252) 41.373 (2.344) 0.720 (0.037) 0.564 (0.025)

olearnDAG 50.123 (8.320) 24.830 (9.141) 44.877 (8.320) 0.670 (0.115) 0.528 (0.088)

llearnDAG 53.587 (1.878) 13.207 (2.487) 41.413 (1.878) 0.803 (0.031) 0.564 (0.020)

PDN 56.198 (1.222) 48.538 (2.871) 38.802 (1.222) 0.537 (0.017) 0.592 (0.013)

ODS 22.248 (10.850) 62.810 (14.200) 72.752 (10.850) 0.266 (0.139) 0.234 (0.114)

MMHC 57.448 (6.538) 46.008 (8.379) 37.552 (6.538) 0.557 (0.069) 0.605 (0.069)

PClog 30.832 (4.414) 68.980 (4.932) 64.168 (4.414) 0.309 (0.039) 0.325 (0.046)

200 plearnDAG 16.853 (2.911) 14.240 (2.911) 92.147 (2.911) 0.543 (0.074) 0.155 (0.027)

olearnDAG 17.027 (3.068) 14.177 (3.113) 91.973 (3.068) 0.547 (0.076) 0.156 (0.028)

llearnDAG 20.457 (3.190) 9.490 (3.237) 88.543 (3.190) 0.687 (0.086) 0.188 (0.029)

PDN 17.548 (2.600) 95.862 (5.190) 91.452 (2.600) 0.155 (0.024) 0.161 (0.024)

ODS 22.630 (4.154) 135.820 (21.734) 86.370 (4.154) 0.145 (0.030) 0.208 (0.038)

MMHC 22.076 (4.159) 97.612 (7.635) 86.924 (4.159) 0.185 (0.034) 0.203 (0.038)

PClog 21.080 (3.435) 37.376 (5.092) 87.920 (3.435) 0.362 (0.058) 0.193 (0.032)

Random 1000 plearnDAG 47.463 (2.559) 32.973 (3.236) 61.537 (2.559) 0.590 (0.032) 0.435 (0.023)

olearnDAG 49.347 (3.686) 34.103 (4.141) 59.653 (3.686) 0.592 (0.044) 0.453 (0.034)

Appendix B 111

Table B.8 – continued from previous page

Graph n Algorithm TP FP FN PPV Se

llearnDAG 58.483 (3.952) 12.260 (3.460) 50.517 (3.952) 0.827 (0.045) 0.537 (0.036)

PDN 35.132 (2.159) 70.318 (3.116) 73.868 (2.159) 0.333 (0.020) 0.322 (0.020)

ODS 42.662 (4.883) 57.110 (7.878) 66.338 (4.883) 0.429 (0.055) 0.391 (0.045)

MMHC 54.782 (4.536) 75.370 (8.169) 54.218 (4.536) 0.422 (0.040) 0.503 (0.042)

PClog 52.474 (3.260) 52.130 (5.727) 56.526 (3.260) 0.503 (0.037) 0.481 (0.030)

2000 plearnDAG 52.530 (2.178) 36.863 (3.076) 56.470 (2.178) 0.588 (0.027) 0.482 (0.020)

olearnDAG 54.483 (3.461) 38.667 (4.158) 54.517 (3.461) 0.585 (0.040) 0.500 (0.032)

llearnDAG 68.920 (3.393) 8.980 (2.834) 40.080 (3.393) 0.885 (0.035) 0.632 (0.031)

PDN 37.664 (1.724) 66.620 (2.574) 71.336 (1.724) 0.361 (0.016) 0.346 (0.016)

ODS 51.472 (4.955) 40.012 (5.654) 57.528 (4.955) 0.563 (0.056) 0.472 (0.045)

MMHC 63.616 (4.222) 58.320 (6.914) 45.384 (4.222) 0.523 (0.042) 0.584 (0.039)

PClog 56.950 (3.480) 55.198 (6.063) 52.050 (3.480) 0.509 (0.039) 0.522 (0.032)

112 Bibliography

Bibliography

Akaike, H. (1974) A new look at the statistical model identification. IEEE transactions

on automatic control 19(6), 716–723.

Aliferis, C. F., Tsamardinos, I. and Statnikov, A. (2003) Hiton: a novel Markov blanket

algorithm for optimal variable selection. In AMIA Annual Symposium Proceedings,

volume 2003, p. 21.

Allen, G. and Liu, Z. (2013) A local Poisson graphical model for inferring networks from

sequencing data. NanoBioscience, IEEE Transactions on 12(3), 189–198.

Banerjee, O., Ghaoui, L. E. and dAspremont, A. (2008) Model selection through sparse

maximum likelihood estimation. Journal of Machine Learning Research 9(Mar), 485–

516.

Besag, J. (1974) Spatial interaction and the statistical analysis of lattice systems. Jour-

nal of the Royal Statistical Society. Series B (Methodological) pp. 192–236.

Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J. (1984) Classification and

regression trees Belmont. CA: Wadsworth International Group .

Bullard, J. H., Purdom, E., Hansen, K. D. and Dudoit, S. (2010) Evaluation of statisti-

cal methods for normalization and differential expression in mRNA-Seq experiments.

BMC Bioinformatics 11(1), 94.

Burnham, K. P. and Anderson, D. R. (2003) Model selection and multimodel inference:

a practical information-theoretic approach. Springer Science & Business Media.

Cai, T., Liu, W. and Luo, X. (2011) A constrained l1 minimization approach to

sparse precision matrix estimation. Journal of the American Statistical Association

106(494), 594–607.

Chickering, D. M. and Meek, C. (2002) Finding optimal Bayesian networks. In Proceed-

ings of the Eighteenth conference on Uncertainty in artificial intelligence, pp. 94–102.

113

114 Bibliography

Colombo, D. and Maathuis, M. H. (2014) Order-independent constraint-based causal

structure learning. Journal of Machine Learning Research 15(1), 3741–3782.

Cooper, G. F. and Herskovits, E. (1992) A bayesian method for the induction of prob-

abilistic networks from data. Machine learning 9(4), 309–347.

Dor, D. and Tarsi, M. (1992) A simple algorithm to construct a consistent extension of

a partially oriented graph. Technicial Report R-185, Cognitive Systems Laboratory,

UCLA .

Fraley, C. and Raftery, A. E. (2002) Model-based clustering, discriminant analysis, and

density estimation. Journal of the American Statistical Association 97(458), 611–631.

Friedman, J., Hastie, T. and Tibshirani, R. (2008) Sparse inverse covariance estimation

with the graphical lasso. Biostatistics 9(3), 432–441.

Friedman, J., Hastie, T. and Tibshirani, R. (2009) glmnet: Lasso and elastic-net regu-

larized generalized linear models. R package version 1.

Friedman, J., Hastie, T. and Tibshirani, R. (2010) Regularization paths for generalized

linear models via coordinate descent. Journal of Statistical Software 33(1), 1.

Gallopin, M., Rau, A. and Jaffrézic, F. (2013) A hierarchical Poisson log-normal model

for network inference from RNA sequencing data. PloS One 8(10), e77503.

Hadiji, F., Molina, A., Natarajan, S. and Kersting, K. (2015) Poisson dependency

networks: Gradient boosted models for multivariate count data. Machine Learning

100(2-3), 477–507.

Haughton, D. M. et al. (1988) On the choice of a model to fit data from an exponential

family. The Annals of Statistics 16(1), 342–355.

Heckerman, D., Geiger, D. and Chickering, D. M. (1995) Learning Bayesian networks:

The combination of knowledge and statistical data. Machine learning 20(3), 197–243.

Kalisch, M. and Bühlmann, P. (2007) Estimating high-dimensional directed acyclic

graphs with the PC-algorithm. Journal of Machine Learning Research 8(Mar), 613–

636.

Kruskal, W. H. (1958) Ordinal measures of association. Journal of the American Sta-

tistical Association 53(284), 814–861.

Lauritzen, S. L. (1996) Graphical Models. Volume 17. Clarendon Press, Oxford.

Bibliography 115

Lauritzen, S. L., Dawid, A. P., Larsen, B. N. and Leimer, H. G. (1990) Independence

properties of directed Markov fields. Networks 20(5), 491–505.

Lehmann, E. L. (1986) Testing statistical hypotheses (2nd ed). New York, NY: Wiley.

Li, J., Witten, D. M., Johnstone, I. M. and Tibshirani, R. (2012) Normalization, testing,

and false discovery rate estimation for RNA-sequencing data. Biostatistics 13(3),

523–538.

Liu, H., Han, F., Yuan, M., Lafferty, J. and Wasserman, L. (2012) The nonparanormal

skeptic. arXiv preprint arXiv:1206.6488 .

Liu, H., Lafferty, J. and Wasserman, L. (2009) The nonparanormal: Semiparametric

estimation of high dimensional undirected graphs. Journal of Machine Learning Re-

search 10(Oct), 2295–2328.

Liu, H., Roeder, K. and Wasserman, L. (2010) Stability approach to regularization selec-

tion (stars) for high dimensional graphical models. In Advances in neural information

processing systems, pp. 1432–1440.

Meek, C. (1995) Strong completeness and faithfulness in Bayesian networks. In Proceed-

ings of the Eleventh conference on Uncertainty in artificial intelligence, pp. 411–418.

Meinshausen, N. and Bühlmann, P. (2006) High-dimensional graphs and variable selec-

tion with the lasso. The Annals of Statistics pp. 1436–1462.

Park, G. and Raskutti, G. (2015) Learning large-scale Poisson DAG models based on

overdispersion scoring. In Advances in Neural Information Processing Systems, pp.

631–639.

Pearl, J. and Paz, A. (1985) Graphoids: A graph-based logic for reasoning about relevance

relations. University of California (Los Angeles). Computer Science Department.

Peña, J. M., Nilsson, R., Björkegren, J. and Tegnér, J. (2009) An algorithm for reading

dependencies from the minimal undirected independence map of a graphoid that

satisfies weak transitivity. Journal of Machine Learning Research 10(May), 1071–

1094.

Peters, J. and Bühlmann, P. (2013) Identifiability of Gaussian structural equation mod-

els with equal error variances. Biometrika 101(1), 219–228.

Peters, J., Mooij, J., Janzing, D. and Schölkopf, B. (2012) Identifiability of causal graphs

using functional models. arXiv preprint arXiv:1202.3757 .

116 Bibliography

Sadeghi, K. (2017) Faithfulness of probability distributions and graphs. arXiv preprint

arXiv:1701.08366 .

Schelldorfer, J., Meier, L. and Bühlmann, P. (2014) Glmmlasso: an algorithm for high-

dimensional generalized linear mixed models using l1-penalization. Journal of Com-

putational and Graphical Statistics 23(2), 460–477.

Schwarz, G. (1978) Estimating the dimension of a model. The Annals of Statistics 6(2),

461–464.

Shimizu, S., Hoyer, P. O., Hyvärinen, A. and Kerminen, A. (2006) A linear non-Gaussian

acyclic model for causal discovery. Journal of Machine Learning Research 7(Oct),

2003–2030.

Spirtes, P., Glymour, C. N. and Scheines, R. (2000) Causation, prediction, and search.

MIT press.

Tsamardinos, I., Brown, L. E. and Aliferis, C. F. (2006) The max-min hill-climbing

Bayesian network structure learning algorithm. Machine learning 65(1), 31–78.

Verzelen, N. and Villers, F. (2009) Tests for Gaussian graphical models. Computational

Statistics & Data Analysis 53(5), 1894–1905.

Volinia, S., Galasso, M., Sana, M. E., Wise, T. F., Palatini, J., Huebner, K. and Croce,

C. M. (2012) Breast cancer signatures for invasiveness and prognosis defined by deep

sequencing of microRNA. Proceedings of the National Academy of Sciences 109(8),

3024–3029.

Wagenmakers, E. J. and Farrell, S. (2004) AIC model selection using Akaike weights.

Psychonomic Bulletin & Review 11(1), 192–196.

Yan, X., Chen, X., Liang, H., Deng, T., Chen, W., Zhang, S., Liu, M., Gao, X., Liu,

Y., Zhao, C. et al. (2014) miR-143 and miR-145 synergistically regulate ERBB3 to

suppress cell proliferation and invasion in breast cancer. Molecular Cancer 13(1),

220.

Yang, E., Allen, G., Liu, Z. and Ravikumar, P. K. (2012) Graphical models via gen-

eralized linear models. In Advances in Neural Information Processing Systems, pp.

1358–1366.

Yang, E., Ravikumar, P., Allen, G. and Liu, Z. (2013) On Poisson graphical models. In

Advances in Neural Information Processing Systems, pp. 1718–1726.

Bibliography 117

Yang, E., Ravikumar, P., Allen, G. I. and Liu, Z. (2015) Graphical models via univariate

exponential family distributions. Journal of Machine Learning Research 16(1), 3813–

3847.

Yang, Z., Ning, Y. and Liu, H. (2014) On semiparametric exponential family graphical

models. arXiv preprint arXiv:1412.8697 .

Yuan, M. (2010) High dimensional inverse covariance matrix estimation via linear pro-

gramming. Journal of Machine Learning Research 11(Aug), 2261–2286.

Zhang, L. and Mallick, B. K. (2013) Inferring gene networks from discrete expression

data. Biostatistics p. kxt021.

Zhang, N., Wang, X., Huo, Q., Sun, M., Cai, C., Liu, Z., Hu, G. and Yang, Q. (2014)

MicroRNA-30a suppresses breast tumor growth and metastasis by targeting metad-

herin. Oncogene 33(24), 3119–3128.

Žitnik, M. and Zupan, B. (2015) Gene network inference by fusing data from diverse

distributions. Bioinformatics 31(12), i230–i239.

Thi Kim Hue NGUYEN
CURRICULUM VITAE

Contact Information

University of Padova
Department of Statistics
via Cesare Battisti, 241-243
35121 Padova. Italy.

Tel. +39 049 827 4174
e-mail: nguyen@stat.unipd.it

Current Position

Since November 2014; (expected completion: October 2017)
PhD Student in Statistics, University of Padova.
Thesis title: “Structure Learning of Graphs for Count Data”
Supervisor: Prof. Monica Chiogna

Research interests

• Biostatistics
• Graphical models

Education

September 2013- June 2014
Master 2 degree in Probability and Statistics.
Paul Sabatier University, Faculty of Mathematics, France
Title of dissertation: “A Model for Structured Graph Correlation Inference”
Supervisor: Prof. Jean Michel Loubes

September 2013- June 2014
Master 1 degree in Mathematics.
Vietnam Institute of Mathematics, Vietnam

September 2008- June 2012
Bachelor degree in Mathematics.
Hanoi National University of Education, Faculty of Mathematics, Vietnam
Title of dissertation: “Some generalizations of fixed point theory”
Supervisor: Prof. Thi Thanh Ha NGUYEN

Further education

July 2016
Summer School from gene expression to genomic Network
SPS LabEx

August 2017
Summer School on Graphical Models
Technical University of Denmark

August 2017– September 2017
Data Science Summer School
Ecole Polytechnique

Awards and Scholarship

2014-2017
Cariparo PhD Scholarhip for foreign students, University of Padova, Italy.

2013
Scholarship of Centre international de Mathématiqués et Informatique de Toulouse for Master 2,
France.

2012
Scholarship of Vietnam Institute of Mathematics for Master 1, Vietnam.

2012
Award for excellent students from University president, Hanoi University of Education, Vietnam.

2008-2012
Academic Scholarships for excellent students, Hanoi University of Education, Vietnam.

Computer skills

• Matlab, R

Language skills

Vietnamese native; English fluent; French moderate.

Publications

Articles in journals
NGUYEN, T.K.H., Chiogna, M., (2017). Structure Learning of Undirected Graphical Models for
Count Data. (In preparation)

Conference presentations

NGUYEN, T.K.H., Chiogna, M. (2016). Learning High Dimensional Directed Acyclic Graphs for
Count Data. (poster) Summer School from gene expression to genomic Network, Paris, France,
17-22/July.

NGUYEN, T.K.H., Chiogna, M. (2017). Structure Learning of Undirected Graphical Models for
Count Data. (poster) Summer School on Graphical Models, Tjaro, Sweden, 14-18/August.

NGUYEN, T.K.H., Chiogna, M. (2017). Structure Learning of Undirected Graphical Models for
Count Data. (poster) Data Sciences Summer School, Paris, France, 28/August- 1/September.

Teaching experience

February 2012 - April 2012
Tutor for the course: “Mathematics”
Hung Vuong High School for Gifted Students, Vietnam.
Instructor: Prof. Thi Hong NGUYEN

February 2011 - March 2011
Tutor for the course: “Mathematics”
Hung Vuong High School for Gifted Students, Vietnam.
Instructor: Prof. Thi Tam NGUYEN

References

Prof. Prof. Monica Chiogna
Department of Statistical Sciences
University of Padova
via Cesare Battisti, 241-243
35121 Padova, Italy.
e-mail: monica@stat.unipd.it

Prof. Jean Michel Loubes
Insitut de Mathématiques de Toulouse
Université Toulouse III- Paul Sabatier
118 Route de Narbonne
31062 Toulouse, France.
e-mail: loubes@math.univ-toulouse.fr

	List of Figures
	List of Tables
	Introduction
	Overview
	Main contributions of the thesis

	1 Background
	1.1 Conditional independence and graphs
	1.2 Undirected Graphical Models
	1.2.1 Separation in undirected graphs
	1.2.2 Markov properties on undirected graphs
	1.2.3 Factorization

	1.3 Directed Acyclic Graphical Models
	1.3.1 Factorization
	1.3.2 d-connection/separation
	1.3.3 Markov properties on directed acyclic graphs
	1.3.4 Moralization
	1.3.5 Markov equivalent class

	1.4 Faithfulness condition
	1.5 Background on Structure Learning
	1.5.1 Scoring-based Algorithms
	1.5.2 Constraint-based Algorithms
	1.5.3 Hybrid Algorithms

	2 Poisson graphical models for count data
	2.1 Model specifications
	2.2 Identifiability
	2.3 Some Poisson structure learning algorithms
	2.3.1 LPGM algorithm
	2.3.2 PDN Algorithm
	2.3.3 ODS algorithm

	3 Structure Learning of undirected graphs
	3.1 The PC-LPGM algorithm
	3.2 Statistical Guarantees
	3.2.1 Assumptions
	3.2.2 Consistency of estimators in local models
	3.2.3 Consistency of the graph estimator

	3.3 Empirical study
	3.4 Real data analysis: inferring networks from next generation sequencing data
	3.5 Discussion

	4 Guided structure learning of DAGs
	4.1 The PK2 algorithm
	4.1.1 Asymptotic property

	4.2 The Or-LPGM algorithm
	4.2.1 Consistency of the Or-LPGM algorithm

	4.3 The Or-PPGM algorithm
	4.3.1 Consistency of the Or-PPGM algorithm

	4.4 Empirical study
	4.5 Conclusions and remarks

	5 Unguided structure learning of DAGs
	5.1 The learnDAG algorithm
	5.1.1 Step 1: preliminary neighbourhood selection (PNS)
	5.1.2 Step 2: estimating parent sets
	5.1.3 Step 3: pruning of the DAG

	5.2 Empirical study
	5.3 Discussion

	6 Conclusions
	Appendix A
	A.1 K2 algorithm
	A.2 PC algorithm
	A.3 VSL algorithm
	A.4 GLASSO algorithm
	A.5 Extension to the nonparanormal model
	A.6 MMHC algorithm

	Appendix B
	B.1 Appendix B.1
	B.2 Appendix B.2
	B.3 Appendix B.3

