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Abstract

Turbine efficiency plays a key role in the design optimization of ORCs

(organic Rankine cycles) and should be properly evaluated for an accu-

rate estimate of the real power production. Most of the literature focuses

on cycle configuration, design parameters and working fluid that maxi-

mize different performance metrics, but often ignores the expander design

features that are necessary to obtain them, by fixing in advance the ex-

pander efficiency. This approach is questionable for ORC systems where

the high volumetric expansion ratios, variable sizes and working fluids may

markedly affect turbine efficiency.

This work focuses on the preliminary design of radial inflow turbines

and single stage axial flow turbines operating with different organic fluids.

The aim is to build general efficiency maps in accordance with the sim-

ilarity principles for the performance prediction of turbines having very

different design specifications (i.e., mass flow rate and enthalpy drop) and

handling different working fluids. The so-called “size parameter” (SP) and

the volumetric expansion ratio (VR) are identified as the best efficiency

predictors for ORC turbines. The former is proportional to the turbine

size and accounts for the scale effect, i.e. the detrimental effect on the per-

formance when the machine is scaled down below a certain size; the latter

accounts for the compressibility influence and, compared to the pressure

expansion ratio, limits the influence of the fluid properties.

Mean-line models are built for the preliminary design and performance

estimation of radial and axial turbines in the Matlab R⃝ environment imple-

menting recent loss correlations to account for the flow irreversibilities and

real fluid properties evaluated using the Refprop database. These models

are used to simulate the turbine behavior and generate new design charts

relating the efficiency to the design parameters (i.e., specific speed and

velocity ratio for radial turbines; loading coefficient and flow coefficient for



axial turbines). Several simulations are then carried out to generate the op-

timum designs for a wide range of design specifications and working fluids,

and the associated efficiency maps in the SP -VR plane. These maps show

that neither the size effect (SP), nor the compressibility effect (VR) have

a negligible influence on the turbine performance: the efficiency increases

as SP increases and VR decreases. Despite the similar general efficiency

trends in the SP -VR maps are similar, differences due to the fluid effect

exist. So, the critical temperature of the working fluid is proposed as third

efficiency predictor and a general correlation between turbine efficiency

and size parameter, volumetric flow ratio, critical temperature is obtained.

The resulting generalized efficiency map is conceptually valid for any fluid

and can be easily integrated into a comprehensive thermodynamic cycle

optimization procedure to account for the real turbine performance and

overcome the limitations due to a separate design of turbine and system.



Sommario

Il rendimento della turbina ha un ruolo fondamentale nell’ottimizzazione

del progetto di cicli Rankine a fluido organico (ORC) e dovrebbe essere

attentamente valutato per avere una stima accurata della reale produzione

di potenza. Larga parte della letteratura si concentra sulla configurazione

di ciclo, sui parametri di progetto e sul fluido di lavoro che massimizzano

indici di prestazione differenti, ma spesso non tiene conto delle caratteris-

tiche progettuali della turbina necessarie al loro conseguimento, fissandone

a priori l’efficienza. Tale approccio è discutibile per i sistemi ORC in cui gli

alti rapporti di espansione volumetrici, le taglie variabili e i diversi fluidi

di lavoro possono influenzare marcatamente l’efficienza della turbina.

Questo lavoro si occupa di progettazione preliminare di turbine radiali

centripete e turbine monostadio assiali che utilizzano diversi fluidi organici.

Lo scopo è costruire, in accordo con i principi della similitudine, mappe di

efficienza generalizzate per la previsione del rendimento di turbine aventi

specifiche di progetto molto diverse (portata di massa e salto entalpico)

e operanti con fluidi diversi. Il cosiddetto “parametro di taglia” (SP) ed

il rapporto di espansione volumetrica (VR) vengono identificati come le

variabili migliori per la previsione dell’efficienza di turbine per ORC. Il

primo è proporzionale alla taglia della turbina e tiene conto dell’effetto

scala, ossia dell’effetto penalizzante sulle prestazioni quando la macchina è

scalata al di sotto di una certa taglia; il secondo tiene conto dell’influenza

della comprimibilità e limita, rispetto all’impiego del rapporto di pressioni,

l’effetto sul rendimento delle proprietà del fluido.

Per la progettazione preliminare e per la stima delle prestazioni di tur-

bine radiali ed assiali si sono costruiti in ambiente Matlab R⃝ modelli a linea

media che includono recenti correlazioni di perdita e le proprietà reali dei

fluidi valutate con il database Refprop. Tali modelli vengono impiegati per

simulare il funzionamento della turbina e per costruire nuovi diagrammi



in cui l’efficienza è posta in relazione con i parametri di progetto (velocità

specifica e rapporto di velocità per le turbine radiali; cifra di pressione e di

flusso per le turbine assiali). E’ stato effettuato un gran numero di simu-

lazioni per generare progetti ottimi per un ampio intervallo di specifiche di

progetto e fluidi di lavoro e le corrispondenti mappe di efficienza nel piano

SP -VR. Queste mappe mostrano che nè l’effetto taglia, nè quello della

comprimibilità (VR) hanno una influenza trascurabile sulle prestazioni

della turbina: l’efficienza aumenta all’aumentare di SP e al calare di VR.

Nonostante le mappe SP -VR presentino trend simili, vi sono tra esse delle

differenze dovute all’effetto del fluido. La temperatura critica del fluido

viene quindi proposta come ulteriore parametro a cui legare l’efficienza

per ottenere una correlazione generale tra efficienza e parametro di taglia,

rapporto di espansione volumetrica e temperatura critica. La mappa gen-

eralizzata che ne deriva è concettualmente valida per qualunque fluido e

può essere facilmente integrata in una procedura di ottimizzazione glob-

ale del sistema ORC per tenere conto delle reali prestazioni della turbina

e superare cos̀ı le limitazioni dovute ad una progettazione separata della

turbina e del sistema.



Radial turbine nomenclature

α flow angle (◦ )

β blade angle (◦ )

∆ normalized mass defect thickness

δc clearance gap (m )

∆w wall boundary layer blockage

δ∗
w

displacement thickness (m )

∆z axial length (m )

ṁ mass flow rate (kg/s )

Q̇ volumetric flow rate (m3/s )

ηs total-to-static efficiency

γ blade angle (◦ )

κm mean curvature of the meridional channel

νs velocity ratio

ω angular velocity (rad/s )

φ flow coefficient

ψ loading coefficient

ρ density (kg/m3 )

Θ normalized momentum defect thickness

θ blade camberline angle (◦ )

A passage area (m2 )

a speed of sound (m/s )

b blade height or passage width (m )

C absolute velocity (m/s )

c chord (m )

C0 spouting velocity (m/s )

cf skin friction coefficient

D diameter (m )

esse blade pitch (m )

h specific enthalpy (J/kg )

I rothalpy (J/kg )

i incidence angle (◦ )

kb blockage factor

kload blade loading

L length (m )

N blade number

n rotational speed (rpm)

ns specific speed

o throat width (m )

p pressure (bar or kPa )

R degree of reaction

r radius (m )

s specific entropy (J/(kgK) )

SP size parameter (m )

t blade thickness (m )

U peripheral speed (m/s )

VR volumetric expansion ratio

W relative velocity (m/s )

Y total pressure loss coefficient

Superscripts

’ relative frame

* sonic or ideal flow conditions

Subscripts

0 total state

1 Design volute inlet or performance com-
ponent inlet station

2 Design nozzle inlet or performance com-
ponent mid station

3 Design nozzle outlet or performance com-
ponent outlet station

4 Design rotor inlet

5 Design rotor outlet

a annulus

ave average

b blade

bl blade loading

bp blade pressure

bs blade suction

cl clearance

d diffuser

df disk friction

dis discharge

evap evaporating

ex post-expansion

h hub

hs hub-to-shroud

in inlet

inc incidence

m meridional or mean

max maximum

min minimum

n nozzle

p profile

R relative

r rotor

s shroud or isentropic

t tangential

TOT total

v volute

w wall



Axial turbine nomenclature

α flow angle (◦ )

β blade angle (◦ )

δ rotor radial clearance (m )

ṁ mass flow rate (kg/s )

V̇ volumetric flow rate (m3/s )

η efficiency

γ specific heat ratio

γ sweep angle (◦ )

λ hub to tip radius ratio

ω angular velocity (rad/s or rpm)

φ flow coefficient

ψ loading coefficient

ρ density (kg/m3 )

A area (m2 )

a sound speed (m/s )

b blade axial chord (m )

c blade chord (m )

Dm root mean square diameter (m )

ds specific diameter

e blade surface roughness (m )

FL flaring angle (◦ )

h blade span (m )

h specific enthalpy (J/kg )

Ma Mach number

ns specific speed

o blade throat (m )

p pressure (Pa )

R degree of reaction

Re Reynolds number

s blade pitch (m )

SP size parameter (m )

T temperature (K or ◦C )

t trailing edge thickness (m )

U peripheral velocity (m/s )

V absolute velocity (m/s )

VR volumetric expansion ratio

W relative velocity (m/s )

Y total pressure loss coefficient

Z loading factor

z blade number

Superscripts

’ relative frame

Subscripts

0 total state

1 stator inlet

2 stator exit and rotor inlet

3 rotor exit

cond condensing

evap evaporating

h hub

m meridional

N stator

R rotor

s isentropic

t tangential

t tip

tt total to total
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Introduction

The growing awareness towards environmental sustainability, reduction

of pollution caused by fossil fuels and energy saving makes the conversion

into power of low-to-medium temperature heat from renewable energy

sources or industrial processes particularly attractive. Organic Rankine

Cycle (ORC) systems represent in this respect a viable technology that is

rapidly growing in terms of installed power capacity due to the inherent

suitability to a variety of heat sources and power plant sizes (from few

kW to few tens of MW). ORC systems can be effectively used to recover

heat from the exhaust gases of micro-gas turbines or internal combustion

engines [1], to exploit the heat content of biomass combustion gases [2],

concentrated solar radiation [3], geothermal sources or waste heat from

industrial processes ([4], [5]).

The selection of thermodynamic cycle parameters, working fluid and

components is not trivial due to the need of “tailoring” the plant to both

the specific thermal availability and temperature levels [6]. In addition, a

correct estimate of the net power output cannot disregard the influence on

the cycle design parameters of the real performance characteristics of each

plant component on the design parameters of the cycle, and in particular of

the turbine, which is one of the most critical part of the system. Depend-

ing on heat and temperature availability, turbines or volumetric expanders

are installed in existing ORC systems. Turbines are typically used in the

100 kW - several MW power capacity range in axial or radial inflow con-



2 INTRODUCTION

figurations. The former are typically used in multistage arrangements (up

to three) in medium (0.5-5 MW) to large (≥ 5 MW) ORC systems where

relatively high mass flow rates of working fluids are employed; the latter

are generally better suited to the lower capacity ranges. Also innovative

radial outflow architectures could be a promising solution in the small-

to-medium power range as they permit to better accommodate the large

volume variations typical of organic fluids [7]. However, a strict definition

of the power intervals of application is not possible and the above ones are

only indicative.

In the last decade, a very high number of studies on ORC systems

appeared in the literature. Most of these studies focus on the thermody-

namic optimization of the whole system for an assigned heat source ([8],

[9], [10]), i.e., on the identification of working fluid, cycle configuration and

temperature/pressure levels resulting in the maximum (or minimum) value

of a specified function. Less efforts have been devoted to the modeling of

the turbine behavior, the efficiency of which is often somehow arbitrarily

chosen ([11]), with the risk of misleading predictions.

On the other side, researchers in the field of fluid dynamics and turbines

have produced a significant amount of studies at different levels of analysis

ranging from the development of fluid-dynamic simulation tools able to

manage dense gas flows [12] to the preliminary and detailed aerodynamic

turbine design.

As for radial inflow turbine (RIT) preliminary design, Ventura et al. [13]

developed an automated process which explores a large spectrum of flow

coefficients (ϕ), loading coefficients (ψ) and rotational speeds (n) in order

to select the optimum values of these parameters. Fiaschi et al. [14] devel-

oped a mean-line model of a RIT for a 50 kW ORC system considering six

working fluids, all sharing the same turbine inlet temperature of 147 ◦C.

The predicted efficiencies varied in the range 54% − 83%, depending on

the working fluid. In a subsequent study [15], the same authors carried
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out a parametric analysis to evaluate losses against the main design pa-

rameters, namely ϕ, ψ and the degree of reaction (R). The total-to-static

efficiencies varied between 69.3% for cyclohexane and 78.0% for R1234yf.

They showed that backswept bladed turbines can achieve efficiencies from

1.5 to 2.0 points higher than radial ones. Rahbar et al. [16] developed

a methodology for the optimization of a 15 kW radial turbine for ORC

applications considering eight working fluids and turbine inlet tempera-

tures in the range 60-145 ◦C. The authors employed a genetic algorithm

to maximize the total-to-static efficiency by varying ψ and ϕ in the range

0.6-1.4 and 0.2-0.5, respectively, and the rotational speed between 35000

and 65000 rpm. The optimization results showed that the optimum values

of ψ are higher than unity (in the range 1.004-1.215) whereas the values of

ϕ are in the range 0.22-0.26. The maximum efficiency was found to vary

between 82.9% and 84.0% whereas the optimum values of specific speed

(ns) and velocity ratio (νs) are close to 0.42 and 0.62, respectively. More

recently, several studies based on CFD simulations have appeared in the

literature which either confirm or revise the turbine efficiency predictions

obtained by the mean-line analyses. For instance, Fiaschi et al. [17] de-

veloped a design procedure for a micro radial ORC turbine (5 kW) based

on a mean-line model for the preliminary sizing, further refined by a 3D

approach to maximize the performance. The efficiency predicted by this

model (70%) was confirmed by the results of the 3D analysis. Sauret and

Gu [18] compared the efficiency predicted by a commercial preliminary de-

sign software, which basically embeds the design procedure described by

Moustapha et al. [19] for traditional fluids, with the outcomes of a detailed

CFD analysis, and they found significant differences (in the order of 10%)

appeared.

Despite the fundamental role of the turbine in the net power produc-

tion of the plant, and can significantly influence the final choice of the

ORC pressure and temperature levels, the findings on turbines designs
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are seldom embedded in the thermodynamic cycle optimization. Only in

few recent works there is an attempt to simultaneously optimize not only

the cycle variables, but also the main turbine design variables ([20],[21]).

In particular, there is the need to integrate the thermodynamic analy-

sis/optimization of the ORC system with a correct estimate of turbine

efficiency to ensure that the real turbine is able to obtain the inlet and

outlet thermodynamic states resulting from the cycle optimization pro-

cedure, being these states necessarily influenced by the turbine efficiency

itself. However, a direct integration of the complete turbine design proce-

dure into the procedure for the search of the optimum cycle parameters

would be too time consuming, and therefore nonviable, since the turbine

design should be repeated in each optimization step. On the other hand,

the use of the traditional performance charts developed in the steam tur-

bine practice (e.g., Smith chart [22], Balje diagram [23]) is impractical as

the efficiency in these charts depends on variables not directly related to

cycle parameters, and unfit when dealing with organic fluids anyhow. In

fact, it is apparent that the specific thermodynamic properties of organic

fluids reflect on turbine design and, consequently, on the achievable effi-

ciencies. Specifically, for a fixed temperature drop, the enthalpy drop in

the expansion of an organic vapor is comparatively lower than the steam

enthalpy drop, so that the relatively smaller specific work allows for lower

stage number arrangements. Conversely, the high expansion ratio per stage

and the low speed of sound of organic fluids often result in transonic and

supersonic flows accompanied by shock waves, which reduce turbine effi-

ciency and make the compressibility effect not negligible. Moreover, since

organic fluid turbines cover a wide range of power, the influence of the size

on performance should be carefully taken into account in the evaluation of

the efficiency.

The pioneering contributions to the development of efficiency charts for

ORC turbines given by Macchi and Perdichizzi [24] and Perdichizzi and
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Lozza [25] were precisely focused on these two latter aspects. These authors

built mean line models for the design and efficiency prediction of optimized

axial and radial turbines having very different expansion ratios and sizes.

The calculated efficiencies were correlated against the volumetric flow ratio

(VR) and the so-called size parameter (SP). In particular, VR allows not

only to take into account the compressibility effects but also to reduce

the efficiency dependency on the fluid nature. So, the resulting maps

can be used to a first approximation for different fluids. Instead, SP is a

dimensional parameter proportional to the rotor diameter, which accounts

for the influence of the turbine size on the performance. However, these

studies assume that the working fluid is ideal despite real gas effects might

be significant when using organic fluids [26], and the Reynolds number is

constant.

This work addresses the need of new specific tools to properly estimate

the turbine efficiency. The aim is to build general efficiency maps to predict

the performance of turbines having very different design specifications in

ORC systems. To this end, the work is organized as follows:

• A rigorous study on turbomachinery similarity principles is per-

formed to confirm that the size parameter (SP) and volumetric flow

ratio (VR) are well suited to predict the efficiency of ORC turbines.

• A SP-VR efficiency map is built from real data of radial turbines op-

erating with air to verify the efficiency trends when these predictors

are used and to experimentally demonstrate the impact of compress-

ibility and size effects in real applications.

• Mean-line models are implemented in Matlab R⃝ codes to generate a

series of radial and axial turbine preliminary designs encompassing a

wide set of design specifications, design parameters and working flu-

ids. Recent loss correlations are used to estimate the irreversibilities
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throughout the turbine and accurate databases (NIST Refprop) are

considered to evaluate the real flow properties.

• The calculated efficiencies are collected into two groups of maps. In

the first group the efficiencies are correlated, for fixed design spec-

ifications, to the traditional turbine design parameters to provide

indications about the optimum values of these parameters. Accord-

ing to the author’s knowledge no similar maps specifically developed

for organic fluids exist in the literature. The second group of maps

correlates the efficiencies corresponding to the optimum design pa-

rameters to the size parameter and volumetric flow ratio for several

combinations of the design specifications. Performance maps with

the same meaning of those suggested by Macchi and Perdichizzi in

[24] are therefore obtained: a single fluid (R245fa) is considered for

the radial turbine, whereas a variety of working fluids (hydrocar-

bons, hydrofluorocarbons and hydrofluoroolefines) are considered for

the axial case.

• A general efficiency map as a function of size parameter, volumetric

flow ratio and critical temperature is finally built by regression of all

the efficiency data obtained for the axial turbines.



Chapter 1

Design guidelines for radial

inflow turbines

This Chapter presents fundamentals and guidelines commonly adopted

in the traditional design practice of radial inflow gas turbines. The discus-

sion mainly follows the findings of Whitfield and Baines [27] as presented

by Korpela [28] and Dixon [29]. Ideal gas is assumed.

Section 1.1 briefly presents the architecture of the machine and deals

with basic concepts of energy transfer relating them to the achievement of

high specific works.

Section 1.2 focuses on the rotor inlet design which is based on the

selection of the rotor inlet flow angle in order to minimize the Mach number

at rotor inlet for assigned power ratio and relative flow angle. Accordingly,

typical values of the absolute flow angles for traditional applications fall

in the range 65-70◦.

Section 1.3 deals with the design of the rotor exit which starts from the

choice of the outlet Mach number in order to minimize the Mach number at

the rotor shroud. Subsequently, useful relationships to calculate the rotor

outlet-to-rotor inlet radius and the blade height-to-rotor inlet radius as a

function of design specifications are derived. Finally, optimum incidence
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considerations and the resulting criterion for the choice of the relative inlet

flow angle close the Chapter.

1.1 General concepts of energy transfer

The radial inflow turbines are traditionally employed in automotive

turbocharges, but they are also used in natural gas processing, air lique-

faction and geothermal power plants. Radial turbines cover a wide range

of power, mass flow rate and rotational speed and achieve slightly lower

efficiencies compared to axial flow turbines. However, the significant ad-

vantages of radial turbines compared to axial ones are the higher specific

work per stage, the ease of manufacture and their superior ruggedness.

Figure 1.1 shows a side view of a radial inflow turbine and the cor-

responding nomenclature of its components. Hot gases enter through a

volute and are accelerated throughout a vaned stator before they enter in

the rotor. Blades at rotor inlet are typically radial to withstand the loads

due to the centrifugal force field and pulsating gas flows at high temper-

ature better than curved blades. Rotor vanes extend radially inward and

turn the flow into the axial direction; their exit part is curved in order to

remove the discharge swirl velocity component. The kinetic energy left in

the exit stream may be recovered in an exit diffuser.

Velocity triangles at the rotor inlet and outlet are sketched in Fig. 1.2.

In this Chapter, velocity components are accounted as positive if they have

the same direction of the peripheral velocity; flow angles are accounted with

their own sign from the meridional direction.

Inspection of the fundamental equation of the specific work W

W =
C2

2 − C2
3

2
+
U2
2 − U3

3

2
+
W 2

3 −W 2
2

2
(1.1)

indicates that the maximization of the specific work W is obtained

if the inlet absolute velocity C2 and relative velocity W2 reach high and
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Figure 1.1: Side (left) and circumferential (right) view of a radial inflow turbine

(adapted from [19]).

U
2

W
2

C
2

W
3

C
3

U
3

α
2

β
2

β
3

Figure 1.2: Velocity triangles for a radial inflow turbine.
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low values, respectively. This is obtained when the flow angle α2 is large

and the relative velocity is directed radially inward. Similarly, axial dis-

charge and large β3 are to be realized to minimize C3 and maximize W3,

respectively. The contribution to the extracted work deriving from the

rotodynamic effect (i.e., variation of the peripheral velocity) increases as

the radius ratio r2/r3 increases.

A parameter of interest in radial turbine design practice is the power

ratio (sW) which is the ratio between the specific work (sW) and the total

enthalpy at the machine inlet

sW =
W
h01

(1.2)

Starting from the total-to-static efficiency (ηts) definition and consid-

ering Eq. (1.2), the pressure ratio p01/p3 can be written as

p01
p3

=

(
1− sW

ηts

)− γ
γ−1

(1.3)

Accordingly, power ratios in the range 0.15 < sW < 0.25 correspond

to 2 < p01/p3 < 3 for typical values of efficiency (80-90%) and when

traditional fluids are considered.

Moreover, since the specific work is

W = cpT01sW (1.4)

the expansion of hot combustion gases (T01 = 1000 K) with a typical

power ratio sW = 0.2 corresponds to a specific work of approximately

300 kJ/kg.

Optimum intervals for the specific speed (ns) and velocity ratio (νs =

U2/(2∆h0s)
0.5) are

ns = 0.3− 0.7 νs = 0.55− 0.77 (1.5)
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Figure 1.3 shows the expansion process across a radial turbine in the

enthalpy-entropy diagram and the nomenclature of the thermodynamic

states adopted in this Chapter.
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Figure 1.3: Thermodynamic expansion process across a radial inflow turbine

in the enthalpy-entropy diagram.

1.2 Design of the rotor inlet

This Section deals with the design of the rotor inlet following Whitfield

and Baines [27] design guidelines. The absolute flow angle (α2) is related

to the power ratio (sW), relative flow angle (β2) and Mach number (M2)

in order to calculate the α2 value which leads to the minimum M2. Values

of α2 in the range α2 = 65 −70◦ are found. Then, the blade stagnation

Mach number (M0u) is related to the design specifications and to M2 and

it is shown that for high efficiency turbines 0.7 < M0u < 0.75. Finally, the
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inlet relative Mach numberM2R is expressed as a function of the previously

defined parameters.

1.2.1 Minimum inlet Mach number

A common design guideline for the rotor inlet is to choose the absolute

and relative flow angles in order to achieve the smallest absolute Mach

number [27]. The tangential velocity can be written in the form

Cu2 = U2 +Wu2 = U2 + Cu2
tan β2
tanα2

(1.6)

Considering no exit swirl (i.e., Cu3 = 0) and multiplying by Cu2/C
2
2 ,

Eq. (1.6) is reduced to

sin2 α2

(
1− tan β2

tanα2

)
= u (1.7)

in which the quantity u = U2Cu2/C
2
2 is directly related to the design

specifications. In fact, it can be easily demonstrated that

u =
U2Cu2

C2
2

=
sW/(γ − 1)

M2
02

(1.8)

where sW is the power ratio (see Eq. (1.2)) and M02 is the stagnation

Mach number at rotor inlet

M02 =
C2

a02
=

M2(
1 + γ−1

2

)0.5 (1.9)

Further, dividing Eq. (1.7) by cos2 α2 and remembering the identity

1/ cos2 α2 = tan2 α2 + 1, gives(
M2

2

1 + γ−1
2
M2

2

− sW
γ − 1

)
tan2 α2 −

M2
2

1 + γ−1
2
M2

2

tan β2 tanα2 −
sW
γ − 1

= 0

(1.10)

For given values of sW ,M2 and β2 the quadratic Equation (1.10) can be

solved for tanα2. Figure 1.4 shows the solution of Eq. (1.10) for selected

values of sW and β2 with γ = 1.4.
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Figure 1.4: Rotor inlet Mach number (M2) as a function of the absolute flow

angle (α2) for selected values of the relative flow angle (β2) and power coefficient

(sW).
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For a given power ratio (sW) and relative flow angle (β2), the minimum

of each curve is sought next.

By equating to zero the first derivative of M2
02 with respect to tanα2

resulting from Eq. (1.10) it follows that the the absolute flow angle

α2|M2=M2min
leading to the minimum inlet Mach Mach number is

tanα2|M2=M2min
=

−1− cos−1 β2
tan β2

(1.11)

Being the right-hand-side of Eq. (1.11) equal to tan(π/2 + β2/2) it

follows

α2|M2=M2min
=
π

2
+
β2
2

(1.12)

The value of the corresponding minimum inlet Mach number (M2min)

for assigned sW , β2 and γ is found by including the optimum α2 value (Eq.

(1.12) into Eq. (1.10). It results

M2min =

((
2sW
γ − 1

)
cos β2

1 + (1− sW) cos β2

)0.5

(1.13)

Figure 1.5 shows that the optimum α2 values (i.e., α2|M2=M2min
) fall in

the range

α2 = 60− 80◦ (1.14)

Figure 1.5 plots Eq. (1.13) and shows the dependency of M2min on

the power ratio sW for some rotor inlet flow angles β2. Note that M2min

slightly depends on β2.

1.2.2 Blade stagnation and relative Mach number

The definition of power ratio may be recast as

U2

a01

Cu2

a01
=

sW
γ − 1

(1.15)

so that

M0u =
U2

a01
=

sW
γ − 1

a01
a2

a2
C2 sinα2

(1.16)
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ratio (sW) for selected values of the relative flow angle β2.
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Since the total enthalpy across the nozzle is constant, Eq. (1.16) is

further rearranged as

M0u =
sW
γ − 1

(
1 + γ−1

2
M2

2

)0.5
M2 sinα2

(1.17)

For assigned sW/(γ − 1), relative flow angle β2 and Mach number M2,

Eq. (1.10) can be solved for α2 and, in turn, the blade Mach number M0u

can be calculated with Eq. (1.17). Figure 1.6 shows the blade stagnation

Mach numbers as a function of M2 and for various power ratios at fixed

β2. The importance of Fig. 1.6 is made clear if it is compared to the

experimental performance data collected in Fig. 1.7, which shows the total-

to-static efficiencies of several radial turbines measured by [30]. Since the

spouting velocity (C0 = (2(h01 − h3ss))
0.5) can be written as

C0 =

(
2cpT01

sW
ηts

)0.5

(1.18)

the stagnation blade Mach number can be related to the ratio U2/c0 by

M0u =
U2

C0

(
2sW

(γ − 1)ηts

)0.5

(1.19)

Thus, turbines with reasonably low power ratios (e.g., sW = 0.15)

which achieve the highest efficiency level (ηts = 0.9) at U2/C0 = 0.7 (see

Fig. 4.45) are characterized by M0u = 0.7; whereas, if (ηts = 0.8) is

considered, then M0u = 0.75. In brief, turbines with low power ratio and

blade Mach number in the range

M0u = 0.7− 0.75 (1.20)

are expected to operate in the region of the highest efficiency.

Similarly toM0u, the relative Mach number at rotor inletM2R = W2/a2

can be calculated as a function of sW , γ, M2 and β2. In fact, trivial

trigonometric considerations lead to
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Figure 1.7: Total-to-static efficiency chart from the data of Rodgers and

Gleiser. Figure reproduced from [29]

.
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M2R = −Mu sin β2 + (M2
2 −M2

u cos
2 β2)

0.5 (1.21)

where the term Mu = U2/a2 can be calculated by

Mu =
sW
γ − 1

1 + γ−1
2
M2

2

M2 sinα2

(1.22)

Figure 1.8 plots Eq. (1.21) for fixed β2 and provides an immediate

indication of the allowed degree of acceleration through the rotor channel

to avoid choking occurrence.
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Figure 1.8: Relative inlet Mach number (M2R) as a function of the inlet Mach

number M2 for selected power ratios and relative flow angle.

1.3 Design of the rotor outlet

This Section focuses on the design of the rotor outlet. A relationship

between the relative Mach number at the rotor shroud (M3Rs) and the exit
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Mach number (M3) is derived and the choice of M3 in order to minimize

M3Rs is discussed. Then, the radius ratio r3s/r2 and the blade height-to-

radius ratio b2/r2 are calculated as a function of the design specifications.

Optimum incidence considerations and the resulting criterion for the choice

of the relative inlet flow angle close the Section.

1.3.1 Minimum exit Mach number

In the rotor outlet section, the shroud is the position where the highest

relative flow velocities and, in turn, loss phenomena occur. Accordingly, a

possible design criterion for the rotor outlet is to choose the absolute Mach

number in order to minimize the relative Mach number at the shroud. A

relationship between these two variables is derived in the following.

If the rotor discharge is axial, the mass balance for the rotor outlet

section is

ṁ = ρ3c3A3 = ρ3c3πr3s(1− k2) (1.23)

where k = r3h/r3s is the ratio between the hub and shroud radii at

rotor outlet. The use of the perfect gas law and sound speed at state 01

allow to recast Eq. (1.23) in the form

Φ =
p3
p01

(
T01
T3

)0.5

M3
u23s
U2
2

(1− k2) (1.24)

being for the sake of brevity Φ = ṁ/(ρ01a01π
2
2).

Further, starting from U2
3s = W 2

3s − C2
3 , the ratio U3s/U2 can be ex-

pressed as
U2
3s

U2
2

=
M2

3Rs −M3
3

M2
0u

T3
T01

(1.25)

Accordingly, the mass balance (Eq. (1.24)) when solved for M3Rs gives

M2
3Rs =M2

3 +
ΦM2

0u

1− k2
1

M3

(
1 +

γ − 1

2

)0.5(
p01
p3

)(
T01
T03

)0.5

(1.26)

Finally, being

p01
p3

=

(
1− sW

ηts

)−γ/(γ−1)
T01
T03

= (1− sW)−1 (1.27)
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and defining B as

B =
ΦM2

0u

1− k2
p01
p3

(
T01
T03

)0.5

(1.28)

the relative Mach number at the rotor shroud becomes

M2
3Rs =M2

3 +B

(
1

M2
3

+
γ − 1

2

)0.5

(1.29)

This form is particularly useful because it establishes a straightforward

relationship betweenM3 andM3Rs in which only design specifications (i.e.,

sW , ηts) or variables depending on them (i.e., M0u, see Eq. (1.17)) appear.

Figure 1.9 plots Eq. (1.29) for different values of ϕf = ΦM2
0u/(1− k2)

and constant values of power ratio and efficiency. Within these assump-

tions, it indicates that M3 should fall in the range 0.2-0.4.
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Figure 1.9: Relative Mach number (M3Rs) as a function of the parameter B.

It is assumed p01/p3 = 2 and ηts = 0.85.

In addition, once M3 and M3Rs are defined, the relative flow angle at



1.3. DESIGN OF THE ROTOR OUTLET 21

the rotor shroud β3s can be calculated by

cos β3s =
M3

M3Rs

(1.30)

1.3.2 Shroud-to-inlet radius ratio and blade height-

to-inlet radius ratio

The radius ratio at rotor outlet (r3/r2) can be related to the relative

velocity ratio across the rotor (W3/W2), absolute flow angle at rotor inlet

(α2) and relative flow angle at rotor outlet (β3). In the following analysis

it is assumed that the angle β3 changes with radius such that the exit

velocity C3 is constant along the blade span.

From the velocity triangle it is

sin |β3| =
U3

W3

(1.31)

which is recast, being U3 = U2r3/r2, in the form

r3
r2

=
W3

W2

W2

U2

sin |β3| (1.32)

Trigonometric considerations on the inlet velocity triangle allow to re-

cast Eq. (1.32) as

r3
r2

=
W3

W2

cosα2

sin(α2 − β2)
sin |β3| (1.33)

In case the α2 which minimizes the Mach number M2 is selected (i.e.,

α2 = π/2 + β2/2, see Eq. (1.12)) then the radius ratio reduces to

r3
r2

=
W3

W2

sin |β3|
tanα2

(1.34)

At the shroud radius it is

r3s
r2

=
W3s

W2

sin |β3s|
tanα2

(1.35)

Equations (1.34) and (1.35) are suitable to calculate the radius ratio

because α2 and β3 (or β3s) can be evaluated by Eqs. (1.12) and (1.30),
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respectively. Clearly, an assumption on the velocity ratio has to be made.

Recommended values of W3/W2 [31] and W3s/W2 [27] are

W3

W2

= 2
W3s

W2

= 2.5 (1.36)

The blade height-to-radius ratio (b2/r2) is calculated starting from the

area ratio A2/A3 in the form

b2
r2

=
A2

A3

1− k2

2

(
r3s
r2

)2

(1.37)

The conservation of the mass flow between stations 2 and 3 allows to

write A2/A3 in terms of the so-called flow functions

A3

A2

=
F2 cosα2

F3

(
T03
T02

)2
p02
p03

=
F2 cosα2

F3

(
T03
T02

)2
p02
p01

p01
p3

p3
p03

(1.38)

where F depends only on M and γ.

The second law Tds = dh − vdp can be used to evaluate the entropy

change between states 2s and 2. By integrating the second law along the

isobaric line p2 and the constant stagnation temperature line T01 = T02,

the equivalence of the resulting entropy change gives

p02
p01

=
T2s
T2

γ
γ−1

(1.39)

Being ζN = (h2 − h2s)/(0.5C
2
2) the nozzle loss coefficient, the pressure

ratio p02/p01 is written as

p02
p01

=

(
1− ζN

γ − 1

2
M2

2

) γ
γ−1

(1.40)

Finally, by including Eqs. (1.40) and (1.27) in Eq. (1.38) a useful form

of the area ratio depending on design specifications is obtained

A3

A2

=
F2 sinα2

F3

(
1− sW

ηts

)− γ
γ−1

(1− sW)0.5

(
1− ζN

γ−1
2
M2

2

1 + γ−1
2
M2

3

) γ
γ−1

(1.41)
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1.3.3 Optimum incidence and relative flow angle

The dominant effect in the rotor inlet region is the tangential turning

of the flow and the resulting negative incidence at design operation. In

standard applications the most uniform flow distributions were found to

be at a relative inlet angle (accounted from radial direction) in the range

−20 to −40◦. Lower angles result in a flow separation at the leading edge

of the suction surface and a strong recirculation occurs in the full extent

of this surface. On the other hand, higher angles lead to flow separation

and recirculation at the pressure surface leading edge. The cause of the

flow movement across the passage from the suction to the pressure surface

is that as the flow moves inward the blade speed U decreases more rapidly

than the tangential velocity Ct. Accordingly, the direction of the relative

velocity moves towards the direction of the peripheral velocity, that is

towards the pressure surface.

A simple way to take into account these phenomena in the preliminary

design phase is to use the so-called slip factor σ. It relates the optimum in-

cidence velocity triangle to the velocity triangle at zero incidence condition

(superscript ’), as shown in Fig. 1.10 (U and Cm are the same).

U’
2
=U

2

W
2C

2

β
2

C’
2

blade 

direction

Figure 1.10: Velocity triangles for the definition of the slip factor.

The slip factor is defined as

σ = 1− C ′
t2 − Ct2

U2

(1.42)

and it depends, in its simplest formulations, on the rotor blade number

Z (see, e.g., Stanitz: σ = 1 − 0.63π/Z). If the blades are radial, the
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previous Equation becomes

σ =
Ct2

U2

(1.43)

and trivial trigonometric considerations on the velocity triangle allows

to write
Ct2

U2

=
tanα2

tanα2 − tan β2
(1.44)

For minimum inlet Mach number condition (i.e., α2 = π/2+ β2/2) Eq.

(1.44) reduces to
Ct2

U2

= cos β2 (1.45)

Thus, from Eqs. (1.43) and (1.45) and using Stanitz slip factor it is

possible to obtain a criterion for the choice of the relative flow angle

cos β2 = 1− 0.63π

Z
(1.46)



Chapter 2

Design guidelines for axial

flow turbines

This Chapter focuses on the fundamentals of traditional steam axial

flow turbines and it is aimed at providing a general presentation of the

different turbine configurations along with the design guidelines commonly

followed in the steam turbine design practice ([32], [28], [33]).

Section 2.1 outlines the fundamental thermodynamic concepts in energy

conversion across a turbine stage and shows how the purpose of obtaining

high specific work reflects on the velocity triangles shapes and row con-

figuration. The non-dimensional parameters commonly used in the design

and performance analysis of turbine stages (i.e., flow and loading coeffi-

cient and reaction) are recalled in Section 2.2 and their influence on both

stage geometry and performance is examined. In particular, reaction is

particularly useful to classify two kinds of turbine stage: action (Section

2.3, 2.4 and 2.5 referring to pure impulse, velocity compounded and pres-

sure compounded impulse stage, respectively) and reaction (Section 2.6)

turbine stage. In the former the whole available enthalpy drop is used to

accelerate the fluid in the nozzle and no pressure drop occurs in the rotor

row. Conversely, in the latter part of the available enthalpy drop is used to
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accelerate the fluid also in the rotor. A common scheme is used to illustrate

the main features of action and reaction stages: (i) general architecture,

velocity triangles and expansion in the h-s chart, (ii) efficiency calculation

as a function of the design parameters and (iii) design guidelines.

Subsequently, Section 2.7 shows how stages are assembled in the action-

reaction multistage turbines, which represents the most common turbine

configuration in steam power plants as it allows to overcome the limitations

about the minimum volumetric flow rate at the inlet and to efficiently

manage the off-design operation.

Section 2.8 deals with some criteria to split the available enthalpy drop

among the turbine stages and, in turn, determine the stages number along

with the mean diameter and the blade height for each stage. The discussed

criteria are: (i) constant blade span to mean diameter ratio and (ii) con-

stant hub diameter. The analytical derivation of well-known design tools

in preliminary turbine design practice (i.e., the loading coefficient-flow co-

efficient chart and the specific speed-specific diameter diagram) closes the

Chapter.

2.1 General concepts of energy transfer

A turbine stage consists of a nozzle followed by a rotor, as depicted in

Fig. 2.1. The inlet to the stage is station 1, the outlet from the stator or

the inlet to the rotor is station 2 and the outlet from the rotor is station 3.

Flow angles are referred to the axial direction and are positive when they

are in the direction of the blade motion (e.g. in Fig. 2.1 the absolute flow

angle α1 is negative as the corresponding velocity tangential projection

Ct1). With this sign convention the specific work delivered by an axial

turbine stage can be expressed in terms of velocities by the Euler equation

for turbomachinery
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W = U(Ct2 − Ct3) = U(Wt2 −Wt3) (2.1)

where U , C and W are the peripheral, absolute and relative velocities,

respectively. The subscripts t and m denote the tangential and meridional

component of the corresponding vector. If Cm = Wm is constant across

the stage, Eq. (2.1) can be rearranged as

W = UCm(tanα2 − tanα3) = UCm(tan β2 − tan β3) (2.2)
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Figure 2.1: Velocity triangles for a turbine stage.

In the following axial turbines stage are analyzed assuming that the

flow conditions at a mean radius, i.e., the meanline, represent the flow at

all radii. This simplification provide a reliable approximation of the actual

flow if (i) the blade height to rotor tip diameter is low (e.g., rh/rt > 0.4,

where rh and rt are the hub and tip rotor radii) and (ii) the flow is invariant

along the circumferential direction.

The aim of a turbine stage is, for given U , to obtain an high specific

work W with a high efficiency. High specific work requires high deflection ϵ

in the rotor (ϵR = β2−β3): a typical value is 70◦ and rarely exceeds 90◦ for

heavily loaded blades. High rotor deflections require in turn that the stator

deflects the absolute stream in the opposite direction (compareW2 andW3

directions in Fig. 2.1). Hence, the rotor deflects the relative stream in the
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opposite direction of U , whereas the stator deflects the absolute stream

in the direction of U . As the stator turns the absolute velocity toward

the direction of rotation, the stator outlet velocity C2 is higher than C1,

leading to a drop in the static enthalpy

h1 − h2 =
1

2
(C2

2 − C2
1) (2.3)

Eq. (2.3) rearranged in the form

(u1 − u2) + (p1v1 − p2v2) =
1

2
(C2

2 − C2
1) (2.4)

highlights that the increase in kinetic energy (1/2(C2
2 −C2

1)) across the

stator comes from a decrease of the internal energy (u1−u2) and from the

difference in the flow work (p1v1 − p2v2). In particular, p1v1 is the work

done by the fluid just upstream the control volume on the adjacent fluid to

push it inside the control volume; p2v2 is the work done by the fluid inside

the control volume on the adjacent fluid to push it outside the control

volume. Necessarily, the variation of internal energy and the difference

in the flow work have the same sign, as can be easily demonstrated by

assuming ideal gas behavior

du = cV dT (2.5)

d(pv) = RdT (2.6)

where cV is the specific heat at constant volume and R is the ideal gas

constant. The ratio of these contributions to the increase of the kinetic

energy across the stator is (cv = R/(γ − 1))

du

d(pv)
=

1

γ − 1
(2.7)

where γ = cP/cV . The variation of the ratio expressed by Eq. (2.7) is

equal to 3 for γ = 1.33 (steam) and progressively increases as γ decreases
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reaching 10 for γ = 1.1 (typical for high molecular mass organic fluids).

Thus, for organic fluids the increase in kinetic energy across the stator

mainly derives from the drop in internal energy.

In the rotor the fluid is directed back toward the axis and reduces its

absolute kinetic energy. The specific work is

W = h02 − h03 = h2 − h3 +
1

2
(C2

2 − C2
3) (2.8)

Again, by expanding the enthalpy terms

W = (u2 − u3) + (p2v2 − p3v3) +
1

2
(C2

2 − C2
3) (2.9)

and the ratio between the contribution to the delivered work from the

variation of internal energy (u2 − u3) and flow work (p2v2 − p3v3) is still

expressed by Eq. (2.7).

2.2 Turbine stage design parameters

The preliminary design of a turbine stage usually starts with the choice

of three non-dimensional parameters which allow the designer to define the

shape (i.e., flow angles) of the velocity triangles. These non-dimensional

parameters are the flow coefficient (ϕ), loading coefficient (Ψ) and reaction

(R or χ).

The flow coefficient ϕ is defined as the ratio between the meridional

flow velocity (Cm) to the blade speed (U)

ϕ =
Cm

U
(2.10)

A stage with low ϕ leads to flow angles close to tangential direction

and vice versa. The mass flow rate is proportional to ϕ for fixed geometry

and rotational speed.
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The stage loading coefficient Ψ is the ratio of the stagnation enthalpy

change through the stage to the square of the blade speed. For an axial

stage recalling the Euler equation

Ψ =
h01 − h03

U2
=
Ct2 − Ct3

U
(2.11)

A stage with high Ψ means large flow turning and, in turn, highly

skewed velocity triangles. Generally, designs with high stage loading are

preferable, because they limit the stage number to produce a required work

output. On the other hand, higher blade loading means higher losses across

the expansion due to the increased flow turning (see Section 2.9).

Loading and flow coefficient allows to obtain a Euler turbine equation

in a dimensionless form starting from Eq. (2.2)

Ψ = ϕ(tanα2 − tanα3) (2.12)

or, equivalently

Ψ = ϕ(tan β2 − tan β3) (2.13)

The stage reaction is defined in at least two different ways: the kine-

matic (R) and the thermodynamic (χ) reaction

R =
W 2

3 −W 2
2

(C2
2 − C2

3) + (W 2
3 −W 2

2 )
=
h2 − h3
h1 − h3

= 1− h1 − h2
h1 − h3

(2.14)

χ =
h2 − h3s

(h1 − h1s)− (h2 − h3s)
(2.15)

In general terms, the same turbine stage has different values of the

kinematic and thermodynamic reaction. As a design parameter the reac-

tion is an indicator of the velocity triangle asymmetry, thus it provide a

fairly direct indication about the blade geometry and it is therefore the

most suited parameter to classify different turbine styles.
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2.3 Impulse stage

In an impulse stage no pressure drop occurs across the rotor because

the whole available enthalpy drop is converted in kinetic energy at nozzle

outlet. Both the specific work and the total-to-static efficiency may be

related to different design parameters: the characteristic velocity ratios

X = U/(C2 sinα2) and ν = U/c0 or the loading coefficient Ψ. The values

of these parameters leading to the maximum turbine efficiency provide

indications for an optimum stage design. They are X ≈ 0.5, ν ≈ 0.47 and

Ψ ≈ 2.

2.3.1 Construction features

An impulse stage consists of a set of nozzles and a row of blades.

The entire pressure drop takes place in the nozzle so that the pressure

is maintained constant across the rotor row. Consequently, assuming an

irreversible process across the rotor, the cinematic reaction of an impulse

stage is slightly negative

h3 > h2 → R =
h2 − h3
h1 − h3

< 0 (2.16)

Instead, the thermodynamic reaction χ is null because there is no isen-

tropic enthalpy drop across the rotor (i.e., state 2 and 3s coincide as shown

in Fig. 2.3).

As in the nozzle the whole available enthalpy drop is used to accelerate

the fluid, it is not unusual the adoption of converging-diverging nozzles to

reach supersonic speeds. Moreover, the equiangular rotor blades (i.e., β2 =

−β3), assume the typical bucket shape, because at the design condition

metal angles are close to the flow ones.

Figure 2.2 shows the velocity triangles for a real impulse stage with

equiangular rotor blades. It can be seen that rotor diffusion (W2 > W3)

occurs across the rotor row. This aspect should be carefully taken into
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account because the resulting adverse pressure gradient (i.e., the pressure

increases in the direction of the flow) coupled with the typical turbine fluid

deflection may give rise to boundary layer separation and corresponding

efficiency losses.

The expansion process is sketched on the enthalpy-entropy diagram

in Fig. 2.3: nozzle outlet state (2) and isentropic rotor outlet state (3s)

coincide as they lie on the same pressure line.
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Figure 2.2: Velocity triangles for a real impulse stage with equiangular rotor

blades (W3 must be lower than W2).
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2.3.2 Analytical expressions of work and efficiency

versus design parameters

In this Section the expressions for the specific work W and the total-

to-static efficiency ηts are derived. Irreversibilities are accounted by means

of velocity coefficients: φ for the nozzle and ψ for the rotor.

φ =
C2

C2s

=
1

(1 + ζN)0.5
(2.17)

ψ =
W3

W3s

=
W3

W2

=
1

(1 + ζR)0.5
(2.18)

The equivalence W3s = W2 in Eq. (2.18) is a direct consequence of the

absence of pressure drop across the rotor (i.e., p2 = p3 → state 3 ≡ 3s).

The work extracted by an axial machine is

W = U(C2 sinα2 − C3 sinα3) (2.19)

Considering the rotor outlet velocity triangle and the definitions pro-

vided by Eq. (2.18)

C3 sinα3 = ψW2 sin β3 + U (2.20)

whereas for the rotor inlet

C2 sinα2 =W2 sin β2 + U (2.21)

By substituting W2 from Eq. (2.21) in Eq. (2.20) and the resulting

expression of C3 sinα3 in Eq. (2.19), the work expression can be rearranged

in

W = U(C2 sinα2 − U)

(
1− ψ

sin β3
sin β2

)
(2.22)

Introducing the speed ratio between the peripheral speed and the tan-

gential absolute velocity at rotor inlet

X =
U

C2 sinα2

(2.23)
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and assuming equiangular rotor blades (β2 = −β3), the final expression

for the work becomes

W = C2
2 sin

2 α2X(1−X)(1 + ψ) (2.24)

The total-to-static efficiency ηts follows immediately from its own defi-

nition by embedding the work expression of Eq. (2.22)

ηts =
w

h01 − h2s
=
C2

2 sin
2 α2X(1−X)

(
1− ψ sinβ3

sinβ2

)
C2

2

2φ2

(2.25)

For equiangular rotor blades (β2 = −β3) it reduces to

ηts = 2φ2 sin2 α2X(1−X)(1 + ψ) (2.26)

The performance of the stage has been related up here to the character-

istic speed ratio X = U/(C2 sinα2) (see for example Eq. (2.26)). However,

it might be useful to relate the performance of the stage to other parame-

ters frequently used in turbine design practice: the loading coefficient (Ψ)

and the isentropic velocity ratio (ν).

By including in the definition of loading coefficient (Eq. (2.11)) the

work expression deduced in Eq. (2.24) it results

Ψ =
(1−X)(1 + ψ)

X
(2.27)

The isentropic velocity ratio (ν) is the ratio between the peripheral

speed U and the spouting velocity C0 (which is the velocity at the end of

an isentropic expansion from the total inlet condition of the fluid to the

outlet static pressure)

ν =
U

C0

=
U

(2(h01 − h3ss))0.5
(2.28)

As h01 − h3ss = 1/2C2
2s, referring to the definitions of φ = C2/C2s and

X = U/(C2 sinα2) it follows

h01 − h3ss =
1

2φ2

U2

sin2 α2X2
(2.29)
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and, in turn, Eq. (2.28) becomes

ν = φ sinα2X (2.30)

Equation (2.30) establishes a direct relationship between the two ve-

locity ratio X and ν.

2.3.3 Design guidelines

The guidelines for an optimum design of an impulse stage are essentially

represented by those values of non-dimensional design parameters which

maximize the efficiency expression deduced in Section 2.3.2.

When the rotor velocity coefficient ψ is assumed independent of X, the

parabolic work trend in Fig. 2.4 is obtained (see Eq. 2.24). The maximum

work Wmax and efficiency is achieved for

Xopt = 0.5 (2.31)

and it is

Wmax = W|X=0.5 = C2
2 sin

2 α2
1

4
(1 + ψ) (2.32)

It is remarkable to note that, under the hypothesis of constant ψ, the X

value leading to the maximum work extraction or total-to-static efficiency

is independent of the rotor loss coefficient.

Similarly to the specific work, when the rotor loss coefficient ψ is con-

stant, a parabolic ηts trend with X is obtained. The maximum efficiency

lies again on X = 0.5 and it is equal to

ηts,max = ηts|X=0.5 =
1

2
φ2 sin2 α2(1 + ψ) (2.33)

Figure 2.5 shows the trend of ηts for two different values of the nozzle

outlet angle α2 in case the dependency of the loss coefficient ψ on X is

taken into account. In general terms, for fixed C2 and α2, an increase of X

results in a decrease of (i) the rotor turning and in turn of the losses (i.e.
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Figure 2.4: Specific work extracted by an impulse stage with equiangular rotor

blades and fixed rotor loss coefficient.

ψ increases and ζR decreases) and (ii) the inlet relative velocity W2. Con-

sequently, the enthalpy loss in the rotor h3 − h3s decreases as X increases

h3 − h3s = (1− ψ2)
W 2

2

2
(2.34)

The discharge kinetic energy, which is a loss for a total-to-static ef-

ficiency, is minimum for X = 0.5 (i.e., axial discharge) in the ideal case

(ψ = 1). Thus, for the real case (ψ < 1 and variable with X) the minimum

kinetic loss is located not too far from X = 0.5. All the above consider-

ations would lead to an optimum X slightly over 0.5 as reported in Fig.

2.5.

However, when the parasitic losses (disk friction, partialization) are

considered, it is convenient to adopt small rotors because both disk fric-

tion and partialization losses are proportional to the wheel diameter. In

practice, X ≈ 0.45 is chosen in real impulse stage, because the partial-

ization losses in off design operation rapidly increase with the peripheral
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Figure 2.5: Total-to-static efficiency of an impulse stage with equiangular rotor

blades and variable rotor loss coefficient.

speed U . In this way, the decrease of ηts with respect to its maximum

value is still limited, but it is outweighed by the lower partialization losses.

As regards the optimum loading coefficients (Ψ), Eq. (2.27) evaluated

for the optimum Xopt = 0.5, gives

Ψopt = Ψ|X=0.5 = 1 + ψ (2.35)

Equation (2.35) states that the optimum loading coefficient for an im-

pulse stage is approximately (being ψ ≤ 1)

Ψopt ≈ 2 (2.36)

Instead, the optimum ν is

νopt ≈ 0.47 (2.37)

when φ = 0.95 and α2 = 80◦ are assumed in Eq. (2.30)).
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2.3.4 Impulse turbine limitations

Centrifugal stresses are predominant on the blades and disks of a tur-

bine and they depend on the square of the peripheral velocity U . For the

condition X = 0.5 resulting in both maximum work W and ηts

Uopt = 0.5C2 sinα2 (2.38)

By considering a typical total-to-static enthalpy drop ∆hts for steam

application in the order of 1000 kJ/kg and assuming a total-to-static effi-

ciency equal to 0.84 and a nozzle outlet angle α2 equal to 70◦, it follows

Uopt = 0.5 (2∆htsηts)
0.5 sinα2 = 600 m/s (2.39)

which is very much higher than the maximum allowable speed imposed

by materials (in the order of 300− 350 m/s). Moreover, the high velocity

at nozzle outlet would certainly cause unacceptable losses. Thus, the sin-

gle stage impulse turbine cannot be used with the typical enthalpy drops

available in steam power plants unless an X ratio strongly lower than the

optimum one is chosen.

2.4 Velocity compounded impulse stage

A velocity compounded impulse stage consists of an impulse turbine fol-

lowed by a series of nozzle and rotor rows which progressively reduce the

swirl velocity component. Compared to the impulse stage, it can efficiently

manage higher enthalpy drops because it achieves its best efficiency point

at a lower peripheral velocity. The optimum values of the design parame-

ters for a two row arrangement are X ≈ 0.24 and ν ≈ 0.22. Although the

increase of the rows number leads to a reduction in the optimum peripheral

velocity, configurations with more than three rows are rarely used.
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2.4.1 Construction features

A velocity compounded impulse stage represents a possible solution

when high available enthalpy drop would require too high peripheral ve-

locity to operate efficiently. Despite this configuration includes more than

one fixed and rotor row (usually two) it is commonly referred as ”stage”.

The steam passes through an impulse stage where occurs the whole pres-

sure drop and then enters in a stator row composed of equiangular vanes.

They redirect the fluid towards the second rotor for a further work extrac-

tion and so on.

Figure 2.6 shows the expansion in the enthalpy-entropy chart.
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Figure 2.6: Enthalpy-entropy diagram for a two stage velocity compounded

impulse turbine.
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2.4.2 Analytical expressions of work and efficiency

versus design parameters

This Section is aimed at evaluating the expressions of the specific work

and total-to-static efficiency for a velocity compounded stage with sym-

metrical blades

β2 = −β3 α3 = −α4 β4 = β5 (2.40)

and real rows, whose loss coefficient for the first rotor (ψ′), second rotor

(ψ′′) and stator (ψN) are

ψ′ =
W3

W3s

=
W3

W2

(2.41)

ψ′′ =
W5

W5s

=
W5

W4

(2.42)

ψM =
C4

C4s

=
C4

C3

(2.43)

The velocity triangles are sketched in Fig. 2.7.
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Figure 2.7: Velocity triangles for a real velocity compounded stage. Angles

with the same graphical notation are equal.

The total work W is the sum of the two rotor contributions W12 and

W22 and, recalling Eq. (2.24), is

W = W12 +W22 = U(C2 sinα2 − U)(1 + ψ′) + U(C4 sinα4 − U)(1 + ψ′′)

(2.44)
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The expression C4 sinα4 can be re-written in terms of loss coefficients

and kinematic variables at nozzle outlet

C4 sinα4 = ψR(ψ
′(C2 sinα2 − U)− U) (2.45)

Thus, Eq. (2.44) becomes

W = U (((1 + ψ′) + ψNψ
′(1 + ψ′′))C2 sinα2 − ((1 + ψ′) + ψNψ

′(1 + ψ′′)

+ (1 + ψ′′)(1 + ψN))U) (2.46)

and including the speed parameter X = U/(C2 sinα2) it turns into

W = (X((1+ψ′)+ψRψ
′(1+ψ′′))−X2((1+ψ′)+ψRψ

′(1+ψ′′)+(1+ψ′′)

(1 + ψR)))C
2
2 sin

2 α2 (2.47)

Since for the single stage impulse turbine, the velocity loss coefficients

ψ′, ψ′′ and ψN depends on the deflection and, in turn, on the speed ratio

X = U/(C2 sinα2) the probable values α2 = 76◦, ψ′ = 0.86, ψR = 0.9 and

ψ′′ = 0.93 are assumed [32]. Accordingly, Eq. (2.47) becomes

W = 3.35X(1− 2.1X)C2
2 sinα

2
2 (2.48)

Consequently, the total-to-static efficiency is recast as

ηts =
W

C2/(2φ2)
= 6.7X(1− 2.1X)φ2 sin2 α2 (2.49)

2.4.3 Design guidelines

Specific work and total-to-static efficiency expression (see Section 2.4.2,

Eqs. (2.48) and (2.49)) are null for X = 0 and X = 0.48 and are maximum

for

Xopt = 0.24 (2.50)
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Differently from the single stage configuration, the optimum value of

the velocity characteristic ratio X depends on the velocity loss coefficient.

The optimum design parameter Xopt = 0.24 can be converted in terms

of velocity ratio by means of Eq. (2.30), where φ = 0.95 and α2 = 80◦ are

supposed

νopt = 0.22 (2.51)

Figure 2.8 shows the total-to-static efficiency for an impulse (Eq. (2.26))

and velocity compounded impulse stage (Eq. (2.49)) with equiangular

blades for different velocity ratios (X) and nozzle outlet angles (α2). The

velocity coefficient for the single stage arrangements ψ is set equal to the

stator velocity coefficient of the two stage arrangement ψN . With these

assumptions the efficiency ratio of the two configurations at the respective

best efficiency points is

(ηts,max)Z=2

(ηts,max)Z=1

=
0.8φ2 sin2 α2

0.5φ2 sin2 α2(1 + ψ)
= 0.842 (2.52)

The efficiency of the velocity compounded turbine is lower than the

pure impulse arrangement because (i) losses in the first rotor are higher

due to the higher deflection and (ii) there are also the additional losses in

the stator and in the second rotor.

To further investigate the effect of the velocity compounding staging on

the optimum design parameter when more that two row are put in series,

ideal rows (i.e., ψ = φ = 1) are considered hereafter for the sake of sim-

plicity. As the discharge kinetic energy is the only considered loss source,

the condition of maximum total-to-static efficiency is achieved for no swirl

discharge component at rotor outlet. Accordingly, velocity triangles in-

dicate that the optimum peripheral velocity Uopt needed for no discharge

swirl is
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Figure 2.8: Total-to-static efficiency versus X velocity ratio for different nozzle

outlet angles (65, 71, 80) for a single (right) and double stage (left) impulse

turbine elaborating the same enthalpy drop. The assumed loss coefficients for

the single impulse turbine are ϕ = 0.95 (nozzle) and ψ = 0.9 (rotor); for the

double impulse turbine they are ϕ = 0.95 (nozzle), ψ′ = 0.86 (first rotor),

ψs = 0.9 (stator) and ψ′′ = 0.93 (second rotor).
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Uopt =
C2 sinα2

4
(2.53)

which corresponds to an optimum velocity ratio

Xopt =
U

C2 sinα2

=
1

4
(2.54)

The work for the maximum efficiency operation (which is also the max-

imum work) is

Wmax = W|X=0.25 =
1

2
C2

2 sin
2 α2 = 8U2 (2.55)

(6U2 from the first stage and 2U2 from the second).

Extending Eqs. (2.53), (2.54) and (2.55) to Z stages arrangement

Uopt =
C2 sinα2

2Z
(2.56)

Xopt =
U

C2 sinα2

=
1

2Z
(2.57)

Wmax =
1

2
C2

2 sin
2 α2 = 2Z2U2 (2.58)

Thus, Eq. (2.58) indicates that the ratio between (i) the maximum

work extracted by a turbine with Z ideal and equiangular rows (WZvd)

and (ii) the maximum work extracted by an ideal and equiangular single

row impulse turbine (W1vd) is

• Z2, when U is the same;

• unitary, when the nozzle outlet velocity C2 sinα2 is the same.

A velocity compounded arrangement is advantageous because requires

a lower optimum peripheral velocity Uopt in accordance with Eq. (2.56).

Figure 2.9 compares the ideal velocity triangles and the work of an

impulse turbine (part a) to a two row velocity compounded stage for equal
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Figure 2.9: Comparison between single stage impulse turbine velocity triangles

(a) and two stage velocity compounded impulse turbine with equal C2 sinα2 (b)

and equal U (c). Ideal and equiangular rows and maximum work operation are

assumed.
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Table 2.1: Main parameters for velocity compounded ideal turbines at opti-

mum efficiency point for fixed C2 sinα2.

w1max w2max w3max wratio uopt Xopt

Z = 1 1
2C

2
2 sin

2 α2 − − 1 1
2C2 sinα2

1
2

Z = 2 3
8C

2
2 sin

2 α2
1
8C

2
2 sin

2 α2 − 3 : 1 1
4C2 sinα2

1
4

Z = 3 5
18C

2
2 sin

2 α2
3
18C

2
2 sin

2 α2
1
18C

2
2 sin

2 α2 5 : 3 : 1 1
6C2 sinα2

1
6

nozzle outlet velocity C2 sinα2 (part b) and peripheral velocity U (part c).

All the designs refer to the maximum work (or efficiency) operation.

Velocity compounded stages composed by more than three rows are not

convenient because the relative contribution to the total work provided by

the farthest rows is rather low. In fact, after some tedious algebra, the work

extracted by the nth ideal and equiangular rotor wheel (that is independent

of the turbine stage number) can be expressed by

Wn = 2U(C2 sinα2 − U)− 4(n− 1)U2 (2.59)

whereas the maximum work WnZmax extracted by the nth ideal and

equiangular rotor wheel of a Z row stage turbine is deduced by substituting

Eq. (2.57) in Eq. (2.59)

WnZmax = C2
2 sin

2 α2

(
2(Z − n) + 1

2Z2

)
(2.60)

Table 2.1 summarizes the effect of the row number Z on the work

distribution and optimum velocity ratio.

2.5 Pressure compounded impulse stage

A sequence of impulse stages put in series constitutes the pressure com-

pounded impulse stage. Each fixed row elaborates a fraction of the avail-

able enthalpy drop. The optimum design parameters values are the same of
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the impulse stage (Xopt = 0.5), but, for fixed enthalpy drop, the optimum

peripheral velocity is Z−0.5 times smaller. Instead, for fixed peripheral ve-

locity the pressure compounded stage allows for an efficient exploitation

of an enthalpy drop Z times greater than the impulse stage.

2.5.1 Construction features

A pressure compounded impulse stage represents a further viable option

when facing with available enthalpy drop which would require an impulse

stage arrangement with an excessive optimum tangential speed.

Two or more impulse rows are arranged in series to reduce the optimum

peripheral speed and the steam is expanded partially in each of the nozzles

until the reaching of the discharge pressure. No pressure drop occurs across

each rotor.

2.5.2 Analytical expressions of work and efficiency

versus design parameters

The total-to-total efficiency is the proper metric for the performance

evaluation, independently of the effective recovery of the discharge kinetic

energy

ηtt =
W

h01 − h02s
(2.61)

It has already been shown in Eq. (2.24) that the work extracted by an

impulse stage with equiangular rotor blades (i.e., β2 = −β3) is

W = C2
2 sin

2 α2X(1−X)(1 + ψ) (2.62)

By using the definition of nozzle velocity coefficient, the denominator

of Eq. (2.61) can be conveniently re-written as

h01 − h02s =
C2

2

2φ2
− C2

3

2
(2.63)
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Thus, the stage efficiency is updated

ηtt =
2φ2 sin2 α2X(1−X)(1 + ψ)

1− φ2
(

C3

C2

)2 (2.64)

The velocity ratio C2
3/C

2
2 is then rearranged

C2
3

C2
2

=
1

C2
2

(U2 +W 2
3 + 2W3U sin β3) =

1

C2
2

(U2 + ψ2w2
2 + 2ψW2U sin β3)

(2.65)

and including in Eq. (2.65) the expressionW 2
2 = U2+C2

2 −2C2U sinα2

and W2 = (C2 sinα2 − U)/ sin β2 it becomes

C2
3

C2
2

= ψ2 +X sin2 α2((1 + ψ)2X − 2ψ(1 + ψ)) (2.66)

Accordingly, the final expression of the total-to-total efficiency results

in

ηtt =
2φ2 sin2 α2X(1−X)(1 + ψ)

1− φ2(ψ2 +X sin2 α2((1 + ψ)2X − 2ψ(1 + ψ)))
(2.67)

To avoid any ambiguity, it is useful to point out that Eq. (2.67) ex-

presses the performance of a single couple nozzle-rotor of the pressure

compounded arrangement. The derivation of an analytical formulation of

the efficiency of the entire pressure compounded stage consisting in more

than one row, would be impractical and it is therefore omitted.

2.5.3 Design guidelines

The considerations on the optimum design parameters values of the

pressure compounded stage are the same of the impulse stage (see Sec-

tion 2.3) because the pressure compounded arrangement is essentially a

sequence of impulse stages. Obviously, for equal enthalpy drop, the nozzle

outlet velocity of the pressure compounded stage is lower than the impulse

stage, because the nozzle converts into kinetic energy only a fraction of the

available enthalpy drop.

As the total-to-total stage efficiency do not account for the kinetic

energy losses, the optimum velocity ratio Xopt in Eq. (2.67) is slightly
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higher than the one maximizing the total-to-static efficiency, leading to

Xopt > 0.5. Nevertheless,

X ≈ 0.5 (2.68)

is chosen in practice because it guarantees lower parasitic losses (e.g.

disk friction loss which rapidly increases with X) in the face of a very

limited decrease of the efficiency.

In the following the pressure compounded stage with Z rows (subscript

Zpd, pd stands for pressure drops) is compared both with the impulse stage

and the velocity compounded stage. It is assumed that (i) the available

enthalpy drop is equally divided among the Z rows, (ii) rotor rows are

equiangular and (iii) working conditions are optimum (Xopt=0.5).

For the pressure compounded impulse stage

UZpd =
C2 sinα2

2
= φ

sinα2

2

(
2(h01 − h2s)Zpd

Z

)0.5

(2.69)

where (h01−h2s)Zpd is the isoentropic enthalpy drop inlet/outlet of the

turbine and C2 is the nozzle outlet velocity.

Similarly, for the impulse stage

U1pd = φ
sinα2

2
(2(h01 − h2s)1pd)

0.5 (2.70)

Accordingly (see Eqs. (2.69) and (2.70)),

• for equal nozzle outlet angle (α2), nozzle loss coefficient (φ) and

peripheral velocity (U) it is

(h01 − h2t)Zpd

(h01 − h2t)1pd
= Z (2.71)

that is the pressure compounded stage allows an efficient exploitation

of an enthalpy drop Z times greater than the impulse stage.
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• for equal available enthalpy drop ((h01 − h2s)Zpd = (h01 − h2s)1pd)

UZpd

U1pd

=
1

Z0.5
(2.72)

that is the optimum peripheral velocity of the pressure compounded

stage is Z−0.5 times the impulse stage.

When the velocity triangles of pressure compounded stage are similar

to those of the impulse stage, Eq. (2.72) can be extended in the form

UZpd

U1pd

=
CZpd

C1pd

=
WZpd

W1pd

=
1

Z0.5
(2.73)

The specific losses in the nozzle (Ln) and in the rotor row (Lr) of the

impulse stage are

(Ln + Lr)1pd =

(
1

φ2
− 1

)(
C2

2

2

)
1pd

+ (1− ψ2)

(
W 2

2

2

)
1pd

(2.74)

whereas in the pressure compounded stage they are Z times those

occurring in the impulse stage

(Ln + Lr)Zpd =

(
1

φ2
− 1

)(
C2

2

2

)
Zpd

+ (1− ψ2)

(
W 2

2

2

)
Zpd

(2.75)

Assuming equal velocity coefficients and considering Eq. (2.73), it

results

(Ln + Lr)1pd
(Ln + Lr)Zpd

= 1 (2.76)

Thus, in spite of the higher number of rows in a pressure compounded

stage, the total loss amount is almost the same being velocities pro-

portionally lower. On the other hand, in the pressure compounded

stage the discharge kinetic energy loss is 1/Z times that of the im-

pulse stage.
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With respect to the comparison with the velocity compounded stage

(subscript Zvd stands for velocity drop) whose optimum velocity ratio is

Xopt = 1/(2Z) (refer to Section 2.4) it is

(h01 − h2s)Zvd =
2U2

Zvd

φ2 sinα2
2

Z2 (2.77)

Accordingly (see Eqs. (2.69) and (2.77)),

• for equal nozzle outlet angle (α2), nozzle loss coefficient (φ) and

peripheral velocity (U) it is

(h01 − h2t)Zpd

(h01 − h2t)Zvd

= Z (2.78)

that is the pressure compounded stage is more suitable to exploit

high enthalpy drops with a limited number of stages. However, pres-

sure compounded arrangement can achieve higher turbine efficiency

because of the reheat factor effect and the reduced discharge kinetic

energy losses.

• for equal available enthalpy drop ((h01 − h2s)Zpd = (h01 − h2s)Zvd)

UZvd

U1vd

=
1

Z
(2.79)

that is the optimum peripheral velocity of the pressure compounded

stage is Z−1 times the velocity compounded stage.

2.6 Reaction stage

Differently from an impulse stage, in a reaction stage a fraction of the

available enthalpy drop occurs in the rotor. The 50% reaction stage is the

most diffused reaction arrangement because it is characterized by symmet-

ric blade profiles. Its optimum design parameters are: Xopt ≈ 1, Ψopt ≈ 1
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and νopt ≈ 0.90. Differently from the impulse stage, the technological

constraints on the minimum inlet blade height cannot be overcome by par-

tialized operation, thus a limitation on minimum swallowable volumetric

flow rate exists.

2.6.1 Construction features

In a reaction stage a pressure/enthalpy drop occur both across the noz-

zle and rotor row. When kinematic and thermodynamic reaction are equal

to 50%, nozzle and rotor velocity triangles and, in turn, corresponding

blade profiles are symmetric.

Reaction stages with equal cinematic (R, see Eq. (2.14)) and thermo-

dynamic reaction (χ, see Eq. (2.15)) are largely employed in power plants,

being particularly favorable from a practical point of view. According to

the respective definitions, the cinematic and thermodynamic reactions are

equal when

ψ = ϕ W3 = C2 C3 =W2 C3 = C1 (2.80)

and the resulting common value is R = χ = 0.5.

The condition ψ = ϕ requires in turn equal fluid deflections in the

nozzle and rotor row, that is

α3 = −β2 α2 = −β3 (2.81)

In brief, a stage with R = χ = 0.5 is characterized by symmetric

velocity triangles (see Fig. 2.10) and makes possible the use of the same

blade profiles in the stator and in the rotor with obvious reduction of

manufacturing costs. Figure 2.11 shows the expansion in the enthalpy-

entropy chart.
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Figure 2.10: Velocity triangles for a reaction stage with R = χ = 0.5.
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2.6.2 Analytical expressions of work and efficiency

versus design parameters

This Section is aimed at evaluating the expressions of the specific work

and total-to-total efficiency for a 50% reaction stage.

The specific work extracted by the stage may be written as

W = U(C2 sinα2 − C3 sinα3) = U(2C2 sinα2 − U) (2.82)

and introducing the velocity ratio X = U/(C2 sinα2)

W = C2
2 sinα

2
2X(2−X) = U22−X

X
(2.83)

As regards the efficiency, the total-to-total enthalpy isentropic enthalpy

drop h01 − h03ss is conveniently recast as follows

h01 − h03ss = h01 − h3ss −
C2

1

2
= h01 − h2s + h02R − h3s −

C2
3

2
− C2

1

2
(2.84)

From the velocity coefficients definitions

h1 − h2s =
C2

2

2φ2
− C2

1

2
(2.85)

h2 − h3s =
C2

2

2ψ2
− C2

1

2
(2.86)

it follows (C1 = W2)

h01 − h2s =
C2

2

2φ2
(2.87)

h02R − h3s =
C2

2

2ψ2
(2.88)

Accordingly, Eq. (2.84) becomes

h01 − h03ss =
C2

2

2φ2
+
C2

2

2ϕ2
− C2

3

2
− C2

1

2
(2.89)

As in a 50% reaction stage φ = ψ and C1 = C3 the total-to-total

enthalpy drop may be simplified as
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h01 − h03ss =
C2

2

φ2
− C2

3 (2.90)

and the total-to-static efficiency ηtt turns into

ηtt =
h01 − h03
h01 − h03ss

=
φ2 sin2 α2X(2−X)

1− 1
2
φ2C

2
3

C2
2

(2.91)

By considering for the rotor inlet triangle the geometric identity

W 2
2 = C2

2 + U2 − 2C2U sinα2 (2.92)

it results (W2 = C3)

C2
3

C2
2

= 1 + sin2 α2X
2 − 2X sin2 α2 (2.93)

and, in turns, the final expression of the total-to-total efficiency for a

normal 50% reaction stage becomes

ηtt =
φ2 sin2 α2X(2−X)

1− 1
2
φ2(1− sin2 α2X(2−X))

(2.94)

Similarly to the impulse stage the velocity ratio X can be related to

the loading coefficient Ψ by embedding the work expression deduced in Eq.

(2.83) in the definition of loading coefficient (Eq. (2.11))

Ψ =
2−X

X
(2.95)

2.6.3 Design guidelines

The identification of the design parameters values which maximize the

work and efficiency expressions (Section 2.6) provide an indication for an

optimum design of the reaction stage.

For fixed C2 sinα2, the X value leading to the maximum work extrac-

tion is

Xopt = 1 (2.96)
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and the correspondent work is

Wmax = W|X=1 = C2
2 sin

2 α2 = U2 (2.97)

The efficiency ηtt (Eq. (2.94)) trend with X is symmetric with respect

to X = 1 when the velocity coefficient are constant. However, the veloc-

ity coefficients depend on X and they decrease (i.e. more losses) as the

deflection increases, so that the best efficiency lies between X = 1− 1.33.

Nevertheless, configurations with X = 0.8 − 1 are chosen in real practice

because they allow to manage higher enthalpy drops with a slight reduction

in efficiency.

The optimum loading coefficient corresponding to Xopt = 1 is approxi-

mately one half of the impulse stage and it is deduced from Eq. (2.95)

Ψopt = 1 (2.98)

Instead, the optimum velocity ratio is

νopt ≈ 0.90 (2.99)

2.6.4 Limitations on the minimum inlet volumetric

flow rate

Differently from an impulse stage, a reaction stage cannot be partialized

due to the pressure drop across the rotor. As a consequence the design of

a reaction stage might be unfeasible when the inlet volumetric flow rate

is too low, because it would require an excessively short blade ([32],[34]).

Therefore, it exists a minimum allowable rotor inlet volumetric flow rate

V̇2min.

The smaller the power, or the higher the enthalpy drop or the lower the

specific volume, the lower the rotor inlet volumetric flow rate

V̇2I =
P

η(h0A − hBs)
v2s (2.100)
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where subscripts A and B denote the inlet and the outlet of the turbine

and η is the turbine total-to-static efficiency (including parasitic losses).

The volumetric flow rate equation can be recast to highlight the influ-

ence of cinematic parameters on the design [32]. In particular

V̇2I = ζ1πDmb2C2 cosα2 (2.101)

and, including the trivial identities (i) πDm = 60u/n (n in rotation per

minute), (ii) C2 cosα2 = U/(X1 tanα2) and (iii) w = U2(2−X)/X (valid

only for R = 0.5 reaction stages) it results

V̇2 =
60

n
ζ2b2

w

2−X

1

tanα2

(2.102)

Equation (2.102) allows the evaluation of the minimum inlet volumetric

mass flow rate V̇2min once the proper values (identified by the superscript

∗) of the variables are fixed. In detail, the requirements for

• limiting the stage number based on techno-economic considerations

suggests a minimum value of the enthalpy drop per stage w∗;

• avoiding low stage and, in turn, turbine efficiency imposes X∗ >

0.4− 0.5;

• fulfilling manufacturing constraints lead to b∗2 > 25 − 30mm and

α∗
2 < 76− 78◦.

Thus, Eq. (2.102) evaluated for the star values provides an indication

whether or not the volumetric flow rate deduced from the design specifi-

cations (Eq. 2.100) might be swallowed by a 50% reaction stage.

2.7 Impulse-reaction multistage turbines

Multistage turbines are needed when the high available enthalpy drop

would lead to unfeasible or inefficient single stage configurations, that is
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when the optimum design parameters of single stage turbines result, as

instance, in excessive peripheral speeds. The main advantage of impulse-

reaction multistage turbine arrangement relies on the possibility of partial-

izing the first impulse stage which in turn allow (i) acceptable blade height

even for low volumetric flow rate and (ii) an effective management of off-

design operation (no throttling). Moreover, the higher the stage number,

the lower the optimum peripheral speed.

In Section 2.6.4 it has been shown that both technical and fluid dy-

namic considerations define the minimum volumetric flow rate swallowed

by a reaction stage. In case the available volumetric flow rate is lower

than this limiting value, a velocity compounded impulse stage is placed

before the reaction stages series. This configuration is very common in

turbine technical practice and it is called “impulse-reaction turbine”. In

fact, the velocity compounded impulse stage can be largely partialized to

permit the discharge of rather low volumetric flow rate until an adequately

high volumetric flow rate is reached before the subsequent reaction stages.

However, impulse-reaction turbines are used in power generation also when

the volumetric flow rate would technically allow the simple reaction stage

arrangement. The reason of this choice is two-fold. Firstly, the velocity

compounded configuration is particularly useful in off design operation,

because it is possible to partialize the first nozzle row to reduce the mass

flow rate and, in turn, the power without introducing irreversibilities before

the turbine (e.g., throttling). Secondly, the stress on the reaction turbine

section is lower due to (i) the remarkable pressure drop across the impulse

stage nozzle and (ii) the progressive pressure reduction in the flow direc-

tion. In fact, the maximum work and the enthalpy drop across a reaction

stage is slightly lower than in an impulse stage, because, in the latter the

work is W ≈ 7u2 (see Eq. (2.48) evaluated for Xopt = 0.24), whereas in

the former the work is U2 (see Eq. 2.97).



2.8. ENTHALPY DROP SPLITTING AMONG TURBINE STAGES 59

2.8 Enthalpy drop splitting among turbine

stages

The choice of the stage number in the multistage turbine design is a

key problem. Only turbines composed of 50% reaction stages are consid-

ered here and methodologies to estimate (i) the stage number for assigned

available enthalpy drop and (ii) the mean diameter and the blade height for

each rotor row inlet are outlined. Two criteria are commonly used in the

technical practice ([32], [34]): (i) constant blade to mean diameter ratio

and (ii) constant hub diameter. The former is suitable for high pressure

turbine section, whereas the latter fits to medium-low pressure section.

Regardless of the design criterion, iterative procedures are needed.

2.8.1 Constant rotor inlet blade height to mean di-

ameter ratio design criterion

The assumption of constant blade height to mean diameter ratio for all

turbine stages

b2
Dm2

= constant (2.103)

implies larger rotor toward the lower pressure with increasing blade root

diameter and is typical of the high pressure section in multistage turbines.

The specific work of a turbine stage is

W = ∆h+
C2

1

2
− C2

3

2
= ΨU2 (2.104)

and equivalently

∆h =

(
Ψ+

1

2

(
C2

3

U2
− C1

U2

))
U2 = k1u

2 (2.105)

where the constant quantity k1 = Ψ+0.5(C2
3/U

2 −C2
1/U

2) is equal for all

the stages as they have similar velocity triangles.
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The volumetric flow rate V̇2 entering in the generic rotor row is (b2 and

ζ are the blade height and the blockage factor, respectively)

V̇2 = ṁv2 = ζπDm2b2C2 sinα2
1

tanα2

(2.106)

Including Dm2 = 2U/ω, C2 sinα2 = U/X (ω and X are equal for all

the stages) in Eq. (2.106), it results for the specific volume

v2 =
4πζb2

ṁω2Dm2X tanα2

U3 (2.107)

In accordance with Eq. (2.103), Eq. (2.107) becomes

v2 = k2u
3 (2.108)

where k2 = (4πζb2)/(ṁω
2Dm2X tanα2) is constant for all the stages.

Finally, Eqs. (2.105) and (2.108) lead to the fundamental relationship

∆h =
k1

k
2/3
2

v
2/3
2 = k3v

2/3
2 (2.109)

which states that the criterion of constant rotor inlet blade height to

mean diameter ratio (Eq. (2.103)) requires, in turn, that the ratio between

the enthalpy drop across a stage and the corresponding specific volume at

rotor inlet power of 2/3, be the same for all the stages (Eq. 2.109).

The next step in the multistage turbine design is the estimation in the

h-s chart of a first attempt expansion line which connects the static state

at the outlet of the first rotor row (state 3I in Fig. 2.12, known from the

first stage design) to the static state at the turbine discharge (state B in

Fig. 2.12).

For the sake of simplicity a straight line is assumed. With regard

to state B identification, the total enthalpy at turbine discharge (h0B) is

calculated from the energy balance

h0A − h0B = w = (h0A − h0Bs)ηtsµ (2.110)
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Figure 2.12: First attempt expansion line construction in the h-s diagram.
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where the total-to-static mean stage efficiency (ηts) and the reheat fac-

tor µ are assumed by the designer. As (i) the variation of kinetic energy

across a stage is proportional to the work of that stage and (ii) the inlet

velocity into a stage is equal to the outlet velocity of the previous stage, it

results after some algebra

C2
B

2
=
C2

A

2

((
C2

3

2

)
I

− c2A
2

)
W
WI

(2.111)

Accordingly, the static state B is defined by the pressure pB (which is

a design specification) and by the static enthalpy hB = h0B − c2B/2 (Eqs.

(2.110) and (2.111)).

Figure 2.13 illustrate the implementation of the design rule b2/Dms =

const. (Eq. (2.103)). It shows in the h-v diagram the curve labeled v2/3

built from the first attempt straight expansion line previously drawn in the

h-s diagram. At first, the triangle ABC corresponding to the first stage

design is drawn out. Later, the triangle BDE similar to ABC and with

the point E on the curve v2/3 is built: it identifies on the x-axis the static

enthalpy drop of the second stage (∆hII) and the rotor inlet state (point

E). This simple graphical construction is equivalent to solve the following

system

(∆h)II
(∆h)I

=
(v2)

2/3
II

(v2)
2/3
I

(2.112)

(h2)II − (h3)I
(h3)II − (h3)I

=
1

2
(2.113)

(h2)II = f((v2)II) (2.114)

Equation (2.112) directly derives from Eq. (2.109), Eq. (2.113) is the

reaction definition and Eq. (2.114) represents the first attempt expansion

line.
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The first stage design has to be repeated until the discharge static en-

thalpy resulting from the graphical construction is sufficiently similar to

the previously calculated value hB. Moreover, the first attempt straight

expansion line in the h-s chart has to be progressively corrected and, ac-

cordingly, the correspondent v2/3 line in the h-v chart has to be updated.

Once convergence is obtained, the rotor inlet diameter (Dm2)j and blade

height (b2)j of the j-th stage are calculated from Eq. (2.108)

(Dm2)j =

(
(v2)j
(v2)I

)1/3

(Dm2)I (2.115)

(h2)j =

(
(v2)j
(v2)I

)1/3

(h2)I (2.116)
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Figure 2.13: Enthalpy drop splitting and stage number determination ac-

cording to the constant blade height to mean diameter ratio design criterion

(b2/Dm2 = constant).



2.8. ENTHALPY DROP SPLITTING AMONG TURBINE STAGES 65

2.8.2 Constant blade root diameter design criterion

A constant blade root diameter (Dh) design

Dh = constant (2.117)

is preferred in the medium-low pressure turbine section because it limits

the mean diameter and the increase of the blade span in the final part of

the expansion, even for dramatic specific volume variations.

Equation (2.105) is recast in the form

∆h = k1ω
2 (Dh + b2)

2

4
= k4(Dh + b2)

2 (2.118)

being U = ω(Dh + b2)/2 and k4 = Ψ+ 1/8(C2
3/U

2 − C2
1/U

2)ω2

and Eq. (2.106) after some rearrangements leads to

v2 =
ζπω

2ṁX tanα2

b2(Dh + b2)
2 = k5b2(Dh + b2)

2 (2.119)

being k5 = (ζπω)/(2ṁX tanα2)

Thus, Eqs. (2.118) and (2.119) give the fundamental relationship

v2
∆h

=
k4
k5
b2 (2.120)

which states that the criterion of constant hub diameter (Eq. (2.117))

requires, in turn, that the ratio between the rotor inlet specific volume

divided by the product between the stage enthalpy drop and the blade

height be the same for all the stages (Eq. (2.120)).

Similarly to the procedure outlined in Section 2.8.1 it is necessary to

suppose an expansion line in the h-s chart and to design in advance the first

stage (hence (b2)I , k4, k5 are known and the triangle ABC may be drawn

in Fig. 2.14). Then, a set of b2 is chosen and the corresponding values of

(i) ∆h (Eq. (2.118)), (ii) v2 (Eq. (2.119)) and (iii) h (from the supposed

expansion line) are calculated. Accordingly, the function ∆h = f ′′(h) is
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defined and triangles similar to ABC are identified along with the enthalpy

drop of each stage (∆hj).

The rotor inlet blade height (b2)j of the j-th stage is calculated from

Eq. (2.120)

(b2)j =
(v2/∆h)j
(v2/∆h)I

(b2)I (2.121)

A

v

h
h
0A

h
A

C

B

E

D

∆h
I

C
A

2

2
C
2

2

2 I

h
3I
=h

1II
(h

03
)
I

C
3

2

2 I

∆h
II

h
3II

∆h
III

v
∆h

W
I

∆h=f’’(h)

Figure 2.14: Enthalpy drop splitting and stage number determination accord-

ing to the constant hub diameter design criterion (Dh = constant).
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2.9 Stage efficiency charts

Efficiency charts correlate the achievable stage efficiency to the most

significant design parameters. They are a very useful tool for the pre-

liminary design because, starting from the optimum values of the design

parameters, allow the determination of the optimum geometry. The well-

known ψ − ϕ chart (also known as Smith chart) and the ns − ds diagram

(also known as Balje diagram) are analytically built here and the optimum

intervals of the design parameters are identified.

2.9.1 Normal stage

When dealing with multistage axial flow turbines it is desirable to main-

tain similar mean velocity triangles in all stages. For this purpose (i) the

axial velocity and (ii) the mean blade radius must remain constant and

(iii) the flow angles at the outlet of each stage must be equal to those at

the inlet. Obviously, as the density decreases during the expansion, re-

quirement (i) implies the blade height must be continuously increased. So,

the requirements for a normal (or repeating) stage are [29]

Cm = const r = const α1 = α3 (2.122)

It is noteworthy that the above conditions are the same adopted when

dealing with the reaction stage (see Section 2.6). Despite these hypotheses

unavoidably bring about a lack of generality, they allow to obtain simple

relationships between the stage design parameters (ϕ, ψ,R) and the flow

angles, as demonstrated below.

Due to the constant axial velocity assumption (Eq. (2.122)) the static

enthalpy drop across the stator is

h1 − h2 =
1

2
(C2

t2 − C2
t1) =

1

2
C2

m(tan
2 α2 − tan2 α1) (2.123)
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and for C1 = C3 (consequence of Cm = const. and α1 = α3)

h1 − h3 = h01 − h03 = ψU2 (2.124)

By substituting Eqs. (2.123) and (2.124) into the definition of R (Eq.

(2.14))

R = 1− ϕ2

2Ψ
(tan2 α2 − tan2 α3) (2.125)

which, by the inclusion of Ψ from the non dimensional Euler equation

(2.12) reduces to

R = 1− ϕ

2
(tanα2 + tanα3) (2.126)

The absolute flow angles may be expressed as function of the design

parameters by means of Eqs. (2.12) and (2.126)

tanα3 =
1−R−Ψ/2

ϕ
tanα2 =

1−R +Ψ/2

ϕ
(2.127)

Since the relative stagnation enthalpy is constant in the rotor and the

axial velocity is assumed constant

h2 − h3 =
1

2
(W 2

t3 −W 2
t2) =

1

2
C2

m(tan
2 β3 − tan2 β2) (2.128)

When Eqs. (2.128) and (2.124) are embedded in the definition of reac-

tion (2.14), it results

R =
ϕ2

2Ψ
(tan2 β3 − tan2 β2) (2.129)

Including Ψ from the non dimensional Euler equation (2.13) into Eq.

(2.129) gives

R = −ϕ
2
(tan β3 + tan β2) (2.130)

The relative flow angles may be expressed as function of the design

parameters by means of Eqs. (2.130) and (2.13)

tan β3 = −R +Ψ/2

ϕ
tan β2 = −R−Ψ/2

ϕ
(2.131)
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Hence, all the flow angles (α1 = α3, α2, β2, β3) are determined for as-

signed design parameters (Ψ, ϕ, R) according to Eqs. (2.127) and (2.131).

From a mathematical point of view, Eqs. (2.127) and (2.131) represent a

system of four equations in seven variables, therefore any three of them

may be specified and the remaining four calculated.

A remarkable result can be obtained by considering Eqs. (2.12) and

(2.126)

Ψ = 2(1−R− ϕ tanα3) (2.132)

It shows that to obtain a high stage loading (Ψ), the reaction (R) should

be low and the inter-stage swirl angle should be as large as possible.

2.9.2 Ψ− ϕ efficiency charts

This Section is aimed at deriving a relationship between the stage total-

to-total efficiency (ηtt) or total-to-static efficiency (ηts) and the design pa-

rameters (Ψ, ϕ and R).

Figure 2.15 shows an irreversible expansion in the enthalpy-entropy

plane (states 1 to 3) and the corresponding notation .

The total-to-total efficiency is

ηtt =
h01 − h03
h01 − h03ss

(2.133)

which can be conveniently rearranged in the form

1

ηtt
− 1 =

h03 − h03ss
h01 − h03

=
h3 − h3ss

W
+
C2

3 − C2
3ss

2W
(2.134)

and

1

ηtt
− 1 =

(h3 − h3s) + (h3s − h3ss)

W
+

(
1− C2

3ss

C2
3

)
C2

3

2W
(2.135)

As the rotor loss coefficient is

ζR =
h3 − h3s

1
2
W 2

3

(2.136)
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it follows

h3 − h3s =
1

2
ζRW

2
3 (2.137)

By integrating the Gibbs equation (Tds = dh − vdp) along the isobar

p3 from state 3ss to 3s and, similarly, along the isobar p2 from state 2s to

2 the relationships

s2 − s1 = cP ln
T3s
T3ss

(2.138)

s2 − s1 = cP ln
T2
T2s

(2.139)

are found. They lead to

T3s
T3ss

=
T2
T2s

(2.140)

and, after subtracting one from each side and multiplying by cP

h3s − h3ss =
T3ss
T2s

(h2 − h2s) (2.141)

Introducing the nozzle loss coefficient ζN

ζN =
h2 − h2s

1
2
C2

2

(2.142)

it follows

h3s − h3ss =
T3ss
T2s

1

2
ζNC

2
2 (2.143)

Finally, by substituting the enthalpy differences from Eqs. (2.137) and

(2.143) into Eq. (2.135) and considering T3ss/T2s = T3s/T2 (Eq. (2.140))

and C2
3ss/C

2
3 = T3ss/T3 (being M3 =M3ss), the expression of the efficiency

becomes

1

ηtt
− 1 =

1

2W

(
ζRW

2
3 +

T3s
T2
ζNC

2
2 +

(
1− T3ss

T3

)
C2

3

)
(2.144)

Equation (2.144) is frequently simplified in the form

1

ηtt
− 1 =

1

2W
(
ζRW

2
3 + ζNC

2
2

)
(2.145)
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Moreover, since Cm = W3 cos β3 = C2 cosα2 = C3 cosα3, Eq. (2.144)

and its approximated version Eq. (2.145) are equivalent to

1

ηtt
− 1 =

ϕ2

2Ψ

(
ζR

cos2 β3
+
T3s
T2

ζN
cos2 α2

+

(
1− T3ss

T3

)
1

cos2 α3

)
(2.146)

and

1

ηtt
− 1 =

ϕ2

2Ψ

(
ζR

cos2 β3
+

ζN
cos2 α2

)
(2.147)

Recalling the fundamental trigonometric identity

cos2 x =
1

1 + tan2 x
(2.148)

Eqs. (2.127) and (2.131) provide

cos2 α2 =
ϕ2

ϕ2 + (1−R +Ψ/2)2
cos2 β3 =

ϕ2

ϕ2 + (R +Ψ/2)2
(2.149)

hence, Eq. (2.147) can be recast as

ηtt =

(
1 +

ϕ2

2Ψ

(
ζR
ϕ2

ϕ2+(R+Ψ/2)2

+
ζN
ϕ2

ϕ2+(1−R+Ψ/2)2

))−1

(2.150)

Equation (2.150) represents a notable result because it establishes a

direct relationship between the shape of the velocity triangles (represented

by the triplet Ψ− ϕ−R) and the efficiency.

Assuming the loss coefficients are constant when varying ϕ and Ψ the

optimum loading coefficient Ψopt is given by

Ψopt = 2

(
ϕ2 +R2 + ζN/ζR(ϕ

2 + (1−R)2)

1 + ζN/ζR

)0.5

(2.151)

Figure 2.16 plots Eqs. (2.150) and (2.151) for R = 0.5 and ζN =

ζR = 0.09. The iso efficiency lines pattern depends on the shape of the

velocity triangles, which, in turn, are determined by Ψ, ϕ and R. The

irreversibilities are accounted by the loss coefficients ζN and ζR. They

depend essentially on the amount of turning, but their influence on the
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Figure 2.16: Total-to-total efficiency for a R = 0.5 normal stage with ζN =

ζR = 0.09. Line of optimum loading coefficients is also shown.

shape of the efficiency contours is not as important as the influence of

the flow angles. This claim can be easily verified by including the actual

loss coefficient evaluated by Soderberg correlation [29]. Soderberg loss

correlation is extremely simple, because the ζ loss coefficient depends only

on the flow turning ϵ (angles are in degrees)

ζ = 0.04 + 0.06 (ϵ/100)2 (2.152)

Equation (2.152) refers to a blade height-to-axial chord ratio equal to

3 and Reynolds number equal to 105. The resulting total-to-total stage

efficiency (Eq. (2.150)) is visualized in Fig. 2.17 for R = 0 and R = 0.5. It

indicates that for a stage with R = 0.5 maximum total-to-total efficiency

corresponds to loading and flow coefficients rather low. Higher loading

coefficients and, in turn, higher specific works can be achieved with ac-

ceptable efficiency by stages having R = 0.

It is also possible to obtain analogous relationships for the total-to-
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static efficiency. In particular, similarly to Eqs. (2.144) and (2.145) the

exact and approximate estimations of the total-to-static efficiency are

1

ηts
− 1 =

1

2W

(
ζRW

2
3 +

T3s
T2
ζNC

2
2 + C2

3

)
(2.153)

1

ηts
− 1 =

1

2W
(
ζRW

2
3 + ζNC

2
2 + C2

3

)
(2.154)

Equation (2.154) is recast as

ηts =

(
1 +

ϕ2

2Ψ

(
ζR
ϕ2

ϕ2+(R+Ψ/2)2

+
ζN
ϕ2

ϕ2+(1−R+Ψ/2)2

+
1
ϕ2

ϕ2+(1−R−Ψ/2)2

))−1

(2.155)

It shows that the maximum ηts are achieved at Ψ = 2 and Ψ = 1 for

R = 0 and R = 0.5, respectively. Both these configurations (i.e., Ψ = 2,

R = 0 and Ψ = 1, R = 0.5) correspond to axial flow discharge.

In brief, the previous outcomes suggest the following design guidelines.

• In the design of a single stage turbine the criterion is to maximize

the total-to-static efficiency and to choose a reaction ≈ 0 to ensure

high loading coefficients and, in turn, high specific work. Moreover,

R ≈ 0 allows the turbine partialization in off design operation.

• In the design of an intermediate stage, two different criteria might

be considered. The first is the maximization of the total-to-total

efficiency by means of symmetrical blade rows and with a not too

low (to avoid high stage number) loading coefficient. Accordingly,

stages with R = 0.5 and Ψ ≈ 1 are selected. The second is the

limitation of the stage number. Consequently, higher loading and

flow coefficient are chosen (Ψ = 1.2 − 2.5 and ϕ = 0.6 − 1) having

reaction lower than 0.5.
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2.9.3 ns − ds diagram

This Section summarizes the procedure developed by Balje [35] to build

the specific speed (ns) - specific diameter (ds) efficiency diagram for axial

turbine stage.

The aim of the procedure is the determination of the optimum geom-

etry and, in turn, the maximum efficiency of an axial turbine stage, for

given specific speed and specific diameter. The estimation of the losses

across the expansion uses a simplified version of the boundary layer theory

and empirical relationships (see [35]). Model variables can be classified in

two groups: (i) fixed level input variables (Table 2.2) and (ii) optimizing

variables (Table 2.3). The fixed level input variables are kept constant and

are not optimized, because the efficiency is a monotonic function of each

of these variables. Instead, the optimizing variables are geometric ratios

or angles which may be chosen independently in order to maximize the

efficiency. Obviously each optimizing variable is varied within an upper

and lower limit imposed by technical or physical feasibility considerations.

Table 2.2: Fixed level variables.

α1 90

kI 1

tbN
h 0.02

tbR
h 0.02

s
h 0.02

∆
D 0.02

Figure 2.18 shows the stations nomenclature and the meridional chan-

nel geometry: a constant nozzle and rotor blade height (h) is assumed.

Figure 2.19 shows the expansion in the h-s diagram and the corresponding

notation.



2.9. STAGE EFFICIENCY CHARTS 77

N R

1 2 3

D

D
m

d

h

Figure 2.18: Stations nomenclature and meridional channel geometry.

01

1

2s

3ss

02

p
01

p
02

2

02R

p
02R

03R

3s

3

p
3

03

C
1

2

2

C
2

2

2

gH
N

C
2s

2

2
p
2W

2

2

2

gH
R

W
3s

2

2

C
3

2

2

W
3

2

2

gH
th

gH
ad

h

s

Figure 2.19: Thermodynamic states of the expansion across an axial turbine

stage.



78
CHAPTER 2. DESIGN GUIDELINES FOR AXIAL FLOW

TURBINES

Table 2.3: Optimizing variables and their upper and lower bounds.

min value max value

α2 15 60

β3 5 90

h
D 0.0001 0.35

cN
D 0.02 0.35

cR
D 0.02 0.35

Some fundamental hypotheses should be explicitly stated before illus-

trating the procedure: (i) all the stage designs collected in the chart have

the same Reynolds flow regime; (ii) working fluid density does not vary

across the rotor, thus, compressibility effects are not accounted for.

The procedure can be summarized in the following steps:

1. Choice of a ns − ds couple and choice of a first set of guess values of

the optimizing variables.

2. Calculation of the flow factor ϕ3

ϕ3 =
cm3

up
=

2

π

1

nsd3s

1

δ(1− δ)0.5
(2.156)

where δ = h/D(1− h/D).

3. Calculation of the real relative rotor outlet flow angle β3e accounting

for the deviation due to clearance losses

β3e = β3 +∆βcl (2.157)

and of the absolute rotor outlet flow angle α3

α3 = arctan

(
1

cot β3e − 1
ϕ3

)
(2.158)

Note that, angles β2, β3 and α3 are accounted from the opposite

direction of the peripheral speed, whereas α2 is accounted from the

same direction of the peripheral speed.
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4. Calculation of the theoretical head coefficient qth:

qth =
gHth

u2p
= ϕ3(kI cotα2 + cotα3) (2.159)

gHth is the real total-to-static enthalpy drop. As reported in Table

2.2 kI = Cm2/Cm3 = 1.

5. Calculation of the nozzle loss coefficient qN :

qN =
gHN

u2p
=

1

2

(
ζN

1− ζN

)(
kIϕ3

sinα2

)2

(2.160)

where the term gHN denotes the difference between the nozzle outlet

static enthalpy (h2) and the nozzle outlet isentropic static enthalpy

(h2s). The nozzle loss coefficient ζN is

ζN =
h2 − h2s

C2
2s

2

=
gHN

c22s
2

=
gHN

C2
2

2
+ gHN

(2.161)

6. Calculation of the rotor loss coefficient qR:

qR =
gHR

u2p
=

1

2

(
ζR

1− ζR

)(
ϕ3

sin β3e

)2

(2.162)

where the term gHR denotes the difference between the rotor outlet

static enthalpy (h3) and the rotor outlet isentropic static enthalpy

(h3s). The rotor loss coefficient ζR is

ζR =
h3 − h3s

w2
3s

2

=
gHR

w2
3s

2

=
gHR

W 2
3

2
+ gHR

(2.163)

7. Calculation of the kinetic energy loss coefficient qex:

qex =
C2

3/2

u2p
=

1

2

(
ϕ3

sinα3

)2

(2.164)

8. Calculation of the disk friction loss coefficient qd:

qd =
Cd (1− 2h/D)5

8πδϕ3

(2.165)

where Cd is the disk friction coefficient.
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9. Calculation of the adiabatic head coefficient qad in two different ways:

qad1 =
gHad

u2p
= qth + qN + qR + qex (2.166)

where gHad is the isentropic total-to-static enthalpy drop.

qad2 =
gHad

u2p
=

4

n2
sd

2
s

1

1− 2δ
(2.167)

gHad is the isentropic total-to-static enthalpy drop. Generally, the

first guess set of the optimizing variables will result in different val-

ues of the head coefficient qad (Eqs. (2.166) and (2.167)), because

the optimizing variables do not simultaneously satisfy the continuity

equation. Thus, a constraint which ensure the equality of the two

expression of qad must be implemented in the model (see point 12

below).

10. Evaluation of the total-to-static efficiency:

ηts =
h01 − h03
h01 − h3ss

=
qth − qd
qad1

(2.168)

11. Calculation of the nozzle and rotor Reynolds numbers

ReN =
lNC2

ν3
(2.169)

ReR =
lRW3

ν3
(2.170)

where l is the camberline length.

12. Evaluation of the function (s) to be minimized

s = 1− η + PN + PR + Pq (2.171)

where

PN =

0 if ReN ≥ 4× 104

10−8(4× 104 −ReN)
2 if ReN < 4× 104
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PR =

0 if ReR ≥ 4× 104

10−8(4× 104 −ReR)
2 if ReR < 4× 104

Pq = 10

(
qadmax

qadmin

)2

(2.172)

The functions P are “penalty functions” which are added to the ob-

jective function (i.e., 1−η) to embed the constraints in the objective

function. These constraints are used here (i) to avoid flow regimes

with a low Reynolds number (Re < 4× 104) in which the loss equa-

tions cannot provide reliable estimations; (ii) to close iteration loops

(equality of the two expression of qad).

13. Update of the optimizing variables and new evaluation of the function

s until the minimum is found.

14. Calculation of the dependent variables degree of reaction (R) and

blade number (Z):

R =
gHad − (gHN + C2

2/2)

gHad

= 1− qN
qad

−

(
kIϕp

sinα2

)2
2qad

(2.173)

ZN =
π(1− 2δ)0.5

cN
D

(
t
c

)
N

(2.174)

ZR =
π(1− 2δ)0.5

cR
D

(
t
c

)
R

(2.175)

The resulting specific speed - specific diameter efficiency diagram for an

axial turbine stage is shown in Fig. 2.20. It highlights that the optimum

specific speed and specific diameter intervals are

ns = 0.45− 1.8 (2.176)
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ds = 2− 4 (2.177)

Figure 2.20: Total-to-static efficiency diagram for an axial stage (from [23]).



Chapter 3

Flow similarity of turbines

handling non traditional fluids

The very first step of the basic design of a turbomachine is to determine

shape, diameter and rotating speed which fulfill the main design specifica-

tions (i.e., at least, flow rate and available specific work) while keeping the

highest efficiency. The use of similarity laws simplifies this problem and

allows to extend the results obtained on a machine to another one of the

same shape. The dimensional analysis can be used to deduce the similar-

ity laws: it reduces the number of variables influencing the turbomachine

behavior by grouping them in dimensionless products.

It is demonstrated that the efficiency of a specific turbine type (i.e., of

fixed shape) driven by a real gas depends on seven dimensionless variables

(specific speed, specific diameter, technological parameter, Mach number,

Reynolds number, fundamental derivative of gas dynamics and compress-

ibility factor) that is, the equivalence of these variables ensures the achieve-

ment of full flow similarity (Section 3.1).

Then, some rearrangements of the similarity parameters and approxi-

mations are introduced in order to obtain a functional relationship which is

more useful when facing turbine design and performance estimation prob-
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lems in the wider context of the whole ORC system optimization and less

dependent on the fluid nature (Section 3.2). The final result shows that

the maximum efficiency achievable by turbines of optimized shape can be

correlated to the so-called “size parameter” and volumetric flow ratio. A

map collecting turbine efficiency data in this form can be conveniently

embedded in optimization tools of an ORC power cycle.

Finally, real data of radial inflow turbines operating with air are used

to build the corresponding size parameter - volumetric flow ratio efficiency

map (Section 3.3).

3.1 Full flow similarity for turbines of very

different size handling real gas

The basic approach used in the following to group the relevant design

and operation variables into dimensionless parameters well suited to solve

the design problem is an extension of the similarity approach suggested by

Balje [23].

It is observed that the variables which strongly affect the net power

(P ) of a turbine handling a real compressible medium can be collected in

the following categories:

1. Turbomachine size: outer diameter of the turbine runner/wheel (d);

2. Turbomachine stage arrangement : number of stages (n);

3. Turbomachine stages shape: blade height (Bn), chord (ln) and all the

geometric variables which, along with the diameter, define the shape

of each turbomachine stage and the arrangement of its components.

These variables can be divided by the outer diameter d to obtain

a series of dimensionless ratios that are independent from both the

manufacturing technology and the size of the turbine, and can be
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collected in a m*n-length vector (B1/d,B2/d, ..., Bn/d, l1/d, l2/d, ...,

ln/d, ..., lm1/d, lm2/d, ..., lmn/d);

4. Technological features : surface roughness (ϵ), leading and trailing

edge thicknesses (tl, te), blade clearance (δ) etc., i.e., all the details

not considered in item 3 but required to define rigorously the real

geometry of the turbine. As per the turbine shape variables, all

these geometrical variables can be collected in the r -length vector

ϵ̄ = (ϵ, tl, te, δ, ..., tr). It is assumed here that all the ϵ̄ components

are known when the value of one of them is defined. This is because

at a first approximation, for a given manufacturing process all these

variables keep the same proportion to each other being not affected

by number and relative size of the turbine stages. The reason why the

geometrical variables are split into shape and technological variables

is that the same shape can be obtained by a different technology

depending on size and/or manufacturing costs.

5. Turbomachine control variables : mass flow rate (ṁ) and angular

speed (ω). The multi-shaft arrangement is not considered here as

a practical issue for present ORC turbines application;

6. Plant/thermodynamic variables : available specific work (∆h0s), total

speed of sound at turbine inlet (a01) and isentropic mass density at

turbine outlet (ρ2s).

7. Molecular properties of the working fluid : kinematic viscosity (ν),

compressibility factor (Z) and isentropic variation of the sound speed

against the gas mass density ((∂a01/∂ρ)s). Both the last two terms

are needed to account for deviations from the perfect gas behavior. In

particular, Z is related to the force between two adjacent molecules

as function of the distance between their centers (being repulsive

when the distance is small - i.e., Z > 1 - and attractive when the
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distance is high - i.e., Z < 1) [36], whereas (∂a01/∂ρ)s fully describes

the behavior of a compressible gas [37].

Thus, the net power of any turbine type (fully described by the stages

number and dimensionless vector introduced in item 3) can be expressed

as

P = f {d, ϵ̄, ṁ, ω,∆h0s, a01, ρ2s, ν, (∂a01/ρ)s, Z} (3.1)

The Buckingham’s (or Π) theorem [38] applied to the present physical

system that involves 3 fundamental dimensions (i.e., length, mass and time,

being the heat transfer processes neglected) states that the thermo-fluid

dynamics of a turbine at steady state operation is fully described by 7

dimensionless groups.

The design specifications ∆h0s, ṁ and mass density at turbine discharge

ρ2s are the three “repeating variables” chosen here to fulfill the require-

ments stated in [38] for the repeating variables and obtain the following

dimensionless form of Eq. (3.1)

Π0 = f
{
Π1,Π2,Π3,Π

I
4,Π5,Π6,Π7

}
(3.2)

where Π0 to Π3 groups in Eq. (3.2) write

Π0 =
P

ṁ∆h0s
= η Π1 = ω

(ṁ/ρ2s)
0.5

∆h0.750s

= ns Π2 = d
∆h0.250s

(ṁ/ρ2s)0.5
= ds

Π3 =
ϵ∆h0.250s

(ṁ/ρ2s)0.5
= τ (3.3)

The first three parameters in Eqs. (3.3) are the turbine efficiency (η),

specific speed (ns) and diameter (ds), respectively. Note that ns and ds ap-

pear explicitly here because of the choice made for the repeating variables.

Other choices are suggested in the literature in the study of turbomachine

operation, where, in addition to ρ2s, the rotational speed and volumetric
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flow rate usually replace ∆h0s and ṁ, being the former two “fixed con-

straints” [39]. The group Π3 is strictly related to the capability of the

machine tools to reach a high quality (i.e., low roughness ϵ) of the surface

for a given “size” of the machine. Accordingly, in the following it will be

referred to as “technological parameter” (τ).

The remaining dimensionless groups in Eq. (3.2) are

ΠI
4 =

a01
∆h0.50s

Π5 =
ν

∆h0.250s (ṁ/ρ2s)0.5
Π6 =

(
∂a01
∂ρ

)
s

ρ2s
∆h0.50s

Π7 = Z

(3.4)

Note that the choice made here for the repeating variables is straight-

forward in the design of turbomachines.

The dimensionless groups can be recast in alternative groups obtained

by combinations of product of powers of the original Πi, as stated by

Buckingham [38]. Thus, a recast of some of the previous Πi terms is

presented in the following to obtain other dimensionless groups commonly

used in turbomachines design practice.

In particular, being

ΠI
4 = Π1Π2

(
ωd

a01

)−1

(3.5)

ΠI
4 can be replaced by the machine Mach number (Ma), i.e.,

ΠI
4 =

ωd

a01
=Ma (3.6)

In a similar manner

Π5 = Π1Π
2
2

(
ωd2

ν

)−1

(3.7)

and Π5 can be replaced by the machine Reynolds number (Re), i.e.,

Π5 =
ωd2

ν
= Re (3.8)
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Finally, Π6 can be replaced by

Γ = 1 + Π6 = 1 +
ρ2s
a01

(
∂a01
∂ρ

)
s

(3.9)

to make explicit the dependence of efficiency on the so-called funda-

mental derivative of gas dynamics (Γ) [37].

Thus, each turbine type handling a real gas and featuring a given “tech-

nological parameter” (τ) achieves the maximum value of efficiency (η∗) for

a specific pair (ns, ds), and for the corresponding values of the machine

Mach number (Ma∗) and machine Reynolds number (Re∗), i.e.,

η∗ = f {ns, ds, τ,Ma∗, Re∗,Γ, Z} (3.10)

where the superscript * stands for value at best efficiency operation.

Note that Eq. (3.10) is the result of a problem formulation that is more

general than the original one suggested by Balje [23] and most suited to

the study of organic fluid turbines. In fact, Balje [23]

• assumes the gas is perfect (Z = 1 and Γ = (γ + 1)/2) and incom-

pressible (Ma = 0);

• fixes the “technological parameter” by choosing defined values for

the ϵ̄ vector components-to-diameter ratio;

• fixes a lower limit for the camberline Reynolds number (Re > 4×104)

and does not take into account the effect of Re on the loss coefficients,

i.e., Re effect is neglected.

If the space of the ORC turbines is restricted to machines featuring

optimized specific speed and diameter, (i.e., to the best machine designs),

Eq. (3.10) becomes

η∗ = f {τ,Ma∗, Re∗,Γ, Z} (3.11)
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3.2 Rationale of the performance maps “Size

Parameter (SP)-Volumetric Flow Ratio

(VR)”

Equation (3.11) clearly states that two turbines of the same type are

characterized by similar flow conditions and, in turn, same efficiencies if all

the variables in its right-hand-side are equal. However, some rearrange-

ments and approximations can be made in order to obtain a functional

relationship which is (i) more practical when facing turbine design and

performance estimation problems in the wider context of the optimization

of the thermodynamic cycle in which the turbine is placed and (ii) less

dependent on the fluid nature. Each of the following Sections introduces

a modification in the full flow similarity relationship deduced in Section

3.1 till the achievement of the functional form used in the efficiency charts

presented in Chapter 5.

3.2.1 Scale effect: the role of the size parameter

It has already been observed in Section 3.1 that the technological fea-

tures influence the machine performance and the achievement of similar

flow conditions requires that the technological parameter in Eq. (3.11) is

constant.

However, when a machine shape is scaled the technological features

cannot scale with the same ratio due to manufacturing and technical con-

straints, causing a departure from similar flow conditions. For instance, as

most machines are manufactured with the same techniques (e.g., casting)

or the same machine tools, wall roughness ϵ is typically of the same order

of magnitude. So, absolute roughness is approximately constant and rela-

tive roughness tends to decrease with the machine actual size. Further, the

radial clearance to blade span ratio is higher in smaller machines because
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it is technically unfeasible to realize clearances lower than a limiting value

and the contact between rotating parts and casing must be avoided in any

case (thermal expansion of materials have to be carefully taken into ac-

count). Moreover, some parts (e.g., blades tips) have a minimum thickness

imposed by stress considerations and/or production technique.

For all the above reasons, the technological parameter τ cannot be ne-

glected especially when turbines of considerably different size are analyzed.

The technological parameter can be written as

τ =
ϵ

SP
(3.12)

where

SP =
V̇ 0.5
2s

∆h0.250s

(3.13)

stands for the size parameter firstly introduced by Macchi and Perdichizzi

[24] to quantify the size of the machine in terms of the design specifications,

∆h0s and V̇2s. They calculated up to 9% efficiency drop for axial-flow

turbines handling organic fluids passing from SP=0.20 to 0.0.01 m.

The manufacturing technology fixes the quality level of the technolog-

ical features (see item 4 of Section 3.1). Accordingly, when a machine

type is scaled down below a certain size a drop in the maximum efficiency

appears. On the other hand, the continuous decrease of the technological

parameter expected for machines of increasing size does not result in a

corresponding continuous increase of the efficiency, once the technologi-

cal features have reached their optimum level. This behavior of turbine

efficiency (and performance) is commonly referred to in the literature as

“scale effect” [40].

However, since the technological level fixes (at least at a first approxi-

mation) the minimum value of ϵ̄ vector components (see item 4 in Section

3.1), the ratio τ = ϵ/SP that ensures the maximum turbine efficiency

is defined once SP is fixed. Accordingly, the dimensionless implicit ex-

pression of maximum efficiency achievable by turbines of optimized shape
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previously reported in Eq. (3.11) can also be written as

η∗ = f {SP,Ma∗, Re∗,Γ, Z} (3.14)

The advantage of this simplification is made clear in the more gen-

eral framework of the thermodynamic system optimization procedures

aimed at finding the best cycle parameters for the exploitation of a given

heat source. In fact, since the size parameter can be calculated from

variables which are obtained by the thermodynamic system optimization

procedures it allows to directly take into account the size effect affect-

ing the turbine component even during the optimization of the whole

system. Note that the use of a dimensional variable alongside dimen-

sionless similarity variables does not weaken the rigorousness of the ap-

proach but emphasizes the size parameter as the metric to account for the

technological features that could not scale with the turbine shape vector

(B1/d,B2/d, ..., Bn/d, l1/d, l2/d, ..., ln/d, ..., lm1/d, lm2/d, ..., lmn/d), that is

the size parameter accounts for the scale effect.

3.2.2 Compressibility and fluid type effects: the role

of the volumetric flow ratio

The compressibility of the fluid is accounted in Eq. (3.14) by the Mach

number (Ma) and it plays a fundamental role in the definition of the

efficiency of an ORC expander due to the relatively low speed of sound and

the resulting high Mach number levels. The influence of the compressibility

cannot therefore be disregarded even in the preliminary design phase.

However, the Mach number is almost useless in the preliminary de-

sign phase and does not provide any direct insight about turbine design.

Accordingly, a parameter accounting for the compressibility which is of

immediate concern in the design of a turbine through similarity principles

is searched by varying the choice of the plant-thermodynamic variables
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(see item 6 in Section 3.1). This is possible because one or more of the

plant-thermodynamic variables can be replaced by others provided that

the selected set of variables is able to unambiguously define the thermo-

dynamic state of the system at the inlet and outlet of the turbine. So,

the total speed of sound at the inlet (a01) is replaced by a thermodynamic

variable such as the total density at turbine inlet (ρ01) or equivalently the

total pressure at turbine inlet (p01). Accordingly, the dimensional analysis

results in the two following alternative forms of ΠI
4 in Eq. (3.2)

ΠII
4 =

ρ01
ρ2s

ΠIII
4 =

p01
∆h0sρ2s

(3.15)

where ΠII
4 is the volumetric expansion ratio (VR) and ΠIII

4 can be

recast in the pressure ratio (PR), which many times appears explicitly in

the turbine performance maps [29]. Thus, Eq. (3.14) can be recast in the

more convenient forms

η∗ = f

SP, V R∗

PR∗
, Re∗,Γ, Z

 (3.16)

The influence of the fluid type on the efficiency is explicitly taken into

account by the compressibility factor (Z) and by the fundamental deriva-

tive of gas dynamics (Γ): both these variables must be the same if similar

flow conditions are to be achieved. Thus, it is apparent that these re-

quirements are not fulfilled by different fluids, that is it is not rigorously

possible to use the results obtained on a turbine driven by a certain fluid

to make predictions when the fluid is changed.

Nevertheless, as implicitly stated by Macchi and Perdichizzi [24] Eq.

(3.16) under the hypothesis of ideal gas further simplifies to

η∗ = f {SP, V R∗, Re∗, γ} (3.17)

In fact, the two dimensionless parameters accounting for real gas fea-

tures in the general Eq. (3.16), i.e., Z and Γ, reduce to only one, namely
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the specific heat ratio γ, because for the ideal gas (i) Z = 1 by definition,

and (ii) Γ ≈ (γ+1)/2, where (γ+1)/2 is the exact value of the fundamental

derivative of gas-dynamics for a perfect gas [37].

By comparing the simulated operations of two turbines driven by two

different ideal gases under the hypothesis of constant Reynolds number,

Macchi and Perdichizzi [24] proved that the sensitivity of the efficiency

to γ is minimized (but not eliminated) when the turbines work at equal

inlet-to-outlet mass density ratio. As a consequence, the choice of VR as

similarity parameter has a two-fold advantage. First, it allows to weaken

the dependency on the fluid type, i.e., on γ because the same density

variation (VR) even for different fluids implies similar accelerations and,

in turn, not too different losses. The same is not at all true for equal

pressure ratios, as the same pressure ratio on different fluids results in

slightly different accelerations. Second, the volumetric expansion ratio is

the real design specification when a new turbine has to be designed for

a power plant as it is generally imposed by machine boundary conditions

(e.g., temperature levels of the thermal source and condensing medium).

Thus, Eq. (3.17) further simplifies in

η∗ = f {SP, V R∗} (3.18)

Within the limitations stated in the current Section (i.e., the working

fluid is an ideal gas and SP fixes the optimum τ), Eq. (3.18) clearly shows

that a turbine design optimized for a given fluid works with efficiency that

at first approximation depends only on the size parameter, provided that

(i) the volumetric expansion ratio is kept at the original optimum value

VR∗ in the operation at optimal ns and ds with different working fluids;

(ii) the flow regime within the passages of the chosen optimal design is not

affected by the change of the working fluid or, alternatively, Re is always

high enough to make friction losses independent on the flow regime.
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3.2.3 Reynolds number effect

The fulfillment of rigorous similar flow conditions requires that the

Reynolds number must be held constant but a change in the size at fixed

molecular properties of the working fluid always results in a variation of the

Reynolds number and, in turn, in a variation of the efficiency (Reynolds ef-

fect). However, in most cases of practical interest the performance of a tur-

bomachine is slightly affected by Reynolds number, i.e., a Reynolds number

variation results in a negligible efficiency variation, so that Reynolds num-

ber is often disregarded. This Section discusses this practice and points

out its limitations starting from fundamental fluid dynamic considerations

on straight pipes.

The flow in a pipe or in the channels of a turbomachine may be tur-

bulent or laminar. In a turbulent flow the fluid friction is caused by a

transport of fluid masses and thereby of momentum crosswise to the direc-

tion of the “mean” flow. Friction stresses are controlled by inertia forces

and they are proportional to the density and squared velocity of the fluid.

In a laminar flow all fluid particles move along smooth lines without cross-

ing or mixing. Friction stresses are controlled by viscous forces and they

are proportional to the viscosity and the first power of the velocity, and

inversely proportional to the linear dimensions. Turbulent and laminar

flow regimes occur well above and well below certain critical values of the

Reynolds number, respectively. In a straight pipe friction losses are well

expressed in terms of frictional head hL by the relation

hL = f
L

D

V 2

2g
(3.19)

being V the average fluid velocity, L the length and D the diameter of

the pipe. The friction factor f (also named Fanning factor) depends on

both the Reynolds number and the relative roughness of the pipe. The

Moody chart shows this dependency for commercial straight pipes. Abun-
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dant experimental information indicate in fully turbulent flow f does not

practically depends on Re, but only on the relative roughness (ϵ/D). On

the other hand, in a laminar flow f is strongly proportional to Re.

A turbulent flow must become laminar in the immediate vicinity of a

smooth wall, as the solid boundary prevents particles motions in the normal

direction. The thin layer of laminar fluid motion in an otherwise turbulent

flow is called laminar boundary layer. As the flow in the boundary layer

is laminar, then the friction is viscosity controlled i.e., friction factor f

and, in turn, losses depend on the Reynolds number. Conversely, as the

flow in the remaining part of the volume is turbulent, then the friction

is inertia controlled and losses do not depend on the Reynolds number.

Friction phenomena are, on the whole, less Reynolds dependent when the

Reynolds number is increased because the thickness of the boundary layer

decreases.

Instead, within rough walls the laminar boundary layer cannot develop,

that is the flow is turbulent throughout the volume. In this case, f does

not depend on Re but it increases with the relative roughness because

the turbulent fluctuations near the wall are proportional to the surface

roughness.

When dealing with turbines of conventional size (i.e., not excessively

small) channel dimensions, flow velocity and fluid viscosity levels make

the flow regime turbulent. Also, flow passages can be considered as hy-

draulically rough, so laminar boundary layers cannot develop and friction

and, in turn, corresponding losses are inertia controlled. As in this situa-

tion of complete turbulent flow, the friction factor does not vary with the

Reynolds number then the Reynolds number can be practically disregarded

as similarity parameter.

However, when a turbine is considerably scaled down to a relatively

small size, Reynolds effects might not be fully negligible and sensibly pe-

nalize the performance. Traditionally, scale and Reynolds effects are not
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explicitly separated in the literature where their cumulative effect on effi-

ciency is accounted for by means of semi-empirical correlations the validity

of which is limited to a specific turbomachine type ([41], [42], [43]). A quite

general functional relationship which encompasses many models structures

proposed by different authors is

1− η

1− ηref
= a+ (1− a)

(
Reref
Re

)n

(3.20)

which attempts a basic and somehow arbitrary distinction between

Reynolds dependent and independent losses. The coefficient a is the Reynolds

independent loss fraction and the exponent n is taken to be inversely pro-

portional to the Reynolds number to account for the decreasing influence

of the viscous losses for high Reynolds values (see Capata and Sciubba

[44] for a comprehensive collection of different correlations to estimate the

Reynolds effect proposed in the past decades).

Since organic fluid applications sometimes demand for relative small

size turbines, Reynolds effects might not be fully negligible. Nevertheless

(see next Section 3.3), the size parameter itself catches also the Reynolds

effect where the latter is significant on the efficiency. Accordingly, Eq.

(3.18) is the best functional form for the maximum efficiency (i.e., the

shape is optimized) when facing a turbomachinery design and performance

estimation problem.
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3.3 Size parameter - volumetric flow ratio

maps: a real example

Figure 3.1 shows typical experimental charts of the adiabatic efficiency

of radial inflow turbines operating with air as working fluid. In particular,

Fig. 3.1a shows the variation of the design point efficiency versus specific

speed (ns), rotor outer diameter (d) and pressure ratio (PR); Fig. 3.1b

gives the optimum velocity ratio νs for each value of the specific speed.

Within the limitations outlined in the previous Sections, these turbine

maps can be arranged in the form

η∗ = f(SP, V R∗) (3.21)

to become a single efficiency map of a turbine type valid for any machine

size/ expansion ratio and less sensitive to the working fluid properties.

The velocity ratio is defined as the peripheral speed (U) on the rotor

outer diameter divided by the spouting velocity (C0 = (2∆h0s)
0.5)

νs =
U

C0

=
U

(2∆h)0.5
(3.22)

For instance, a turbine with 140 mm wheel diameter, ns = 0.6 and

PR = 5 is expected to have an optimum U/C0 equal to 0.685 and 85*(1-

0.75/100)=84.4% percentage points isentropic efficiency.

By considering designs at optimum specific speed and velocity ratio, a

wheel diameter reduction from 400 to 80 mm results in an 8% percentage

points relative efficiency decay (from 88.8 to 80.7%) due to (i) the practical

impossibility of scaling down the detailed geometry lengths with the same

ratio of the diameter (scale effect) and (ii) the Reynolds effect. Similarly,

an increase of the pressure ratio from 1 to 10 results in a decay of relative

efficiency of 2.5% percentage points.

Design data collected in Fig. 3.1 can be conveniently re-arranged to

build the corresponding relationship η = f(SP, V R). The specific diameter
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Figure 3.1: (a) Isentropic efficiency (η) variation with (i) the specific speed

(ns) and diameter (d) (solid line) and (ii) pressure ratio (PR) (dashed line); (b)

Velocity ratio (νs) variation with the specific speed.
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(ds) is linked to the specific speed and velocity ratio by embedding the

definition of ns in Eq. (3.22)

ds = 21.5
νs
ns

(3.23)

Thus, it is

SP =
d

ds
=

1

21.5
d
ns

νs
(3.24)

The pressure ratio (PR) is converted into the isentropic volume ratio

(VR) by the reversible adiabatic relationship (γ = 1.4 is used)

V R = PR
1
γ (3.25)

For each d−PR combination the turbine design with optimum ns−νs is

considered and the associated SP and VR are calculated by Eqs. (3.24) and

(3.25), respectively. Note that irrespective of the size and the expansion

ratio the optimum ns is equal to 0.6. Figure 3.2 collects the resulting

SP − V R − η triplets and it is the plot of Equation (3.21) based on real

manufacturer design charts for radial inflow turbines.

Obviously, as the wheel diameter increases, the size parameter in-

creases, as well; the volume ratio follows the same trend of the pressure

ratio. Accordingly, the efficiency increases with the machine size and de-

creases with the expansion ratio. Although Fig. 3.2 conveys information

already present in Fig. 3.1, the former provides a more direct indication on

the maximum efficiency achievable by the turbine as a function of parame-

ters (i.e., SP and VR) strictly linked with the turbine design specifications.

Figure 3.2 shows also the Reynolds number (R̃e) variations. The Reynolds

number (R̃e) refers to the wetted area and the meridional velocity at in-

let section of the rotor. It can be roughly estimated that the Reynolds

number is one-twentieth of the machine Reynolds number (Re). Machines

Reynolds numbers are calculated using manufacturer data of Fig. 3.1 by

Re =
2νs(∆h0s)

0.5d

ν
(3.26)
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Figure 3.2: Efficiency and Reynolds number variation with SP and VR calcu-

lated from data of Fig. 3.1 (ns = 0.6).

where ∆h0s = cpT2s(PR
γ−1
γ − 1) is the total-to-static isentropic en-

thalpy drop. On the basis of real turbine applications, ν = 1.5e − 5m2/s

(kinematic viscosity), cp = 1006J/kgK and T2s = 288K are assumed.

Equation (3.17) clearly shows that the scale effect differs from the

Reynolds number effect although some authors (e.g., [41] and [40]) pre-

fer to avoid a strict distinction between these two effects. This choice is

questionable from a rigorous theoretical perspective but it is supported by

the practical applications where the fluid (i.e., the kinematic viscosity) is

fixed. So, the change of the turbine size results in a change of the Reynolds

number that most of the times cannot be counterbalanced by the rotational

speed. In other words, the turbine size and the Reynolds number cannot

vary independently from each other but are somehow correlated.

Other information can be obtained looking at Fig. 3.2. In the lower

range of SP (SP ≤ 0.03 m), the turbine efficiency is mainly affected by SP

only: this is the region dominated by the scale effect and changes of VR

and Re have only minor effects on efficiency. The small size of the turbine
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does not allow high values of the Reynolds number even at the highest VR.

In the medium range of SP (0.03 m≤ SP ≤ 0.1 m) the turbine efficiency

is affected by both SP and VR: iso-efficiency lines and iso-Re lines form

a roughly orthogonal grid in the SP -VR plane (i.e., iso-efficiency lines are

roughly the directions of Re steepest gradient). This confirms that also

in this SP range the effect of Reynolds number on turbine efficiency is

by far lower than the influence of VR and SP : a proper combination of

VR and SP pairs permits to keep constant the turbine efficiency for any

change of the Reynolds number. VR is important also when it is low,

indicating that the losses due to compressibility effects are relevant within

the medium range of SP.

In the higher range of SP (SP ≥ 0.1 m), the turbine efficiency appears

to be affected mainly by VR: iso-efficiency lines and iso-Re lines bend pro-

gressively towards the horizontal direction. It is likely that these iso lines

overlap the iso-VR lines becoming parallel to each other at very high SP.

At very high SP, compressibility effects dominate the turbine efficiency be-

havior and limit the range of variability of the Reynolds number, especially

at lower VR values.

Finally, in the very high range of VR (VR>>5), it is likely that iso-Re

lines bend towards the vertical direction (becoming iso-SP lines), whereas

iso-efficiency lines bend towards the horizontal direction (becoming iso-VR

lines): the very high VR range is dominated by compressibility effects also

at low SP values. These latter fix the value of the Reynolds number and

the turbine efficiency is ruled by losses due to compressibility.

The qualitative findings of this discussion on the effect of VR and SP

parameters on the turbine efficiency are quite general within the variability

range considered for the two parameters, because they are based on exper-

imental data of real turbines. On the other hand, working fluids different

from air show different values of the Reynolds number, and likely a change

in the role of the Reynolds effect on the turbine losses. Nevertheless, it is
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worth noting that (i) it is unlikely that the qualitative trends showed here

notably change for different fluids following the ideal gas behavior; (ii) the

sensitivity of turbine efficiency to the Reynolds number value will be lower

than that reported in Fig. 3.2 if the turbine operates with a working fluid

having molecular complexity higher than air (being Re higher). Thus, it

can be concluded that SP also accounts also for the Reynolds effect when

the turbine size and operation lead to efficiency that is mostly affected by

the variation of the Reynolds number. This leads to conclude that the

quasi-similarity statement summarized by Eq. (3.21) is the oversimplified

derivation from the similarity law that permits to extend efficiency data of

a specific turbine type designed for a given fluid to the operation with an-

other fluid with the maximum accuracy allowed by such minimum number

of independent parameters, provided that the specific speed and specific

diameter are the optimum ones.

An attempt to relax the ideal gas constraint that tarnishes the extension

of SP -VR maps derived from a specific fluid to another one could be to

admit (i) a variable and non-unity distribution of the compressibility factor

with the minor requirement of not very different Z values at corresponding

turbine operation with different working fluids, and (ii) a contextual slight

variation of the fundamental derivative of gas dynamics Γ. Item (ii) seems

a quite acceptable constraint relaxation, as already stated within the text

surrounding Eq. (3.17), whereas, item (i) requires further comments (see

Chapter 5).

In any case, efficiency SP -VR maps can be conveniently embedded

in optimization tools of an ORC power cycle that want to exploit the

actual turbine technology available for traditional fluids. This practice

which moves towards an integrated design of the ORC system and its

turbine avoids arbitrary assumptions on turbine performance and assures

that the real turbine is able to obtain the thermodynamic states at the

inlet and outlet of the turbine resulting from the optimization procedure.
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Efficiency predictions resulting from the models developed in this work will

be presented in this form.





Chapter 4

Methodology: design of radial

and axial turbines for ORCs

The previous Chapter concluded that the SP-VR maps are best suited

to ORC design and optimization. In order to obtain such maps, a method

of analysis of axial and radial turbines is required. First, this method

should provide reliable results and must allow the execution of a huge num-

ber of simulations to characterize different turbomachines designs. Second,

the entire set of designs must be filtered to obtain the optimal solutions

for each set of design specifications. Finally, these tasks must be repeated

for several organic fluids.

At present, CFD is not a viable tool to reach the final objective of this

thesis in a reasonable time, and the only analysis approach that is believed

to be suited to this work is a mean line model. The more detailed, reliable

and widespread mean line model in the literature was suggested by Balje

[35]. This model allows for the computation of the well-known ns − ds

charts [23] that are the common starting point for the preliminary design

of turbomachines. One of the features at the basis of Balje’s model success

is that it leaves some degrees of freedom in the choice of the turbomachine

geometry details allowing for the sensitivity study of their effect on the
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efficiency. This is apparent by looking at any Balje chart (see Fig. 2.20).

However, in the models used to build the ns − ds charts for compressible

flow turbomachines, differently from those used for hydraulic machines,

Balje introduced some major constraints. In particular, both the Mach

and Reynolds numbers are fixed at specific values. These constraints are

not very relevant for traditional fluid applications, but are unacceptable for

ORC turbines. Moreover, the specific molecular properties of each organic

fluid cannot be disregarded. Finally, the relatively very small size of several

ORC turbines requires to account for the scale effect (SP) that usually

plays a secondary role in turbomachinery handling traditional fluids. In

this work, the degrees of freedom of almost all the secondary geometrical

features of a turbomachine design are fixed at optimal design values taken

from the literature to make the present turbomachine models capable to

focus on the fundamental parameters for ORC applications: SP, VR, fluid

molecular properties (and Reynolds number).

The models are based on algebraic equations derived from the funda-

mental conservation laws of fluid mechanics and thermodynamics (i.e., con-

servation of momentum, mass and energy) complemented by real molecular

properties of each fluid and loss correlations to consider the irreversibil-

ity losses in the turbine flow (Section 4.2). After a detailed presentation

and discussion of loss correlations (Sections 4.3 to 4.5), the structure and

the sequential resolution procedure of the model are presented with the

aid of several flowcharts showing the skeleton of the scripts implemented

in Matlab R⃝ and how they are coupled with the Refprop fluid properties

database (Sections 4.6 and 4.7). A discussion on model criticalities con-

cerning the reliability of a mean line model and the inherent limitations of

loss correlations closes the Chapter (Section 4.8).
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4.1 Introduction

The turbine mean line model assumes that the flow field is everywhere

uniform and unidirectional, that is the values of the flow variables at the

mean line (i.e., mid span of the blade) are representative of the actual

flow field in the fluid flow sections perpendicular to the mean line. This

approximation disregards all three-dimensional effects existing in the real

flow field that are are considered only in the loss correlations for their

contribution to energy losses.

Although through flow or CFD models would certainly result in a more

reliable estimation of performance in the face of a strong computational

effort, they go beyond the scope of this work. The turbine analysis by

means of viscous, three-dimensional CFD techniques does not represent

an alternative methodology to a mean line analysis but it is a subsequent

phase in the overall turbomachinery design process because it requires the

knowledge of detailed blade shapes and principal geometric parameters,

which are made available by the mean line model. Thus, a realistic and

potentially efficient preliminary design obtained by a mean line model is a

precondition for the design of a high efficiency ORC turbine.

A mean line design approach is therefore chosen here, as this work fo-

cuses on the preliminary design and analysis of a large variety of organic

fluid turbines differing for arrangement (i.e., radial inflow or axial), design

specifications (i.e., mass flow rate and enthalpy drop) and basic dimension-

less design parameters (i.e., specific speed and velocity ratio for the radial

turbines and loading coefficient, flow factor and reaction for the axial ones).

In the lumped-parameter approach typical of a mean line analysis, the

irreversibilities are accounted for by loss coefficients: they allow to the real

flow conditions to be evaluated starting from the loss free scenario. The

main portion of this Chapter deals with the choice of the loss correlations

embedded in the models. Several alternative correlations available in the
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open literature are presented and discussed for both the radial inflow and

axial turbine analysis.

The models built in this work are derived from those proposed by

Aungier [45], who validated them for turbines handling traditional fluids.

The author is aware that models based on empirical correlations originally

developed for traditional fluids and validated against steam or gas flows

might be unreliable, and that a validation against experimental data is

mandatory. However, to the author’s knowledge, in the open literature

there are not experimental data of optimized ORC turbines that can sup-

port this validation.

Only a partial validation of the models was performed by comparing

the results of the radial turbine model with performance data of the ra-

dial turbines in the Stillwater geothermal power plant (Nevada (USA))

[46]. The predicted efficiency closely agrees with the measured one (see

Section Critical Remarks in Chapter 5) for the design values of size pa-

rameter and volumetric flow ratio. Although very limited, this successful

validation may suggest that also the axial turbine model (that shares the

origin with the radial turbine model) could provide reliable predictions.

On the other hand, the search for the optimum designs requires that some

geometrical parameters are allowed to vary. So, in the axial turbine model

several design conditions of the Aungier’s [45] original design procedure

have been relaxed to obtain a model sensitive to the variations of some

major geometrical features

4.2 Model structure

The mean line models are formulated with a lumped-parameter ap-

proach and calculate the flow variables at few selected stations of the

cascade (inlet, outlet and, for the radial turbine, mid) disregarding the

detailed three dimensional shape of the blade. Velocity diagrams, size,
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angular speed, blade heights and number, flow sections and estimated effi-

ciency level are the main outcomes of the mean line model. The efficiency

estimation is made possible by the inclusion in the model of loss correla-

tions expressed as function of the blade row inlet and exit velocity triangles

and only the overall geometric features.

Turbine mean line models are based on few algebraic equations result-

ing from fundamental conservation laws of fluid mechanics and thermody-

namics expressed into a form suitable for the analysis of turbomachines.

In particular, they are

• Conservation of mass

ṁ = ρc cosαA(1− bf) (4.1)

where ṁ is the mass flow rate through a blade passage, cosα is the

meridional velocity component, A is the geometric flow area and

bf is a blockage factor due to blade surface and endwall boundary

layers. If A1 and A2 are the areas at stations 1 and 2 along a passage,

respectively, then

ṁ = ρ1c1 cosα1A(1− bf1) = ρ2c2 cosα2A(1− bf2) (4.2)

since there is no accumulation of fluid within the control volume.

• Conservation of energy

The steady flow energy equation for a turbine through which flow

enters at position 1 (nozzle inlet) and leaves at position 3 (rotor

outlet) is

q − w = h03 − h01 (4.3)

where q is the specific heat exchange through the turbine boundaries

and h03 − h01 is the variation of the total (or stagnation) specific
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enthalpy (h0 = h+ 0.5c2) across the turbine. Note that in Eq. (4.3)

the contribution of the potential energy is neglected as it is usually

small and since turbine flow processes are adiabatic then q = 0.

The application of energy conservation to the nozzle control volume

gives

h01 − h02 = 0 (4.4)

that is the total enthalpy is constant because stationary blade row

does not transfer any work from the fluid.

Indeed, for the rotor control volume the specific work w is

w = h02 − h03 (4.5)

• Conservation of momentum

For one-dimensional steady flow which enters the rotor control vol-

ume at radius r2 with tangential velocity ct2 and leaves at radius r3

with tangential velocity ct3, the vector sum τ of the moments of all

external forces acting on the rotor is

τ = ṁ(r2ct2 − r3ct3) (4.6)

which states that the torque on the rotor is equal to the net time

rate of efflux of angular momentum from the control volume.

The specific workW can therefore be written in terms of the so-called

Euler’s turbine equation as

W =
τω

ṁ
= u2ct2 − u3ct3 =

c22 − c23
2

+
u22 − u23

2
+
w3

3 − w2
2

2
(4.7)

The Euler equation ( Eq. (4.7)) and the energy conservation for the

rotor (Eq. (4.5)) result in

h02 − u2ct2 = h03 − ct3 (4.8)
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that is the quantity h0−uct is constant across a rotor streamline. This

function is commonly named rothalpy, a contraction of rotational

stagnation enthalpy. Trivial trigonometric allows to recast Eq. (4.8)

in the form

h2 +
w2

2

2
− u22

2
= h3 +

w2
3

2
− u23

2
(4.9)

where the quantity h0R = h+w2/2 is the relative stagnation enthalpy.

Accordingly, the relative stagnation enthalpy is constant through the

rotating blade row if the blade speed is constant, i.e., the streamline

radius does not vary.

The solution of the flow field within a mean line model ultimately

consists in determining the values of the flow variables (velocity, enthalpy,

density, etc.) which fulfill the above mentioned balance equations of mass,

energy and momentum. However, the model resolution requires, in turn,

the availability of further Equations which allow to define

• fluid properties to describe the thermodynamic behavior of the work-

ing medium. In this work they are evaluated by the program Ref-

prop [47] which is based on the most accurate pure fluid and mixture

models currently available. It implements three models for the ther-

modynamic properties of pure fluids: equations of state explicit in

Helmholtz energy, the modified Benedict-Webb-Rubin equation of

state, and an extended corresponding states (ECS) model. Viscos-

ity is modeled with either fluid-specific correlations or in some cases

the friction theory method. Since in this work only pure substances

are considered, a thermodynamic state is completely determined by

specifying two independent thermodynamic properties; other prop-

erties are then function of these independent properties through the

equation of state.

The calculation of fluid properties using the ideal gas equation of
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state in place of interrogating real fluid properties libraries is im-

proper when dealing with organic fluids, especially if the expansion

starts not too far from the fluid critical point where compressibility

factors may significantly deviate from unity.

• irreversibilities across each turbine component. This is done using

total pressure loss coefficients which are estimated through loss corre-

lations as a function of the main geometric and cinematic variables.

An extensive survey on loss coefficient rationale and estimation is

given in Sections 4.3 to 4.4.

• relationships among the flow velocities in the absolute and relative

frame of reference

ct = wt + u (4.10)

c2 = u2 + w2 − 2uwt (4.11)

where c, w and u indicate the absolute, relative and peripheral ve-

locity, respectively.

4.3 Loss coefficients

The analysis of a turbomachine and the estimation of the resulting

performance is a really tough issue because it involves complex three di-

mensional, viscous, unsteady and irreversible flows occurring in both sta-

tionary and rotating boundaries. On the other hand, efficiency is one of

the most relevant parameter for most turbomachines and the evaluation of

the irreversibilities arising in the flow plays a fundamental role because the

latter can be equated to a certain amount of lost work and thus a loss in

efficiency. In general terms, the increase of the entropy in the flow across

a turbomachine is the consequence of several phenomena: skin friction on
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the blade surfaces, viscous and turbulent dissipative mechanisms of vor-

tices and shocks, vortices that cause some parts of the fluid to move in

directions other than the principal one, fluid leakage in the gap between

the blade tip and the shroud, etc. As all these mechanisms reduce the

useful work they are commonly referred as losses.

The direct mathematical treatment of local losses is not trivial be-

cause involves the solutions of the Navier-Stokes equations with a suitable

turbulence model. Moreover, for viscous layers and vortices the interest

is usually focused on overall or integrated losses rather than local losses.

Thus, what is commonly done in turbomachinery engineering (at least in

a preliminary design phase) is to use an ideal flow model which takes into

account the effects of the irreversibilities by means of loss coefficients. In

other words, loss coefficients allow to determine the real flow conditions

starting from those which would be obtained in case the irreversibilities

were absent (i.e., the flow was ideal).

According to Japikse and Baines [48] loss coefficients can be broadly

grouped according to the methods adopted to define them in the following

categories.

• Gross (or bulk overall) loss coefficients. They are fixed numbers or

very simple functions of few overall fundamental performance pa-

rameters and strongly depend on the experimental dataset used to

determine their values. They provide reasonable estimates only in

the range where data exist, so they are unfit to explore the effect

of geometry modifications on the expected performance. Gross loss

coefficients do not give any insights about the physics of the phe-

nomenon which underneath the loss mechanism.

• Correlated coefficients. By the use of test data taken from a sub-

set of similar machines, loss coefficients are correlated to key design

parameters in place of overall performance parameters. The bigger
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the size of the experimental dataset, the higher the coefficients reli-

ability. Correlated coefficients should be applied only to families of

machines with similar characteristics or, at most, they can be care-

fully used to investigate the effects of limited geometry changes on

the performance.

• Fundamental (or physically based) coefficients. They attempt to

reproduce the actual physical processes in the flow: each basic loss-

generating process within the flow field (e.g. friction, secondary flows,

etc.) is accounted separately by a loss coefficient and modeled as a

function of the fundamental geometric, cinematic and thermo-fluid

dynamic parameters. Then, these loss coefficients are summed to-

gether to get the overall loss coefficient and, in turn, the real flow

conditions. However, it must be borne in mind that, whilst the

partition of the global loss mechanism in more fundamental loss-

generating processes reduces a complex problem to smaller propor-

tions, it is artificial because loss-generating processes interact and

influence each other. Compared to the previous categories these coef-

ficients are the most suitable for design purposes because they should

be able to predict with good accuracy the performance of turbines

other than those for which they were developed; nevertheless, few

empirical input (i.e., tuning constants) are still required to calibrate

the loss modeling system with respect to the experimental findings

and to indirectly account for possible lacks in the flow modeling.

In turbomachine engineering practice loss coefficients are usually de-

fined on velocity/enthalpy or pressure basis. In the following the most

relevant definitions for nozzle and rotor are collected and they are related

to each other.

Figure 4.1a shows an expansion process across a nozzle from the initial

state 1 to the final state 2; state 2s is the isentropic (or ideal) final state
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Figure 4.1: Expansion process across a (a) nozzle and (b) rotor.

and lies on the same isobar line of state 2. The velocity loss coefficient (ϕ)

compares the real discharge flow velocity to the ideal one

ϕ =
c2
c2s

=

(
h01 − h2
h01 − h2s

)0.5

(4.12)

The enthalpy loss coefficient (ζ) is often defined as

ζ =
h2 − h2s
h01 − h2

=
h2 − h2s
c22/2

(4.13)

or, more rarely, if the isentropic total-to-static enthalpy drop is consid-

ered, as

ζ ′ =
h2 − h2s
h01 − h2s

=
h2 − h2s
c22s/2

(4.14)

Equations (4.12), (4.13) and (4.14) allow to calculate the real discharge

enthalpy value (h2) which is higher than the ideal one (h2s) because the

difference h2 − h2s is not used to accelerate the fluid to the ideal velocity

discharge value c2s.

Simple rearrangements permit to interrelate the above definitions

ζ =
h2 − h2s

ϕ2 c
2
2s

2

=
ζ ′

ϕ2
=

ζ ′

1− ζ ′
ζ =

1

ϕ2
− 1 ϕ =

(
1

1− ζ ′

)0.5

(4.15)

Total pressure loss coefficient (Y ) is usually preferred by English au-

thors and the most diffused definition is (see, e.g., Horlock [49] for a com-

prehensive list of the possible variations)
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Y =
p01 − p02
p02 − p2

(4.16)

from which the total outlet pressure and, in turn, the outlet thermody-

namic state can be determined. Under the hypothesis of ideal gas behav-

ior it is possible to analytically relate the enthalpy loss coefficient ζ (Eq.

(4.13)) and total pressure loss coefficient (Eq. (4.16)). It results

ζ =
2

(γ − 1)M2
2

1−

(
1

1 + Y
+

Y

1 + Y

1

(1 + Y )
(
1 + γ−1

2
M2

2

) γ
γ−1 − Y

) γ−1
γ


(4.17)

where γ and M2 denote the specific heat ratio and the outlet Mach

number, respectively. Equation (4.17) for M2 ≤ 0.4 is well approximated

by

ζ =
Y

1 + γ
2
M2

2

(4.18)

Similarly, loss coefficients ζ ′ and Y can be related by relationships

analogous to Eq. (4.17) and (4.18) (see [32] for the details).

A number of turbomachine designers (e.g., Balje [50] and Rodgers [51])

prefer to use loss coefficients based on the stagnation enthalpy loss (h02 −

h02s, being the state 02s on the total pressure isobar line p02 and s02s = s1),

non-dimensionalized by the tip speed u of the rotor which follows the nozzle

∆q =
h02 − h02s

u2
(4.19)

Figure 4.1b shows an expansion process across a rotor from the initial

state 2 to the final state 3; state 3s is the isentropic (or ideal) final state

and lies on the same isobar line of state 3. Subscript R stands for relative

frame of reference. The velocity loss coefficient (ψ) compares the real

relative discharge flow velocity to the ideal one

ψ =
w3

w3s

=

 (h02R − h3) +
(

u2
3

2
− u2

2

2

)
(h02R − h3s) +

(
u2
3

2
− u2

2

2

)
0.5

(4.20)
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The enthalpy loss coefficient (ζ) is

ζ =
h3 − h3s

h02R − h3 +
u2
3

2
− u2

2

2

=
h3 − h3s
w2

3/2
(4.21)

whereas, if the isentropic total-to-static enthalpy drop is considered, it

is

ζ ′ =
h3 − h3s

h02R − h3s +
u2
3

2
− u2

2

2

=
h3 − h3s
w2

3s/2
(4.22)

It is also

ζ =
ζ ′

1− ζ ′
=

1

ψ2
− 1 (4.23)

Note that Eqs. (4.21) and (4.22) are applicable to rotors of both axial

and radial turbines. In the former case being u2 = u3 they assume simpler

expressions. On the other hand, different expressions have to be used for

the total pressure loss coefficient depending on the machine arrangement.

In particular, for the axial rotors it is

Y =
p02R − p03R
p03R − p3

(4.24)

whereas for the radial ones (see [45])

Y =
p03Rs − p02R
p02R − p2

(4.25)

with p03Rs = f(h03R, s2).

The relationships which interrelate ζ and Y can be obtained from Eqs.

(4.17) and (4.22) by subscripts mutation.

4.4 Loss evaluation for the radial turbine

The building of a reliable loss model for radial inflow turbines in terms

of fundamental loss coefficients is inherently more difficult compared to

axial turbines. In fact, differently from what is commonly done in the study

of axial turbines, the large amount of test data available for stationary

cascades cannot be profitably used in the analysis of radial turbines because
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in the latter case the flow field is deeply influenced by both the radius

change and the pressure distribution caused by rotation. As a result, the

open literature does not provide any comprehensive and well-validated

performance prediction model for this type of machines. Nevertheless, in

the market there are commercially available software (see Rital R⃝) which

implement proprietary performance analyses for radial inflow turbines.

In this work the loss modeling system proposed by Aungier has been

used in the analysis of radial inflow turbines because

• i) most of the loss correlations are formulated specifically for the

radial inflow applications and are not adapted from axial flow turbine

and centrifugal compressor engineering practice;

• ii) it attempts to estimate the loss amount starting from a quite

general physical modeling of each loss mechanisms (e.g., the use of a

simplified boundary layer analysis for the passage losses);

• iii) it limits (but not excludes) the use of experimentally derived

tuning constant whose applicability to turbines of very different size

might be questionable;

• iv) consistently with a mean line analysis the loss calculation con-

siders not only the geometric and kinematic parameters at the inlet

and outlet of each turbine component (as commonly done by several

authors) but also at the mid station;

• v) it was originally formulated to address radial inflow turbines ap-

plications in the energy market and it is relatively recent so it can be

argued that it took stock of the previous findings accumulated over

the years.

Losses in each turbine component (i.e., volute, nozzle, annulus and ro-

tor) are estimated by means of total pressure loss coefficient (Y ) depending
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on kinematic and geometrical parameters. Total pressure loss coefficients

are used (see Section 4.6) to calculate the total pressure at the outlet of

each component and, in turn, the entropy increase across the turbine. In

the following the loss correlations implemented in this work are shown and

they are briefly compared to other loss models (especially for the rotor)

proposed by different authors in the past decades.

As commonly done in the literature, the loss correlations are grouped by

turbine component because loss phenomena and the equations to model

them are different depending on the turbine component. The reason of

such diversity relies on the considerably different geometries and, in turn,

flow fields of turbine components (e.g., nozzle and rotor). In the follow-

ing, the notation used in the Equations for the calculation of the pressure

loss coefficients (Y ) follows this scheme: subscripts v, n, a, r stand for

volute, nozzle, annulus and rotor, respectively; subscripts 1, 2 and 3 in-

dicate the inlet, mid and outlet station, whereas subscript 0 denotes the

corresponding total state.

4.4.1 Volute

The total pressure loss coefficient in the volute (Yv) is defined by:

Yv =
p01v − p03v
p03v − p3v

(4.26)

This coefficient is expressed as the sum of two components: the profile

loss (Ypv) and the circumferential distortion loss (Yθ):

Yv = Ypv + Yθv (4.27)

Profile loss coefficient of each turbine component, is calculated accord-

ing to a simplified boundary layer analysis, which, according to Aungier’s

experience, has been found to be particularly effective for radial inflow

turbines. In particular, the profile loss coefficient for the volute (Ypv):
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Ypv =
2Θv +∆2

v

(1−∆v)2
(4.28)

where Θv = 2(θwv/b3v) and ∆v = 2(δ∗wv/b3v).

The estimation of the boundary layer “momentum thickness” (θwv) re-

quires the calculation of the skin friction coefficient (cfv, which depends,

in turn, on Reynolds number and relative roughness), the average den-

sity throughout the volute (ρavev), the flow path length (Lv) and the flow

velocities at the three stations (1, 2 and 3):

θwv = cfvρavev

[(
C1v

C3v

)5

+ 2

(
C2v

C3v

)5

+ 1

]
Lv

8ρ3v
(4.29)

The “displacement thickness” (δ∗wv) can be directly obtained from θwv by

multiplication for the shape factor (H = 1.2857), because it is assumed

that the boundary layer shape factor for the 1/7th power law velocity

applies.

The circumferential distortion loss (Yθ) accounts for mixing losses as-

sociated with circumferentially non-uniform angular momentum imposed

at the volute exit:

Yθv =

((
r1vC1v

r3v
− Ct3v

)
/C3v

)2

(4.30)

In this study the volute is designed to maintain uniform angular mo-

mentum in the circumferential direction so this loss is null (Yθv = 0).

A common approach followed by other authors is to calculate the fric-

tion loss by means of conventional pipe flow correlations with Reynolds

number for fully turbulent flow. For instance, Kastner and Bhinder [52]

and Rogo [53] evaluate the friction loss in terms of enthalpy loss coefficient

∆q = 4cf
L

D

(c̄/u1r)
2

2
(4.31)

where ∆q is the loss coefficient based on total enthalpy loss and non-

dimensionalized by the rotor tip speed (u1r), 4cf = 0.054(c̄D/ν)−0.25 is
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the turbulent friction factor, c̄ is the mean velocity and L and D are

the equivalent hydraulic length and diameter, respectively. However, the

evaluation of skin friction coefficient in Eqs. (4.29) and (4.31) is in any

case questionable, because most of the available correlations refer to flow

in straight pipes of constant area. An attempt to overcome this issue is

made by Japikse [54] through the relationship cf = k(1.8e5/Re)0.2, where

the constant k may vary in the wide range 0.005− 0.02.

According to the author knowledge, there are no correlations to esti-

mate the secondary losses caused by recirculation and cross flows in the

volute.

4.4.2 Nozzle

The total pressure loss coefficient in the nozzle (Yn) is defined by:

Yn =
p01n − p03n
p03n − p3n

(4.32)

This coefficient can be expressed as the sum of two loss contributions,

namely the profile loss (Ypn) and the incidence loss (Yincn):

Yn = Ypn + Yincn (4.33)

The profile loss is calculated from the boundary layer theory as

Ypn =
2Θn +∆2

n

(1−∆n)2
(4.34)

where

Θn = 1−
[
1− 2

(
θwn

bwn

)][
1−

(
θbsn
bbn

+
θbpn
bbn

)]
(4.35)

∆n = 1−
[
1− 2

(
δ∗wn

bwn

)][
1−

(
δ∗bsn
bbn

+
δ∗bpn
bbn

)]
(4.36)

In Equations 4.34 and 4.35 three “momentum thicknesses” appear

which are related to the wall of the nozzle (θwn), the blade suction side
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of the nozzle (θbsn) and the blade pressure side (θbpn). The dimensional

lengths used at the denominator are:

bbn = esse3n sin β3n (4.37)

bwn = b3n (4.38)

Note that θbsn and θbpn calculation follows Eq. (4.29) but the blade

surface fluid velocity on suction c2bsn and pressure side c2bsn are required

in the mid station to include the influence of the blade loading effect on

the blade surface boundary layer calculation. The average difference in

velocity on the two blade surfaces (∆cn) is given by Stokes’s theorem for

irrotational flows, that is the integration about any closed path of the

velocity component tangent to the path is identically equal to zero

∆cn = 4π |r3nCt3r − r1nCt1r| /(LnNN) (4.39)

where Ln is the nozzle flow path length. It is assumed that this differ-

ence ∆cn could be subdivided in equal parts between the two sides of the

blades, so

c2bsn = c2n +
∆cn
2

(4.40)

c2bpn = c2n −
∆cn
2

(4.41)

The incidence loss is:

Yincn = sin2(α1n − α∗
1n)

p01n − p1n
p03n − p3n

(4.42)

and it is proportional to the difference between the actual flow angle α1n

and the optimum one α∗
1n.

When the flow regime at nozzle outlet is supersonic post-expansion

shock waves occur. In the absence of guidelines the author estimated the
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associated losses using the following correlation borrowed from axial flow

cascades (see Aungier [45]):

Yexn =

(
M3n − 1

M3n

)2

(4.43)

which is added to the nozzle total pressure loss calculated at sonic

conditions.

Yn|M3n>1 = Yn|M3n=1 + Yexn (4.44)

The number of published studies on nozzle performance is very limited

and, in any case, with little supporting data often referring to a fixed

turbine size. Accordingly, their application to turbines of very different

size may be questionable.

Rodgers [51] suggests the following expression for nozzle loss

ζn =
0.05

Re0.2b

(
3 tanα3n

s/c
+
s cosα3n

b

)
(4.45)

where ζn = (h3n−h3ns)/(h01n−h3n) is the static enthalpy loss coefficient

(h3ns = f(p3n, s1n)), s is the vane spacing, bn and cn are the nozzle blade

height and chord length, respectively and the Reynolds number is based

on nozzle blade height and outlet velocity. This formulation highlights

that losses increases with the pitch-to-chord ratio and blade height-to-

pitch ratio as the wetted area is increased; the inverse dependency on the

Reynolds number takes into account the effect of the friction coefficient

(which is not explicitly taken into account). Note that flow angles in Eq.

(4.45) refer to the radial direction.

Balje [50] accounts the nozzle losses in terms of total enthalpy loss

coefficient using a frictional pipe formulation based on hydraulic length

and diameter. Even less general is Benson’s model [55] which correlates

the nozzle loss coefficient to the reduced mass flow rate: the higher the

reduced mass flow rate, the lower the losses.



124
CHAPTER 4. METHODOLOGY: DESIGN OF RADIAL AND AXIAL

TURBINES FOR ORCS

4.4.3 Vaneless annular passage

The total pressure loss coefficient in the annulus (Ya) is defined by:

Ya =
p01a − p03a
p03a − p3a

(4.46)

This is the sum of two components, the profile loss (Ypa) and the en-

trance loss (Yina):

Ya = Ypa + Yina (4.47)

The profile loss is calculated from the boundary layer theory as

Ypa =
2Θa +∆2

a

(1−∆a)2
(4.48)

where Θa = 2(θwa/b3a) and ∆a = 2(δ∗wa/b3a).

In the equations above the “momentum thickness” (θwa) and “displace-

ment thickness” (δ∗wa) are estimated using an analogous procedure to that

described for the volute (see 4.29).

The entrance loss coefficient accounts for the abrupt area contraction

loss (see Benedict et al. [56]) applied to the meridional component of the

velocity head:

Yina =

[(
A1a

A3a

− 1

)2

sinα1a

]2
p01a − p1a
p03a − p3a

(4.49)

On the other hand, Whitfield and Baines [27] suggest to estimate the

passage losses of the annulus by the same loss models of the volute (e.g., Eq.

(4.31)) since the volute and the annulus are both stationary components

in which unguided swirling flows occur.

4.4.4 Rotor

The overall loss coefficient in the rotor has a different definition com-

pared to the previous components because it refers to the relative frame-

work:

Yr =
p03Rsr − p03Rr

p03Rr − p3r
(4.50)



4.4. LOSS EVALUATION FOR THE RADIAL TURBINE 125

with p03Rsr = f(h03Rr, s1r).

It is estimated by calculating the following loss contributions: profile

(Ypr), incidence (Yincr), blade loading (Yblr), hub-to-shroud loading (Yhsr),

clearance (Yclr):

Yr = Ypr + Yincr + Yblr + Yhsr + Yclr (4.51)

The profile loss is given by:

Ypr =
2Θr +∆2

r

(1−∆r)2
(4.52)

Θr = 1−
[
1− 2

(
θwr

bwr

)][
1−

(
θbsr
bbr

+
θbpr
bbr

)]
(4.53)

∆r = 1−
[
1− 2

(
δ∗wr

bwr

)][
1−

(
δ∗bsr
bbr

+
δ∗bpr
bbr

)]
(4.54)

Like in the nozzle, three “momentum thicknesses” are defined to ac-

count for the flow condition at the wall, blade suction surface and blade

pressure surface. The dimensional lengths used at the denominator are:

bbr = esse3r sin β3r (4.55)

bwr = b3r (4.56)

The same hypotheses of the nozzle about the blade loading distribution

are made in the rotor analysis.

Some authors do not distinguish between skin friction losses caused by

shear forces on the passage solid surface and blade loading losses due to

cross-stream or secondary flow (blade losses are also referred as secondary

losses). The reason of this choice is three-fold: (i) the difficult of exper-

imentally measuring these effects separately in radial turbomachines; (ii)

friction and secondary losses are both viscous, boundary layer effects; (iii)

maintain a simple formulation in view of the uncertainties which are inher-

ent to a 1D analysis. Basically, two alternative approaches are proposed
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in the literature: mean kinetic energy formulation and frictional loss for-

mulation. As instance, Futral and Wasserbauer [57] model belongs to the

former category and it is based on the meridional component of kinetic

energy at rotor inlet and the total kinetic energy at the outlet

∆q =
k(c2m1r + w2

3r)

2u21r
(4.57)

where k is an experimentally determined coefficient whose value obvi-

ously originates from the available test data.

Frictional loss formulations have the same structure of Eq. (4.31) and

are affected by analogous uncertainties on the friction coefficient. Never-

theless, Moustapha et al. [19] has recently proposed a correlation in the

form

∆q =
1

u21r
k

(
L

D
+ 0.68

(
1−

(
ror
r4

)2
cos βor
bor/cr

))
w2

1r + w2
3r

2
(4.58)

where the throat section (subscript “or”) is considered instead of the

discharge one. The first term in brackets accounts for frictional losses.

The mean passage hydraulic length (L) is the mean of two quarter circle

based on the rotor inlet and exit, whereas the hydraulic diameter (D) is

the mean of the inlet and exit hydraulic diameters. The second term in

brackets takes into account secondary flow losses: it increases with the

mean radius variation and it is inversely proportional to the blade height-

to-chord ratio. As usual, the constant k is experimentally determined and

its value is doubled for rotors where the shroud line has a small radii of

curvature because the risk of flow separation near the blade tips is higher.

The incidence loss is:

Yincr = sin2
(
α′
1r − α

′∗
1r

) p01r − p1r
p03r − p3r

(4.59)

α′
1r is the actual relative flow angle and α∗

1r is the optimum rotor inlet

flow angle. Both these angles have to be accounted from radial direction.
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The latter is estimated using the relationship

tanα
′∗
1r =

σu1r − cm1r cot β1 − u1r
cm1r

(4.60)

where σ is the slip factor. It is defined as

σ = 1− c′t1r − c∗t1r
u1r

(4.61)

where c′t1r refers to the velocity triangle which follows the blade direction.

The slip factor estimation proposed by Aungier mainly follows the

model of Wiesner [58] but a corrective factor for rotors with low blade

solidity is accounted for. Alternative forms for the calculation of the slip

factor and, in turn, the optimum incidence angle are equally valid (see,

e.g., Stanitz [59]). In any case, all the models for the slip factor estimation

were originally developed for power-absorbing machines but they can be

extended to turbine rotors, all velocity directions being reversed.

Note that, the incidence loss corresponds to the difference of the tan-

gential component kinetic energy of the actual relative flow and that in

optimum incidence conditions (i.e., superscript *). This choice is com-

monly accepted in the literature and it was originally proposed by Futral

and Wasserbauer [57] and developed and tested at a later time by various

NASA researchers and by Jensen [60]. Regardless of the physical meaning

of the model, a better agreement with experimental data is observed by

Wasserbauer and Glassman [61] when the exponent is increased to 3 for

positive incidences.

The blade loading (or secondary flow) loss accounts for cross-stream or

secondary flows and is estimated by

Yblr =
1

24

[
∆W

W3r

]2
(4.62)

where ∆W is the relative velocity difference between suction and pres-

sure surface which is calculated according to the procedure already outlined

in the nozzle analysis.
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The hub to shroud loading loss accounts for the secondary flows pro-

duced by the pressure gradient in the hub-to-shroud direction

Yhsr =
1

6

(
κmb3rW2r

W3r sinα3r

)
(4.63)

where κm is the mean curvature of the meridional channel.

Blade loading loss and hub to shroud loss coefficients are computed as

mixing losses and are adapted from the impeller performance analysis for

centrifugal compressors of Aungier [62]. The absolute flow angle in the

hub to shroud loss accounts for the higher exit flow profile distortion in

turbine impellers compared to centrifugal compressors.

The blade clearance loss due to to the leakage from the rotor blade

pressure to suction surfaces across the clearance gap between the rotor

and its shroud is estimated by:

Yclr =
ṁcl

ṁ

∆p

p03Rr − p3r
(4.64)

where ṁcl is the clearance gap leakage mass flow rate between adjacent

vanes defined by

ṁcl = ρaveruclLrNrδc (4.65)

and δc is the clearance gap.

The physical basis of this loss model is explained in the following. The

power (P ) extracted by the turbine can be written as

P = ωT = ωraverNrbaverLr∆p (4.66)

where T is the torque, the subscript aver stand for averaged rotor

quantity, Lr is the rotor path length and ∆p is the pressure difference

between blade suction and pressure side. Since it is also P = ṁ∆h0, it

results

∆p =
ṁ(r1rct1r − r3rc3r)

raverbaverNrLr

(4.67)

The fluid velocity through the clearance gap ucl is linked to the pressure

difference ∆p by

∆pcl = 1.5
1

2
ρaveru

2
cl (4.68)
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where the coefficient 1.5 is determined by comparison with experiments.

Thus, from Eq. (4.68) it is

ucl = 0.816

(
2∆p

ρaver

)0.5

(4.69)

The clearance gap leakage mass flow rate (ṁcl) is by continuity

ṁcl = ρaverδcLruclNr (4.70)

Finally, being the loss power due to the clearance mass flow rate (ṁ∆h0cl)

equal to the pumping power across the clearance (ṁcl∆p/ρaver), the total

pressure loss coefficient of Eq. (4.64) is obtained.

Several studies for the estimation of clearance losses influence on radial

turbines have been proposed in the literature (e.g., [63], [64] and [65]).

They agree that the radial clearance in the exducer region is more impor-

tant compared to the axial clearance in the rotor inlet region but there is

considerable disagreement in the estimation of losses (see Moustapha et al.

[19] for a quantitative comparison). Rodgers [51] suggests a very simple

loss correlation in terms of efficiency decrease

∆ηtt = 0.1δc/b3r (4.71)

where the loss is proportional to the ratio of the radial clearance (δc) to

the outlet blade height (b3r). Similarly, Krylov and Spunde [63] correlated

the efficiency penalty to the radial clearance to inlet blade height and to

the rotor radius ratio. Spraker [66] modeled the leakage flow as a shear

flow assuming that the velocity varies linearly between the wall and the tip

from zero to the local blade speed, respectively. This model is very similar

to Aungier’s one but the calculation of the leakage flow velocity is slightly

different. Moustapha et al. [19] suggested to estimate the leakage mass

flow rate in terms of axial and radial leakage gaps by assuming a simplified

straight line rotor shroud contour and equal leakage flow and blade speed

velocity.
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Finally the disk friction loss is given in terms of enthalpy drop by:

∆h0df =
1

4

CMρaverω
3r51r

ṁ
(4.72)

where the torque coefficient (CM) is calculated according to the ap-

proach by Daily and Nece [67] (as very often done in the literature) with

minor modifications. The torque coefficient CM for the two faces of the

disk is defined as

CM =
2M

ρaverω2r51r
(4.73)

and its value is determined against experimental data.

In particular, these authors identify four flow regimes that may occur in

the enclosed rotating disk: (i) laminar, merged boundary layers; (ii) lam-

inar, separate boundary layers; (iii) turbulent, merged boundary layers;

(iv) turbulent, separate boundary layers. The torque coefficient is calcu-

lated for each of the four flow regimes as a function of the disk-housing

clearance to rotor radius ratio (∆/r1r) and the disk Reynolds number: the

higher one identifies the relevant flow regime. This CM value is used in

Eq. (4.73) if the disk Reynolds number is lower than a limiting Reynolds

number where roughness first become significant, i.e., the flow is smooth.

On the other hand, if the disk Reynolds number is higher than a limiting

Reynolds number beyond which the flow is fully turbulent, the torque co-

efficient to be used in Eq. (4.73) depends on both ∆/r1r and the relative

surface roughness. In this case it is accounted by an experimental correla-

tion which is slightly different from that reported in the work of Daily and

originally proposed by Aungier in [45].

Note that the disk friction losses are considered as external losses, so

they do not influence the flow field inside the expander.
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4.5 Loss evaluation for the axial turbine

Several loss prediction methods for axial turbines have been formu-

lated over the past sixty years starting from tests on stationary cascades

or direct measurements on turbine stages. The best known and well docu-

mented loss system is that of Ainley and Mathieson [68] (AM) which has

been extensively used for many years to predict the performance of con-

ventional blades turbines in both design and off-design operation. Later,

as technical capabilities have improved and the availability of experimen-

tal data has increased the AM model was modified/integrated by Dunham

and Came [69] in 1970 originating the so-called AMDC performance sys-

tem. In 1981, AMDC model was modified, in turn, by Kacker and Okapuu

[70] (KO model) and by Moustapha et al. [71]. It has to be borne in

mind that the basic architecture of the AM model has been maintained

by the cited authors and revisions over the years were aimed at achieving

a better agreement with new experimental data and extending the model

applicability. This was achieved by changing tuning constants or by taking

into account the influence of flow/geometric variables which were originally

assumed fixed or, at most, variable in a narrow range.

Other significant open literature loss models to predict the overall per-

formance of axial turbine stages are those by Craig and Cox [72], Traupel

[73] and Denton [74]. There are also some works specifically devoted to

the prediction of some individual loss components (see e.g. Dunham [75],

Lakshminarayana [76] and Yaras and Sjolander [77]).

In this work the loss system of Aungier [45] for axial turbine perfor-

mance evaluation is chosen because it

• (i) is basically derived from the well-established AM, DC and KO

models and thus it benefits from their previous findings, critically

compares their results and improves their predictions;
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• (ii) is specifically extended to treat modern high-pressure ratio tur-

bines and the corresponding severe operating conditions;

• (iii) explicitly considers the effects on profile losses of surface rough-

ness which might be important for small size turbines;

• (iv) it imposes asymptotic superior limits on some loss terms (e.g.,

secondary, shock and post-expansion losses) to avoid, differently from

other methods, absurd predictions and permits, at least, more likely

results.

Losses are estimated in terms of total pressure loss coefficients (Y ) and

it is assumed that the total pressure loss coefficient through the blade rows

is the sum of several terms representing specific loss sources: profile (Yp),

secondary (Ys), trailing edge (Yte), post expansion (Yex), shock (Ysh) and,

for rotating rows only, clearance losses (Ycl).

Y = Yp + Ys + Yte + Yex + Ysh + Ycl (4.74)

Although in this Section loss equations are written for a fixed row (i.e.,

stator) they are still valid for a rotor provided that relative flow angles (α′)

are substituted for absolute ones (α). When using the following Equations

flow angles must be expressed as

α1 = 90 + arctan(ct1/cm) (4.75)

α2 = 90− arctan(ct2/cm) (4.76)

α′
2 = 90− arctan(wt2/cm) (4.77)

α′
3 = 90 + arctan(wt3/cm) (4.78)

The output of the loss model is the total pressure loss coefficient of the

stator (YN) and rotor (YR), respectively defined by
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YN =
p01 − p02
p02 − p2

(4.79)

YR =
p02R − p03R
p03R − p3

(4.80)

where subscripts 1, 2, 3 refer to nozzle inlet, rotor inlet (or nozzle

outlet), and rotor outlet, respectively.

In the following, the equations of Aungier loss system are presented

and briefly compared to AM, DC and KO models to highlight similarities

and differences; for each loss term a phenomenological description of the

loss generating mechanisms and the physical rationale of some correlations

is provided, as well.

4.5.1 Profile loss (Yp)

Profile (or skin friction) loss is the loss which arises from the growth

of the blade surface boundary layers and the attendant surface friction

effects. It depends on the blade area in contact with the fluid, surface

finish, Reynolds and Mach flow number in the passage and geometry of the

airfoil. The profile loss coefficient suggested by Aungier is a modified form

of the well-established Ainley-Mathieson [68] model. It can be represented

as

Yp = kmod kinc kp kRe kM

(
(Yp1+ ξ2

(
Yp2−Yp1

)
)

(
5tmax

c

)ξ

−∆Yte

)
(4.81)

The terms Yp1 and Yp2 are profile loss coefficients for a stator blade with

an axial approach flow and for an impulse blade, respectively. They give

the profile loss for a nominal blade thickness (t/c = 0.2), zero incidence,

low Mach number (M ≤ 0.6) and a nominal Reynolds number in terms of

the pitch-to-chord ratio and exit angle (Re = 2× 105). It is apparent from

Yp1 and Yp2 plots (see [68]) that (i) the profile loss is larger for impulse
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blades compared to stator blade and (ii) the trend of profile loss versus

pitch-to-chord ratio exhibits a minimum which is not too far from the

optimum pitch-to-chord ratio according to well-known Zweifel criterion

[78]. Item (i) and the increase of the losses with the pitch-to-chord ratio

is mainly a consequence of the higher surface area in impulse blades and

in high pitch-to-chord ratio blades (i.e., higher deviations or higher chords

means higher area) whereas for small chord blades the beneficial effect due

to area reduction is compensated by the larger suction surface diffusion

losses, resulting in a rise of the overall loss.

Basic terms Yp1 and Yp2 are combined together to get the loss of the

reaction blade according to interpolation scheme

Yp1 + ξ2(Yp2 − Yp1) (4.82)

where

ξ =
90− β1
90− α2

(4.83)

The AM model includes in the profile loss term the trailing edge loss

assuming t2 = 0.02s, where t2 and s are the trailing edge thickness and

blade pitch respectively. Since in Aungier model the trailing edge loss is

evaluated separately, the term ∆Yte subtracts this loss accounted with Eq.

(4.98) for t2 = 0.02s. The factor involving tmax/c (tmax is the maximum

blade thickness) takes into account the effect of tmax/c values different from

the reference one (i.e., 0.2): the higher the ratio, the higher the loss.

Factors ki in Eq. (4.81) are corrections to the basic profile loss for

Mach number, Reynolds number etc. different from those on which test

data were performed and for off-design incidence angles. In particular:

• kmod is an experience factor suggested by Kacker and Okapuu [70] to

account for superior performance of more designs compared to those

considered by Ainley and Mathieson [68] in the Fifties. A value of
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0.67 is suggested by the authors. However, it would be reasonable to

use a lower coefficient for contemporary turbines.

• kinc is a correction for off-design incidence effects which depends on

the ratio between the actual incidence and the stalling incidence:

the higher the absolute value of this ratio, the higher the corrective

factor. The stalling incidence is a function of the exit flow angle (α2),

factor ξ (Eq. (4.83)) and pitch-to-chord ratio. However, as in this

work only design operation is considered kinc does not influence the

expected performance.

• kp is a correction for compressibility effects on channel flow acceler-

ation. A consequence of the compressibility of the working fluid is

that the flow in the passage between two adjacent blades is subjected

to a larger acceleration when the outlet Mach number is increased.

Accordingly, the boundary layer becomes thinner and the risk of

flow separation reduces. Since the original Ainley and Mathieson

[68] loss model is based on low speed cascade test (M2 ≤ 0.2), the

estimated performance might be too pessimistic when high expan-

sion ratio turbines are analyzed. Kacker and Okapuu [70] suggest an

expression of kp which depends on inlet-to-outlet Mach number ratio

(X =M1/M2) and on the outlet Mach number (M2): losses decreases

(i.e., kp decreases) as both these parameters increase. Aungier [45]

uses the same model structure but replacesM1,M2 and X =M1/M2

with

M̃1 = (M1 + 0.566− |0.566−M1|)/2 (4.84)

M̃2 = (M2 + 1− |M2 − 1|)/2 (4.85)
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X̃ = 2M̃1/(M̃1 + M̃2 +
∣∣∣M̃2 − M̃1

∣∣∣) (4.86)

This modification to Kacker and Okapuu [70] model imposes an up-

per limit to these variables (i.e., M1 ≤ 0.566, M2 ≤ 1 and X ≤ 1) to

avoid very low unrealistic kp values in severe operating conditions,

while maintaining quite similar results in the remaining cases. The

correction factor for compressibility effects is

kp = 1− (1− k1)X̃
2 (4.87)

where

k1 = 1− 0.625(M̃2 − 0.2 +
∣∣∣M̃2 − 0.2

∣∣∣) (4.88)

• kRe is used to account for Reynolds number effects when the Reynolds

numbers are different from those on which the experimental cascade

tests are based. Reynolds number correction is based on friction

models which estimate the variation of the skin friction coefficient

with the blade chord Reynolds numberRec evaluated at the discharge

flow conditions.

Three flow regimes are identified: laminar (Rec ≤ 105), transition

(105 ≤ Rec ≤ 5× 105) and turbulent (Rec ≥ 5× 105).

In the transition regime it is assumed kRe = 1 because friction models

cannot estimate the complex variations of the skin friction coefficient

and, in turn, kRe without a detailed knowledge of the blade shape.

Furthermore, experimental cascade tests refer to Reynolds number

levels (i.e., Rec = 200000) which lie in this transitional regime.

In the laminar region kRe is higher than unit to account for a general

thickening of the laminar boundary layers and a gradual increase

of separated laminar flow regions. It is based on the laminar skin
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friction model

kRe =

(
1× 105

Rec

)0.5

(4.89)

In the turbulent region the evaluation of kRe is less straightforward

because the effect of surface roughness e has to be considered. To

this end, a critical blade Reynolds number Rer is introduced which is

defined as the ratio between chord and surface roughness multiplied

by a factor of 100

Rer = 100
c

e
(4.90)

If Rec ≤ Rer the surface roughness is not significant and the correc-

tion factor is dependent only on Rec

kRe =

(
log10(5× 105)

log10Rec

)2.58

(4.91)

If Rec ≥ Rer and Rer ≥ 5× 105

kRe =

(
log10(5× 105)

log10Rer

)2.58

(4.92)

whereas, if Rec ≥ Rer and Rer ≤ 5× 105

kRe = 1 +

((
log10(5× 105)

log10Rer

)2.58

− 1

)(
1− 5× 105

Rec

)
(4.93)

This model is quite similar to that of Kacker and Okapuu [70], al-

though the latter considers slightly different intervals for the flow

regimes, suggests a more severe correction at low Reynolds number

and especially does not consider the influence of the surface roughness

in the turbulent flow. Reynolds correction of Kacker and Okapuu [70]

model are

kRe =

(
Rec

2× 105

)−0.4

Re ≤ 2× 105 (4.94)

kRe = 1 2 < ×105Re ≤ 106 (4.95)
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kRe =

(
Rec
106

)−0.2

Re > 106 (4.96)

The AMDC model simply suggests to use the multiplicative factor

(Re/2× 105)−0.2 to penalize small turbines where low Reynolds flow

regime could occur and disregards the influence of the surface rough-

ness. Instead, the method of Craig and Cox [72] is one of the few

which considers the effects of surface roughness on the Reynolds cor-

rection.

Note that, according to Aungier model the influence of Reynolds

number on kRe for very high Reynolds number (i.e., Rec ≥ 107)

is weaker than in KO and AMDC models but in accordance with

Craig and Cox findings. Thus, Reynolds number correction which

disregard the influence of surface roughness might lead to unreliable

results, especially when dealing with high-pressure ratio turbines and

when dealing with a variety of sizes.

• kM is the Mach number correction as originally proposed by the AM

model and it depends on the ratio of the pitch to the suction surface

radius of curvature s/Rc and the discharge Mach number M2: the

higher s/Rc and M2, the higher kM , i.e., the higher the loss

kM = 1 + (1.65(M2 − 0.6) + 240(M2 − 0.6)4)(s/Rc)
3M2−0.6 (4.97)

Note that the Mach number range is limited to 0.6 ≤ M2 ≤ 1 when

applying Eq. (4.97).

4.5.2 Trailing edge loss (Yte)

The trailing edge loss coefficient is computed as an expansion loss

through an abrupt area enlargement and is obviously proportional to the

squared area ratio. The effective passage width after the mixing is esti-

mated as s sin βg because it is assumed that the discharge flow angle is
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approximately equal to the gauging angle βg (sin βg = o/s, where o is the

blade throat); on the other hand, the passage width before the mixing is

reduced by the trailing edge thickness to yield s sin βg − t2. Accordingly,

assuming no density change across the area enlargement it is

Yte =

(
t2

s sin βg − t2

)2

(4.98)

Kacker and Okapuu [70] performed an extensive survey of cascade re-

sults and correlated the trailing edge loss coefficients in terms of enthalpy

to the ratio between the trailing edge thickness and the blade throat. Sim-

ilarly to what is done for the profile losses, they produced distinct corre-

lations for stator blades with an axial approach flow and for an impulse

blades: the latter have lower loss coefficients due to the thinner boundary

layers. For blades other than the two basic types, trailing edge losses are

interpolated in a manner similar to profile losses.

4.5.3 Secondary flow loss (Ys)

The secondary flow are vortices due to the lower fluid velocities in

the endwall boundary layers than in the mainstream and the curvature

of the passage which cause some parts of the fluid to move in different

directions than the principal direction of the flow. Secondary flows create

a momentum deficit and a low momentum fluid redistribution through

the passage, i.e., a loss. Japikse and Baines [48] recognize three vortex

type depending on the part of the blade passage in which they originate.

Trailing edge vortices at the trailing edge of the blade, cascade vortices in

the blade passage generated as the endwall boundary layers roll up under

the action of the cross-passage pressure gradient and corner vortices near

the blade leading edge.

The secondary flow loss coefficient Ys accounts for cross-stream or sec-

ondary flows (i.e., vortices) and its formulation was originally proposed by
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Ainley and Mathieson [68] and subsequently modified over the years by dif-

ferent authors (e.g., Dunham and Came [69] and Kacker and Okapuu [70])

in respect of some details while conserving the overall structure which is

commonly accepted today. Also the loss coefficient formulation of Aungier

is very similar to the AMDC model as revised by Kacker and Okapuu but

some modifications are introduced to extend the range of applicability and

to avoid too pessimistic loss estimations in severe operating conditions.

The basic secondary flow loss coefficient Ỹs is calculated as

Ỹs = 0.0334FARZ
cosα2

cos β1
(4.99)

The loading factor Z, as originally introduced by Ainley, is

Z =
(
CL

c

s

)2 sin2 α2

sin3 αm

(4.100)

where αm is the mean flow angle and CL is the lift coefficient

CL = 2(cotα1 + cotα2)
s

c
sinαm (4.101)

These Equations highlight that the secondary flow losses are propor-

tional to the flow turning because the vortices which cause the loss are cre-

ated by a normal pressure gradient acting on fluid in the endwall boundary

layer. The higher the turning, the more intense the pressure gradient, the

higher the strength of vortices and cross-stream flows.

The factor FAR in Eq. (4.99) is an aspect ratio (h/c) correction aimed

at improving predictions at low aspect ratios. Secondary flow losses in-

crease as the ratio h/c decreases because on blades of low aspect ratio the

secondary flow effects are limited to endwall regions and the flow at mid-

span is nearly uniform, whereas on small aspect ratios blades secondary

flows influence a greater proportion of the passage. So,

FAR = c/h if h/c ≥ 2 (4.102)
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FAR = 0.5(2c/h)0.7 h/c < 2 (4.103)

FAR =

 c/h if h/c ≥ 2

0.5(2c/h)0.7 if h/c < 2

Note that FAR values predicted by Eq. (4.103) are less pessimistic in

the lower aspect ratio range compared to the estimations of Dunham and

Came [69] and Kacker and Okapuu [70], whereas almost identical results

are obtained for high h/c ratios. The secondary flow loss coefficient is

given by

Ys = kReks

(
Ỹs

2

1 + 7.5Ỹs
2

)0.5

(4.104)

The expression in the square root in Eq. (4.104) imposes an asymptotic

upper limit on the preliminary estimate of about 0.365 to avoid excessive

values of this loss in extreme conditions. Two corrective factors are in-

cluded in Eq. (4.104): kRe and ks. The former is the same Reynolds

number correction used for profile losses; the latter is a modified form of

the compressibility correction suggested by Kacker and Okapuu [70] and it

is necessary because the compressibility has an effect on the acceleration

of the flow next to the endwalls, and hence on the secondary losses. It is

ks = 1− (1− kp)
(b/h)2

1 + (b/h)2
(4.105)

where b is the axial chord and kp is the same corrective factor used in

the profile loss estimation. The term at the denominator in Eq. (4.105)

limits ks for cases where b/h is very large.

4.5.4 Shock loss (Ysh)

The shock loss considers the possible formation of shock waves at highly

curved blade leading edges near the hub in subsonic flow regimes. This is
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because the radial variations of gas conditions imposed by radial equilib-

rium result in higher local acceleration near the hub and, in turn, higher

hub Mach numbers than those at the mean line. A preliminary estimate

Ỹsh of the shock loss coefficient is given by

Ỹsh = 0.8X2
1 +X2

2 (4.106)

where X1 linearly depends on the inlet Mach number (X1 =M1 − 0.4)

and X2 considers the possibility of flow diffusion which may be met at

far off-design operating conditions. An asymptotic upper limit of unity is

imposed in the actual shock loss coefficient calculation

Ysh =

√√√√ Ỹsh
2

1 + Ỹsh
2 (4.107)

Instead, according to KO model the Mach number correction for an

ideal gas is

Ysh =
rh
rt
0.75(M1h − 0.4)1.75

p1
p2

1−
(
1 + γ−1

2
M2

1

) γ
γ−1

1−
(
1 + γ−1

2
M2

2

) γ
γ−1

(4.108)

where subscripts h and t stand for hub and tip, respectively. The

presence of the ratio rh/rt in Eq. (4.108) results in lower penalization as

the blade height increases being the shock wave a local phenomenon.

4.5.5 Supersonic expansion loss (Yex)

The supersonic expansion loss accounts for shock waves which occur

when the flow at the discharge of a blade row is over-expanded to super-

sonic Mach numbers. The correlation suggested by Aungier is original and

does not represent an improvement of other authors previous findings and

it is

Yex =

(
M2 − 1

M2

)2

(4.109)
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The literature offers very few models for the estimation of this loss

component and their results are particularly uncertain due to the severe

lack of cascade tests of adequate quality and the inherent difficulty to

model such complex flow phenomena through a mean line analysis.

Dunham and Came [69] proposed to account for supersonic expansion

losses by a multiplier on the profile loss coefficient

k = 1 + 60(M2 − 1)2 (4.110)

but the same authors admitted that their model is quite arbitrary and

not supported by solid experimental evidences. Kacker and Okapuu [70]

have doubts about the reliability of Eq. (4.110) because it is independent

from the blade exit angle and, in turn, ignores the limit loading of air-

foils but they do not offer any valid alternative method. In addition, as

highlighted by Aungier, Eq. (4.110) gives unreliable results for high Mach

numbers which are typical in organic fluid applications and it is question-

able to expect that the supersonic expansion loss should depend on the

profile losses as it has a different nature.

4.5.6 Blade clearance loss (Ycl)

The blade clearance loss is due to the tip flow which goes through the

clearance between the blade tip and the casing from the pressure side to

the suction side of the blade. The loss is caused by (i) the mixing of the

leakage flow with the main flow near the suction surface and downstream

of the blade and (ii) the formation and viscous/turbulent dissipation of

leakage vortices along with their interaction with the main flow. The

main factors influencing the tip leakage loss are the clearance gap size,

the pressure difference between the pressure and suction surface and the

rotor configuration (shrouded or unshrouded).

The method suggested by Aungier for the calculation of the blade clear-
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ance loss coefficient for unshrouded blade rows (which are those here con-

sidered) is the same as Dunham and Came

Ycl = 0.47Z
c

h

(
δ

c

)0.78

(4.111)

where δ is the clearance, Z is the loading parameter as defined by Eq.

(4.100) and c/h is the chord-to-blade span ratio. This model derives, in

turn, from that originally suggested by Ainley and Mathieson [68] but in

the latter the loss coefficient is calculated as a linear function of the tip

clearance instead of power function.

4.6 Model resolution for radial turbine

The design and performance prediction of the radial inflow turbine

(RIT) is carried out by a Matlab R⃝ script developed by the author coupled

with Refprop fluid properties database.

Figure 4.2 shows at a glance the global architecture of the model and

highlight the starting and ending points of the procedure. The model

is composed of two main routines, namely the “design routine” and the

“operation routine” (bold font in Fig. 4.2).

The design routine determines the RIT geometry starting from the

specifications dictated by the thermodynamic analysis (total inlet state,

mass flow rate and discharge static pressure), the designer choices on spe-

cific speed and velocity ratio and some first guess values to initialize the

calculations. Instead, the performance routine evaluates the flow field in

the RIT and the resulting efficiency using the geometry and the total inlet

state and discharge pressure as inputs. The final design of a RIT requires

several cascaded runs of the design and performance routines to update

the guess values used in the design run (see recirculation arrow in Fig.

4.2), till convergence.
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In the following Sections both the design and the operation routines

recalled in bold in Fig. 4.2 are sequentially presented in detail. Several

flowcharts support the explanation of each of them to show step-by-step

the equations, the main assumptions and where they are used and the

different cases which could be faced. In particular, Section 4.6.1 illustrates

the design of the expander components, whereas Section 4.6 shows how

the operation routine works to solve the flow field. In the latter, particular

attention is paid on two issues which require several iterative loops and

the activation from time to time of different blocks of instruction: (i) the

calculation of the mass flow rate (see Section “Calculation of the mass flow

rate matching the specified turbine outlet pressure”), (ii) the management

of the choking flow operation (see Section “Solution of the flow field when

chocking occurs”).

4.6.1 Design routine

As shown in Fig. 4.2 the input data for the design routine are: (i) the

turbine inlet state (p01, T01), the turbine outlet pressure (p5) and the mass

flow rate of the working fluid (ṁ), given by the thermodynamic analysis;

(ii) the couple specific speed (ns) - velocity ratio (νs); (iii) first guess values

for some variables (total-to-static efficiency ηs, total pressure at rotor inlet

p04, total density at rotor outlet ρ05) and (iv) some kinematic/geometrical

assumptions (e.g., null tangential velocity at rotor outlet, blade thickness,

etc.). Obviously, (iii) do not influence the final design of the turbine (i.e.,

the exit from Fig. 4.2 is the same), but only lengthen or shorten the

execution time for the search of convergence. The flowcharts of Figs. 4.4

to 4.6 show the inputs and the model equations in the exact order they

are implemented in the Matlab R⃝ code.

Figure 4.3 depicts the meridional view of the inflow radial turbine and

the nozzle showing the relevant geometrical parameters using the notation
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Figure 4.2: General model architecture for the design and the operation anal-

ysis of a radial inflow turbine.
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employed in the design routine.
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Figure 4.3: Radial inflow turbine: (a) nozzle geometry; (b) meridional view of

the radial inflow turbine.

Rotor inlet

The various steps in the design of the rotor inlet station are outlined

in Fig. 4.4. The combined choice of specific speed (ns) and velocity ratio

(νs) gives the rotational speed (ω) and turbine diameter (D4). The Euler

equation provides the tangential absolute velocity at rotor inlet (Ct4) re-

quired to achieve the desired specific work assuming a zero swirl at turbine

exit (Ct5 = 0). The absolute angle at rotor inlet (α4) is estimated by a

correlation with ns predicting higher flow angles at higher ns values (see

[45]). Accordingly, the meridional velocity (Cm4), relative velocity (W4)

and the overall velocity triangle at turbine inlet can be calculated. The

static enthalpy at rotor inlet (h4) can be directly calculated from the total

enthalpy, which is constant in the stator (i.e., h01 = h04), and the abso-

lute velocity (C4). By combining the information on h4 and p04 (a guess

variable at the beginning of the design), the thermodynamic state at ro-
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tor inlet is fully defined. The flow angle α4 is also used to evaluate the

optimum number of rotor blades (Nr) by using a correlation available in

[45], which gives a higher number of blades at lower α4. The rotor inlet

blade height (b4) directly derives from the continuity equation, taking into

account the inlet metal blockage factor (kb4), which needs an assumption

on the blade thickness (tb4).
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Figure 4.4: Design of the rotor inlet.

Rotor outlet

The steps in the design of the rotor outlet station and the meridional

channel are shown in the flowchart of Fig. 4.5.

The design starts from the basic assumptions of a nearly constant
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meridional velocity throughout the rotor and zero exit swirl. From the

guess value of turbine efficiency (ηs), the total enthalpy at rotor outlet

can be calculated and, in turn, the static enthalpy (h5). So, all the ther-

modynamic variables at rotor exit can be calculated, being the discharge

pressure (p5) a design specification. The exit hub radius (rh5) is simply

estimated as a percentage of the rotor inlet radius, whereas the exit shroud

radius (rs5), which is obtained by the continuity equation, requires an it-

erative mass balance to converge on the outlet blockage factor (kb5). By

simply calculating the rotor exit radius (r5) as mathematical average of the

hub and shroud radii, the velocity triangle at rotor exit is fully defined. In

case the blockage at rotor exit is too high (i.e., kb5 < 0.50), the number of

blades is progressively reduced and all variables depending on Nr must be

consequently recalculated.

The geometry of the rotor outlet must fulfill the two main constraints

(see, e.g., [27], [45]) related to the maximum shroud radius, in order to

avoid an excessive curvature of the meridional channel (rs5 < 0.7r4), and

the minimum hub radius for the shaft (rh5 > 0.4rs5). A third constraint

(A5/A4 < 2.5) is added in this study to limit the significant increase of the

flow passage area from turbine inlet to outlet dictated by the high density

variation. In fact, this may cause flow separation and the generation of

span-wise velocity components, which can be detected only by a detailed

3D CFD study. All these constraints (Table 4.1) concur to the reduction of

the flow discharge passage area and, in turn, to the increase of the merid-

ional velocity at rotor outlet (Cm5). This adjustment causes an increase

of the relative flow angle which sets the blade angle (β5) at rotor exit. As

the overriding majority of turbine designs considered in this study shows

subsonic relative flow conditions at rotor outlet, the rotor throat width

(o5) can be directly evaluated from the blade pitch (esse5) by continuity

between throat and exit sections. Instead, if supersonic flow conditions

occur, further calculations are needed, as shown in upper right blocks in
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Table 4.1: Constraints in the sizing of the rotor outlet station.

maximum shroud radius rs5 < 0.7r4

minimum hub radius rh5 < 0.4rs5

maximum increase of the flow passage area A5/A4 < 2.5

Fig. 4.5. Finally, the axial length of the rotor (∆zr) is directly obtained

from the blade height at rotor outlet.

The rotor hub contour is designed to minimize passage curvature ef-

fects by using the largest circular-arc that is compatible with the rotor

dimensions previously obtained. A power-law relation parametric with ξ

(see paragraph 10.6 in [45]) allows the definition of the shroud contour in

order to achieve a passage area on the mean quasi-normal (Am) that is

approximately equal to the average of the rotor inlet and outlet passage

areas. Straight-line element blades are adopted. Blade angle distributions

(β) along the meridional coordinate for hub, shroud and mid-line can be

calculated from the corresponding camberline blade angle distributions (θ).

Nozzle

All the calculations required to design the nozzle are shown in detail in

Fig. 4.6 and are summarized in the following.

The passage width is assumed constant throughout the nozzle and equal

to the blade height at rotor inlet. The tangential absolute velocity at

nozzle outlet (Ct3) is simply obtained by the conservation of the angular

momentum in the annulus. As the blade loading criterion proposed by

Aungier [45] (kload = 1), which determines the optimum number of nozzle

blades (Nn), involves variables which will be known only at the end of the

design procedure, it is necessary to repeat the design procedure for a set

of nozzles having different Nn (in the range 18-33). Moreover, guess values

for blade blockage (kb3), fluid density (ρ3) and blade setting angle (γ3) are
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required to initialize the calculations and updated until convergence (see

Fig. 4.6).

Supersonic flow regimes often occur at nozzle outlet due to the high

tangential absolute velocity and the low speed of sound typical of high

molecular weight fluids. When the Mach number at nozzle outlet (M3)

is higher than one, the nozzle is choked and sonic flow conditions (star

superscript) take place at the throat (o3). The nozzle throat width o3 is

calculated from the pitch (esse3) and the throat-to-pitch ratio (o/esse)3,

where the latter derives from the mass flow conservation between throat

and exit section. The chord of the nozzle blades follows from a direct

assumption on the pitch-to-chord ratio (0.75).

Nozzle blades are designed by imposing an elementary thickness distri-

bution on a straight line camberline (see paragraph 10.9 in [45]). Only a

specific value of the setting angle (γ3) yields the throat width o3 calculated

above. Thus, an iterative method is needed to graphically obtain the de-

sired value of the throat width. After a first guess value of γ3 is chosen,

two consecutive blades are drawn and the measured o3 is used to obtain a

new estimate of γ3 until convergence (i.e., ō3 = o3).

The setting angle is used to calculate the radius (r2) and blade angle

(β2) at nozzle inlet. The inlet flow angle (α2) slightly differs from the

blade angle by the optimum incidence angle (in) (see [24]). Finally, the

nozzle fulfilling a constraint on minimum γ3 (> 3◦) and satisfying the

optimum blade loading condition is selected. Similarly to nozzle outlet,

the velocity triangle and thermodynamic state are determined through an

iterative mass balance.

4.6.2 Performance routine

In this Section the general features of the performance routine are first

described. Then the procedure used to solve the flow field in each ex-
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pander component is summarized and shown in detailed flowcharts; the

procedure for the calculation of the mass flow rate matching the specified

turbine outlet pressure is presented, as well. Finally, some strategies which

were applied to solve specific calculation issues (e.g., choked operation) are

presented. Although these routines are outlined individually for clarity’s

sake, they are strongly interrelated each other. Several flow charts provide

the quantitative formulation of the analysis and help the reader to under-

stand the hierarchical and strongly non linear structure of the code and

the several iterative loops during the search of the solution.

The performance routine is the code section which solves the flow field

along the mean line in each expander component (volute, nozzle, annulus,

rotor) and finally calculates the expander efficiency (ηs). It uses as input

data: (i) the geometry defined by the design routine, (ii) the total inlet

state at turbine inlet (p01, T01) and (iii) the specified static pressure at

rotor outlet (pdis) (see Fig. 4.2). Although this routine may potentially be

used to investigate off design operation by varying the total expander inlet

state and/or the rotor discharge pressure (pdis), it is used in this work

to predict the flow field and the turbine efficiency at design conditions.

Accordingly, the input variables p01, T01 do not differ from those specified

in the design routine and pdis is the design discharge pressure (pdis = p5).

Unlike the design routine, which calculates only the inlet and outlet

stations of each component, the performance routine solves the flow field

at three stations: inlet (subscript 1), mid (2) and outlet (3) for a better

analysis of the flow field and, in turn, a more accurate prediction of the

losses. The irreversibilities along the expansion process are quantified by

total pressure loss coefficients (Y , see Section 4.4) which are taken into

account when solving stations 3 only, since no entropy increase is assumed

between stations 1 and 2. However, the loss estimate depends on the

geometrical and kinematic parameters of all three stations.

Iterative mass balances are widely used in the code to solve the flow
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field. They follow this recurrent scheme: a guess value of static density is

first assumed to calculate the velocity from the continuity equation. This

allows the evaluation of the static enthalpy from the known total state

(static frame) or rothalpy (relative frame) and, in turn, the static pressure

and density by means of the equation of state. The new calculated density

value updates the guess value and is backward used in the mass balance

inside a loop, until convergence on the desired mass flow rate is reached.

It is to be borne in mind that in the performance routine the mass flow

rate (ṁ) is not given (as it is instead in the design routine), but rather

calculated. In fact, for assigned turbine geometry and total conditions at

stage inlet, there is only one specific value of mass flow rate resulting in

the specified rotor outlet static pressure (pdis). This value slightly differs,

yet it is generally close to that assumed in the design routine, due to

minor effects which are disregarded in the definition of the overall turbine

geometry.

Volute

Figure 4.6.2 shows the various steps in the evaluation of the volute

performance; subscript v stands for “volute”. The total state at volute

inlet (i.e., the stage inlet) is known. The passage area (A1v) and mean

radius (r1v) at station 1 are known from the design routine. Using a guess

value of density (ρ1v) the absolute velocity (C1v) and static enthalpy (h1v)

can be calculated. So, a new value of density can be calculated from

the two state variables (h1v, s1v), which updates the previous one until

convergence.

The tangential velocity at station 2 (Ct2v) is calculated from the con-

servation of angular momentum.

Station 3 is the annular passage at volute exit (i.e., nozzle inlet). At

this station both the radius and passage width are known from the design

routine so that the passage area (A3v) can be easily calculated. The so-
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lution of the flow field in the volute proceeds with the calculation of the

overall loss coefficient (Yv) (see Section 4.4.1). By using the definition of

total pressure loss, the total pressure at volute outlet (p03v) is calculated.

So, the entropy and all static variables at volute exit can be obtained. The

volute analysis is completed when the convergence on the mass flow rate

(ϵ is the tolerance) is reached.

Nozzle

Fig. 4.8 shows the flowchart to evaluate the performance of the nozzle.

The nozzle geometry is specified at the inlet, mid-passage and outlet from

the design routine. The tangential velocity at nozzle inlet (Ct1n) is equal

to the tangential velocity at volute outlet (Ct3v). A first guess nozzle inlet

density (ρ1n) is assumed to calculate the meridional velocity (Cm1n) and, in

turn, the static enthalpy (h1n). A new value of density is calculated from

the couple (h1n, s1n = s3v) which updates the previous one till convergence.

So, the velocity triangle at nozzle inlet is defined and the flow angle (α1n)

can be calculated.

A guess value is assumed for density at station 2 (ρ2n) to calculate Cm2n.

The velocity C2n is calculated by assuming that the flow angle is equal to

the blade angle (α2n = β2n). Accordingly, the static enthalpy (h2n) and all

the static properties at station 2 can be obtained (being s2n = s1n). After

reaching convergence, station 2 is solved.

Then, guess values are assumed for the density (ρ3n) and pressure (p3n)

at nozzle outlet which allows the velocity (C3n) and static density (h3n)

to be calculated. The solution of the flow field in the nozzle proceeds

with the calculation of the overall loss coefficient (Yn) (see Section 4.4.2).

The profile loss is calculated by using the main geometrical features of the

nozzle, the fluid velocities and the number of blades. The post-expansion

loss accounts for shock losses occurring at supersonic flow conditions often

experienced by organic fluids. From the definition of total pressure loss
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coefficient the total pressure at nozzle outlet (p03n) can be directly calcu-

lated. Consequently, the entropy and all the remaining static properties at

nozzle outlet are obtained. At subsonic flow conditions the nozzle design

is terminated when the convergence on ρ3n and p3n is reached. Instead, if

the nozzle is choked (i.e., the two inequalities in the lower right part of the

flowchart in Fig. 4.8 are verified) further steps are needed to achieve the

solution, which are described in Section “Solution of the flow field when

chocking occurs” (i.e., the flowchart continues in Fig. 4.12).

Annulus

The analysis for the vaneless annular passage is basically similar to

the volute one. The calculation of the tangential velocity at stations 2

(Ct2a) and 3 (Ct3a) is obtained by the conservation of angular momentum.

Guess values are initially assumed for the densities at each station and then

adjusted until convergence. The corresponding flowchart of the annulus is

not shown for brevity.

Rotor

Figure 4.9 shows all the steps required to evaluate the performance of

the rotor. The rotor passage geometry is defined at the inlet, mid-passage

and outlet stations from the design routine. The tangential component of

absolute velocity at rotor inlet (Ct1r) is equal to that at annulus outlet

(Ct3a). Rothalpy (I) is conserved through the rotor and can be directly

calculated from the total enthalpy at stage inlet and Ct1r. The density

assumption at rotor inlet (ρ1r) allows the meridional velocity (Cm1r) to be

calculated. So, the static enthalpy at rotor inlet (h1r) can be obtained and,

in turn, all the remaining static thermodynamic variables (being s1r = s3a).

After achieving convergence on ρ1r the velocity triangle at rotor inlet is

fully determined. Moreover, the relative total enthalpy (h01Rr) and relative
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total pressure (p01Rr) can be calculated.

By assuming a guess value for ρ2r the relative velocity and static en-

thalpy (h2r) can be calculated. Accordingly, all the static properties at

station 2 are obtained, the velocity triangle is fully defined and the total

relative enthalpy and pressure can be calculated.

Finally, guess values are assumed for ρ3r and p3r. These allow the cal-

culation of the relative velocity (W3r) and static enthalpy at rotor outlet

(h3r). The solution of the flow field in the rotor proceeds with the calcula-

tion of the overall loss coefficient (Yr) using the main geometrical features

of the rotor and flow velocities (see Section 4.4.4). By the definition of

total pressure loss coefficient (note that this is peculiar for the rotor) the

relative total pressure at rotor outlet can be calculated (p03Rr). In addi-

tion, the relative total enthalpy at rotor outlet (h03Rr) can be calculated

from the rothalpy and exit radius. So, the entropy at rotor outlet (s3r)

can be calculated which, combined with h3r, gives all the remaining static

properties. After the convergence on ρ3r and p3r is achieved a final check

is done to ensure that p3r is equal to the specified discharge pressure (pdis).

If this is not verified, the overall performance analysis is repeated for a new

estimate of the mass flow rate until the final value is obtained. Instead,

if the convergence on ρ3r and p3r cannot be achieved and the inequality

describing the onset of choking is verified, the rotor is choked and further

calculations are needed as described in Section “Solution of the flow field

when chocking occurs”.

Calculation of the mass flow rate matching the specified turbine

outlet pressure

After all the expander components have been successfully analyzed in

absence of choking, the static pressure at rotor outlet (p3r) is calculated.

Figure 4.10 shows graphically the iterative scheme used to adjust the mass

flow rate up to the final convergence on the specified rotor discharge pres-
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sure (pdis). The operation routine must be repeated for all components

starting from the stage inlet using a new mass flow rate: if p3r turns out

lower than pdis then the new mass flow rate is increased and vice versa.

The new estimate of mass flow rate is obtained by applying a lin-

earization of the turbine characteristic between the current (p3r − ṁ)i and

previous (p3r−ṁ)i−1 couple, where the blue arch is the unknown expander

characteristic and the numbers indicate subsequent steps of the iterative

procedure. At the beginning of the performance routine a first guess mass

flow rate (ṁI) is chosen and results in the rotor outlet pressure (pI3r) (i.e.,

first operation point); the intersection between the straight line r0−I pass-

ing through the origin and the point (pI3r − ṁI) and the vertical straight

line through pdis allows the second estimate of mass flow rate (ṁII) to be

obtained; accordingly, the corresponding pII3r is calculated (i.e., second op-

eration point); the intersection between straight line rI−II passing through

the last two points of the expander characteristic (still unknown) and the

vertical straight line through pdis gives the third estimate of the mass

flow rate (ṁIII); the corresponding pIII3r is calculated (i.e., third operation

point), and so on. The iterative scheme converges on the mass flow rate

ṁpdis which gives the desired pdis (red dot).

Solution of the flow field when chocking occurs

This Section outlines how the performance routine manages the turbine

choking. When the iterative mass balance at nozzle or rotor outlet cannot

converge, some additional calculations are to be performed as implied by

the exits labels “station 3n choked” and “station 3r choked” in Figs. 4.8

and 4.9. The aim of this Section is threefold: (i) to present the criterion for

the choking detection; (ii) to illustrate the interactive scheme to calculate

the maximum swallowing capacity of the expander ṁchoke; (iii) to show

how pdis is reached.

By considering two consecutive iterations (indexes i − 1 and i) of the
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above mentioned mass balances, it may happen that the product of density

and meridional velocity (ρ3Cm3) decreases in spite of the gain in meridional

velocity:

(ρ3Cm3)i − (ρ3Cm3)i-1
(Cm3)i − (Cm3)i-1

< 0 (4.112)

When the inequality in Eq. (4.112) is verified and the flow velocity is

higher than 90% of the local speed of sound (to avoid false choking de-

tections), the examined station is certainly choked. When choking occurs,

the model iteratively seeks for the choking mass flow rate (ṁchoke), which

represents the maximum swallowing capacity of the expander. Figure 4.11

shows the procedure for the search of ṁchoke. Let us call ṁmax and ṁmin

two mass flow rates higher and lower than the searched choking mass flow

rate. If using the current mass flow rate estimation (ṁ) the mass flow rate

balance on the originally choked station 3 converges, then the subsequent

mass flow rate estimate is increased towards ṁmax. Instead, if the mass
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flow rate balance ends again with a choking detection, then the subsequent

mass flow rate estimate is reduced towards ṁmin. In this way, the differ-

ence between ṁmax and ṁmin is progressively reduced until convergence

on ṁchoke. When ṁchoke is found, the post-expansion calculations outlined

in the following paragraphs can be performed.
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Figure 4.11: Search of ṁchoke. “PR” and “m.f.r.b” stand for “performance

routine” and “mass flow rate balance”, respectively.

If choking at rotor outlet occurs, an irreversible post-expansion from

the onset choke solution to the discharge pressure pdis is considered.

When choking occurs at nozzle outlet a proper static pressure at nozzle

outlet (p3n) after post-expansion is searched, such that the calculated rotor

outlet pressure p3r matches the specified discharge pressure (pdis). The

convergence procedure is iterative and requires all calculations downstream

the choked station 3n to be repeated for each new estimation of p3n (i.e.,

the annulus and rotor analyses). Figure 4.12 shows all the steps involved
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in the procedure where pmax3n and pmin3n are the pressures after the nozzle

post-expansion resulting in p3r values respectively higher and lower than

pdis (i.e., the target p3n value falls between pmax3n and pmin3n). The static

properties at nozzle outlet (h3n, ρ3n) are calculated from guesses for the

entropy at the onset of choking (s3n) and pressure (p3n). Accordingly,

the absolute velocity (C3n) and flow angle (α3n) at nozzle outlet can be

calculated. Then, the total pressure loss coefficient (Yexn) is calculated

and, in turn, the total pressure at nozzle outlet (p03n). So, a new value

of s3n is calculated until convergence. Note that in the flowchart pch03n

is the nozzle outlet total pressure at the onset of choking. The analysis

proceeds with the calculation of the flow field in the annulus and rotor.

If the resulting rotor outlet pressure (p3r) is different from the specified

discharge pressure then the first guess value of nozzle outlet pressure (p3n)

is consistently adjusted until convergence.
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4.7 Model resolution for axial turbine

The design and performance prediction of the axial turbine is carried

out by a Matlab R⃝ script developed by the author coupled with Refprop

fluid properties database.

The model assumes the three requirements of a “normal” stage (named

also “repeating” stage) [29]:

cm = constant d = constant α1 = α3 (4.113)

where cm is the axial velocity, d is the root mean square diameter

(
√
2(r2h + r2t )), α1 and α3 are the absolute flow angles at stations 1 and

3. The hypothesis of constant axial velocity is consistent with the design

practice commonly accepted in multistage turbines. Since the inlet flow

angle does not markedly affect the stage performance [79], the choice α1 =

α3 is not a particularly restrictive constraint. So, the stage calculated by

the model can be interpreted as the generic stage of maximum efficiency

of a multistage axial turbine at constant axial velocity.

A schematic of the circumferential and meridional section of the blade

row is drawn in Figures 4.13 and 4.14 to highlight the main geometrical

parameters calculated by the design procedure (see the flowchart in Fig.

4.15).

The flow chart in Fig. 4.15 shows the model architecture, the main

equations and how they are implemented and solved sequentially. A de-

tailed explanation of all steps for the design of the axial turbine is listed

below.

1. The values of the mass flow rate (ṁ), the inlet state (p1, T1) and

condensation pressure (p3) are known from the thermodynamic cycle

analysis, and represent design specifications, so that states 1 and the

corresponding isentropic one at turbine outlet 3ss are defined.
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Figure 4.15: Model flowchart for the axial turbine.
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2. The enthalpy h3 is calculated by assuming a guess value of the total-

to-total efficiency ηtt. So, the rotor outlet state is known; h2, u and

cm are calculated from the design specifications reaction (R), loading

coefficient (ψ) and flow coefficient (ϕ), respectively.

3. Loading coefficient ψ, flow coefficient ϕ and reaction R allow to cal-

culate all absolute and relative flow angles by means of Eqs. (4.114)

and (4.115):

 tanα3 =
1−R−Ψ/2

ϕ

tanα2 =
1−R+Ψ/2

ϕ

(4.114)

 tan β3 = −R+Ψ/2
ϕ

tan β2 = −R−Ψ/2
ϕ

(4.115)

4. All the velocity triangles can be obtained by means of trivial trigono-

metric calculations. So, the total states 01, 03, 03R, 03ss are defined

and the resulting h3 value can be used to update the calculation of

h2.

5. A first guess value for the pressure p2 varying linearly with the reac-

tion is chosen in order to define state 2.

6. The throat-to-pitch (o/esse) is calculated by means of empirical cor-

relations as a function of the outlet flow angle and Mach number (see

Aungier [45] for further details); the sweep angle (γ) is estimated as

a function of the inlet blade angle and the throat-to-pitch ratio; the

pitch-to-chord ratio (esse/c) is selected from the flow angles in order

to minimize the basic profile loss coefficient (Eq. 4.82).

7. The passage area A1 at the inlet of the stator is calculated from

the mass flow rate definition. A set of couples “stator inlet hub-

to-tip radius ratios (λ1 = r1h/r1t - see Fig. 4.14) - nozzle axial
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chord (bN)” is considered to calculate a wide spectrum of the follow-

ing geometrical parameters: chord (cN), root mean square diameter

(d = 2A1/π
√

(1− λ21)/(1 + λ21)), blade span (hN) (from continuity

equation), blade pitch (sN), number of blades (zN) and throat open-

ing (oN). When necessary, converging-diverging nozzle vanes are con-

sidered. Unfeasible solutions in the set (λ1 − bN) are eliminated ac-

cording to the constraints summarized in Table 4.2, among which the

most binding are those associated with the flaring angle (FLN < 20◦)

and the hub-to-tip radius ratio at rotor outlet (λ3 ≥ 0.30). The set of

the remaining stator geometries are compared on the basis of the as-

sociated losses to select the best performing one: the couple (λ1−bN)

yielding the lowest total nozzle pressure loss coefficient (YN) is cho-

sen. The blade spans (h) along the stator and rotor blade channels

are then found from the continuity equation (see Fig. 4.14);

8. At this point the stator outlet pressure p2 (previously assumed as a

guess value at point 5) can be calculated from the definition of total

pressure loss coefficient, being now YN known:

YN =
p01 − p02
p02 − p2

=
p01 − f(h02, s2)

f(h02, s2)− p2
(4.116)

where, in turn, s2 = f(h2, p2). So, state 2 is defined.

9. The calculation procedure of the rotor geometry and losses is similar

but simpler than the stator one. In fact, the only free variable is

bR, being λ3 (λ3 = r3h/r3t in Figure 4.14) evaluated from λ1 (that is

known from the calculations in the stator). Indeed, it can be demon-

strated from the continuity equation that the hub-to-tip radius ratios

of two consecutive sections i and j in a normal axial turbine stage

can be linked to each other by means of the volumetric expansion

ratio VR:
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λj =

(
1 + λ2i − VR(1− λ2i )

1 + λ2i + VR(1− λ2i )

)0.5

(4.117)

For each value of bR the rotor geometrical parameters (sR, zR, oR,

etc.) are calculated and, likewise for the nozzle, the rotor design

yielding the lowest YR and fulfilling all the constraints is selected.

10. Starting from the definition of YR, p03R is then calculated and used

to find a new value of h3, which updates the h3 calculated from the

ηtt guess at step 2;

11. A new estimate of the total-to-total efficiency is calculated using the

current h3 value. This estimate along with the current value of p2 is

used as input for the next iteration until convergence.
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Table 4.2: Upper and lower bounds of the free variables in the optimization

procedure.

min value max value

λ1 0.30 0.95

λ3 0.30 1

FLN (◦) -20 20

FLR (◦) -25 25

(h/d)3 0 0.25

arcsin(o/s)N (◦) 13 60

arcsin(o/s)R (◦) 13 60

(b/d)N 0 0.25

(b/d)R 0 0.25

bN ( mm) 3 100

bR ( mm) 3 100

oN ( mm) 1.5 100

oR ( mm) 1.5 100

zN 10 100

zR 10 100

Table 4.3: Geometric parameters in (m) the rigorous similarity of which cannot

be maintained at low actual turbine dimensions.

e 2× 10−6

δ max(0.001 or 5×10−4d)

t max(0.001 or 0.05 o)
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4.8 Critical remarks

The loss correlations selected for the models play a fundamental role

because they ultimately determine the predicted turbine efficiency value.

Thus, some considerations about the limits and the degree of reliability of

loss correlations are worth to be made.

It has already been observed (see Section 4.3) that loss coefficients can

be used to determine the real flow conditions at the outlet of a turboma-

chine as a function of the inlet conditions and the ideal discharge ones.

From a thermodynamic point of view, the loss coefficient is a metric of

how much the real transformation across a turbomachine is far from the

correspondent isentropic one.

In general terms, the creation of a loss systems requires a series of fun-

damental steps, which can be summarized as follows:

(i) Creation of a cascade database by collecting two and three dimensional

cascade data for turbine airfoils having different geometric and aerody-

namic characteristic: the higher the variety of the database, the wider the

validity of the resulting loss correlation.

(ii) Detection of the main variables on which loss generating processes are

believed to depend on. This variable selection makes use of further test

campaigns (i.e., compare configurations which differ only in the variable

being analyzed) or theoretical and physical reasoning.

(iii) development of the loss correlation. In this step it is decided how

the significant variables previously detected may be conveniently linked to

each other in an analytic equation. The form of the equation is the result

of the application of statistical regression techniques or can be supported

by physical argumentation.

(iv) test of the loss correlation against real turbine data to check the real

predictive power. Note that a turbine database is required to accomplish

this step. Again, the higher the size of this database, the higher the con-
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fidence level of the correlation being tested.

(v) calibration of the loss correlation. The differences between predictions

and real turbine data due to the inherent lacks of loss correlations are re-

covered by including into them empirical inputs in the form of regression

coefficients to obtain a better agreement with real turbine data.

It would be naive to believe that the calculation of the flow condi-

tions by means of loss coefficients within a mean line analysis results in

a comprehensive and authentic picture of the real three dimensional flow,

even when the formulation of such loss coefficient attempts to model the

fundamental fluid dynamic processes.

The estimation of losses through correlations is unavoidably a strong

simplification and, as such, affected by a degree of uncertainty directly

arising from the procedure used to define the correlations (see item (v))

and the practical impossibility to include all of the parameters that affect

the loss mechanisms. So, also in case the most significant variables are

correctly identified, it is not surprising that loss correlations calibrated on

different real turbine database may give rise to different loss estimation

and, even more so, to different loss breakdown.

In addition, especially for radial turbines, these data sets are based on

a limited number of designs originally developed for a single application,

so that the use of the resulting correlations in the analysis of different

configurations might be misleading. These considerations are well known

to whom develop mean line models who is aware of their limitations. On

the other hand, an additional and very challenging issue is related to the

use of loss correlations developed for traditional fluids (e.g., steam or air)

when dealing with organic fluids.

Limits in the applicability of loss correlations to unconventional flu-

ids might arise when the loss correlation does not completely model the

loss-generating phenomenon on a physical basis but resorts to numerical

constants (multiplicative factors, exponents, etc.) derived through statis-
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tical regression techniques on experimental database. Since these database

collect the performance of turbines operating with traditional fluids, the

value of these numerical constants could be influenced by the fluid nature

and it is likely that the correlation is actually fluid dependent.

A further element of uncertainty derive from the estimation of losses

due to high Mach number flow regimes because these loss mechanisms of

utmost importance for ORC turbomachinery applications are affected by

the non-ideal behavior of the working fluid. As instance, [80] has recently

shown that, in contrast with the perfect gas case, the shock configuration

at the trailing edge of supersonic high-pressure turbine vanes and, in turn,

the related total pressure loss depend on the upstream thermodynamic

state.

Only extensive experimental campaigns on cascades and turbines using

organic fluids could provide solid insights to improve the reliability and

predictive power of loss correlations.



Chapter 5

Results

The main outcomes of the preliminary design procedure for turbines

are the geometry and the efficiency. As already explained in Chapter 4

the radial and axial turbine design models require two kinds of inputs:

design specifications (i.e., mass flow rate and enthalpy drop) and design

parameters. These are: the specific speed (ns) and isentropic velocity ratio

(νs) for radial turbines, and the loading coefficient (ψ), flow coefficient (ϕ)

and reaction (R) for axial flow stages, respectively.

ns = ω
V̇ 0.5

∆h0.750s

νs =
U

(2∆h0s)0.5
(5.1)

ψ =
h01 − h03

U2
ϕ =

Cm

U
R =

h2 − h3
h1 − h3

(5.2)

Accordingly, for given design specifications a series of preliminary de-

signs are first obtained for different combinations of design parameters.

The resulting efficiencies are collected in maps as a function of the the

design parameters ns and νs for radial turbines, and ψ and ϕ (optimum

reaction R is considered) for axial turbines, respectively.

Subsequently, design specifications are varied, and for each mass flow

rate - enthalpy drop combination the optimum designs (i.e., designs with

optimum ns and νs for radial turbines and ψ and ϕ for axial turbines,
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respectively) are selected. The corresponding values of the size parameter

(SP) and volumetric flow ratio (VR) are calculated to obtain a single

design point in the SP -VR map. This procedure is repeated for several

combinations of the design specifications in order to span wide SP and

VR intervals and, in turn, build the SP-VR map for each organic fluid

considered.

Note that the condensation temperature is fixed at 33 ◦C for all the

designs, that is, for given fluid and turbine inlet conditions, the discharge

pressure and isentropic density is fixed. Thus, designs at different volumet-

ric flow ratio VR are obtained by changing the evaporating temperature

and, in turn, the enthalpy drop. Instead, variations of the size parameter

SP are obtained by changing the mass flow rate.

The working fluid selected for all the radial turbine simulations is

R245fa to limit the computational effort; whereas, the following eight work-

ing fluids are considered in the axial turbine simulations:

• isobutane, isopentane and cyclopentane (hydrocarbons commonly

used in ORC [81], [4]);

• R245fa and R134a (hydrofluorocarbons having zero ODP but high

GWP);

• R1234yf, R1234ze(E) and R1234ze(Z) (hydrofluoroolefines having

both zero ODP and low GWP (< 10) and are considered the new

class of refrigerants [82]).

Table 5.1 summarizes their main thermo-physical properties including

the critical temperatures that range between 94.7 ◦C and 238.5 ◦C.

Finally, a stepwise regression procedure has been used to obtain a sta-

tistical correlation able to fit the eight SP-VR maps. This correlation

defines a single turbine efficiency map of general validity for a variety of

organic fluids that is well suited for ORC optimization.
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Table 5.1: Fluid properties

Fluid class Tc MM GWP ODP

( K) ( kg/kmol)

R1234yf HFOS 367.9 114.04 4 0

R134a HFC 374.2 102.03 1430 0

R1234ze(E) HFOS 382.5 114.04 6 0

Isobutane HC 407.8 58.12 3 0

R1234ze(Z) HFOS 423.3 114.04 < 10 0

R245fa HFOS 427.2 114.04 1030 0

Isopentane HC 460.4 72.15 11 0

Cyclopentane HC 511.7 70.13 11 0

5.1 New maps for the preliminary design of

ORC turbines

In the following Sections the new ns − νs charts developed for radial

turbines, and the new ψ and ϕ charts developed for axial turbines are

shown. The latter maps are analogous to the well-known Smith chart

which correlate the efficiency to the design parameters.

Note that a few Celsius degrees of superheating (in the order of 5 ◦C) is

imposed in case of expansions starting from wet vapor. It is also assumed

that the kinetic energy at the rotor discharge is not recovered in the ra-

dial turbine simulations, whereas a 50% of the meridional kinetic energy

component is recovered in the axial stage designs [24].
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5.1.1 New ns − νs efficiency maps for radial inflow

turbines

Figure 5.1 shows the turbine efficiency maps η = f(ns, νs) generated

for two different design specifications: Fig. 5.1a refers to a working fluid

(R245fa) mass flow rate of 20 kg/s and an evaporation temperature of

60 ◦C (which corresponds to SP = 0.12 m and VR = 2.3), whereas Fig.

5.1b refers to a much higher evaporation temperature (110 ◦C) and the

same ṁ (which gives approximately the same SP and VR = 8.7). In both

maps ns and νs are varied within wide intervals (0.30-0.55 and 0.50-0.80,

respectively) which include the optimum. These maps allows not only to

compare the effects of different design specifications in terms of volumetric

flow ratio, but also to to separate the effects on turbine efficiency deriv-

ing from non-optimum ns from those arising from non-optimum νs. To

the author’s knowledge no such 3D maps are available in the literature

showing the relationship ηs = f(ns, νs) for radial inflow turbines work-

ing with organic fluids. Instead, maps are available for turbines working

with common fluids which correlate turbine efficiency with two different

design parameters, namely the flow coefficient and loading coefficient (see

Moustapha et al. [19]) or the specific speed and the specific diameter (see

Balje [23]).

Inspection of the calculated maps shows that the predicted maximum

turbine efficiency is 89.4% at low VR (Fig. 5.1a) and drops to 87.3% at

high VR (Fig. 5.1b). The optimum ns (equal to 0.425) is lower compared

to the optimum range reported in the literature for common gases and it

is roughly independent from the expansion ratio. Instead, the optimum

νs is still centered on 0.65 but is markedly affected by VR: low VR values

require higher νs and vice versa. The iso efficiency lines form rotated

ellipses not aligned with the axes and tilted above the horizontal. The

effect of ns on turbine efficiency is milder compared to the effect of νs
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as shown by the aspect ratio of the ellipse. By moving along the major

axis of the ellipse (i.e., selecting designs at optimum νs) the efficiency at

first increases, reaches a maximum and then decreases, in accordance with

Rohlik [31] findings. The efficiency decay is anyhow rather low (less than

2%) and slightly higher for the high VR case. Conversely, higher deviations

are obtained when νs deviates from the optimum.

0.7
6

0.8

0.82

0.8
2

0.84

0.84

0.8
4

0.86

0.86

0.86

0.86
0.86

0.86

0
.8

6

0.87

0.87
0.87

0.87 0.87

0.8
7

0
.8

7
0.8

8

0.88
0.88

0
.8

8

0.8
8

0.88

0.88

0.8
85

0.885 0.885

0.8
85

0.885

0
.8

8
5

0.89
0.89

0.890.89

0.894

0.894

n
s

ν
s

0.3 0.35 0.4 0.45 0.5 0.55
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.6

0.7

0.7
5

0.7
5

0.75
0.75

0.75

0.8

0.8

0.8

0.8
0.8

0.825

0.8
25

0.8
25

0.825

0.825
0.825

0
.8

5

0.85

0.85

0
.8

5

0.8
5

0.85
0
.8

5

0.8
6

0.86

0
.8

6

0.860.86

0.8
7

0
.8

7

0.87

n
s

ν
s

0.3 0.35 0.4 0.45 0.5 0.55
0.5

0.55

0.6

0.65

0.7

0.75

0.8

(a) (b)

Figure 5.1: ns − νs chart showing lines at constant η for ṁ = 20 kg/s (corre-

sponding to SP ≈ 0.12 m) at two VR values: (a) Tevap = 60 ◦C, corresponding

to VR ≈ 2.3, and (b) Tevap = 110 ◦C, corresponding to VR ≈ 9.

Efficiency trends in the ns − νs maps of Fig. 5.1 can be justified by

looking at the correspondent loss breakdown reported in Figs. 5.2 and 5.3.

In particular, Fig. 5.2 compares the two scenarios at low (Fig. 5.2a) and

high VR (Fig. 5.2b) by considering for each ns the corresponding optimum

νs. Similarly, Fig. 5.3 performs the same comparison by considering for

each νs the corresponding optimum ns. As for the loss distribution versus

the specific speed, there is a decreasing trend of the nozzle loss as ns

increases which is counter-balanced by the rising trend of the kinetic energy

loss, particularly significant for high specific speed turbines. Note that

both losses are comparatively higher in the high VR scenario. Losses in

the vaneless components (i.e., volute and annulus) play a secondary role
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in the performance determination. With regard to the νs effect on the

loss distribution at optimum ns, it is seen a decrease of nozzle losses as

the velocity ratio increase; this effect is more pronounced in the high VR

scenario. Instead, rotor losses rapidly increase at very high νs values,

especially when VR is higher.
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Figure 5.2: Distribution of losses versus specific speed at optimized velocity

ratio for: (a) low VR scenario (V R = 2.3) and (b) high VR scenario (V R = 8.7).
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Figure 5.3: Distribution of losses versus specific speed at optimized specific

speed for: (a) low VR scenario (V R = 2.3) and (b) high VR scenario (V R = 8.7).

5.1.2 New Smith charts for axial flow turbines

Figure 5.4 shows the efficiency distributions in the loading coefficient

(ψ)- flow coefficient (ϕ) plane for different design specifications when R245fa

is used: Figs. 5.4a and 5.4b refer to two extreme values of VR (1.7 and

9) and constant SP. Optimal reaction is considered and the plotted effi-

ciency assumes that half of the axial kinetic energy at the turbine outlet

is recovered.

It clearly appears that the highest efficiencies are obtained at low flow

coefficients and low loading coefficients, as in the original Smith chart.

High ψ values imply larger deflections which require a larger blade surface

area in contact with the fluid and in turn higher friction losses. As the

flow coefficient ϕ increases at constant loading coefficient, the deflection

decreases but the axial velocity increases, resulting in a general velocity

gain through the stage [19].

The volumetric expansion ratio has a not negligible influence on turbine

efficiency. The chart in Fig. 5.4a refers to VR ≈ 1.7 (Tevap = 50 ◦C) and
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Figure 5.4: Smith charts showing lines at constant η for ṁ = 50 kg/s (corre-

sponding to SP ≈ 0.16 m) at two VR values: (a) Tevap = 50 ◦C, corresponding

to VR ≈ 1.7, and (b) Tevap = 110 ◦C, corresponding to VR ≈ 9.
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Figure 5.5: Smith charts showing lines at constant η for Tevap = 50 ◦C (cor-

responding to VR ≈ 1.7) at two SP values: (a) ṁ = 10 kg/s, corresponding to

SP ≈ 0.1 m and (b) ṁ = 150 kg/s, corresponding to SP ≈ 0.35 m.
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shows a maximum efficiency equal to 88.7% obtained at ϕ = 0.4 and ψ = 1.

The chart in Fig. 5.4b refers to a much higher VR (Tevap = 110 ◦C), and

shows a maximum efficiency equal to 85.6% which is obtained at ϕ = 0.4

and ψ = 1.2. These results demonstrate that the efficiency markedly

decreases and the optimum ψ slightly increases with VR.

Similarly to VR, Fig. 5.5 shows the influence of turbine size on the

efficiency distribution in the ψ−ϕ diagram. In particular, Fig. 5.5a refers

to SP ≈ 0.1 m (ṁ = 10 kg/s) and shows a maximum efficiency equal to

86.8%; Fig. 5.5b refers to an higher SP value (ṁ = 150 kg/s) and indicates

an optimum efficiency slightly over 89%.

Accordingly, a single general Smith chart cannot be representative of

the wide range of operating conditions experienced by organic fluids even at

moderate temperature drops. Several Smith charts ought to be considered

at different values of expansion ratio and size, and used as design tools for

these applications.

Inspection of kinematic parameters and optimum reaction distributions

in the above Smith charts (Figs. 5.4 and 5.5) allows to draw some qualita-

tive conclusion about the efficiency trends for fixed design specifications:

• The axial velocity (Cm = ϕU = ϕ
√

(h01 − h03)/ψ = ϕ
√
(h1 − h3)/ψ)

rises for growing ϕ and decreasing ψ, reaching a maximum value of

150 m/s;

• The angular speed (ω =
√

(h01 − h03)/ψ/(0.5d)) markedly increases

with a reduction of ψ, whereas it slightly increases with ϕ;

• The optimum reaction appears to be unaffected by ϕ and mainly

varies with ψ. Higher ψ requires low R in the range 0.1-0.3, which is

in agreement with [24]. A low R allows to limit the secondary losses

and post expansion losses in the stator. The optimum reaction in

the point of maximum efficiency in Figs. 5.4a and 5.4b is 0.47 and

0.43, respectively.
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Table 5.2 compares the main performance parameters and losses break-

down for two turbines having different volumetric expansion ratios in the

optimum points of Figures 5.4a and 5.4b. All loss sources are shown in

Table 5.2 to explain the efficiency gap between the two cases. It clearly

appears that the efficiency penalties for the higher pressure ratio are due

to the loss terms associated with high Mach flow regimes (in the stator

they account for more than half of the total losses) which are absent for

the lower pressure ratio. Indeed, the flow is supersonic both at stator and

rotor outlet. Moreover, the higher secondary losses and the shock losses

further reduce the efficiency. The increase of VR has two main effects on

meridional geometry: i) a decrease of the aspect ratio (h/c), both in the

stator and rotor, and in particular of the stator inlet blade height; ii) an

increase of flaring angles to adapt the channel area to the progressive den-

sity reduction through expansion. This trend is partially balanced by a

simultaneous increase of the axial chord to fulfill the upper constraint on

flaring angle (25◦).



5.1. NEW MAPS FOR THE PRELIMINARY DESIGN OF ORC
TURBINES 187

Table 5.2: Comparison of the main performance parameters and losses break-

down in the optimum points of Figures 5.4a and 5.4b.

VR 1.7 9

ϕ 0.4 0.4

Ψ 1.0 1.15

ns 1.04 0.90

R 0.45 0.45

η 0.887 0.856

Cm 39 69.5

d 0.40 0.31

ω 488 1040

U 97 173

stator rotor stator rotor

Mach inlet 0.29 0.28 0.56 0.52

Mach exit 0.79 0.72 1.49 1.35

deflection 76 74 74 88

h/c 1.57 2.54 0.44 1.0

t/o 8.0% 8.9% 8.0% 8.1%

δ/h 1.52% 1.44%

flaring tip 13 16 12 18

flaring hub 18 25 13 25

b 0.034 0.031 0.041 0.059

stator rotor total stator rotor total

profile 0.018 (33.7%) 0.016 (12.5%) 0.034 (18.8%) 0.018 (8.2%) 0.021 (7.7%) 0.038 (7.9%)

secondary 0.029 (52.4%) 0.023 (17.6%) 0.052 (27.8%) 0.054 (25.1%) 0.041 (15.2%) 0.094 (19.6%)

trailing edge 0.006 (13.9%) 0.001 (7.3%) 0.017 (9.3%) 0.008 (3.6%) 0.008 (2.8%) 0.152 (3.2%)

shock 0 (0%) 0 (0%) 0 (0%) 0.026 (12%) 0.012 (4.6%) 0.038 (7.9%)

postexpansion 0 (0%) 0 (0%) 0 (0%) 0.109 (51%) 0.066 (24.8%) 0.157 (36.5%)

clearance 0.082 (62.6%) 0.082 (44.2%) 0.12 (44.8%) 0.120 (24.9%)

total 0.056 (100%) 0.131 (100%) 0.187 (100%) 0.212 (100%) 0.264 (100%) 0.482 (100%)
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5.2 Maps for the estimate of ORC turbines

maximum efficiency

In the following Sections the size parameter (SP)- volumetric flow ra-

tio (VR) maps for the working fluids reported in the introduction of this

Chapter are presented and discussed in detail.

5.2.1 SP-VR map for radial inflow turbines

A radial inflow turbine map has been generated for the working fluid

R245fa. In order to span a wide range of SP and VR (0.02-0.25 m and 2-

14, respectively), the mass flow rate has been varied in the interval 1 kg/s

- 100 kg/s, whereas the evaporation temperature falls in the range 50 ◦C-

130 ◦C. As already explained at the beginning of this Chapter for each

combination of the design specifications optimum ns and νs are identified

and collected in the SP-VR map reported in Fig. 5.6.

By intersecting the map with horizontal lines (constant VR) it can be

easily noticed that η monotonically increases with SP due to the positive

effect of the turbine size on the efficiency. The efficiency gain is approxi-

mately 3-3.5%-points in the considered range of SP. For instance, by in-

tersecting the map at VR ≈ 2 the turbine efficiency increases from 86.7%

to 90.0%. A similar monotonic trend of turbine efficiency is not observed

for VR. In particular, by intersecting the map with vertical lines (constant

SP) it can be noticed that η slightly increases up to VR = 3.6 − 4.0 and

then gradually decreases till reaching the maximum VR considered in this

study (14). Thus, there is an optimum VR (slightly lower than 4.0) which

maximizes the turbine efficiency. The maximum efficiency drop with VR

is in the range 3-3.5%-points, regardless of the considered SP. The point

in the map yielding the highest turbine efficiency (90.1%) is located at the

maximum SP (= 0.25 m) and at VR = 3.6. Conversely, the point in the
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map yielding the lowest efficiency (83.5%) is located in the upper left cor-

ner and is obtained by accounting for the combined SP and VR penalties

which are roughly 3.3%-points each.
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Figure 5.6: Radial turbine efficiency versus size parameter (SP) and volumetric

expansion ratio (VR) at optimum ns and νs.

The efficiency trend outlined in Fig. 5.6 can be further investigated

by looking at the loss distribution as a function of the size parameter and

volumetric flow ratio. In particular, Fig. 5.7a shows the contribution of

each turbine component to the overall loss versus the size parameter for

constant volumetric flow ratio (VR = 4), whereas Fig. 5.7b shows the loss

breakdown versus the volumetric flow ratio for constant size parameter

(SP = 0.075 m). As for the loss distribution versus SP, it can be easily

seen that the losses in the rotor and in the stator gradually increase as

SP decreases mainly because the increase of the clearance loss component

(included in the rotor addendum) and surface roughness effects. Instead,

the kinetic energy loss is almost insensitive to size variations and only

a slight decrease in the lower SP range is observed. These trends are

consistent with those presented in [25].
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With regard to the effect of volume flow ratio variations, it can be seen

that the increase of VR from 4 up to higher values is accompanied by a

marked increase of nozzle and leaving kinetic energy losses. The former

are due to the small blade height at nozzle outlet imposed by the relatively

low volumetric flow rate in respect to that at rotor outlet. The latter is

a direct consequence of the design constraint on the maximum area ratio

(2.5) between rotor outlet and inlet sections: this maximum area ratio

assumption limits the possibility to accommodate large volumetric flow

rate variations across the rotor.
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Figure 5.7: Distribution of turbine losses as a function of (a) SP (at fixed

VR = 4); (b) VR (at fixed SP = 0.075 m).

Figures 5.8 and 5.9 show the rotor meridional sections for different

SP values at constant VR and vice versa. The increase of SP obviously

results in an increase of all turbine dimensions but the channel shape does

not vary significantly with the size. The increase of VR is accompanied

by (i) an increase of the passage area ratio across the rotor channel, till

the maximum value compatible with the related constraint is reached and

(ii) a decrease of the blade height at the inlet. Note that all the designs
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considered in Fig. 5.9 feature an outlet-to-inlet radius ratio at the shroud

equal to 0.7 because this is the maximum value allowed by the design

procedure for this parameter (see Chapter 4).
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Figure 5.8: Rotor meridional sections for different SP values with constant

VR = 5.2. Dimensions are in millimeters.



5.2. MAPS FOR THE ESTIMATE OF ORC TURBINES MAXIMUM
EFFICIENCY 193

0.165

0.066

0.239

0.147

0.060

0.213

0.136

0.055

0.198

0.
02
1

0.
01
7

0.
01
5

C L

VR
=4
.1

VR
=6
.8

VR
=1
1.1

Figure 5.9: Rotor meridional sections for different VR values with constant

SP = 0.10 m. Dimensions are in millimeters.



194 CHAPTER 5. RESULTS

5.2.2 SP-VR maps for axial flow stages

This Section presents and compares the SP-VR maps for the eight

organic fluids listed in the introduction of this Chapter.

Table 5.3 collects the mass flow rates and the evaporation tempera-

ture intervals used for the SP-VR maps: the evaporation temperatures

are chosen in order to cover for all fluids the same volumetric expansion

ratio range, whereas the mass flow rates ensure approximatively the same

minimum size parameter (lower bounds) and turbine size not excessively

high (upper bounds). Note that the superheating is fixed at 5 ◦C for all

fluids but R134a (for this fluid it is set equal to 10 ◦C to avoid wet expan-

sion because of the slightly negative slope of the saturated vapor curve).

Volumetric expansion ratios higher than 6 are reached by the working flu-

ids having lower critical temperatures (R1234yf, R1234ze(Z) and R134a)

starting from supercritical states at turbine inlet. Higher volumetric ex-

pansion ratios are instead obtained for the other fluids (having higher

critical temperature) at evaporating temperatures of about 120 ◦C.

Figures 5.10 and 5.11 show that the calculated turbine efficiencies for all

fluids fall in the range 85 to 89% for the SP -VR values being considered. In

accordance with the intervals listed in Table 5.3 VR is varied for all fluids

between 1.6 and 9 whereas SP spans a range depending on fluid properties,

in particular the density at turbine outlet (see last column of Table 5.3).

It can be easily observed that the same general trend is followed by all

fluids. Moreover, the closer the fluids class and critical temperatures, the

closer the trends of the SP-VR maps. The efficiencies decrease at high

VR and low SP with the exception of the very low VR ≈≤ 2 where the

detrimental effect of increasing VRs is overcome by the favorable effect of

increasing Mach number (subsonic regimes). While at low-intermediate

SP, both VR and SP have a remarkable influence on efficiency, at high

SP the size parameter influence is weakened so that almost horizontal
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Table 5.3: Mass flow rate (ṁ) and evaporation temperature (Tevap) intervals

to cover the size parameter and volumetric flow ratio ranges of SP-VR maps in

Figs. 5.10 and 5.11; mean density values ρ3 at rotor outlet are shown, as well.

Fluid ṁ interval (kg/s) Tevap interval (◦C) ρ3

R1234yf 30-150 50-110 45

R134a 20-200 50-120 39

R1234ze(E) 10-150 50-120 32

Isobutane 10-150 50-125 10

R1234ze(Z) 10-150 50-115 11

R245fa 10-150 50-110 10.5

Isopentane 5-200 50-115 3.4

Cyclopentane 2-100 50-115 1.6

iso-efficiency lines are observed. The most similar trend to the ideal gas

one obtained in [24] for γ = 1.1 is achieved by R1234yf. This fluid has

the lower critical temperature and, accordingly, the lower departure of the

compressibility factor from the unit value in case of pressure values around

and lower the critical one, as occurring with the condensation temperature

and VR range considered here (see Fig. 5.10 for R1234yf and Fig. 5 in

[24] for 0.06 ≤ SP ≤ 0.20 and 2 ≤ V R ≤ 9).

To easily compare the performance of the eight working fluids the iso-

efficiency lines referring to 0.87 and 0.88 are superimposed in the two

diagrams in Fig. 5.12. A vertical line at fixed SP crosses the iso efficiency

lines at different VR. For instance, at SP = 0.15 m cyclopentane and

isopentane give η = 0.87 at VR ≈ 4 whereas R1234yf gives the same

efficiency in spite of the doubled VR. R1234yf is therefore preferable to

the two hydrocarbons for high expansion ratios.

Similarly, at V R ≈ 5 cyclopentane and isopentane reach an efficiency

of 0.87 at SP ≈ 0.25 m while R1234yf reaches the same value at a much
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Figure 5.10: Axial turbine efficiency versus size parameter and volumetric flow

ratio for different fluids (part A).
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Figure 5.11: Axial turbine efficiency versus size parameter and volumetric flow

ratio for different fluids (part B).
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lower SP (0.10 m). So, R1234yf is preferable also for small turbine sizes.

In summary, fluids in the left upper part of Fig. 5.10 are to be preferred

to those in the lower right part of Fig 5.11, being less sensitive to lower sizes

and higher expansion ratios (i.e., to more severe operating conditions). So,

by selecting the best fluids in descending order of VR or ascending order

of SP the following ranking is obtained: R1234yf, R134a, R1234ze(E),

isobutane, R1234ze(Z), R245fa, isopentane and cyclopentane. Note that

this order follows rising critical temperatures (Table 5.1), i.e., the best

fluids show the lowest Tcr.
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Figure 5.12: Different iso efficiency lines extracted from Figs. 5.10 and 5.11.

For any fluid at fixed SP increasing VR causes relevant losses mainly

due to high velocity flow regimes whereas at fixed VR small turbines are

disadvantaged mainly because of the higher clearance losses (Figs. 5.10

and 5.11). The main losses arising at high volumetric expansion ratios

(VR) are the post-expansion losses and shock losses. After a deep analysis

of several correlations proposed in the literature to describe these complex
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phenomena within a mean line analysis, those proposed by Aungier (see

Chapter 4) have been used in this work. According to these equations the

effect of the Mach number is less pronounced compared to other correla-

tions (e.g., such as that proposed in [69]) which tend to overestimate these

losses at high Mach numbers. This explain the rather low difference be-

tween maximum and the minimum isentropic efficiency for all fluids when

incrementing VR at fixed SP. On the other hand, the clearance losses

markedly affect the efficiency at low SP. Thus, the selection of the clear-

ance loss correlation is critical and directly affects the efficiency gap of

turbines of different size. Compared to Macchi and Perdichizzi [24] it is

seen that the maximum values are approximately 2% points lower in the

region of high SP and low VR whereas the lowest values are 2.5% points

in the region of small SP and high VR.

Table 5.4 shows the different ranges of SP that were considered for the

different fluids, which primarily depend on the density ρ3 at expander out-

let (see Table 5.3), which, in turn, varies for different fluids. Accordingly,

different values of the mass flow rate are needed to obtain the same value of

SP for the considered eight working fluids as schematically shown by Fig.

5.13. At fixed mass flow rate, the working fluids having higher density at

turbine outlet (R1234yf and R134a) give lower values of SP, and in turn

reduced sizes and costs.

Figures 5.14 and 5.15 show at a glance the influence of SP and VR on

the meridional sections, velocity triangles and total pressure losses break-

down, respectively. In particular, Fig. 5.14 shows that an increase of SP

at VR of 4.8 mainly results in a notable increase of turbine mean diam-

eter, flaring angles, blade spans and axial chords. For instance, moving

from SP = 0.067 m to 0.1725 m the mean diameter increases almost by

three times. The rotational speed grows towards smaller sizes to assure

the optimum specific speed. Instead, no substantial changes are observed

in the velocity triangles. At reduced sizes, turbine efficiency decreases due
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Figure 5.13: Different iso mass flow rate lines in the SP-VR plane for the eight

fluids being considered.

Table 5.4: Minimum and maximum simulated SP values for each fluid.

Fluid min SP ( m) max SP ( m)

R1234yf 0.065 0.20

R134a 0.065 0.20

R1234ze(E) 0.065 0.23

Isobutane 0.065 0.30

R1234ze(Z) 0.065 0.30

R245fa 0.065 0.30

Isopentane 0.065 0.55

Cyclopentane 0.065 0.55
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to the increase of secondary and clearance losses. The latter results from

the clearance manufacturing limits.

Figure 5.15 shows that the increase of VR at SP = 0.14 m results in

a significant decrease of stator inlet blade span due to higher inlet den-

sity along with an increase of the axial blade lengths to accommodate

larger volumetric changes under the flaring angles constraints. On the

other hand, both mean diameter and rotational speed increase to limit

the loading coefficient. The main VR effect on the velocity triangles is a

remarkable increase of all velocity modules. Thus, turbine efficiency grad-

ually reduces because of the appearance of loss terms directly related to

supersonic flow regimes (i.e., shock and post expansion losses). Further-

more, secondary losses increase as the blade height-chord ratios decrease,

whereas profile losses do not vary significantly. The detrimental effect of

VR on efficiency could be overcome by increasing the number of turbine

stages at the expense of higher costs and more complex arrangements.
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Figure 5.14: Meridional sections, velocity triangles (blue for stator and red for

rotor) and total pressure loss coefficients breakdown with expander efficiency

for R1234yf for different SP values with constant VR = 4.8. Dimensions of

meridional sections are in millimeters and rotational speeds in rotations per

minute. White numbers inside bars are the relative percentage weights of loss

addendum.
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Figure 5.15: Meridional sections, velocity triangles (blue for stator and red

for rotor) and total pressure loss coefficients breakdown with expander efficiency

for R1234yf for different VR values with constant SP = 0.14 m. Dimensions

of meridional sections are in millimeters and rotational speeds in rotations per

minute. White numbers inside bars are the relative percentage weights of loss

addendum.
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SP -VR maps give also some insights about additional geometric/duty

parameters of interest. Figure 5.16 shows very similar values of the mean

diameter at the same SP for two different fluids (R245fa and isobutane).

The turbine mean diameters linearly increase from 0.15 to 0.55 m when

increasing SP from 0.07 to 0.30 m. A similar correspondence between

mean diameter and SP is also found for the other fluids due to the limited

variation of specific diameter, but is not reported here for brevity.
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Figure 5.16: Different iso mean diameter lines in the SP-VR plane for R245fa

and isobutane.

The optimal rotational speed (rpm) is shown in the SP -VR plane in

Fig. 5.17. Turbines having high SP (i.e., high diameter) and low VR (i.e.

low enthalpy drop) are characterized by lower angular velocities according

to the definition of ψ:

ω =
2

Dm

√
h1 − h3
ψ

(5.3)

Rotational speeds increase from 5000 rpm at high SP to about 30000

rpm at low SP. The optimal speeds vary depending on the working fluid
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(e.g., R245fa gives lower rotational speeds than isobutane in the whole

field of SP -VR as shown in Fig. 5.17). In general working fluid associated

with the lower rotational speeds are to be preferred because of the lower

mechanical and electrical losses in the power generation chain.
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Figure 5.17: Different iso angular velocity lines in the SP-VR plane for R245fa

and isobutane.

5.2.3 Multistage axial flow turbines

The SP -VR axial stage efficiency map is strictly valid for single-stage

turbines. However, it is worth to discuss on the possibility to extend

these map to the multistage arrangement. The hypotheses underlying this

map (see Chapter 4) demand for constant mean diameter of the stages.

In addition, the constant stages angular speed of a single shaft turbine

requires a well defined split of the available specific work, as well. In

this scenario, the resulting overall turbine efficiency would result from the

specific-work-averaged value of the efficiency data corresponding to each

stage SP -VR pair. However, the above restrictions also force to accept the

two following approximations.
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• Kinematic approximation. The split of the specific work across the

stages reflects in differences in the flow angles at the inlet section

of each fixed blade row. Actually, the same values of the exit and

inlet angles of adjacent stages are possible only if the stages share the

same SP -VR pair (in agreement with the repeating stage hypothesis).

However, the variability of the inlet flow angle is rather limited in the

entire map (angles vary in the range from about 65 to about 70◦).

• Geometrical approximation. For example, the expansion of R245fa

having V R ≈ 5.2 could be obtained by means of a single-stage axial

turbine having SP = 0.16 m working at a mean loading factor equal

to 1.08. The same expansion performed with a two-stage machine

would require rotors (i) working at almost equal mean loading factor

(0.95 and 1.05, for the first and second stage, respectively); (ii) having

a tip radius ratio between the second stage inlet and the first stage

exit equal to 1.3. The corresponding SP −V R pairs are 0.12-1.6 and

0.18-3.3, for the first and the second stage, respectively.

The first of these approximations is likely acceptable. Conversely, the

second one should require to admit a 40% jump in the axial velocity from

the first stage exit to the second stage inlet. Thus, the only reliable solution

for the multistage arrangement is the availability of a specific efficiency

map for each turbine of a given number of stages (i.e., one map for the

two-stages turbine, one for the three-stages, and so on). This conclusion

is not surprising because the stage number is a similarity variable which

cannot be disregarded as reported in Chapter 3.
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5.3 Generalized turbine efficiency map for

ORC optimization

Maps in Figs. 5.10 and 5.11 are ordered for ascending values of critical

temperature (Tcr): R1234yf has the lowest Tcr whereas cyclopentane has

the highest Tcr. Iso efficiency lines of the same value (i.e., 0.87 and 0.88)

extracted from SP-VR maps were superimposed in Fig. 5.12 to highlight

the fluid influence on the efficiency: it is seen that some differences exist.

So, it is attempted to catch the fluid influence by using the critical temper-

ature as third predictor in the efficiency prediction. Three points having

different SP -VR coordinates (0.065,8), (0.125,4.5), (0.20,2) are superim-

posed to each map of Figs. 5.10 and 5.11: they are chosen as representative

of low (circle marker), medium (triangle marker) and high (square marker)

efficiency regions. Efficiencies associated with all 24 marked points of Fig.

5.10 and 5.11 are collected in Fig. 5.18 to highlight any relationship be-

tween turbine efficiency and Tcr. It can be easily noticed that turbine

efficiency increases at lower Tcr especially at low SP and high VR. Thus,

the selection of working fluids with lower critical temperatures enables the

detrimental effects on turbine efficiency deriving from low SP and high VR

to be reduced. The analysis of variance demonstrates that Tcr (along with

SP and VR) is statistically significant to predict the efficiency. So, a linear

regression model between efficiency (response variable) and SP, VR and

Tcr (predictors) is searched by applying a stepwise regression procedure to

the whole set of data used to plot the efficiency maps of all the fluids being

considered.

The generalized efficiency correlation is

η =
26∑
i=0

kiXi (5.4)

the coefficients of which are shown in Table 5.6. Equation (5.4) fits
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Figure 5.18: Efficiency values corresponding to three different couples SP-VR

extracted from the maps of Figs. 5.10 and 5.10. Colors identify the working

fluid (refer to the legend of Fig. 5.12), markers identify low (circle), medium

(triangle) and high (square) efficiency regions.
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Table 5.5: Upper and lower bounds of independent variables when using Eq.

(5.4).

min value max value

SP ( m) 0.065 0.20 if 367.9 ≤ Tcr < 382.5

0.23 if 382.5 ≤ Tcr < 407.8

0.30 if 407.8 ≤ Tcr < 460.4

0.55 if 460.4 ≤ Tcr ≤ 511.7

VR 1.60 9

Tcr ( K) 367.9 511.7

well the turbine model output data (R2 = 0.993). Standard error (SE)

and p-value are reported in Table 5.6. Equation (5.4) allows not only to

rapidly calculate the efficiency for the considered eight fluids but also to

have a first performance estimate for any fluid having Tcr between R1234yf

and cyclopentane ones. The boundary conditions listed in Table 5.5 are

to be considered to avoid meaningless extrapolated efficiency values in the

application of the generalized efficiency correlation.

Note that the calculated efficiency trends are affected by real gas ef-

fects in so far as the equations of state implemented in the fluid properties

libraries predict the actual gas behavior. The critical temperature is to

be interpreted as a broad indicator of fluid properties which allows to de-

scribe all the modeled SP -VR maps for axial turbine stages by means of

the unique functional form η∗ = f(SP, V R∗, T ∗
cr) (the superscript * stands

for value at best efficiency operation, see Chapter 3). Except for operation

at very high V R∗ (see, e.g. the siloxane MM ORC turbine designed in [83]

in which the influence of the fundamental derivative of gas dynamics (Γ)

might be not negligible), this evidence supports the validity of the quasi-

similarity approach η∗ = f(SP, V R∗, Z) for optimized turbine designs,

where the true similarity parameter Z is here replaced by the critical tem-
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Table 5.6: Regression analysis results

i Xi ki SE i p-valuei

0 Intercept 0.70521 0.18264 0.00013469

1 SP 1.1963 0.25963 5.7431e-06

2 VR -0.022219 0.03133 0.47869

3 Tcr 0.00041894 0.0012612 0.73995

4 SP 2 -3.7789 0.79066 2.6058e-06

5 SP ∗ VR -0.075571 0.013697 6.7691e-08

6 VR2 -0.0089625 0.00052127 2.7176e-48

7 SP ∗ Tcr -0.0022818 0.0011608 0.050126

8 VR ∗ Tcr 0.00048912 0.00021783 0.025374

9 T 2
cr -5.4398e-07 2.8901e-06 0.85082

10 SP 3 3.0675 0.36211 7.1152e-16

11 SP 2 ∗ VR 0.084873 0.018447 5.9152e-06

12 SP ∗ VR2 0.0054258 0.0012239 1.2489e-05

13 VR3 0.00089835 6.0747e-05 1.1338e-38

14 SP 2 ∗ Tcr 0.0072256 0.0036625 0.049308

15 SP ∗ VR ∗ Tcr 4.8573e-05 3.594e-05 0.17742

16 VR2 ∗ Tcr 2.055e-06 5.6586e-07 0.00032434

17 SP ∗ T 2
cr 2.3282e-06 1.2339e-06 0.060017

18 VR ∗ T 2
cr -1.3485e-06 5.0075e-07 0.0074273

19 T 3
cr 1.7444e-10 2.1992e-09 0.93683

20 SP 4 -1.7663 0.25592 2.4708e-11

21 SP 3 ∗ VR -0.036768 0.016849 0.02977

22 SP 2 ∗ VR2 -0.0032447 0.0010874 0.0030492

23 VR4 -3.5875e-05 2.8261e-06 1.4589e-30

24 SP ∗ VR2 ∗ Tcr -5.8154e-06 3.2231e-06 0.072063

25 SP 2 ∗ T 2
cr -7.5059e-06 3.7888e-06 0.048374

26 VR ∗ T 3
cr 1.1343e-09 3.8127e-10 0.0031345
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perature. Accordingly, these findings leave room for the possibility of a

limited extension to different working fluids of experimental data obtained

with a specific organic fluid and, so, it is possible to smooth the very strong

restriction to the extension of turbine maps to different fluids theoretically

stated in Chapter 3.

5.4 Critical remarks

One of the most critical aspects of this work is that the model and

the resulting SP-VR efficiency maps were non subjected to a strong val-

idation work against ORC turbines experimental data. On the other

hand, it is well known that ORC turbines efficiency values and thermody-

namic/geometrical data required to calculate SP and VR are not available

as they are proprietary data of ORC turbine manufactures. Being un-

feasible this way to validate the model, a possible alternative “validation

technique” could be the comparison of SP-VR maps with the analogous

maps obtained from models by other authors and available in the scientific

literature (see e.g., [24], [25]).

This approach has been partially followed in the previous Sections and

the matching was quite satisfactory for R1234yf. Nevertheless, this vali-

dation approach is questionable because the SP-VR maps proposed by the

other authors result from different models and assumptions. For instance,

the ideal gas behavior and constant Reynolds number hypotheses under the

maps of [24] and [25] make not surprising that efficiency for equal SP-VR

values is different from efficiency predicted by the present models. On the

other hand, the improvement of turbine technology over the last decades

certainly influences the turbine efficiency, i.e., the values in [24] and [25]

might be pessimistic. It is believed that the only effective validation proce-

dure is the direct comparison between the model outputs and a sufficiently

large set of experimental data of optimized ORC turbines spanning wide
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ranges of size (i.e., SP), expansion ratio (i.e., VR) and working fluids.

As for the radial turbine SP-VR map, it has been possible to calcu-

late the size parameter and volumetric flow ratio for a high size turbine

of known efficiency. Available data refer to the maximum turbine effi-

ciency reached by the four radial inflow turbines equipping the 48 MWe

(gross) Stillwater geothermal power plant, recently built in Nevada (USA)

[46], whose design point efficiency approaches 90%. These 12 MW radial

turbines were designed by one of the leading turbine manufacturer in the

world and can be considered among the biggest radial turbines operating

in ORC systems. Their working point falls on the right edge of the map in

Fig. 5.6 and at an average volumetric expansion ratio slightly lower than

6.0. At these conditions the map predicts a turbine efficiency in the range

89.0-89.5%, which closely agrees with the experimental data presented in

[46].



Conclusions

The aim of this work was to obtain general efficiency maps to pre-

dict the performance of organic fluid turbines in a wide range of design

specifications (mass flow rate and enthalpy drop) and working fluids.

The fundamental principles of similarity traditionally employed in the

turbine design practice are reviewed to identify the design variables that are

able (i) to reduce the dependency of the efficiency on the fluid nature and

(ii) to take into account the scale and compressibility effects. In agreement

with the similarity principles, it was shown that:

1. The strict flow similarity cannot be preserved in the turbine design

when the working fluid is changed.

Nevertheless, it was rigorously demonstrated that:

2. the volumetric flow ratio (VR) and the size parameter (SP) can be

used as similarity parameters in substitution of the machine Mach

number to account for the fluid compressibility (VR) and for tech-

nological features (e.g., surface roughness, trailing and leading edge

thicknesses, radial clearance, etc.) which cannot scale with the main

geometry of the turbine (SP).

The rationale of SP-VR performance maps originally introduced more

than thirty years ago by Macchi and Perdichizzi is explained and the va-

lidity of this representation is confirmed. In particular, results show that:
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3. The SP-VR maps allow to extend the efficiency data of a turbine

operating with a specific fluid to a turbine of the same type operating

with a different fluid, when the deviation of the compressibility factor

from the unit value is negligible, or when the two turbines work at

thermodynamic states featuring similar values of the compressibility

factor.

Experimental data derived from real manufacturer design charts of ra-

dial inflow turbines operating with air have been used to build the corre-

sponding SP-VR map. It is believed that:

4. This map supplies reliable predictions of ORC turbine efficiency

starting from turbines designed for operation with traditional fluids

(air, steam) whenever the ORC system specifications do not suggest

a new turbine design, keeping the turbine technology and designs

that are available for traditional fluids.

Mean line models for the preliminary design of radial inflow turbines

and axial flow turbine stages have been developed to investigate the effects

on turbine performance of

• design specifications (i.e., mass flow rate and enthalpy drop), and

• design parameters (i.e., specific speed (ns) and velocity ratio (νs) for

radial turbines, and loading coefficient (ψ) and flow coefficient (ϕ)

for axial turbines, respectively).

In particular, the analysis of ns− νs charts obtained for radial turbines

working with R245fa has highlighted that:

5. the optimum specific speed (ns) lies within a narrow range centered

on 0.42 regardless of the expansion ratio. This value is approximately

25% lower than that suggested for common fluids (air, flue gases),

but consistent with the optimum values suggested by the most recent
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studies on radial turbines in ORC systems. The optimum velocity ra-

tio (νs) approaches 0.70, for turbines working at low expansion ratios,

whereas it decreases to 0.60 at the high expansion ratios common for

ORC turbines.

As per the ψ−ϕ charts for the axial turbines it has been demonstrated

that

6. The optimum loading coefficient ψ slightly increases as the volumet-

ric flow ratio increases (i.e., from 1 to 1.2 when VR changes from

1.7 to 9), whereas the optimum flow coefficient remain unchanged

(ϕ = 0.4).

However, the discussion on ns − νs and ψ− ϕ charts for the same fluid

(R245fa) and different VR and SP showed that

7. Both VR and SP have a not negligible effect on the turbine efficiency.

These parameters play a crucial role in the definition of ORC tur-

bine performance and cannot be disregarded even in the preliminary

design phase. This appears even more clearly in the SP-VR maps

collecting the turbine efficiency of designs featuring optimum design

parameters for a wide range of design specifications. The SP-VR

map for radial inflow turbines handling R245fa shows that the opti-

mum volumetric expansion ratio (VR) is around 3.7-4.0. At higher

expansion ratios the efficiency penalty is moderate and it is mainly

due to the onset of supersonic flow conditions at nozzle outlet and the

increase of the leaving kinetic energy loss at rotor exit. The efficiency

decay is approximately equal to 3%-points when the volumetric ex-

pansion ratio increases from 4 to 12. The turbine size strongly affects

the efficiency: a decrease of the size parameter from 0.25 to 0.02 m

results in an efficiency drop of approximately 3.5%-points.
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As per the SP-VR maps for the axial turbines, eight fluids belonging

to different classes (i.e., hydrocarbons, hydrofluorocarbons and hydrofluo-

roolefines) were considered to investigate the effect of molecular properties

on the efficiency and the advantages of SP-VR maps in this respect.

This investigation shows that the turbine efficiency falls in the range 85

to 89%. Moreover, the same general trend is shared by turbines designed

to operate with these eight fluids: efficiency increases as VR decreases and

SP increases. For instance, considering R1234yf, an increase of SP from

0.067 to 0.173 m (at constant VR) improves the efficiency from 86% to

88%, whereas a VR increase from 1.6 to 8.9 (at constant SP) produces an

efficiency decay from 88% to 86.8%. Effects of SP and VR variations on

the main geometrical features have been shown as well: an increase of SP

mainly produces a linear increase of the mean diameter and blade height,

whereas an increase of VR leads to an increase in flaring angles and blade

axial chords to better accommodate the volumetric flow rate variation.

A detailed comparison of the SP-VR maps has highlighted that

8. Working fluids having lower critical temperature at equal values of

the size parameter - volume flow ratio result in higher turbine effi-

ciency;

9. Efficiency differences are lower between fluids belonging to the same

class and having similar critical temperatures. These differences be-

come slighter for high SP and low VR where negligible differences

exist among different fluids.

These results suggested to consider the critical temperature as a third

efficiency predictor in addition to the size parameter and volumetric flow

ratio. By applying a statistical stepwise regression technique to the entire

efficiency data set,

10. An analytical correlation between turbine efficiency and size parame-

ter, volumetric flow ratio, and critical temperature is obtained. This
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correlation permits to easily calculate the turbine efficiency for any

working fluid having critical temperature in the range 350 - 500 K

without the need of to the meanline design procedure. Accordingly,

in the absence of experimental data it represents a tool to estimate

the maximum turbine efficiency.

This correlation can be easily included in the thermodynamic optimiza-

tion procedures of the whole ORC system to improve the thermodynamic

cycle, since SP and VR depend only on cycle parameters (and the critical

temperature is a fluid property). So, the limitations due to a separate

design of turbine and system can be overcome and misleading predictions

about power plant net production can be avoided.

On the other hand, only a patient collection of experimental data for a

step-by-step creation of an extensive database of measured efficiency data

could effectively improve the estimates of the suggested model. Moreover,

the preliminary designs obtained here could be studied with CFD analyses

to obtain additional indications about the validity of performance predic-

tions.
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