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ABSTRACT 

I 

 

Abstract 
In recent years, thanks to upgraded computational resources, concrete has started being 
modeled as porous medium at 3D meso level, distinguishing in the multiphase system the 
role of aggregates, cement paste and interfacial transition zone (ITZ). A deep knowledge on 
the behaviour of concrete materials at the mesoscale level requires, as a fundamental aspect, 
to characterize aggregates and specifically, their thermal properties if fire hazards (e.g. 
spalling) are accounted for. The assessment of aggregates performance (and, 
correspondingly, concrete materials made of aggregates, cement paste and ITZ) is crucial for 
defining a realistic structural response as well as damage scenarios. 

A meso-scale approach has been here followed to study concrete behaviour under normal 
and high temperatures via the 3D fully coupled thermo-hydro-mechanical model developed 
at Padua University, called  NEWCON3D.  Particularly, it is assumed that concrete creep and 
damage are associated to cement paste and ITZ only and that creep of concrete obeys to the 
B3 model proposed by Bažant and Baweja, instead damage obeys to the Mazars’ damage law 
with non-local correction.  

 Therefore several numerical analyses at the mesolevel have been carried out: firstly the 
role of the ITZ and of the aggregates on the hygro-thermal response of concrete have been 
investigated, highlighting the barrier effect covered by aggregates towards the flux of 
humidity; subsequently the visco-damaged behaviour of concrete at the meso level is 
investigated, to understand the influence of ITZ and aggregates on the overall mechanical 
behaviour at medium temperatures. Indeed, these two components are crucial for defining a 
realistic structural response as well as damage scenarios allowing to define an appropriate 
concrete mixture to withstand spalling. Finally, the study of concrete under high 
temperature conditions, to catch the “shape effect”, comparing columns of different section 
at the macro level, and the crucial role of the aggregates and the ITZ on the real evolution of 
cracking, have been performed.  
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Abstract 

Negli ultimi anni, grazie alle attuali risorse di calcolo, si è iniziato a modellare il calcestruzzo 
come un mezzo poroso al meso livello, distinguendo nel sistema multifase il ruolo degli 
aggregati, della pasta di cemento e dell’interfacial transition zone (ITZ). Una profonda 
conoscenza del comportamento del calcestruzzo al mesoscala richiede, come aspetto 
fondamentale, la caratterizzazione degli aggregati ed, in particolare, delle loro proprietà 
termiche, nel caso in cui vi siano rischi di incendio (e quindi di spalling). La valutazione delle 
prestazioni degli aggregati (e conseguentemente, di calcestruzzi come composti da inerti,  
pasta di cemento ed ITZ) è cruciale per la definizione sia di una risposta realistica 
strutturale, sia degli scenari di danno. 

In questo lavoro si è quindi seguito un approccio al mesoscala per studiare il 
comportamento del calcestruzzo, in condizioni di temperatura normale ed elevata, tramite 
un modello tridimensionale igro-termo-meccanico totalmente accoppiato sviluppato presso 
l’Università di Padova,  chiamato NEWCON3D. Nello specifico, si è assunto che i fenomeni di 
viscosità e di danno fossero associati solo alla pasta di cemento  e all’ITZ (per gli aggregati si 
assume un comportamento elastico) e che il creep obbedisse al modello B3 proposto da 
Bažant e Baweja, invece il danno alla legge di Mazars con la correzione non locale. 

Si sono pertanto condotte numerose analisi numeriche al meso livello: in primo luogo si è 
esaminato il ruolo dell’ITZ e degli aggregati sulla risposta igro-termica del calcestruzzo, 
mettendo in evidenza l'effetto barriera esercitato dagli aggregati sui flussi di umidità; 
successivamente si è indagato il comportamento visco-danneggiato del calcestruzzo al 
mesoscala, al fine di comprendere l'influenza dell’ITZ e degli aggregati sulla risposta 
meccanica globale a temperature medie. In realtà, come già detto precedentemente, queste 
due componenti sono molto importanti per ottenere una risposta realistica strutturale e per 
l’individuazione dei possibili scenari di danno, permettendo quindi di definire una miscela 
di calcestruzzo appropriata, in grado di resistere allo spalling. Infine, vi è uno studio del 
calcestruzzo in condizioni di temperatura elevata, al fine di catturare l '"effetto forma", 
confrontando due colonne di sezione differente al macro scala, ed il ruolo cruciale degli 
aggregati e dell’ITZ sull'evoluzione reale del danno. 
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1 INTRODUCTION 

Although traditional engineering studies consider concrete as a homogeneous material, 
idealized as an infinitesimal continuum medium with average properties (macroscopic 
approach), concrete is a highly heterogeneous material and its composite behaviour is 
exceedingly complex. In the early 80s Wittmann proposed three levels of observations for 
concrete, from lower to higher: the microscopic level at the micro-meter scale, the 
mesoscopic level at the mm-cm scale and the macroscopic level at the metric level.   

With regard to the macroscale, most of the work proposed in literature consider 
phenomenological relationships based on macroscopic observations. Although this 
approach implies a simplification, through the use of continuum-type constitutive models, it 
has led to a satisfactory description of the basic features of the mechanical behaviour of 
concrete.     

To obtain a deeper understanding of the macroscopic constitutive behaviour of concrete, 
material models, in which the structure of concrete at lower levels is explicitly represented, 
have been developed in recent decades thanks to upgraded computer resources.  

Specifically, as for the level of observation lower than the macroscopic one, i.e. the 
mesoscale, it provides a more realistic description of concrete at the macro scale, influenced 
by the geometry and the properties of its components, and a better comprehension of 
several concrete phenomena, such as creep, damage and spalling. This could be expected, 
being the macroscopic behaviour observed macroscopically a direct consequence of the 
phenomenon which take place at the level of the material heterogeneities. Concrete at this 
level is a mixture of cement paste, aggregates of different size and a thin layer of matrix 
material between these two components called interfacial transition zone (ITZ). The models 
considered in this work, are included in this category. 

A third level of analysis is the microscale, in which the internal structure of the hardened 
cement paste or the ITZ are studied. At this level chemical processes during hydration and 
drying are important features. Moreover, thanks to new development techniques such as 
nanoindentation or TEN (transmission electron microscope), concrete can be studied at a 
fourth level, i.e. the nanoscale.      

Several mesoscopic models of concrete structure have been developed for studying the 
influence of material composition on the overall behaviour: truss models [1]; continuum 
models, where each phase of concrete is simulated by finite elements [2]-[5]; lattice models 
and particle model in which the continuum model is replaced by a system of discrete 
elements [6]-[13] and lattice particle discrete models, that simulate the concrete 
mesostructure by a system of interacting particle connected by a lattice [14].  

It’s important to note that most of the models at the meso level are applied to the analysis of 
mechanical problems and only few of them have extended their applicability to the analysis 
of coupled degradation problems such as thermo-mechanical problems [15] and hygral 
gradients[16].   
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As regards this thesis, it have been adopted mesoscopic continuum models, since through 
this approach mechanical and nonmechanical properties can be more realistically simulated 
for concrete with different compositions. The novelty is that each single composite 
constituent itself can be approached as a multi-phase material, fully described and 
characterized via the coupled thermo-hydro-mechanical model ([17]-[19]).  

One of the main problems that can be encountered in concrete are the long-term effects, 
such as creep, which is conventionally defined as the difference between the time-
dependent deformations of a specimen under load and an identical unloaded control 
specimen in the same environment. This phenomenon, introduced by Woolson in 1905 [20], 
has been investigated historically by Glanville [21], L’Hermite [22]. Several creep models 
have been proposed by Bažant et al.; in particular Model B3 ([23]-[26]), which is the update 
of the earlier BP and BP-KX models ([27],[28]), can be successfully used even to model the 
single phases of concrete subjected to creep  [29],[30] (i.e. cement paste and ITZ) . 

One another phenomenon studied in the last decades, because of exceptional actions such as 
fires in concrete structures, is spalling ([31],[32]) which corresponds to the separation of 
pieces of concrete from the surface of a structural element when it is exposed to high and 
rapidly rising temperatures. Many information on this phenomenon, particularly on the 
explosive spalling, have been obtained after damage caused by the fire in the tunnels, such 
as the Danish Great Belt one, the Channel Tunnel, Mont Blanc and Tauern tunnels.   

To simulate this phenomenon is no longer possible to use a linear constitutive law of the 
material, as concrete has a brittle behaviour; numerically the softening branch of the 
material can be described through several theories such as the fracture and damage. At the 
mesoscale, different models have been developed; for the simulation of fracture process for 
example there exist the models by Bažant [1], Schlangen et al. [6], Eckardt [33], instead as 
regards damage there exist the continuum models by Krajcinovic [34] and Mazars and 
Pijaudier Cabot [35],[36].  

Therefore in this thesis work, concrete at the meso scale is considered as a three phase 
material made of aggregates, cement paste and the interfacial transition zone.  For the 
numerical modelling of concrete (at the macro and meso scale level), it has been adopted a 
3D fully coupled thermo-hygro-mechanical model of heated concrete developed at Padua 
University called NEWCON3D. When considering creep and damage respectively Model B3 
and Mazars’ damage law with non-local correction have been chosen and implemented in 
this code.  

As regards the numerical analyses, in the first part the role of the ITZ on the hygro-thermal 
response of concrete at medium temperatures is investigated, comparing the results 
obtained at the macro and meso scale level. Subsequently the visco-damaged behaviour of 
concrete at the meso level is investigated, in order to understand the influence of ITZ and 
aggregates on the overall mechanical behaviour at medium temperatures. In fact, these two 
components are crucial for defining a realistic structural response as well as damage 
scenarios that allows for defining an appropriate concrete mixture to withstand spalling. 
Finally there is the study of concrete under high temperature conditions,    
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in order to catch the “shape effect”, comparing the behaviour of columns of different 
sections at macro level, and the crucial role of aggregates and ITZ for spalling predictions, 
one of the main objectives of this thesis. Moreover in APPENDIX is described an upgraded 
version of the F.E. code NEWCON3D so to innovatively couple creep, shrinkage and damage 
with unconventional plasticity. The unconventional elasto-plastic model chosen is the 
Subloading surface model ([37]-[39]) and several analyses are carried out to verify the 
correct numerical implementation. 
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2 CONCRETE AT THE MESO SCALE LEVEL 

2.1 Mesoscopic models of concrete 

Many mesoscopic models of concrete can be found in literature for the study of the influence 
of material composition on the overall behaviour; each of them has its own advantages and 
disadvantages. 

The first meso-scale model was the continuum model by Roelfstra et al. [1] (this model, 
named “Numerical Concrete” describes concrete very realistically by means of a two-phase 
material comprising large aggregates in a mortar matrix, see Fig. 2.1).   

It is surprising that this model had already proposed to study the drying behaviour of 
composite at this scale; indeed most of the recent models at the meso-level focus their 
attention on the study of crack patterns and stress-strain curves under purely mechanical 
loading of concrete specimens and only a few of them have extended their applicability to 
the analysis of coupled degradation problems such as thermo-mechanical problems (see 
Ref.[2]) and hygral gradients (see Ref. [3]).  

 

Fig. 2.1 Finite element mesh of “Numerical concrete”. 

In the continuum models (see also Wittmann et al. [4], Carol et al. [5], Wriggers and Moftah 
[6]) concrete is modelled as a three-phase material and each phase is discretized through 
finite elements with appropriate material properties. One of the main advantages of these 
models is that they represent composite materials more realistically, considering continuum 
fields of the state variables outside the cracking zone; this is an important feature as 
compared to other mesoscopic models, especially when chemical reactions and diffusion-
driven phenomena are analysed. So these models describe with great accuracy the 
interaction between matrix and inclusions but critics of continuum models often argue that, 
from a computational point of view, the cost is too high to be used in large-scale simulations.    

Bažant et al. [7] developed a truss model to simulate realistically the spread and its 
localisation (in Fig. 2.2 is reported a randomly generated specimen and its corresponding 
mesh of truss elements).  
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Fig. 2.2 Typical randomly generated specimen and its corresponding mesh of truss elements.  

Schlangen and van Mier [8], Schlangen [9],[10] and van Mier et al. [11] first developed a 
lattice model for concrete. They used regular and irregular lattices in which each element 
was an elastic-brittle beam; these beam elements were able to transfer moment, axial and 
shear forces (see Fig. 2.3).  The mechanical properties of the lattice beams were obtained by 
mapping the concrete mesostructure. This approach gives very realistic crack pattern under 
various loading conditions but one of the main disadvantages is that it doesn’t satisfactory 
predict the load-displacement response as well as compression failure (these defects have 
been partially removed in a three-dimensional version of the model, Lilliu and van Mier 
[12]). Moreover, the element removal strategy usually employed to simulate cracking 
doesn’t take into account a possible crack closure and that the length of the beam elements 
has to be smaller than the smallest aggregate represented in the mesh (this fact increase 
considerably the number of degrees of freedom in the calculation).  

   

Fig. 2.3 Regular triangular lattice of beams, the external forces and deformations on a single element 
and the distinction between aggregate, matrix and bond phase. 

Bolander and Saito [13], Bolander et al. [14],[15] formulated an irregular random lattice 
model in which the geometry of the model is based on the subdivision of the problem 
domain by means of Voronoi tessellation. They applied successfully to the simulation of 
fracture propagation in concrete.  

Cusatis et al. [16] recently developed the Lattice Discrete Particle model (LDPM), which is a 
synthesis of two independent efforts, the Confinement Shear Lattice Model (CSL) and the 
Discrete Particle Model (DPM). This model can describe tensile cracking and continuous 
fracture as well as the nonlinear uniaxial, biaxial and triaxial response in compression, 
including the post-peak softening and strain localization. Three-dimensional conforming 
Delaunay triangulation and a dual domain tessellation define the topology and the geometry 
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of the connection among the particles. The mechanical interaction among particles is 
characterized by axial and shear forces (shear behaviour exhibits friction and cohesion) (see 
Fig. 2.4).  

 

Fig. 2.4 Meso-structure tessellation, three-dimensional discrete particle and the definition of nodal 
degrees of freedom and contact facets in two dimensions. 

As regards this thesis work, the mesoscale model adopted is the continuum one which 
represents more realistically composite materials such as concrete; therefore it is 
considered as a three-phase material and each phase is discretized through finite elements 
(HEXA20 for the three-dimensional case and HEXA 8 for the bi-dimensional one) with 
appropriate material properties. In Fig. 2.5 are reported the meshes adopted in the F.E. code 
NEWCON to study concrete at the meso level, respectively for the 2D and 3D cases. 

 

Fig. 2.5 Two examples of finite element mesh in 2D and in 3D, adopted in the F.E. code NEWCON to 
study the concrete behaviour at the meso level. 

 

2.2 Concrete as a three-phase material 

As composite material (see Fig. 2.6), concrete is a mixture of cement paste with aggregates 
inclusions of various sizes. Aggregates generally occupy 60-80% of the volume of concrete 
and greatly influence its properties, mix proportion and economy. Aggregates can be 
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divided in two distinct categories: fine (often called sand) and coarse aggregates; the latter 
represents around the 40-50% of concrete volume.  

However concrete is not just a two phase composite; it has been found that, the presence of 
grains in the cement paste, causes a thin layer of matrix material surrounding each inclusion 
to be more porous than the bulk of the surrounding cement paste matrix. This layer is 
named interfacial transition zone (ITZ) (see Refs. [17]-[22]) and has important effects on 
the properties of concrete, because it tends to act as the “weak link in the chain” when 
compared to the bulk cement paste and the aggregate particles.   

In the following three subsections is presented a characterization and description of the 
properties of the three main components of concrete; this description is here focused on 
normal temperatures, indeed the changes of the properties behaviour at high temperatures 
will be treated in Section 4.2.  

 

Fig. 2.6 Concrete sample at the mesoscale level.  

 

2.2.1 Cement paste 

The hydrated cement paste is a composite matrix of crystals of Calcium hydroxide, some 
minor components, unhydrated cement, pores of different sizes known as capillary pores 
and hydrates of various compounds (referred to collectively as gel) [23]. The gel itself has 
interstitial voids called gel pores, which are one or two order finer than the capillary pores. 
During the hydration process, the capillary pores represent that part of the volume not filled 
by the hydration products; therefore this volume reduces with the progress of hydration. 
Thus the capillary porosity depends by the water cement ratio of the mix (for w/c higher 
than 0.38, all cement can hydrate but capillary pores will also be present) and the degree of 
hydration.  

These pores create an interconnected system distributed in the cement that is mainly 
responsible of the permeability of the hardened cement paste. In fact, for a mature paste, the 
permeability is not simply a function of its porosity, but it depends also by the distribution, 
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shape, tortuosity, size and continuity of pores. Moreover it is lower the lower is the w/c 
ratio of the paste and with the progress of hydration (see Fig. 2.7).    

If we analyse the stress-strain relations of the hardened cement paste and of the aggregates, 
individually under compression loading, they exhibit brittle elastic behaviour, that is to say 
linear, reversible deformation up to a limit, followed by sudden failure.  

In contrast concrete, the composite material, shows significant quasi ductile behaviour (see  
Fig. 2.8). The load bearing capacity continues to increase beyond the linear elastic limit and 
there is a progressive decrease in load bearing capacity after the peak load. This behaviour 
that has important practical consequences, is due to the development of multiple 
microcracking predominantly in the ITZ.    

 

Fig. 2.7 Relation between permeability and water cement ratio and between permeability and 
capillary porosity of cement paste [23]. 

 

Fig. 2.8 Stress-strain relations for aggregate, paste and concrete [24]. 
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As regards the modulus of elasticity of the cement paste, for normal weight concretes the 
hydrated cement has a smaller modulus of elasticity than aggregates. Therefore Young 
modulus of concrete is affected by the modulus of elasticity of the aggregates and by their 
volume proportion in concrete. Moreover also the quality of the bond, between the 
aggregates and the hardened cement paste, is important and may affect the modulus of 
elasticity value of concrete when it is strong, as in high performance concretes [23]. 

The thermal conductivity of concrete, that is a measure of the ability of the material to 
conduct heat and is defined as the ratio of heat flow rate to temperature gradient, depends 
on its composition and the moisture content at the time of heating [23], [25].  The degree of 
saturation is an important factor because the conductivity of air is lower than that of water 
(0.0034 W/m°C vs. 0.515 W/ m°C). On the other hand, the conductivity of water is less than 
half that of the hydrated cement paste, therefore the lower the water content the higher the 
conductivity of the hardened cement paste. As reported in [26] the thermal conductivity of 
saturated cement paste ranges between 1.1 and 1.6 W/m°C. 

In any case the thermal conductivity of cement paste, it is less than for most aggregates; thus 
the conductivity of concrete will be greater if is greater the volume of the aggregates.  

As regards the coefficient of thermal expansion [23], concrete has a positive value but it 
depends on the composition of the mix and on its hygral state at the time of heating, as the 
thermal conductivity.   

The influence of the mix proportions is due to the fact that cement paste and aggregate have 
different coefficients. For the hydrated cement paste the values varies from 11×10-6 to 
20×10-6 per °C and is higher than the coefficient of aggregate.    

The influence of the moisture condition applies to the cement paste and is due to the fact 
that the thermal coefficient is made up of two parts: the true kinetic coefficient and the 
swelling pressure. The second part is due related to a decrease in the capillary tension of 
water held by the hydrated cement paste and in the absorbed water in it, with an increase of 
temperature. 

 

2.2.2 Aggregates 

Aggregates in concrete occupy at least three quarter of its volume and they account for the 
70-85% of the weight of concrete; even if originally aggregate was viewed as an inert 
material, dispersed throughout the cement paste mainly for economic reasons, its physical, 
thermal and sometimes also chemical properties influence the performance of concrete.  

Aggregates can be divided in two size groups: fine aggregates and coarse aggregates. Coarse 
aggregate is any particle (gravels constitute the majority of coarse aggregate used in 
concrete, with crushed stone making up most of the remainder) usually greater than 
4.75mm in diameter, while fine aggregates generally consist of natural sand or crushed 
stone with most particles passing through a 4.75-mm sieve.  
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All natural aggregate particles originally formed a part of a larger mass, which has been 
fragmented by natural processes or artificially by crushing, Thus, many properties of the 
aggregate depend on the properties of the parent rock (such as chemical and mineral 
composition, strength, pore structure, etc…); on the other hand there are some properties 
possessed by the aggregate, but absent in the original mass (such as particle size, shape, 
etc…).   

As regards the porosity of the aggregates, there are some pores wholly within the solid and 
other open onto the surface of the particle. Usually these pores are discontinuous; 
moreover, the cement paste envelops aggregate particles so that the pores in the aggregate 
do not contribute to the permeability of concrete. If the aggregate has a very low 
permeability, its presence reduces the effective area over which flow can take place.  
Furthermore, because the flow path in concrete has to circumvent the aggregate particles, 
the path becomes considerably longer, so that the effect of the aggregate in reducing the 
permeability may be considerable [23].     

Regarding the strength and the elastic modulus of aggregates, in general they depend on its 
composition, structure and texture; then a low strength may be due to the weakness of 
constituent grains or if they are not well cemented together. As already said in the previous 
section, generally the normal weight aggregates have a higher Young modulus than the 
cement paste; therefore their volume and their modulus influence the modulus of the 
concrete composite.   

The thermal conductivity, as previously introduced, is influenced by the conductivity of the 
aggregates (in general higher than for hardened cement paste) and by their volume 
proportion in concrete. The mineralogical character of the aggregates greatly affects the 
conductivity of the composite material; basalts and dolerites have a low conductivity, 
limestones and granites are in the middle range while siliceous and quartz aggregates 
exhibit the highest conductivities (see [23], [25]). In Table 2.1 are reported the thermal 
conductivities for saturated concrete in presence of different types of aggregates. 

Table 2.1 Thermal conductivity for saturated concretes at temperature between 5 and 25 °C [27]. 

Aggregate type 
Thermal conductivity 

for concrete [W/m°C] 

Siliceous rocks e.g. quartzite and sandstone) 2.4-3.6 

Igneous crystalline, e.g. granites and gneisses 

Sedimentary carbonate, e.g. limestone and 
dolomite 

1.9-2.8 

Igneous amorphous, e.g. basalts and dolerites 1.0-1.6 

As regards the coefficient of thermal expansion, as previously advanced, it influences the 
coefficient of thermal expansion of concrete; the higher the coefficient of the aggregate the 
higher the coefficient of the concrete, which depends also on the aggregate content in the 
mix (see Table 2.2) and on the mix proportions in general. The coefficient of thermal 
expansion for the aggregates varies with the type of parent rock (Table 2.3) [23]. 
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Table 2.2 Influence of aggregate content on the coefficient of thermal expansion. 

Cement/sand ratio 

Thermal coefficient of linear 

Expansion at the age of 2 

years [10-6 per °C] 

Neat cement 18.5 

1:1 13.5 

1:3 11.2 

1:6 10.1 

 

Table 2.3 Linear coefficient of thermal expansion for different rock types. 

Rock Types 
Thermal coefficient of linear 

expansion [10-6 per °C] 

Granite 1.8-11.9 

Diorite, andesite 4.1-10.3 

Gabbro, basalt, diabase 3.6-9.7 

Sandstone 4.3-13.9 

Dolomite 6.7-8.6 

Limestone 0.9-12.2 

Chert 7.3-13.1 

Marble 1.1-16.0 

 

2.2.3 Interfacial Transition Zone 

Cement grains size ranges from less than a micron up to 100 microns, while the aggregates 
are several orders of magnitude larger. This difference of size means that the aggregate 
particle is an obstacle which disrupts the packing of cement grains, resulting in the so called 
“wall effect” [24] (see Fig. 2.9). The origin of the ITZ lies in this  “wall effect” of packing 
against the relatively flat aggregate surface[24]. In fact, as shown in this figure if a large 
object was placed in a random assembly of grains it would cut through many grains. As this 
is physically impossible in the case of aggregate particles in cement paste the normal 
packing of the grains is disrupted. The result is that the zone closest to the aggregate 
contains small grains and has a significantly higher porosity, while larger grains are found 
further out.  

This means that the size of the ITZ is comparable with the size of cement grains and that, 
since packing is a random process, each individual region of ITZ will be different. 

Anyway its thickness is typically in the range of 15-50 μm [28], according to numerous 
researchers. One reason for this large range is that there is no clear cut-off transition from 
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ITZ paste to matrix paste. Generally the ITZ can be considered to end when the porosity is 
within the 10% of the bulk value.  

The packing of the anhydrous cement grains is the origin of the ITZ, but its eventual 
structure is also determined by the way in which the hydration products are deposited in 
this region [24].  During hydration, the microstructural development of Portland cement is 
dominated by the formation of the two major hydrate phases: the C-S-H (calcium silicate 
hydrate) and the CH (calcium hydroxide). After the first few seconds, the concentration of 
silicate in solution remains very low and consequently the C-S-H phase is mostly deposited 
around the cement grains. In contrast the concentration of calcium in solution is much 
higher in solution and calcium hydroxide is mainly deposited in the open pores.  

 

Fig. 2.9 Illustration of the “wall” effect. (see Ref. [24]). 

As mentioned above, the packing of cement grains leaves an initially more porous zone 
around the aggregate. This favours the deposition of more calcium hydroxide in this zone, as 
can be seen in Fig. 2.10 on the left; on the right it is reported the redistribution of calcium 
hydroxide in the ITZ. The distribution of C-S-H and its redistribution is show in Fig. 2.11. 

 

 

Fig. 2.10 Average distribution of calcium hydroxide (on the left) and its redistribution in the ITZ (on 
the right). The area of excess is the % area above that which would have been formed from the local 
reaction of anhydrous material [24]. 
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Fig. 2.11 Average distribution of C-S-H (on the left) and its redistribution in the ITZ (on the right) 
[24].  

The quantification of the porosity in the ITZ may be performed by means of two main 
techniques: scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP) 
[28]. SEM backscattered electron studies of polished sections in conjunction with 
computerized image analysis allow to study porosity as a function of the distance from the 
aggregate surface as shown in Fig. 2.12 .By this figure it is important to notice that the ITZ 
has a maximum porosity that is about 3 times higher than the matrix paste and that the 
presence of the ITZ affects the matrix paste by reducing its porosity compared with the 
nominal average porosity. Moreover it is possible to notice by Table 2.4. [29] a significant 
reduction of the ITZ porosity with a continuation of the hydration. 

Assuming that the two components have the same degree of hydration, this suggests that 
the matrix paste has gained cement at the expense of the ITZ and thus has a reduced 
water/cement ratio.  

 

Fig. 2.12 Average porosity in the ITZ, as a function of distance from the aggregate surface for a 
concrete with w/c = 0.4 [28]. 
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Table 2.4 Evolution of the ITZ porosity with hydration [29]. 

Time 

[months] 

Porosity of the 

bulk paste (%) 

Porosity of the 

ITZ (%) 
Ratio 

1 22±1 46±1 2.1±0.1 

3 22±1 37±1 1.7±0.1 

6 22±1 34±1 1.5±0.1 

12 22±1 30±1 1.4±0.1 

As regards MIP, it measures the overall porosity and approximates the pore-size 
distribution of a material, injecting mercury under pressure into an evacuated sample. A 
defect of this technique is that internal pore pressure will be attributed to the pore-neck 
diameters that connect them to the surface. Therefore, in mortars where the ITZ is not 
percolated through the sample (low volume fractions of sand), the volume of the ITZ pores 
will be wrongly assigned to pores of the matrix paste. However once the ITZ is percolated 
through the sample, the ITZ and matrix paste pores can be differentiated.  

So this zone is characterized by a layered structure and has a lower density than the bulk 
matrix. 

As regards the permeability, the significance of the interface zone remains uncertain; in fact 
for some author this zone contributes significantly to the permeability, for others it doesn’t 
seem to contribute to the flow.  

For Massazza [30], the higher porosity (determined on composite concrete specimens 
consisting of a single cylindrical piece of limestone or quartz surrounded by a ring of cement 
paste) in the interfacial zone is associated with a greater permeability; indeed this higher 
permeability, compared with the cement paste, is confirmed by comparing the permeability 
coefficient of neat paste and limestone discs with the coefficients of discs formed by a 
cylindrical inclusion of limestone surrounded by paste. 

In the work of Katz and Thomson [31] is reported the considerable increase in permeability 
when aggregates are added to a paste or mortar. Theoretically the addition of low 
permeability aggregates to cement paste should reduce overall permeability because they 
interrupt the pores continuity in the cement paste matrix; the results obtained by Katz and 
Thomson instead indicate that the opposite is true. 

Mehta [32] analysed these tests and attributed the permeability increase in the ITZ to the 
presence of microcracks in this transition zone (these cracks become more severe in 
presence of aggregates of greater size).  

On the contrary Larbi [33] found that, despite the higher porosity of the ITZ the 
permeability of concrete is controlled by the bulk of the cement paste, which is the only 
continuous phase in concrete. The permeability of hardened cement paste is not lower than 
that of concrete made with a similar cement paste.  
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Dhir et al [34] found no significant difference in air permeabilities of concrete made from 
aggregates of different size. There is a slight increase in the ITZ when using 40mm 
aggregates is considered; this is due to the lower quality of the transition zone. 

Additionally, due to its complex structure, the ITZ appears to be the weakest region of the 
composite material when exposed to external loads [35]. In continuum mechanics, concrete 
is often schematised as a material showing a softening behaviour. Experimental studies 
have shown that if we zoom in on the material, we can explain why we have a softening 
behaviour; a zone of microcracks is formed and crack bridging, branching and friction 
effects all have a contribution to the toughness of concrete. The microstructure of the 
material has a large influence on the crack pattern; being the ITZ the weakest link in 
concrete the cracks follow this zone. 

Experiments have demonstrated that the elastic modulus of concrete is strictly related to 
the elastic modulus and volume fraction of the ITZ regions. 

In the work of Hashin et al. [36], since the elastic moduli of the cement paste and aggregate 
are often known but no experimental data exist on the elastic modulus of the ITZ, is 
reported an efficient methodology to estimate the values of the transition zone from 
experimental data on Portland cement mortar samples cast with varying amounts of sand 
concentration. This model predicts that the Young and shear’s moduli of ITZ are ∼50% of 
those of the bulk cement paste, where calculations are based upon experimental tests by 
Wang te al. In this paper concrete is modelled as a composite consisting of a matrix in which 
are embedded spherical particles, each of them surrounded by a concentric spherical shell. 
The phases are considered elastic isotropic and the entire composite is assumed to be 
homogeneous and isotropic.  

In the work of Simenov and Ahmad [37], the influence of the transition zone on the elastic 
modulus is studied and the theoretical bounds of Hashin –Shtrikman (HS) for the modulus 
of elasticity of two-phase composite material are used as a criteria in the analysis. It is 
noticed a notable influence of the ITZ on the elastic behaviour of the composite; in fact is 
detected a divergence of the experimental data from the trend of the HS bounds with the 
increase of the aggregate volume. The influence of the transition zone it is strongly related 
to the water-cement ratio:  

- for higher W/C the ITZ is with lower equivalent elasticity than that of the matrix and 
in a thicker layer and in bigger relative volume to a unit interface surface; so the result 
is a significant reduction of the Young modulus of the composite material if compared 
to the expected value obtained with HS bounds;    

- for lower W/C the ITZ is thinner and its equivalent elastic properties are probably 
very close to that of the matrix or even higher; so the result is a notable relative 
increase of the Young modulus of the composite material if compared to the expected 
value obtained with HS bounds. 
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2.3 Mesoscale modelling in NEWCON3D 

For the numerical simulations at the meso level (see Chapter 5) in this thesis have been 
adopted mesoscopic continuum models; the novelty here is that each single composite 
constituent itself can be approached as a multi-phase material, fully described and 
characterized via the coupled thermo-hydro-mechanical model described in Chapter 3. 

As regards the 3D and 2D models (see the meshes reported in Fig. 2.5) the coarse aggregates 
occupy the 40-50% of concrete volume, have angular shapes of different sizes (for the bi-
dimensional case also rounded shape are taken into account), are distributed randomly in 
the concrete sample and have an elastic behaviour (the do not creep and do not damage). 
They are assumed homogeneous and characterized by a higher elastic modulus if compared 
to the other two phases in the composite material, a very small permeability and an higher 
thermal conductivity. 

The mortar matrix is a homogeneous material, comprehensive of the cement paste and of 
the fine aggregates; if compared to the coarse aggregates it has a smaller Young modulus, a 
smaller thermal conductivity and a higher permeability. 

The interfacial transition zone is assumed to be homogeneous and with a thickness which is 
strictly linked to the diameter of each aggregate (thicker for larger diameters); it has a 
smaller Young modulus if compared to the cement paste (it is assumed that is  ∼50% of the 
cement paste Young modulus) and a higher permeability. 

For the mortar matrix and the ITZ it is not assumed an elastic behaviour; these two phases 
are subjected to creep (to characterize the creep features is adopted Model B3, by Bažant 
and Baweja) and damage behaviour (it is considered the non-local Mazars’ damage law). 
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3 THE MATHEMATICAL MODEL 

3.1 Introduction 

For the numerical modelling of concrete, at the macro and meso-scale levels, has been 
adopted a 3D fully coupled thermo-hydro-mechanical model of heated concrete developed 
at Padua University. The generated F.E. code is named NEWCON3D and it represents an 
updated version of DAMVIS, VISCO and DAMAGE codes (see Refs. [1]-[4]).  

In this code concrete is treated as a multiphase system where the voids of the skeleton are 
partly filled with liquid and partly with a gas phase (see [5],[6]). The liquid phase consists of 
bound water (or adsorbed water), which is present in the whole range of water contents of 
the medium, and capillary water (or free water), which appears when water content 
exceeds so-called solid saturation point Sssp [7], i.e. the upper limit of the hygroscopic 
region of moisture content. The gas phase, i.e. moist air, is a mixture of dry air (non-
condensable constituent) and water vapour (condensable gas), and is assumed to behave as 
an ideal gas. 

As regards the mechanical field, NEWCON3D couples creep and shrinkage, thermo-
mechanical damage and plasticity effects under medium and high temperature level 
conditions. 

The approach here is to start from a phenomenological model ([1], [8] and [9]), originally 
developed by Bažant and co-authors, e.g. [10]-[13], in which mass diffusion and heat 
convection-conduction equations are written in terms of relative humidity, to an upgraded 
version in which its non-linear diffusive nature is maintained as well as the substitution of 
the linear momentum balance equations of the fluids with a constitutive equation for fluxes, 
but new calculations of thermodynamic properties for humid gases are implemented too to 
take into account different phases as well as high ranges of both pressure and temperature. 
Additionally, Darcy’s law is modified when describing gas flow through concrete. The 
proposed model couples non-linear material relations with experimental relations; to 
enhance its predictive capabilities, a predictor-corrector procedure is supplemented to 
check the exactness of the solution.  

 

3.2 Heat and mass flow 

3.2.1 Introduction 

It is here presented the calculation method adopted for the determination of the 
hygrothermal fields of concrete during shrinkage.  

Bažant and Najjar [14] have analysed the moisture loss in concrete using a nonlinear 
diffusion theory. The authors assumed diffusivity dependent by the humidity in the pores,   
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through a highly nonlinear relation. Roelfstra and Wittmann [15] have numerically 
simulated drying and shrinkage of aerated concrete, using a finite element approach. The 
authors have developed an axisymmetric finite element to determine stresses and strains, 
which take place in a cylinder, for the humidity diffusion. The same approach has been used 
by Wittmann to describe drying and shrinkage of hardened cement paste [16].  

Comini and Lewis [17] have simulated, with a finite element model, the coupled equations 
which govern the mass and heat fluxes in an unsaturated porous medium, to study the 
drying processes in ceramic materials. In this work the diffusion equation is function of the 
vapour content (i.e. mass vapour per unit volume). Majorana [18] has applied a formulation 
of the diffusion law in terms of the relative humidity, coupled with the equilibrium 
equations and the heat conduction, to the study of shrinkage of a three dimensional concrete 
model.   

Sih, Michopoulos, and Chou [19] have analysed the stress field of elastic bodies subjected to 
the thermal and humidity fields, focusing on the properties of the materials, in the specific 
case resins. 

Assuming that the various phases of water in each pore (vapour, absorbed and capillary 
water) are in thermodynamic equilibrium with each other (see Ref. [14]) and with the solid 
skeleton; the relation between the relative humidity   and the moisture content  , 
considering the temperature and hydration effects, can be written as: 

χ= + + −d d d d dT
sh K w k T h m ε                                                                                                          [3.1]                                                                                      

where 
∂ =  ∂  T

h
K

w
is the cotangent of the slope of the isotherm ( )w w h= , 

ε

∂ =  ∂  ,w

h
k

T
is 

the hygrothermal coefficient representing the change in h due to one-degree change of T  at 

constant w , ε  and a fixed degree of saturation, d sh  is the self-desiccation and 

χ
 ∂=  ∂  ,V T w

h
ε

equals the change in h  due to unit change of volumetric strain Vε  at constant 

w , constant T  and given degree of saturation. The last term at the right hand side of eq. 

[3.1]represents the coupling term for connecting hygro-thermal and mechanical responses 
[8]. 

The relative humidity connects the equilibrium water vapour pressure  to the saturation 
pressure  through the Kelvin equation (see Ref. [20]): 

( )= ⋅gw gwsp p T h                                                                                                                                         [3.2] 

where gwsp  can be calculated e.g. from [21] or [22]. 

As said before, the diffusion equation governing moisture movement in concrete is known 
to be highly non-linear, due principally to diffusivity being strongly dependent on relative 
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humidity [14]. Loss of moisture must therefore be treated as a non-linear diffusion problem, 
and since humidity change really depends on the free energy of water, a basic equation is:                                                                   

µ= ⋅grad wCJ                                                                                                                                              [3.3]                  

where µw  is the free energy of water and C is the diffusivity that can be expressed as: 

= ⋅C a K  

in which a is the permeability, that is a function of h and of the temperature T . 

Additionally, the relation between the rate of change of the mass of water per unit volume 
and the flux field is defined by: 

div
w
t

∂ = −
∂

J                                                                                                                                               [3.4] 

Bažant and Najjar [14], used the following expression for  : 

0
1 0

1

1
1

1

αα

 
 

− = + 
 − +   −  

n

c

C( h) C
h
h

                                                                                                           [3.5] 

in which ch = 0.75, 6 ≤ n  ≤ 16, 0.025 ≤ α0  ≤ 0.10, and 1C  is given by 

 
= + 

 
  1 10 e

e

10
C C 1 (t in days )

t
                                                                                        [3.6] 

where 10C  is a material constant and et  is an equivalent time. 

In Ref. [23] is suggested the following expression for  : 

 
− 

 
 

= + 
  

0

Q 1 1
R T T

1 e 0
e 0

13 T
C (T ,t ) C 0.3 e

t T
                                                                                            [3.7] 

in which 0C  is the diffusivity at 28 days and temperature 0T  (= 293K), R  is the constant of 

perfect gases and Q  is the activation energy of the diffusion process (Q R  ≈ 4700 K). In Fig. 

3.1 is represented the variation of the diffusion coefficient with relative humidity (eqs. [3.5]-
[3.7]). 

Hence, the flux of humidity may be written as: 

= − ⋅grada hJ                                                                                                                                               [3.8] 
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The Soret flux (thermal moisture flux) is already included in eq. [3.8]; this is because: 

  ∂ ∂ = = +     ∂ ∂    

1
grad grad grad gradTgw

gw
gws gws gw

p w w
h p

p p p T
                                                    [3.9] 

which follows by differentiating the sorption relation ( )= ,w w p T . 

The continuity equation for non-isothermal flow is finally obtained as (refs. [1], [2], [3], [8] 
and [9]): 

T Tshh T
h k 0

t t t t
χ∂∂ ∂ ∂− ∇ ∇ − − + =

∂ ∂ ∂ ∂
ε

C m                                                            [3.10] 

where C  is the diffusivity diagonal matrix.  

The heat balance requires that 

ρ ∂ ∂− − ⋅∇ = −
∂ ∂q a w
T w

C C C T div
t t

J q                                                                                                [3.11] 

 

Fig. 3.1 Variation of the diffusion coefficient with relative humidity (redrawn from Bažant and 
Najjar). 

in which ρ is the mass density of concrete, Cq the isobaric heat capacity of concrete (per 
kilogram of concrete) including chemically bound water but excluding free water, Ca the 

heat of sorption of free water (per kilogram of free water); Cw is the isobaric heat capacity 

of bulk (liquid) water; ⋅∇wC TJ is the rate of  heat supply due to convection by moving 

water and q is the heat flux. Usually, the term of heat convection is negligible, but in rapid 
heating it might not be so. The heat of vaporization of water does not figure explicitly, but it 
may be included within the second term of the left hand side expression (see Ref. [12]). 
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The heat flux q is due to temperature gradient (governed by Fourier's law) and to the  
moisture concentration gradient (Dufour's flux) 

= − ∇ − ∇Tw TTa w a Tq                                                                                                                            [3.12] 

where the coefficients Twa  and TTa  depend on w and T respectively. 

Due to the negligible contribution of the moisture flux, eq. [3.12] may be re-written as 

TTa T= − ∇q                                                                                                                                               [3.13] 

and aTT is the heat conductivity.  

 

3.2.2 Numerical formulation of heat and moisture transfer 

equations 

The numerical formulation of the eqs. [3.10] and [3.11], together with the corresponding 
initial and boundary conditions, is an application of the classical finite elements theory.    

Approximating temperatures and humidities with their nodal values, respectively T and h,  
through the shape functions N it is possible to obtain the following system of equations: 

d d
dt dt t

∂⋅ + + + ⋅ =
∂

h T HG
H h S TH HR T                                                                                              [3.14] 

d d
dt dt t

∂⋅ + + = −
∂

T h TG
TR T TS HT                                                                                                     [3.15] 

 

in which: 

- ( )( ) ( )T

S
dV= ∇ ∇∫H N C N : is the matrix of humidity diffusion;  

where C  is the diagonal matrix of diffusivity 

- 
( )

T
mS

c dVρ= ∫S N N : is matrix of humidity capacity; 

        where mcρ  is the mass capacity 

- 
( )

T

S
K dV= ∫TH N N : is the coupling matrix representing the influence of 

temperature in the equation of humidity diffusion; 

 where K  is the hygrothermal coefficient 
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- ( )( )
T

S
dVδ= ∇ ∇∫HR N C N : is the coupling matrix representing the influence of 

temperature in the equation of humidity diffusion; 

where δ  is the coefficient of the thermal diffusion gradient 

- 
( )

T
sS

h dV= ∫HG N : where 
t

∂
∂
HG

represents the variation in humidity due to auto-

drying; 

where sh  is the humidity at the end of the hydration process in a body waterproofed on the 

surface and initially h  = 1 

- ( )( ) ( )T

S
dV= ∇ ∇∫TR N Λ N : is the matrix of thermal transmission; 

where Λ  is the diagonal matrix of the thermal conductivity 

- ( )( )
T

qS
c dVρ= ∫TS N N : is the matrix of heat capacity; 

where qcρ  is the heat capacity 

- ( )( )
T

mS
c dVελρ= ∫HT N N : is the coupling matrix representing the influence of 

humidity in the equation of heat transfer; 

where ε  is the ratio between the vapour diffusion coefficient and the total fluid diffusion 

coefficient and λ  is the latent heat of vaporization 

- 
( ) ( )

T T
h hS c

Q dV q dΓ= −∫ ∫TG N N N : where 
t

∂
∂
TG

represents the variation in heat 

flux. 

where hQ  is the flow generated per unit volume and hq  is the flow generated per unit surface. 
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3.3 Creep and shrinkage modelling 

3.3.1 Concrete as an aging viscoelastic material 

The total strain of a uniaxial loaded concrete specimen at age t , can be represented in this 

additive form: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

0

0

''E C S T E E Ct t t t t t t t t t

t tσ

ε ε ε ε ε ε ε ε ε ε

ε ε

= + + + = + = + +

= +
                 [3.16]                                                                                                                          

where ( )E tε  is the instantaneous strain, which is elastic if the stress is sufficiently smaller 

than the yield stress in a uniaxial regime (immediately recoverable after the moment of 
loading, even if, with the passing of time, it is irreversible due to ageing caused by 

hydration), ( )C tε is the creep strain, ( )S tε  is the shrinkage, ( )T tε is the thermal expansion, 

( )0 tε is the inelastic strain (stress-independent), ( )'' tε  is the elastic strain (stress-

dependent) and ( )tσε  is the stress produced strain. 

Creep measurements, generally, require two identical specimens, with the same stress 
history; one specimen being loaded and the other being load free. The difference between 
the strains of these two specimens defines the mechanical strain, consisting of creep strain 
plus the instantaneous one.  

Here are considered only creep strains produced by constant stresses. By measuring strains 
of test specimens loaded to different stress levels, and representing the creep isochrones  
(stress-strain curves for fixed load durations (Fig. 3.2)), one finds that for stresses less than 
0.4 of the strength (within the so called service stress range) these curves are approximately 
linear. 

Thus: 

( ) ( ) ( )0, 't J t t tε σ ε= +                                                                                                                         [3.17] 

where σ  is the uniaxial stress, ε  is the uniaxial strain, t  is the time (normally chosen to 

represent the age of concrete) and ( ), 'J t t  is the compliance function that represents the 

creep plus the elastic strain at time t , produced by a unit constant uniaxial stress applied by 

the time 't .  

Within the linear range, the creep strain produced by a uniaxial stress, is entirely 

characterized by function ( ), 'J t t  (the typical shape is sketched in Fig. 3.3). 

The compliance function is often expressed as a sum of an elastic part ( )1 , 'E t t  and the 

creep compliance ( ), 'C t t  (also called specific creep): 
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( ) ( ) ( ) ( )
( )

1 , '1
, ' , '

' , '

t t
J t t C t t

E t E t t

φ+
= + =                                                                                             [3.18] 

in which ( )'E t  is the elastic modulus characterizing the instantaneous strain at time 't  and 

( ) ( ) ( ), ' ' , ' 1t t E t J t tφ = ⋅ − is the creep coefficient (i.e. the ratio of the creep strain to the 

initial elastic one). Typical values of ( ), 't tφ  are included between 2 and 5 (2 for a concrete 

remained in a moist environment or in sealed conditions and 5 for a poor concrete exposed 
to intense drying).   

 

 

Fig. 3.2 Creep isochrones. 

 

 

Fig. 3.3 Compliance curves for various age at loading t’. 
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The values of the compliance function and shrinkage are influenced by many factors, 
distinguishable into intrinsic and extrinsic. The intrinsic factors are those that become fixed 
when concrete is cast (concrete mix parameters such as the cement content, the water-
cement ratio, the aggregate fraction, etc...) instead the extrinsic ones are those that can be 
modified after the casting of concrete (temperature, the degree of hydration, etc…).  The 
mathematical expressions for the compliance function will be discussed later. 

As a consequence of creep and shrinkage, the stress in redundant structures usually varies 
with time even if the load is constant. The calculation of creep caused by variable stress is 
greatly simplified by the principle of superposition; applicable for stress values within the 
service stress range. The principle of superposition, equivalent to the hypothesis of linearity 
of the constitutive equation, states that the answer of two stress (or strain) histories is the 
sum of the responses to each of them taken separately; thus the strain caused by stress 

history ( )tσ  can be obtained decomposing the history into small increments 

( )'d tσ applied at times 't , and integrating on the basis of eq. [3.17]: 

( ) ( ) ( ) ( )0

0
, ' '

t
t J t t d t tε σ ε= +∫                                                                                                          [3.19] 

This equation is a general uniaxial constitutive relation defining concrete as an ageing 
viscoelastic material. The integral in eq. [3.19] has to be intended as the Stieltjes integral, 
applicable also for discontinuous stress histories. If it is intended as an ordinary integral 

(Reimann integral) for every instantaneous variation ( )jtσ∆  at the time jt it is necessary 

to add the term ( ) ( ), j jJ t t tσ⋅∆ . 

The principle of superposition (eq. [3.19]) leads to accurate predictions only under the 
following conditions: 

1. the stresses are within the service stress range, i.e. less than about 0.4 of the strength; 

2. unloading, i.e. strain of decreasing magnitude, does not take place; 

3. there is no significant change in the distribution of moisture during creep; 

4. there is no large sudden stress increase after the initial loading. 

5. In practice this principle is often applied even if the conditions 2 and 4 are violated; 
then obviously  the obtained results will be approximated. 

The principle of superposition may be equivalently expressed in terms of the relaxation 

function ( ), 'R t t (also called the relaxation modulus): 

( ) ( ) ( ) ( )0

0
, ' ' '

t
t R t t d t d tσ ε ε = ⋅ − ∫                                                                                               [3.20] 
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In the eq. [3.20] the shrinkage (and thermal expansion) increments ( )0 'd tε are subtracted 

from the total strain increments ( )'d tε  since they don’t produce stress. 

The relaxation function ( ), 'R t t  represents the uniaxial stress at time t  caused by unit 

constant axial strain imposed at time 't .  

When the strain history is given, eq. [3.19] represents a Volterra integral equation for ( )tσ . 

By solving this equation for the strain history specified as a step function from the time 't , it 

is possible to calculate the stress histories for various 't (relaxation curves) and thus obtain 

the relaxation function. Inversely eq. [3.20] represents a Volterra integral equation for 

( )tε and solving this equation for the stress history in the form of a step function from the 

time 't , it is possible to obtain the creep function starting from the relaxation one. 

Therefore, the only ( ), 'R t t  or the only ( ), 'J t t  completely define the uniaxial viscoelastic 

behaviour of a sample of concrete.  The use of the one or of the other function is not 
completely equivalent since the creep function is more easy to determine from experimental 
tests (it requires the measurement of the strains; an easier process if compared with the 
measurement of the stresses), while the relaxation function allows to write more convenient 
relations from a computational point of view. The relaxation function is therefore preferred 
in the numerical formulation here reported. 

Multiaxial generalization of the previous relations is obtained easily, since the material has 
an essentially isotropic behaviour. Based on the hypothesis of linearity, the eq. [3.19] can be 
generalized as: 

( ) ( ) ( ) ( )0

0
, ' '

t
t J t t d t t= ⋅ +∫ε B σ ε                                                                                                     [3.21] 

where:  

( )
( )
( )

11 22 33 12 23 31

11 22 33 12 23 31

0 0 0 0

, , , , ,

, , , , ,

, , ,0,0,0

T

T

T

σ σ σ σ σ σ

ε ε ε ε ε ε

ε ε ε

=

=

=

σ

ε

ε

                                                                                                        [3.22]   

1 0 0 0

1 0 0 0

1 0 0 0

2(1 ) 0 0

2(1 ) 0

2(1 )

ν ν
ν

ν
ν

ν

− − 
 − 
 

=  + 
 +
 

+ 

B                                                                        [3.23] 
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The subscriptions of σ and ε  denote the components of the stress and strain tensors in 

Cartesian coordinates ( )1,2,3ix i =  and ν is the Poisson ratio generalized for viscoelastic 

behaviour. 

Similarly, the generalization of eq. [3.20] leads to: 

( ) ( ) ( ) ( )1 0

0
, ' ' '

t
t R t t d t d t−  = ⋅ − ∫σ B ε ε                                                                                        [3.24] 

 

3.3.2 Rate-type constitutive relations and the rheological models 

The numerical solution of the eqs. [3.19] and [3.20] requires, for general creep and 
relaxation functions, the storage of  the complete history of the stress or strain in the 
structure. This may be facilitated if the integral-type constitutive equations are converted to 
a rate-type form consisting of a system of first-order ordinary differential equations in time.  
The form of rate-type creep law can always be visualized by a spring-dashpot model. 
Although there are many possible arrangements of springs and dashpots, it has been shown 
that the most general creep behaviour can be described by the Maxwell chain or the Kelvin 
chain; described later in this subchapter.   

The most general form of these rate-type equations can be written as: 

( ) ( ) ( ) ( ){ }
1

1
, ' 1 exp '

'

N

J t t y t y t
C t µ µ

µ µ=

 = − − ∑                                                                            [3.25] 

( ) ( ) ( ) ( ){ }
1

, ' ' exp '
N

R t t E t y t y tµ µ µ
µ =

 = − ∑                                                                                   [3.26] 

in which ( )y tµ  are the reduction times and may be considered as: 

( ) ( ) ( )1,2,...,
q

y t t Nµ

µ µτ µ= =                                                                                                [3.27] 

where qµ  are positive numbers 1≤ , µτ  are constants called retardation times (if referred 

to eq. [3.25] ), or relaxation times (if referred to eq. [3.26] ). 

The expansion in eqs. [3.25] and [3.26] represents a series of real exponentials, called the 

Dirichlet series.  The qµ  values can be chosen equal to unity, even if different choices can 

lead to good expansions with a smaller number of terms (see Refs. [24] and [13]). 

Each individual term of the series has a trend in a semi-log scale similar to that of a step 
function; therefore the Dirichlet series expansion can be interpreted as a subdivision of the 
original function in horizontal stripes (see Fig. 3.4). 
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It follows that this expansion is not unique and different choices of µτ values, corresponding 

to different subdivisions in stripes, can provide equally good approximations of the starting 

function. Trying to determine µτ  from test data is known to lead an ill-conditioned equation 

system. Therefore µτ  must be properly chosen and a suitable choice is a uniform 

distribution in the logarithmic scale as reported in Ref. [25]. The value of Cµ  and Eµ , 

corresponding to the chosen µτ , can be typically determined by least squares methods 

when analytical expressions for the compliance function are available. 

 

Fig. 3.4 Approximation of compliance or relaxation function curve at fixed age t’ at loading by a sum 
of exponentials. 

Consider now the above-named Maxwell and Kelvin spring-dashpot models. As already 
mentioned, the purpose of the Dirichlet series expansion is to convert a constitutive 
equation of an integral type to one of a differential type and this conversion is simpler when 
the relaxation function is used. 

Eq.  [3.20] with ( ), 'R t t given by eq. [3.26], may be rewritten as: 

( ) ( )
1

N

t tµ
µ =

=∑σ σ                                                                                                                                       [3.28]                       

in which: 

( ) ( ) ( ) ( ) ( ) ( )' 1 0

0
' ' '

ty t y tt e e E t d t d tµ µ
µ µ

− −  = − ∫σ B ε ε                                                                    [3.29] 

Expressing the derivative d dyµ µσ it is possible to verify that the column vectors µσ , 

satisfy the differential equations: 

 ( ) ( )( )1 0y t E tµ µ µ µ
−+ = −σ σ B ε εɺ ɺɺ ɺ                                                                                                   [3.30] 
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As regards the well-known Maxwell chain model (see Fig. 3.5), µσ  is interpreted as the 

stress in the µ-th Maxwell unit. The strain rate in the ageing spring is ( )E tµ µσɺ and that in 

the dashpot is ( )tµ µσ η , where µη  represents the age-dependent viscosity of the µ-th 

dashpot. Summing the strain rates, we get: 

( )
( ) ( )( )1 0

E t
E t

t
µ

µ µ µ
µη

−+ = −σ σ B ε εɺ ɺɺ                                                                                                   [3.31] 

Comparing the coefficient of eq. [3.31] with eq. [3.29] we see that the spring moduli ( )E tµ  

of the Maxwell chain are identical to the functions ( )E tµ  used in the Dirichlet series 

expansion (eq. [3.26]) and that µη  is equal to: 

( ) ( ) ( )t E t y tµ µ µη = ɺ                                                                                                                            [3.32]  

 

 

Fig. 3.5 Maxwell chain model. 

An analogous conversion to a differential-type form may be determined for the Dirichlet 
series expansion of the compliance function (see eq. [3.25]).  

Then, the constitutive law may be written as: 

( ) ( ) ( )0

1

N

t t tµ
µ =

= +∑ε ε ε                                                                                                                         [3.33] 

( ) ( )
( ) ( )

E t t

t t
µ µ

µ µ
µ µ

η
η η

+
+ = σ

ε ε B
ɺ ɺ

ɺɺ ɺ                                                                                                       [3.34]  
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( ) ( )
( ) ( ) ( ) ( )

( );
C t C t

t E t C t
y t y t

µ µ
µ µ µ

µ µ

η = = −
ɺ ɺ

                                                                                 [3.35] 

These three equations may be recognized as the differential-type constitutive equation 
based on the Kelvin or Kelvin-Voigt chain model, reported in Fig. 3.6. Then, the rate of stress 

in the µ-th spring is ( )E tµ µεɺ , while the rate of stress in the µ-th dashpot is ( )tµ µη εɺ . Setting 

the sum of these two rates equal to σɺ , we obtain the eq. [3.34]. 

 

 

Fig. 3.6 Kelvin chain model. 

Although in classical viscoelasticity it is proved that any material can be described with any 
desired accuracy either by a Kelvin chain or by a Maxwell chain, the Kelvin one has two 
disadvantages compared to a differential formulation based on Maxwell chain.  

The first disadvantage is that the differential equation for Kelvin chain is of the second order 
(see eq. [3.34]), while for a non-aging material it is of the first order; the second one is that, 

due to the presence of the minus sign, eq. [3.35] can yield a negative spring modulus Eµ  and 

this, of course, may create problems. 

 

3.3.3 Humidity and temperature effects on creep behaviour  

The humidity and temperature effects on the mechanical behaviour of a viscoelastic 
material, and therefore on the relations (see eqs. [3.21] and [3.24]) between stresses and 
strains, are essentially of three types (see Refs. [13], [26] and [27]): 

1. direct effect on the hygrothermal strains; 

2. effect on the hydration reactions, and thus on the aging of the material; 

3. direct effect on the creep velocity. 

 

Hygrothermal strains 

Firstly are considered the strains due to loss of moisture. In what follows we will consider 

the shrinkage as a function of pore humidity h because the changes of h produced by 
hydration (only a few per cent) are very small while the changes of the evaporable water 
content are large. The shrinkage, as constitutive property, corresponds to the volumetric 
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strain on a material element, of small dimensions, at zero stress and variable humidity. 
Unfortunately, it cannot be measured directly because it is impossible to obtain a specimen 
with no residual stresses. This is because of the extremely slow process of drying at normal 
temperatures. To measure the true shrinkage it is necessary to use a thin-walled specimen 
and vary the environmental humidity slowly, to maintain a nearly uniform pore humidity 
distribution throughout the wall of the specimen.  

Shrinkage, as a material property, can be better described incrementally [28]: 

=d ds hε k                                                                                                                                                 [3.36] 

where:  

d sε is the strain increment due to shrinkage; 

[ ]= 11 22 33 12 23 31, , , , ,
T

k k k k k kk is the vector of the shrinkage coefficients; 

and dh  is the humidity variation. 

The shrinkage coefficients depends by the age of concrete, the humidity and the stress level 
according to the following relation: 

 ( )( )δ σ= + ɺ0 signij ij ijk k r H                                                                                                                  [3.37] 

in which r  is a coefficient of the material, normally between 0.1/f’t and 0.6/f’t (being f’t the 

ultimate stress limit in tension, in a uniaxial regime); = +ɺɺ ɺH h cT , where c is a parameter; T 

is the temperature and 0k is defined by: 

( ) ( )ε ψ ψ= =0 0 d
,

d
s

s s e

f h
k g t

h
                                                                                              [3.38] 

 

where ε 0
s is the unrestrained shrinkage, defined as shrinkage at zero stress, due to an 

instantaneous variation of humidity at time 0t  from 99% to 0%; ( ) ( ) ( )= 0s e eg t E t E t  

takes into account approximately the aging, which reduces shrinkage and et is the 

equivalent age (see eq. [3.41]). 

As regards the functions  , were introduced various formulations (see Refs. [28], [29], [30]) 
for different fields of application.  

As regards the thermal strains, an analogous relation to eq. [3.36] is: 

=d dT Tε α                                                                                                                                                [3.39] 

where:  
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   [ ]11 22 33 12 23 31, , , , ,
Tα α α α α α=α is the vector with the linear thermal dilation coefficients: 

   ( )( )α α δ ρσ= + ɺ0 signij ij ij H                                                                                                              [3.40] 

      in which: 

         α 0 is the linear thermal dilation coefficient near the point, at zero stress; 

         δ ij is the Kronecker delta function; 

         ρ ≅ '2.5 tf is a characteristic measure of the material; 

         '
tf is the ultimate limit stress in tension; 

         ɺH = +ɺ ɺh cT  where c  is a positive parameter. 

 

Humidity and temperature effects on the aging of the material 

Humidity and temperature act on the rate of hydration of the reagent components with 
water and thus on the “age” of the hydrated product. The rate of hydration strongly 

decreases as h decreases; at h =0.3 the hydration rate is almost zero, and then there is no 
ageing. Similarly, an increase of temperature accelerates the hydration until it reaches 
100°C. 

These effects can be considered as an alteration of the time scale;  so that all the parameters, 
dependent by the aging, are function of the equivalent hydration period defined as: 

β β= ∫0 d
t

e T ht t                                                                                                                                           [3.41] 

in which: 

β
  

= −  
   0

1 1
exp h

T

U
R T T

                                                                                                                       [3.42] 

( )β α
−

 = + −
 

14
1 1h h                                                                                                                           [3.43] 

where: 

   hU is the activation energy of hydration,  

   T is the absolute temperature (in kelvins),   

   0T is the reference absolute temperature (in kelvins),  
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   R is the universal constant of gases, 

   hU R  is equal to 2500K, or to 2700K, or to ( ) 0.39
4600 30 263T ⋅ −  . 

 

Humidity and temperature effects on creep velocity 

Bažant, Asghari and Schmidt (see Ref. [31]) have observed that an increase of temperature 
causes an acceleration of creep, while the viscous strain rate is lower for lower moistures. 
This would seem to contradict the common experience that shows an increase of creep in 
specimens subjected to drying; but this apparent increase of deformation is mainly due to 
the dependence of the shrinkage strains by stresses and to the uneven distribution of these 
latest inside the specimen and the consequent microcracking (see Ref. [28]). 

The humidity and temperature effects on creep velocity can be modelled replacing in the 

eqs. [3.25] or [3.26] ( )µy t  with ( )µ vy t , where vt is defined by: 

ϕ ϕ= ∫0 d
t

v T ht t                                                                                                                                            [3.44] 

This is equivalent to the dependence of creep ,of the µ -th damper, by the Maxwell chain by 

humidity and temperature according to (see Ref. [28]): 

( ) ( ) ( )
µ µ µ

ϕ ϕ µ
η τ

= =1
, 1,2,...,T h

e e

N
t E t

                                                                                  [3.45] 

The coefficients ϕT  and ϕh  can be expressed as (see Ref. [28]): 

ϕ
  

= −  
   0

1 1
exp c

T

U
R T T

                                                                                                                       [3.46]                                                            

( )ϕ α α= + − 21h h h h                                                                                                                               [3.47]                                        

in which cU is the activation energy of creep, T is the absolute temperature (in kelvins), 0T is 

the reference absolute temperature (in kelvins), R is the universal constant of gases. 

 

3.3.4 Bažant–Baweja B3 Model 

The Bažant–Baweja B3 Model (see Refs. [32], [33], [34] and [35]) represents the third major 
update of the earlier BP and BP-KX models (see Refs. [29] and [36]), previously developed at 
Northwestern University.  

This model has been implemented in the F.E. code for the following reasons: it is simpler 
than the previous versions, gives good agreement with available test data (is calibrated by a 
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computerized data bank comprising practically all the relevant test data obtained in various 
laboratories throughout the world) and is better justified theoretically on the basis of an 
understanding of the mechanism of creep and shrinkage (it incorporates the theoretical 
advances during the last three decades).  

This model uses the compliance function, which reduces the risk of errors due to inaccurate 
values of the elastic modulus. Moreover this model separates basic creep (time-dependent 
deformations where no moisture exchanges with the environment occur) and drying creep 
(additional creep strain accounting for drying).  

The prediction of the material parameters of the B3 model, from strength and composition, 
is restricted to Portland cement concrete with the following parameter ranges: 

� water cement ratio by weight: 0.35 ≤ w c  ≤ 0.85; 

� aggregate cement ratio by weight: 2.5 ≤ a c  ≤ 13.5; 

� 28-day standard cylinder compression strength of concrete: 17 ≤ 28cmf  ≤ 70 MPa; 

� cement content: 160 ≤ c  ≤ 720 kg/m3 . 

The Bažant–Baweja B3 Model is restricted to the service stress range (up to 0.45 28cmf ), for 

which creep is assumed to be dependent linearly on stress. This means that, for constant 

stress applied at age 't : 

( ) ( ) ( )ε σ ε α= + + ∆( , ') sht J t t t T t                                                                                                    [3.48] 

 where ( , ')J t t is the compliance function (strain at time t , caused by a unit uniaxial 

constant stress applied at time 't ), σ is the uniaxial stress, ε  is the strain, ε sh  is the 

shrinkage strain, ( )∆T t is the temperature change from reference temperature at time t  

and α is the thermal expansion coefficient. 

The parameters required for this model are: 

� age of concrete when drying starts (in days); 

� age of concrete at loading (in days); 

� aggregate content in concrete (in kg/m3); 

� cement content in concrete (in kg/m3); 

� water content in concrete (in kg/m3); 

� cement type; 

� concrete mean compressive strength at 28 days (in MPa); 

� modulus of elasticity of concrete at 28 days (in MPa); 

� curing condition; 

� relative humidity expressed as decimal; 
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� shape of specimen; 

� volume-surface ratio or effective cross-section thickness (in mm).  

The compliance function , may be decomposed as: 

( ) ( )1 0 0( , ') , ' , ',dJ t t q C t t C t t t= + +                                                                                                   [3.49]                                                                                       

in which 1q  is the instantaneous strain due to unit stress, ( )0 , 'C t t  is the compliance 

function for basic creep, ( )0, ',dC t t t  is the drying creep and 0t  is the age when drying 

begins, in days (only ≤0 't t is considered).  

The instantaneous strain, which is the same as in previous models BP and BP-KX, may be 

written as 1 01q E= where 0E is called the asymptotic modulus. The use of 0E instead of the 

conventional static modulus E is convenient because concrete exhibits pronounced creep 

even for very short load durations, even shorter than 10-4 s. 0E should not be regarded as a 

real elastic modulus but merely as an empirical parameter that can be considered as age-

independent. As a rough estimate ≈0 1.5E E .  

Bažant recommends to use as 1q : 

=1 280.6 cmq E                                                                                                                                           [3.50] 

where 28cmE  is the mean modulus of elasticity of concrete at 28 days. So, it is possible to 

determine 28cmE  as 

=28 284734cm cmE f                                                                                                                               [3.51] 

in which 28cmf is the concrete mean compressive strength. 

As regards the basic creep, it is composed of three terms: an aging viscoelastic term, a non-
aging viscoelastic term and an aging flow term  

( ) ( ) ( )   = ⋅ + ⋅ + − + ⋅     
0 2 3 4, ' , ' ln 1 ' ln

'

n t
C t t q Q t t q t t q

t
                                                         [3.52] 

where 2q ,  3q and 4q  are empirical constitutive parameters and ( ), 'Q t t  is a binomial 

integral which cannot be expressed analytically .  

Indeed, predicting the creep and shrinkage properties of concrete from the composition of 
the concrete mix and the strength of the concrete is an extremely difficult problem for which 

no good theory has yet been developed. So Bažant has furnished, for 2q , 3q and 4q  (and also 

for the parameter of the drying creep 5q ), formulae which are partly empirical and partly 
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reflects trends deduced theoretically from an understanding of the physical mechanisms; 
that were calibrated by statistical analysis of the data in a computerized data bank. 

Therefore the parameter 2q , which appear in the aging viscoelastic compliance term 

( )⋅2 , 'q Q t t , is equal to: 

− −= × 6 0.5 0.9
2 28185.4 10 cmq c f                                                                                                                [3.53] 

in which c is the cement content. 

As regards the binomial integral ( ), 'Q t t  it is given a table (see Table 3.1)

 

and it can also be 

obtained from the following approximate formula (derived by Bažant and Prasannan, Ref. 
[25]) which is valid also for m  and n   values different from 0.5 and 0.1 (values for all 
normal concretes). 

( ) ( ) ( )
( )

( ) ( )−
  
 = +      

1 '
'

'
, ' ' 1

, '

r t
r t

f
f

Q t
Q t t Q t

Z t t
                                                                                       [A.1] 

in which: 

( ) ( ) ( )
( )

( ) ( )−
  
 = +      

1 '
'

'
, ' ' 1

, '

r t
r t

f
f

Q t
Q t t Q t

Z t t
                                                                                       [3.55] 

in which: 

( ) ( ) ( )
−

 = +
 

12 9 4 9
' 0.086 ' 1.21 'fQ t t t                                                                                            [3.56] 

( ) ( ) ( ) ( ) ( )−  = = + −
 

0.12
' 1.7 ' ; , ' ' ln 1 '

m n
r t t Z t t t t t                                                           [3.57] 

The non-aging viscoelastic compliance parameter 3q is equal to: 

( )= 4

3 20.29q w c q                                                                                                                                  [3.58] 

where w c is the water cement ratio 

The aging flow compliance parameter 4q  is expressed as 

 ( )−−= × 0.76
4 20.3 10q a c                                                                                                                      [3.59] 

in which a c is the aggregate cement ratio 
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Table 3.1 Values of function ( ), 'Q t t
 
for m=0.5 and n=0.1. 

 log t’ 

log (t-t’) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

-2.0 0.4890 0.2750 0.1547 0.08677 0.04892 0.02751 0.01547 0.008699 0.004892 

-1.5 0.5347 0.3009 0.1693 0.09519 0.05353 0.03010 0.01693 0.009519 0.005353 

-1.0 0.5586 0.3284 0.1848 0.1040 0.05846 0.03288 0.01849 0.01040 0.005846 

-0.5 0.6309 0.3571 0.2013 0.1133 0.06372 0.03583 0.02015 0.01133 0.006372 

00.0 0.6754 0.3860 0.2185 0.1231 0.06929 0.03897 0.02192 0.01233 0.006931 

0.5 0.7108 0.4125 0.2357 0.1334 0.07516 0.04229 0.02379 0.01338 0.007524 

1.0 0.7352 0.4335 0.2514 0.1436 0.08123 0.04578 0.02576 0.01449 0.008149 

1.5 0.7505 0.4480 0.2638 0.1529 0.08727 0.04897 0.02782 0.01566 0.008806 

2.0 0.7597 0.4570 0.2724 0.1602 0.09276 0.05239 0.02994 0.01687 0.009494 

2.5 0.7652 0.4624 0.2777 0.1652 0.09708 0.05616 0.03284 0.01812 0.01021 

3.0 0.7684 0.4656 0.2808 0.1683 0.1000 0.05869 0.03393 0.01935 0.01094 

3.5 0.7703 0.4675 0.2827 0.1702 0.1018 0.06041 0.03541 0.02045 0.01166 

4.0 0.7714 0.4686 0.2838 0.1713 0.1029 0.06147 0.03641 0.02131 0.01230 

4.5 0.7720 0.4692 0.2844 0.1719 0.1036 0.06210 0.03702 0.02190 0.01280 

5.0 0.7724 0.4696 0.2848 0.1723 0.1038 0.06247 0.03739 0.02225 0.01314 

The compliance function for drying creep is defined by eq. [3.60]. The equation accounts for 
the drying before loading (note that drying before loading is considered only for drying 
creep). 

( ) ( ) ( ){ }   = − − −   
0.5

0 5, ', exp 8 exp 8 'dC t t t q H t H t                                                                   [3.60] 

in which 5q  is the drying creep compliance parameter, equal to: 

ε
−−

∞ = × 
0.61 6

5 280.757 10cm shq f                                                                                                        [3.61] 

is function of the mean compressive strength at 28 days 28cmf  and of the ultimate shrinkage 

strain ε ∞sh , given by: 

( ) ( )ε ε
τ∞ ∞= −

+
607

0
0

, cm
sh s

cm sh

E
t t

E t
                                                                                                          [3.62] 

in which ε ∞s is equal to 

ε α α − −
∞  = − + × 

2.1 0.28 6
1 2 280.019 270 10s cmw f                                                                              [3.63] 

and ( )τ+607 0cm cm shE E t  is a factor to account for the time dependence of ultimate 

shrinkage 

 =  + 

0.5

28

1

4 0.85cmt cmE E
t

                                                                                                                  [3.64] 
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where w is the water content and α1 ,α2 are constants related to the cement type and 

curing condition (see Table 3.2 and Table 3.3). 

Table 3.2 Constant α1 , related to the cement type. 

Type of cement α1 

Type I 1.00 

Type II 0.85 

Type III 1.10 

 

Table 3.3 Constant α2 , related to the curing conditions. 

Curing method α2 

Steam cured 0.75 

Cured in water or at 100% relative humidity 1.00 

Sealed during curing or normal curing in air with initial protection against drying 1.20 

The functions ( )H t  and ( )'H t  in the case that more complex models (such as the hygro-

mechanical ones where the humidity is computed as a variable of the problem1) are not 
considered, can be obtained by formulas derived from experimental data.  

Bažant proposed the following expressions:  

( ) ( ) ( )= − − − 01 1H t h S t t                                                                                                                  [3.65] 

( ) ( ) ( )= − − − 0' 1 1 'H t h S t t                                                                                                                 [3.66] 

where ( )− 0S t t  and ( )− 0'S t t  are time function for shrinkage calculated at the age of 

concrete t  and the age of concrete at loading 't . 

The time function for shrinkage ( )− 0S t t  is equal to: 

( ) ( )
τ
−

− = 0
0 tanh

sh

t t
S t t                                                                                                                    [3.67] 

where τ sh  is the shrinkage half-time: 

                                                             

1 this is the case of NEWCON3D, a 3D fully coupled thermo-hygro-mechanical F.E. code. 
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( )τ − −  =  
20.08 0.25

0 280.085 2sh cm st f k V S                                                                                            [3.68] 

where sk  is the cross section shape-correction factor (Table 3.4) and V S  is the ratio 

between the volume of the concrete element and the surface exposed to the environmental 
humidity. 

Table 3.4 ks as cross section shape. 

Cross section shape ks 

Infinite slab 1.00 

Infinite cube 1.15 

Infinite square prism 1.25 

Sphere 1.30 

Cube 1.55 

For example, considering a concrete element with a ratio V S = 100mm, subjected to an 

environmental relative humidity equal to 70%, loaded at 't =14 days, while the drying starts 

at 0t =7 days; then the variation of the relative humidity, according to model B3, is shown in 

Fig. 3.7. This formulation assumes that all the concerned section in the V S ratio has the 

same relative humidity and vary instantaneously in the same way. 

Then finally, the creep coefficient ( ), 't tφ is so calculated from the compliance function: 

 ( ) ( ) ( ), ' ' , ' 1t t E t J t tφ = −                                                                                                                    [3.69]                                                  

where ( )'E t is the modulus of elasticity at loading age 't . 

 

Fig. 3.7 Example of the evolution of relative humidity according to model B3. 
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3.3.5 Double Power Law  

Before B3 model, in the F.E. code NEWCON3D, was implemented only the Double Power 
Law (see Refs. [29] and [37]). This is a simple law but, if compared to model B3, is less 
detailed and accurate, it doesn’t consider drying creep and cannot be well characterized if 
concrete is considered as a composite material (e.g. the compliance function of Model B3 is 
function of the aggregate content in concrete,  cement content in concrete , cement type…). 
Moreover, as reported in [38], this model can exhibit the phenomenon of divergence of 
creep curves for short time periods. In any case this problem is nevertheless not serious for 
normal applications.   

The compliance function of Double Power Law is here reported: 

( ) ( ) ( )φ α−= + + ⋅ −1

0 0

1
, ' ' '

nmJ t t t t t
E E

                                                                                               [3.69] 

where, approximately, if the age of concrete t and the age at loading 't  are in days, the 

values of the parameters of eq. [3.69] are: 

α φ≅ ≅ ≅ ≅ ÷1

1 1
; 0.05; ; 3 6

8 3
n m  

and 0E is the asymptotic modulus, estimable roughly as ≅0 281.5 cmE E . 

These coefficients can be determined, easily, with experimental tests.  

 

3.3.6 Creep of concrete if considered as a composite material 

If concrete is considered as a composite material made of aggregates, cement paste and ITZ, 
many experiments in literature have shown the source of creep in concrete is the hardened 
cement paste (and therefore also the ITZ). The aggregates, typically do not creep in the 
range of stresses encountered in service (see Refs. [13], [39] and [40]).   

It is therefore reasonable to consider concrete as a composite formed by one aging 
viscoelastic phase (cement paste) and one elastic phase (aggregate). The mortar matrix is 

characterized by an aging viscoelastic compliance function ( , ')J t t  and a Poisson’s ratio ν  

that is constant in time; instead the aggregate is considered to be elastic, characterized by its 
elastic modulus and its Poisson’s ratio. The compliance function for the mortar matrix may 
be represented by Model B3, described in Section 3.3.4: although this model was developed 
for concrete, the physical basis of the assumptions used in its derivation is also valid for 
cement paste.  
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3.3.7 Numerical Implementation in NEWCON3D 

In this subchapter is reported the numerical implementation of B3 Model  in NEWCON3D. 

Indeed, in this F.E. code, all the equations reported in Section 3.3.4 have been implemented 

with a difference: the spatial averages of pore relative humidity ( )H t  and ( )'H t  (see eqs. 

[3.65] and [3.66]), used to determine the compliance function for drying creep, have been 
replaced by the current humidity values at each time step, being relative humidity one of the 
main variables in the code, so being unnecessary to evaluate it via approximate expressions. 

This is really important, especially for modelling of concrete at the meso-level, characterized 
by different components with different properties. In fact, it clearly appears by eqs. [3.67] 
and [3.68], where S mainly depends on characteristics related to the geometry of the studied 
model but not on the permeability of the different component materials, a property of the 
material that controls the humidity and so the drying creep evolution.  

Therefore in the Box 1-7, all the subroutines and functions implemented in NEWCON3D for 
the computation of creep using the Model B3 (see Section 3.3.4) or the Double Power Law  
(see Section 3.3.5) are reported. 

 

 

module cCreepModel 
implicit none 
 
    type, public :: dpl           ! Double Power Law 
        real*8       ::  E0           ! E0 – asymptotic modulus 
        real*8       ::  phi1         ! φ1 

        real*8       ::  alfa          ! α 

        real*8       ::  emme      ! m 

        real*8       ::  enne        ! n 

    end type 
    type, public :: b3            ! Model B3   
        real*8       ::  E0           ! E0 – asymptotic modulus 
        real*8       ::  fc             ! fc – concrete mean compressive strength    

        real*8       ::  Ecm28    ! Ecm28- mean modulus of elasticity of concrete at 28 days 
        real*8       ::  wcr          ! w/c – water cement ratio   
        real*8       ::  c              ! c – cement content 
        real*8       ::  acr           ! a/c – aggregate cement ratio 
        real*8       ::  vs            ! v/s – volume surface ratio 
        real*8       ::  ks            ! ks – cross section shape correction factor 
        real*8       ::  t0             ! t0 – age when drying begins  
        real*8       ::  rh             ! rh – relative humidity 

        real*8       ::  m             ! m 

        real*8       ::  n              ! n                                                  

    end type    

!  

    type, public :: tCreepModel 
        integer                                                    :: modelType 

        integer                                                    :: indexMat 
        type(dpl), dimension(:), allocatable    :: dplParam 

        type(b3),  dimension(:), allocatable    :: b3Param 

    end type 

!          
contains 
! 
! costructor 
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!     
    subroutine tCreepModel_(modelType, creepModel) 

    implicit none  

    integer               :: modelType 

    type(tCreepModel)    :: creepModel 
        creepModel%modelType  = modelType 
        creepModel%indexMat      = 0  
        select case (modelType) 
        case (1) 
 
            allocate(creepModel%dplParam(1)) 
            allocate(creepModel%b3Param(0)) 
            call dpl_(creepModel%dplParam(1)) 

        case(2) 
            allocate(creepModel%dplParam(0)) 
            allocate(creepModel%b3Param(1)) 
            call b3_(creepModel%b3Param(1)) 
        end select 

    return 

    end subroutine tCreepModel_ 

! 
! initialization parameters 
! 
    subroutine dpl_(valueDpl)          ! Double Power Law 
    implicit none 

    type(dpl)  :: valueDpl 
        valueDpl%E0         = 0.d0  
        valueDpl%phi1      = 0.d0 
        valueDpl%alfa        = 0.d0 
        valueDpl%emme    = 0.d0 
        valueDpl%enne      = 0.d0 
    return 

    end subroutine dpl_ 
!    

    subroutine b3_(valueB3)            ! Model B3 

    implicit none 

    type(b3)  :: valueB3 

        valueB3%E0          = 0.d0     
        valueB3%fc           = 0.d0     
        valueB3%Ecm28   = 0.d0 
        valueB3%wcr        = 0.d0     
        valueB3%c            = 0.d0         
        valueB3%acr         = 0.d0 
        valueB3%vs          = 0.d0   
        valueB3%ks          = 0.d0 
        valueB3%t0          = 0.d0  
        valueB3%rh          = 0.d0 
        valueB3%m          = 0.d0  
        valueB3%n           = 0.d0                            
    return 

    end subroutine b3_ 

! 

end module cCreepModel 
 

Box. 1 Costructor of cCreepModel module. 

 

 

! 
! reading and writing parameters of Double Power Law and Model B3 
! 
subroutine readCreepModel (unitInput,unitOutput,creepModel,nMat) 
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implicit none 

integer                                      :: unitInput 
integer                                      :: unitOutput 
integer                                      :: nMat 
type(tCreepModel), dimension(nMat)    :: creepModel 
! internal variables  
character*80                                  :: st 
integer                                      :: i 
 
    i = 1 
    read(unitInput,*) st 
    readLoop: do while (st.ne.'end') 
    if (st == 'dpl') then 
        creepModel(i)%modelType = 1 
        write(unitOutput, *) st 
    else if (st == 'b3') then 
        creepModel(i)%modelType = 2 
        write(unitOutput, *) st 
    else 
        write(*,*)  'error creep model in input file' 
        stop 

    end if        
    call tCreepModel_(creepModel(i)%modelType, creepModel(i)) 
    read(unitInput,*) creepModel(i)%indexMat 
    write(unitOutput,*) creepModel(i)%indexMat 
    select case(creepModel(i)%modelType) 
 
! reading and writing  parameters Double Power Law 
    case (1)                                       
        read(unitInput,*) creepModel(i)%dplParam(1)%E0,      & 
                     creepModel(i)%dplParam(1)%phi1,       & 
                     creepModel(i)%dplParam(1)%alfa,       & 
                     creepModel(i)%dplParam(1)%emme,     & 
                     creepModel(i)%dplParam(1)%enne  
        write(unitOutput,*) creepModel(i)%dplParam(1)%E0,      & 
                     creepModel(i)%dplParam(1)%phi1,         & 
                     creepModel(i)%dplParam(1)%alfa,       & 
                     creepModel(i)%dplParam(1)%emme,     & 
                     creepModel(i)%dplParam(1)%enne     
! reading and writing  parameters Model B3                   
    case (2)  
        read(unitInput,*) creepModel(i)%b3Param(1)%E0,       & 
                     creepModel(i)%b3Param(1)%fc,       & 
                     creepModel(i)%b3Param(1)%Ecm28,      & 
                     creepModel(i)%b3Param(1)%wcr,    & 
                     creepModel(i)%b3Param(1)%c,    & 
                     creepModel(i)%b3Param(1)%acr,      & 
                     creepModel(i)%b3Param(1)%vs,      & 
                     creepModel(i)%b3Param(1)%ks,      & 
                     creepModel(i)%b3Param(1)%t0,      & 
                     creepModel(i)%b3Param(1)%rh,      & 
                     creepModel(i)%b3Param(1)%m,      & 
                     creepModel(i)%b3Param(1)%n 
        write(unitOutput,*) creepModel(i)%b3Param(1)%E0,       & 
                     creepModel(i)%b3Param(1)%fc,       & 
                     creepModel(i)%b3Param(1)%Ecm28,      & 
                     creepModel(i)%b3Param(1)%wcr,      & 
                     creepModel(i)%b3Param(1)%c,     & 
                     creepModel(i)%b3Param(1)%acr,      & 
                     creepModel(i)%b3Param(1)%vs,      & 
                     creepModel(i)%b3Param(1)%ks,      & 
                     creepModel(i)%b3Param(1)%t0,      & 
                     creepModel(i)%b3Param(1)%rh,      & 
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                     creepModel(i)%b3Param(1)%m,      & 
                     creepModel(i)%b3Param(1)%n 
    end select  

 
    read(unitInput,*) st 
    i = i+1 
    end do readLoop 
 
return 

end subroutine readCreepModel 
 

Box. 2 Subroutine readCreepModel. 

 

 

subroutine setCreepModel(creepModel) 
implicit none 
type(tCreepModel), dimension(:), pointer       :: creepModel 
type(tCreepModel), dimension(:), allocatable   :: creepModel_Copy 
! internal variables 
integer                                                    :: i 
 
    if (size(creepModel) <= 0) then 
        allocate(creepModel(1)) 
    else 
        allocate(creepModel_Copy(size(creepModel))) 
        creepModel_Copy = creepModel  
        deallocate(creepModel) 
        allocate(creepModel(size(creepModel_Copy)+1)) 
        do i = 1,size(creepModel_Copy) 
            creepModel(i) = creepModel_Copy(i) 
        end do 

        deallocate(creepModel_Copy) 
    end if 

       
return 

end subroutine setCreepModel 
 

Box. 3 Subroutine setCreepModel. 

 

 

! 

!  run Model B3 
! 

subroutine runCreepModel(NMAT,MAT,durataCarico,etaCarico,CREEPV,creepModel,              & 
   IGS,MDF1,MP,GASHT,P,NSIZE2,NCN,IGJG,ME,NOP,NEL,ICONVG,UmidIniz) 
implicit none   
integer                                      :: NMAT 
integer                                      :: MAT  
integer                                      :: IGS 
integer                                      :: MDF1 
integer                                      :: MP 
integer                                      :: IGJG 
integer                                      :: NSIZE2 
integer                                      :: NCN 
integer                                      :: ME 
integer                                      :: NEL  
integer                                      :: ICONVG 
real*8                                       :: durataCarico 
real*8                                       :: etaCarico 
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real*8                                       :: CREEPV   
real*8,  dimension (IGS,MDF1,MP)    :: GASHT   
real*8,  dimension (NSIZE2)                 :: P  
integer, dimension (ME,20)                  :: NOP     
real*8, dimension(MP)                       :: UmidIniz      
type(tCreepModel), dimension(nMat)      :: creepModel 
  
    if ((creepModel(MAT)%modelType) == 2) then    
        call creepB3vef (NMAT,MAT,durataCarico,etaCarico,CREEPV,creepModel,NHT)        ! Basic creep 
        call creepB3Ddrying (NMAT,MAT,durataCarico,etaCarico,CREEPV,creepModel,  &   ! Drying creep 
                 IGS,MDF1,MP,GASHT,P,NSIZE2,NCN,IGJG,ME,NOP,NEL,ICONVG,UmidIniz)  
    else 

        write(*,*)'error, creep model not implemented' 
    end if   

  
return 

end subroutine runCreepModel 

Box. 4 Subroutine runCreepModel. 

  

 

! 
! creep computation - Double Power Law 
! 
subroutine creepDPLaw(NMAT,MAT,durataCarico,etaCarico,CREEPV,creepModel)  
implicit none 

integer                                     :: NMAT 
integer                                     :: MAT 
real*8                                      :: durataCarico 
real*8                                      :: etaCarico 
real*8                                      :: CREEPV   
type(tCreepModel), dimension(nMat)    :: creepModel 
 
! J= 1/E0 + ( φ1/E0 ) ( ((t’)^-m) + α ) ( t - t’ )^n 
    CREEPV = 1.0d0/(creepModel(MAT)%dplParam(1)%E0) + (creepModel(MAT)%dplParam(1)%phi1)/        & 

     (creepModel(MAT)%dplParam(1)%E0)*(etaCarico ** (-(creepModel(MAT)%dplParam(1)%emme))  +    & 
                     (creepModel(MAT)%dplParam(1)%alfa)) * durataCarico ** (creepModel(MAT)%dplParam(1)%enne) 
 
return 

end subroutine creepDPLaw 
 

Box. 5 Subroutine creepDPLaw, for the computation of creep following the Double Power Law. 

 

 

! 
! computation of instantaneous strain + basic creep - Model B3 
! 
subroutine creepB3vef (NMAT,MAT,durataCarico,etaCarico,CREEPV,creepModel) 
implicit none 

integer                                      :: NMAT 
integer                                      :: MAT 
real*8                                       :: durataCarico 
real*8                                       :: etaCarico 
real*8                                       :: CREEPV   
type(tCreepModel), dimension(nMat)   :: creepModel 
! internal variables 
real*8                                       :: q1 
real*8                                       :: q2 
real*8                                       :: q3  
real*8                                       :: m 
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real*8                                       :: n   
integer                                      :: lambda0 
real*8                                       :: psi 
real*8                                       :: r 
real*8                                       :: Z1  
real*8                                       :: Z2 
real*8                                       :: Z    
real*8                                       :: exp1 
real*8                                       :: exp2 
real*8                                       :: exp3 
real*8                                :: Qf    
real*8                                       :: Q 
real*8                                       :: C0ve1 
real*8                                       :: C0ve     
real*8                                       :: Q2bis              
 
! eta carico = t', age at loading [d] 
! durata carico = t - t'  [d]  
! *** ***  instantaneous strain q1  
 
    q1       = (0.6D0/(creepModel(MAT)%b3Param(1)%Ecm28))       ! q1 [1/MPa] 
  
! *** *** Basic Creep =  q2 ∙ Q + q3 ∙ ln[ 1 + ( t – t’ )^n ] + q4 /  ln (  t / t’ )               
    q2      = (185.4D0*((creepModel(MAT)%b3Param(1)%c)**(0.5D0))*        &                                 
              ((creepModel(MAT)%b3Param(1)%fc)**(-0.9D0)))*(10**(-6.D0))   ! q2 [1/MPa] 
    q3      = 0.29D0*((creepModel(MAT)%b3Param(1)%wcr)**4.D0)*q2   ! q3 [1/MPa] 
    q4      = (20.3d0*(((creepModel(MAT)%b3Param(1)%acr))**(-0.7D0)))*(10**(-6.D0))     ! q4 [1/MPa]  
    m       = creepModel(MAT)%b3Param(1)%m                                                                                      ! m 
    n       =  creepModel(MAT)%b3Param(1)%n                                                                                       ! n                     
    lambda0 = 1.D0                                                                                                                ! λ0                                                                                                                           
    psi     = (durataCarico)/(lambda0)                                                                                     ! ( t - t' ) / λ0                                     
    r       = 1.7D0*((etaCarico)**(0.12D0))+8.D0                                                                     ! r 
    Z1      = ((durataCarico)**(n))                                  
    Z2      = log (1 + Z1) 
    Z       = ((etaCarico)**(-m))* Z2                                                                                         ! Z 
    exp1    = 2.D0/9.D0 
    exp2    = 4.D0/9.D0 
    Qf      = (0.086D0*((etaCarico)**(exp1)) + 1.21D0*((etaCarico)**(exp2)))**(-1.D0)          ! Qf 
    exp3    = -1.D0/r 
    Q       = Qf*(1+((Qf/Z)**(r)))**(exp3)                                                                                 ! Q 
    C0ve1   = q3*log(1.D0+(psi)**n)                                                                                      ! q3 ∙ ln[ 1 + ( t – t’ )^n ] 
    C0ve    = q2*Q + C0ve1                                                                                                 ! q2 ∙ Q + q3 ∙ ln[ 1 + ( t – t’ )^n ] 
    C0f     = q4*log((durataCarico + etaCarico)/etaCarico)                                                    ! q4 /  ln (  t / t’ )                 
 
! *** ***  instantaneous strain + Basic Creep =  q1 + q2 ∙ Q + q3 ∙ ln[ 1 + ( t – t’ )^n ] + q4 /  ln (  t / t’ )               
    CREEPV = q1 + C0ve + C0f      
  

return 

end subroutine creepB3vef 
 

Box. 6 Subroutine creepB3vef for the computation of the instantaneous strain and basic creep of 
Model B3. 

 

!  
! computation of drying creep - Model B3 
! 
subroutine creepB3Ddrying (NMAT,MAT,durataCarico,etaCarico,CREEPV,  & 
                                                creepModel,IGS,MDF1,MP,GASHT,P,NSIZE2,   & 
                                                NCN,IGJG,ME,NOP,NEL,ICONVG,UmidIniz) 
implicit none 
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integer                                      :: NMAT 
integer                                      :: MAT 
integer                                      :: IGS 
integer                                      :: MDF1 
integer                                      :: MP 
integer                                      :: IGJG 
integer                                      :: NSIZE2 
integer                                      :: NCN 
integer                                      :: ME 
integer                                      :: NEL  
integer                                      :: ICONVG     
real*8                                       :: durataCarico 
real*8                                       :: etaCarico 
real*8                                       :: CREEPV 
integer, dimension (ME,20)                  :: NOP   
real*8,  dimension (IGS,MDF1,MP)       :: GASHT 
real*8,  dimension (NSIZE2)                 :: P 
real*8, dimension(MP)                       :: UmidIniz  
type(tCreepModel), dimension(nMat)   :: creepModel  
! internal variables 
real*8                                       :: coeff1  
real*8                                       :: coeff2          
real*8                                       :: coeff3  
real*8                                       :: taush  
real*8                                       :: coeff4  
real*8                                       :: coeff5  
real*8                                       :: coeff6          
real*8                                       :: epsinf  
real*8                                       :: coeff7    
real*8                                       :: Ecm607  
real*8                                       :: coeff8     
real*8                                       :: Ecmt0taush  
real*8                                       :: RappEcm   
real*8                                       :: epshinf    
real*8                                       :: coeff9         
real*8                                       :: q5 
real*8                                       :: H1  
real*8                                       :: S2       
real*8                                       :: H2   
real*8                                       :: Cd1 
real*8                                       :: Cd2   
real*8                                       :: Cd    
real*8                                       :: CREEPVbis          
 
! *** *** Drying Creep = q5 { exp [ -8H (t) ] – exp [ -8H (t’) ] } ^0.5 
    coeff1    = (creepModel(MAT)%b3Param(1)%t0)**(-0.08D0)  
    coeff2    = (creepModel(MAT)%b3Param(1)%fc)**(-0.25D0) 
    coeff3    =  0.085D0 *coeff1 * coeff2 
    taush     =  coeff3*((2.D0*(creepModel(MAT)%b3Param(1)%ks)*  & 

    (creepModel(MAT)%b3Param(1)%vs))**(2.D0))                                                                              ! sh 
    coeff4    = ((creepModel(MAT)%b3Param(1)%wcr)*(creepModel(MAT)%b3Param(1)%c))**(2.1D0) 
    coeff5    = (creepModel(MAT)%b3Param(1)%fc)**(-0.28D0) 
    coeff6     =  0.019D0 * coeff4 * coeff5 +270.D0 
    epsinf    =  coeff6 *(10**(-6.D0))                                                                                                                         ! ε∞ 
    coeff7    =  607.D0/(4+(0.85D0*607.D0)) 
    Ecm607 = (creepModel(MAT)%b3Param(1)%Ecm28)*((coeff7)**(0.5D0))               ! Ecm607            
    coeff8    = ((creepModel(MAT)%b3Param(1)%t0)+taush)/(4+  & 

   (0.85D0*((creepModel(MAT)%b3Param(1)%t0)+taush))) 
    Ecmt0taush  = (creepModel(MAT)%b3Param(1)%Ecm28)*((coeff8)**(0.5D0))       
    RappEcm       =  Ecm607/Ecmt0taush                                                                                                          ! Ecm607/Ecmsh 
    epshinf  = abs(-epsinf * RappEcm)                                                                                                      ! εsh∞ 
    coeff9   = ((creepModel(MAT)% b3Param(1)%fc)**(-1.d0)) 
    q5       = 0.757D0 * coeff9 *((epshinf*(10**6.d0))**(-0.6d0))                                                                            ! q5 
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    H1       = UmidRelGauss(IGS,MDF1,MP,IGJG,GASHT,NSIZE2,P,NCN,ME,NOP,NEL,ICONVG)                 ! H1 = current r.h.  
    H2       = UmidInizGauss(IGS,MDF1,MP,IGJG,UmidIniz,NSIZE2,P,NCN,ME,NOP,NEL,ICONVG)             ! H2 = initial r.h. 
    Cd1      = exp(-8*H1)                                                    ! exp ( -8H1) 
    Cd2      = exp(-8*H2)                                                    ! exp ( -8H2) 
    Cd       = q5*((Cd1 - Cd2)**(0.5D0))                            ! Cd 
    CREEPVbis = Cd 
! J = q1 + C0 + Cd 
    CREEPV  = CREEPV + CREEPVbis                  
 
return 

end subroutine creepB3Ddrying 
 

Box. 7 Subroutine creepB3Ddrying for the computation of the drying creep of Model B3. 
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3.4 Numerical solution of integral equation 

3.4.1 Formulation without the history memorization 

The numerical integration of eq. [3.24] or its dual form requires the knowledge of the whole 
strain or stress history. This leads to remarkable imitations in practical analyses due to the 
huge memory requirements.  

Such requirements may be dramatically reduced if relaxation or creep functions are written 
in degenerate form and suitable analytical developments are carried out.  

As regards the relaxation function: 

( ) ( ) ( ) ( ){ }µ µ µ
µ =

 = − ∑
1

, ' ' exp '
N

e v vR t t E t y t y t                                                                              [3.70] 

 

with ( )µ µτ=v vy t t and µτ relaxation times of the µ -th Maxwell unit. 

If eq. [3.70] is substituted in the [3.24] one obtains: 

( ) ( ) ( ) ( ) ( ) ( )µ µ
µ

µ

−−

=

 = − ∑∫
'1 0

0
1

' v v

Nt y t y t
et E t e d t d tσ B ε ε                                                                 [3.71] 

 

3.4.2 Numerical solution 

The calculation procedure based on the approximation of the superposition integral by a 
summation and a subsequent elimination of the strain history, using recursive formulas, 
was developed for relaxation functions by Lewis, Shrinatha and Thomas [41] and the 
application to a tridimensional case was studied by Majorana [42]. 

Taking as reference [27]; assuming a continuous strain history it can be posed that: 

( ) ( ) ( ) ( )( )
ε ε

−
− =

0

0
d

d d d '
d '

t t
t t t

t

ε ε
                                                                                             [3.72] 

and the equation [3.24] may be integrated by parts as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( )− − ∂
   = − − −   ∂∫

1 0 1 0

0

, '
, ' ' ' d '

'

t R t t
t R t t t t t t t

t
σ B ε ε B ε ε                                [3.73] 

in which ( )−1 , 'R t tB  represents stress at time t due to a unit strain imposed at the same 

time instant, i.e. ( )−1E tB with ( )E t instantaneous elastic modulus at time t . 
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Performing time integration of eq. [3.73] by means of a finite difference technique implies 
the following operations. Time variablet  must be subdivided in n  time intervals whose 

length is +∆ = −1i it t t , with =1 0t and + =1nt t . After applying the sum property of integrals, 

eq. [3.73] becomes: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )+ +

− −
+ + + + + + +

+ +− −

= =

= − +

∂ ∂
− +
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1 1

1 1 0
1 1 1 1 1 1 1

1 11 1 0

1 1

, ,

, ' , '
' d ' ' d '

' '

i i

i i

n n n n n n n

n nt tn n

t t
i i

t R t t t R t t t

R t t R t t
t t t t

t t

σ B ε B ε

B ε B ε
                     [3.74] 

Each integral contained in the first sum at the r.h.s. of  eq. [3.74] may be approximated as 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 11 11 1
1

1
1 1 1 1

, ' , ' 1
' d ' d '

' ' 2
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, ' , '
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                   [3.75] 

The first sum, is so well approximated: 
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                                                   [3.76] 

explaining the last term of the summation, we obtain: 

( ) ( ) ( )
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                                                   [3.77] 

Examining the second summation at the r.h.s. of eq. [3.74], which the generic term can still 
be approximated in a similar manner to those used to derive eq. [3.75]:  

( ) ( ) ( ) ( ) ( )
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    [3.78] 

The second sum, is so well approximated: 
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Assigning ( ), 'R t t  as a degenerate kernel (see eq. [3.70]), posing ( ) ( )µ µ
−= 1

e et E tD B and 

taking into account eq. [3.77], enables to write eq. [3.74] as follows: 
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in which: 
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Reversing the order of the summation: 
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where it is placed: 
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Collecting the term ( ) µτ
+ +

 − −
 1 1

exp
n iv vt t , we obtain: 
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Explaining the last term of the summation: 
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−

−
=

+

   = − − − − − ⋅
   

  ⋅ + + − − ⋅   

   ⋅ − − − ⋅ +  

∑

Q D D

ε ε

D D ε ε

                      [3.85] 

Collecting the term ( ) µτ
+

 − −
 1

exp
n nv vt t  in the summation at the r.h.s. of eq. [3.85], we 

obtain: 

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( )

( ) ( ) ( ){ } ( ) ( )

µ µ µ µ µ

µ µ

µ µ µ

τ τ

τ τ

τ

+ − −

+ +

+ +

+

−

−
=

+

   = − − − − − ⋅
   

    ⋅ + + − − ⋅ − − ⋅     

   ⋅ − − − ⋅ +  

∑

1 1 1

1 1

1 1

, 1

2

1
1

1

exp exp

exp exp

exp

n n n n n n

n n n i

i i i i

n v v e e v v

n

n n v v v v
i

e e v v i i

t t t t t t

t t t t t t

t t t t t t

Q D D

ε ε

D D ε ε

                 [3.86] 

Collecting the common term ( ) µτ
+

 − −
 1

exp
n nv vt t : 

( ) ( ) ( ) ( ){ }{
( ) ( ) }

µ µ µ µ µ

µ

τ τ
+ − −+

−

   = − − − − − ⋅
   

 ⋅ + + 

1 1 1, 1

1 ,

exp exp
n n n n n nn v v e e v v

n n n

t t t t t t

t t

Q D D

ε ε Q

                  [3.87] 

with: 

( ) ( ) ( ) ( ){ }
( ) ( )

1 1 1

2

,
1

1

exp exp
n i i i i i

n

n v v e e v v
i

i i

t t t t t t

t t

µ µ µ µ µτ τ
+ + +

−

=

+

   = − − ⋅ − − − ⋅
   

 ⋅ + 

∑Q D D

ε ε

                 [3.88] 

For ∑2 , it is possible to obtain a similar expansion: 

( ) ( ) ( ) ( ){ }
( ) ( )

µ µ µ µ
µ

µ
µ

τ τ
+ + + +

= =

+ +
=

   = − − − − − ⋅
   

 ⋅ + = ⋅ 

∑ ∑ ∑

∑

1 1 1 1
1 1

0 0
1 , 1

1

1
2 exp exp

2

1

2

i n i i n i

N n

e v v e v v
i

N

i i n

t t t t t t

t t

D D

ε ε R

       [3.89] 

in which; 

( ) ( ) ( ) ( ){ }
( ) ( )

µ µ µ µ µτ τ
+ + + +

−

+
=

+

   = − − − − − ⋅
   

 ⋅ + 

∑ 1 1 1 1

1

, 1
1

0 0
1

exp exp
i n i i n i

n

n e v v e v v
i

i i

t t t t t t

t t

R D D

ε ε

             [3.90] 
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Collecting the term ( ) µτ
+ +

 − −
 1 1

exp
n iv vt t , we obtain: 

( ) ( ) ( ){ ( ) }
( ) ( )

µ µ µ µ µτ τ
+ + + +

−

+
=

+

   = − − − − −
   

 ⋅ + 

∑ 1 1 1 1

1

, 1
1

0 0
1

exp exp
n i i i i i

n

n v v e e v v
i

i i

t t t t t t

t t

R D D

ε ε

               [3.91] 

and explaining the last term of the summation: 

( ) ( ) ( ) ( ){
( ) ( ) ( ) ( ) ( ){

( ) } ( ) ( )

µ µ µ µ µ

µ µ µ

µ

τ τ

τ

τ

+ + + +

+ + +

+

+

−

+
=

+

   = − − − − − ⋅
   

  ⋅ + + − − − ⋅   

   ⋅ − − ⋅ +  

∑

1 1 1 1

1 1 1

1

, 1

1
0 0

1
1

0 0
1

exp exp

exp

exp

n n n n n n

n i i i

i i

n v v e e v v

n

n n v v e e
i

v v i i

t t t t t t

t t t t t t

t t t t

R D D

ε ε D D

ε ε

              [3.92] 

Reminding that ( ) =exp 0 1  and collecting ( ) µτ
+

 − −
 1

exp
n nv vt t  in the summation: 

( ) ( ) ( ){ } ( ) ( )

( )
µ µ µ µ

µ µ

τ

τ

+ +

+ +

+ +
   = − − − ⋅ + +  

 + − − ⋅
 

1 1

1 1

0 0
, 1 1

,

exp

exp

n n n n

n i

n e e v v n n

v v n

t t t t t t

t t

R D D ε ε

R

                     [3.93] 

in which 

( ) ( ) ( ) ( ){ }
( ) ( )

µ µ µ µ µτ τ
+ + +

−

=

+

   = − − ⋅ − − − ⋅
   

 ⋅ + 

∑ 1 1 1

1

,
1

0 0
1

exp exp
n i i i i i

n

n v v e e v v
i

i i

t t t t t t

t t

R D D

ε ε

                 [3.94] 

Taking into account the above developments, the stress-strain relationship (eq. [3.80]) can 
be written in this form: 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ){ } ( )

1 1

1 1

0
1 1 1

1 1

1
1

1
exp

2

n n

n n n n

N N

n e n e n

N

e e v v n

t t t t t

t t t t t

µ µ
µ µ

µ µ µ
µ

τ

+ +

+ +

+ + +
= =

+
=

= − +

 − − − − +
 

∑ ∑

∑

σ D ε D ε

D D ε

                                [3.95] 

( ) ( ) ( ){ } ( )
1 1

1

, 1 , 1
1 1

1
exp

2

1 1

2 2

n n n n

N

e e v v n

N N

n n

t t t t tµ µ µ
µ

µ µ
µ µ

τ
+ +

=

+ +
= =

 − − − − −
 

− +

∑

∑ ∑

D D ε

Q R

 

where µ +, 1nQ  and µ +, 1nR  are defined by the eqs. [3.87] and [3.93]. 
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Substituting eq. [3.95] in the equilibrium equation at time +1nt obtained by means of virtual 

work theorem: 

( )( ) ( )δ δ+ +=∫ 1 1dT T
n ns

t V tε σ u F                                                                                                         [3.96] 

one obtains 

( ) ( )( ) ( ) ( ){
( ) ( ) } ( )

( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )

1 1

1

1 1

1

1
1 1

1

0
1

1 1

, 1 , 1
1 1

1
d

2

exp d

1
d

2

1
exp d d

2

n n

n n n

n n n

n n

N N
T T

e n es s

e v v n

N N
T T

e n e es s

N N
T T

v v n n ns

t t V t

t t t t V

t t V t t

t t t V V

µ µ
µ µ

µ µ

µ µ µ
µ µ

µ µ µ
µ µ

δ δ

τ

δ δ

τ δ δ

+ +

+

+ +

+

+
= =

+

+
= =

+ +
= =

− −

 − − − ⋅ =
 


= + − ⋅




 ⋅ − − + − + 



∑ ∑∫ ∫

∑ ∑∫ ∫

∑ ∑∫

ε D ε ε D

D ε

ε D ε ε D D

ε Q ε R u ( )1nt +F

       [3.97] 

The introduction of spatial finite element approximation allows to obtain the following 
relationship: 

( ) ( ) ( )+ +− = + + +1 2 1 1n n ML TH MTHt tK K u F F F F                                                                               [3.98] 

where 

( )( ) µ
µ

+
=

= ∑∫ 11
1

 d
n

N
T

es
t VK B D B                                                                                                            [3.99] 

( ) ( ) ( ){ }( ) µ µ µ
µ

τ
+ +

=

 = − − −
 ∑∫ 1 11

1

1
exp  d

2 n n n n

N
T

e e v vs
t t t t VK B D D B                                     [3.100] 

( ) ( ) ( ){ } ( )( ) µ µ µ µ
µ µ

τ
+ + +

= =

 
 = − − − +  

 
∑ ∑∫ 1 1 , 1

1 1

1
exp  d

2 n n n n

N N
T

ML e e v v n ns
t t t t t VF B D D ε Q  [3.101] 

( ) ( )( ) µ
µ

+ +
=

= ∑∫ 1

0
1

1

 d
n

N
T

TH e ns
t t VF B D ε                                                                                               [3.102] 

( ) µ
µ

+
=

= − ∑∫ , 1
1

1
 d

2

N
T

MTH ns
VF B R                                                                                                           [3.103] 

and ( )+1ntu is the unknown displacement vector.  

After solving the system of equations [3.98], strains at time +1nt  are calculated as usually: 

( ) ( )+ += ⋅1 1n nt tε B u                                                                                                                              [3.104] 
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while the stresses are obtained by eq. [3.95]. 

The following procedure can be applied. At the first step ( )= + =1, 1 1i n it must be set 

( ) ( ) µ µ= = = =0
0 0 ,1 ,1 0t tε ε Q R , hence, if ( )0

1tε is known (it is obtained solving heat and 

moisture transfer equations which allow to find ∆T and ∆h ), eq. [3.98] can be solved. 

Subsequently strains, stresses, µ ,2Q  and µ ,2R  terms are calculated and the iteration cycle is 

repeated solving eq. [3.98] at time 2t . The assumed continuity of strain history implies that 

any instantaneous variation of hygrothermal and mechanical loads can be applied with the 
corresponding time interval tending to zero. 
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3.5 Damage modelling 

3.5.1 Damage mechanics 

The damage process corresponds to the localization and accumulation of strain and it is 
irreversible. Indeed defects that occur in materials, and generally in structures, lead to 
cracks and thus to possible phenomena of collapse, but also cause a progressive 
deterioration of the material, measured in terms of reduction of stiffness, strength, stability 
and remaining life.  

Before presenting the damage model used in the F.E. code NEWCON3D, let’s introduce some 
useful definition for the following developments, in particular the measure of the damage, 
initially defined through a scalar variable indicated by the symbol D.  

 

Definition of damage 

As limit state of a damage process, we refer to the state at which it is formed, in general, a 
macro crack.  In the fracture mechanics, the beginning of a macro crack supposes the 
presence of a gap enough large if compared with the microscopic heterogeneities, eg. grains 
and microcracks.  It is assumed that the macro crack grows along the surface interface of 
more grains.  

  

Measurement of damage 

There are different types of indirect measurements of the degree of damage that affects a 
given material: 

- Measurement of the remaining life of the material: it is a method that has led to the 
linear rule of Miner and is used for materials subjected to fatigue phenomena; 

- Measurement of microscopic defects such as intergranular cavities in viscous 
phenomena, surface microcracks in fatigue phenomena and size of the cavities in 
ductile fracture; 

- Measurement of damage through physical quantities and introduction of the concept of 
the effective stress. The influence of damage on the macroscopical properties of the 
material under exam can be measured and used to define the variables contained in the 
damage law. Therefore it is measured the variation of density, of the acoustic emission, 
of the fatigue limit and also the change of mechanical properties. 

The last method has been more developed, especially as regards the measurements of the 
variations of the mechanical properties of the material. Consequently it has been introduced 
the concept of the effective stress  , according to which: 
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“An element volume made of damaged material and subjected to a given stress σ , has the 

same strain of the same element volume made of undamaged material and subjected to an 
effective stress σɶ .”   

This definition, can be expressed in the following form: 

- for the undamaged material: ( )fε σ= ; 

- for the damaged material or the equivalent undamaged: ( )fε σ= ɶ . 

If the damage D represents the reduction of the resistant area due to the onset and 
propagation of the micro crack, then it is possible to write: 

 
1

S
DS

σσ σ= =
−

ɶ
ɶ

                                                                                                                                   [3.105] 

in which S is the resistant area of the undamaged material and Sɶ  is the resistant area of the 

damaged material. 

In the case of ductile fracture, it is possible to gauge the variation of the elastic modulus. In 
fact, by the known relations applied to the damaged material and to the undamaged one: 

 ;eEσ ε= ⋅ɶɶ                    eEσ ε= ⋅                                                                                                          [3.106] 

it is obtained: 

1
1

E E
D

E D E
σσ σ= = ⇒ = −
−

ɶ

ɶ
ɶ

                                                                                       [3.107] 

where E  is the elastic modulus of the undamaged material and Eɶ  is the elastic modulus of 
the damaged material. 

Thanks to the introduction of the concept of the effective stress σɶ  it is possible to define the 

value of the critical damage Dc and the value for which there is the break of the material for 
decohesion.  

If in fact uσɶ is the uniaxial ultimate stress for decohesion and uσ  is the classical ultimate 

stress., we have: 

1
u

u u
cD

σσ σ= >
−

ɶ                                                                                                                                    [3.108] 

therefore: 

1 u
c

u

D
σ
σ

= −
ɶ

                                                                                                                                             [3.109] 
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As uσɶ  varies from E/50 to E/20 instead uσ  varies from E/100 to E/250, it is possible to 

deduce that Dc has a value between 0.5 and 0.9. 

 

3.5.2 The thermodynamic applied to the damage theories 

The behaviour of a material as concrete, at constant temperature, can be described through 
the following variables: 

eε = elastic strain tensor, 

D = scalar damage variable, 

pε = plastic strain tensor. 

Every equilibrium state is characterized by the value of the thermodynamic potential ρψ , 

function of the previous variables ( ρ is the density of the material).  

To satisfy the first principle of thermodynamic, it is chosen a quadratic form of (see Ref. 
[43]). Furthermore it is assumed that only the elastic properties of the material are affected 
by damage. 

The potential ρψ  can be described as reported here: 

e pρψ ρψ ρψ= +                                                                                                                                 [3.110] 

in which the terms on the right are respectively functions of the elastic and plastic strain. 

The stress σ  is obtained from above as follows: 

( )e

e

ρψ∂
=

∂
σ

ε
                                                                                                                                          [3.111] 

The permanent strains, as damage, are irreversible processes that lead to a decrease of 
mechanical energy with partial conversion into heat. 

To satisfy the Clausius-Duhem inequality, in analytic terms: 

: 0φ ρψ= − ≥σ εɺ ɺ ɺ                                                                                                                                  [3.112] 

It is useful, in the following, to distinguish the portion of dissipated energy due to damage by 
the other portion related to the plastic strains: 

: ; :d e e p p pφ ρψ φ ρψ= − = −σ ε σ εɺ ɺɺ ɺɺ ɺ                                                                                 [3.113] 

 



CHAPTER 3 – The mathematical model 

Pag. 64 

 

A sufficient condition because the inequality is respected (see eq. [3.112]) is that 

contemporaneously 0dφ ≥ɺ  and 0pφ ≥ɺ . 

For the elastic potential, it is assumed the following expression: 

( )1
: :

2
e e eDρφ = Λ ε εɺ                                                                                                                           [3.114] 

in which ( )DΛ  can be interpreted as the secant stiffness matrix of the material and is 

function of the damage D . 

Considering the first in [3.113], it is obtained: 

( )( )1
: : 0

2
e e

d

D
D

D
φ

 ∂
= − ≥ 

 ∂ 

Λ
ε εɺ ɺ                                                                                                    [3.115] 

Since the stiffness of the material, or the elastic modulus, decreases with the increasing of 
damage: 

( )( )
0

D

D

∂
<

∂
Λ

                                                                                                                                         [3.116] 

follows that, a sufficient condition because the equation is satisfied is that 0D ≥ɺ  (or that the 

damage of the material never decreases). In fact, as already stated, since the changes 
induced by the damage on the material structure are irreversible, during a damage process 
appears an increase of entropy. 

The function of damage that satisfies this property describes a surface of equation 

( )0, , 0f K =ε Λ , where 0K  is the initial threshold of damage. The uniqueness of this 

function for a given state of stress, is guaranteed if f is chosen as function of strains and not 

as function of stresses (in fact, because of the relation, two strain tensors may correspond to 
the same stress value).  

To respect the loading conditions, the evolution of damage is defined as follows: 

( ) ( )0 0 0 0D if f or f and f= < = <ɺɺ                                                               [3.117] 

( ) 0 0D if f and f= = =ε ɺɺ F                                                                                             [3.118] 

in which ( )εF  is a positive function of strains, experimentally determined.  
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3.5.3 Damage models 

Introduction 

In the past mathematical models based on elasticity, plasticity and viscoelasticity 
formulations were used to describe the nonlinearity in concrete. In the 1970s models based 
on nonlinear fracture and continuum damage mechanics were developed to simulate the 
crack propagation and the progressive degradation of stiffness in concrete.  

In the 1970’s models, concrete is not considered as an heterogeneous material but as an 
homogenised one; therefore they are not so capable to characterize the entire fracture 
process from the initialization, propagation to the formation of macro cracks in concrete 
and they don’t allow a comprehensive understanding of the fracture process, as they don’t 
consider the randomness of the properties in the concrete at the mesoscale. 

Therefore in recent years, different models for the simulation of the fracture process in 
concrete at the mesoscale were developed (see Ref. [44]): Bažant et al. [45] presented a 
random particle model for fracture of brittle aggregate composite material, in which the 
matrix material is described by a softening stress-strain relation corresponding to a 
prescribed microscopic interparticle fracture energy; in the lattice model of Schlangen and 
Garboczi [46] and Schlangen and van Mier [47] the tensile strengths are given to the lattice 
elements to simulate the fracture process in heterogeneous such as concrete (an extension 
to 3D was developed by Lilliu and van Mier [48]); Eckardt et al. [49] described the fracture 
behaviour of the matrix and the aggregates trough the smeared crack concept.   

The continuum models assume that the local damage in the material can be averaged and 
represented in the form of damage variables, which are related to the tangential stiffness 
tensor of the material. Krajcinonovic [50] as well as Mazars and Pijaudier-Cabot [51] used a 
scalar damage variable to model isotropic damage based on an experimental stress-strain 
curve of concrete under uniaxial tension.  

In this work the non-local scalar damage model of Mazars is used in order to model the 
mechanical behaviour of concrete at the meso level due to its simplicity; in fact this material 
model is only applied to the cement paste and the ITZ whereas the aggregates are assumed 
to behave linearly elastic. In fact, for normal weight concrete the aggregates generally, as 
already said, have an higher stiffness and strength as the matrix. Therewith cracks arise in 
the mortar matrix and in the interface zone and propagate into the matrix around the 
aggregates.     

 

Scalar isotropic damage model 

In this model, the material is assumed elastic, homogeneous and isotropic. This approach 
has been extensively used in the literature and the cause is more for reasons of simplicity 
than the attempt to describe accurately the behaviour of concrete. In fact damage is 
developed in the body always according to a more precise direction, e.g. perpendicular to 
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the load in the case of uniaxial tension and parallel to the load in the case of uniaxial 
compression.  

 It has proved that the scalar damage model of Mazars (see Refs. [51], [52]-[54]) describes 
accurately the response of non-reinforced concrete beams, carved and subjected to bending; 
as well as the fracture of specimens studied in the laboratory. The constitutive laws, which 
derive from this model, are very simple, especially in view of the implementation of the 
algorithms for nonlinear codes. 

 

Mazars’ damage law 

The scalar isotropic damage model of Mazars ([51], [52]-[54]) allows to model the strain-
softening behaviour of concrete with the damage mechanics. 

The fundamental concept on which is founded this theory is that of the effective stress 

σɶ (eq. [3.105]). According to this definition the stress-strain law assumes the following 

form: 

 ( )0 1 : eD= −σ Λ ε                                                                                                                                 [3.119] 

in which σ  and eε are, respectively, the stress and strain tensors, D  is the damage 

parameter and 0Λ  is the initial stiffness matrix of the material. It is supposed that concrete 

remains isotropic also when it damages. For this reason 0Λ  depends by the Young’s 

Modulus E and by the Poisson’s ration ν  of the undamaged material.  According to eq. 

[3.119], at the unloading phase do not correspond permanent strains.  

The damage parameter D  varies from 0 (undamaged material) to 1 (totally damaged 
material). It is also assumed that the extensional strains are responsible for the propagation 
of the crack.  

The response of the material is related to the application of loading functions which satisfy 
the principle of maximum De Saint-Venant’s strain: 

 ( ) ( )0, ,f K K Dε= −ε Λ ɶ                                                                                                                      [3.120] 

where εɶ  is the equivalent strain and is defined as follows: 

( )2
;

2i

x x
xε

+ +

 +
= = 

 
∑ εɶ                                                                            [3.121] 

and iε  are the principal strains. 

The evolution of damage D is obtained by the following expressions, considering eqs. 
[3.117] and [3.118], and assuming: 
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( )
0

M
F d

ε
ε ε= ∫ ɶ ɶF                                                                                                                                      [3.122] 

where Mε  is the maximum value reached by εɶ . 

If ( ) 0f ε =ɶ  and ( ) 0f ε =ɺ ɶ  then: 

( )D F ε= ɶ           (loading phase)                                                                                                        [3.123] 

instead, if ( ) 0f ε <ɶ  or ( ) 0f ε =ɶ  and ( ) 0f ε <ɺ ɶ  then: 

0D =ɺ                  (unloading phase)                                                                                                   [3.124] 

The eq. [3.122] defines the damage surface.  

( )K D  is an hardening/softening parameter, initially equal to 0K , that assumes the higher 

value reached by the equivalent strain εɶ during the loading history of the material, in the 

point in question. 

By the results of experimental tests, it is known that the damage mechanism is different for 
a test of uniaxial tension (micro cracks are opened by the components of transversal 
dilation, directly connected to the load) by a compression one (micro cracks are opened by 
the effect of transversal dilation, related to the Poisson’s ratio). This observation suggests 

the need of a decomposition of damage in two parts: the damage due to tension tD  and the 

damage due to compression cD . So the total damage is a weighted sum of the previous 

components of damage. Therefore the evolution law ( )f εɶ , in the eqs. [3.123] and [3.124], is 

described through the two damage parameters tD  and cD (see Ref. [53]): 

( ) ( ), ,t t c c t t c cD D D D F and D Fα α ε ε= + = =ɶ ɶ                                                        [3.125] 

( ) ( )
( ) ( )0

0

1
1 ,

exp
i i

i
i

A K A
F i t c

B K
ε

ε ε
−

= − − =
 − 

ɶ
ɶ ɶ

                                                [3.126] 

the weighting coefficients tα  and cα are assigned, so that: 

in pure tension:            1, 0,t c tand D Dα α= = =  

in pure compression:  0, 1,t c cand D Dα α= = =  

The weights tα  and cα are defined as dimensionless functions of the principal values of the 

strains.  

Let’s introduce the notation [53]:   
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i ci tiε ε ε= +                                                                                                                                          [3.127] 

in which tiε is the positive dilation (of tension) due to positive stresses (of tension) and ciε is 

a positive strain due to negative stresses or (of compression, Poisson’s effect). 

The coefficients tα  and cα are defined by the following expressions: 
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ɶ
                                                                                                                      [3.129] 

If all the stress components have the same sign, we obtain 1, 0t cα α= =  or 

1, 0c tα α= = . 

 

Modified Mazars’ damage law 

In the previous paragraph the coefficients tα  and cα , defined by eqs. [3.128] and [3.129], 

were introduced. It was proposed a modification to take into account the following 
circumstance (see Ref. [55]):  

- the coefficients tα  and cα  are less than one if the stress is tensile combined to 

compression, i.e. shear stress. 

Consequently the modification is the following: 
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The main difference compared to the previous expressions of  tα  and cα  is that the sum of 

the two coefficients is no more equal to one if the exponent β  is different from the unity. To 

justify the introduction of this new parameter, it is consider a state of pure shear stress: 

0

0

0

τ τ
σ τ τ

τ τ

 
 =  
  

                                                                                                                                      [3.132] 
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The eq. [3.119] gives 
( )

12

1

1

E D
τ ε

ν
−

=
−

 (where 12ε is the shear strain), the eq. [3.121] 

provides 12ε ε=ɶ  . The eqs. [3.130] and [3.131] become: 

1

1t

β

α
ν

 =  + 
                                                                                                                                        [3.133] 

1c

βνα
ν

 =  + 
                                                                                                                                       [3.134] 

For large values of 12ε , we have that 1t cD D≅ ≅  and, by the eqs. [3.117] and [3.118]: 

 
1

1 1
D

β βν
ν ν

   = +   + +   
                                                                                                                  [3.135] 

If β =1, being 1D ≅ , the material cannot tolerate any tension. In fact, due to internal friction 

and the mutual constraint exercised by the aggregates, an additional residual stress 
remains; consequently, the behaviour subjected to a uniform shear stress corresponds more 
to a plastic model than to a damage one. 

The damage influences the shear behaviour of concrete, through the shear retention factor. 

In the same way, the β  exponent, introduced in this formulation, reduces the damage 

influence on the shear stiffness since 0t cα α+ < . The introduction of β  is an artifice; it 

must be related to the fact that it is considered an isotropic damage model and should be 
applied only in this case.  

In Fig. 3.8 it is reported the response of the model to a pure shear stress for different values 
of β. 

So, considering the modified Mazars’ damage model  there are eight model parameters. 
Young’s modulus and Poisson’s ratio are measured from a uniaxial compression test. A 
direct tensile test or three-point bend test can provide the damage parameters in tension 

( 0k , tA , tB ). The parameters ( cA , cB ) are fitted from the response of the material to uniaxial 

compression. As regards the way to perform experimental tests for the determination of β  

we proceed as follows. It would seem logical to use shear tests, but they are not common 
and it is difficult to perform them properly. An alternative way would be pull-out tests. 
Table 3.5 presents the standard intervals for the model parameters in the case of concrete 
(see Refs. [44] and [58]). 
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Fig. 3.8 Response of the model to a pure shear stress for different values of β . 

 

Table 3.5 Standard model parameters. 

Parameters of isotropic damage model 

k0 ≈ 1×10-4 

0.7 ≤ At ≤ 1.2 

1×10-4 ≤ Bt ≤ 5×10-4 

1.0 ≤ Ac ≤ 1.5 

1×103 ≤ Bc ≤ 2×103 

1.0 ≤ β ≤ 1.05 

 

Non-local damage model  

For the numerical analysis of the collapse of heterogeneous materials, as concrete, it is 
developed the theory of non-local damage. An important feature of the non-local 
formulation is that the solution of the elastic equilibrium problem doesn’t change with the 
variation of the adopted discretization.  

The non-local model is based on the computation of a strain variable, defined as: 

( ) ( ) ( ) ( )1

r V

dv
V

ε ε α= −∫x s s x
x
ɶ                                                                                                      [3.136] 

in which: 
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- εɶ  is the equivalent strain defined by the eq. [3.121]; 

- x  is the coordinate of the current Gauss point; 

- s  is the coordinate of the generic Gauss point; 

- α  is a weight function, so defined: 

      ( )
2

exp
k

l
α

 −
− =  

 

s x
s x                                                                                                    [3.137] 

- rV  is the characteristic volume, defined by the integral: 

      ( )r
V

V dvα= −∫ s x                                                                                                                    [3.138] 

The parameter k , in two-dimensional problems, assumes a value equal to 2 and l  is the 

characteristic length. By experimental tests (see Ref. [56]) 2.8 al d= ⋅ in which ad  is the 

maximum size of the aggregate in concrete. 

 rV  has the same meaning of the representative volume introduced in the statistical theory 

of heterogeneous materials of Kroner. An important feature of this approach is that only one 
variable is computed in a non-local way, the one that controls the strain-softening in the 
σ ε−  curve; all the other variables are computed in a local manner.  

In Ref. [57] is reported the case of samples subjected to pure tension, studied numerically 
and experimentally. By Fig. 3.9 and Fig. 3.10 it is possible to observe: 

- the  diagram is almost equal for the 2 discretization in the non-local continuum case, 
instead the strain-softening part undergoes an evident change in the local continuum 
one; 

- the two types of calculations give the same result only for not refined discretization, 
such as those consisting of few elements.   
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-  

Fig. 3.9 Specimen subjected to pure tension and two different finite element meshes ((b) mesh of  21 
elements and (c) mesh of 84 elements). 

 

Fig. 3.10 Load-displacement curves obtained with meshes shown in Fig. 3.9: (a) local continuum, (b) 
non-local continuum. 
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4 CONCRETE AT HIGH TEMPERATURE                      

4.1 Introduction 

Although concrete is a well-understood construction material, in the last years the attention 
has focused on the performance of concrete in the fire safety assessment of the buildings 
and tunnels. In fact the exposure of concrete to high temperatures can lead to a decline of 
load bearing capacity and a significantly impair the structural integrity, especially during a 
rapid and/or prolonged increase of ambient temperature, like during a fire or a nuclear 
accident. Fire represents possibly one of the most severe conditions encountered during the 
lifetime of a structure and, when all other measures for contained a fire have failed, 
structural integrity represents the last defence (see Ref. [1]). 

Thus the provision of appropriate safety measures is one of the most important 
requirements in modern structural design and for that it is necessary that the designer is 
provided with all the required information on behaviour of concrete exposed to elevated 
temperatures.  

Although concrete compares well to other construction materials such in fire performance 
when comparing combustion and thermal diffusivity; the exposure to elevated 
temperatures results in degradation of its mechanical properties and reduction of cross-
section area through spalling. Comparing the experiences of spalling obtained from 
buildings and from tunnels, the key differences are the heating rate and moisture which are 
greater in tunnels. Added to these there are normally higher strengths and lower 
permeabilities in tunnel concrete linings than in buildings. These, and other factors, in 
combination renders tunnel concrete more susceptible to damage by spalling. 

Spalling ranges from superficial damage of surface layers to explosive events which lead to 
an extensive removal of concrete and exposure of the core of the section and the reinforcing 
steel or tendons. As regards the explosive spalling, it has featured prominently in the news 
recently after the damage caused by the fire in the Danish Great Belt tunnel in 1994 and the 
fire in the Channel Tunnel in 1996. As regards the Danish fire up to 75% of the concrete 
liner thickness was lost after multiple spalling (see Fig. 4.1). Multiple spalling was less 
evident in the Channel tunnel fire despite higher estimated temperatures (1000°C in 10 
hours) (see Refs. [2], [3] and [4]). 

So in this chapter the first section will regard the influence of high ranges of temperatures 
on the concrete constituents at the meso level (i.e. cement paste and aggregates) and their 
properties, the second one will treat a description of the different types of spalling and its 
mechanisms and finally, in the third one, will be presented the modifications introduced in 
the numerical F.E. code NEWCON3D to study concrete behaviour under high temperature 
conditions.  
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Fig. 4.1 The Great tunnel severe spalling and steel damage after the 1994 fire. 

 

4.2 Temperature effects on concrete mesostructure 

As already explained at the mesoscale level concrete is a complex composite material made 
of aggregates bounded together by a softer matrix of hardened cement paste surrounding 
the aggregates in a weak interfacial transition zone. 

Therefore concrete properties and concrete response to temperature, depend on the 
properties of the concrete constituents, which can be significantly altered when exposed  to 
high temperatures. Moreover, the compatibility between the cement paste and the different 
types of aggregates at ambient temperatures is distorted when exposed to high 
temperatures (see Refs. [5]-[8]). 

Generally it can be said that concrete has good properties with respect to fire resistance; 
however the high temperature gradients and the hygral conditions introduced during fire 
conditions, can result in concrete spalling , discussed in detail in Section 4.3. Consequently, 
the reduction of cross-section area results in reduced load-carrying capacity and potentially  
structural failure. 

In fact heating concrete induces physical and chemical changes throughout the temperature 
from ambient up to melting thus influencing its thermal, hydral and mechanical properties. 
So, the first part of this section, will treat the changes, during heating, to the microstructure 
of the cement paste and the aggregates; instead the second part will describe the changes in 
their properties, in order to better understand the concrete behaviour under high 
temperature conditions. 
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4.2.1 Cement paste  

Before presenting the cement paste behaviour at high temperatures, it is important to 
distinguish between the “unsealed” cement paste (allowed to dry during heating), such as in 
fire and the “sealed” one (permanently saturated), such as that found in nuclear reactors. In 
this work the first type of cement paste is considered (see [5]-[7]). 

During a fire, in the cement paste, the mobility of water and the moisture diffusivity is 
increased; this accelerates drying and the loss of, firstly, free water, then physically bound 
water and followed by chemically bound water. The most important microstructural 
changes of cement paste during heating, are associated with the loss of physically and 
chemically bound water (this is evident for temperatures up to 800°C, within which the 
cement paste is held together by hydraulic bonds).  Added to these physical effects is the 
chemical process of accelerated hydration. Other components of cement paste experience 
transformations are measured by DTA (differential thermal analysis, which measures endo- 
and exo- thermic reactions), GTA (thermogravimetric analysis that measures processes that 
results in weight loss), dilatation tests etc… 

At about 80°C starts the decomposition of the cement gel (C-S-H) and the loss of chemically 
bound water, and the chemical conversion of the gel continues non linearly until is 70% and 
100% converted (respectively at 500°C and 850°C). By Fig. 4.2 it is possible to notice that 
the rate of conversion reaches a peak at 150°C, decreases until 650°C  and reaches a second 
lower peak at about 720°C (CSH tobermorite gel decomposes into β-C2S (β-dicalcium 
silicate), βCS (β-wollastonite) and water). The loss of chemically bound water causes an 
increase in porosity and a creation of additional pore space, thus contributing to a strength 
reduction. 

 

Fig. 4.2 Degree and rate of conversion of C-S-H in an idealized heated cement paste [5]. 

Simultaneously occurs the dissociation of CA(OH2) into lime CA0 and water H20; as regards 
this dehydration process, the rate of decomposition is zero at about 400°C, increases 
reaching a peak at 500°C  and declines to zero at 600°C.  
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The total porosity of cement paste is an important feature that influences the permeability; 
it increases non-linearly with temperature due to the breakdown of the gel C-S-H as 
dehydration proceeds. Generally the increase in total pore volume after heating from 20 to 
300°C is smaller than expected from weight loss measurements, instead from 300 to 600 °C 
is greater than one would expect from the additional loss of weight. In fact scanning electron 
microscopy indicates that microcracking increases significantly beyond 300°C. 

The differential thermal analysis indicates that the transformations in the cement paste are 
largely endothermic (see Fig. 4.3): the first peak at above 100°C is due to the dehydration of 
various phases in hydrated cement and to the loss of evaporable water; the second peak at 
about 500°C is caused by the endothermic dissociation of the crystalline Ca(OH2) and the 
third peak may be attributed to the dissociation of CaCO3 , into free lime CaO and carbon 
dioxide C02.  

 

Fig. 4.3 Differential thermal analysis (DTA) of various cement pastes heated at 10°C/min in nitrogen. 
OPC=ordinary Portland cement; Cemsave=granulated blast furnace slag; SRPC=sulphate resisting 
Portland cement; pfa=pulverished fuel ash [5]. 

The DTA curves are not able to do a distinction between a dissociation and a phase change; 
this is enabled by the thermo gravimetric analysis, responding only to dissociations and 
transformations involving change in weight. In Fig. 4.4 are reported the curves for similar 
mixes as those used for DTA tests. By this figure it is possible to notice that the peaks at 
around 100°C and 500°C are due to the dissociation, since an increase of weight loss is 
detected.  

Heating materials increases molecular thermal agitation and reduces surface energy; this  
effect which becomes significant at temperatures above about 550-600°C, corresponds to a 
strength reduction and leads ultimately to melting. 
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Fig. 4.4 Thermogravimetric analysis (TGA) of various cement pastes heated at 15°C/min [7]. 

At about 800°C, in cement paste, ceramic binding takes place and at this temperature all 
chemically bound water is lost; this will cause an increase in residual strength once cooled. 
Ultimately, cement paste starts to melt at temperatures higher than 1100°C depending upon 
its chemical composition (generally Portland cement paste starts to melt at 1350°C).  

 

4.2.2 Aggregates 

Aggregates, as mentioned in Chapter 2, occupy a large volume of concrete, around 60-80%; 
this is one of the reasons because they play a crucial role in concrete behaviour exposed to 
high temperatures. Another reason is that variations in their properties can have a 
significant effect on the performance of concrete al elevated temperature (e.g. thermal 
strain and thermal conductivity of concrete are governed by those of the aggregates, as 
anticipated in Chapter 2).  

Moreover there are many types of aggregates that can be used in concrete mix design and, 
depending on the type, physical-chemical changes occur in the aggregates. But aggregates 
differ greatly in their response to heat. Therefore the choice of the aggregate is probably the 
most important factor in determining the thermal properties and thermal stability of the 
concrete in fire [5].  

For example, as said by Bailey and Khoury in [6], the thermal stability of different 
aggregates increases in the following order: flint, Thames river gravel, limestone, siliceous, 
basalt, granite and gabro. 

Thermal stability of aggregates is measured by thermogravimetric analysis (TGA), 
differential thermal analysis (DTA) and dilatometry. Aggregates that are thermally stable up 
to a given temperature show no weight loss, no thermic reactions and negligible residual 
strain. 
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As regards the DTA analysis, since thermally induced transformations in the aggregate 
(dissociation or phase change) influence the concrete behaviour on heating, a number of 
aggregates and sands were tested (see Fig. 4.5 and [7]). 

 

Fig. 4.5 DTA curves of various aggregates and sands, heated at 10°C/min in nitrogen [5]. 

In Fig. 4.5 there are essentially two endothermic peaks of interest; the first occurs at about 
600°C both for the siliceous and the calcareous quartz sands instead the second one occurs 
at above 800°C and is the predominant feature of the limestone aggregate and the 
calcareous quartz sand. 

As regards the first peak, it is due to the reversible endothermic crystalline α-β 
transformation of quartz (SIO2) which occurs at 575°C, accompanied by a sudden volumetric 
expansion of about 5.7%; instead the second peak occurs at when the calcium carbonate 
(CaCO3) starts to decompose into free lime (CaO) and carbon dioxide (CO2). This process 
expels a considerable amount of CO2 and reaches a peak at about 800°C.  

By Fig. 4.5 it is also possible to notice that basalt aggregate, which contains smaller 
proportions of silica and lime, exhibits a relative thermal stability on heating . 

The results obtained by the TGA analyses on the aggregates confirm the peaks found with 
DTA analysis. Indeed in Fig. 4.6 there is no weight loss in correspondence of the first peak; a 
large increase in weight loss occurs at about 700°C where the second peak appeared. This 
indicates that no dissociation takes place within the temperature range up to at least 800°C.  

Finally, as seen previously for the cement paste, also the aggregates start to melt when is 
reached a certain temperature; depending on the type of the aggregate, the melting 
temperatures vary greatly (e.g. basalt 1060°C, quartzite 1700°C, pure CaO 2570°C, etc…). 
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Fig. 4.6 TGA curves of aggregates heated at rate of 1.5°C/min in high purity nitrogen [7]. 

All the global physico-chemical processes, described separately before for cement paste and 
aggregates, in Portland concrete during heating are summarized in Fig. 4.7. 

 

Fig. 4.7 Simplified global presentation of physico chemical processes in concrete during heating [6]. 
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4.2.3 Properties 

Compressive strength 

This is a really important property because it gives an overall impression of the quality of 
concrete. Most concretes exhibit a strength reduction above 300°C but this is dependent by 
the type of the aggregate (see Fig. 4.8) and by the cement used. However, at about 550-
600°C in the cement paste and concrete occur a marked increase in the basic creep; thus 
indicates that the temperature is critical and above this temperature concrete is not 
structurally useful [6]. 

 

Fig. 4.8 Influence of aggregate type upon the compressive strength of concrete [5]. 

 

Elastic Modulus 

The behaviour of the Young modulus during heating depends largely by the load condition 
[6]; indeed if we compare the results obtained for two heated concretes, with and without 
load applied, it is possible to notice that compressive load has a more important effect on 
the decline of the elastic modulus with increase in temperature (see Fig. 4.9).  

The elastic modulus is also influenced by the moisture condition; considering an unsealed 
condition, the elastic modulus decreases for temperatures up to 80°C (minimum) and this is 
due to the dilation of water which reduces physical forces in the C-S-H phases. Then, for 
higher temperatures, water is driven off and the elastic modulus increases reaching a 
maximum at about 100-200°C.  Compressive strength presents a similar trend. 

Another influence is given by the aggregate used in concrete mix design; depending on the 
type there is a wide variation in the percentage reduction of the elastic modulus  up to 80°C. 
Moreover due to thermal incompatibility with the cement paste, concretes which contain 
aggregates of low thermal expansion experience a greater reduction of elastic modulus than 
those with a higher thermal expansion. 
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Fig. 4.9 Relative reduction of residual strength and E value for heated concrete C70 with and without 
load [5].  

As regards the cement paste Young modulus, Harmathy and Berndt observed a decrease of 
elastic modulus and the curve obtained is reported in Fig. 4.10; in this figure it is possible to 
notice that this decline is more important after 400°C. In this paper is also investigated the 
change of ultimate strength of cement paste at elevate temperatures, that decreases as 
temperature increases. Also the Young modulus of aggregates decreases at elevated 
temperatures [9].  

 

Fig. 4.9 Modulus of elasticity of Portland cement at elevated temperatures [9]. 
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Specific heat 

This thermal property is the amount of heat per unit mass required to increase the 
temperature of the material by 1°C.   

At elevated temperatures, Harmathy [10] estimated the specific heat of idealized Portland 
cement pastes from theoretical considerations coupled with experimental data. It is seen 
that, owing to the absorption of heat in the dehydration reactions (dehydration occurs from 
100°C and 850°C), the effective value of the specific heat may be several times higher than 
the “sensible heat capacity”, which is approximately the value measurable by drop 
calorimetry.  

Harmathy also calculated  the specific heat of four types of aggregate; therefore the specific 
heat versus temperature relation for the anorthosite and the expanded shales yields a 
smooth curve because these aggregates are stable until 1000°C. Instead the specific heat of 
quartz aggregate shows a peak value at 575°C, when a transformation from α-quartz to β-
quartz occurs.    

 

Fig. 4.10 Specific heat of cement pastes on the left and of four aggregates on the right [10]. 

 

Thermal conductivity 

At normal temperatures, as already said in Section 2.2, the thermal conductivity of concrete 
is predominantly affected by the aggregate type and the moisture content. On average, for 
ordinary concrete it ranges between 1.4 and 3.6 W/m°C.  

At elevated temperatures [10], for oven-dried hardened cement paste, the thermal 
conductivity, up to 1000°C, is not subjected to large variations (see Fig. 4.12).     

Since the thermal conductivity of the cement paste doesn’t vary so much, is the conductivity 
of the aggregates that determines the insulating quality of the concrete. Therefore, concrete 
aggregates such as quartzite (which have a relatively high thermal conductivity at normal 
temperature) have a thermal conductivity that decreases as the temperature increases [10]. 
Instead, for basalts and dolerites (which have a low thermal conductivity at normal 
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temperature), with increased temperature, Kingery and McQuarrie [11] noted a slight 
increase in thermal conductivity (see Fig. 4.12). 

 

Fig. 4.11 Thermal conductivity of cement pastes on the left and of aggregates on the right [10]. 

 

Thermal diffusivity 

This property represents the rate at which temperature changes within a mass can take 
place. It determines the temperature gradient during transient heating problem and can be 
calculated by this expression: 

D k cρ=                                                                                                                                                      [4.1] 

where k  is the thermal conductivity, ρ  is the density and c  is the specific heat. 

It shows approximately the same trend at elevated temperatures as thermal conductivity.  

 

Thermal expansion 

It is also called thermal strain or thermal dilation and represents the volume change of a 
material due to temperature change. This is expressed as change in length per degree of 
temperature change. Being typically non uniform throughout the structure, because of 
temperature non uniformity, stresses arise. This often leads to cracking and large spalling.  

This type of expansion depends by the composition of the concrete mix (differences 
between the thermal expansions of aggregate and cement paste are important) and by the 
hygral state at the time of the temperature change. 

Considering the results obtained by Khoury [7]; as regards the cement paste, during first 
heating it initially expands (while free water escapes), but above 70-100°C significantly 
shrinks (as physically and chemically bounded water escapes) and reaches a plateau 
between 500 and 800°C or continues to expands depending by the proportion of 
unhydrated cement grains present in the paste (see Fig. 4.13). It is interesting to notice that, 
even if all the three tested pastes show similar trends, the strain magnitude are significantly 
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different. Moreover on first cooling all the pastes have a residual contraction. This 
behaviour is really different in a subsequent heating and cooling [7].   

 

Fig. 4.12 Thermal strains of three cement pastes during first heating at 2°C/min and during 
subsequent cooling [5]. 

As regards the aggregates, they expand non linearly with increase in temperature as 
reported in Fig. 4.14. On first cooling from 650°C the limestone and basalt aggregates have a 
residual strain; this is significantly larger in the limestone one (initial heating of the 
limestone aggregate to that temperature results in significant damage) [7].  Gravel aggregate 
presents a totally different behaviour; it expands and considerably breaks up at about 350°C 
because of thermal incompatibility within the aggregate itself and possibly due to the 
dehydration of any chemically combined moisture present.  The concrete made with this 
aggregate also disintegrates.  

Considering the tests of Cruz and Guillen [12]; they report the results of thermal expansion 
of concrete, as well as its individual constituents: cement paste, mortar and dolomite rock 
aggregate (Dolomite rock). In their tests, temperature ranges between 27 and 871°C. 

As regards the Portland cement paste, it expands until 149°C and then contracts from 149 to 
871°C. In contrast, between 93 and 871ºC, dolomite rocks expand slightly from 27 to 93°C 
and expand almost linearly from 93 to 871°C. All mortars and concretes expand (see Fig. 
4.15). 
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Fig. 4.13 Thermal expansion of aggregates during first heating and during subsequent cooling [5]. 

 

Fig. 4.14 Thermal strains evolutions of: 1, Portland cement paste; 2, Elgin sand mortar; 3, Ottawa 
sand mortar; 4, Elgin sand mortar and gravel concrete; 5, Elgin sand and crushed dolomite concrete; 
6, dolomite rock [12].  

 

Density 

The changes in density are related to the weight changes, thermal dilation and changes in 
porosity. In fact these variations reflect the influences of physico chemical transformations 
such as the dilation up to 80°C, the loss of free and physically bound water at 100°C, the loss 
of chemically bound water for temperatures above 100°C, the dissociation of calcium 
hydroxide  at 400-500°C and the de-carbonation over 600°C. 
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 The role of aggregate is important in terms of thermal dilation and the dissociation of some 
aggregates such as carbonate aggregates. 

 

Fig. 4.15 Density of concretes with four different types of aggregates[5]. 

 

4.3 Spalling 

4.3.1 Introduction 

Spalling (see refs. [4] and [13]) is the separation (violent or not-violent) of pieces of 
concrete from the surface of a structural element when it is exposed to high and rapidly 
rising temperatures, as in fires. It is stochastic in nature; in fact for specimens from the same 
batch, and under identical conditions, some could spall while others do not.  Furthermore, 
contradictions between the results from different authors are quite common. All this is 
partly due to the different experimental conditions and materials tested, the incomplete 
understanding of processes that contribute to spalling and the stochastic nature of spalling. 
Scientists have been trying to describe the different forms of spalling by the basic 
mechanisms which cause them. In some cases one mechanism dominates and in other cases 
another mechanism dominates; because of this complexity, there is no a real demarcation 
between one type and another type of spalling.  

The division of spalling in different types will be presented in the next section.  

The most dangerous type is the explosive one, because it is sudden and capable to result in a 
general collapse of the structure. Explosive spalling in fact is a violent form of spalling 
characterized by the forcible separation of pieces of concrete, accompanied by a typically 
loud explosive noise. It normally occurs within the first 30-40 minutes of exposure to fire 
and it can occur as a single explosion or a series of explosions, each removing a thin layer of  
concrete ranging from 100 mm to 300 mm in length and 15 mm to 20 mm in depth, capable 
of causing physical damage on impact. 
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4.3.2 Types of spalling 

The division of spalling in different types can be classified as follows [3]: 

� aggregate spalling (splitting of aggregates, popping sound); 

� corner spalling (i.e. corners of columns or beams fall off, non-violent); 

� surface spalling (surface layers of concrete fall out or burst out of the structural 
element, violent and cracking sound); 

� explosive spalling (violent burst-out of concrete pieces characterized by sudden release 
of energy, violent and loud bang); 

� sloughing-off spalling (or progressive gradual spalling, where pieces of concrete fall out 
of the structural elements, non-violent); 

� post-cooling spalling (occurs after the fire is over, after cooling down or maybe even 
during extinguish, non-violent). 

A summary of the characteristics of these different forms of spalling is reported in Table 4.1. 

Table 4.1 Characteristics of the different forms of spalling (see Ref. [3]); A = aggregate thermal 
expansion, AT = aggregate type, D= aggregate thermal diffusivity, Fs= shear strength of concrete, Ft= 
tensile strength of concrete, G = age of concrete, H = heating rate, L = loading/restraint, O = heating 
profile, P = permeability, Q= section shape, R = reinforcement, S = aggregate size, T= max 
temperature, W= moisture content, W1 = moisture absorption and Z= section size. 

 

Spalling 

Probabilistic 

Time of 

Occurence 

 

Nature 

 

Sound 

 

Influence 

Main 

Influences 

Aggregate 7-30 mins Splitting Popping Superficial H, A, S, D, W 

Corner 30-90 mins Non-violent None Can be 
serious 

T, A Ft, R 

Surface 7-30 mins Violent Cracking Can be 
serious 

H, W, P, Ft 

Explosive 7-30 mins Violent Loud 
bang 

Serious H, A, S, Fs, G, L, O, P, 
Q, R, S, W, Z 

Sloughing-off when concrete 
weakens 

Non-violent None Can be 
serious 

T, Fs, Ft, L, Q, R  

Post-cooling During & after 
cooling upon 
absorption of 

moisture 

Non-violent None Can be 
serious 

T, Fs, Ft, L, Q, R, W1, 
AT  
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As reported in Table 4.1 many factors influence explosive spalling in concrete, such as 
heating rate and heating profile, temperature level reached during the explosion, section 
size and shape, moisture content, water curing, pore pressure, permeability of the material 
and mean pore radius, concrete age, concrete strength, mix and quality, type and size of 
aggregates etc… Their influence is extensively described in Ref. [14]. 

 

4.3.3 Significance of spalling in fire 

As mentioned in the introduction and in the previous section; the extent, severity and 
nature of occurrence of spalling varies. In fact spalling may be insignificant in amount and 
consequence, such as when superficial damage occurs, or alternatively it can have a serious 
effect on the fire resistance of the structural element because of extensive removal of 
concrete which exposes the core of the section and the reinforcing steel or tendons. The 
consequences of spalling are very much affected by the applications for which concrete is 
being used. 

Spalling may result in the loss of load-bearing capacity, through loss of section or loss of 
protection to steel reinforcement, or separating function of a concrete member and these 
are discussed below (see Refs. [3] and [4]): 

Loss of section 

In some cases, the occurrence of spalling may reduce the cross-sectional area of the concrete 
to such an extent that is no longer able to sustain the compressive stresses imposed upon it. 
The scope for such failure has been increased by current trends towards rationalisation in 
design and the increasing likelihood for larger design stresses. 

Loss of protection to steel reinforcement 

A second mechanism for load-bearing failure is that spalling of the concrete, which provides 
protective cover to the steel reinforcement, may result in the reinforcement reaching 
excessive temperatures. As the yield strength of steel is considerably reduced at elevate 
temperatures, spalling may hasten the steel towards yield, thus precipitating flexural failure 
of the concrete member. With tension in the extreme fibres governing the design of most 
concrete elements of structure, this form of spalling failure is quite commonly found in 
practice. The likelihood of flexural failure is increased by the fact that spalling and 
crumbling of concrete from around the reinforcement may cause loss of bond, and load-
bearing failure could result from the loss of composite action. If the reinforcement becomes 
exposed as a result of spalling, it is heated quickly and the resistance of the section 
decreases at a rapid rate. 

Separating function 

Spalling can also affect the separating function of elements by causing holes to appear in 
slabs or panels thus enabling the fire to spread into other compartments. Thin slabs are 
particularly susceptible to such “integrity” failure.  
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4.3.4 Spalling Mechanism 

As regards explosive spalling, there are two main mechanisms driving spalling: pore 
pressure spalling and thermal stress spalling. They act singly or in combination depending 
upon the section size, the material, and the moisture content (see Refs. [3], [4] and [13]).  

Pore pressure spalling (as proposed by [15], [16] and [17]): has been predicted using a 
“moisture clog model” [15], “vapour drag forces model” [16] or an “idealized spherical pore 
model” [17]. The main factors which influence pore pressure spalling are the permeability of 
the concrete, the initial water saturation level, and the rate of heating. Pore pressure 
spalling may apply by itself only for small unloaded specimens. For larger specimens, the 
pore pressure will have to be considered together with both the thermal and applied load 
stresses before the likelihood of explosive spalling can be assessed. 

Thermal stress spalling (as proposed by [18] and [19]): at sufficiently high heating rates, 
ceramics and dry concrete can experience explosive spalling. This is attributed to excessive 
thermal stresses generated by rapid heating and demonstrates that factors other than pore 
pressures may contribute to explosive spalling. Heating concrete generates temperature 
gradients that induce compressive stresses close to the heated surface (due to restrained 
thermal expansion) and tensile stresses in the cooler interior regions. Surface compression 
may be augmented by load or prestress, which are super-imposed upon the thermal 
stresses. However, very few concrete structures are loaded to levels where the necessary 
failure stress state is reached. This makes thermal stress spalling - by itself - a relatively rare 
(but not impossible) occurrence. 

Combined thermal stress and pore pressures (as proposed by [20]): explosive spalling 
generally occurs under the combined action of pore pressure, compression in the exposed 
surface region, and internal cracking. Cracks develop parallel to the surface when the sum of 
the stresses exceeds the tensile strength of the material. This is accompanied by a sudden 
release of energy and a violent failure of the heated surface region. 

The most effective methods to reduce the risk of explosive spalling include (see Ref. [21]): 
(a) the use of a thermal barrier, (b) employing polypropylene fibres, (c) employing an air-
entraining agent, (d) using thicker sections, (e) use of low thermal expansion aggregate.  

In addition, appropriate use of reinforcement could limit the extent of spalling, though not 
prevent the phenomenon itself. The risk of spalling is also reduced if the moisture content is 
low and the permeability of the concrete is high. 
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4.4 NEWCON3D modifications for high temperatures 

The following changes to the program NEWCON3D are activated placing the parameter 
NHT=1 in the data file; for NHT=0 they are ignored. 

4.4.1 Concrete Permeability 

For temperatures exceeding 100°C , it was found, from experimental data, that permeability 
increases about two orders of magnitude.  

This, according to Bažant (see Ref. [8]), can be explained as follows: due to the flattening of 
the pores surfaces to reduce the surface energy, the width of the necks, which governs the 
flow, increases of a factor equal to 1000 when T exceeds 100°C, allowing water to pass 
through the necks in a liquid or vapour state; at the same time, being negligible the volume 
of the necks in the total porosity, there is no a significant effect on the distribution of pores 
size at high temperature due to the considerable relative increase of the width of the necks. 

In this way, while at room temperature the width of the neck must be related to the capillar 
porosity  , at elevated temperatures this relation decays.  

The fact that the necks should be of sub capillary sizes it is also suggested by the results of 
[22] that at room temperature the permeability decreases of about 20 times for a decrease 
of   from 0.9 to 0.6. Indeed, the only reasonable explanation seems to be that the mechanism 
of moisture transport through the necks is the migration of water molecules in the layers of 
absorbed water which become thinner when the humidity decreases and therefore retain 
more strongly the water molecules in movement. In the light of this mechanism, it was 
previously proposed that below 100°C the permeability dependence from temperature was 
not governed by the viscosity of liquid water or steam but by the activation energy  , for the 
migration of water molecules adsorbed along the walls of the necks. 

As a result of this scheme, the permeability a  can be introduced in the following form: 

( ) ( )0 1 295 :for T C a a f h f T≤ ° =                                                                                       [4.2] 

 
( )
( )

'
0 3

'
0 0 2

95 :

: 95

for T C a a f T

with a a f C

> ° =

= °
                                                                                        [4.3] 

in which 0a  is the reference permeability at 25°C. 

A temperature equal to 95°C it is chosen as the beginning of the transition. The function 

( )1f h  reflects the moisture transfer in the layers of adsorbed water in the necks, and in 

agreement with [23]: 

( )1 4

1
, 1

1
1
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αα −= + ≤
 −+  − 

                                                                                              [4.4] 
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( )1 1 1f h for h= >                                                                                                                               [4.5] 

where 0.75h ≈  is the humidity transition and 1 20α ≈ at 25°C. 

If  95T C= ° , it is assumed that the necks are sufficiently large to allow the passage of water, 

both liquid and vapour. Therefore α is equal to 1 at 95°C, instead can be taken a linear 

interpolation of α  if  25 95C T C° ≤ ≤ ° . In the case of an extent under 25°C, an appropriate 

relation is ( )1 1 19 95 70Tα = + − . 

The permeability dependence by temperature if 95T C≤ ° is given by an Arrhenius type 

equation: 

2
0

1 1
exp

a a

Q
f

R T T

  
= −  

   
                                                                                                                         [4.6] 

in which aT is the absolute temperature, Q  is the activation energy  for the migration along 

the multimolecular layers of adsorbed water into the necks and R  is the gas constant. 

According to [23], 2700Q R K≈ . 

The function ( )3f T  must lead the leap of two orders of magnitude, between 95 °C and 

105°C.   

Let’s imagine that this jump corresponds to the transition from the moisture transfer 
mechanism governed by the activation energy of adsorption to the mechanism governed by 
the viscosity of a water mixture of liquid and steam. If the transition is complete (around 

105°C), the function ( )3f T  should follow the temperature dependence of the water 

viscosity and steam; above 105°C both vary nothing much and then, above 105°C, ( )3f T  

should be almost constant.  

All these properties can be described as: 

( ) ( )3

95
exp , 95

0.881 0.214 95

T
f T for T C

T

 −= > °  + − 
                                                             [4.7] 

where T  is in Celsius . 

Aside from the temperature and pressure effects in the pores, permeability is drastically 
influenced also by the hydration degree. In agreement with the available data it seems that 
this dependence can be well described as: 

2

0 110 ea ta a=                                                                                                                                              [4.8] 
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in which et  is the period of equivalent hydration, defined in eq. [3.41]. The values of 1a = 10-

13 m/s, 2a  = 40 days agree with the data by Powers and Brownyard [24]. For an hardened 

cement paste, .the values of 0a varies from 10-10m/s to 10-14m/s  (see Refs. [25] and [26]). 

The eqs. [4.4] and [4.5] indicate that permeability is continuous passing the saturation point  

( )sp T ; however for some types of concrete, as lean concrete used for dams, the 

permeability in terms of hydraulic overpressure at low temperatures can increase 
significantly in passing the saturation point [25]. 

 

Numerical Implementation 

The eqs. [4.2] - [4.8] are introduced in the subroutine SETD2 to consider the concrete 
permeability variation of two orders of magnitude around 100°C.  

In Box. 8 are reported the modifications in the code NEWCON3D to take into account the 
variation of permeability at T>95°C.  

 
!  
! HIGH TEMPERATURE VERSION ******************************************** 
! ******  a=a0 ∙ f2(95°C) ∙ f3(T)  
! ****** a0= a0 ∙ 10√ a2 /te 

! 
         T25 = 25.d0+273.15d0 
         T95 = 95.d0+273.15d0 
         T0A     =    PROP(MAT,26) + 273.15d0 
! 
         FACHT1 = dEXP((TEMP-95.d0)/(0.881d0+0.214d0*(TEMP-95.D0)))         ! f3(T) 
         FACHT2 = dEXP(2700.D0*(1.D0/T25-1.D0/T95))                                       ! f2(95°C) 
         FACHT =(0.3d0 + dSQRT(13.d0/TE)) * T95/T0A * FACHT1 * FACHT2      ! a0 ∙ f2(95°C) ∙ f3(T)  
! 
         D(1,1)  =    D(1,1) * FACHT 
         D(2,2)  =    D(2,2) * FACHT  
         D(3,3)  =    D(3,3) * FACHT 
! 

Box. 8 Modification of concrete permeability for T>95°C, in the subroutine SETD. 

 

4.4.2 Creep 

As is well known, the temperature effect on creep has two implications. First, at higher 
temperatures the hydration process, which it appears as maturation, grows more rapidly, 
and since for the applied loads, at older ages, the creep is smaller, this effect tends to reduce 
creep.      

                                                             
2 in subroutine SETD the constitutive matrix for the current Gauss point is built. 
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Second, at higher temperatures, the velocity of breaking bonds which is responsible for 
creep and manifests itself in the creep parameters, it is higher. This effect tends to increase 
the creep and usually prevails over the first. 

As already said in the effect of humidity and temperature on the rate of hydration can be 

considered as an alteration of the time scale, through the equivalent hydration period et : 

β β= ∫0 d
t

e T ht t                                                                                                                                              [4.9] 

The expression for Tβ is reported in eq. [3.42] and is valid up to 100°C; above 100°C the 

hydration process does not advance, and above about 200°C the reverse process takes place. 
The dehydration, however, is not very significant below 400°C and in this field can be 
neglected.  

As regards the compliance function for the Bažant-Baweja B3 model (see Section 3.3.4) , to 
consider the temperature influence it can be re-written as: 

( ) ( )1 0 0( , ') , ' , ',T w dJ t t q f C t t C t t tφ= + ⋅ ⋅ +                                                                                    [4.10] 

where Tφ  is function of temperature: 

0
0

1 1
expT

U
R T T

φ φ
  

= −  
   

                                                                                                                     [4.11] 

in which 0φ is a parameter for the given type of concrete [27]  and U is the activation energy 

for creep velocity. 

In fact the variation in viscosity due to temperature effect on creep is connected to the 
model of the theory of reaction velocity since the creep mechanism consists of broken links, 
in the solid microstructure, thermally activated. If below 100°C the dependence expressed 
by eq. [4.11] is obfuscated by the simultaneous effect of temperature on the hydration 
velocity; from 100°C to 400°C this dependence can be directly measured because the 
hydration effects are unimportant. 

 

Numerical Implementation 

It is considered the compliance function proposed in eq. [4.10]. So, the subroutine 
CREEPB3vef3 was changed to consider the increase of the creep rate for higher temperature, 

through the coefficient Tφ  (see Box. 9); so it has been eliminated the updating of the shifted 

time vt  of the strain evaluation, that played the same effect using ϕT , fixing ϕT =1 in the 

function PHITI (see Box. 10).  

                                                             
3 in subroutine CREEPB3vef  the compliance function of model B3 is computed, without drying part. 
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The inverse effect of temperature on creep of concrete that accelerates the aging, shifting 
the equivalent age of load, stops above 100°C s dehydration takes place; this suspension of 

hydration has been taken into account fixing Tβ  above 100°C in the function BETATI(see 

Box. 11).     

 
! HIGH TEMPERATURE VERSION ******************************************** 
! ******  J(t,t’) =q1 +ФT ∙fw ∙  C0(t,t’)  
! 
    FW = 0.5d0 
! 
    if (NHT .eq. 0) then 
         CREEPV  = q1 + C0ve + C0f    
    else 

         if (TEMPER .ge. 100.d0) then 
                 FACHT = EXP (2000.d0 * (1.d0 / 373.d0 - 1.d0 / (TEMPER + 273.15d0)))   
         else 

  FACHT = 1.d0 
         end if 

         CREEPV  = q1 + FACHT*FW*(C0ve+C0f) 
    end if 

! 

Box. 9 Increase of the creep rate for higher temperature in the subroutine CREEPvef, through the 

coefficient Tφ . 

 

 
! HIGH TEMPERATURE VERSION ******************************************** 
! 
    XA    =  X + 273.15D0 
    YA    =  Y + 273.15D0 
!  
    if (NHT .eq. 0) then 
        PHITI =  EXP(5000.D0 * (1.D0 / XA - 1.D0 / YA)) 
    else 

        PHITI = 1.d0 
    end if 

! 

Box. 10 Modification of ϕT expression if  NHT=1 in the function PHITI.  

 

 
! HIGH TEMPERATURE VERSION ******************************************** 
! 
    XA    =  X + 273.15D0 
    YA    =  Y + 273.15D0 
! 
    if ((NHT .EQ. 1) .AND. (Y .GT. 100.D0)) then 

         BETATI = 6.77d0 
    else    

         BETATI =   EXP(2700.D0 * (1.D0 / XA - 1.D0 / YA))   
    end if    

! 

Box. 11 Modification of Tβ expression for T>100°C in the function BETATI. 
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4.4.3 Equation of state for pore water 

For temperatures T < 647.3K (critical point of water) we must distinguish between 
saturated and partially saturated concrete. A concrete saturation state can be referred to the 
value of the relative humidity h or to the degree of saturation, linked to h through the 
capillary pressure (Refs. [28] and [29]): 

w
c

w

RT
p lnh

M
ρ

=                                                                                                                                        [4.12] 

in which wM  is the molecular weight of water and ρw = ρw(p,T)  is the liquid water density. 

The liquid water density may be calculated through a linear relationship of temperature T  

and water pressure w g cp p p= − (see Refs. [31], [32] and [33]): 

( ) ( ) ( )w w0 w 0 w w atm cr cr1 T T p p if T T , T Tρ ρ β α = − − + − ≥ =                       [4.13] 

in which w0ρ  is the liquid water density at reference temperature 0T and atmospheric 

pressure atmp , wβ  is the volumetric thermal expansion coefficient of water and wα  is the 

isothermal compression modulus of water.  

Typical values of wβ  are 0.68×10-4 K-1 if T = 273.15 K and 1.01×10-4 K-1 if T = 420 K; its 

relationship with temperature is non-linear, hence the present authors propose the 
following expression: 

( ) 7 0.00184T
w T 4 10 eβ −= ×                                                                                                                    [4.14] 

The water vapour pressure may be derived from the field of temperatures T and humidities 

h as follows: 

( )sp h p T= ⋅                                                                                                                                               [4.15] 

where ( )sp T  is the saturation pressure of the water vapour, that is function of temperature  

(see Ref. [30]). 

The degree of saturation can be calculated as (see Refs. [34] and [35]): 

( )

b
N b 1

cr 0

cr
c cr

N
N cr 0

cr 0 cr crN 1

T T
T T

p T T
a*S

T TN N
T T T 1 (T z ) T T

z zz

−

+


   −
   −   ≤ 
 = 
  
 −   − + − − >    

  

                                      [4.16]          
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in which Tcr is the critical temperature of water, N an empirical parameter (= 1.2), z a 
parameter governing the transition through the critical temperature of water (0.5K), b a 
constant (= 2.2748) and a* is a parameter, function of temperature: 

 MPa

  MPa, 

3

0 2

3 2

2 0 3 2
cr cr

Q 18.6237 T 373.15K

Q Qa*

T 373.15 T 373.15
with Q 7 Q (Q Q ) 2 3 1 T 373.15K

T 373.15 T 373.15

= ≤


 += 
     − −  = = − − + >   
 − −     

                [4.17] 

Another expression for the degree of saturation was proposed by Bažant: 

1/ m( t )S h=                                                                                                                                           [4.18]        

in which the expression for m(t )  will be reported in eq. [4.20]. 

The expression in eq. [4.16] is a proposal for upgrading the Baroghel-Bouny’s desorption 
isotherms to account for high temperature effects. Using such an approach it is possible to 
skip a problem arising when using Bažant’s model, i.e. under the critical point of water, the 
water content is considered as liquid water (free water plus a small percentage of bound 
water), while when T overcomes the critical point, the residual water has to be considered 
as gas water or a monolayer of physically bound water. Differently, through this upgraded 
approach, it is possible to have a consistent amount of water also above critical 
temperature, representing the gas phase and the chemically bound water in this zone which 
are separately computed. 

 

Partially saturated concrete 

From experimental data it was seen that the following semi-empirical expression is 
acceptable: 

 

1
m( t )1ww

h for h 0.96
c c

 = ≤ 
 

                                                                                            [4.19] 

in which 

2

0

t' t 10
m(t ) 1.04 , t'

22.34 t' t 10

 += − =  + + 
                                                          [4.20] 

with t expressed in °C, t0 = 25°C, c is the (dried) cement mass per m3 of concrete and w1 is 

the saturation water content at 25 �C . 
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Fully saturated concrete 

In saturated states, the thermodynamic properties of water can be taken into account in 

terms of specific volume of water υ, as a function of T and p. In this way, the effect of 
porosity variation and of volumetric elastic expansion can be described by Powers and 
Brownyard formula [36]: 

( )
 

v1 3
w for h 1

ε φ
υ

+
= =                                                                                                     [4.21] 

where 

v
v vd

d dt , p
3K
σε α σ φ= + =                                                                                                       [4.22] 

in which φ is the porosity, εv is the volumetric strain of concrete due to the stress σv, K  is 

the volumetric stiffness modulus, α is the coefficient of linear thermal expansion of concrete 

(typically equal to 12×10-6°C-1), and p is the pore water pressure (i.e. an average pressure of 
the mixture of fluids filling the voids), which takes the form 

g c atmp p p p= − −                                                                                                                                    [4.23] 

where pg is the moist air pressure and patm the atmospheric pressure. 

A more interesting approach is presented in [29], following [37], according to which the 
linear strain associated with the pressure change within the pore fluid can be expressed 

as:
s ss

1 1
pS

3k k
ε ∆

 
= − 

 
                                                                                                                             

[4.24] 

in which ∆p is calculated by subtracting pc calculated from eq. [4.12] prior to the 
temperature change from the pc again calculated from eq. [4.12] after the temperature 
change, ks is the bulk modulus of the porous solid, kss the bulk modulus of the solid skeleton 
of the material and S (there defined as saturation factor) is referable to the degree of 
saturation of eq. [4.16]. 

 

Numerical Implementation 

The overpressure in the pores can be well approximated by the water vapour pressure (see 
eq. [4.15]), considering the water vapour as the dominant cause towards the entire gas 
phase present in the pores. 

Of fundamental importance, in the analysis of stress states of elements subjected to thermal 
shock, will be the use of volume forces equal to the opposite of the overpressures gradient: 
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 pf p= −grad                                                                                                                                         [4.25] 

in which p  is the water vapour pressure, given by eq. [4.15]                                                                                                                       

So, in the subroutine STRLOA (see Box.12) is performed the computation of the water 
vapour pressure, the capillary pressure, the degree of saturation (eq. [4.18]), the moist air 

pressure, the water pressure and the equivalent nodal forces pf . 

Moreover, in the subroutine CALWSC is computed the w c  reported in eq. [4.19]: at every 

step are summed the w c  values computed for every Gauss point multiplied by the 

respective volumes; dividing the summation by the total volume it is possible to obtain the 

mean w c , weighted on the volume of the entire mesh (see Box. 13).   

! HIGH TEMPERATURE VERSION ******************************************** 
! 
    if (NHT .eq. 1) then 
!       
! *** OVERPRESSURES COMPUTATION(in MPa) IN THE NODES OF THE ELEMENTS  
! 
         PATM = 0.101325d0    !atmosferic pressure 
! 
! CPGR  = Constant of perfect gases [cm3*MPa/(K*mol)] 
! MW      = Molecular weight of water [g/mol] 
! RW0 for calculating variable water density with temperature [kg/m3] 
! 
         CPGR = 8.314472d0 
         MW = 18.d0  
         RW0 = 999.84d0 
! 
         do I = 1,NCN 
              K = NOP(NEL,I) 
              TEMPER = GASHT(1,5,K)*CU1 
              UMIDIT = GASHT(1,4,K)*CURILL 
              if (UMIDIT .LT. 0.d0) then 
                   UMIDIT = 0.d0  
              end if 

! 
              TEMPERK = TEMPER + 273.15d0 
!  
! water density 
! 
              BETAW = 4.d0*10.d0**(-7.d0)*EXP(0.0184d0*TEMPERK)  
              RW = RW0*(1.d0 - BETAW*(TEMPERK - 273.15d0)) 
              RW = RW*10.d0**(-3.d0) 
! 
! saturation pressure of the water vapour PSAT 
! 
              PSAT =   (TEMPER/100.d0)**4*PATM 
              SPRESS(I) = UMIDIT * PSAT 
! 
! pressure of the water vapour GASPRS 
! 
              GASPRS(K) = SPRESS(I) 
! 
! capillary pressure [MPa]  
! 
              if (UMIDIT .GT. 0.d0 .AND. UMIDIT .LE. 1.d0) then 
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                   CAPP1(I) = RW*CPGR*TEMPERK/MW*log(UMIDIT) 
              end if 

! 
              if (UMIDIT .GT. 1.d0) then 
                   CAPP1(I) = 0.d0 
              end if 

              if (UMIDIT .EQ. 0.d0) then 
                   CAPP1(I) = -10.d0**10.d0 
              end if 

              CAPP(K) = CAPP1(I) 
! 
! calculation of saturation according to Bazant 
! S = h**1/m(t) 
! T' = ((t + 10)/(t0 +10))**2, t in °C and t0 = 25°C 
! m(t) = 1.04 - T'/(22.34 + T') 
! 
              TPRIMO = ((TEMPER + 10.d0)/35.d0)**2.d0 
              MT = 1.04d0 - TPRIMO/(22.34d0 + TPRIMO) 
              SATURR(I) = UMIDIT**(1.D0/MT) 
              SATUR(K) = SATURR(I) 
! 
! dry air density; air press [MPa] 
! 
              PAIR1(I) = 0.62198d0*PATM/(0.62198d0 + UMIDIT) 
              PAIR(K) = PAIR1(I) 
! 
! moist air pressure PGG 
! water pressure WATP 
! 
              PGG(K) = PAIR(K) + GASPRS(K) 
              WATP(K) = PGG(K) - CAPP(K) 
         end do 

! 
! computation of pressure gradient in the current Gauss point  
! 
         BIT = 0.d0 
         BIT1 = 0.d0 
         BIT2 = 0.d0 
! 
         do I = 1,KSIZE1 
              J = (I+2)/3 
              BIT = BIT + B(1,I)*SPRESS(J) 
              BIT1 = BIT1 + B(2,I)*SPRESS(J) 
              BIT2 = BIT2 + B(3,I)*SPRESS(J) 
         end do 

         GRADXP = BIT 
         GRADYP = BIT1 
         GRADZP = BIT2   
! 
! computation of the nodal forces equivalent to the pressure gradient 
! 
         do I = 1,KSIZE1-3,3 
              PLOAD(I)     = 0.d0 
              PLOAD(I+1) = 0.d0    
              PLOAD(I)     = - P(I)*GRADXP*DAREA 
              PLOAD(I+1) = - P(I)*GRADYP*DAREA 
              PLOAD(I+2) = - P(I)*GRADZP*DAREA 
         end do 

! 
    end if 

Box. 12 Computation of  saturation, moist air pressure, water pressure and equivalent nodal forces in 
the subroutine STRLOA.   
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4.4.4 Dehydration 

The changes of the hydrated water content with temperature and the source term related to 
it: 

( )( ) ( )dehydr dehydr dehydr
T

m m T m
t T t

∆ ∆ ∆∂ ∂ ∂= =
∂ ∂ ∂

ɺ                                                                       [4.26] 

should be measured during laboratory tests.  

For temperatures below the critical point of water, the dehydrated water content increases, 
when temperature increases, approximately following a step function where there is a sharp 
change between 200°C and 500°C. 

For an ordinary concrete, if the hydration process stops around 105°C the dehydrated 
amount of water is small; only around 200°C this amount assumes significant values. 

The expression for ( )dehydrm T∆  is here reported: 

( )dehydr sm f m f T∆ = ⋅ ⋅                                                                                                                         [4.27] 

in which sf  is stechiometric factor, m is ageing degree of concrete (between 0 and 1), c is 

the cement content and ( )f T  is a function of temperature: 

( )

( )
( )( )( )( )

if T 105 C f T 0

1 sin 3.1416 2 1 2exp 0.004 T 105
if T 105 C f T

2

< ° =

 + − − −
 > ° =

         [4.28] 

 

Numerical Implementation 

The eqs. [4.26]-[4.28], presented in the previous section, were implemented in the 
subroutine CALWSC for the computation of the weight loss (see Box. 13). As already 

mentioned in this subroutine the mean w c is also determined, weighted on the volume of 

the entire mesh. 

!  
! HIGH TEMPERATURE VERSION ******************************************** 
! 
    if (TIMA .EQ. TIN) then 
         WFREE0 = 0.d0 
    end if 

! 
    W1SUCI = 135.d0/227.d0                ! w1/c 
    WSUCIE = 0.d0                                ! w/c for element 
    VOL    = 0.d0                                    ! volume 
! 
    DUEPI   = 2.d0*piGreco                        



CHAPTER 4 – Concrete at high temperature 

Pag. 106 

 

    WFREE   = 0.d0                               
    HYDWL   = 0.d0                               ! Δmdehydr 
    WEIGHTL = 0.d0                              ! weight loss 
! 
    FINV = 0.65d0                                  ! m 
    FSTE = 0.39d0                                 ! fs  
    C1 = 450.d0*10.d0**(-9.d0)              ! cement content c, changed from kg/m3 to kg/mm3 
! 
! ***  loop over elements 
! 
    do M = 1,NE 
         NEL = IONARY(M) 
         MAT = IMAT(NEL) 
!         
         do J = 1,MGNG 
              WSUCIG(J) = 0.d0             ! w/c for gauss point 
              HYDW2(J) = 0.d0              ! Δmdehydr for gauss point 
              DEHYDWT2(J) = 0.d0         ! d(Δmdehydr) for gauss point 
         end do 

! 
! *** *** loop over nodes for each element 
! 
         do I = 1,NCN 
              NODO = NOP(NEL,I) 
              TEMPER = GASHT(1,5,NODO) 
              UMIDIT = GASHT(1,4,NODO) 
! 
! calculation of f(t) 
! 
              if (TEMPER .LT. 105.d0) then 
    FHY = 0.d0             ! f(T) 
                   DFHYT = 0.d0         ! df(T)/dT 
              else        

    FHY = (1.d0+sin(piGreco/2.d0*  
     .             (1.d0-2.d0*exp(-0.004d0*(TEMPER-105.d0)))))/2.d0 
                   DFHYT =(piGreco*0.004d0/2.d0)*cos(piGreco/2.d0 
     .             *(1.d0-2.d0*exp(-0.004d0*(TEMPER-105.d0)))) *  
     .             exp(-0.004d0*(TEMPER-105.d0)) 
              end if 

! 
! calculation of Δmdehydr and d( Δmdehyd)  
! 
              HYDW    = FSTE * FINV * C1 * FHY       
              DEHYDWT = FSTE * FINV * C1 * DFHYT 
! 
              HYDW1(I) = HYDW 
              DEHYDWT1(I) = DEHYDWT   
! 
! Hydration energy =0.5 MJ/kg                                           
! 
              HYDREN = 0.5d0*10**6 
! 
! calculation of w/c            
! 
              if (UMIDIT .ge. 1.) then 
    WSUCI(I) = W1SUCI 
              else 

    if (UMIDIT .LT. 0) then 
                         UMIDIT = 0.d0 
    end if 

                   TPRIMO = ((TEMPER + 10.d0)/35.d0) ** 2                   ! T'=[(T+10)/(T0+10)]**2 
                   EMMETI = 1.04d0 - TPRIMO/(22.34d0+TPRIMO)       ! m(T)=1.04-(T'/(22.34+T')) 
                   WSUCI(I) = (W1SUCI * UMIDIT) ** (1.d0 / EMMETI)   ! w/c = (w1/c * h) **(1/m(T)) 
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              end if 

!  
! *** *** *** contribute of each node at the Gauss Point J 
!          
              do J = 1,MGNG  
                   WSUCIG(J) = WSUCIG(J) + WSUCI(I) * PDUM(I,J) 
! 
! -------------- weight loss 
! 
                   HYDW2(J) = HYDW2(J) + HYDW1(I)*PDUM(I,J) 
                   DEHYDWT2(J) = DEHYDWT2(J) + DEHYDWT1(I)*PDUM(I,J) 
              end do 

         end do        
! 
! *** *** end loop over nodes for each element 
! 
         do J = 1,MGNG     
              WSUCIE = WSUCIE + WSUCIG(J) * DARDUM(J)       
              HYDWL = HYDWL + HYDW2(J)*DARDUM(J)   
! 
              if (TIMA.EQ.TIN) then  
! 
! density from g/cm3 (see strloa) to kg/mm3 
! 
     WFREE0 = WFREE0 + DARDUM(J)*SATURR(J)*RW*0.1268d0* 
     .             10.d0**(-9.d0) 
              end if 

!           
              WFREE = WFREE + DAREAG*SATURR(J)*RW*0.1268d0*10.d0**(-9.d0) 
! 
              VOL    = VOL + DARDUM(J) 
         end do 

! 
    end do 

! 
! *** end loop over elements 
! 
! 
! calculation of  weight loss 
! 
      WEIGHTL = HYDWL + (WFREE0 - WFREE) 
! 
! calculation of the mean w/c , weighted on the volume of the entire mesh 
! 
      WSUCIM = WSUCIE / VOL 
! 

Box. 13 Computation of  the mean w c , weighted on the volume of the entire mesh and of the 

weight loss in SUBROUTINE CALWSC.   

 

4.4.5 Damage 

Until now in the F.E. code NEWCON3D the changes of concrete strength properties were 
expressed as functions of the mechanical damage and temperature, hence any information 
about the thermally induced material deterioration was not directly available.  

So, similarly as done by Gerard [38] a parameter call thermo-chemical damage V has been 
introduced (see Ref. [2]) and it accounts for changes of material stiffness due to thermally 
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induced micro-cracks and due to the decrease of concrete strength properties caused by the 
dehydration process. 

The thermo-chemical damage parameter V is defined in terms of the experimentally 
determined evolution of Young’s modulus of mechanically undamaged material E0, 
expressed as function of temperature: 

( )
( )

0

0 a

E T
V 1

E T
= −                                                                                                                                         [4.29] 

in which aT is room temperature. 

Material damage of concrete is considered following the scalar isotropic model by Mazars, 

as said in Section 3.5.2. Its Young’s modulus at this temperature ( )E T , can be obtained 

from the value of the mechanically undamaged material at the same temperature ( )0E T  

and the mechanical damage parameter d  as follows: 

( ) ( )0E 1 d E T= −                                                                                                                                     [4.30] 

A total effect of the mechanical and thermo-chemical damages, to which the material is 
exposed at the same time, is multiplicative, i.e. the total damage parameter D is defined by: 

( )
( )

( )
( )

( )
( ) ( )( )0

0 a 0 0 a

E T E T E T
D 1 1 1 1 d 1 V

E T E T E T
= − = − = − − −                                                            [4.31] 

as not just the sum of the two components of damage. 

Therefore the classical effective stress concept is modified to take into account both the 
mechanical and thermo-chemical damage, so there is a further reduction of resistant section 
area due to thermo-chemical degradation: 

( )( )
S

1 d 1 VS
= =

− −
σ

σ σɶ
ɶ

                                                                                                                      [4.32] 

where S  and Sɶ  are the total and resistant area of the damaged material, σ  is the tensor of 

nominal stress and σɶ  is the tensor of “modified” effective stress. 

Hence the stress-strain relationship is: 

( )( ) ( )1 d 1 V 1 D= − − = −e e
0 0σ Λ ε Λ ε                                                                                            [4.33] 
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5 NUMERICAL ANALYSES  

In this chapter are reported numerous analyses at the macro and the meso scale level, in 
order to highlight the importance of the individual components of concrete in the global 
hygro-thermo mechanical behaviour. 

This part will be so structured:  

- a first part where is investigated the role of the ITZ on the hygro-thermal response of 
concrete at medium temperatures, comparing the results obtained at the meso scale level, 
with and without the presence of the ITZ;  

- a second part where is investigated the visco-damaged behaviour of concrete at the meso 
level, in order to understand the influence of ITZ and aggregates on the overall mechanical 
behaviour at medium temperatures. In fact, these two components are crucial for defining a 
realistic structural response as well as damage scenarios that allows for defining an 
appropriate concrete mixture to withstand spalling. Particularly Model B3 and Mazars’ 
damage law have been chosen and implemented in NEWCON3D when considering creep 
and damage respectively; 

- and finally the study of concrete under high temperature conditions, in order to catch the 
“shape effect”, comparing columns of different section at the macro level, and the crucial 
role of aggregates and the ITZ for spalling predictions at the mesolevel, one of the main 
objectives of this thesis.  

 

5.1 Hygro-thermal response of concrete 

These first tests allow for understanding the contribution of each component at the meso 
level to the whole hygro-thermal response. Therefore in this section will be presented two 
tests, one without  ITZ and the other one with a more refined mesh and the presence of ITZ, 
in order to capture the fundamental role of the aggregates and the transitional zone.  

As regards the analysis in absence of the ITZ, a cubic concrete sample of 100×100×100 mm3 
has been considered, whose discretization is characterized by hexahedral elements; the 
adopted one is reported in Fig. 5.1. By this figure and by Fig. 5.2 it can be noticed that for 
these first studies has been adopted a symmetrical distribution of aggregates of three 
dimensions: 30 mm, 20 mm and 15 mm. This type of discretization has been chosen for sake 
of simplicity, being this one the first model realized at the mesolevel and analysed using 
NEWCON3D. Even if, as will be seen later, it already provides very promising results for the 
hygro-thermal fields and the role of the aggregates (and in the subsequent analysis of the 
ITZ) is evident; in the further analyses this will be modified in order to obtain a more 
realistic model, with a more refined mesh and a random aggregate distribution and 
dimension (see Section 2.1).    

The main material data for both cement paste and aggregates are reported in Table 5.1; as 
can be seen, in this application we chose (taking in consideration the characterization of the 
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different phases reported in Section 2.2) aggregates characterized by a higher Young 
modulus and a very low permeability if compared to the cement paste. Moreover they are 
assumed more thermally conductive and with a lower thermal expansion coefficient. 

 

Fig. 5.1 Adopted discretization for the meso-scale analysis without ITZ. 

 

Fig. 5.2 Half sample and representation of the symmetric distribution of aggregates (different colours 
for different sizes). 

Table 5.1 Material data for the meso-scale analysis without ITZ. 

                             Components 

 

     Properties 

 

Cement Paste 

 

Aggregate 

Elastic Modulus [MPa] 28000 50000 

Poisson’s Ratio 0.20 0.20 

Reference diffusivity along x, y and z [mm2/d] 40 0 

Thermal capacity [N/(mm2K)] 2 2 

Heat conductivity along x, y and z [N/(d K) 110000 170000 

Thermal expansion coefficient of solid 0.000012 0.000004 
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The sample has been supposed to be initially close to a saturated state, with (dry) 
aggregates fully surrounded by cement paste, and submitted to a temperature of 50°C on 
each external face.  

As shown by Fig. 5.3 and Fig. 5.4 the sample appears to be completely heated just after 33’, 
but the major part of the volume is still in a partially saturated state even after 3 days. 

 

Fig. 5.3 Evolution of temperature on the meso-scale concrete sample (without ITZ; half sample). 

 

 

Fig. 5.4 Evolution of relative humidity on the meso-scale concrete sample (without ITZ; half sample). 

Considering three representative nodes (one node inside the aggregate, one on the interface 
between cement paste and aggregate and the last one in the cement paste) of the sample 
and comparing their temperature distribution (see Fig. 5.5), it is possible to notice that the 
temperature increases slightly more rapidly in the aggregates, which have a higher thermal 
conductivity, inducing the interface to desaturate and causing thermo-diffusion of water 
vapour towards the colder zones.  
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Fig. 5.5 Temperature distribution for three representative nodes of the sample. 

On the other side, as regards the relative humidity behaviour, in correspondence of the 
interface there is a first evident increase in humidity, caused by the presence of aggregates 
that constitute a physical obstacle to humidity fluxes, accompanied by a decrease in the 
cement paste, due to thermal gradients.  Then, before reaching equilibrium, the situation is 
reversed and humidity flows tend to become equally distributed between the aggregates 
surface and the cement paste (see Fig. 5.6). 

 

Fig. 5.6 R.H. distribution for three representative nodes of the sample. 

The second numerical example deals with another cubic concrete sample of 100×100×100 
mm3 with a symmetric distribution of aggregates of three different sizes and a more refined 
mesh (928 hexahedral elements and 4625 nodes) and the presence of the Interfacial 
Transition Zone (the adopted discretization for half sample is represented in Fig. 5.7); the 
main material data for cement paste, ITZ and aggregates are reported in Table 5.2.  
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Fig. 5.7 Adopted discretization for the meso-scale analysis with ITZ (half sample). 

 

Table 5.2 Material data for the meso-scale analysis with ITZ. 

                             Components 

 

     Properties 

 

Cement Paste 

 

ITZ 

 

Aggregate 

Elastic Modulus [MPa] 20000 67000 50000 

Poisson’s Ratio 0.20 0.20 0.20 

Reference diffusivity along x, y and z [mm2/d] 40 80 0 

Thermal capacity [N/(mm2K)] 2 2 2 

Heat conductivity along x, y and z [N/(d K) 110000 220000 170000 

Thermal expansion coefficient of solid [1/K] 0.000012 0.000012 0.000004 

 

Again, the sample has been supposed to be initially close to a saturated state and heated on 
the external surfaces up to 50°C, but differently from the previous example the (dry) 
aggregates are fully surrounded by an interfacial transition zone (ITZ). The presence of this 
zone influences the temperature and humidity fields because of its lower density and its 
higher porosity compared with that of the cement paste (see Table 5.2). Whereas the 
temperature evolution is very similar to the previous analysis, the effect of ITZ is 
particularly evident on the sample’s hygral state; differently from what shown before, if we 
consider again three representative nodes in the sample (one node inside the aggregate, one 
in the ITZ and the last one in the cement paste), it is possible to notice that a higher 
diffusivity of the ITZ pushes water flows towards the cement paste, hence increasing its 
saturation level (see Fig. 5.8). For a better comprehension of this phenomenon, a 
comparison of the evolution of relative humidity along a reference line for the same sample, 
with or without ITZ is reported in Fig. 5.9.  
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Fig. 5.8 R.H. distribution for three representative nodes of the sample, with ITZ. 

 

 

Fig. 5.9 Evolution of R.H. along a reference line for the 2 samples, with and without ITZ. 
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5.2 Thermo-hygro-mechanical response of concrete as 

viscoelastic damaged material 

In the second part of the analyses, the visco-damaged behaviour of concrete at the meso 
level is studied, in order to understand the crucial role of aggregates and ITZ for defining a 
realistic structural response as well as damage scenarios. As regards creep, as already 
explained in Section 3.3.4, it has been upgraded in NEWCON3D, substituting the Double 
Power Law with Model B3, a new creep model developed by Bažant and Baweja in 1995.  

Therefore this section will be so structured: a first part where is presented the validation of 
Model B3 within NEWCON3D to fit experimental tests at the macro-level; then two tests, one 
without and one with the presence of the ITZ, where this new creep model is adopted to 
perform predictive creep and shrinkage analyses at the meso-level.  Additionally the last 
part is a study of the damaged behaviour of concrete at the meso-level in order to 
understand the influence of ITZ, the weakest region of the composite material, on the overall 
mechanical behaviour. 

 

Model B3 calibration 

To calibrate Model B3 in NEWCON3D, the tests by L’Hermite et al. (see Ref. [1]) have been 
taken as reference; particularly, a 7×7×28 cm3 concrete prism has been considered, with 
the same characteristics as reported in literature (see Ref. [2] (part III) and see Table 5.3). 
Moreover this specimen is firstly kept in water for 2 days (this means that during this 
period the sample is subjected to basic creep only) and then, from t0 = 2 days, is exposed to 
drying, i.e. to an environmental relative humidity of 50% and an environmental temperature 
equal to 20°C (therefore, by this time the specimen cured in water is subjected also to 
drying creep). 

Table 5.3 Parameters for model calibration. 

Elastic Modulus E[MPa] 28522.1 

fcm28 [MPa] 36.3 

Cement content c [kg/m3] 350 

Water content  w [kg/m3] 171.5 

Aggregate-cement ratio a/c 4.82 

Age at the start of drying t0 [d] 2 

Age of loading t’ [d] 7 - 28 - 90 

Axial compressive stress [MPa] 9.07 

Environmental relative humidity 50% 

Environmental temperature [°C] 20 
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The model assumes a homogeneous concrete sample, which is additionally loaded by an 
axial compressive stress of 9.07 MPa and three different loading times are considered: 7, 28 
and 90 days. The mesh adopted, composed by 512 20-node brick elements and 2673 nodes, 
in NEWCON3D is reported in Fig. 5.10; as can be seen we studied only one eighth of the 
specimen, thanks to the symmetry of the prism. By this figure it is possible to notice the 
presence of elements of different colour on top and externally: the elements on top 
represent an infinitely rigid layer which allows to distribute uniformly the load applied; 
instead the external ones, are “fictitious” elements (i.e. with zero elastic modulus and with a 
very high diffusivity and thermal conductivity) that allow to apply the Dirichlet boundary 
condition so as not to generate oscillations due to the change in humidity from the inside to 
the outside of the specimen. 

In Fig. 5.11 are reported the curves of the compliance function (including drying creep), 
numerically obtained via the code once Model B3 has been implemented. Three different 
loading times are considered (7, 28 and 90 days) and a comparison with the curves given by 
Bažant ([2] part III) is depicted, showing a good agreement between numerical and 
experimentally based results. 

Additionally, having replaced the spatial averages of pore relative humidity ( )H t  and 

( )'H t  within drying creep with the current relative humidity obtained at each time step 

from the coupled u-H-T system of equations, it has been possible to effectively estimate the 
humidity variation contribution on the creep term: by Fig. 5.12 it is possible to notice how 
the result obtained using the spatial averaged humidity is a media of the other results; this 
gap can be clearly more important when bigger concrete samples are considered. Moreover 
it is important to keep in mind that we achieved these differences considering concrete as 
an homogeneous material; at the meso-level these deviations are much more important, 
being the different components characterized by different values of permeability.   

 

Fig. 5.10 Adopted discretization for the calibration of Model B3, an eighth of the entire sample for 
symmetry. 
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Fig. 5.11 Comparison between the experimental-based and the numerical results obtained via 
NEWCON3D (dashed lines). 

 

Fig. 5.12 Comparison between analytical creep curves obtained with the spatial average relative 
humidity (solid line) and with the current relative humidity (dashed lines). 
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Coupled THM and viscoelastic model validation 

If concrete is considered as a composite material made of cement paste and aggregates, not 
including ITZ, the only phases subjected to creep is cement paste, whereas aggregates 
behave elastically, as reported in Section 3.3.6. 

The adopted parameters in this analysis are listed in Table 5.4; as previously seen in the 
hygro-thermal analyses of concrete at the mesolevel, also here the cement paste is 
characterized by a lower Young modulus, a lower thermal conductivity and a higher 
permeability if compared to the aggregates. 

Table 5.4 Material data for the meso-scale analysis without ITZ. 

                             Components 

 

     Properties 

 

Cement Paste 

 

Aggregate 

Elastic Modulus [MPa] 20000 67000 

Poisson’s Ratio 0.20 0.20 

Reference diffusivity along x, y and z [mm2/d] 20 0 

Thermal capacity [N/(mm2K)] 2 2 

Heat conductivity along x, y and z [N/(d K) 144288 220320 

Thermal expansion coefficient of solid 0.000012 0.000004 

For this analysis at the mesolevel (and also for the next one, where the transition zone is 
included) tests by L’Hermite et al. are again taken as reference; hence the sample is first 
subjected to basic creep only (specimen kept in water) and subsequently to drying creep 
(specimen cured in water; at t0 = 2 days exposed to drying at 50% relative humidity and 
20°C). The sample is additionally loaded by an axial compressive stress of 9.07 MPa at time 
t’ = 7 days. Also in this analysis, for sake of simplicity we studied only one eighth of the 
specimen 

The adopted discretization is reported in Fig. 5.13 a; this mesh, which includes also an 
infinitely rigid layer for a uniform distribution of the load applied on top, is characterized by 
1275 hexahedral elements, 6250 nodes and a random aggregates distribution which 
occupies about the 50% of the total volume of the specimen.  

If we study the evolution of the relative humidity along a line, indicated in Fig. 5.13 b (in 
which A indicates the side of the specimen exposed to the environmental conditions, instead 
B is the inner side; so the flux of humidity going from B to A), passing through an aggregate; 
it is possible to notice the physical barrier exerted by the aggregate towards the flux of 
humidity. Although some initial result in this direction was already found in the previous 
hygro-thermal analyses, this is more clear in Fig. 5.14, where is reported the humidity 
evolution of this line at different times. Indeed, being the aggregate an obstacle to the flux of 
humidity due to its very low permeability, in its proximity is visible an increase of the 
relative humidity level (this is more visible for longer times such as 24.3 days and 229.3 
days).  
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Moreover, comparing the relative humidity evolutions along this line at the meso and at the 
macro-scale (for this comparison the mesh adopted at the macro level is the same of the 
mesoscale, but this time the material is only one) levels, some slight delay in drying can be 
noticed; as indicated in Fig. 5.15: in fact, the effect due to the inclusion of aggregates is not 
only local but has even repercussions on the global humidity distribution, as well as on its 
temporal variation. It’s important to keep in mind that these hygral barriers due to the 
presence of aggregates can be seen only if we model at this level; so for these analyses a 
meso-scale approach is fundamental, being the macro-scale modelling not representative of 
the real behaviour of concrete. 

 

Fig. 5.13 Adopted discretization for the meso-scale analysis without ITZ (a) and a particular of the 
line considered to study the relative humidity evolution (b). 

 

 

Fig. 5.14 Evolution of relative humidity in the sample along a reference line. 
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Fig. 5.15 Relative humidity evolutions, macro- vs. meso-scale results. 

After having investigated the hygral behaviour of the sample, the vertical deformations of 
the specimen for a series of nodes in the cement paste moving away from an aggregate, are 
shown in Fig. 5.16; as expected, in proximity of the aggregate, these strains are reduced due 
to a “stiffening effect” coming from the aggregates themselves. Indeed, being the aggregates 
characterized by a higher Young modulus if compared to the cement paste, they go to stiffen 
the surrounding area.  

 

Fig. 5.16 Vertical deformations within cement paste, meso-scale analysis. 

Evidently, such local effects do not affect the global response of the sample (Fig. 5.17), hence 
confirming the congruity of the chosen meso/macro material parameters. 
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Fig. 5.17 Top vertical displacements evolutions, macro- vs. meso-scale results. 

Finally, the same concrete sample investigated before, has been additionally studied by 
considering the inclusion of the transition zone, a thin layer of matrix material surrounding 
each inclusion and characterized by a lower density (hence higher permeability) and elastic 
modulus than cement paste (see the material data for the three components, reported in 
Table 5.5). In this analysis the ITZ is subjected to creep together with the cement paste, 
instead the aggregates are always supposed to behave elastically.    

Table 5.5 Meso-scale analyses: parameters for cement paste, aggregates and ITZ. 

                             Components 

 

     Properties 

 

Cement Paste ITZ 

 

Aggregate 

Elastic Modulus [MPa] 20000 10000 67000 

Poisson’s Ratio 0.20 0.20 0.20 

Reference diffusivity along x, y and z [mm2/d] 20 40 0 

Thermal capacity [N/(mm2K)] 2 2 2 

Heat conductivity along x, y and z [N/(d K) 144288 144288 220320 

Thermal expansion coefficient of solid 0.000012 0.000012 0.000004 

The adopted discretization (see Fig. 5.18) is now characterised by 1955 hexahedral 
elements, 9284 nodes, a random distribution of aggregates which occupies about the 50% of 
the total volume of the specimen and an ITZ whose thickness is strictly linked to the 
diameter of each aggregate (thicker for larger diameters) and lower than 30 µm. 

Reasonably, as can be seen in Fig. 5.19, the presence of ITZ does not change the overall 
spatial humidity distribution, but its contribution is concentrated around the aggregates: 
humidity gradients are now reduced as well as moisture concentrations (i.e. the small peaks 
reported in Fig. 5.14), with slightly sharpeless humidity curves. 
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Fig. 5.18 Adopted discretization for the meso-scale analysis with ITZ (a) and a particular of the line 
considered to study the relative humidity evolution (b). 

 

Fig. 5.19 Evolution of relative humidity in the sample along the reference line reported in Fig. 5.18 b. 

If we investigate the creep behaviour of three nodes (see Fig. 5.20): one in the cement paste 
close to the side exposed to the environmental conditions (PASTE1), one in the ITZ and the 
third one in the cement paste behind the aggregate (PASTE2); it can be seen that the 
difference between the compliance functions of the two pastes is related to their different 
relative humidity values and so to a different drying creep. This result is once more the 
proof of the barrier effect exerted by the aggregate towards the flux of humidity. As regards 
the ITZ, this layer is characterized by a higher compliance function if compared to the 
cement pastes ones and this due to its relative humidity and to its lower Young modulus.  
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Fig. 5.20 Creep functions for three nodes; one within ITZ and two in cement paste. 

Finally, considering the evolution of vertical strains in time for a series of nodes within ITZ 
and cement paste (see Fig. 5.21), it can be noticed that the general trend is similar to the one 
experienced without ITZ: close to aggregates the stiffening effect is still detectable, even if 
now reduced by the lower ITZ elastic modulus; in fact, as even demonstrated below, ITZ is 
known to be the weakest region of the composite material when exposed to external loads  

 

Fig. 5.21 Vertical deformations within ITZ and cement paste. 

 

Damaged behaviour of concrete at the meso-level 

In this section a prismatic concrete sample at the mesolevel, with the presence of the ITZ, 
has been considered (see the discretization reported in Fig. 5.18 a) and the damage 
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behaviour of concrete at the meso-level is investigated, in order to understand the influence 
of ITZ, the weakest region of the composite material, on the overall mechanical behaviour 
and in view of defining an appropriate concrete mixture for e.g. responding to spalling 
under high temperature conditions. 

The material data used for the three different phases are the same used previously (see 
Table 5.5), instead the parameters used for the Mazars’ damage law are listed in Table 5.6. 
Damage parameters are valid only for the cement paste and the ITZ because the aggregates 
are supposed to behave elastically; therefore they are not subjected to damage.   

Table 5.6 Parameters used for the isotropic Mazar’s damage model (cement paste and ITZ). 

k0 1×10-4 

At 1.2 

Bt 5000 

Ac 1 

Bc 1000 

 

The sample is a 3.5×3.5×7 cm3 prism, discretized as in Fig. 5.18 a, but this time is 

constrained only at the base and is subjected to a compressive load, in displacements 
control so to simulate the non-linear material response in the softening regime. 

The evolution of damage within the sample is investigated along the reference line reported; 
in particular in Fig. 5.22 are considered five different times and by these curves it can be 
noticed that the peaks (maximum damage) occur as expected in the ITZ (it corresponds to 
the zone comprised between the two red lines), being this phase the weakest zone of 
concrete when exposed to external loads. 

 

Fig. 5.22 Damage evolution along a reference line within the concrete sample. 

 



CHAPTER 5 – Numerical analyses 

Pag. 128 

 

5.3 Concrete under high temperature conditions 

For spalling predictions the crucial role of the aggregates is largely recognized; so in this 
section of analyses spalling is investigated considering concrete as a homogeneous and a 
composite material made of  cement paste, aggregates and ITZ.  

As first is here presented a comparison between two concrete columns, at the macro-scale, 
of different section (circular and square) pointing out the “corner effect” in the square one; 
then the macro predictions are compared with the meso-scale results underlining the 
crucial role of the aggregates and the ITZ on the real evolution of cracking under high 
temperature conditions. Finally damage propagation in the individual components, is 
investigated in more detail through a more refined mesh and the chemo-thermo mechanical 
damage is presented. 

 

 Shape effect 

As regards the analysis at the macro level, the discretization adopted for the two different 
sections (it has been studied only ¼ of the entire sections for the symmetry) is represented 
in Fig. 5.23; the circular mesh is characterized by 198 8-node plate elements and 641 nodes, 
instead the square one is characterized by 256 8-node plate elements and 833 nodes. Both 
specimens present an external layer of “fictitious” elements in order to avoid oscillations 
due to the application of a thermal ramp. 

The size of the circular section is taken by an experimental study performed by Lee et al.  (a 
test for cylindrical specimens representative of circular columns subjected to fire exposure), 
therefore it has a diameter of 100.16mm; instead the side of the square has been taken 
equivalent to 89.33mm, so that the area of this section is equal to the circular one.   

 

 
Fig. 5.23 Finite element meshes for the two sections ( ¼ due to symmetry). 

The initial conditions correspond to a saturation of 90% and a temperature of 25°C while, as 
regards the boundary conditions, the two samples are heated externally with a thermal 
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ramp of 100°C/min reaching a temperature of 345°C. The material data and the damage 
parameters are reported in  Table 5.7. 

Table 5.7 Material data and damage parameters adopted for the two samples. 

Elastic Modulus [MPa] 35000 

Poisson’s Ratio 0.18 

Reference diffusivity along x, y and z 

[mm2/d] 
10 

Thermal capacity [N/(mm2K)] 2 

Heat conductivity along x, y and z [N/(d K) 144288 

 

k0 1×10-4 

At 0.9 

Bt 2000 

Ac 2 

Bc 2500 

If we investigate the evolution of the relative humidity in time for a series of nodes going 
from the surface (A) to the centre (B) of the two different samples (see Fig. 5.24 and Fig. 
5.25), the numerical results showed that there is no a big difference in the evolution and 
that the relative humidity for the internal nodes is still high at the end of the study. 

 

Fig. 5.24 Relative humidity evolution in time of the square specimen. 
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Fig. 5.25 Relative humidity evolution in time of the circular specimen. 

Comparing the evolution of the total displacements in Fig. 5.26, it is possible to see how for 
the square specimen it changes more radically than in the cylinder from 125°C to 145°C; this 
is due to a loss of stiffness caused by damage under high temperatures. Instead, as regards 
the cylindrical column, the evolution of the displacements is totally different: the 
displacements are higher on the external boundary and they decrease going inside the 
sample. 

This totally different behaviour seen analysing the total displacements is more evident 
studying the damage evolution. Fig. 5.27 illustrates the damage evolution in the two 
different specimen demonstrating clearly that the rate and the extent of damage is much 
faster and wide spread in the square specimen rather than in the circular section. In fact in 
the squared one the damage starts on the corner (T=145°C) and then affects the edges 
entering in the sample; on the contrary, in the cylinder sample the evolution of damage is 
really different; the “corner effect” is not present and the damage is confined to a narrow 
ring. So the so called “corner effect” is a very significant phenomenon when the difference of 
damage is compared in square vs. circular specimens under rapid heating and one may 
conclude that the evolution of damage in square or rectangular columns proceeds much 
faster than in circular columns.  
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Fig. 5.26 Displacement evolution in square and circular sections. 

 

 

Fig. 5.27 Damage evolution in square and circular sections. 

. 
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Macro vs. Mesoscopic concrete behaviour at elevated temperatures 

The second numerical analysis is a comparison between two square columns under high 
temperature conditions, one modelled at the macro-scale and one modelled at the meso-
scale (with the presence of ITZ) in order to catch the fundamental role of the aggregates on 
the real evolution of cracking under high temperature conditions. The initial conditions are 
the same of the first analysis and the two columns are heated externally with a thermal 
ramp of 100°C/min reaching a maximum temperature of 225°C. In Fig. 5.28 the two meshes 
are reported), while the material data and the damage parameters for the single 
components are summarized in Table 5.8 and Table 5.9 and the data for the homogenized 
material are the same reported in Table 5.7. As regards the mesh at the mesoscale level, it is 
formed by 1071 8-node plate elements and 3312 nodes, a random distribution of aggregates 
of different sizes which occupy about the 50% of the entire volume and the presence of a 
transition zone whose thickness is related to the diameter of the aggregate. Also in this 
analysis aggregates are assumed to behave elastically; therefore the damage parameters are 
valid only for the cement paste and the ITZ.  

 

Fig. 5.28 Adopted discretization for the macro and meso-scale samples. 

 

Table 5.8 Material data for the components at the meso-scale. 

                             Components 

 

     Properties 

 

Cement Paste ITZ 

 

Aggregate 

Elastic Modulus [MPa] 30000 20000 70000 

Poisson’s Ratio 0.20 0.20 0.20 

Reference diffusivity along x, y and z [mm2/d] 10 20 0 

Thermal capacity [N/(mm2K)] 2 2 2 

Heat conductivity along x, y and z [N/(d K) 144288 144288 220320 
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Table 5.9 Damage parameters for the cement paste and the interfacial transition zone. 

k0 1×10-4 

At 0.9 

Bt 2000 

Ac 2 

Bc 2500 

 

In Fig. 5.29 is reported the evolution of temperature in time for the 2 samples and it can be 
seen that the behaviour is similar. 

 

Fig. 5.29 Evolution in time of temperature at the macro and the meso scale levels. 

The evolution of damage is reported in Fig. 5.30 and the results show a very interesting 
feature; indeed if at the macro-scale the “corner effect” is evident, at the meso-scale the 
damage starts also in the corner but its evolution is totally different and is driven by 
aggregates and the ITZ. This demonstrate that a study at the macro-scale of spalling is less 
representative and the real evolution of cracking is lost.  
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Fig. 5.30 Damage evolution in macro and meso-scale samples. 

 

Damage characterization at the mesolevel 

In order to obtain a deeper comprehension of the evolution of damage in the individual 
components of the material, several meso-scale models have been developed where the 
degree of discretization is increased and where the shape of the aggregate has been 
simplified with a rounded one in order to eliminate possible peak stress generated by the 
angularities of the aggregates with squared faces. Therefore the adopted mesh is shown in 
Fig. 5.31 and this discretization consists of 5364 8-node plate elements and 16293 nodes. Its 
dimensions are equivalent to the sample described in the 'previous analysis, maintaining the 
same percentage of aggregates, the same hygro-thermal mechanic characteristics for the 
different phases, shown in Table 5.8 and in Table 5.9 and the same boundary conditions. 

The evolution of damage at different temperatures (from 100°C to 300°C) reported in Fig. 
5.32 highlights very clearly that damage is  driven by aggregates distribution and by ITZ; 
indeed, by these contours is possible to notice that initially it triggers in the ITZ (being this 
one the weakest zone for its properties), then spreads inside this layer and finally involves 
the cement paste.     
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Fig. 5.31 Adopted discretization. 

 

T = 100°C 

 

T=125°C 

 

T=150°C 

 

T=175°C 

 

T=200°C 

 

T=225°C 
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T = 250°C 

 

T = 275°C 

 

T = 300°C 

Fig. 5.32 Damage evolution in time at the meso level; Blue: undamaged zone (damage variable D=0); 
Red: totally damaged zone (D=1). 

To better understand as damage propagates, we have considered a small zone between two 
different aggregates (see Fig. 5.33); in particular we have analysed three points along the 
transition zone surrounding an aggregate (ITZ1, ITZ2 and ITZ3) and one point in the cement 
paste (PASTE) between the two aggregates.  

 

Fig. 5.33 Particular of the zone considered to study damage propagation. 

The damage history during heating for these four representative points is shown in Fig. 
5.34. By these curves can be seen that damage starts in the point ITZ1 at the temperature 
T=100°C (at about 0.0005 days) and grows rapidly until cracking (damage variable D=1). 
Subsequently, because of the stiffness variation occurred in ITZ1, there is a stress 
redistribution in the nearby area and for this reason damage starts also in the other three 
points (at about t=0.0007 days). This in reality doesn’t happens simultaneously but the 
curves are delayed with respect to each other because, as damage increases in a point, the 
stiffness decreases and there is a new stress redistribution. This means that damage grows 
more slowly in the point considered and speeds up in the near points, characterized by an 
higher stiffness. 

Indeed, if we consider for example the cement paste in Fig. 5.34; damage grows up to 40% 
in this point, then it stabilizes and increases in the other points ITZ2 and ITZ3 (being weaker 
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because of their mechanical properties). Reached a certain level, the damage is stable for 
these two points, the cement paste is recharged and arrives to cracking. Finally, also the 
damage in the other two points grows until cracking. This damage sequence is clearly visible 
in Fig. 5.35.  

 

Fig. 5.34 Damage history for four points; one in the cement paste and three in the transition zone.  

 

 
t=0.0005 ds  

(T=90°C) 

 
t=0.0007 ds  
(T=120°C) 

 
t=0.001 ds  
(T=165°C) 

 
t=0.00125 ds  

(T=200°C) 

 
t=0.0015 ds  
(T=235°C) 

 
t=0.002 ds  
(T=305°C) 

Fig. 5.35  Damage evolution for the four points indicated in Fig. 5.33; Blue: undamaged zone (damage 
variable D=0); Red: totally damaged zone (D=1). 
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Comparing the evolution of the total displacements at two different temperatures in Fig. 
5.26, it is possible to see that at about 200°C the specimen is expanding, instead at 300°C is 
shrinking and this is due to the cement paste that is subjected to a small thermal expansion 
(up to 200 °C) and a larger shrinkage due to loss of humidity. If we go to consider the 
displacement along x of two nodes in the cement paste (see Fig. 5.37) these two effects are 
clearly visible.    

 

T = 200°C 

 

T = 300°C 

Fig. 5.36 Total displacements evolution at different temperatures. 

 

Fig. 5.37 X-Displacements evolution of two nodes in the cement paste. 
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Thermo-Mechanical damage at the mesolevel 

In the previous analyses damage was a mechanical one and the damage parameter D was 
expressed through the non-local Mazars’ damage law (see Section 3.5.3).  

If we consider also a thermo-chemical damage in NEWCON3D, its parameter V is expressed 

as (see Section 4.4.5) ( ) ( )0 0 aV 1 E T E T= −  where E0 is the Young’s modulus of 

mechanically undamaged material and aT is room temperature.  

As regards the temperature dependence of the elastic modulus for the different components 
at the mesolevel, we have adopted the expression proposed by Willam et al. [4]: 

( ) ( ) 0.002T
0 aE T E T 0.03921 e− = +   

Assuming that the total effect of the mechanical and thermo-chemical damages is 

multiplicative, the total damage parameter D is defined by ( )( )D 1 1 d 1 V= − − − , where d is 

the mechanical damage parameter of Mazars. 

Therefore, considering the previous analysis but taking into account a chemo-thermo 
mechanical damage, the evolution of the total damage parameter D is reported in Fig. 5.38. 
Comparing these contours with the ones of Fig. 5.32, can be seen that the propagation of 
damage in the ITZ and in the cement paste is similar even if in this case it triggers before due 
to the reduction of the elastic modulus of these two components under heating. 

As regards the aggregates, while in Fig. 5.32 they don’t damage as they are assumed to 
behave elastically; in Fig. 5.38 they are subjected to damage because their Young modulus  
decreases with temperature. A comparison between these two damage parameters for a 
node of an aggregate is reported in Fig. 5.39. 

 

 

T = 100°C 

 

T=125°C 

 

T=150°C 
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T=175°C 

 

T=200°C 

 

T=225°C 

 

T = 250°C 

 

T = 275°C 

 

T = 300°C 

Fig. 5.38 Damage (chemo-thermo mechanical damage) evolution in time at the meso level; Blue: 
undamaged zone (damage variable D=0); Red: totally damaged zone (D=1). 

 

 

Fig. 5.39 Comparison between the mechanical and chemo-thermo mechanical damage for a node of 
an aggregate. 
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6 CONCLUSIONS 

In this work concrete has been investigated at the mesoscale level, i.e. as a composite 
material composed by aggregates, cement paste and the interfacial transition zone, in order 
to provide a deeper understanding of several concrete phenomena, such as creep, damage 
and spalling.  Particularly model B3 and Mazars’ law, have been chosen and implemented in 
the 3D, fully coupled thermo-hygro-mechanical model of heated concrete, FE code called 
NEWCON3D when considering creep and damage, respectively.  

Thanks to the studies carried out at the meso-scale level it has been possible to observe the 
behavior of each component. In the case of long-term effects, creep of cement paste and ITZ, 
described by consolidated and complete models as the B3 one (carefully calibrated on the 
basis of well-known experimental results like the ones given by L’Hermite), allow to catch 
the complex nature of creep, which is not only given by fluid flow and pressure dissipation 
but it is the result of chemical-physical reactions. Again, the description of concrete as a 
composite material, in conjunction with fully coupled porous media analyses, allows for 
understanding the hygro-thermal and mechanical response of concrete, first of all in terms 
of hygral and thermal changes within a material where aggregate inclusions (encapsulated 
by ITZ concave volumes) appear with some statistical distribution (as originally described 
by Wittmann, even if without the ITZ effect (Wittman (1968)). Hygral barriers due to the 
presence of aggregates can be seen only at this modelling level. On the other side, thermal 
conductivity properties dominate the thermal conduction within the sample.  

Moreover, from the mechanical viewpoint, it has been possible to notice the remarkable 
damage peak effect arising from the inclusion of ITZ, if compared with the less pronounced 
peak when ITZ is disregarded. This result allows for a first explanation of specific 
phenomena linked to spalling, e.g. the generation of cracks driven by aggregates and the 
possible explosion of aggregates themselves. 

Spalling prediction of concrete under high temperature conditions and fire is largely 
recognized to be influenced by concrete aggregates; in fact comparing the different pattern 
of damage between an homogenous and a composite model, since it starts from the corner 
in both cases but the time evolution is totally different since it is driven by the aggregates 
and the ITZ. This demonstrates that a study at the macro-scale of spalling is less 
representative and the real evolution of cracking is lost.  

Concrete is a mix of different components and each component has a different thermal 
expansion coefficient. At the meso-level scale, we have in the cement paste the two effects of 
a small thermal expansion (up to 200 °C) and a larger humidity shrinking due to 
evaporation. On the other side, aggregates expand only because in this case there is not loss 
of humidity. The whole dilation effect (of cement paste and aggregate, clearly distinguished 
at the meso-level scale) produce a mismatch, that is indeed a “thermohygrometric” 
mismatch and not only a “thermal” mismatch. The differences in thermal and hygral 
expansions therefore generate stresses in concrete, giving rise to damage and cracking. 

From experimental tests it is possible to notice how concrete presents a small plastic 
behaviour, during an increasing load before failure. This can be simulated through a 
plasticity law; therefore in the latter part of the thesis the F.E. code upgrading is shown to 



CHAPTER 6 – Conclusions 

 Pag. 143 

 

innovatively couple creep, shrinkage and damage with plasticity. Several analyses have been 
exploited to verify the correct numerical implementation; further improvements will be the 
reproduction of a real case and then its application at the mesoscale. 
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APPENDIX 

Implementation of the Subloading Surface 

elasto-plastic model in NEWCON3D 

The elasto-plastic model 

In the present paragraph the principal features of the elasto-plastic model, named 
Subloading Surface, will be shown. A first formal aspect that has to be highlighted is the 
difference between the already mentioned model and these classified as conventional (i.e. 
Drucker-Prager, Cam-Clay etc...). 

The latter state that the yield surface encloses the pure elastic domain, where there is a 
perfect one-to-one linear correspondence between stress and strain and no permanent 
deformation can be produced inside this field. On the other hand whenever the stress goes 
outside the yield stress, plastic strains (i.e. permanent deformations) are induced. Material 
behaviour is then split into two part depending on the stress level in the stress space leading 
to a no smooth transition in the stress-strain evolution. In particular the results obtained in 
case of softening response of the material should be carefully considered. 

Subloading surface model was proposed by Hashiguchi and Ueno [1] in order to describe 
the deformation mechanism of materials and to catch a more realistic smooth stress-strain 
transition. The reason why this theory has been considered as “unconventional” by Drucker 
[2] is due to the fact that plastic strains are produced for every change of the stress state 
without a clear distinction of plastic and elastic domains. The subloading surface model 
introduces a subloading surface inside the yield one which expands or contracts depending 
on whether the stress increase or decrease and keeps a similarity ratio to see yield surface. 
It is assumed that the plastic strain rate is induced gradually with an increasing ratio of the 
size of the subloading surface to that of the yield surface. 

∂=
∂

v
L

x
                                                                                                                                                          [A.1]                              

where v is the velocity vector, whereas x is the coordinate point. Using a property of the 
second-order tensor, as well known as the Cartesian decomposition, it is possible to split the 
velocity gradient tensor in two part: a symmetrical one ε (the strain rate) and the skew 

symmetric one w (the continuum spin). In detail: 

1 1
( ); ( )

2 2
= + = −ε L L w L LT T                                                                                              [A.2]                                                             

It is also assumed that the total strain rate ε can be additively decomposed into an elastic 

part e  and into a plastic one p , i.e. in a component: 

ij ij ij= +ε e p                                                                                                                                                 [A.3]                                                        
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It has to be noticed that the stress and strain used in the following equations shall be 

considered as rate despite it isn’t used the conventional notation (i.e. , 
• •
σ ε ). The elastic 

contribution is given using the fourth-order elastic tensor as showed below: 

ij ijkl kl= ⋅σ E e                                                                                                                                               [A.4] 

Finally, re-writing the previous relationship and including the additive property of the total 
strain rate, we obtain: 

 = − 
 

σ E ε pij ijkl kl kl                                                                                                                                   [A.5] 

 

Conventional elasto-plastic equations 

Starting from the previous preliminary hypothesis it is now possible to characterize the 
classical elasto-plastic model. First of all it is necessary to define an elastic domain, which 
allows to recognize points for which an increase in terms of stress will lead to a plastic 
response of the material. In other word a yield function form is needed to define the 
different material response in the stress space. It is given as follow: 

f ( ) F( H ) 0− =σ                                                                                                                                      [A.6] 

where the scalar H is the isotropic/softening variable, whereas f is a homogeneous function 

of degree one respect of the stress tensor. Using a time differentiation the consistency 
condition can be written as: 

f ( )
tr F' H

• ∂  = ∂ 

σ
σ

σ

�

                                                                                                                                [A.7] 

where 

dF
F'

dH
≡                                                                                                                                                        [A.8]

 

indicates the total derivate of function F respect of the isotropic/softening variable, tr is the 

trace, (σ
�

) represents the co-rotational rate (becoming simply the time derivative under the 

hypothesis of small strain) and at last, the symbol (
•

) over the H stands for the time 

material derivative (i.e. 
DH H

H
Dt t

∂= + ⋅∇
∂

v ). Once defined the yield function it has also to be 

specified a flow rule that governs the increments of plastic deformation. Depending on how 
this flow is obtained we can distinguish between associate and non-associate flow rule.
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The former type is the most common and it is also used in this work; it is get deriving the 
expression of the yield function respect of the stress tensor for a certain point: 

λ=p N                                                                                                                                                          [A.9] 

where λ is the positive proportional factor, whereas N is the normalized outward-normal of 
the yield function: 

f ( ) f ( )∂ ∂≡
∂ ∂

σ σ
N

σ σ
                                                                                                                           [A.10]                                                                          

The latter type is obtained defining a further surface called potential plastic surface 

)()( cgg σσ =  ( cσ stand for a specific point) from which again the derivative respect of the 

stress tensor in the point is taken: 

λ=p M                                                                                                                                                       [A.11] 

g( ) g( )∂ ∂≡
∂ ∂

σ σ
M

σ σ
                                                                                                                          [A.12]

 

Substituting the associate flow rule inside the consistency condition it is possible to write: 

p

tr ( )
M

λ = Nσ
�

                                                                                                                                             [A.13]
 

Where Mp term is the plastic modulus, which can be defined as well as: 

p
F'

M tr ( ) h
F

≡ Nσ                                                                                                                                   [A.14]

 

As mentioned in the previous part of this chapter, we have chosen an f function such
 
a 

homogeneous function of degree one respect of the stress tensor which means it is possible 

to apply the Euler Theorem: 

n

i
ii 1

f ( x )
x k f ( x ) x A

x=

∂ = ∀ ∈
∂∑                                                                                                       [A.15]

 

Where k is the degree of homogeneity. Keeping in mind the previous equation it is possible 

to elaborate them, thanks to the property of the f function: 

f ( )
tr

f ( ) f ( )
tr ( )

∂ 
 ∂ ∂ ∂ = =

∂ ∂

σ
σ

σ σ σ
N N

σ σ Nσ
                                                                                            [A.16]

 



APPENDIX – Implementation of the Subloading Surface elasto-plastic model 

 Pag. 147 

 

But we also know that: 

f ( )
tr 1 f ( )

∂  = ⋅ ∂ 

σ
σ σ

σ
                                                                                                                       [A.17]

 

So we can finally come to the following form: 

f ( ) f ( ) F( H )
tr ( ) tr( )

∂ = =
∂

σ σ
N N

σ Nσ Nσ
                                                                                                       [A.18]

 

In conclusion with some mathematical passages the direct and the inverse bond can be 

showed as reported below: 

1
p

tr ( )

M
−= + Νσ

ε E σ M

�

�

                                                                                                                          [A.19] 

( )

( )
= −

+
NEε

σ Eε EM
NEM

�

p

tr

M tr
                                                                                                          [A.20] 

( )
( ) ( )

( )

 
= − ⊗ + 

NEε
σ E EM NE ε

NEM

�

p

tr

M tr
                                                                                 [A.21]

 

The loading criteria, which is derived from the first of the direct bond equation, can be 

written as: 

0 : ( ) ( ) ( ) 0

0 :

≠ = >
 =

p σ NED

p

f F H and tr

otherwise
                                                                                [A.22]

 

 

The Subloading surface model 

In the subloading surface model (Hashiguchi and Ueno [1]; Hashiguchi, [3], [4], [5]) the 
conventional yield surface is renamed normal-yield surface just to remark what already 
stated in the introduction of this chapter, which is that there is no longer separation 
between elastic and plastic domain but the yield surface became only a reference to draw 
the subloading once. This is such that always pass through the current stress point and 
keeps a similar shape and a similarity ratio in its arrangements to the normal-yield surface. 

It is thus possible to list the following geometrical properties: 

• All lines connecting an arbitrary point on or within the subloading surface and its 
conjugate point on or within the normal-yield surface connect to a unique point, called 
similarity-centre; 
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• All ratios of length of an arbitrary line-element connecting two points on or inside the 
subloading surface to that of an arbitrary conjugate line-element connecting two 
conjugate points on or inside the normal-yield surface are identical. The ratio is called 
the similarity-ratio, which coincides with the ratio of the size of these surfaces. 

In detail the above mentioned similarity-ratio can assume every real value included 
between 0 and 1: 

• R = 0 means that the stress state is zero, in the stress space the subloading surface 
degenerates into a point which lies at the origin of the axes; 

• 0 < R < 1 means that the stress state is included inside the normal-yield surface; 

• R = 1 means that the subloading surface and the normal-yield surface perfectly 
overlap.  

 

Fig. A.1 Normal-yield surface and subloading surface. 

Once defined the similarity-ratio evolution and its field of existence it can be possible to 
obtain the analytical form for the subloading surface, which is quite similar of that of the 
yield surface in conventional elasto-plasticity: 

f ( ) RF( H ) 0− =σ                                                                                                                                [A.23] 

Using time differentiation it is possible to get the consistency condition. It has to be noticed 
that functions product rule has to be used to arrive correctly at the following form: 

f ( )
tr R F RF' H

• • ∂  = + ∂ 

σ
σ

σ

�

                                                                                                                [A.24] 

Theoretically speaking if the stress shifts from a null state to a non-null one the R value 
consequently increases and the same does the subloading surface, which expands and 
comes near the normal-yield surface. It’s so necessary to define an evolution law for the 
similarity ratio: 

R U per 0
•

= ≠p p                                                                                                                           [A.25] 
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Where U is a decreasing monotonic function of R that obeys to the following system of 
equations, in which small u it’s a material parameter obtained experimentally. 

( )

U per R 0

U 0 per R 1U u ln( R )

U 0 per R 1

= +∞ =
 = == − 

< >
                                                                               [A.26] 

 

Fig. A.2 U dependence on similarity ratio. 

 

Substituting the R evolution law inside the time differentiation of the subloading surface 
formula the extended consistence condition can be obtained as follows: 

f ( )
tr U F RF' H

• ∂  = + ∂ 

σ
σ p

σ

�

                                                                                                       [A.27] 

As already done in the previous paragraph, an associate flow rule is given: 

λ=p N                                                                                                                                                       [A.28] 

Where λ  once again is the positive proportional factor, whereas N is the normalized 

outward-normal of the subloading surface (it’s exactly the same vector seen before but now 
is applied to a different surface). Using the flow rule and introducing it in the extended 
consistency condition it is possible to obtain: 

p

tr ( )

M
λ = Nσ

�

                                                                                                                                             [A.29] 

Where 

p F' U
M h tr ( )

F R
 ≡ + 
 

Nσ                                                                                                                     [A.30] 

U

0p =εɺ

0p ≠εɺ
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H
h

λ

•

≡                                                                                                                                                          [A.31] 

It has to be noticed the simple form for the plastic modulus (
p

M ), really close to the 
conventional one, with the only exception of the addition of the ratio between U and the 
similarity ratio. The function f in the subloading surface equation is such to be homogeneous 
function of degree one respect of the stress tensor which means that, as seen before, it is 
possible to apply the Euler Theorem, leading to: 

f ( )
tr

f ( ) f ( ) RF

tr ( ) tr ( )

∂ 
 ∂ ∂ ∂ = = =

∂ ∂

σ
σ

σ σ σ
N N

σ σ Nσ Nσ
                                                                       [A.32]                                                               

Finally the inverse and direct stress-strain relationship can be written after few 
mathematical passages: 

1
p

tr ( )

M

−= + Nσ
ε E σ N

�

�

                                                                                                                           [A.33] 

p

tr ( )

M tr ( )
= −

+

NED
σ ED EN

NEN

�

                                                                                                               [A.34] 

( ) ( )p

tr ( )

M tr ( )

  = − ⊗ 
+  

NED
σ E EN NE D

NEN

�

                                                                                       [A.35] 

Where the terms contained inside brackets represent the elasto-plastic matrix in the 
subloading surface model. In conclusion the loading criteria just complete the theory 
establishing the conditions under which plastic deformations are induced. 

0 : ( ) 0

0 : ( ) 0

 ≠ >


= ≤

p NED

p NED

tr

tr
                                                                                                                         [A.36] 

 

Comparison between the two  theories 

A first main difference existing in these two models is the different form of the loading 
criteria. In the conventional elasto-plastic model it’s necessary to satisfied two conditions 
for having permanent deformations, whereas in the unconventional theory the subloading 
surface is such that it always pass to the current stress point. This makes the consistency 
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condition always valid so it is only necessary to observe if the stress increases or decreases 
to decide if plastic strains will be produced or not. 

Moreover stress is automatically drawn back to the normal-yield surface even if it goes out 
from that surface because of similarity ratio evolution law analytical form: 

0 1 (sub - yield state)

0 1 (over normal - yield state)

•

•

 > <

 < >

R per R

R per R
                                                                     [A.37] 

This leads to a computational advantage that speeds up the calculation process. In fact it’s 
no more necessary to use some pull-back algorithm for bringing the stress to lie on the 
yield-surface.  

One another big difference is that the yield stress is not a characteristic of the material itself, 
but it depends on loading conditions. Vice versa in the classical plastic theory the yield 
surface is unique and depends only on the considered material, without pay any attention 
on how the load is applied. 

In conclusion the adoption of an associate flow rule makes the stiffness matrix symmetric 
which simplified a lot the numerical implementation of the algorithm and its use. 

 

The numerical procedure 

The next few paragraphs will deal with the computational procedure to realize a visco-
elasto procedure taking also into account permanent plastic deformations, computed thanks 
to an unconventional plasticity model (i.e. subloading surface model). 

A first challenge to pursue this aim has been that of trying to merge together an incremental 
procedure such as the elasto-plastic one with the integral form of the visco-elastic theory. In 
order to do that, subloading surface model has to be properly included in the already 
existing F.E. algorithm of the code NEWCON3D for the displacement computation. 

 

Visco-Elasto Plastic code 

The 3D fully coupled F.E. research code NEWCON3D, as mentioned before, uses an integral 
form in the computations of the unknowns to take into account viscosity. This means that at 
every time step the algorithm starts from the beginning to compute the solution without 
remember of what happened in the previous steps. 

Instead in conventional and also in unconventional elasto-plastic models, it is usual to adopt 
an incremental procedure for the evaluation of the displacements, strains and stresses 
because the elasto-plastic matrix strongly depends on the stress level reached and on the 
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rate of stress (strain) subsequently applied. It is clear that to include a plastic algorithm in a 
total form is necessary to modify the structure of the code for simulating  a plastic step. 

The idea is that to subdivide the macro step time in a series of sub-steps creating a fake 
incremental plastic problem which is easy to solve. Once the correct plastic strain increment 
is computed, total plastic deformation are updated and added in the total visco-elastic and 
plastic problem. This is theoretically based on the fact that considering small strain 
hypothesis, plastic effect can be seen as a co-action of the viscous one, so the former can be 
computed separately and then included in the latter. The whole procedure requires a 
certain amount of memory to allow the sub-steps to store the intermediate vectors solution 
and to recall them back when necessary to compute the stress and strain rate. 

Fig. A.3 graphically schematizes the different passages that will be explained in detail 
afterward. 

 

Sub-step procedure 

Each main time step has been divided in three sub-steps. For example, as it can be seen in 
the flow chart, a solution between main step 1 and 2 is computed for every sub-step in a 
different way: the first one is purely linear-elastic, the second is elasto-plastic and the last 
one in visco-elasto and plastic. In detail, supposing that main step 1 is the first of the 
analysis it will be shown how this algorithm works: 

❶ sub-step: this sub-step computes the solution in terms of displacements, strains and 
stresses using a total integral form from the beginning of the analysis. It has to be 
highlighted that the solution is purely linear elastic. At this point, knowing the solution at 
the previous main time step, is it possible to compute the unknown increments (i.e. Δεe , 
ΔR1) which are needed in the second sub-step, and store them in ad hoc vectors.  

Here, since time at step 1 is zero, the first sub-step can be also regarded as a sort of 
incremental step, so the rate of the variables are the variables themselves; but for sake of 
completeness its description has been given in general terms.  

❷ sub-step: At this point from main step 2 we came back to main step 1 to perform the 
second sub-step computation. It’s a pure incremental elasto plastic computation. ΔR1 is the 
incremental vector forces applied as boundary condition, thanks to Δεe it is possible to set 
up the elasto-plastic matrix and find the solution of the system. In particular the permanent 
deformations can be estimated subtracting to the just computed Δεe,p, for the plastic sub-
step, the one Δεe stored at the previous elastic one, obtaining Δεp vector.  

This vector contains the plastic strains rate derived by means of subloading surface model 
for every Gauss point. Now it’s necessary to store this contribute in a cumulative vector 
which allow us to have memory of the total plastic strain experienced by every of these 
Gauss points that have to be added in the next total sub-step as a co-action. The same thing 
is done for the Δσp term, which is cumulated in an ad hoc vector (σp) for the next sub-step. 
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❸ sub-step: this third sub-step is the total visco-elastic and plastic one. Here we compute 
the visco-elastic solution in its integral form just applying as boundary condition the one 
that competes to the 1 main step. Recalling εp vector we introduce this term in an internal 
procedure which applies an additional fake external system of forces such to induce exactly 
this deformation. In this way the system of real forces is responsible for the visco-elastic 
part of the strains whereas the fake one for the plastic.  

This can seem strange but it has to be noticed that we already exactly know the plastic 
contribute that compete to this main step and so, the setting up of this fake system of forces, 
it’s just a numerical expedient to take it into account in the solution in the F.E.M. in a 
consistent way. 

It also has to be pointed out that strains derived from the displacements are exactly the sum 
of the visco-elastic term and the plastic one. On the other hand the stresses are treated in a 
different way, because the fake system of forces doesn’t contribute in stresses computation. 
Recalling σp vector, which contains the total plastic stress for the actual step, is possible to 
perform a stress redistribution modifying the σv.e.p state of stress already estimated in the 
present sub-step. This is necessary because it’s assumed that plasticity governs the 
equilibrium for the sample giving lower stress state in the material, otherwise we should 
consider a more high level of stress with higher plastic deformations which is unrealistic. 

The procedure described above has to be repeated for every main step in the same way. For 
sake of completeness it has to be noticed that at the first sub-step of the second main step 
the strain rate Δεe and the external load one ΔR1 can be calculate recalling the stored 
solution at the first sub-step of the previous main step as well clear in the flow chart. The 
loading procedure will be discussed in detail in the following paragraph. 

 

Loading procedure 

One of the most important point of the upgraded procedure is the setting up of the right 
terms of the resolving system. In fact, depending on the different loading history, the model 
behaves in a different way. The unconventional plastic model used in the analysis is not time 
dependent; this means that if we load the sample and let it deform both taking into account 
viscosity and plasticity and then we stop loading and just leave the load applied, only 
viscosity should contribute to the deformation. 

The F.E. code is such that it divides permanent load and transient load terms. Only the latter 
should be used as right side of the system in the second pure incremental sub-step. This is 
why the algorithm has been changed according to the flow chart reported in Fig. A.4. RI-
LOAD vector contains the permanent load, which affects only elasto-visco deformation part, 
whereas RLOAD is the transient load vector which is cumulated step by step in the total 
forces vector R. 

If we start the analysis from step 1 the term ΔR1, mentioned above in the explanation of the 
sub-step procedure, coincides exactly with the transient load vector RLOAD①. Thus, this is 
the right hand term of the system that has to be applied in the second purely incremental 
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plastic sub-step. At this point we have to store a vector, named R1M1 which contains the 
whole forces system applied passing through main step 1 to main step 2 (i.e. RI-LOAD + 
RLOAD①). This will allow us to correctly estimate the ΔR1 term that has to be used in the 
plastic sub-step of the second main step. 

In other words the correct ΔR1 load vector in the second main step is exactly equal to 
RLOAD②, which can be obtained by subtracting from the total cumulative forces vector R1 
(= RI-LOAD + RLOAD① + RLOAD②) the R1M1 vector stored before.  

In this way we can guarantee that if transient load is null (RLOADn = 0), which means that 
we are not increasing the load on the sample but just maintaining it, R1 and R1M1 coincide 
and so also ΔR1 is null and plastic mechanism is not activated between two step.  
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Fig. A.3 Visco-elasto plastic numerical procedure, implemented in the F.E. code NEWCON3D. 
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Fig. A.4 Loading procedure for the visco-elasto plastic code. 
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Numerical Analyses 

The numerical analyses, here presented, for the visco-elasto and plastic algorithm are 
limited to simple cases because of the preliminary level of the actual study, which is still 
under development nowadays. This is also the reason why a small number of elements have 
been involved in the numerical simulation, together with the fact that the purpose of the 
work was to investigate the correct response of the algorithm, rather than the reproduction 
of a real case. 

As it can be seen in Fig. A.5 the test sample is quite simple. It is composed by twelve 20-node 
brick elements, where the four on top represent a semi-infinite rigid layer which allow to 
distribute uniformly a concentrated load on top to the remaining elements below. 

 

Fig. A.5 Adopted discretization for the 200×200×200 mm3 cubic sample. 

The block is constrained only at the base, whereas temperature and also relative humidity 
are free. In order to perform the first numerical controls, two different analyses, with 
different loading condition, have been carried out: 

• Analysis 1: the first type of loading procedure is that to apply a concentrate load on 
top from null value up to 400 kN. Different relationship existing between visco-elastic 
and plastic deformations has been investigated varying the time of application of the 
above mentioned load; 

• Analysis 2: the second loading procedure consists in rise the concentrated load on top 
up to 400 kN in a fix period of time (1 year), leave it constant for one year, and then 
increase its value, in the same way done before, from 400 kN to 800 kN. The purpose 
of this loading path is the test of the correct behaviour of the plastic sub-step which 
should not be activated when the load is keep constant. 

For sake of completeness, the material parameters used in the two different analyses have 
been reported in Table A.1. While in Table A.2 are shown the six parameters required in the 
subloading surface model: F0 is the initial value for F in the yield-surface, ρ and ϒ are 
respectively the constants prescribing the slopes of normal-consolidation and swelling lines, 
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whereas mc is the critical line slope, υ is the Poisson’s ratio and u is a material constant 
governing the evolution of the similarity-ratio in the subloading surface problem. Finally in 
Table A. 3 are reported the creep parameters required for the Double Power Law (see 
Section 3.3.5). 

 

Table A.1 Material parameters. 

Size [mm3] 200×200×200 

Elastic Modulus  [MPa] 28522.1 

Hydraulic Diffusivity [mm2/d] 20 

Thermal Conductivity [W/m K] 1.67 

Thermal Capacity [N/mm2 K] 2.112 

 

Table A.2 Subloading surface parameters. 

  

 

 

 

 

  

Table A. 3 Creep parameters. 

E0  [MPa] 42783.16 

φ1 4.5 

α 0.076 

m 0.296 

n 0.181 

 

Analysis 1 

As already mentioned in the previous paragraph, the first type of analysis has been carried 
out in order to evaluate the different relationship between the visco-elastic and the plastic 
strains using the same loading path but applying it in various time period. 

ʋ 0.18 

ρ' 0.10 

γγγγ 0.07 

mc 0.82 

u 25 

F0 [MPa] 62000 
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In Fig. A.6 stress-strain evolutions in time for the same point are shown. It is quite clear that, 
due to the fact that the plastic algorithm is rate independent, the plastic response is exactly 
the same for all the lines; the difference is due to the contribute of the viscous deformation 
that increases in time. 

 

Fig. A.6 Stress vs. Strain evolution in time for the same load. 

Two things must be pointed out. The former is that the stress level is governed by the plastic 
behaviour of the material, due to a stress re-distribution on the different Gauss point. The 
second is the decreasing magnitude of the visco-elastic deformation in time. The gap 
between two consecutive curves (only exception for the last one which is computed for a 
very long period time) decreases, whereas the time increases. This means that the viscous 
contribute is important in the short time period but its effects start to lose of importance 
over time, as both experimentally and theoretically expected. 

If we analyse the strains evolution in time of two curves, the first one for a 10 days period 
and the second for 1 year period, we are able to appreciate the different contribute due to 
viscosity and plasticity. For shorter time the plastic strains are bigger than the viscous one, 
despite the fact that viscous effects are more relevant in the beginning of the analysis as 
written before. This can be easily noticed observing that the two lines intersect each other 
in Fig. A.7, where the plastic strain line crosses the visco elastic one. 

On contrary in the graph of Fig. A.8 for longer period time, the two lines do not intersect 
each other and rather the visco-elastic one remains always below plastic contribute. These 
aspect can be better appreciate in Fig. A.9 and Fig. A.10. The first one is just the union of the 
previous two figures, whereas in the second one the strain evolution respect the time step is 
investigated. In detail, looking at the plastic deformation curves it can be noticed that there 
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is a perfect overlap between the 10 days analysis and the 1 year one. This is because the 
plastic algorithm doesn’t depend on time, but it’s affected only by the loading path. 

 

Fig. A.7 Strain vs. Time for a loading time equal to 10 days. 

 

 

Fig. A.8 Strain vs. Time for a loading time equal to 1 year. 
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Fig. A.9 Strain vs. Time comparison for the previous two loading times (10 days and 1 year). 

 

 

Fig. A.10 Strain vs. Iteration number comparison for two different loading times (10 days and 1 
year). 
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Analysis 2 

This second analysis differs from the previous one just because now the duration time is 
fixed and loading path is changed. It is an important test to verify the correct 
implementation of the three step procedure merging the total visco-elastic and incremental 
plastic rheology model. As it has been mentioned before and also in the Loading procedure 
paragraph it is important that plastic algorithm activates only if there is a change in the load 
applied, on the contrary if the external forces remain constant only visco elastic strains 
should be induced. 

To check this important aspect the duration of the simulation has been subdivided in three 
parts. The first one runs one year simulation with an incrementing load from a null state up 
to 400kN, in which plastic deformations are produced in combination with visco-elastic 
ones. In the second one, the load of 400 kN magnitude is maintained at the top of the sample 
for one year. In this specific case what is expected is an increase in settlements but of minor 
entity because governed only by creep. In the last part of the analysis the load start to 
increasing again from 400 kN value up to 800 kN in one year in the same manner of the first 
part. 

Result are briefly reported in Fig. A.11 and Fig. A.12. The former reports the strain evolution 
in time and as it can be seen the dashed line represent the plastic deformations evolution, 
which clearly shows an horizontal trend in the phase of constant load on top, verifying the 
correct implementation of the routine inside the code. As further validation the dotted line, 
which is the sum of the continue and dashed one (i.e. visco-elastic and plastic), presents an 
increment of strains in time during the second year simulation, which corresponds exactly 
to the creep contribute. In the third year of the analysis the stress state is such that plastic 
strains are more relevant  then creep, in fact the dotted line shows more resemblance to the 
dashed curve. 

The same behaviour can be observed in the stress-strain relationship reported in Fig. A.12. 
Clearly pure elasto-plastic curve and also the linear elastic one don’t show any change 
during the second phase of the analysis, because the stress and the strain point doesn’t 
change but keeps the same position in the graph. On the other hand both visco-elastic (i.e. 
dashed-dotted line) and the visco-elasto plastic (only dotted line) curves are affected by 
strains change proper of the creep model showing an horizontal increase of deformation 
with constant stress as was expected. 

 

Conclusion 

The two simple different analyses carried out so far verify the correct numerical 
implementation of the mixed visco-elastic and plastic algorithm but also represent a start 
point for a more complex study. The number of elements involved in the analyses, the 
loading and the boundary conditions have to be increased and adapted to reproduce a real 
case in order to validate better the model. For sake of completeness future improvements 
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involve the possibility of check temperature effects as well as the possibility of apply 
hygrometric and not only mechanics loads  on the sample. 

 

Fig. A.11 Strain vs. Time evolution, analysis 2.  

 

 

Fig. A.12 Stress vs. Strain evolution, analysis 2. 
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