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Abstract 

 

Increased oxidative stress is a common feature of cancer cells. Uncontrolled 

proliferation, in fact, requires a profound metabolic remodelling, accompanied 

by altered redox status. Moreover, reactive oxygen species (ROS) are involved in 

cell signalling, tumor growth and metastasis. Recent studies suggest that 

increased oxidative stress in cancer cells could be exploited for therapeutic 

purposes. Understanding biochemical mechanisms involved in ROS generation 

and maintenance of the cellular antioxidant potential raises the possibility of 

therapeutic targeting these pathways. In our study, we investigated the role of 

LKB1/AMPK pathway in response to oxidative stress. LKB1 is a serine threonine 

kinase whose germ-line mutations are associated with the Peutz-Jeghers 

syndrome and somatically mutated in certain tumor types, including non-small 

cell lung cancer (NSCLC) and cervical carcinoma. Through the activation of AMP-

activated protein kinase (AMPK), LKB1 modulates both anabolic and catabolic 

metabolic processes. We observed that LKB1 reconstitution in LKB1-deficient 

cancer cells significantly reduced expression of NADPH oxidase 1 (NOX1), a ROS-

producing enzyme. LKB1+ cells showed reduced endogenous oxidative stress 

and increased resistance to exogenous oxidative stress, induced by hydrogen 

peroxide, cisplatin or irradiation, compared to LKB1- cells. Moreover, we 

observed that AMPK inhibition sensitized LKB1+ cells to oxidative stress, 

whereas NOX1 inhibition reduced ROS generation and increased resistance to 

exogenous oxidative stress. In lung cancer samples, LKB1 mutations were 

strongly associated with loss of LKB1 protein but the LKB1 status was not 

associated with response to bevacizumab and platinum-based chemotherapy in 

advanced NSCLC patients. Overall, these results indicate that LKB1, via the 

activation of AMPK and the down-regulation of NOX1, confers resistance to 

oxidative stress and impairs response of cancer cells to some chemotherapeutics 

and irradiation in vitro. 
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Riassunto 

 

Una caratteristica comunemente riscontrata nel cancro è un aumento dello 

stress ossidativo, rispetto al corrispondente tessuto sano. Infatti, la 

proliferazione incontrollata delle cellule tumorali richiede un importante 

rimodellamento metabolico, che si accompagna ad alterazioni dell’equilibrio 

redox. Le specie reattive dell'ossigeno (ROS) risultano, inoltre, coinvolte nelle vie 

di segnalazione cellulare, nella crescita tumorale e nella metastatizzazione del 

cancro.  

Recenti studi suggeriscono che l’aumento dello stress ossidativo possa essere 

sfruttato a scopi terapeutici, per eliminare selettivamente le cellule tumorali. La 

comprensione dei meccanismi molecolari che governano la produzione di ROS o 

il mantenimento del potenziale antiossidante delle cellule potrebbe, infatti, 

rendere possibile un’azione diretta su questi stessi meccanismi a scopo 

terapeutico.  

In questo lavoro di tesi abbiamo valutato il ruolo della via di segnalazione 

LKB1/AMPK nella risposta allo stress ossidativo. LKB1 è una serina/treonina 

chinasi, le cui mutazioni sono state associate alla sindrome ereditaria di Peutz-

Jeghers; risulta, inoltre, mutata sporadicamente in alcuni tipi di cancro, tra cui il 

carcinoma polmonare non a piccole cellule (NSCLC) e il carcinoma della cervice 

uterina. Attraverso l’attivazione della chinasi AMPK, LKB1 modula sia processi 

anabolici, sia processi catabolici. I nostri dati hanno dimostrato come la re-

introduzione di LKB1 in cellule tumorali LKB1-mutate riduce significativamente 

l’espressione della NADPH ossidasi 1 (NOX1), un enzima coinvolto nella 

produzione di ROS. Le cellule LKB1+ manifestano, inoltre, uno stress ossidativo 

endogeno ridotto, rispetto alle cellule LKB1-, che si accompagna ad 

un’aumentata resistenza allo stress ossidativo esogeno, indotto dal perossido di 

idrogeno, dal cisplatino o dall’irradiazione. Abbiamo osservato che l’inibizione di 

AMPK porta ad una sensibilizzazione delle cellule LKB1+ allo stress ossidativo, 

suggerendo che la loro ridotta sensibilità sia mediata da AMPK; inoltre, 
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l’inibizione di NOX1 nelle cellule LKB1- si accompagna ad una ridotta produzione 

di ROS e ad una maggiore resistenza allo stress ossidativo.  

Infine, in campioni di carcinoma polmonare, le mutazioni di LKB1 sono risultate 

fortemente associate alla perdita della proteina LKB1; tuttavia, lo status di LKB1 

non è risultato associato alla risposta al bevacizumab o alla chemioterapia con 

derivati del platino in pazienti affetti da NSCLC avanzato.  

Nel loro insieme, questi risultati indicano che LKB1, attraverso l’attivazione di 

AMPK e la ridotta espressione di NOX1, conferisce resistenza allo stress 

ossidativo nelle cellule tumorali, compromettendo la risposta ad agenti 

chemioterapici o all’irradiazione in vitro, i quali modulano l'equilibrio ossidativo 

della cellula.       
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1. Introduction  

 

 

1.1 Lung cancer: pathology and treatment options 

 

Lung cancer is a malignant tumor accounting for many deaths, as it is often 

diagnosed in advanced stage and is relatively resistant to cytotoxic therapy. 

Three main types of lung cancer are recognized: non-small cell lung cancer 

(NSCLC), small cell lung cancer (SCLC) and lung carcinoid. NSCLC, the most 

common histological type of lung cancer (accounting for 85% of cases), is any 

type of epithelial lung cancer other than SCLC. NSCLC is further divided in three 

main histological subtypes: adenocarcinoma, squamous cell carcinoma and large 

cell carcinoma. SCLC originates from neuroendocrine cells in the bronchus, 

which may lead to ectopic production of hormones like ADH and ACTH, resulting 

in paraneoplastic syndromes. This type of lung cancer is rare (accounting for 10-

15% of lung cancer cases) and more rapidly metastatic than NSCLC; however, 

compared to the main lung cancer histological type, it is initially more sensitive 

to chemotherapy and radiotherapy. Lung carcinoid, finally, is a very rare 

neuroendocrine tumor (less than 5% of lung cancer cases), that grows slowly and 

rarely metastasizes. 

Lung cancer symptoms are principally coughing, poor appetite, weight loss and 

dyspnoea. In many patients, when symptoms appear, lung cancer has already 

spread from the original site. About 10% of patients do not present symptoms at 

diagnosis. The principal cause of lung cancer is smoking. Cigarette smoke 

contains at least 73 carcinogens (Hecht, 2012), including benzo[a]pyrene and 

radioisotope polonium-210. Nevertheless, about 10% of lung cancer cases occur 

in nonsmokers. These cases are usually caused by passive smoking, radon 

inhalation, asbestos (O'Reilly et al., 2007), air pollution (Chen et al., 2008) and 

inherited factors.  

From an epidemiological point of view, lung cancer is the most common cancer 

type in men (in term of incidence and mortality), while it is the third in incidence 

and the second in mortality (after breast cancer) among women. In 2012, 1.82 
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million new cases of lung cancer were reported globally, along with 1.56 million 

deaths, representing 19.4% of all deaths from cancer (World Cancer Report 

2014). The incidence of lung cancer is higher in Europe, North America and East 

Asia, while is much lower in Africa and South Asia. People most likely to develop 

lung cancer are aged over 50, with a history of smoke. From the 1960s, lung 

adenocarcinoma started to become more frequent than other types of lung 

cancer. The cause of this event is partly the introduction of filter cigarettes. 

Filters remove larger particle from tobacco smoke – thus reducing deposition in 

larger airways – but increase particle deposition in small airways, where 

adenocarcinoma arises (Charloux et al., 1997). Considered the high incidence of 

lung cancer and the prevalence of the histological type NSCLC, the latter 

constitutes a considerable social problem, with hundred thousand new cases 

every year and a very low 5-year survival rate, ranging from 9% to 15%, 

depending on the stage of disease (Wang et al., 2010b).        

As other cancers, lung cancer is initiated by mutations (caused by carcinogens) 

that activate oncogenes or inactivate tumor suppressor genes. In Caucasian 

population, the four most mutated genes in lung adenocarcinoma (representing 

40% of all lung cancer cases) are TP53, KRAS, LKB1 and EGFR (relative 

frequencies of mutations vary based on molecular subtype). From a molecular 

point of view, lung adenocarcinoma can be divided in three subtypes: magnoid, 

bronchioid and squamoid. Magnoid molecular subtype is mutated principally in 

TP53, KRAS, LKB1 and EGFR. Bronchioid subtype is enriched in EGFR mutations 

and less frequently mutated in TP53, KRAS and LKB1. Squamoid subtype, finally, 

is mutated principally in TP53, while mutation frequencies of other genes are 

low (Wilkerson et al., 2012). Based on these mutation frequencies, lung cancer is 

principally driven by inactivation of two tumor suppressor genes (TP53 and 

LKB1) and by activation of two oncogenes (KRAS and EGFR). Several other genes 

are less frequently mutated in NSCLC: LRP1B, NF1, ATM, APC, EPHA3, PTPRD, 

CDKN2A, ERBB4, KDR, FGFR4, NTRK1, RB1, NTRK3, EPHA5, PDGFRA, GNAS, LTK, 

INHBA, PAK3, ZMYND10, NRAS and SLC38A3 (Ding et al., 2008). Along with the 

four most mutated genes, these are the hypothetical 26 driver genes of NSCLC. 

Moreover, 3%-7% NSCLC cases harbour the fusion oncogene EML4-ALK (Pillai 

and Ramalingam, 2012). Further mutated genes, albeit with a very low 
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frequency, are BRAF, HER2, PIK3CA, MET, MEK1 and AKT1 (Lung Cancer 

Mutation Consortium, 2011). Specific mutations are associated with specific 

clinical characteristics of NSCLC and define different molecular subtypes of the 

pathology. For instance, EGFR mutations are prevalent in lung adenocarcinoma 

of nonsmoker patients (Ren et al., 2012), whereas KRAS mutations occur most 

commonly in adenocarcinoma of life-long smokers (D’Arcangelo and Cappuzzo, 

2012).  

Treatment of lung cancer depends on the type and stage of tumor. Therapeutic 

options are surgery, chemotherapy, radiotherapy and targeted therapies. In 

early-stage NSCLC, surgery – in particular lobectomy – is the treatment of choice. 

In advanced NSCLC (the vast majority of cases at diagnosis), chemotherapy is 

used as first-line treatment, improving survival of patients. Usually, a 

combination of two drugs is used, of which one is a platinum-based drug 

(cisplatin or carboplatin). The second drug is gemcitabine, paclitaxel, docetaxel, 

vinorelbine (Clegg et al., 2002), etoposide or pemetrexed (Fuld et al., 2010). 

Adjuvant chemotherapy – i.e. the use of chemotherapy after surgery – is 

beneficial in NSCLC, as neoadjuvant chemotherapy – i.e. chemotherapy before 

surgery. In 1980s cis-diamminedichloroplatinum(II) (CDDP or cisplatin) was 

recognized as the most effective chemotherapeutic in the treatment of lung 

cancer. The introduction of new anticancer drugs in 1990s prompted platinum 

doublet therapy, namely the combination of a platinum-based drug with a 

different chemotherapeutic. Cisplatin kills cancer cells by forming DNA crosslinks 

as monoadduct, interstrand crosslink, intrastrand crosslink or DNA-protein 

crosslink. Intrastrand crosslink is the major type of DNA damage induced by 

cisplatin. The crosslinks generated by cisplatin adducts block DNA replication and 

induce distortions in the double helix. Once inside the cells, cisplatin is activated 

through aquation reactions, which substitute the cis-chloro ligands of the drug 

with water molecules (Kelland, 2000). Aquated cisplatin is a highly reactive 

species that interacts with many endogenous nucleophiles, such as methionine, 

metallothionein and proteins, thus being susceptible to cytoplasmic inactivation. 

Cisplatin that avoids neutralization in the cytoplasm reaches the nucleus and 

reacts preferentially with guanines in DNA. The consequent DNA damage 

induces cell cycle arrest in S-phase and elicits DNA repair systems (Wagner and 
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Karnitz, 2009), which activate apoptosis if repair proves impossible. Cisplatin 

resistance is mediated by different mechanisms: reduced cellular uptake, 

increased cellular efflux, increased detoxification of the drug, inhibition of 

apoptosis or increased DNA repair (Stordal and Davey, 2007).                         

Radiotherapy is used in combination with chemotherapy in high-grade NSCLC 

with curative intent. Continuous hyperfractionated accelerated radiotherapy 

(CHART), consisting of a high dose of radiations given in a short time period 

(Hatton and Martin, 2010), is the most used in the clinic. In case of bronchus 

obstruction by cancer, brachytherapy (localized internal radiotherapy) is given to 

open the passage, allowing reduction in treatment time. As cisplatin, 

radiotherapy causes both direct and indirect DNA damage. Energy is transferred 

to tumor tissue through photon (X-radiation and γ-radiation) or charged 

particles (β-radiation). Both photons and charged particles are ionizing 

radiations, which directly ionize the atoms of the DNA molecule and indirectly 

damage cellular genetic material as a result of the ionization of water, producing 

highly reactive free radicals, principally hydroxyl radicals. Photon radiotherapy 

causes DNA damage principally through free radicals. Exposure of cells to 

ionizing radiations induces single-stranded and double-stranded DNA breaks, the 

latter being much more difficult to repair and leading to dramatic chromosomal 

aberrations and genetic deletions, thus inducing cell death. Interestingly, 

radiotherapy is combined with platinum doublet chemotherapy because 

cisplatin and other platinum-based drugs act as radiosensitizers. The ability of 

cisplatin to enhance cancer cells killing by ionizing radiation has been attributed 

to the inhibition of non-homologous end joining (NHEJ), a pathway involved in 

the repair of double-stranded DNA breaks induced by radiotherapy (Boeckman 

et al., 2005). Nevertheless, the mechanism of specificity towards cancer cells of 

this synergistic effect has not been fully understood. 

The advent of the genomic era, following completion of the Human Genome 

Project, led to the introduction of targeted therapies among the treatment 

options for NSCLC. The outcome in specific subsets of advanced NSCLC patients 

has been significantly improved by drugs targeted to mutated EGFR and EML4-

ALK fusion oncogene. EGFR-mutated cancer cells develop oncogene addiction 

towards epidermal growth factor receptor (EGFR) signaling, which becomes 
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constitutively activated in absence of the ligand (epidermal growth factor, EGF). 

EGFR is a tyrosine kinase receptor controlling a complex signalling pathway, 

leading to cell proliferation and survival, through the activation of 

RAS/RAF/MAPK pathway and PI3K pathway (Scaltriti and Baselga, 2006). 

Activating mutations in exons 18-21 (corresponding to kinase domain of the 

protein) cause the ligand-independent activation of the receptor through 

autophosphorylation and the sensitivity to the drug gefitinib (Lynch et al., 2004). 

Gefitinib (trade name Iressa) is an EGFR-specific inhibitor that binds to the 

adenosine triphosphate (ATP)-binding site in the kinase domain, inhibiting the 

activation of anti-apoptotic RAS pathway. Erlotinib (trade name Tarceva) is 

another tyrosine kinase inhibitor specific to EGFR. Gefitinib and erlotinib, by 

inhibiting the constitutive activation of EGFR, induce apoptosis in EGFR-addicted 

(mutated) cancer cells and significantly improve the outcome in NSCLC patients 

harbouring activating EGFR mutations (Costanzo et al., 2011). Importantly, as 

RAS pathway mediates the anti-apoptotic effect of constitutively activated EGFR, 

activating mutations of the oncogene KRAS predict resistance to EGFR inhibition. 

In any case, EGFR and KRAS mutations are mutually exclusive. Unfortunately, 

KRAS mutations are not druggable. Moreover, a missense mutation in exon 20 

(T790M) induces secondary resistance to EGFR-inhibiting drugs.  

EML4-ALK fusion is the result of an inversion in chromosome 2 that joins the 

echinoderm microtubule-associated protein-like 4 (EML4) gene with the 

anaplastic lymphoma kinase (ALK) gene. EML4-ALK fusions occur principally in 

adenocarcinomas arising in nonsmokers (Martelli et al., 2009) and rarely co-

occur with EGFR or KRAS mutations. ALK is a tyrosine kinase receptor controlling 

cell proliferation and survival, thus sustaining malignant phenotype when fused 

to EML4 (Soda et al., 2007). Crizotinib (trade name Xalkori) is a small kinase 

inhibitor specific to ALK and ROS1. As gefitinib and erlotinib, crizotinib 

competitively binds to the ATP-binding pockets of targeted kinases. ALK 

inhibition by crizotinib results in reduced growth, migration and invasion of 

malignant cells.                          

A further treatment option for NSCLC is antiangiogenic therapy, a targeted 

therapy not related to specific mutations. Tumor neongiogenesis is the 

formation of new blood vessels from pre-existing vasculature towards the 
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tumor. As cancer grows, in the initial phase of tumorigenesis, the existing 

vasculature becomes insufficient to provide oxygen and glucose to cells. The 

switch between a slow-growing tumor and a highly aggressive tumor is mediated 

by an angiogenic switch. During the angiogenic switch, balance between 

proangiogenic and antiangiogenic factors is perturbed in favour of the former. 

Two general mechanisms could induce neovascularization of tumors: (I) 

angiogenic activity is stimulated by the release of angiogenic molecules such as 

vascular endothelial growth factor (VEGF) or basic fibroblast growth factor 

(bFGF) by the cancer cells; (II) angiogenic activity arises from host cells recruited 

by the tumor (e.g. macrophages) or by the mobilization of proangiogenic 

molecules (produced by host cells) bound to the extracellular matrix (Folkman, 

1992). Several pro- and antiangiogenic factors have been described. 

Proangiogenic factors comprise VEGF, acidic fibroblast growth factor (aFGF), 

bFGF, epidermal growth factor (EGF), platelet-derived growth factor (PDGF), 

placenta growth factor (PIGF), insulin-like growth factor, IL-1, hepatocyte growth 

factor (HGF), transforming growth factor alpha (TGF-α), transforming growth 

factor beta (TGF-β), tumor necrosis factor alpha (TNF-α), angiogenin, 

angiopoietins, angiotensin II, ceruloplasm, fibrin, IL-8, plasminogen activator, 

polyamines, urokinase. Antiangiogenic factors comprise angiostatin, endostatin, 

eosinophilic major basic protein, high-molecular-weight hyaluronan, interferon-

γ, interferon-α, IL-4, IL-12, laminin and fibronectin peptides, nitric oxide, platelet 

factor 4, somatostatin, thrombospondin I, tissue inhibitor of metalloproteinases 

and retinoids (Sakurai and Kudo, 2011). All these pro- and antiangiogenic factors, 

along with many others not reported here, constitute a balance finely regulating 

angiogenesis. Imbalance towards proangiogenic or antiangiogenic factors 

determines whether endothelial cells proliferate to originate new blood vessels 

or rest in a non-proliferative state.       

Angiogenesis is required for invasive tumor growth and metastasis and its 

inhibition is a strategy of cancer therapy. The development of antiangiogenic 

agents followed two main strategies: inhibition of proangiogenic factors as well 

as therapy with endogenous antiangiogenic factors, such as endostatin and 

angiostatin (Folkman, 2002). The first approach applied in the clinic was the use 

of molecules with antiangiogenic activity, such as interferon-α (IFN-α). Inhibition 
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of tumor angiogenesis is achieved, currently, using neutralizing antibodies 

directed against specific proangiogenic factors or their receptors on tumor cells, 

or by inhibitors that interfere with receptor signalling. Thus, antiangiogenic 

therapy has become a targeted therapy. The most used and the first clinically 

available antiangiogenic molecule was the VEGF neutralizing monoclonal 

antibody bevacizumab (trade name Avastin). As VEGF is required for 

angiogenesis induction and is up-regulated in cancer (Plate et al., 1992), 

bevacizumab effectively inhibits tumor angiogenesis without affecting 

physiologic angiogenesis, as endothelium of normal tissues is usually quiescent. 

Bevacizumab is currently approved by the Food and Drug Administration and by 

European Medicines Agency for the treatment of certain metastatic tumors. In 

2004, bevacizumab was approved for the treatment of metastatic colorectal 

cancer in combination with standard chemotherapy. Moreover, it was approved 

for the treatment of inoperable or metastatic non-small cell lung cancer in 

combination with platinum-based chemotherapy, for the treatment of advanced 

metastatic renal carcinoma, and for the treatment of epithelial ovarian 

carcinoma in combination with paclitaxel and carboplatin. Several phase II and 

phase III clinical trials were conducted to evaluate efficacy and safety of 

bevacizumab plus chemotherapy in different types of metastatic cancer. In 

several clinical trials, bevacizumab improved progression-free survival in many 

solid malignancies when combined to standard chemotherapy, but had little 

effect on overall survival (Jubb and Harris, 2010).  

According to one hypothesis, the combination of bevacizumab with cytotoxic 

chemotherapy is more effective than chemotherapy alone because VEGF 

blockade, in addition to causing metabolic stress, induces vascular normalization 

((Jain, 2005); Figure 1.1). Blood vessels in tumors are dilated, irregular and 

excessively tortuous. The dysregulated sprouting of new blood vessels 

paradoxically causes inhomogeneous delivery of nutrient and oxygen to cancer 

cells, as angiogenic vessels are irregularly perfused. VEGF blockade by 

bevacizumab does not destroy tumor vasculature, but transiently normalizes the 

abnormal function and structure of tumor blood vessels, increasing the 

efficiency for oxygen and drug delivery.    
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Figure 1.1. While in normal tissues blood vessels are harmonically distributed, tumor vasculature 

is abnormally dilated and irregular. The addition of an antiangiogenic drug as bevacizumab 

transiently normalizes tumor blood flow resulting in improved drug delivery of cytotoxic 

chemotherapy. Continuation of antiangiogenic therapy eventually makes tumor vasculature 

inadequate to sustain tumor viability. Bottom panels: visualization of normal, abnormal, 

normalized and inadequate vasculature. Adapted from Jain, 2005.  

    

 

1.2 Liver Kinase B1 (LKB1) 

 

1.2.1 LKB1 gene: an overview 

 

Liver Kinase B1 (LKB1, also known as Serine Threonine Kinase 11, STK11) is a 

tumor suppressor gene localized on chromosome 19p13.3. Germline inactivating 

mutations in LKB1 are recognized as causative of the inherited disorder Peutz-

Jeghers syndrome (Hemminki et al., 1998), a rare autosomic dominant disease 

characterized by abnormal hyperpigmented macules on the lips and oral 

mucosa, hamartomatous polyps in the gastrointestinal tract and increased risk 

of cancer. The involvement of LKB1 mutations in this cancer-susceptibility 

syndrome highlights its role as a tumor suppressor gene.  

The protein encoded by LKB1 gene is a serine threonine kinase primarily 

involved in energy homeostasis control, as discussed below, as well as control of 

cell proliferation and polarity (Boudeau et al., 2003). Effects of LKB1 activation 
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are mediated by phosphorylation of AMP-Activated Protein Kinase (AMPK) and 

at least 12 additional AMPK-related kinases (Liu et al.): BRSK1, BRSK2, NUAK1, 

NUAK2, QIK, QSK, SIK, MARK1, MARK2, MARK3, MARK4 and MELK (Hardie, 

2004). The role of most of these ARKs and their targets in LKB1 signalling is 

currently largely unknown.  

LKB1 protein presents a nuclear localization sequence and it is localized both in 

the nucleus and in the cytoplasm. Unlike the majority of kinases, activation of 

LKB1 is phosphorylation-independent and is mediated by direct interaction with 

the pseudokinase STRADα and an armadillo-repeat containing protein, known as 

MO25α (Baas et al., 2004). In particular, STRADα assumes a conformation typical 

of active kinases in presence of ATP and MO25α; this conformation is essential 

for activation of LKB1 through an allosteric mechanism (Zeqiraj et al., 2009). 

Although LKB1 activation does not require protein phosphorylation, in human at 

least eight residues of LKB1 can be phosphorylated. LKB1 phosphorylation is 

required for the nucleocytoplasmic transport of the protein. The best 

characterized upstream kinases of LKB1 are Ataxia Telangiectasia Mutated 

(ATM), the ribosomal protein kinase p90RSK (S6K) and Protein Kinase A (PKA). 

Recently, however, novel kinases were described as upstream regulators of 

LKB1, as PKCζ (phosphorylating LKB1 at Ser307; (Xie et al., 2009) and at Ser428; 

(Song et al., 2008)) and Fyn (Yamada and Bastie, 2014). Moreover, other 

proteins lacking kinase activity are also able to regulate LKB1 activation, such as 

the orphan nuclear receptor Nur77 (Zhan et al., 2012) and Poly-ADP Ribose 

Polymerase (PARP; (Shin et al., 2009)). Considering LKB1 upstream regulators, it 

is clear that stimuli that lead to LKB1 activation are primarily stressors, like DNA 

damage and metabolic impairment. Thus, LKB1 phosphorylation represents a 

rapid response of cells to various type of stress, in order to maintain 

homeostasis and avoid cell death.      

 

 

1.2.2 LKB1 in cancer 

 

Somatic mutations of LKB1 are rarely described in human cancer. The only two 

exceptions are cervical carcinoma, in which LKB1 is the most frequently mutated 
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gene (20% of cases; (Wingo et al., 2009)) and lung cancer (Sanchez-Cespedes, 

2007), (Matsumoto et al., 2007), (Strazisar et al., 2009), (Okuda et al., 2011)  

(Osoegawa et al., 2011), (Zhong et al., 2006), (Launonen, 2005). LKB1 mutations 

are very rare in SCLC, but are more frequent in NSCLC, at least in Caucasian 

population (LKB1 mutations are rare in Asian lung cancer patients; (Koivunen et 

al., 2008)). In particular, about 30% of lung adenocarcinoma cases bear LKB1 

inactivating mutations, whereas LKB1 genetic alterations are less frequent in the 

other NSCLC subtypes (Carretero et al., 2004). 

LKB1 mutations in NSCLC are significantly associated with smoking habit and are 

more prevalent in males. Genetic alterations in LKB1 gene comprise missense, 

splicing sites and nonsense mutations, as well as promoter alterations and 

homozygous deletion of the entire gene; considering all these genetic and 

epigenetic events, loss of LKB1 expression is estimated to occur in 90% of NSCLC 

(Gill et al., 2011).  

LKB1 is the third most mutated gene in NSCLC, after TP53 and KRAS. LKB1 

mutations are significantly correlated with KRAS mutations (Matsumoto et al., 

2007) and mutually exclusive with EGFR mutations. The co-occurrence of LKB1 

and KRAS mutations drives aggressiveness of lung cancer, with shorter latency 

and more frequent metastasis (Ji et al., 2007). Given the high prevalence of LKB1 

mutations in NSCLC, a great effort has been put to understand its role in lung 

tumorigenesis.  

Inhibition of mammalian target-of-rapamycin (mTOR) pathway through AMPK 

activation is one of the most recognized mechanisms of tumor suppression by 

LKB1 (Shaw et al., 2004), (Shaw, 2009). mTOR pathway sustains and regulates 

protein synthesis, thus is an anabolic process required to promote cell 

proliferation and tumorigenesis. AMPK directly phosphorylates two proteins 

involved in mTORC1 complex formation and activity, TSC2 tumor suppressor and 

Raptor (Shaw, 2009). The classical AMPK activator metformin, however, failed to 

phosphorylate AMPK and suppress cell growth in a LKB1-deficient background, 

indicating the requirement of LKB1 to activate AMPK following AMP/ATP ratio 

increase caused by metformin treatment (Huang et al., 2008). Energy stress is a 

condition largely present in human tumors, determining AMP increase and ATP 

decrease. Consequent AMPK activation leads to mTOR inhibition and growth 
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arrest only in a LKB1-proficient milieu. As demonstrated in vitro by Dong and 

colleagues, NSCLC cell lines treated with the glycolysis inhibitor 2-deoxyglucose 

undergo energy stress, with a consequent phosphorylation of AMPK in LKB1 

wild-type cells and inhibition of mTOR activity. LKB1 mutant cells, however, are 

highly resistant to mTOR activity inhibition caused by 2-deoxyglucose and 

continue to proliferate (Dong et al., 2013b). In light of these data, LKB1/AMPK 

pathway links metabolism homeostasis and cancer growth control.  

Although the role of AMPK in cancer metabolism is widely investigated, 

however, it is not currently clear whether AMPK activation has anti- or pro-

tumorigenic effects. Various findings indicate it has both activities, depending on 

the cellular context (Faubert et al., 2015), (Liang and Mills, 2013), raising the 

possibility that also LKB1 could be both a tumor suppressor and a contextual 

oncogene. Notwithstanding the great majority of published studies indicate a 

tumor suppressor role for LKB1, in fact, it is also known that LKB1 promotes 

cancer cells resistance to chemotherapy and radiotherapy (Shin et al., 2014), 

(Saigusa et al., 2013). Moreover, two AMPK-related kinases, NUAK1 and NUAK2, 

have been described as oncogenes (Suzuki et al., 2003), (Kusakai et al., 2004), 

(Namiki et al., 2011a), (Namiki et al., 2011b). 

The role of LKB1 in tumor resistance to metabolic stress induced by 

chemotherapy and irradiation, as well as by antiangiogenic therapy, will be 

addressed in this thesis. 

 

 

1.2.3 LKB1 and energy homeostasis  

 

ATP is the key molecule for energy storage in all living cells. It is essential to all 

processes constituting the anabolic metabolism, like protein and lipid synthesis, 

and to other processes as intracellular transport of small molecules and 

organelles and function of antiport pumps that maintain ion gradients and 

membrane potential. ATP is obtained through catabolic reactions that degrade 

and finally oxidize nutrients assumed from the diet. The major biochemical 

processes that constitute the catabolic metabolism are glycolysis, Krebs cycle 

and oxidative phosphorylation (OxPhos) in mitochondria. Energy is released by 
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ATP when the last phosphate group is hydrolysed, obtaining one molecule of 

adenosine diphosphate (ADP). Two molecules of ADP can be condensed to 

obtain one molecule of ATP and one molecule of adenosine monophosphate 

(AMP).  

Given the importance of ATP, cells developed different mechanisms to control 

the AMP/ATP ratio and modulate metabolism to maintain energy homeostasis. 

The principal “energy status guardian” in mammalian cells is AMPK (Hardie and 

Carling, 1997). AMPK is a heterotrimeric protein composed by three subunits, α, 

β and γ. The latter subunit contains four Cystathionine Beta Synthase (CBS) 

repeat sequences, constituting two AMP binding sites called Bateman domains 

(Adams et al., 2004). When ATP/AMP ratio decreases due to energy stress, AMP 

binds both Bateman domains; the γ subunit undergoes a conformational change 

that exposes the catalytic domain in the α subunit. AMPK is activated when 

threonine 172 in the α subunit is phosphorylated by LKB1 or by Ca2+/Calmodulin-

dependent protein kinase kinase β (CAMKKβ; (Witters et al., 2006)). In 

mammals, the α subunit can exist as either the α1 or α2 isoform, the β subunit 

can exist as either the β1 or β2 isoform, and the γ subunit can exist as either the 

γ1, γ2 or γ3 isoform (Kemp et al., 2003). AMPK pathway is depicted in Figure 1.2. 
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Figure 1.2. AMPK pathway. Source: Cell Signaling Technology. 

 

AMPK switches off biosynthetic pathways consuming ATP and activates catabolic 

processes generating ATP. Initially described as an inhibitor of fatty acid and 

cholesterol synthesis, AMPK is an evolutionarily conserved energy stress sensor, 

since a very similar protein cascade is present in higher plants (Hardie and 

MacKintosh, 1992). AMPK promotes glucose transport, 6-phosphofructo-2-

kinase activity and glycolysis, cell survival, β-oxidation of fatty acids and eNOS 

activity, while inhibiting glucose-regulated gene transcription, fatty acid 

synthesis, ion channels, cholesterol synthesis and protein synthesis (Kemp et al., 

2003). Moreover, phosphorylated AMPK enhances mitochondrial activity 

through the activation of several transcription factors, including nuclear 

respiratory factors (NRF) 1 and 2, PPAR-α, mitochondrial transcription factor A 
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and myocyte-enhancing factor 2A in skeletal muscle cells. The consequent 

expression of proteins of the respiratory chain, enzymes of β-oxidation, proteins 

of the mitochondrial genome and the glucose transporter GLUT4 is coordinated 

by the activation of PPAR-γ co-activator (PGC) 1, a protein that maximizes 

transcriptional activity of several transcription factors (Ojuka, 2004), (Reznick 

and Shulman, 2006). 

AMPK mediates LKB1 effects on the ability of a cell to respond to low energy 

conditions, acting, finally, as a tumor suppressor (Alessi et al., 2006). Tumor 

cells, in fact, have a great demand of lipids, nucleotides and proteins to sustain 

rapidly and uncontrolled proliferation, that finally causes energy stress. The 

consequent activation of LKB1/AMPK pathway inhibits anabolic processes 

required to biosynthesis and activates catabolic pathways in order to restore the 

physiologic ATP/AMP ratio. Noteworthy, AMPK is a negative regulator of the 

Warburg effect and its ablation promotes a metabolic switch to aerobic 

glycolysis, lipid synthesis and biomass accumulation (Faubert et al., 2013). AMPK 

inhibition of the Warburg effect is a further mechanism through which LKB1 

exerts its tumor suppressor properties. NSCLC cell lines are dependent on 

glutaminolysis to sustain aerobic glycolysis, in order to maintain Krebs cycle and 

biomass accumulation (van den Heuvel et al., 2012). Inhibition of aerobic 

glycolysis by AMPK restores glucose utilization in energy obtaining through Krebs 

cycle and OxPhos. Hence, glutamine use in reverse Krebs cycle is inhibited and 

biomass accumulation, is, therefore, repressed. Thus, inhibition of aerobic 

glycolysis by AMPK accounts, partly, for the anti-proliferative activity of LKB1. 

Notwithstanding the role of LKB1/AMPK pathway in metabolic reprogramming, 

connections between LKB1 and the Warburg effect are poorly described in the 

literature. Recently, Faubert and colleagues observed that cells lacking LKB1 

display increased glucose and glutamine uptake and utilization, in order to 

provide biosynthetic intermediates for growth. This metabolic reprogramming, 

resembling the Warburg effect, is dependent on the stabilization of Hypoxia-

Inducible Factor-1α (HIF-1α) under normoxia (Faubert et al., 2014).  

Notably, LKB1 governs metabolic remodelling through several AMPK-related 

kinases. NUAK1, for instance, has been described as an inhibitor of glucose 

uptake through insulin signalling in oxidative muscle (Inazuka et al., 2012). 
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NUAK2, also known as SNARK, is involved in cellular stress responses linked to 

obesity and type 2 diabetes (Rune et al., 2009). QIK (SIK2) regulates whole body 

glucose metabolism decreasing lipolysis from white adipocytes (Park et al., 

2014). MARK2 and MARK4 negatively regulate insulin sensitivity in peripheral 

tissues (Klutho et al., 2011), (Sun et al., 2012). Although AMPK-related kinases 

are poorly characterized as metabolic modulators, the above-cited data indicate 

that LKB1 coordinates a complex cellular network to regulate cell metabolism.  

 

  

1.2.4. LKB1-driven susceptibilities in lung cancer  

 

Recent studies identified specific vulnerabilities driven by LKB1 loss in lung 

cancer cells.  

In the effort to identify novel actionable mutations in NSCLC, Kim and colleagues 

tested 230,000 synthetic small molecules and 2 whole-genome small interfering 

RNA (siRNA) libraries in a panel of 91 lung tumor-derived cell lines. Toxicity 

patterns identified in at least 30% of the NSCLC cell lines were correlated with 

genomic profiles in order to identify somatic mutations that predict sensitivity or 

resistance to the tested compounds. They found that co-occurring KRAS and 

LKB1 mutations drive coatomer complex I (COPI)-dependent lysosome 

acidification. COPI is a protein complex associated with non-chlatrin coated 

vesicles and is required for lysosomal maturation. LKB1 depletion was found 

sufficient to sensitize KRAS mutant/LKB1 wild-type cell lines to COPI depletion. 

Lysosomal maturation is necessary to support mitochondrial function in 

KRAS/LKB1 double mutant cell lines. This genetic background promotes 

energetic stress, as oncogenic RAS induces reactive oxygen species (ROS) 

accumulation, prevented by LKB1/AMPK-dependent repression of acetyl-coA 

carboxylases (ACC1/2; (Jeon et al., 2012)). LKB1 loss in a KRAS-mutated 

background probably drives dependency upon hydrolysis of lysosomal 

macromolecules for supply of mitochondrial Krebs cycle substrates. In fact, the 

ablation of COPI in KRAS/LKB1 mutated cell lines caused mitochondrial 

malfunction and cell death. According to Kim and colleagues, lysosome addiction 

in KRAS/LKB1 double mutant cell lines is driven by ACC1 activation. Co-
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occurrence of KRAS and LKB1 mutations is estimated to affect 6-18% of all NSCLC 

cases, thus the possibility to exploit a treatment based on chemical perturbation 

of lysosome maturation is of great clinical interest (Kim et al., 2013).  

KRAS/LKB1 double mutant lung cancer cell lines were used also by Liu and 

colleagues in order to define novel therapeutic targets. Through high-

throughput RNA interference screens in lung cancer cell lines from genetically 

engineered mouse models, the authors identified the deoxythymidilate kinase 

(DTYMK) as synthetically lethal with Lkb1 deficiency. DTYMK catalyses the 

conversion of deoxythymidine monophosphate (dTMP) to deoxythymidine 

diphosphate (dTDP), the first step in deoxythymidine triphosphate (dTTP) 

biosynthesis. Metabolomics analysis in Lkb1-null cells revealed that LKB1-

mutated lung cancers have deficits in nucleotide metabolism that confer 

hypersensitivity to DTYMK inhibition. Short hairpin RNA (shRNA) screens 

identified 13 genes that confer a growth disadvantage in Lkb1-null cells when 

silenced. The top four candidate genes were Dtymk, Chek1, Pdhb and Cmpk1, all 

involved in anabolic pathways leading to nucleotide synthesis and DNA 

replication. Dtymk knockdown inhibited the growth of Lkb1-null cells, while 

producing a weaker effect in Lkb1 wild-type cells. Moreover, Lkb1-null cells were 

more prone to DNA damage, as decreased expression of DTYMK respect to Lkb1 

wild-type cells caused dUTP misincorporation in DNA. These results suggest that 

DTYMK is a potential therapeutic target in LKB1-mutated NSCLC. The expression 

of DTYMK is increased in lung adenocarcinomas in comparison with normal lung, 

but is decreased in LKB1-mutated cancers, in which DTYMK inhibition would 

cause a decrease in dTTP pool, DNA damage and, finally, cell death. Moreover, 

through the induction of DNA damage, DTYMK inhibition would synergize with 

conventional chemotherapeutic drugs, such as cisplatin, that block DNA 

replication and induce DNA damage (Liu et al., 2013). 

Shackelford and colleagues identified the metabolism drug phenformin as 

selectively inducing apoptosis in KRAS/LKB1 mutated NSCLC cells lines. As 

metformin, phenformin inhibits complex I of the mitochondria, resulting in 

increase of AMP and ADP levels. Phenformin, but not metformin, induced 

apoptosis in LKB1-deficient cell lines, as a result of ATP levels drop. In fact, AMPK 

pathway is not activated by phenformin in a LKB1-mutated background, thus 
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cells are not able to react to ATP decrease caused by mitochondrial complex I 

inhibition. LKB1-deficient NSCLC cell lines do not induce mitophagy, thus 

accumulating damaged mitochondria. This causes the complete loss of 

mitochondrial potential following phenformin treatment, while in LKB1 wild-

type cells mitochondrial potential is preserved (Shackelford et al., 2013).  

Inge and colleagues discovered that LKB1 inactivation sensitizes NSCLC cell lines 

to endoplasmic reticulum (ER) stress induced by pharmacological treatment. In 

eukaryotic cells, some proteins are synthesized in the endoplasmic reticulum. 

Nutrient deprivation and hypoxia cause the accumulation of unfolded and 

misfolded proteins in the ER, inducing ER stress. 2-deoxyglucose (2-DG) showed 

anticancer activity in KRAS/LKB1 double mutant tumors. By inhibiting glucose 

dependent protein glycosylation, 2-DG aggravates ER stress in cancer cells. 

Moreover, LKB1-mutated cell lines were more sensitive to ER stress-inducing 

drugs, such as tunicamycin and brefeldin A. While unfolded protein response is 

protective in case of low ER stress, it is pro-apoptotic in case of acute ER stress. 

Thus, in LKB1-deficient cell lines ER stress induced by tunicamycin or brefeldin A 

activates pro-apoptotic unfolded protein response, which causes cell death 

through ROS production. As tunicamycin and brefeldin A are not currently used 

in the clinic, the authors tested bortezomib and celecoxib, known to induce ER 

stress. Both these drugs preferentially reduced the survival of LKB1-deficient cell 

lines compared to LKB1-proficient cell lines. These results imply that LKB1-

mutated NSCLC could be hypersensitive to ER stress aggravators (Inge et al., 

2014).  

In conclusion, the above-presented studies indicate that LKB1 mutations in 

NSCLC confer sensitivity to lysosomal maturation inhibiting treatments, to DNA 

damage inducing agents, to inhibitors of mitochondrial respiration and to ER 

stress inducing drugs, thus envisaging novel therapeutic interventions in a large 

number of cancer cases.  
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1.3 Redox state regulation and oxidative stress 

 

Energy obtaining from nutrients in eukaryote cells requires the activity of the 

mitochondrial electron transport chain. Even in cancer cells displaying the 

Warburg effect, which use prevalently glycolysis in order to obtain energy and 

biochemical intermediates, inhibition of the electron transport chain with 

mitochondrial poisons, as cyanide, is lethal. Oxidative phosphorylation (OxPhos) 

is a catabolic reaction that couples the transfer of electrons derived from Krebs 

cycle through the electron transport chain subunits to the reconstitution of 

adenosine triphosphate (ATP) from adenosine diphosphate (ADP) and 

phosphate. The final acceptor of electrons is the oxidant molecule dioxygen. 

Carbohydrate and lipid catabolism produce acetyl-CoA, a small molecule that 

enters the mitochondria and is condensed with oxaloacetate to produce citrate, 

the first intermediate of Krebs cycle. Krebs cycle or citric acid cycle is an 

amphibolic metabolic pathway (participating in both catabolic and anabolic 

processes), which finally oxidizes the two carbon atoms from acetyl-CoA in two 

carbon dioxide molecules and derives a GTP molecule (directly used to 

reconstitute ATP), three NADH molecules and a FADH2 molecule. These reduced 

cofactors are able to transport high-energy electrons to the mitochondrial 

respiratory chain. The transfer of electrons through the four complexes 

constituting the mitochondrial electron transport chain is coupled with the 

transfer of protons across the mitochondrial inner membrane. The 

electrochemical proton gradient constituted through the activity of 

mitochondrial respiratory chain drives ATP synthesis by the complex V, ATP 

synthase. NADH transfers two electrons to complex I of the mitochondrial 

respiratory chain and is oxidized to NAD+; FADH2 transfers two electrons to 

complex II of the mitochondrial respiratory chain and is oxidized to FAD. 

Moreover, succinate produced by Krebs cycle is oxidized to fumarate at the level 

of complex II, also known as succinate dehydrogenase. Electrons derived from 

NADH, FADH2 and succinate are transported through complex III to complex IV, 

where molecular oxygen accepts electrons and is converted into water. The 

reactions of oxidation and reduction that sustain the activity of the 
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mitochondrial electron transport chain contribute to regulate the cellular redox 

state.  

A small percentage of transported electrons reacts prematurely with oxygen, 

generating superoxide (O2
.-), a reactive oxygen species (ROS), principally at 

complex I and complex III ((Li et al., 2013); Figure 1.3). Thus, OxPhos is the 

principal site of ATP production in eukaryote cells, but also a potential source of 

oxidative stress.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Electron leakage to oxygen from complex I in the mitochondrial matrix and from 

complex III both in the intermembrane space and in the matrix. Adapted from Li et al., 2013.  

 

Superoxide rapidly reacts with water generating oxygen and two other ROS, 

hydrogen peroxide (H2O2) and hydroxyl ion (OH-). The latter ROS is very reactive 

and oxidizes every molecule in its path, causing damage to protein and 

principally to lipids (lipid peroxidation), but not to DNA, as its high reactivity 

prevents it from reaching the nucleus. H2O2, instead, is less reactive and has a 

longer half-life. Thus, this ROS is able to cause oxidative damage to DNA 

molecule. Both H2O2 and hydroxyl ion are able to initiate lipid peroxidation, a 

chain reaction mechanism causing important damage to cell membrane. In this 

process, a reactive oxygen species removes a hydrogen atom from a 

polyunsaturated fatty acid, producing water and a fatty acid radical. Fatty acid 
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radicals are not stable and rapidly react with molecular oxygen to produce 

peroxyl-fatty acid radicals. These radicals, subsequently, react with other 

polyunsaturated fatty acids, producing fatty acid radicals and lipid peroxides, 

thus establishing a chain reaction (Figure 1.4). The final products of lipid 

peroxidation are reactive aldehydes, as malondialdehyde and 4-hydroxynonenal, 

which may be mutagenic and carcinogenic. For instance, malondialdehyde reacts 

with deoxyadenosine and deoxyguanosine in DNA, forming DNA adducts 

(Marnett, 1999). Thus, use of oxygen by mitochondria is advantageous as it 

allows a great efficiency of energy derivation from nutrients, but at the same 

time is harmful, as metabolic by-products (ROS) generated by mitochondrial 

respiration cause self-propagating oxidative stress.  

 

 

 

Figure 1.4. Scheme of lipid peroxidation sequential reactions. Adapted from (Jairam et al., 2012).  

 

Noteworthy, ROS are not only metabolic by-products. Immune system cells, 

principally neutrophils, produce ROS (through the non-mitochondrial respiratory 

burst catalyzed by NADPH oxidase) in order to kill pathogens (Segal, 2005). 

Moreover, low levels of ROS are physiologically important in intracellular 
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signalling (Remacle et al., 1995). In fact, many human proteins, such as the 

transcription factor NF-κB, through their thiol groups, are redox-sensitive. 

Protein phosphorylation, one of the most important mediators of cell signalling, 

is a redox-sensitive process (Sen, 2000). ROS production during hypoxia is 

necessary to HIF-1α stabilization and to many of the cellular responses to 

hypoxia (Hamanaka and Chandel, 2010). Moreover, ROS are able to inhibit 

different phosphatases, such as PTP1B, PTEN and MAPK phosphatases, through 

oxidation of the reactive cysteine in the catalytic domain (Hamanaka and 

Chandel, 2010). Given the importance of ROS as signalling second messengers, 

excessive oxidative stress is detrimental as it disrupts intracellular signalling. 

In order to cope with oxidative stress, cells have developed different antioxidant 

systems. An antioxidant is a molecule that inhibits oxidation of other molecules, 

by scavenging ROS. Antioxidants terminate chain reactions involved in ROS 

generation, as lipid peroxidation, by removing free radical intermediates. Cells 

maintain different types of antioxidants, such as glutathione, vitamin C, vitamin 

A, vitamin E, as well as enzymes such as catalase, superoxide dismutase and 

various peroxidases.  

One of the most important antioxidants, with a central role in maintaining 

cellular redox state, is glutathione (GSH). GSH is a tripeptide constituted by 

glutamate, glycine and cysteine, with a gamma peptide linkage between the 

carboxyl group of the glutamate side-chain and the amine group of cysteine. By 

acting as an electron donor, GSH reduces disulfide bonds within proteins to 

cysteine. In this process, glutathione is converted to its oxidized form (GSSG). 

Once oxidized, glutathione can be reduced back by glutathione reductase, using 

NADPH as an electron donor. Under physiological conditions, glutathione is 

prevalently present in cells in its reduced form.  

GSH is not an essential nutrient and is synthesized by cells from the amino acids 

L-cysteine, L-glutamic acid and glycine. Cells produce glutathione in two ATP-

dependent steps: (I) γ-glutamylcysteine is synthesized via the enzyme glutamate 

cysteine ligase (GCL). This reaction is the rate-limiting step in glutathione 

synthesis (Lu, 2009); (II) glycine is added to the C-terminal of γ-glutamylcysteine 

via the enzyme glutathione synthase (GSS). GSH participates directly in 

neutralization of reactive oxygen species and in maintenance of exogenous 
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antioxidants, such as vitamin C and E, in their reduced form. Moreover, 

glutathione is involved in DNA synthesis (Suthanthiran et al., 1990) and in iron 

metabolism (Kumar et al., 2011). Given the central role of glutathione in 

different functions essential to cellular viability, cells need to maintain an 

elevated GSH/GSSG ratio. This can be achieved through de novo glutathione 

synthesis and by reduction of GSSG to GSH. Therefore, two cellular processes are 

central in reduced glutathione replenishment: (I) methionine conversion to 

cysteine through methionine cycle (dependent on folate cycle) and 

transsulfuration pathway are essential for de novo glutathione synthesis, 

whereas (II) the pentose phosphate pathway, producing NADPH, is critical for 

GSSG reduction to GSH. 

Oxidative stress is induced both by increased ROS production and by 

antioxidants depletion ((Scandalios, 2002); Figure 1.5). Cell proliferation is the 

principal cause of excess endogenous ROS production, as a consequence of 

anabolic reactions necessary to DNA, protein and lipid synthesis, which require 

mitochondrial metabolism. Thus, cancer cells are characterized by an increased 

steady-state ROS level compared to normal cells. Moreover, Warburg effect is 

associated with increased ROS levels through decreasing cancer cells antioxidant 

capacities (El Sayed et al.). In fact, glucose has an essential antioxidant function, 

acting as substrate of the pentose phosphate pathway (Cardone et al., 2012), 

and its excessive use in glycolysis causes a decrease of reducing equivalents (i.e. 

NADPH). Furthermore, pyruvate (but not lactate) has a potent antioxidant 

function (El Sayed et al., 2012).                                          
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Figure 1.5. Under physiological conditions, cells are able to balance levels of ROS and 

antioxidants, resulting in redox equilibrium. Cells are subjected to oxidative stress when ROS 

production is increased or antioxidant species are depleted. Adapted from Scandalios, 2002.   

 

Consequently, cancer cells are subjected both to increased ROS production and 

to antioxidant species depletion. Nevertheless, cancer cells redox state is 

paradoxical: increased ROS production is associated with increased antioxidant 

species production, as adapting response becoming essential to cancer 

progression and chemoresistance (Traverso et al., 2013). Thus, redox equilibrium 

in cancer cells is shifted to a higher level. Cancer cells develop an antioxidant 

species addiction and are more susceptible to a further increase in oxidative 

stress. This biochemical property of tumor cells can be exploited for therapeutic 

purposes (Trachootham et al., 2009). In fact, the vast majority of cancer 

therapies works in part causing oxidative stress (either by inducing ROS 

production or by depleting glutathione and other antioxidant species). As 

steady-state oxidative stress is higher in cancer cells than in normal cells, 

exogenous ROS stress or antioxidants depletion increase oxidative stress 

overcoming the threshold separating cell survival from cell death only in cancer 

cells (Figure 1.6).  



28 
 

 

  

 

 

 

 

 

 

 

 

Figure 1.6. Exogenous ROS stress increases ROS levels both in normal and in cancer cells. In the 

latter, however, ROS levels exceed the cell death threshold, as basal oxidative stress is higher. 

Adapted from Trachootham et al., 2009.  

 

Antioxidants supplementation in diet has always been considered beneficial, as 

ROS may have a pathogenetic role in many diseases, like cancer. In fact, 

oxidative damage of DNA causes mutations and plays an important role in the 

initiation and progression of multistage carcinogenesis (Waris and Ahsan, 2006). 

Nevertheless, given the role of antioxidant species in chemoresistance and in 

cancer cells survival to oxidative stress, antioxidants supplementation could be 

detrimental and, as sustained by the Nobel Prize James Watson, “free-radical-

destroying antioxidative nutritional supplements may have caused more cancers 

than they have prevented” (Watson, 2013). Conversely, as mentioned, the vast 

majority of cancer therapies kills cancer cells by increasing oxidative stress 

beyond the cell death threshold. This mechanism of action is shared by different 

chemotherapeutic agents and by radiotherapy (Borek, 2004). Some of the 

traditional anticancer drugs that induce lethal oxidative stress in cancer cells are 

cisplatin (Casares et al., 2012), paclitaxel and other taxanes (Alexandre et al., 

2007), doxorubicin (Tsang et al., 2003) and cytarabine (Iacobini et al., 2001). 

Moreover, new anticancer drugs inducing oxidative stress have been developed, 

as elesclomol (Kirshner et al., 2008), a small molecule that exerts its anticancer 
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function selectively through the induction of ROS, unlike the above-mentioned 

drugs.  

Cancer cells react to oxidative stress inducing drugs by up-regulating antioxidant 

systems, principally glutathione and thioredoxin. GSH is essential to neutralize 

ROS induced by cancer treatments and to detoxify anticancer compounds by 

conjugating to electrophilic drugs through the enzyme glutathione-S-transferase 

(Townsend and Tew, 2003). For instance, the role of glutathione in the 

regulation of cisplatin resistance has been well documented (Chen and Kuo, 

2010). During chemotherapy and radiotherapy, glutathione is continuously 

depleted. Oxidative stress induces activation of Nrf2 (Nuclear Factor Erythroid 2 

– Related Factor 2; NFE2L2) – Keap1 (Kelch-like Erythroid cell-derived protein 

with CNC homology Associated Protein 1) signalling pathway and NF-κB pathway 

(Schreck et al., 1992). Nrf2-Keap1 pathway is one of the most important cell 

defense and survival pathways (Jaramillo and Zhang, 2013). Nrf2 transcription 

factor (TF) protects cancer cells from oxidative stress by increasing the 

expression of different antioxidant genes. Among them, GCLC (glutamate 

cysteine ligase, catalytic subunit), GSR (glutathione reductase) and xCT (cystine 

transporter), involved in glutathione metabolism, TXN1 (thioredoxin) and 

TXNRD1 (thioredoxin reductase 1), involved in thioredoxin production and 

utilization, GPX2 (glutathione peroxidase 2), involved in glutathione utilization, 

G6PD (glucose-6-phosphate dehydrogenase) and PGD (phosphogluconate 

dehydrogenase), involved in NADPH production (Gorrini et al., 2013). Nrf2 binds 

to the Antioxidant Response Elements (ARE) in the upstream regulatory region 

and enhances the expression of the above-cited genes in cancer cells treated 

with pro-oxidants or certain chemotherapeutic agents. Interestingly, as other 

TFs, Nrf2 has a dual role: its expression in normal cells maintains redox 

equilibrium by eliminating carcinogens and, thus, contributing to cancer 

prevention; its common overexpression in cancer cells, instead, is associated 

with acquired chemoresistance and an aggressive phenotype (Lau et al., 2008).  

Considering the anticancer properties of ROS-inducing therapies and the pro-

tumorigenic role of a sustained antioxidant response in treated cancer cells, the 

combination of oxidative stress-inducing therapy with an antioxidant-depleting 

therapy would be promising. An instance is the combination of the thioredoxin 
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and glutathione inhibiting and ROS generating agent arsenic trioxide (As2O3) 

with ascorbic acid, which is converted in its oxidizing form dehydroascorbic acid 

(Watson, 2013). Unfortunately, clinically usable drugs able to lower glutathione 

levels in cancer cells are not yet available. Use of the glutathione synthesis 

inhibitor L-buthionine-(S,R)-sulfoximine (BSO) causes up-regulation of Nrf2 

transcription factor that, consequently, enhances glutathione synthesis (Lee et 

al., 2008). Motexafin gadolinium is a porphyrin molecule that, through a futile 

redox recycling, transfers hydrogen atoms from antioxidants to produce ROS. 

Unfortunately, its combination with radio- and chemotherapies has shown only 

modest life extensions in clinical trials (Watson, 2013). Recently, the natural 

product piperlongumine from the Piper longum plant was revealed as a potential 

anticancer drug. Most interesting, this molecule exerts its activity binding to the 

active sites of several key cellular antioxidant enzymes, as glutathione-S-

transferase, thus blunting antioxidant response of cancer cells to oxidative stress 

inducing therapies (Raj et al., 2011). The discovery, in the future, of antioxidants 

blocking agents, as piperlongumine, with a clinical efficacy and safety and the 

combination of these molecules with traditional – such as cisplatin or 

doxorubicin – or novel – such as elesclomol – ROS-inducing drugs may improve 

the outcome of cancer treatments. 

In this thesis work, we investigated the role of LKB1 tumor suppressor gene, 

commonly mutated in certain types of human cancer, in the response to 

oxidative stress induced by different agents, such as some chemotherapeutics – 

comprising cisplatin, paclitaxel, doxorubicin and arsenic trioxide – and γ-

irradiation. Moreover, we explored a novel mechanism of action accounting for 

differential sensitivity to exogenous oxidative stress in LKB1-deficient and LKB1-

proficient cancer cell lines.  
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2. Aim of the study 

 

Lung cancer is the primary cause of cancer death worldwide in men and the 

second in women, after breast cancer. Non-small cell lung cancer (NSCLC), the 

most frequent histologic type, accounts for 85-90% of diagnosed lung cancer 

cases. Incidence of lung cancer in 2012 was 1.82 million new cases globally, with 

1.56 million deaths (World Cancer Report 2014). NSCLC represents, hence, a 

remarkable socio-economic problem. Treatment of inoperable NSCLC comprises 

a combination of chemotherapy with radiotherapy. With the advent of the 

genomic era, several oncogene mutations were identified in NSCLC and 

exploited for the development of novel targeted therapies. For instance, 

gefitinib and erlotinib are used to treat EGFR-mutated non-small cell lung 

cancer, while the inhibitor crizotinib is beneficial in a subset of NSCLC patients 

characterized by the EML4-ALK fusion oncogene. Moreover, the anti-VEGF 

monoclonal antibody bevacizumab, in combination with carboplatin and 

paclitaxel, is one of the targeted therapy options available for advanced NSCLC, 

improving the progression-free survival of treated patients. 

Regarding targeted therapies, stratification of patients, that is the identification 

of patients that can benefit from the administration of a targeted drug, is 

necessary. Nevertheless, stratification criteria for antiangiogenic therapy and for 

radio-chemotherapy are currently unavailable. These therapies share the 

induction of metabolic perturbations and oxidative stress as mechanisms of 

action. Energy stress and the related induction of reactive oxygen species (ROS) 

production activate the tumor suppressor LKB1, the third most mutated gene in 

NSCLC (30% of adenocarcinoma cases, corresponding to hundred thousand new 

events every year). LKB1 controls a complex metabolic reprogramming 

coordinated by the downstream kinase AMPK. Our previous findings indicated 

that AMPK modifies the pathologic response of tumor xenografts to anti-VEGF 

therapy (Nardo et al., 2011). In particular, experimental tumors bearing a 

dysfunctional LKB1/AMPK pathway developed large necrotic areas following 

VEGF blockade. These results raise the possibility that LKB1/AMPK pathway 



32 
 

could protect cancer cells from energy stress induced by antiangiogenic 

treatment and that LKB1-mutated tumors could be more sensitive to 

antiangiogenic therapy. Moreover, previous findings suggest that activation of 

LKB1/AMPK pathway may lead to acquired chemoresistance and radioresistance 

in treated cancer cells, through decreased oxidative stress.  

In light of these considerations, the aim of this study is to determine, in an in 

vitro model, the role of the tumor suppressor gene LKB1 in the response of 

tumor cells to oxidative stress induced by some chemotherapeutics and by 

radiation therapy. Moreover, a second aim of this project is to establish whether 

LKB1 mutational status can be used as a stratification criterion for NSCLC 

patients treated with a combination of chemotherapy and radiotherapy and 

whether LKB1-mutated patients could benefit from an oxidative stress-inducing 

therapeutic regimen. In parallel, we propose to investigate the possible 

correlation between LKB1 mutational status and AMPK activation with clinical 

outcome in bevacizumab-treated advanced NSCLC patients.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



33 
 

3. Materials and methods 

 

 

3.1 Cell lines and culture conditions 

 

In this thesis work, the following cell lines were used: 

 

� A549: NSCLC cell line, purchased from ATCC (Manassas, VA, USA) and 

cultured in DMEM-F12 medium (Sigma-Aldrich; Saint Louis, MO, USA) 

supplemented with 10% fetal bovine serum (EuroClone; Milan, Italy), 2 

mM Ultraglutamine 1 (Lonza; Basel, Switzerland) and 1% Anti-Anti 

(antibiotic-antimycotic mix, Life Technologies; Carlsbad, CA, USA). 

 

� H460: NSCLC cell line, purchased from ATCC and cultured in RPMI-1640 

medium (EuroClone) supplemented with 10% fetal bovine serum 

(EuroClone), 10 mM Hepes buffer (Lonza), 2 mM Ultraglutamine 1 

(Lonza), 1 mM Na Pyruvate (Lonza) and 1% Anti-Anti (Life Technologies). 

 

� HeLa: cervical carcinoma cell line, purchased from ATCC and cultured in 

DMEM High Glucose medium (EuroClone) supplemented with 10% fetal 

bovine serum (EuroClone), 2 mM Ultraglutamine 1 (Lonza) and 1% Anti-

Anti (Life Technologies). 

 

� NCI-H1975: NSCLC cell line, purchased from Banca Biologica e Cell Factory 

(IRCCS San Martino, Genova) and cultured in RPMI-1640 medium 

(EuroClone) supplemented with 10% fetal bovine serum (EuroClone), 10 

mM Hepes buffer (Lonza), 2 mM Ultraglutamine 1 (Lonza), 1 mM Na 

Pyruvate (Lonza) and 1% Anti-Anti (Life Technologies). 
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� NCI-H1650: NSCLC cell line, purchased from Banca Biologica e Cell Factory 

and cultured in RPMI-1640 medium (EuroClone) supplemented with 10% 

fetal bovine serum (EuroClone), 10 mM Hepes buffer (Lonza), 2 mM 

Ultraglutamine 1 (Lonza), 1 mM Na Pyruvate (Lonza) and 1% Anti-Anti 

(Life Technologies). 

 

Cells were cultured in humidified atmosphere at 37°C, with 5% CO2. In all 

experiments, cells were trypsinized and counted using Countess™ Automated 

Cell Counter (Life Technologies). 

 

 

3.2 Retroviral vectors production 

 

Viral vectors were generated in our laboratory using HEK 293T human 

embryonic kidney cell line, due to its high transfection capacity. In particular, 

cells were transfected with 3 plasmids using calcium phosphate transfection 

method. The viral vectors produced in this way belong to the HIV-based vectors 

called SIN (self-inactivating). The following plasmids were used in retroviral 

vectors production: 

 

� A plasmid coding the transgene of interest 

� A packaging plasmid (gag-pol gpt), coding HIV gag and pol genes 

� pHCMV-G plasmid driving the expression of Vesicular Stomatitis Virus 

protein G (VSV-G), which allows to extend the tropism of the virus.   

 

 

3.3 Isogenic cell lines generation 

 

A549, H460 and HeLa cells present inactivating mutations in LKB1 gene, causing 

the loss of the protein. In order to generate isogenic pairs for LKB1 expression, 
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LKB1-deficient cells were transduced with a retroviral vector coding for LKB1 

wild-type (RV-LKB1 wt) or with the empty vector (RV-pBABE). 

Cells transduced with RV-pBABE retroviral vector were renamed “LKB1-“, 

whereas cells transduced with RV-LKB1 wt retroviral vector were renamed 

“LKB1+”.  

Retroviral vectors contained, in addition to insert sequence, a puromycin 

resistance gene; this allows to select transduced cells with the aminonucleoside 

antibiotic puromycin, using the following concentrations: 

 

� A549 and H460 cells: 4 µg/ml 

� HeLa cells: 2 µg/ml 

 

 

3.4 Gene silencing through RNAi 

 

3∙105 cells per well were plated in 6-wells tissue culture plates and incubated, in 

order to allow adhesion. The following day, a mix of Opti-MEM® I Medium with 

GlutaMAX™ (Life Technologies) and Stealth RNAi™ siRNA 20 nM (Life 

Technologies) was blended, in equal volumes, with a mix of Opti-MEM® I 

Medium with GlutaMAX™ and Lipofectamine® RNAiMAX Transfection Reagent 

(Life Technologies), after 5 minutes of incubation at room temperature. 

Following additional 20 minutes of incubation, in order to permit the formation 

of cationic liposomes covered with siRNA molecules, 500 µl of final mix were 

added, drop by drop, to adherent cells, along with 1.5 ml of culture medium.  

Lipofection was blocked after 6 hours, through removal of medium with 

liposomes, two washings with medium without serum and addition of culture 

medium.  

Sequences of Stealth RNAi™ siRNAs are reported in Table I. 
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Table I. Stealth siRNAs used in this thesis work. 

 

 

3.5 ROS-inducing treatments 

 

Cells used in this thesis work were treated with hydrogen peroxide (H2O2, Sigma-

Aldrich), or with different chemotherapeutic agents known to induce ROS 

production, or with ionizing radiations, in order to study cell response to 

oxidative stress. 

Chemotherapeutics comprised: 

 

� Cisplatin (Santa Cruz Biotechnology; Santa Cruz, CA, USA), purchased in 

powder, was resuspended in NaCl 0.9% to 3 mM concentration, stored in 

the dark and used within 24 hours from preparation 

� Paclitaxel (trade name Anzatax®, Hospira Italia; Naples, Italy), purchased 

as a solution with concentration 7 mM 

� Doxorubicin (Accord Healthcare Italia; Monza, Italy), purchased as a 

solution with concentration 2 mg/ml 

� Arsenic trioxide (As2O3), kindly gifted by Dr. Luigi Quintieri (Department 

of Pharmacology and Anaesthesiology, University of Padua) as a solution 

with concentration 25 mM. 

Stealth siRNA name Stealth siRNA code Sense sequence 

siRNA Negative Control Low GC Duplex AGCUACACUAUCGAGCAAUUAACUU 

siLKB1
(1)

 STK11HSS110329 UCUACAACAUCACCACGGGUCUGUA 

siLKB1
(2)

 STK11HSS110330 GGAAAUUCAACUACUGAGGAGGUUA 

siLKB1
(3)

 STK11HSS110331 CCACGGGUACUUCUGUCAGCUGAUU 

siAMPKα1
(1)

 PRKAA1HSS108454 CCCAUCCUGAAAGAGUACCUUCUU 

siAMPKα1
(2)

 PRKAA1HSS108455 CCCUCAAUAUUUAAAUCCUUCUGUG 

siAMPKα1
(3)

 PRKAA1HSS108456 ACCAUGAUUGAUGAUGAAGCCUUAA 

siAMPKα2
(1)

 PRKAA2HSS108457 ACCGAGCUAUGAAGCAGCUGGAUUU 

siAMPKα2
(2)

 PRKAA2HSS108458 GCAGGUCCUGAAGUUGAUAUCUGGA 

siAMPKα2
(3)

 PRKAA2HSS108459 CCCACUGAAACGAGCAACUAUCAAA 

siNOX1
(1)

 NOX1HSS178285 CCGGUCAUUCUUUAUAUCUGUGAAA 

siNOX1
(2)

 NOX1HSS178286 GGUCUCACUGGAGUGAUCAUGACAA 

siNOX1
(3)

 NOX1HSS178287 UGGGAUGAUCGUGACUCCCACUGUA 



37 
 

γ-irradiation was carried out using the biological irradiator IBL-437C (CIS Bio 

International; Gif-sur-Yvette, France), subjecting cells to different doses of γ-

radiations: 12 Gy for H460 and HeLa cells, 14 Gy for A549 cells.  

 

In order to confirm ROS involvement in the cellular responses observed, analysis 

were performed using the glutathione precursor N-acetyl-L-cysteine (NAC, 

Sigma-Aldrich). Adherent cells were pre-treated for 16 hours with 2 mM NAC 

and, subsequently, treated with different ROS-inducing agents. 

 

 

3.6 Inhibitors 

 

In this thesis work, the following inhibitors were used in functional studies: 

 

� Compound C (Merck Millipore; Billerica, MA, USA), an AMPK inhibitor, 

was purchased in powder and resuspended in DMSO 

� Apocynin (Abcam; Cambridge, UK), a NADPH oxidase inhibitor, was 

purchased in powder and resuspended in DMSO. 

 

 

3.7 Measurement of intracellular ROS levels 

 

Cells treated with different ROS-inducing treatments were stained with 10 µM 

CM-H2DCFDA (Life Technologies), according to manufacturer’s instructions. 

DCFDA is a ROS detection cell-permeable probe, which is oxidized to a 

fluorescent non-permeable probe by endogenous H2O2. Following a staining of 

30 minutes, cells were washed, resuspended in PBS and analysed using a 

FACSCalibur™ flow cytometer (BD Biosciences; San Jose, CA, USA). 

ROS production over time was measured using CellROX® Reagent (Life 

Technologies), according to manufacturer’s instructions. Fluorescence was 

assayed every 15 minutes for 1 hour using a BD LSRII Flow Cytometer (BD 

Biosciences).    



38 
 

3.8 Apoptosis analysis 

 

3∙105 cells per well were plated in 6-wells tissue culture plates and incubated, in 

order to allow adhesion. The following day, cells were treated with 20 µM 

cisplatin or 2 mM H2O2. Irradiated cells were plated immediately after γ-

irradiation. 

Apoptosis was evaluated following 24, 48 and 72 hours of treatment with 

cisplatin or γ-irradiation and following 30, 90, 180, 270 and 360 minutes of 

treatment with H2O2, using Annexin-V-FLUOS Staining Kit (Roche Applied 

Sciences; Penzberg, Germany). Cells were stained with 2 µl Annexin V, 2 µl 

propidium iodide and 100 µl Hepes buffer, according to the manufacturer’s 

instruction. Following an incubation of 15 minutes in the dark, staining was 

blocked with 200 µl Hepes buffer and apoptosis was evaluated by flow 

cytometry using an EPICS Coulter XL with Expo32 software (Beckman Coulter; 

Brea, CA, USA).  

 

 

3.9 Cytotoxicity evaluation 

 

Cytotoxicity following treatment with cisplatin, paclitaxel, doxorubicin and 

arsenic trioxide was evaluated using Sulforhodamine B (SRB) assay. SRB is a dye 

that specifically binds and, thus, stains, cellular proteins, whose content is 

directly proportional to cell number and viability.  

7.5∙103 cells per well were plated in 96-wells tissue culture plates and incubated, 

in order to allow adhesion. Subsequently, cells were treated with increasing 

doses of different chemotherapeutics for 24, 48 and 72 hours. Cell proteins were 

fixed by culture medium removal and addition, in each well, of 125 µl cold 

trichloroacetic acid (TCA, Sigma-Aldrich), 10% w/v, diluted in culture medium 

without serum. Following 1 hour of incubation at 4°C, plates were washed 5 

times with water, in order to remove TCA traces. Proteins in each well were, 

then, stained with 50 µl SRB (Sigma-Aldrich) 0.4% diluted in acetic acid 1% for 15 

minutes. After 4 washings with acetic acid 1% and 1 washing with water, in order 

to completely remove excess SRB, plates were left to dry over-night.  
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Stained proteins were dissolved in 150 µl Tris 10 mM, leaving the plates in 

agitation for 15 minutes at room temperature. Finally, absorbance at 540 nm 

was measured using VICTOR™ X4 Multilabel Plate Reader with WorkOut 2.5 

software (PerkinElmer; Waltham, MA, USA). 

 

 

3.10 Clonogenic potential evaluation 

 

Clonogenic potential of isogenic cell lines differing in LKB1 expression was 

measured by counting colonies formed after plating cells at limiting dilutions, 

following treatments with cisplatin, arsenic trioxide, γ-irradiation and the 

combination of cisplatin and γ-irradiation. 

Cells were plated at very low density in 6-wells tissue culture plates (125 cells 

per well in standard culture conditions or 500 cells per well in culture condition 

with chemotherapeutics) and incubated, in order to allow adhesion. The 

following day, cells were treated with different concentrations of cisplatin or 

arsenic trioxide, with or without 2 mM NAC. After 2 hours, drugs were removed 

and cells were maintained in standard culture medium. 

Irradiated cells were plated at very low density in 6-wells tissue culture plates 

(125 cells per well) immediately after γ-irradiation. 

Regarding the combination of cisplatin treatment and γ-irradiation, 3∙106 cells 

were plated in T75 tissue culture flasks and incubated, in order to allow 

adhesion. The following day, cells were treated with low concentration of 

cisplatin (5 mM for A549 cells, 1 mM for H460 cells). After 24 hours of 

treatment, cells were trypsinized, counted and γ-irradiated (14 Gy for A549 cells, 

12 Gy for H460 cells). Immediately after γ-irradiation, cells were plated at very 

low density in 6-wells culture plates (500 and 2500 cells per well). 

Colonies (obtained after about 15-20 days) were fixed in cold methanol for 10 

minutes at 4°C. Following 1 washing with phosphate buffered saline (PBS), 

colonies were stained with crystal violet 33%, diluted in PBS, for 2 minutes at 

room temperature. Excess crystal violet was removed with 1 washing with water 

and stained colonies were left to completely dry. 
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Colonies were counted by two independent operators and number of colonies 

obtained from different treatments was normalized on number of colonies 

obtained from standard culture conditions.  

 

 

3.11 Cell cycle analysis  

 

The distribution in the different phases of cell cycle was determined in cisplatin-

treated or in γ-irradiated cells using flow cytometry analysis with propidium 

iodide. A549 cells were synchronized through culture in serum deprivation for 

24 hours and, subsequently, treated with 20 µM cisplatin or γ-irradiated with 14 

Gy. After 24 and 48 hours, 1∙106 cells were trypsinized, washed and resuspended 

in 1 ml of GM solution (glucose 1.1 mM, NaCl 0.14 M, KCl 5 mM, Na2HPO4 1.5 

mM, KH2PO4 1.1 mM, EDTA 0.5 mM). Cells were fixed and permeabilized by 

adding 3 ml of cold 100% ethanol, drop by drop, and preserved at -20°C until the 

staining. Fixed cells were washed and resuspended in 500 µl of propidium iodide 

(100 µg/ml), containing DNase-free RNase (12 µg/ml; Sigma-Aldrich). Following 1 

hour of incubation, cells were analysed using a FACSCalibur™ flow cytometer 

with ModFit software (BD Biosciences). 

 

 

3.12 RNA extraction, reverse transcription PCR (RT-PCR) 

and quantitative RT-PCR (qRT-PCR) 

 

Total RNA was isolated using RNeasy® Mini Kit (Qiagen; Venlo, Netherlands), 

according to manufacturer's instruction. cDNA was synthesized from 0.3 to 1 µg 

of total RNA using High Capacity RNA-to-cDNA Kit (Life Technologies). Reverse 

transcription was followed by quantitative PCR using Platinum® SYBR® Green 

(Life Technologies). Real-time PCRs were performed in an ABI Prism 7900 HT 

Sequence Detection System (Life Technologies). Results were analyzed using the 

ΔΔCt method with normalization against HMBS gene expression. Primers used 

for qRT-PCR are reported in Table II. 
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Gene Forward primer Reverse primer 

LKB1 5'-CTGACCTGCTGAAAGGGATG-3' 5'-CAGCCGGAGGATGTTTCTT-3' 

AMPKα1 5'-GGAGCCTTGATGTGGTAGGA-3' 5'-GTTTCATCCAGCCTTCCATTC-3' 

AMPKα2 5'-ACCAGCTTGCAGTGGCTTAT-3' 5'-CAGTGCATCCAATGGACATC-3' 

NOX1 5'-GGGGTCAAACAGAGGAGAGC-3' 5'-CCACTTCCAAGACTCAGGGG-3' 

HMBS 5'-GGCAATGCGGCTGCAA-3' 5'-GGGTACCCACGCGAATCAC-3' 

   
 

Table II. List of primers used in this thesis work. 

 

Expression levels of 21 genes involved in oxidative metabolism were analysed by 

RealTime Ready Custom Panels (Roche Applied Sciences). Genes included in 

Custom Panels were selected based on their role in oxidative metabolism: 

 

� Glutathione synthesis: GCLC (glutamate-cysteine ligase, catalytic subunit), 

GCLM (glutamate-cysteine ligase, modifier subunit), GSS (glutathione 

synthetase) 

� Glutathione degradation: GGT6 (gamma-glutamyltransferase 6), GGT7 

(gamma-glutamyltransferase 7) 

� Transcription factors involved in glutathione metabolism: NFE2L2 

(nuclear factor erythroid 2-like 2; NRF2), PPARGC1A (peroxisome 

proliferator-activated receptor gamma coactivator 1 alpha; PGC-1α), JUN 

(jun proto-oncogene) 

� Glutathione adducts transporters: ABCC1 (ATP-binding cassette sub-

family C member 1), ABCC2 (ATP-binding cassette sub-family C member 2) 

� Enzymes involved in antioxidant defenses: CAT (catalase), TXN 

(thioredoxin), SOD2 (superoxide dismutase 2), GPX1 (glutathione 

peroxidase 1), GSR (glutathione reductase), MSRA (methionine sulfoxide 

reductase A) 

� Enzymes involved in ROS production: NOX1 (NADPH oxidase 1) 

� Enzymes involved in transsulfuration pathway: CBS (cystathionine β-

synthase), CTH (cystathionine γ-lyase) 



42 
 

� Cystine and cysteine transporters: SLC7A11 (solute carrier family 7 

member 11; xCT), SLC7A10 (solute carrier family 7 member 10; ASC1). 

 

 

3.13 Mutational analysis 

 

3.13.1 Sanger sequencing 

 

LKB1 gene was sequenced in a small cohort of advanced NSCLC patients treated 

with a combination of bevacizumab and chemotherapy, using Sanger sequencing 

method. Genomic DNA (gDNA) was obtained from sections of formalin fixed – 

paraffin embedded (FFPE) biopsies using QIAamp® DNA Micro Kit (Qiagen), 

according to manufacturer’s instructions. LKB1 exons were amplified through 

PCR, starting from 50 ng of gDNA, using primers listed in Table III.  

 

Table III. Primers used in PCR and Sanger sequencing reactions. 

 

Exons were amplified through Taq enzyme activation for 10 minutes at 95°C and 

45 cycles, composed of 1 minute at 95°C, 1.5 minutes at 60°C for exon 3 or at 

62°C for exons 1, 2, 4-9, and 2 minutes at 72°C, followed by 10 minutes at 72°C.  

PCR products were purified with illustra™ ExoProStar™ Kit (GE Healthcare Life 

Sciences; Pittsburgh, PA, USA). Purified amplicons were sequenced using 

BigDye® Terminator v1.1 Cycle Sequencing Kit (Life Technologies) and PCR 

Exon Forward primer Reverse primer 

1 5′-GAAGGGAAGTCGGAACACAA-3 5′-GGAGAGAAGGAAGGAAGACAGA-3′ 

2 5′-TTCTCTCTAGGGAAGGGAGGAG-3′  5′-ATTGCCACAATGGCTGACTT-3′ 

3 5′-CTCCAGAGCCCCTTTTCTG-3′ 5′-CAGTGTGGCCTCACGGAAAGGA-3′ 

4 5′-AGCTGGGCCTGTGGTGTT-3 5′-AACGGGTGCAGTGCCTGT-3′ 

5 5′-ACCCTCAAAATCTCCGACCT-3′  5′-TCCATAAAGTAAGCACCCCCTA-3′ 

6 5′-CTCCTAGGGCGTCAACCAC-3′  5′-ACACCCCCAACCCTACATTT-3′ 

7 5′-CTTAGGAGCGTCCAGGTATCAC-3′  5′-CTCAACCAGCTGCCCACAT-3′ 

8 5′-GAGCTGGGTCGGAAAACTG-3′ 5′-AGAAGCTGTCCTTGTTGCAGA-3′ 

9 
5′-TAAGTGCGTCCCCGTGGT-3′ 5′-AGCCTCACTGCTGCTTGC-3′ 

5′-CAGGACAGGTCCCAGAAGAG-3′ 5′-CGGTCACCATGACTGACTAGC-3′ 
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primers ten-fold diluted. Finally, sequences were purified using BigDye 

XTerminator® Purification Kit (Life Technologies), according to manufacturer’s 

instructions, and separated on a 3730xl DNA Analyzer (Life Technologies) 

capillary sequencer. Obtained electropherograms were analysed using Chromas 

software (Technelysium Pty Ltd.; South Brisbane, Australia) and identified 

mutations were mapped on LKB1 protein, using ExPASy Translate Tool 

(http://web.expasy.org/translate).  

 

3.13.2 Next-Generation Sequencing  

 

High-coverage sequencing of TP53, KRAS, LKB1 and EGFR genes was performed 

using Ion Torrent™ technology (Life Technologies). gDNA was quantified using 

Quant-iT™ PicoGreen® dsDNA Assay Kit (Life Technologies), in order to provide 

50 ng of high-quality double-stranded gDNA to GeneDX (Gaithersburg, MD, 

USA), which performed sequencing analysis using a custom Ion AmpliSeq™ 

panel. Identified variants were mapped using a free online mapping tool 

(SNPnexus; http://www.snp-nexus.org).  

 

 

3.14 Western blot analysis 

 

Proteins from cells treated under different conditions were extracted using a 

lysis buffer (NP-40 0.2%, NaCl 30 mM, Tris HCl pH 7.5 10 mM, EDTA 0.4 mM, NaF 

50 mM, Na3VO4 1 mM and protease inhibitor cocktail) and lysates obtained were 

quantified using QuantumMicroProtein Bicinchoninic Acid Protein Assay Kit 

(EuroClone). 35 µg of proteins were denaturated and loaded in a NuPAGE® 

Novex® 4-12% Bis-Tris Midi Protein Gel (Life Technologies). Separated proteins 

were blotted on a nitrocellulose membrane (Amersham; Buckinghamshire, UK) 

for 2 hours at 400 mA. Membranes were saturated for 1 hour with PBS - 0.1% 

Tween - 5% milk and incubated over night with primary antibodies at 4°C, 

according to manufacturer’s instructions. The following primary antibodies were 

used in this thesis work: 
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� Rabbit anti pAMPKThr172 (Cell Signaling Technology; Danvers, MA, USA) 

� Rabbit anti AMPK (Cell Signaling Technology) 

� Rabbit anti pACCSer79 (Cell Signaling Technology) 

� Rabbit anti ACC (Cell Signaling Technology) 

� Rabbit anti pLKB1Ser428 (Cell Signaling Technology) 

� Mouse anti LKB1 (Santa Cruz Biotechnology)  

� Mouse anti α-tubulin (Sigma-Aldrich). 

 

Membranes were washed 2 times for 15 minutes (un-phosphorylated antigens) 

or 3 times for 5 minutes (phosphorylated antigens) and incubated for 1 hour 

with horseradish-conjugated secondary antibodies (Amersham-Pharmacia; Little 

Chalfont, UK). Detection was obtained using Western Lightning plus ECL reagents 

(PerkinElmer), containing Luminol, which is oxidized by horseradish peroxidase, 

resulting in light emission at 425 nm. Signals emitted were acquired using 

ChemiDoc™ XRS system (Bio-Rad; Hercules, CA, USA). 

 

 

3.15 Immunohistochemistry analysis (IHC) 

 

Sections of 5 µm were cut from FFPE biopsies, deparaffinazed in xylene for 30 

minutes and, subsequently, rehydrated with decreasing concentrations of 

ethanol (100%, 95% and 80%) and finally washed with water. Antigen retrieval 

was achieved using a 10 mM citrate buffer pH 6 for 20 minutes at 95°C. 

Endogenous peroxidases were inactivated with a solution of 3% H2O2 for 5 

minutes. Subsequently, nonspecific binding sites were saturated by incubating 

sections for 1 hour in PBS - 5% goat serum and primary antibodies were added 

for 1 hour. The following primary antibodies were used: 

 

� Mouse anti LKB1 (Ley 37D/G6, Santa Cruz Biotechnology) 
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Incubation with biotinylated secondary antibody (Vector Laboratories; 

Peterborough, UK) for 30 minutes was followed by incubation for 30 minutes 

with VECTASTAIN® ABC Kit (Vector Laboratories), composed of avidin and 

biotinylated horseradish peroxidase. Antigens were stained by incubating 

sections with 3,3’-diaminobenzidin (DAB, DAKO; Glostrup, Denmark), diluted 

according to manufacturer’s instructions. Finally, sections were counterstained 

with Mayer’s haematoxylin (Sigma-Aldrich) for 1 minute and staining was fixed 

with increasing concentrations of ethanol (80%, 95% and 100%) and with xylene. 

Slides were mounted with Entellan™ New (Merck Millipore) and analysed by two 

anatomopathologists with a semiquantitative method, attributing a score 

ranging from 0 to 18, based on percentage of stained cells and on intensity of 

staining. In the statistical analysis, LKB1 staining was considered negative if 

score=0, positive if score ≥1. 

 

 

3.16 Immunofluorescence analysis (IFA)    

 

Cells were plated (5∙104 per well) in 4-wells BD Falcon™ CultureSlides (BD 

Biosciences) and incubated, in order to allow adhesion. The following day, cells 

were fixed in 1% formaldehyde for 20 minutes, washed with PBS and 

permeabilized in PBS - 0.2% Triton X-100 (Sigma-Aldrich) for 10 minutes. Cells 

were, then, washed with PBS and saturated with PBS - 0.1% Triton X-100 - 1% 

BSA - 5% goat serum for 1 hour. Primary antibody, diluted in PBS - 0.1% Triton X-

100 according to manufacturer's instructions, was added and incubated over 

night at 4°C. The following primary antibodies were used in this thesis work: 

 

� Rabbit anti NOX1 (Abcam, ab55831) 

� Rabbit anti NOX1 (Sigma-Aldrich, HPA035299) 

 

Following three washings in PBS, cells were incubated with Alexa Fluor® 

conjugated secondary antibody (Life Technologies) diluted in PBS - 0.1% Triton X-
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100 for 1 hour in the dark. Nuclei were stained with TO-PRO®-3 Iodide (Life 

Technologies), diluted 1:1000 in PBS, for 15 minutes in the dark.  

Immunofluorescence signals were visualized on a Zeiss Axiovert 100M confocal 

microscope (Carl Zeiss AG; Oberkochen, Germany). 

 

 

3.17 Characterization of aqueous metabolites using Nuclear 

Magnetic Resonance (NMR) 

 

Metabolic changes following LKB1 reconstitution and treatment with 2 mM H2O2 

were investigated by measuring aqueous metabolites through NMR. 1∙107 cells 

were lysed with 1 ml of water, fixed with 10 ml of cold 77% ethanol and frozen 

at -80°C. Samples were analysed through NMR in collaboration with Dr. Egidio 

Iorio (Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, 

Rome).   

 

    

3.18 Measurement of total and reduced glutathione using 

High-Performance Liquid Chromatography (HPLC) 

 

Total and reduced glutathione levels were measured in H2O2 – treated cells using 

HPLC. 4∙105 cells were washed thrice with cold PBS and lysed with 100 µl of cold 

HCl 0.01M. Lysates were preserved at -80°C until analysis. HPLC were performed 

in collaboration with Dr. Luigi Quintieri (Department of Pharmacology and 

Anaesthesiology, University of Padua). 

 

 

3.19 Statistical analysis 

 

Results were expressed as mean value ± SD. Statistical analysis of data was 

performed using Student’s t-test or Mann-Whitney test. Survival analysis was 

performed using Kaplan-Meier estimator and Log-rank test. Fisher’s exact test 
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was used to study correlation between mutational status and IHC score. 

Differences were considered statistically significant when p≤0.05.  
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4. Results 

 

 

4.1 Characterization of isogenic cell lines 

 

To study the role of LKB1 in response to oxidative stress - inducing agents, 

isogenic tumor cell lines were generated. Genetic heterogeneity in cancer cells 

complicates any attempt to correlate genetic traits with cellular behaviour, since 

several mutations in oncogenes or in tumor suppressor genes could account for 

observed phenomena. Isogenic cell lines can overcome this issue, as only the 

gene of interest is differently expressed, whereas the genetic background is 

identical.  

In this thesis work, three different LKB1-deficient cancer cell lines were used: 

A549 and H460 (derived from NSCLC) and HeLa (derived from cervical 

carcinoma). These cell lines bear inactivating mutations in LKB1 gene (p.Q37* in 

A549 and H460 cell lines, a 25 kb deletion in HeLa), resulting in protein loss. 

LKB1 expression was restored in these cancer cell lines by transduction with a 

retroviral vector coding for wild-type LKB1 cDNA whereas transduction with an 

empty retroviral vector provided a control comparable with parental (LKB1-

deficient) cells. 

LKB1 is known to be the master kinase that phosphorylates and activates AMPK 

under stress conditions, such as glucose deprivation, as demonstrated in 

(Hardie, 2004). To evaluate whether LKB1/AMPK pathway was functional in 

LKB1-reconstituted cells, LKB1+ and LKB1- cell lines were cultivated in tissue 

culture medium with or without glucose. Western blot analysis revealed 

pathway activation in LKB1+ cells, as evidenced by phosphorylation of AMPK and 

of its downstream target ACC, following glucose deprivation for 24 hours. 

Moreover, LKB1- cells showed higher cell death following glucose withdrawal 

compared to LKB1+ cells, as demonstrated by apoptosis evaluation (Figure 4.1).  
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Figure 4.1. LKB1 reconstitution in LKB1-deficient cell lines A549, H460 and HeLa. A. Western blot 

analysis following glucose deprivation revealed AMPK pathway activation in LKB1+ cells, as 

demonstrated by AMPK and ACC phosphorylation. B. Apoptosis evaluation by Annexin V staining 

showed increased sensitivity to glucose deprivation in LKB1-, compared to LKB1+ cells, in A549 

and HeLa - but not H460 - cell lines. Annexin V positivity is calculated relatively to staining of cells 

cultivated with glucose, equal to 1. The average fluorescence intensity is indicated as mean ± 

standard deviation of three independent experiments. *p<0.05 and **p<0.01 compared with 

cells cultivated with glucose. 
§
p<0.05 compared to LKB1- cells cultivated under glucose starvation.     

 

Therefore, LKB1 wild-type gene transfer restored LKB1/AMPK responsiveness to 

energy stress, leading to increased cell survival under nutrient starvation 

conditions.  
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4.2 LKB1+ cells are characterized by reduced expression of 

NOX1 and PPARGC1A 

 

Recent studies suggest that the LKB1/AMPK pathway regulates cellular redox 

state. AMPK is necessary to maintain NADPH homeostasis, thus controlling redox 

balance (Jeon et al., 2012). Moreover, glucose deprivation promotes ROS 

generation by mitochondria, as glucose has antioxidant functions (Cardone et 

al., 2012). Hence, high levels of cell death under glucose starvation could be due 

to  increased oxidative stress in LKB1- tumor cells. 

To evaluate the implications of LKB1 loss on redox homeostasis and resistance to 

oxidative stress, we assessed by quantitative PCR the expression of 21 genes 

involved in redox homeostasis in LKB1- and LKB1+ cell lines. Remarkably, in all 

cell lines tested several antioxidant genes were relatively down-regulated in 

LKB1+ compared to LKB1- cells (Figure 4.2).  

Moreover, each cell line showed increased expression of some antioxidant genes 

in LKB1+ variant, but such genes were not shared among all cell lines analysed. 

The most consistently down-regulated genes in LKB1+, compared to LKB1- cells, 

were NOX1 and PPARGC1A. NOX1 encodes for NADPH oxidase 1, a homologue of 

the macrophage NOX2, responsible for the respiratory burst in response to 

pathogens. NADPH oxidases catalyse the transfer of one electron from NADPH 

to oxygen, generating superoxide or H2O2, thus increasing oxidative stress. 

PPARGC1A encodes for the mitochondrial master regulator PPAR-γ Coactivator 1 

Alpha (PGC-1α), a transcriptional coactivator that promotes mitochondria 

biogenesis and improved oxidative metabolism. By stimulating mitochondria 

biogenesis and improving electron transport chain activity, PGC-1α accelerates 

ROS production as by-products of cellular respiration. 
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Figure 4.2. Gene expression analysis in A549 (A), H460 (B) and HeLa cells (C). Globally, oxidative 

metabolism related genes were down-regulated in LKB1+, compared to LKB1- cells. NOX1 and 
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PPARGC1A were the most down-regulated genes in all cell lines tested. The mRNA relative 

expression is calculated relatively to LKB1- cells (equal to 1) and is indicated as mean ± standard 

deviation of three independent experiments. *p<0.05, **p<0.01 and ***p<0.001 compared with 

mRNA relative expression in LKB1- cells.   

 

Higher expression of NOX1 and PGC-1α in LKB1- cells, compared to LKB1+ cells, 

suggested that these cells might have increased endogenous oxidative stress.  

 

 

4.3 LKB1 deficiency and basal oxidative stress 

 

Increased expression of NOX1 and PGC-1α in LKB1- cells, compared to LKB1+ 

cells, could result in an over-production of ROS. To test this hypothesis, we 

measured basal ROS levels by flow cytometry using CellROX® Reagent. Oxidative 

stress was measured every 15 minutes for 1 hour under standard culture 

conditions. In A549 and HeLa cell lines, fluorescence increased more rapidly in 

LKB1- cells, indicating heightened ROS production (Figure 4.3A). In line with 

these findings, we detected increased amounts of oxidized glutathione (GSSG) 

[calculated as total - reduced glutathione (GSH)] in LKB1- cells (Figure 4.3B).   
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Figure 4.3. ROS generation is increased in some LKB1- cells, compared to their LKB1+ counterpart.        

A. Measurement of steady-state ROS generation over time in isogenic cell lines by CellROX® 

Reagent. B. Determination of total and reduced glutathione by HPLC in A549 isogenic cell line. 
§§§

p<0.001 compared with reduced GSH amount in LKB1- cells.  

 

 

4.4 LKB1 reconstitution in LKB1-deficient cell lines confers 

resistance to H2O2-induced oxidative stress 

 

Sensitivity of cancer cells to ROS-inducing agents is determined by their higher 

basal oxidative stress, compared to normal cells. In order to test whether the 

higher endogenous oxidative stress in LKB1-deficient cells conferred sensitivity 

to exogenous oxidative stress, we treated LKB1- and LKB1+ cell lines with 2 mM 

H2O2. ROS production was higher in LKB1- cells, compared to LKB1+ cells, as 

measured by DCFDA staining (Figure 4.4A). Moreover, results indicated that 

H2O2 caused apoptosis in a time-dependent manner in both LKB1- and in LKB1+ 

cells. LKB1 reconstitution, however, protected cells from H2O2-induced oxidative 

stress, leading to a significant decrease in cell death (Figure 4.4B).  

Pre-treatment of cells with N-acetyl-L-cysteine (NAC), a precursor of glutathione, 

significantly decreased cell death in LKB1- cells, whereas it did not affect survival 
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of LKB1+ cells (Figure 4.4C). This finding showed that apoptosis following H2O2 

treatment was due to oxidative stress. 

 

 

Figure 4.4. LKB1 protected cancer cells from oxidative stress induced by H2O2. A. ROS production, 

measured by DCFDA staining, was invariably higher in LKB1- compared to LKB1+ cells. DCFDA 

positivity is calculated relatively to staining of untreated cells, equal to 1. The average 

fluorescence intensity is indicated as mean ± standard deviation of three independent 

experiments. **p<0.01 and ***p<0.001 compared with untreated (CTRL) cells. 
§
p<0.05 and 
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§§§
p<0.001 compared to LKB1- cells. B. Apoptosis levels in LKB1- and in LKB1+ cells following 2 

mM H2O2 treatment for 30, 90, 180, 270 and 360 minutes. Annexin V positivity is calculated 

respect to untreated cells staining, set equal to 1. The average fluorescence intensity is indicated 

as mean ± standard deviation of three independent experiments. *p<0.05, **p<0.01 and 

***p<0.001 compared to untreated (0 minutes) cells. 
§
p<0.05 and 

§§
p<0.01 compared to LKB1- 

cells treated with H2O2 for the same time. C. Pre-treatment with NAC reduced apoptosis in LKB1- 

cells. The average fluorescence intensity is indicated as mean ± standard deviation of three 

independent experiments. *p<0.05, **p<0.01 and ***p<0.001 compared with untreated (CTRL) 

cells. 
§§

p<0.01 compared to LKB1- cells treated with 2 mM H2O2. 
#
 p<0.05 compared to cells 

treated with 2 mM H2O2 in absence of pre-treatment with NAC. 

 

 

4.5 LKB1 regulates glutathione homeostasis following 

oxidative stress 

 

To get a broader view of the metabolites altered following oxidative stress, we 

measured cytoplasmic aqueous metabolites levels in LKB1-deficient and in LKB1-

proficient cells. A549 LKB1- and LKB1+ cells were treated with 2 mM H2O2 for 90 

minutes and lysed in water. Cellular extracts were delivered to Dr. Egidio Iorio 

(Istituto Superiore di Sanità, Rome) and analysed by Nuclear Magnetic 

Resonance (NMR) spectroscopy. NMR analysis revealed marked reduction of 

glutathione level following H2O2 treatment in LKB1- cells (54.2%), compared to 

LKB1+ cells (28.6%; Figure 4.5A). Besides glutathione, LKB1- and LKB1+ cells also 

differed in phosphocholine levels. With regard to glutathione, these findings 

were confirmed by HPLC in A549 LKB1- and LKB1+ cells treated with 2 mM H2O2 

for 90 and 270 minutes (Figure 4.5B).  
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Figure 4.5. A. NMR spectroscopy analysis of aqueous metabolites in untreated cells (black) and in 

H2O2–treated cells (red). Glutathione (indicated by GS) is evidenced by red arrows. Inserts:  

quantification of glutathione levels in untreated cells (black bars) and in H2O2–treated cells (light 

grey bars). Indicated metabolites are: glutathione (GS), myo-inositol (m-ins), total choline (tCho), 

total creatine (tCr), aspartate (Asp), glutamate (Glt), glutamine (Gln), acetate (Acet), alanine (Ala), 
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lactate (Lac), valine (Val), isoleucine (Ile) and leucine (Leu). B. Determination of total and reduced 

GSH levels by HPLC in LKB1- and in LKB1+ cells following 90 and 270 minutes of H2O2 treatment.  

 

These results indicated that LKB1 controlled glutathione homeostasis and that 

LKB1-deficient cells had reduced capacity to restore glutathione levels under 

oxidative stress.   

 

 

4.6 Insights into the mechanism linking LKB1 to regulation 

of oxidative stress 

 

As AMPK is a key mediator of LKB1 activities on cellular physiology, we first 

investigated the possible involvement of AMPK in response to oxidative stress. 

To this end, we used both pharmacological inhibition and gene silencing 

approaches. Inhibition of AMPK activity with Compound C (CC) sensitized LKB1+ 

cells to H2O2-induced cell death. Unexpectedly, CC increased apoptosis also in 

LKB1- cells (Figure 4.6A), which should have reduced AMPK activation. However, 

Western blot analysis evidenced that H2O2 treatment caused AMPK activation 

also in LKB1- cells, likely via a LKB1-independent pathway, thus explaining the 

effects of CC in these cells. siRNA-mediated AMPK silencing sensitized both 

LKB1+ and LKB1- cells to H2O2 treatment (Figure 4.6B). Collectively, these data 

indicated that AMPK mediates the effects of LKB1 on oxidative stress.  
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Figure 4.6. AMPK is involved in LKB1-dependent response to oxidative stress. A. AMPK inhibition 

with Compound C (CC) sensitized both LKB1+ and LKB1- cells to H2O2-induced cell death. Annexin 

V positivity is calculated relatively to untreated cells staining, set equal to 1. Average fluorescence 

intensity is indicated as mean ± standard deviation of three independent experiments. *p<0.05, 

**p<0.01 and ***p<0.001 compared to untreated (0 minutes) cells. 
§
p<0.05 and 

§§
p<0.01 

compared to untreated (0 µM CC) cells. Western blot analysis confirmed inhibition of AMPK both 

in LKB1- and in LKB1+ cells following H2O2 treatment. B. siRNA-mediated AMPK silencing 

increased cell death in both LKB1- and LKB1+ cells following H2O2 treatment. The average 

fluorescence intensity is indicated as mean ± standard deviation of three independent 

experiments. *p<0.05, **p<0.01 and ***p<0.001 compared to untreated (0 minutes) cells. 
§
p<0.05, 

§§
p<0.01 and 

§§§
p<0.001 compared to siRNA cells. Western blot analysis disclosed 

reduced AMPK activation in siAMPK-treated cells.   

 

Next, we examined whether NOX1 accounted for increased sensitivity to 

exogenous oxidative stress in LKB1- cells. Immunofluorescence analysis revealed 

that NOX1 protein expression was strongly reduced in LKB1+, compared to LKB1- 

cells (Figure 4.7).  
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Figure 4.7. NOX1 protein assessment in A549 LKB1- and LKB1+ cells through immunofluorescence 

analysis using two different αNOX1 antibodies. 

 

NOX1 silencing using two different siRNAs reduced steady-state ROS generation 

in A549 LKB1- cells, whereas it had negligible effects in LKB1+ cells (Figure 4.8). 

 

 

 

Figure 4.8.  NOX1 silencing with siNOX1
(2)

 (A) and siNOX1
(3)

 (B) reduced endogenous ROS 

production in A549 LKB1- cells, whereas it had minimal effects in LKB1+ cells. ***p<0.001 

compared to 0 minutes. 
§§§

p<0.001 compared to LKB1- siRNA cells. 

 

Intriguingly, NOX1 silencing conferred resistance to exogenous oxidative stress in 

LKB1- cells (Figure 4.9A). In line with these findings, inhibition of NOX1 with the 
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specific inhibitor apocynin significantly increased resistance of LKB1- cells to 

H2O2 - induced cell death, whereas leaving unaffected response to oxidative 

stress in LKB1+ cells (Figure 4.9B).  

Altogether, these data indicated that NOX1 - through the generation of 

endogenous ROS - is implicated in increased sensitivity to exogenous oxidative 

stress observed in LKB1- cells. It remains to be established whether the 

suppressive effects of LKB1 on NOX1 expression is AMPK-mediated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9. NOX1 contributes to apoptosis following oxidative stress. A. NOX1 silencing reduced 

apoptosis of LKB1- cells following treatment with H2O2. The average fluorescence intensity is 
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indicated as mean ± standard deviation of three independent experiments. **p<0.01 and 

***p<0.001 compared to untreated (0 minutes) cells. 
§
p<0.05 and 

§§§
p<0.001 compared to siRNA 

cells. B. NOX1 inhibition with apocynin significantly attenuated cytotoxic effects of H2O2 in LKB1- 

cells, with no effects in LKB1+ cells. Annexin V positivity is calculated relatively to untreated cells, 

set equal to 1. Average fluorescence intensity is indicated as mean ± standard deviation of three 

independent experiments. *p<0.05, **p<0.01 and ***p<0.001 compared to untreated (0 

minutes) cells. 
§
p<0.05 compared to untreated (0 µM apocynin) cells.       

      

Down-regulation of PPARGC1A in LKB1+ cells could be a parallel mechanism 

accounting for resistance of LKB1+ cells to exogenous oxidative stress. However, 

future studies are needed to investigate this hypothesis. 

 

 

4.7 LKB1 deficiency sensitizes cancer cells to cisplatin- and 

to irradiation-mediated cytotoxic effects 

 

Cisplatin-based chemotherapy is the first-line therapeutic regimen in many 

cancers, including NSCLC. Besides damaging DNA by forming adducts, cisplatin 

induces oxidative damage by inducing ROS production (Casares et al., 2012). 

Moreover radiotherapy, another therapeutic option for cancer patients, is 

known to kill cancer cells by ionization of water that produces highly reactive 

hydroxyl ions. In order to test whether LKB1 influenced cellular response to 

cisplatin, LKB1- and LKB1+ isogenic cell lines were treated with different 

concentrations of cisplatin. Cytotoxicity assessment using sulphorhodamine B 

(SRB) assay revealed that A549, H460 and HeLa LKB1+ cells were more resistant 

to cisplatin than their LKB1- counterpart (Figure 4.10A). These results were 

confirmed by apoptosis evaluation following a single dose of cisplatin. NAC 

supplementation rescued cell viability following cisplatin, supporting the 

involvement of ROS in cisplatin-induced cell death (Figure 4.10B). Moreover, 

acute cisplatin treatment reduced clonogenic potential more markedly in LKB1- 

cells, compared to LKB1+ cells, as evidenced by the much reduced colony 

number in LKB1- cells 15 days after cisplatin administration. 

The cytotoxic effects of cisplatin in LKB1- cells were partially due to oxidative 

stress, as suggested by restoration of clonogenic potential in the presence of 2 
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mM NAC, whereas antioxidant supplementation did not improve the clonogenic 

potential of LKB1+ cells (Figure 4.10C). Cisplatin, both through ROS generation 

and by forming adducts, induces DNA damage and cell cycle arrest. We assessed 

distribution in the different phases of cell cycle following 24 and 48 hours of 

treatment with 20 µM cisplatin in A549 LKB1- and LKB1+ cells. In both cell lines, 

cisplatin treatment blocked cell cycle in S phase. However, LKB1+ cells 

accumulated rapidly and almost completely in S phase, increasing the 

percentage of cells in G1/G0 phase at 48 hours, whereas LKB1- cells accumulated 

slowly in S phase, maintaining an elevated proportion of cells in G1/G0 phase 

(Figure 4.10D). These results suggested that LKB1+ cells might engage promptly 

DNA damage response systems, repairing DNA damage induced by the drug, 

whereas LKB1- cells might be less prompt to respond to DNA damage. 
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Figure 4.10. LKB1- cells are highly responsive to cisplatin. A. Measurement of cytotoxicity 

following different doses of cisplatin by the SRB assay. Representative images of three 

independent experiments are shown. *p<0.05, **p<0.01 and ***p<0.001 compared to LKB1- 

cells. IC50 values indicate the concentration of cisplatin that reduced cell viability to 50%. NE: not 

evaluable. B. Apoptosis evaluation following a single dose of cisplatin. Annexin V positivity is 

expressed relatively to untreated cells (CTRL), set equal to 1. Average fluorescence intensity is 

indicated as mean ± standard deviation of three independent experiments. **p<0.01 and 

***p<0.001 compared with untreated (CTRL) cells. 
§§

p<0.01 and 
§§§

p<0.001 compared to LKB1- 

cells treated with 20 µM cisplatin. 
##

p<0.01 and 
###

p<0.001 compared to cells treated with 20 µM 

cisplatin in absence of pre-treatment with NAC. C. Clonogenic assay in A549 cells following 20 µM 

cisplatin treatment. Colony number is calculated relatively to untreated (CTRL) cells. Average 

colony number is indicated as mean ± standard deviation of three independent experiments. 

***p<0.001 compared with untreated (CTRL) cells. 
§§§

p<0.001 compared to LKB1- cells treated 

with 20 µM cisplatin. 
##

p<0.01 compared to cells treated with 20 µM cisplatin in absence of pre-

treatment with NAC. D. Cell cycle profile of A549 cells 24 and 48 hours after cisplatin treatment. 
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Ionizing radiation is known to induce oxidative stress by ionization of water. We 

tested the response of LKB1- and LKB1+ cells to γ-irradiation. DCFDA staining of 

irradiated cells revealed that ROS generation was significantly increased in LKB1- 

cells, compared to LKB1+ cells (Figure 4.11A). Clonogenic potential was 

significantly greater in irradiated LKB1+ versus LKB1- cells and the detrimental 

effects of irradiation were attenuated by pre-treatment with 2 mM NAC, but this 

effect was limited to LKB1- cells (Figure 4.11B). Moreover, γ-irradiation was 

more cytotoxic to LKB1- cells, compared to LKB1+ cells, as evidenced by 

apoptosis evaluation. NAC pre-treatment partly rescued viability of irradiated 

LKB1- cells (Figure 4.11C). Irradiation induces severe DNA damage, eventually 

leading to cell cycle arrest. We assessed the cell cycle profile both 24 and 48 

hours after γ-irradiation (14 Gy) of A549 LKB1- and LKB1+ cells. Irradiation 

blocked the cell cycle in G2/M phase in both cell lines. However, irradiated LKB1+ 

cells accumulated more rapidly and extensively in G2/M phase, reducing the 

percentage of cells in S phase, compared to LKB1- cells (Figure 4.11D). 

Altogether, these results suggested that LKB1+ cells might activate DNA damage 

response systems more efficiently than LKB1- cells. 
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Figure 4.11. LKB1+ cells are relatively resistant to irradiation. A. ROS generation in irradiated A549 

LKB1- and LKB1+ cells. DCFDA positivity is calculated relatively to staining of untreated cells 

(CTRL), set equal to 1. The average fluorescence intensity is indicated as mean ± standard 

deviation of three independent experiments. *p<0.05 compared with untreated (CTRL) cells. 
§
p<0.05 compared to irradiated LKB1- cells. B. Clonogenic potential evaluation in A549 cells 

following 14 Gy γ-irradiation. Colony number is calculated respect to untreated (CTRL) cells. The 

average colony number is indicated as mean ± standard deviation of three independent 

experiments. **p<0.01 and ***p<0.001 compared with untreated (CTRL) cells. 
§§

p<0.01 

compared to irradiated LKB1- cells. 
###

p<0.001 compared to irradiated cells in absence of pre-

treatment with NAC. C. Apoptosis evaluation following γ-irradiation in A549 LKB1- and LKB1+ 

cells. Annexin V positivity is calculated relatively to untreated cells (CTRL). The average 

fluorescence intensity is indicated as mean ± standard deviation of three independent 

experiments. **p<0.01 compared to untreated (CTRL) cells. 
§§§

p<0.001 compared to irradiated 

LKB1- cells. 
#
p<0.05 compared to irradiated cells without pre-treatment with NAC. D. Cell 

distribution in G1/G0, S and G2/M phases of the cell cycle in A549 cells 24 and 48 hours post-

irradiation. 

 

Overall, these results indicated that LKB1 protects cancer cells from cytotoxic 

effects caused by cisplatin or ionizing radiation, likely by reduction of oxidative 

stress and by repairing DNA damage induced by these treatments. 
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4.8 Cisplatin treatment sensitizes cancer cells to irradiation           

   

Cisplatin is endowed with radiosensitizing ability and is often used in clinical 

practice in order to improve anticancer activity of radiotherapy (Liu et al., 2014), 

(Toulany et al., 2014). In order to test the role of LKB1 in response to the 

combination of cisplatin and irradiation, we determined the clonogenic potential 

of cisplatin-treated and γ-irradiated A549 and H460 LKB1- and LKB1+ cells. 

Cisplatin pre-treatment was carried out for 24 hours with a low non-cytotoxic 

dose of drug (5 µM for A549, 1 µM for H460), based on results of the SRB assay 

(see Figure 4.10A). Cisplatin and γ-irradiation reduced clonogenic potential of 

LKB1- cells, without or weakly affecting the clonogenic potential of LKB1+ cells. 

Combination of cisplatin and irradiation almost completely abolished clonogenic 

potential of LKB1- cells and markedly reduced the number of colonies generated 

from LKB1+ cells (Figure 4.12). Apoptosis evaluation did not reveal increased cell 

death following combination of cisplatin and irradiation, compared to single 

treatments. This finding indicated that cells were subjected to a sub-lethal 

damage, not detectable with apoptosis evaluation.  

 

 

Figure 4.12. Combination of cisplatin and irradiation dramatically reduced the clonogenic 

potential of both LKB1- and LKB1+ cells. Colony number is calculated relatively to untreated 

(CTRL) cells. The average colony number is indicated as mean ± standard deviation of three 

independent experiments. ***p<0.001 compared with untreated (CTRL) cells. 
&
p<0.05, 

&&
p<0.01 

and 
&&&

p<0.001 compared to irradiated cells. 
§§§

p<0.001 compared to cells treated with cisplatin. 
#
p<0.05, 

##
p<0.01  and 

###
p<0.001 compared with LKB1- cells with the same treatment.    
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These results indicated that the combination of cisplatin and irradiation was 

much more effective than the single treatments and significantly reduced 

clonogenic potential of cisplatin- and radiation-resistant LKB1+ cells. Cisplatin, by 

reducing cellular antioxidant potential, could sensitize cancer cells to the 

damaging effects of oxidative stress induced by ionizing radiations. Future 

studies are needed to determine whether the combination of cisplatin and 

irradiation increases oxidative stress more than the single treatments. Another 

possible explanation is that radiosensitizing ability of cisplatin could be due to 

excessive DNA damage induced by the combination of this chemotherapeutic 

with ionizing radiations.  

 

 

4.9 LKB1 silencing increased sensitivity to oxidative stress  

 

To rule out the possibility that resistance to oxidative stress observed in LKB1+ 

cells might be due to over-expression of LKB1 protein, we used a complementary 

approach: LKB1 silencing in two NSCLC cell lines, H1975 and H1650, which had 

physiological LKB1 expression levels. RT-qPCR analysis indicated an average 

silencing of LKB1 transcripts of 80%. Inhibition of LKB1-AMPK pathway activity by 

LKB1 silencing was assessed by Western blot analysis (Figure 4.13A). We 

evaluated whether LKB1 silencing increased sensitivity of LKB1-proficient cells to 

oxidative stress. To this aim, we treated H1975 and H1650 siRNA and siLKB1 cells 

with 2 mM H2O2. LKB1 silencing increased sensitivity of LKB1-proficient H1650 

cells to H2O2, as measured by apoptosis evaluation (Figure 4.13B). 
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Figure 4.13. LKB1 silencing in H1975 and in H1650 cancer cell lines impaired LKB1-AMPK pathway 

activity and sensitized H1650 cells to H2O2 - induced oxidative stress. A. Western blot analysis 

following glucose deprivation. B. Annexin V positivity is calculated respect to staining of 

untreated (0 minutes) cells, set equal to 1. The average fluorescence intensity is indicated as 

mean ± standard deviation of three independent experiments. *p<0.05, **p<0.01 and 

***p<0.001 compared with untreated (0 minutes) cells. 
§
p<0.05 compared to siRNA cells treated 

with H2O2 for the same time.      

 

Sensitivity of LKB1-silenced cells to cisplatin was measured by the SRB 

cytotoxicity assay. Results showed that siLKB1 cells - particularly H1650 cells -  

were more sensitive to cisplatin treatment, compared to control siRNA cells 

(Figure 4.14). 
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Figure 4.14. LKB1 silencing sensitized H1975 and H1650 cells to cisplatin-mediated cytotoxic 

effects. Representative images of three independent experiments are shown. *p<0.05, **p<0.01 

and ***p<0.001 compared with siRNA cells.  

 

Collectively, these data indicated that LKB1 silencing increased cytotoxic effects 

of oxidative stress induced by H2O2 and by cisplatin treatment.  

  

 

4.10 LKB1+ cells are relatively resistant to 

chemotherapeutics inducing oxidative stress 

 

Increased sensitivity to cisplatin and to γ-irradiation prompted us to investigate 

whether LKB1 deficiency defines a subset of cancer cells more responsive to 

ROS-inducing chemotherapeutics. ROS induction has been previously reported 

following treatment of tumor cells with several chemotherapeutic drugs, 

including taxanes (Alexandre et al., 2007), anthracyclines (Sterba et al., 2013) 

and arsenic trioxide (You and Park, 2012). We evaluated cytotoxicity following 

treatment with paclitaxel (taxane), doxorubicin (anthracycline), or arsenic 

trioxide. Results of SRB assay revealed that H460 and HeLa LKB1+ variants were 

more resistant than their LKB1- counterparts to all chemotherapeutics tested. In 

contrast, no significant difference was observed in A549 LKB1- and LKB1+ cells 

(Figure 4.15). 
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Figure 4.15. Cytotoxic effects following treatment with arsenic trioxide, paclitaxel or doxorubicin 

in tumor cell lines. Representative images of three independent experiments are shown. *p<0.05, 

**p<0.01 and ***p<0.001 compared with LKB1- cells.  

 

These results indicated that the LKB1 status was associated with different 

response to several ROS-inducing drugs commonly used in the clinic, thus 

suggesting that LKB1 status could predict tumor response to several 

chemotherapeutic regimens.      
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4.11 Evaluation of LKB1 status as predictive biomarker of 

response to ROS-inducing cancer therapies  

 

In vitro data demonstrating that LKB1 expression confers resistance to oxidative 

stress in cancer cells prompted us to investigate the role of LKB1 in a 

retrospective study in advanced NSCLC patients treated with platinum-based 

chemotherapy plus bevacizumab.   

Antiangiogenic therapy, by inducing a condition of starvation and hypoxia in 

tumors, leads to overproduction of ROS in cancer cells (Fack et al., 2015). To 

study the possible predictive role of LKB1 status in response to antiangiogenic 

therapy, we assessed LKB1 mutational status and evaluated expression of LKB1 

protein by IHC in a cohort of 40 advanced NSCLC patients treated with the 

antiangiogenic drug bevacizumab plus platinum-based chemotherapy.  

LKB1 gene was sequenced by either Sanger sequencing and next-generation 

sequencing, through Ion Torrent technology. As no hotspot mutations were 

described in LKB1, we sequenced all 9 coding exons. Mutations in LKB1 gene 

were identified in 7 out of 21 analysable samples (33.3%; about 50% of samples 

were not analysable due to DNA low quality). IHC analysis identified LKB1 loss in 

10 samples out of 32 analysed samples (31.25%). Among mutations in LKB1 

gene, we identified 6 truncating mutations, involving aminoacids 63, 152, 158, 

279, 290 and 293 of LKB1 protein, and a missense mutation, substituting valine 

at position 372 with glutamic acid (Table I). LKB1 mutations were strongly 

associated with IHC negative staining (Fisher’s exact test p=7,145∙10-5). Pt 10 and 

Pt 11 showed IHC negative staining even in absence of LKB1 mutations.  
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Sample ID LKB1 mutational status IHC score 

Pt 1 WT 5 

Pt 2 non-amplifiable 10 

Pt 3 WT 6 

Pt 4 c.474_480delTCAGCTG (p.C158*) 0 

Pt 5 c.190_218del29 (p.Q152*) 0 

Pt 6 WT 12 

Pt 7 WT 5 

Pt 8 WT 5 

Pt 9 non-amplifiable 3 

Pt 10 WT 0 

Pt 11 WT 0 

Pt 12 non-amplifiable 0 

Pt 14 non-amplifiable 12 

Pt 15 non-amplifiable 5 

Pt 16 non-amplifiable 4 

Pt 17 WT 5 

Pt 18  WT NE 

Pt 19 WT 6 

Pt 20 non-amplifiable NE 

Pt 21 non-amplifiable 12 

Pt 22 c.849_850delTG (p.L290*) 0 

Pt 23 WT 12 

Pt 24 WT 2 

Pt 25 c.1115T>A (p.V372D) 0 

Pt 26 WT 3 

Pt 27 non-amplifiable NE 

Pt 28 non-amplifiable 4 

Pt 29 non-amplifiable 0 

Pt 30 c.641_662del22 (p.G279*) 0 

Pt 31 non-amplifiable 18 

Pt 32 non-amplifiable 12 

Pt 33 c.157delG (p.V63*) 0 

Pt 34 WT 18 

Pt 35 non-amplifiable 2 

Pt 36 non-amplifiable NP 

Pt 37 non-amplifiable NP 

Pt 38 non-amplifiable NP 

Pt 39 non-amplifiable NP 

Pt 40 non-amplifiable NP 

Pt 41 c.877G>T (p.E293*) NP 

 

Table I. LKB1 mutational status and IHC staining of advanced NSCLC patients treated with 

bevacizumab + chemotherapy. WT: wild-type. NE: not evaluable. NP: not performed.  
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LKB1 status, defined as either LKB1 mutational status or IHC staining, was not 

associated with response to therapy (Fisher’s exact test p=0.3784).  

We subsequently assessed progression free survival (PFS) and overall survival 

(OS) according to LKB1 status. Median PFS was 7.8 months (min. 1.7 months, 

max. 24.1 months). 1-year PFS was 34.1% in LKB1 - wild-type patients and 36.4% 

in LKB1-mutated patients. Kaplan-Meier curves related to PFS are reported in 

Figure 4.16. Results indicated that LKB1 status was not correlated to PFS 

following bevacizumab + chemotherapy treatment (Log-rank test p=0.9753).  

 

 

Figure 4.16. Kaplan-Meier curves related to PFS of 33 advanced NSCLC patients treated with 

bevacizumab + chemotherapy.  

 

Median OS was 26.9 months (min. 26.2 months, max. 28.0 months). 2-year OS 

was 36.4% in LKB1 - wild-type patients and 36.4% in LKB1-mutated patients. 

Kaplan-Meier curves related to OS are reported in Figure 4.17. Results indicated  

that LKB1 status was not correlated to OS (Log-rank test p=0.7105). In 

conclusion, this pilot translational study showed that it is equivalent to 
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determine the LKB1 status by IHC or at the genetic level. Likely due to the small 

number of samples analysed or the possible confounding effect of mutations in 

additional genes that were not scored (i.e. KRAS and TP53), LKB1 status did not 

correlate with response to chemotherapy + antiangiogenic therapy, nor was a 

prognostic factor.  

 

 

Figure 4.17. Kaplan-Meier curves related to OS of 33 advanced NSCLC patients treated with 

bevacizumab + chemotherapy. 
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5. Discussion 

 

Lung cancer is one of the most lethal malignancies, owing to its very high 

prevalence and aggressiveness. Non-small cell lung cancer (NSCLC), the major 

histological type, accounts for 85-90% of lung cancer cases, representing a 

continuously growing socio-economic problem. By 2030, in fact, cancer is 

estimated to become the first cause of death and NSCLC, characterized by an 

elevated morbidity and mortality, by a currently increasing incidence among 

women and by outstanding resistance to therapies, might become the principal 

public health issue, with a huge economic impact on National Health Systems in 

Western Countries.  

Given the elevated prevalence and mortality of lung cancer, a great effort has 

been put to unravel the molecular mechanisms underlying lung carcinogenesis. 

About 30% of NSCLC cases bear an inactivating mutation in the gene encoding 

for the threonine/kinase Liver Kinase B1 (LKB1). LKB1 gene was initially identified 

as the tumor suppressor gene responsible for the Peutz-Jeghers syndrome, an 

autosomal dominant disorder characterized by hamartomatous polyps of the 

gastrointestinal tract and increased risk of cancer. LKB1 mutations are rare in 

sporadic cancers, except in NSCLC and in cervical carcinoma. LKB1 coordinates a 

signalling pathway controlling energy homeostasis through AMP-activated 

Protein Kinase (AMPK) and 12 AMPK-related kinases. The tumor suppressor 

activity of LKB1/AMPK pathway and the frequent inactivation of LKB1 in NSCLC 

suggest an important role of LKB1 in lung carcinogenesis. Recently, several 

studies identified different molecular pathways dis-regulated in lung cancer 

following LKB1 loss: the MZF1/c-MYC pathway (Tsai et al., 2014), VEGF signaling 

(Liang et al., 2014), Wnt/β-catenin (Jian et al., 2014), increased phosphorylation 

of certain tyrosine kinase receptors (i.e. EGFR, ErbB2, c-Met, EphA2, RET and 

IGF1R; (Okon et al., 2014)), the CRTC1-NEDD9 signalling axis (Feng et al., 2012), 

and p53 and p16 (Liang et al., 2010). Noteworthy, several studies in the 

literature focused on the role of LKB1 following stress conditions that alter 

cancer cell physiology. The consequent AMPK activation, caused by energy 

imbalance, contributes to tumor suppression. Nevertheless, LKB1/AMPK 



78 
 

pathway could reasonably control lung carcinogenesis even in absence of 

exogenous perturbing agents, when energy homeostasis is maintained. 

Moreover, LKB1/AMPK activity could influence tumor growth following 

endogenous metabolic stress, caused by uncontrolled proliferation of cancer 

cells. Oxidative stress is the principal endogenous stress that cancer cells must 

cope with, both generated as collateral effect of mitochondrial respiration (Li et 

al., 2013) and required to sustain proliferation and invasive phenotype of cancer 

(Kumar et al., 2008). Reactive oxygen species (ROS) are a “double-edged sword” 

on cancer, as low levels are pro-tumorigenic, whereas high levels induce an 

extensive damage to cellular structures, leading to cell death. We found that 

LKB1-expressing cancer cells are more resistant to exogenous oxidative stress 

and this is at least in part attributable to reduced steady-state ROS production 

following NOX1 inhibition. 

Recently, Jeon and colleagues identified a role for AMPK in NADPH homeostasis 

maintenance (Jeon et al., 2012). NADPH is necessary to preserve the reducing 

potential of cells, which is fundamental to counteract the damaging effect of 

excessive ROS on nucleic acids, lipids and proteins. In particular, NADPH acts as 

electron donor during reduction of oxidized antioxidant systems, such as 

glutathione and thioredoxin. According to this study, AMPK regulates NADPH 

homeostasis through the phosphorylation (inhibition) of ACC1 and ACC2, with 

the consequent decrease of NADPH-consuming fatty acid synthesis and the 

increase of NADPH-generating β-oxidation of fatty acids. Conceivably, 

compromised NADPH homeostasis - as would occur in cells lacking LKB1 activity - 

could cause vulnerability to oxidative stress. The observations by Jeon et al. also 

imply that LKB1+ cancer cells would contain higher levels of reduced glutathione 

compared with LKB1- cells, especially under oxidative stress. In our experiments, 

however, we did not find such a difference nor did we observe significant 

differences in ACC phosphorylation in LKB1- versus LKB1+ cells (data not shown). 

Probably, the fact that oxidative stress can also trigger LKB1-independent AMPK 

activation - mediated by Ca2+/Calmodulin-dependent protein kinase kinase β 

(CaMKKβ) (Witters et al., 2006) - could in part explain these findings. Finally, in 

light of our findings linking LKB1 to NOX1, it should be considered that the 

reducing potential of NADPH is also used by NOX1 to generate ROS in a futile 
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redox cycling reaction. Therefore, increased amount of NADPH in LKB1+ cells 

described by Jeon et al. could be a consequence of reduced ROS generation, 

rather than be the cause of increased resistance to oxidative stress. 

In any case, several lines of evidence support a role of LKB1/AMPK in the cellular 

response to oxidative stress. First, LKB1/AMPK activation inhibits cell 

proliferation, which is followed by reduced ROS production by mitochondria, as 

anabolic processes generally boost oxidative stress. Second, LKB1 can decrease 

KRAS-induced ROS production (Weinberg et al., 2010) and this may explain the 

frequent co-occurrence of LKB1 inactivating mutations and KRAS activating 

mutations in NSCLC. Third, glutathione synthesis requires two ATP-dependent 

steps (γ-glutamylcysteine synthesis and glycine addition). During energy stress, 

induced by glucose deprivation (such as antiangiogenic therapy) or by radio-

chemotherapy, cancer cells with a functional LKB1/AMPK pathway are more 

likely to maintain ATP levels, thus preserving glutathione synthesis. In contrast, 

LKB1-mutated cells would undergo shortage of ATP levels and a subsequent 

drop of glutathione synthesis. Fourth, antioxidant and chemopreventive effects 

of red ginseng have recently been attributed to mitochondria protection 

mediated by LKB1/AMPK (Dong et al., 2013a). Finally, during metabolic stress 

LKB1/AMPK activation induces autophagy, a double-edged sword process in 

cancer. In fact, autophagy can have an anti-tumorigenic role by inhibiting 

accumulation of damaged proteins and organelles, as well as a pro-tumorigenic 

role by acting as a cell survival mechanism (Yang et al., 2011). By recycling of 

cellular proteins and organelles, autophagic cancer cells are able to maintain 

energy production during stress conditions, such as chemotherapy. Therefore, 

autophagy in cancer cells is associated with chemoresistance and 

radioresistance. In particular, mitophagy (autophagy of mitochondria) is a 

clearance mechanism that eliminates damaged or hyperactive mitochondria, 

more prone to ROS production (Soengas, 2012). Hence, LKB1/AMPK activation 

provides a survival advantage to treated cancer cells, both by reducing ROS 

production and protecting from oxidative damage through autophagy. 

Recently, Xu and colleagues reported that LKB1 protects cells from ROS-

mediated cell damage through p38 activation (Xu et al., 2014). The authors 

observed that cells lacking LKB1 exhibit increased ROS generation, but attributed 
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the protective role of LKB1 to an elegant and complex mechanism involving 

enhanced antioxidant systems activity through the mitogen-activated protein 

kinase p38. The consequent increased activity of superoxide dismutase 2 (SOD2) 

and catalase protects cells from DNA damage and loss of viability. We did not 

assess the activity of SOD2 and catalase, but we observed that genes encoding 

for these two antioxidant enzymes were not up-regulated in LKB1+ cells. 

Moreover, we evaluated phosphorylation of p38 in A549 LKB1- and LKB1+ cells 

and we did not observe any increase of phospho-p38 levels in LKB1+, compared 

to LKB1- cells (data not shown). Importantly, according Xu and colleagues, LKB1 

protective role from endogenous oxidative stress is independent of AMPK, 

whereas we observed that AMPK inhibition through Compound C and siRNA-

mediated AMPK silencing abolish resistance of LKB1+ cells to oxidative stress 

and exacerbate sensitivity of LKB1- cells. It is noteworthy that Xu and colleagues 

generated most of their data working with mouse embryonic fibroblasts. 

Conceivably, cell-type differences could explain the discrepancies between these 

two studies. In our model, sensitivity to oxidative stress associated with LKB1 

loss likely depends from increased NOX1-mediated ROS generation under 

standard cell culture conditions, as demonstrated by inhibiting NOX1 with 

apocynin and by NOX1 gene silencing.  

A somewhat unexpected finding of our study was the apparent up-regulation of 

several antioxidant genes in LKB1- cells. This may be explained considering some 

known paradoxical features of redox balance in cancer cells: cancer cells that 

produce large amount of ROS need adaptive mechanisms to survive, thus 

increasing synthesis of antioxidant systems (Traverso et al., 2013). 

Interestingly, we observed a marked down-regulation of NOX1 and PPARGC1A in 

LKB1+ variant of all isogenic cell lines analysed. NADPH oxidase 1 (also known as 

GP91-2), the protein encoded by NOX1 gene, is an homolog of the catalytic 

subunit of the superoxide-generating NADPH oxidase of phagocytes, gp91phox 

(NOX2). NADPH oxidases are multi-subunit enzyme complexes that use NADPH 

as an electron donor in the reduction of molecular oxygen to produce 

superoxide anion. Until recent years, it was believed that cytochrome b-245, 

known as gp91phox, was the only catalytic subunit of NADPH oxidase and that 

was peculiar of professional phagocytes. Recently, however, six homologs of 
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gp91phox were found, including NOX1, NOX3, NOX4, NOX5, DUOX1 and DUOX2 

(Bedard and Krause, 2007). NADPH oxidases are composed of 6 subunits: a Rho 

GTPase (usually Rac1 or Rac2), and 5 phox subunits (the catalytic subunit, 

p22phox, p40phox, p47phox and p67phox). In neutrophils, the complex is latent 

and is activated to assemble in the membranes during respiratory burst. NADPH 

oxidase transfers electrons derived by NADPH across the membrane and couples 

them to molecular oxygen to produce superoxide anions and kill bacteria and 

fungi contained in phagosomes. All NADPH oxidases share the ability to transfer 

electrons across the plasma membrane and to produce superoxide outside the 

cells, rapidly dis-mutated in H2O2, which easily permeates cell membranes. As 

NADPH oxidases are present not only in immune cells, the physiological 

functions of NOX family enzymes include, besides host defence, also 

posttranslational modification of proteins, cellular signalling, regulation of gene 

expression and cell differentiation. Increased NADPH oxidase activity has been 

linked particularly to cardiovascular diseases and neurodegeneration. In fact, a 

role of NADPH oxidase has been described in atherosclerosis (Violi et al., 2009) 

and in Alzheimer’s disease (Ansari and Scheff, 2011). Considered the 

involvement of ROS in both early and late stages of tumorigenesis, NADPH 

oxidase dysregulation has been linked also to cancer initiation (Parzefall et al., 

2014) and progression (Gupta et al., 2014). Thus, we hypothesized that NOX1 

down-regulation in LKB1+ cells could account for reduced ROS generation and, 

ultimately, for increased resistance to exogenous oxidative stress. We 

demonstrated that LKB1- cells undergo increased basal ROS generation, 

heightened oxidation of glutathione and, finally, increased sensitivity to H2O2–

induced cell damage. In this regard, it should be pointed out that, as cited 

above, NOX1 is not the only catalytic subunit of NADPH oxidases. Thus, down-

regulation of other NOX subunits expressed in the lung and in the uterine cervix 

(such as NOX2, NOX4 and NOX5) could also contribute to resistance to oxidative 

stress observed in LKB1+ cells. The vanillin-related compound apocynin is a 

NOX1 and NOX2 complex formation inhibitor, thus it should not be excluded 

that apocynin rescued LKB1- cells viability partly through NOX2 inhibition. On 

the other hand, results obtained with siRNA-mediated specific NOX1 silencing 

seem to rule out the possible involvement of NOX2. Notably, decreased NADPH 
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oxidase activity could be more important than reduced expression of catalytic 

subunits. Hence, down-regulation of regulatory subunits, such as Rac1 or non-

catalytic phox subunits, could also account for reduced ROS production in LKB1+ 

cells. For instance, up-regulation of p22phox mediates NADPH oxidase activation 

in pancreatic cancer cells (Edderkaoui et al., 2013) and H2O2 production 

downstream of FLT3 (Woolley et al., 2012).  

With regard to the mechanism linking LKB1 to NOX1 in cancer cells, no 

connection was described in the literature. However, some evidences from the 

fields of inflammation and cardiovascular disorders suggested the involvement 

of LKB1/AMPK in modulation of ROS production by NADPH oxidases. In 

macrophages, for instance, the protective role of adiponectin against ethanol-

induced ROS production has been ascribed to AMPK-mediated NOX2 down-

regulation, via inhibition of NF-κB (Kim et al., 2014). Moreover, a role of AMPK in 

protection against ROS-induced vascular dysfunction was recently identified 

(McCarty et al., 2009), (Wang et al., 2010a), again involving inhibition of NF-κB. 

In line with these findings, we demonstrated that AMPK has a fundamental role 

in LKB1-mediated resistance to oxidative stress and that AMPK inhibition 

through Compound C or siRNA-mediated AMPK silencing sensitize LKB1+ cells to 

H2O2 treatment and further increase LKB1- cells sensitivity to exogenous 

oxidative stress. It remains to be investigated whether AMPK silencing caused 

perturbations in NF-κB activity and NOX1 expression in our models.  

Alternatively, AMPK activity could be linked to NOX1 down-regulation through 

Protein Kinase C (PKC)-δ (Kong et al., 2012), as observed in ischemic heart 

diseases. In particular, reduced  AMPK activity in LKB1- cells could increase PKC-δ 

activation, leading to EGFR transactivation, ERK1/2 phosphorylation and 

subsequent NOX1 up-regulation, as described in (Fan et al., 2005). Of note, 

increased EGFR autophosphorylation and, in general, receptor tyrosine kinase 

phosphorylation, has been observed in NSCLC following LKB1 loss ((Okon et al., 

2014); see above). Thus, further investigation is needed to study the possible 

role of EGFR transactivation in increased generation of ROS. Moreover, as PKC-δ 

is activated by diacylglycerol, it should be interesting to investigate whether 

inhibition of PKC-δ activation is mediated by AMPK ability to mediate lipid 

processing in the plasma membrane. The complex mechanism that putatively 



83 
 

links AMPK to NOX1 delineates a possible role of the LKB1/AMPK pathway in the 

control of inflammation, which also supports cancer initiation and growth.  

With regard to PGC-1α, the co-activator encoded by PPARGC1A gene also found 

up-regulated in LKB1- cells, its role in response to oxidative stress is far more 

difficult to dissect. In fact, PGC-1α, by fostering mitochondrial biogenesis and 

enhancement of electron transport chain activity, increases mitochondrial ROS 

generation, but, at the same time, contributes to ROS detoxification, thus 

providing a protective role against ageing and neurodegenerative disorders 

(Austin and St-Pierre, 2012). Moreover, PGC-1α, together with AMPK and SIRT1, 

takes part in an energy-sensing network that mediates cell survival following 

energy stress (Canto and Auwerx, 2009) and is necessary to increase 

mitochondrial activity following AMPK activation. Thus, up-regulation of 

PPARGC1A in LKB1- cells is counterintuitive. Probably, in cancer cells with a 

functional LKB1/AMPK pathway, PGC-1α down-regulation would be 

advantageous, as enhanced activity of damaged cancer mitochondria could lead 

to generation of lethal amounts of ROS. However, PGC-1α could be directly 

involved in cancer phenotype, supporting glutamine metabolism and reverse 

citric acid cycle to sustain anabolic processes, as described in breast cancer 

(McGuirk et al., 2013). By providing a surviving mechanism or by modulating the 

Warburg phenotype, PGC-1α down-regulation in LKB1+ cells could be linked to 

reduced ROS generation. Although currently unknown, the possible mechanism 

that could account for reduced PGC-1α expression in LKB1+ cells appears to be 

mediated by Signal Transducer and Activator of Transcription (STAT)3 activation 

(work in progress). 

Increased resistance of LKB1+ cells to H2O2–induced oxidative stress suggests 

that LKB1/AMPK pathway could influence response to several cancer treatments 

known to induce ROS generation. We initially tested cisplatin and irradiation, as 

platinum-based chemotherapy is a first-line treatment in NSCLC and 

radiotherapy is one of the therapeutic options for this type of cancer. We 

demonstrated that LKB1+ variants of all isogenic cell lines tested were more 

resistant than their LKB1- counterparts were, and that oxidative stress was 

involved in response to treatment, as confirmed by effects of NAC 

supplementation. Moreover, we found that LKB1+ cells blocked cell cycle more 
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rapidly and extensively than LKB1- cells. The rapid block of LKB1+ cells in S phase 

after cisplatin treatment and in G2/M phase after irradiation suggests 

recruitment of DNA repair systems, whereas LKB1- cells continue to proliferate, 

even though their DNA is damaged, and block cell cycle belatedly. Recently, it 

has been proposed that AMPK acts as genomic stress sensor and promotes DNA 

damage response (Sanli et al., 2014), (Ui et al., 2014). Thus, it could be 

postulated that relative resistance to cisplatin, irradiation, paclitaxel or 

doxorubicin treatment observed in LKB1+ cells is mediated by enhanced DNA 

repair, compared to LKB1- cells. However, the pro-survival effect of NAC 

supplementation in cisplatin-treated or irradiated LKB1- cells indicates that 

resistance to cytotoxic cancer treatments does not depend only on DNA repair. 

In conclusion, we hypothesize that resistance to oxidative stress in LKB1+ cells is 

multifaceted, involving both anti-proliferative, ROS-inhibiting, pro-autophagic 

and DNA repair mechanisms. 

Radiotherapy is often given in combination with cisplatin or carboplatin, as 

platinum compounds are radio-sensitizers. One explanation of this property is 

that platinum compounds, by forming DNA adducts, inhibit non-homologous 

end joining (NHEJ) DNA repair system, thus sensitizing cancer cells to double-

strand breaks induced by radiations (Boeckman et al., 2005). However, these 

findings do not explain the specificity for cancer cells, as cisplatin-based 

chemotherapy and radiotherapy induce DNA damage even in normal cells. An 

alternative explanation takes into account the redox balance of cancer cells. In 

fact, aquated cisplatin is a very reactive compound that easily interacts with 

many nucleophiles in the cytoplasm. Glutathione is a nucleophilic molecule 

involved in phase II detoxification reactions through the enzyme glutathione-S-

transferase (GST). Thus, glutathione conjugates to cisplatin in order to eliminate 

this cytotoxic compound outside the cytoplasm. Therefore, cisplatin treatment 

induces glutathione depletion (Siddik, 2003). The consequent decrease of 

antioxidant defence could sensitize cancer cells to ROS-inducing radiations, 

while normal cells, less subjected to endogenous ROS generation, could better 

tolerate glutathione depletion. We tested the radio-sensitizing ability of cisplatin 

on A549 and H460 LKB1- and LKB1+ cells. Apoptosis evaluation at 24 and 48 

hours post-irradiation revealed no increase in cytotoxicity compared to single 



85 
 

treatments. However, clonogenic potential evaluation indicated that a low dose 

of cisplatin was able to effectively kill cancer cells in combination with 

irradiation, at doses where cisplatin alone and irradiation as single agents were 

much less effective. These effects were stronger in LKB1- than in LKB1+ tumor 

cells. Speculatively, the increased amount of reduced glutathione available in 

LKB1+ cells counteracts the damaging effects of ROS induced by irradiation. 

Quantification of glutathione levels following cisplatin treatment will be required 

to clarify whether cisplatin leads to severe glutathione depletion in LKB1- cells. 

Interestingly, the combination of cisplatin with irradiation did not increase 

apoptosis, compared with single treatments. This suggests that combined 

treatment caused a sub-lethal damage, which probably involves permanent cell 

cycle arrest and cellular senescence. In line with this hypothesis, optical 

microscope analysis during the clonogenic assay evidenced, besides colonies, the 

presence of numerous single cells characterized by altered morphology.  

In the final part of this work, encouraged by these in vitro data, we tested the 

possible predictive role of LKB1 in response to antiangiogenic therapy and 

platinum-based chemotherapy in a cohort of advanced NSCLC patients. We 

assessed mutational status of LKB1 gene by sequencing and expression levels of 

LKB1 protein by IHC, thus identifying a robust correlation between inactivating 

mutations and lack of protein. Unfortunately, LKB1 status was not predictive of 

response to treatment, considering both progression free survival (PFS) and 

overall survival (OS) parameters. However, it should be considered the small 

number of samples analysed as well as the intrinsic limitations of a retrospective 

study. Moreover, other genetic factors could influence the therapeutic response. 

In particular, LKB1 inactivating mutations often co-occur with KRAS activating 

mutations in NSCLC. Oncogenic RAS signalling, by promoting uncontrolled cell 

proliferation, anabolic metabolism and ROS generation, may potentiate the 

effects of LKB1 loss on ROS homeostasis. In this regard, it is important to note 

that both A549 and H460 lung cancer cell lines utilized in our study carried both 

KRAS and LKB1 mutations. Thus, KRAS status - which was unknown in our 

retrospective study - could be important to modulate therapeutic responses to 

this drug combination. Future studies are planned to investigate this possibility 
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by genetic screening of mutations in lung cancer-associated genes using a next 

generation sequencing panel. 

In conclusion, this study reinforce the evidence connecting LKB1/AMPK to 

regulation of oxidative stress and identified a novel NOX1-mediated mechanism 

accounting for increased ROS production in LKB1-deficient tumor cells. As LKB1 

loss confers increased sensitivity of cancer cells to γ-irradiation and treatment 

with several cytotoxic drugs in vitro, it will be important to validate these 

findings in clinical studies. 
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