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Summary 

Habitat fragmentation and the intensification of agricultural landscapes are among the 

main drivers affecting parasitoid diversity. Although many empirical and theoretical 

studies have elucidated the effects of these processes on populations and communities of 

parasitoids, the majority of the research has been focused on specialized groups of 

hymenopterans. In this study the highly-diverse group of tachinid parasitoids (Diptera: 

Tachinidae) was considered as an alternative model system to test the effects of landscape 

fragmentation and agricultural intensification on the third trophic level.  

The effects of habitat fragmentation are evaluated in Chapter II. This chapter 

evaluates the relative importance of habitat loss, decrease of connectivity and their 

potential interaction on tachinid diversity. This chapter shows that the reduction of habitat 

area and the loss of connectivity significantly interacted, suggesting that management 

practices aimed to mitigate the negative effect of habitat fragmentation need to consider 

the connectivity in the surrounding landscape.  

In the following chapters, diverse components of the intensification of agricultural 

landscapes were evaluated. In Chapter III, the diversity of tachinids was examined in 

relation to farm management (organic vs. conventional) at different spatial scales. This 

study shows that organic management improved the diversity of tachinids at both the 

local and landscape scales but only in arable crops while the effect in grasslands was 

neutral. Thus, any attempt to enhance parasitoid diversity needs to consider the local 

farming system in relation to the agricultural management in the surrounding landscape.  

In Chapters IV and V the spatial dynamics and movement of parasitoids between 

crop and non-crop habitats were evaluated. These chapters show that the spillover of 

tachinid parasitoids was favored by the low contrast in habitat structure between the crop 

and non-crop habitats. The highest spillover of parasitoids to arable land was found from 

herbaceous semi-natural habitats, while woody structure reduced the exchange of 

individuals between arable crop and non-crop habitats. Finally, in Chapters V and VI the 

effects of different field margins to enhance farmland biodiversity were examined. The 

results from these chapters demonstrate that the positive effect of field margins to 

enhance the diversity of tachinids was related to the type and complexity of these semi-

natural habitats. This research provides new insights into the consequences of landscape 

changes on the diversity of a key functional group that has been long overlooked in 
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ecological and conservation studies. The results will provide guidelines to implement 

conservation measures to halt or reduce biodiversity loss of this important group of 

parasitoids. 
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Riassunto 

La frammentazione degli habitat e l’intensificazione dell’agricoltura sono riconosciuti tra 

i principali fattori che incidono negativamente sulla diversità dei parassitoidi. Nonostante 

numerosi studi hanno confermato questa tendenza, la gran parte di essi si è concentrata 

sugli imenotteri parassitoidi. Questa tesi si concentra invece sui tachinidi (Diptera: 

Tachinidae), considerati come sistema modello alternativo per testare gli effetti della 

frammentazione del paesaggio e dell’agricoltura intensiva sul terzo livello trofico. 

In particolare, gli effetti della frammentazione degli habitat sono descritti nel 

Capitolo II, dove viene valutata l’importanza relativa della perdita dell’habitat, la 

diminuzione della connettività e la loro potenziale interazione nell’influenzare la diversità 

dei tachinidi. I risultati dimostrano che la riduzione dell’area e la perdita di connettività 

dell’habitat interagiscono significativamente, evidenziando che le pratiche di gestione 

finalizzate a mitigare gli effetti negativi della frammentazione dell’habitat non possono 

prescindere dal prendere in considerazione la connettività con il paesaggio circostante.  

Nei capitoli successivi sono stati invece valutati vari impatti connessi 

all’intensificazione dell’agricoltura. Nel Capitolo III è stato esaminato come la gestione 

delle aziende agricole (biologica vs. convenzionale) possa influenzare la diversità dei 

tachinidi a diverse scale spaziali. I risultati dimostrano che la gestione biologica ha un 

effetto positivo sulla diversità di tachinidi sia a scala locale sia a livello di paesaggio, ma 

solamente nel caso dei seminativi mentre le praterie non ricevono nessun beneficio 

dall’agricoltura biologica. Quindi qualsiasi tipo di intervento per migliorare la diversità 

dei parassitoidi deve considerare il sistema di gestione agricolo locale in relazione al 

paesaggio circostante. 

Nei Capitoli IV e V sono state trattate le dinamiche spaziali di spostamento dei 

parassitoidi tra ambienti coltivati e ambienti naturali. Questi capitoli dimostrano che il 

movimento dei tachinidi è stato favorito dalla bassa differenziazione strutturale dei due 

ambienti. Lo scambio di individui più elevato si è avuto dal margine erbaceo mentre il 

margine caratterizzato dalla presenza delle siepi riduce lo scambio di individui tra i due 

ambienti. Infine, nei Capitoli V and VI è stato valutato l’effetto di diverse tipologie di 

margine dei terreni agricoli sulla biodiversità. I risultati ottenuti da questi capitoli 

dimostrano che gli effetti positivi della presenza di margini semi-naturali sulla diversità 

dei tachinidi siano correlati alla tipologia e alla complessità degli habitat. 
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Questa tesi fornisce nuove informazioni su come i cambiamenti a livello di 

paesaggio influenzano la diversità di un gruppo funzionale chiave che è stato per lungo 

tempo poco considerato negli studi di ecologia e conservazione. I risultati potranno essere 

utilizzati per definire e implementare innovative misure di conservazione e mitigazione 

degli impatti considerati. 
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Threats to biodiversity: an overview 

Biodiversity throughout the world continue to be threatened by multiple drivers. Species 

are facing a continuous decline due to reduced quality and extent of terrestrial natural 

ecosystems (Rosen 2000; Tilman et al. 2001). According to the Millennium Ecosystem 

Assessment (MEA 2005), one of the main drivers affecting biodiversity is the conversion 

of natural habitats into agricultural land. In the face of increasing food demand for a 

growing human population, agricultural land continues to spread at the detriment of 

natural habitats (Tilman et al. 2001; Foley et al. 2005; Godfray et al. 2010). It is estimated 

that more than one third of the world land surface is now being used by agriculture (Foley 

et al. 2005; Alexandratos & Bruinsma 2012; FAOSTAT 2014). This trend in land use is 

leading to the formation of simple landscapes with only few and scattered semi-natural 

habitats (Stoate et al. 2001; Robinson & Sutherland 2002). The biodiversity in 

agricultural landscapes is further affected by the homogeneous matrix that is dominated 

only by a few crops. Indeed, about 60% of food production is comprised only of three 

cereals: wheat, corn and rice (Tilman et al. 2001; Alexandratos & Bruinsma 2012). In this 

homogeneous landscapes, the disturbance and fragmentation of natural habitats disrupts 

important biophysical processes from local to regional scales (Lambin & Geist 2006; 

Karp et al. 2012), which is leading to an overall impoverishment of biological diversity. 

In agricultural landscapes, remnant habitats play an important role in maintaining 

biodiversity and in providing important ecosystem services such as natural control of 

pests and pollination (Díaz et al. 2006; Bommarco et al. 2013). As the diversity of species 

is tightly related to natural ecosystems is clear that the intensification of agriculture and 

the resulting fragmentation of natural habitats are among the main drivers of biodiversity 

decline (MEA 2005). Although, a large body of  research has accumulated over the past 

decades showing that biodiversity is directly affected by habitat fragmentation and 

agricultural intensification, the detailed understanding of how these factors are 

threatening biodiversity and ecosystem functioning is far to be completed. In fact, during 

the last decades we have experienced high rates of biodiversity loss, with future scenarios 

predicting that such losses are likely to increase (Ferraz et al. 2003; MEA 2005; Pereira et 

al. 2010; Barnosky et al. 2011). Even with these negative scenarios, there is still a large 

debate about how the loss of biodiversity is affecting the functioning of ecosystems and 

their ability to provide goods and services to our society (Díaz et al. 2006; Cardinale et al. 
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2012). There is a clear need to devise consensual approaches to enhance biodiversity in 

agricultural landscapes, but first we have the challenge to understand the dynamics and 

processes affecting the species response. For this reason, my research has focused on 

understanding how biodiversity is affected by (1) landscape fragmentation and (2) 

agricultural intensification. 

 

Landscape fragmentation 

Habitat fragmentation is considered one of the major threats to biodiversity worldwide 

(Sala et al. 2000). Fragmentation involves not only a reduction in the overall amount of 

original habitat, but also in the connectivity of the remnant patches. A decrease of both 

habitat area and connectivity are expected to reduce population viability and eventually 

species diversity (Hanski 1999). One of the most evident effects of landscape 

fragmentation is the reduction of the area of natural and semi-natural habitats. As the 

remnant patches become smaller, higher extinction rates due to environmental 

stochasticity in combination with a lower probability of receiving immigrants through 

dispersal may cause the often observed declines in abundance and species richness 

(Hanski 1999). The decline in diversity due to habitat fragmentation is not only the result 

of the reduction of habitat area, but also an increase in the isolation of the fragments. The 

conversion of continuous habitat into smaller and smaller fragments increases the 

distance between fragments. Landscape connectivity is therefore the degree to which the 

landscape facilitates or impedes movement among habitat fragments (Taylor et al. 1993; 

Hanski 1999; Fischer & Lindenmayer 2007).  

A common approach for predicting patterns of diversity within fragmented 

habitats relies on the theory of island biogeography. Island biogeographic theory predicts 

that species occurrences within fragments will be regulated by extinction and colonization 

dynamics (MacArthur & Wilson 1967). However, this theory does not explicitly take into 

account the surrounding matrix and its influence on dispersal probabilities and new 

species contributions (Mendenhall et al. 2014). Therefore, the interactions among habitat 

area, connectivity and the surrounding matrix should be considered in the attempt to 

counteract negative impacts of habitat fragmentation. Species are predicted to be highly 

sensitive to the reduction of habitat area and connectivity as organisms are likely to 
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depend on a variety of resources across fragmented landscapes (Kruess & Tscharntke 

1994; Valladares et al. 2006; Cagnolo et al. 2009). As habitats become smaller and less 

connected, the multi-trophic interactions of species can be easily disrupted or altered 

(Steffan-Dewenter & Tscharntke 2002; Nouhuys van 2005; Elzinga et al. 2007). Thus, the 

available habitat must exceed a certain threshold value for the species to persist. 

Landscapes with little and sparse habitats are likely to be below the extinction threshold, 

while landscapes with large habitat cover and connectivity are expected to be above this 

threshold (Pardini et al. 2010; Hanski 2011). After passing a species specific-habitat 

threshold, the negative fragmentation consequences on biodiversity accelerate non-

linearly (e.g., Radford 2005; Pardini et al. 2010). However, it must be considered that the 

effects of habitat fragmentation for individual organisms are many and varied, as species 

with differing life histories are differently affected by habitat fragmentation. Thus, to 

counteract the negative effects of landscape fragmentation on biodiversity, further 

empirical evidence about the specific consequences of the reduction of habitat area and 

connectivity on taxa with differing life histories is urgently needed. Only then we may 

arrive to a global consensus about the threshold levels needed to guide the policy and 

efforts towards habitat conservation. 

 

Agricultural intensification 

While many crop species were traditionally cultivated together within patches of native 

vegetation, the specialization of agricultural systems into large agricultural fields of single 

or few species is becoming increasingly common. Modern agricultural farming is often 

occurring at large spatial scales, with extensive commercial fields replacing native 

habitats and smallholder farms (Robinson & Sutherland 2002; Tilman et al. 2001). 

Continuing this trend, the arable area in the world by 2050 is expected to expand by more 

than 60 million of hectares, with the greatest expansion coming from the developing 

world, where for example, agricultural expansion is expected to eradicate more than one 

third of the Amazon forest (Soares-Filho et al. 2006; Alexandratos & Bruinsma 2012). 

The intensification of agriculture results in the reproduction of similar crop environments 

over large distances, causing a local modification of habitats and a broader fragmentation 

of the landscape (Matson et al. 1997; Tscharntke et al. 2005). Agricultural intensification 

is not only the result of change in land use, it is a combination of different processes 
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acting at different spatial scales. At the local scale, farming systems are characterized by 

an intensive management due to the heavy use of external inputs like fertilizers and 

pesticides, the improvement of crop varieties, and mechanization. At the landscape scale, 

the intensification of agriculture is leading to an overall reduction of natural and semi-

natural habitats and the homogenization of the crop matrix (Tscharntke et al. 2005; 

Wright et al. 2012). These practices are enhancing crop yields, but at the cost of reducing 

the quality and extent of natural habitats, thus compromising the diversity of species 

inhabiting these habitats (Matson et al. 1997; Tscharntke et al. 2005). 

The broad scale transformation by agricultural intensification has been linked to 

local and regional declines in native biodiversity (e.g., Sotherton 1998; Donald et al. 

2001; Deguines et al. 2014). Furthermore, as this transformation affect the composition 

and diversity of species in these landscapes, important ecosystem services such as 

biological control and pollination are being compromised (e.g., Thies & Tscharntke 1999; 

Klein et al. 2003; Hooper et al. 2005). As intensive agriculture replaces habitats that 

previously supported diverse communities of organisms, only a set of agriculture-

associated species with a distinct set of physical, life-history, and functional traits will 

dominate these hostile landscapes. For instance, generalist species are likely to persist in 

these landscapes, while specialist species do not (Tscharntke et al. 2008; Pardini et al. 

2010). To counteract the negative effects of agricultural intensification, the conservation 

of pristine natural habitats have traditionally pursued as the main goal. However, 

considering the importance of species migration between fragments, this conservation 

strategy has a limited value as their success depend not only on the natural habitats but 

also on the surrounding matrix (Tscharntke et al. 2008, 2012). In fact, Perfecto and 

Vandermeer (2010) stress the need to incorporate the agricultural matrix as an integral 

component of conservation programs. This also represent an opportunity to integrate the 

conservation of the biodiversity of natural ecosystems with the enhancement of 

ecosystems services in agricultural landscapes. However, to design efficient strategies we 

still need empirical evidence on how different local and landscape processes affect the 

diversity of species. For example, several local practices such as organic management, 

enhancement of field boundaries and the conservation of semi-natural habitats have been 

proposed as an alternative to increase farmland heterogeneity and enhance biodiversity 

(e.g., Bengtsson et al. 2005; Letourneau & Bothwell 2008; Crowder et al. 2010; Merckx 

et al. 2012; Haenke et al. 2014). However, the magnitude of the benefits derived from 
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these systems within contrasting managed landscapes remains unclear and, in particular, 

the potential scale-dependent response of biodiversity is relatively unexplored. 

Identifying sustainable alternatives to the intensification of agricultural landscapes and 

the scale at which biodiversity is affected by these alternatives is an important step to 

maximize the ecosystem services and the conservation of biodiversity. 

 

Study system 

Although many empirical and theoretical studies have elucidated the effects of habitat 

fragmentation and agricultural intensification on populations and communities of primary 

producers and consumers (Hanski 1999; Ewers & Didham 2006), less attention has been 

paid to the impacts of these drivers on the third trophic level. Furthermore, the majority of 

the research done has been focused on specialized groups of hymenopteran parasitoids 

(e.g., Cronin 2007; Elzinga et al. 2007; Rand & Tscharntke 2007; Holzschuh et al. 2010; 

Fenoglio et al. 2012; Coudrain et al. 2013). Therefore, predictions derived from studies 

on highly specialized taxa that parasitoids are highly susceptible to habitat fragmentation 

(e.g., the ‘specialist−consumer hypothesis’ Kruess & Tscharntke 1994; ‘trophic rank 

hypothesis’ Holt et al. 1999) and to the intensification of agricultural systems (e.g, Thies 

et al. 2008), cannot necessarily be extended to more generalist groups (Nouhuys van 

2005; Fenoglio et al. 2010). Therefore, for this study the highly-diverse group of tachinid 

flies was used as an alternative model to test the effects of landscape fragmentation and 

agricultural intensification on insect parasitoids. In particular, the research on landscape 

fragmentation was focused on the effects of habitat area, connectivity and habitat quality, 

while the research on agricultural intensification was focus on the effects of local 

management and specific practices such as the management of field margins to enhance 

parasitoid diversity. Furthermore, the different experiments in this thesis were designed to 

contrast different spatial scales. 

Among natural enemies, tachinid flies represent an optimal model group to 

examine effects of habitat fragmentation and agricultural intensification on the third 

trophic level. With almost 8,500 species, the Tachinidae family ranks second in diversity 

within Diptera and is the most diverse group of non-hymenopteran parasitoids (Stireman 

et al. 2006; O’Hara 2013). Species of this family are currently classified into four 
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subfamilies (Dexiinae, Exoristinae, Phasiinae, Tachininae), but in general the 

phylogenetic relationships of this family remains poorly known (although see Cerretti et 

al. 2014). Tachinids exhibit an impressive diversity of morphologies, ranging from small 

(e.g., <2 mm, Catharosia minuta (Townsed)) to large (e.g., 20 mm, Tachina grossa (L.)) 

body size, from brightly and metallic to dull colored. Tachinids are well represented in all 

biogeographical regions, but the Neotropical Region is by far the most species rich, 

accounting for more than one-third of the diversity of these flies (O’Hara 2014). 

However, only the Tachinidae of the Palearctic and Nearctic Regions are well known, 

with perhaps 90% of their species documented (Stireman et al. 2006).  

Unlike hymenopteran parasitoids, tachinids do not have a piercing ovipositor and 

they do not inject any secretion derived from their reproductive system (i.e., paralyzing 

venoms). Additionally, all species in the Tachinidae develop inside their host, as endo-

parasitoids, and allow their host to continue to feed and grow while they develop, as 

koinobiont parasitoids (Askew & Shaw 1986). Another characteristic of tachinids is the 

high diversity of the reproductive strategies that they have evolved. The majority of 

tachinids are ovolarviparous, depositing eggs that contain fully developed first instar 

larvae. In some species, a special type of ovolarvipary has evolved in which eggs are laid 

on foliage and these eggs hatch only after being ingested by a host. Other groups of 

tachinids are oviparous, injecting eggs directly into a host using a modified piercing 

oviscapt. The evolution of different reproductive strategies has allowed tachinids to attack 

a wide range of hosts, encompassing larvae as well as adult stages. As far as we know 

immobile stages like egg and pupa are not suited by tachinids. 

Figure 1. Meigenia simplex Tschorsnig & 

Herting depositing eggs on the larvae of 

Chrysomela populi (L.). Photo credit: 

Inclán D. J. 
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The high diversity of tachinids is likely related to the diversity of their hosts. In 

contrast to the host range of hymenopteran parasitoids, tachinid species tend to attack a 

wider range of hosts (Eggleton & Belshaw 1993). Hosts of tachinids are all arthropods, 

mainly insects with only a few records of species attacking non-insect arthropods like 

centipedes and scorpions (Williams et al. 1990; Haraldseide & Tschorsnig 2014). The 

most commonly used hosts are phytophagous insects, primarily Lepidoptera, Coleoptera 

(e.g., Fig. 1), Symphyta, Hemiptera, and Orthoptera. However, tachinids have been also 

reported to attack hosts in at least six additional insect orders: Blattodea, Dermaptera, 

Diptera, Embioptera, Mantodea, and Phasmida. In general, tachinids have lower host 

specificity than other parasitoids such as hymenopterans (Stireman et al. 2006; Stireman 

2005) and several species often attack large groups of host species across entire families 

or orders (Eggleton & Gaston 1993; Stireman 2005; Cerretti et al. 2014). While some 

species are known to be highly specialized in their host use, other species are highly 

polyphagous. In fact, the tachinid Compsilura concinnata (Meigen) (Fig. 2) is known to 

attack about 200 species of hosts belonging to more than ten families across Lepidoptera, 

Hymenoptera, and Coleoptera (Arnaud 1978). This high variation in host use and host 

specificity in this group makes the Tachinidae an ideal group for ecological research. 

 

Tachinids have an important role as natural enemies of agricultural pests. Several 

species play significant roles in regulating herbivore populations due to their 

predominance in attacking the larval stage of major groups of insect pests (Stireman et al. 

2006; Cerretti et al. 2014). In general, about 100 species have been employed in 

biological control programs of crop and forest pests (Grenier 1988; Stireman et al. 2006). 

Some successful examples of tachinids used in biological control programs include the 

Figure 2. The highly polyphagous tachinid, 

Compsilura concinnata (Meigen), with one 

of their known hosts, Orgyia antiqua (L.). 

Photo credit: Inclán D. J. 
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release of Cyzenis albicans (Fallén) from Europe against the winter moth (Operophtera 

brumata L.) in Canada, and the release of Lixophaga diatraeae (Townsend) from Cuba 

and Lydella minense (Townsend) from Brazil against sugarcane borers (Diatraea spp.) in 

the Caribbean and South America (Grenier 1988; Lenteren & Bueno 2003). Beside the 

importance of this group as natural enemies, tachinids could play a role also as 

pollinators. Adult tachinids are flower-visiting insects and use nectar as an energy source 

(e.g., Tooker et al. 2006; Al-Dobai et al. 2012). Although the importance of tachinids in 

this respect has been largely unexplored (Stireman et al. 2006), few species are 

specialized pollinators of Asclepiadoideae (Ollerton & Liede 2014; Nihei & Schwarz 

2011) and Orchidaceae (Dodson 1962) flowers.  

Despite the great diversity and crucial role of tachinids as parasitoids, relatively 

little is known about their ecology and behavior. Their complex life styles are far to be 

understood, as even basic biological information on hosts, mating systems, and habitat 

requirements is known only for a few species. In fact, an enormous challenge still remain 

at the taxonomic level as the truly diversity of this group still remains to be described. 

However, giving the alarming rates of biodiversity loss, more research is needed to 

elucidate the effects of landscape fragmentation and agricultural intensification on this 

key functional group that has been long overlooked in ecological and conservation 

studies. 

 

Research objectives and thesis structure 

The overall aim of this dissertation is to examine the landscape dynamics of one of the 

most diverse and abundant group of non-hymenopteran natural enemies, the Tachinidae. 

To achieve this goal the research has focused specifically on habitat fragmentation and 

agricultural intensification as the main drivers of the diversity of tachinids. I aimed to 

understand the diversity patterns of tachinid parasitoids under the influence of habitat 

fragmentation and agricultural intensification by analyzing the spatial effects of these 

processes on abundance, species richness and species composition. 

The effects of habitat fragmentation are discussed in Chapter II. Specifically, the 

main aim of this chapter was to evaluate the relative importance of habitat loss, decrease 

of connectivity and their potential interactions on tachinid diversity. In the following 
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chapters, diverse components of the intensification of agricultural landscapes were 

evaluated. Specifically, in Chapter III the diversity of tachinids was examined in relation 

to farm management (organic vs. conventional) at the local and landscape scales. In 

Chapters IV, the potential spillover of tachinids in commercial apple orchards localized in 

landscapes characterized by different proportions of crop and non-crop habitats was 

evaluated. Finally, in the following two chapters the effects of different field margins to 

enhance farmland biodiversity were examined. Specifically, Chapter V aimed to evaluate 

the spillover of natural enemies from two contrasting field margins (grass margins and 

hedgerows) into their adjacent crop, while Chapter VI aimed to test the effects of field 

margin quality and semi-natural habitats at multiple scales across three taxonomic groups. 
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Abstract 

Although many empirical and theoretical studies have elucidated the effects of habitat 

fragmentation on the third trophic level, little attention has been paid to the impacts of 

this driver on more generalist groups of non-hymenopteran parasitoids. Here, we used the 

highly-diverse group of tachinid flies as an alternative model to test the effects of 

landscape fragmentation on insect parasitoids. Our aims were: (i) to evaluate the relative 

importance of habitat area and connectivity losses and their potential interaction on 

tachinid diversity, (ii) to test whether the effects of habitat fragmentation changes 

seasonally, and (iii) to further assess the effect of habitat diversity on tachinid diversity 

and whether different parasitoid-host associations modify the species richness response to 

fragmentation. In 2012 a pan-trap sampling was conducted in 18 semi-natural grasslands 

embedded in intensive agricultural landscapes along statistically orthogonal gradients of 

habitat area, connectivity and habitat diversity. We found an interaction between habitat 

area and connectivity indicating that tachinid abundance and species richness were more 

negatively affected by habitat loss in landscapes with low rather than with relatively large 

habitat connectivity. Although tachinid communities exhibited large within-year species 

turnover, we found that the effects of landscape fragmentation did not change seasonally. 

We found that habitat diversity and host association did not affect tachinid species 

diversity. Our results have important implications for biodiversity conservation as any 

attempts to mitigate the negative effects of habitat loss need to take the general level of 

habitat connectivity in the landscape into account.  

 

Introduction 

Habitat fragmentation is considered one of the major threats to biodiversity worldwide 

(Sala et al. 2000). Although many empirical and theoretical studies have shed light on the 

effects of habitat fragmentation on populations and communities of primary producers 

and consumers (Hanski 1999; Ewers & Didham 2006), less attention has been paid to the 

impacts of this driver on the third trophic level. Furthermore, the majority of the research 

done has been focused on specialized groups of hymenopteran parasitoids (e.g., Cronin 

2007; Elzinga et al. 2007; Rand & Tscharntke 2007; Holzschuh et al. 2010; Fenoglio et 

al. 2012; Coudrain et al. 2013). Therefore, the prediction derived from studies on highly 
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specialized taxa that parasitoids are highly susceptible to fragmentation (the 

‘specialist−consumer hypothesis’ Kruess & Tscharntke 1994; ‘trophic rank hypothesis’ 

Holt et al. 1999) cannot necessarily be extended to more generalist groups (Nouhuys van 

2005; Fenoglio et al. 2010). Among natural enemies, tachinid flies represent an optimal 

model group to examine effects of habitat fragmentation on the third trophic level. With 

almost 10,000 described species, the Tachinidae is one of the most diverse families of 

Diptera and represent the most diverse group of non-hymenopteran parasitoids (Brown 

2001; O’Hara 2012). In general, tachinids have lower host specificity than other 

parasitoids such as hymenopterans (Stireman & Singer 2003; Stireman 2005) and several 

species often attack large groups of host species across entire families or orders (Stireman 

2005; Cerretti et al. 2014). Our study provides one of the first empirical tests of the 

impact of fragmentation on one of the most diverse and abundant groups of non-

hymenopteran natural enemies.  

Fragmentation involves not only a reduction in the overall amount of original 

habitat, but also in the connectivity of the remaining habitat patches. A decrease of both 

habitat area and connectivity are expected to reduce population viability and eventually 

species diversity (Hanski 1999). Insect natural enemies such as predators and parasitoids 

are predicted to be highly sensitive to both processes as these organisms depend on 

complex interactions between habitat and host dynamics (Kruess & Tscharntke 1994; 

Valladares et al. 2006; Cagnolo et al. 2009). Given that parasitoids are typically 

associated with particular hosts, they can only utilize the parts of the landscapes where 

these resources occur. As habitats become smaller and less connected, the multi-trophic 

interactions among plants, herbivores and their natural enemies can be easily disrupted or 

altered (Steffan-Dewenter & Tscharntke 2002; Nouhuys van 2005; Elzinga et al. 2007). 

Responses of parasitoids to habitat fragmentation can therefore be more difficult to 

predict for primary producers or consumers. 

Research on the impact of landscape fragmentation on species diversity has 

mostly considered the landscape from a static temporal perspective, especially in 

temperate regions. For parasitoids in particular, the persistence and success of the species 

depend on their synchronization with important resources like hosts and nectar for the 

adults that become available at different times depending on seasonality and 

environmental conditions (Tylianakis et al. 2005; Stireman et al. 2012; Letourneau et al. 

2012). The agricultural matrix in which fragmented habitats are embedded can be also 
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highly dynamic over time due to crop phenology and agronomic interventions (Baudry et 

al. 2003; Vinatier et al. 2013). Given large fluctuations of resources between seasons, it is 

important to consider if effects of habitat fragmentation vary seasonally. For instance, as 

resources can be lower in certain time of the year the spatial requirements for a 

population to persist could considerably increase (Olson et al. 2005). Therefore, the 

relationship between habitat area, connectivity and parasitoids are expected to change 

with season. 

In fragmented landscapes habitat diversity within the remnant patches is another 

key factor expected to influence natural enemies both directly and indirectly (Fenoglio et 

al. 2010). Direct effects are mainly related to the availability of food for the adults such as 

nectar or pollen resources (e.g., Géneau et al. 2012) and the provision of overwinter 

resources (Shaw 2006), while indirect effects are related to the influence of the habitat 

fragment quality on host availability (e.g., Segoli & Rosenheim 2013). While parasitoids 

with a high degree of specialization should primarily respond to host density, more 

generalist parasitoids are expected to respond to the richness and abundance of host 

species (Heisswolf et al. 2009). Parasitoids with low host specificity should benefit from 

patches with large habitat diversity, as these support greater abundance and diversity of 

herbivore species (Rosenzweig 1995; Marini et al. 2010). However, empirical studies 

(although see, Kruess 2003; Cronin & Reeve 2005; Holzschuh 2010) testing the relative 

importance of habitat diversity on natural enemies compared to habitat configuration are 

still lacking. 

Considering the diversity and crucial role of non-hymenopteran parasitoids in 

managed and natural ecosystems, more research is needed to elucidate the response of 

this key functional group to habitat fragmentation. The main aims of this study were: (i) 

to evaluate the relative importance of habitat loss, decrease of connectivity and their 

potential interactions on tachinid diversity; (ii) to evaluate whether the effects of habitat 

fragmentation changes seasonally; and (iii) to further assess the effect of habitat diversity 

on tachinid diversity and whether different parasitoid-host associations modify the species 

richness response to fragmentation. Specifically, we addressed three primary hypotheses. 

First, according to the fragmentation threshold hypothesis (Andrén 1994; Pardini et al. 

2010) we expect that the effect of habitat loss may depend on the level of habitat 

connectivity in the landscape (Hanski 2011). Due to the high mobility and relatively low 

specialization of tachinids, we expect that species diversity will respond to area only at 
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very low connectivity levels while in landscapes with relatively large connectivity the 

effect of habitat area should be less important (Rösch et al. 2013). Second, due to 

seasonal fluctuations in food resources and host density both in the patches and in the 

matrix, we expect that the effects of habitat fragmentation should vary between spring, 

summer and fall. Third, we hypothesized that fragments with high habitat diversity will 

support higher parasitoid diversity than patches dominated by a single habitat by 

providing larger resources for adults and more diverse host communities. In particular, 

species attacking host groups common in several habitats should respond more strongly to 

habitat diversity than species feeding on host groups that are mostly restricted to single 

habitats. We tested this hypothesis in isolated abandoned grasslands in intensive arable 

landscapes in a Mediterranean region, where shrub and tree encroachment in grasslands is 

expected to increase habitat diversity at the beginning of the succession, but declines as 

the cover of shrubs and trees gradually becomes continuous.  

 

Methods 

Study area and sampling design 

The research was conducted within an area of c. 650 km2 in the province of Siena (central 

Italy). The study region was characterized by a network of fragments of semi-natural 

grasslands, shrublands and forests within an intensively managed agricultural landscape. 

The grasslands patches are derived from eroded claystones (“biancane” badlands and 

“calanchi” claystones) which results in a mosaic of habitats that range from bare ground 

with scarce or no vegetation to grassland communities, with or without shrubs or trees. 

The prevailing land use in the landscape is highly homogenous being cultivated almost 

entirely with durum wheat. The agricultural matrix remains bare ground during summer 

and the beginning of fall due to the harvest (c. July) and ploughing (c. September). The 

cover of semi-natural grasslands in the surrounding landscape (2 km radius) varied 

between c. 1 and 10%. 

Eighteen patches were selected along three statistically uncorrelated gradients of 

(1) area ranging from 0.2 to 11.5 ha, (2) habitat connectivity ranging from isolated to 

well-connected patches and (3) within-patch habitat diversity varying from open 

grasslands or shrublands to complex mosaics of grasslands with shrubs and trees (Table 
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S1). The selection of the focal patches was designed to minimize the correlation between 

these three factors: log(area) vs. connectivity (rs = 0.009, P = 0.97), log(area) vs. habitat 

diversity (rs = 0.003, P = 0.99), and connectivity vs. habitat diversity (rs = 0.039, P = 

0.87). An initial prescreening of the patches was made by using high resolution satellite 

images from Google Earth 6.2 (Google Inc., Silicon Valley, California, USA) and the 

final selection of the focal patches was adjusted by direct field observations. Focal 

patches were selected to be separated by at least 2 km (mean minimum distance = 2.8 km) 

(Fig. 1) and only two patches presented a shorter distance (0.8 km).  

 

 

Figure 1. Study area showing the location of the 18 patches and the cover of semi-natural and 

arable land in the landscape. The land-use map is from the CORINE land cover 

(http://www.eea.europa.eu). 

 

Explanatory variables 

(i) Area and connectivity 

Habitat area was quantified by digitizing the patches using aerial photographs. Habitat 

connectivity was obtained by mapping all the patches of semi-natural habitats within a 2 

km radius from the edge of the 18 focal patches. Data on the average dispersal range of 

tachinids are not available. We therefore selected the radius for quantifying the 

connectivity using information derived from other parasitoid species (e.g., Roland & 

Taylor 1997; Thies et al. 2003). To assess connectivity, habitat patches were first 

identified as independent polygons for grasslands and forest using high resolution satellite 

images from Google Earth. Once the patches were identified, the area and the centroid of 
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each polygon within 2 km from the focal patch were calculated using ArcGIS 10.0 (ESRI, 

Redlands, California, USA). Initially the connectivity was calculated separately for 

grassland and forest, but in preliminary analyses connectivity computed using forest 

patches was never associated with our response variables. Thus, in the present study we 

presented only the grassland connectivity (see Table S1). 

 

Habitat connectivity (SI) for each of the 18 focal patches (i) was measured using 

the Hanski’s connectivity index (Hanski 1999): 

SIi =  e-dij Ab
j for all dij < 2.0km 

i  j 

Where Aj is the size of neighboring habitat patches and dij is the distance from the center 

of the neighboring patch j to the center of the focal patch i. The parameter  is a proxy for 

dispersal distance and b is a parameter that scales the size of the surrounding habitat 

patches. Although information about specific dispersal abilities of tachinids is still lacking 

(Letourneau et al. 2012), we used a value of  = 0.5. Nonetheless, assigning other 

dispersal abilities with  between 1 and 2.0 did not substantially change the connectivity 

index. For the scaling parameter b we chose b = 0.5 according to the assumptions that the 

ratio of patch edge to patch area decreases with A0.5 when patch area increases (Moilanen 

& Nieminen 2002). In preliminary analyses we also tested the connectivity index based 

on a 1 km radius and found that the results were qualitatively similar with those found for 

the 2 km radius. The model fit and the significance of the connectivity effect were, 

however, slightly better for the 2 km than for the 1 km radius. We therefore presented the 

results based on the former. 

(ii) Within-patch habitat diversity 

Three main habitat types can be identified within the patches: (i) bare ground with little or 

sparse vegetation, (ii) shrublands and (iii) open grasslands. All patches were formerly 

grazed and/or burnt, but due to the suspension of these traditional managements the semi-

natural grasslands have experienced shrubland encroachment (Maccherini et al. 2000). 

All the patches were unmanaged at the time of the sampling but the time since the 

abandonment differed. The dominant vegetation cover depended on the time since 
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suspension of management occurred; more recently burnt and grazed areas were 

dominated by open grasslands while areas abandoned decades ago were increasingly 

covered by shrubs and trees (Marini et al. 2010). Within the patch, the area covered by 

bare ground, grasslands and shrublands was independently calculated using aerial 

photographs (1:1500) with the software ImageJ (NIH, Bethesda, Maryland, USA). We 

estimated habitat diversity using the Shannon index. Due to the low number of habitats 

present, habitat diversity showed a tight hump-shaped relationship with the cover of both 

grasslands and shrublands (y = -0.0002x2 + 0.0127x + 0.5713, R² = 0.59, P < 0.01 for 

shrublands; y = -0.0003x2 + 0.0249x + 0.2284, R² = 0.79, P < 0.01 for grasslands). Due to 

the broad resolution of host associations, it was not possible to measure any meaningful 

variable related to host density or diversity. However, habitat diversity can be considered 

a good proxy of host availability as insect herbivore diversity is often positively 

correlated with habitat or resource heterogeneity (Tews et al. 2004). 

Insect sampling 

A Pan-trap sampling was conducted in the 18 semi-natural patches using a sampling 

effort proportional to patch area. Two clusters of five pan-traps were used for each patch 

with an area equal or smaller than 1.5 ha. In larger patches, one cluster of traps was added 

for each additional ha. Each cluster of traps consisted of three standard yellow (500 ml, 

16 cm diameter) and two UV-yellow plastic bowls (300 ml, 10 cm diameter) filled with a 

solution of water and 3% dishwashing detergent (Sole TM). Yellow pan-traps have been 

used as a reliable method for sampling tachinid flies (e.g., Stireman 2008). One UV-

yellow and one standard yellow pan-traps were held approximately 1 m above the ground 

using a wood support and one UV-yellow and two standard yellow pan-traps were placed 

on the ground within a two meter radius of the wood support. The cluster position was 

kept fixed within the grassland patch, leaving a distance of at least 20 meters from the 

borders and avoiding areas completely covered by shrubs. The sampling was conducted 

every two to three weeks between March and November 2012. A total of 16 samplings 

were performed covering the whole season during which the insects were active. During 

each sampling, traps were set for a period of 48 hours. Samples were stored in alcohol 

(70%) for sorting and identification. The specimens were identified to species level using 

Cerretti (2010) and Cerretti et al. (2012). All the specimens are currently housed in the 

insect collection of P. Cerretti at the MZUR (Museo di Zoologia, Università di Roma La 

Sapienza, Rome, Italy). 
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Host association 

Host association of the tachinid species was derived from Cerretti and Tschorsnig (2010) 

and Cerretti (2010). Unlike most parasitoids that are highly specialized at the host-species 

level, tachinids frequently attack a broad spectrum of hosts (Stireman & Singer 2003; 

Stireman 2005; Cerretti et al. 2014). Therefore, host association was defined at the insect 

order level. In cases where hosts were uncertain or unknown, the classification was 

inferred from the genus except for the few genera that are known to attack different 

orders (e.g., Exorista Meigen). We identified seven orders of potential hosts: Lepidoptera 

(n = 65), Coleoptera (n = 19), Hemiptera (n = 25), Hymenoptera (n = 3), Dermaptera (n = 

2), Orthoptera (n = 1), Diptera (n = 1) and Chilopoda-Lithobiomorpha (n = 1). For 12 

species, it was not possible to assign host association due to the lack of data. For the host 

association analysis, only the species attacking lepidopterans, coleopterans and 

hemipterans were included (n = 109). 

Statistical analyses 

To test the effects of habitat loss, connectivity and season, we used a general linear model 

(GLM) for tachinid abundance and a generalized linear mixed model (GLMM) with a 

Poisson distribution and a log-link function for species richness. The response variable 

was the cumulative number of individuals/species per patch obtained per each sampling 

event. Season was included in both models as a categorical factor with three levels, where 

spring included the first five samplings (16th March - 12th May), summer the following 

six (26th May - 8th August) and fall the last five samplings (26th August - 24th November). 

Both models included the focal patch as random factor to account for the repeated 

sampling in the same patch. Area and abundance were log-transformed in each model to 

improve linearity. The model tested the effect of area, connectivity, season and the 

interactions between area, connectivity and season. We first build a full model and then 

we simplified the model by removing one-by-one, starting from the interaction, the least 

significant terms with P > 0.05. The GLM and GLMM analyses were performed using 

the “nlme” (Pinheiro et al. 2013) and “lme4” (Bates et al. 2014) packages, respectively, 

implemented in R (R Development Core Team, 2013). 

To test whether tachinid abundance and species richness respond differently to 

habitat diversity according to host association, we used a GLM for abundance and a 

GLMM with a Poisson distribution and a log-link function for species richness. Similar to 
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the models described above, abundance and area were log-transformed to improve 

linearity in both models. The response variable was the cumulative number of 

individuals/species per each host group and patch obtained per each season. The low 

occurrence of tachinids did not allow to work with the data from the single sampling 

event. Both models included the focal patch as random factor to account for the repeated 

sampling in the same patch of different host groups. Both models included host as a 

categorical fixed effect with three levels (species attacking Lepidoptera, Coleoptera or 

Hemiptera). The other fixed effects, in both models, were area, connectivity, habitat 

diversity and the interaction between habitat diversity and host. We did not test 

interactions between host, area and connectivity as we did not have any specific 

ecological hypotheses to support these tests. However, in preliminary analyses we 

explored all these interactions and found no clear effects for any of them. To simplify the 

model we applied a backwards deletion procedure as explained above. 

To explore the effect of the proportional sampling on the fragmentation effects we 

used a widespread species richness estimator and species rarefaction curves (Magurran et 

al. 2010). The congruence between the results using the raw data and the asymptotic 

estimators would indicate that the effects detected are not a sampling artifact. First, we 

calculated the Jack1 species richness estimator using the function “specpool” from the 

statistical package “vegan” (Oksanen et al. 2007), implemented in the software R (R 

Development Core Team, 2013). Then, we run a similar model as explained above, where 

our response variable was the species richness estimator by patch, as the estimator takes 

in account the species accumulated after the sixteen samplings. Additionally, we 

constructed the species rarefaction curves to describe the species accumulation in relation 

to our sampling effort. For each focal patch, the rarefaction curve and its 95% intervals of 

confidence was calculated and plotted using 1,000 permutations with the function 

“accumcomp” from the “BiodiversityR” package (Kindt & Coe 2005) based on functions 

of the “vegan” package (Oksanen et al. 2007), implemented in R (R Development Core 

Team, 2013). To explore the species community changes between seasons, we calculated 

the number of shared species and the Jaccard similarity index (Magurran et al. 2010) 

using the software EstimateS 9.0 (Colwell 2013). Values close to 1 of this index indicate 

low beta-diversity between seasons. 

A potential problem with data obtained for many ecological observational studies 

is that the variables sampled may have a spatial component. For instance, our species 
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richness or abundance measures in neighbouring patches are likely to be similar. This can 

result in spatial autocorrelation which causes problems for statistical methods that make 

assumptions about the independence of residuals (Legendre & Legendre 1998). We 

therefore tested for spatial autocorrelation using Mantel correlograms (Borcard & 

Legendre 2012). Specifically, we tested whether model residuals obtained for both 

abundance and species richness were spatially auto-correlated. Spatial correlograms were 

constructed using 12 lag intervals. Each interval was 2.61 km wide, ranging from 0.93 to 

33.25 km. The first lag distance allowed to include the mean distance between focal 

patches. Mantel correlation coefficients were calculated for each lag interval and tested 

for significance with a permutation test, using 1999 permutations. Each correlogram was 

tested for significance using a Bonferroni-corrected α of 0.01 (Legendre & Legendre 

1998). The spatial autocorrelation analysis was performed using the “mpmcorrelogram” 

(Pinheiro et al. 2013) implemented in R (R Development Core Team, 2013). 

 

Results 

General results 

From March to November 2012, a total of 1528 individuals were observed (see Table S2). 

One-hundred-twenty-nine species belonging to 78 genera were identified. Three species 

appeared to be dominant accounting for almost 50% of the total specimens: Zeuxia 

aberrans (Loew), Gastrolepta anthracina (Meigen), and Besseria reflexa Robineau-

Desvoidy, representing 18, 17 and 12.4% of the specimens collected, respectively. In 

general, the most abundant species were associated with Hemiptera (e.g., B. reflexa) and 

Coleoptera hosts (e.g., Z. aberrans and G. anthracina). However, more than half of the 

species collected were associated to lepidopteran hosts (see host association section 

below). Additionally, the species Chetogena micronychia (Masson) and Pseudomintho 

diversipes (Strobl) were recorded for the first time in Italy. The estimated rarefaction 

curves for each focal patch ended with a fairly similar slope, suggesting that the observed 

species richness was comparable between patches (Fig. S1). 
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Table 1. Results from the mixed models testing the effects of patch area, connectivity, and season 

on tachinid (a) log-abundance and (b) species richness. Patch was included as a random factor and 

area was log-transformed to improve linearity in both models. For abundance we used general 

linear models with a normal distribution while for species richness we used a generalized linear 

mixed model with a Poisson distribution (log-link function). The interactions between season and 

area and between season and connectivity were removed from the model with a backwards 

deletion procedure (P > 0.05). For the full model refer to Table S3. 

(a) Abundance Estimate SE t value P value 

Intercept -9.320 2.271 -4.104 <0.001 

Log(Area) 2.549 0.514 4.960 <0.001 

Connectivity 0.246 0.110 2.246 0.041 

Season-spring -0.869 0.106 -8.200 <0.001 

Season-summer -0.361 0.113 -3.181 0.001 

Log(Area) x Connectivity -0.057 0.024 -2.291 0.037 

(b) Species richness   z value  

Intercept -10.845 2.374 -4.567 <0.001 

Log(Area) 2.675 0.525 5.095 <0.001 

Connectivity 0.277 0.115 2.413 0.016 

Season-spring -0.967 0.096 -10.067 <0.001 

Season-summer -0.219 0.086 -2.558 0.011 

Log(Area) x Connectivity -0.060 0.025 -2.376 0.018 

 

Species composition and abundance varied strongly over time. Of the 1528 

specimens sampled, 53% were collected in fall and 31% and 16% were collected in 

summer and spring, respectively. The most species-rich season was summer with 82 

species followed by fall and spring with 79 and 34 species, respectively. Additionally, we 

found that more than half of the species collected were restricted to only one particular 

season. Specifically, 26, 25 and 9% of the species were found exclusively in summer, fall 

and spring, respectively. The communities from summer and autumn are the most similar, 

sharing more than half of the species, while spring was more dissimilar from summer and 

fall (Table 2). 

Effect of area, connectivity and season 

We found a significant effect on tachinid abundance and species richness of both habitat 

area and connectivity (Table 1). We also found in both models an interaction between 
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area and connectivity, i.e. when connectivity was low the area effect was stronger, while 

when connectivity was large the area effect became less apparent (Fig. 2). The model 

using the species estimator as our response variable led to similar results as those 

obtained using observed species richness (Table S4). We found no support for any 

interaction between seasons and either area or connectivity indicating that the effects of 

both factors were consistent among seasons (Table S3), even if the species assemblages 

changed substantially over time (Table 2). We did not find significant spatial 

autocorrelation in the residuals of both abundance and species richness models. At all the 

distances, the Mantel correlations were close to zero. 

Table 2. Tachinid community similarity between the different seasons. Jaccard similarity index 

varies between 0 (completely different communities) and 1 (completely similar communities) 

(Magurran et al. 2010). 

Season Shared species Jaccard similarity 

Spring vs. Summer 18 0.19 

Spring vs. Autumn 14 0.14 

Autumn vs. Summer 44 0.38 

 

Host association and habitat diversity 

Although tachinids exhibit a wide range of hosts, three insect orders were identified as 

their main hosts. Species attacking lepidopterans represented half of the species collected, 

while hemipterans and coleopterans grouped 19 and 15% of the species, respectively. 

However, the most abundant species were related mainly to coleopterans and 

hemipterans. The interaction between habitat diversity and host association was not 

significant for both tachinid abundance and species richness. Similarly, we did not find 

any support that connectivity or area interacted with host association (Table S5). 
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Figure 2. Plots showing the interaction between area and connectivity on tachinid log-abundance 

and species richness. Panels are ranked from left (a) to right (c) according to increasing habitat 

connectivity. The fitted line is a general linear model estimate for log-abundance and a 

generalized linear mixed model estimate for species richness. The points represent the partial 

residuals from the respective models described in Table 1. Panels were drawn using the “visreg” 

function from the library “visreg” in R. 

 

Discussion 

Our study is one of the few testing simultaneously the effect of habitat area, connectivity 

and habitat diversity on species diversity on non-hymenopteran parasitoids. Tachinid 

parasitoids showed a clear species−area relationship with a linear increase in abundance 

and species richness as the area of the patches increases. However, the strength of the 

habitat loss effect depended on the degree of habitat connectivity. Abundance and species 

richness were negatively affected by habitat loss in highly fragmented landscapes, but the 

effect was less evident in landscapes with relatively high habitat connectivity. This result 

has important implications for biodiversity conservation as any attempts to mitigate the 

negative effects of habitat loss need to take the general level of habitat connectivity in the 

landscape into account (see also Rösch et al. 2013). 



Chapter II 

38 

Habitat fragmentation often consists of a combination of area reduction with a 

decrease in connectivity among remnant fragments. As the habitat patches become 

smaller, higher extinction rates due to environmental stochasticity in combination with a 

lower probability of receiving immigrants through dispersal may cause the often observed 

declines in abundance and species richness (Hanski 1999). A growing body of research 

further suggests that low connectivity can significantly affect the dispersal and species 

persistence in fragmented landscapes (Roland & Taylor 1997; Cronin 2007). In 

accordance with these predictions, we found that tachinid species diversity was positively 

related to habitat connectivity, but this effect also interacted with habitat loss. As the 

habitat patches became highly isolated, the abundance and richness of tachinids were 

more dependent on habitat area. Contrastingly, as the patches became relatively well 

connected the effect of habitat area was less evident. These contrasting effects of habitat 

loss at different levels of habitat connectivity, has been already shown for leafhopper 

communities (Rösch et al. 2013). The observed interaction between area and connectivity 

is consistent with the concept of extinction threshold applied at the community level 

(Andrén 1994; Pardini et al. 2010), i.e. for a given species, the total quantity of habitat 

available must exceed a certain threshold value for the species to persist. Landscapes with 

little and fragmented habitat are likely to be below the extinction threshold, while 

landscapes with large habitat cover and connectivity are expected to be above this 

threshold (Hanski 2011). The persistence of diverse tachinid parasitoid communities in 

our study area despite the high levels of fragmentation and low connectivity support the 

view that more generalist parasitoids can cope better with fragmentation pressure than 

more specialist groups (e.g., Pardini et al. 2010). This also suggests that tachinids may be 

good dispersers and/or they can use alternative hosts in the adjacent agricultural matrix, 

although this remains to be tested. 

Although tachinids exhibited large within-year species turnover, we found that 

this large temporal replacement did not modify the overall effects of landscape 

fragmentation. While most of the studies regarding habitat fragmentation have ignored 

changes in species through time, the few studies considering this effect have reported that 

species interact differently with habitat type in the different seasons (Letourneau et al. 

2012). Differently to our initial hypothesis that the effects of habitat fragmentation varies 

between seasons, our results indicated that the parasitoid community that we examined 

had a relatively constant response to both area and connectivity.  
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Contrary to our predictions, we did not find a relationship between habitat 

diversity and overall parasitoid abundance and species richness. The low host specificity 

of tachinids may have led to the lack of habitat diversity effect. Tachinids are expected to 

further depend on host density rather than just host diversity. Increasing habitat diversity 

has been proved to support a greater variety of species (e.g., Landis et al. 2005; Scherber 

et al. 2006), but not necessarily an increase in species abundances (e.g., Johnson et al. 

2006; Bennett & Gratton 2013). In fact, host density is often more associated to landscape 

variables such as area and connectivity (e.g., Ekroos et al. 2013; Veres et al. 2013). 

Similarly, we did not find an interaction between habitat diversity and host association 

indicating that the parasitoid species did not respond to this variable irrespective of their 

host association. 

Contrary to the hypothesis that parasitoids are highly susceptible to habitat 

fragmentation (Kruess & Tscharntke 1994; Holt et al. 1999), we showed that relatively 

polyphagous parasitoids may not be as severely affected by habitat loss. However, we 

found that for tachinid parasitoids their diversity still depends on minimum levels of 

remnant habitats in the landscape (c. 10%). The processes of habitat area reduction and 

loss of connectivity significantly interacted indicating that management practices to 

mitigate the negative effect of habitat loss at the local scale need to consider the 

surrounding landscape. In particular, the conservation of habitat connectivity needs to be 

specially considered on landscapes with small remnant habitats. Maintaining large habitat 

diversity within the habitat remnants appeared to be neutral to more generalist parasitoids. 

Our study provides new insights into the consequences of landscape changes on the 

diversity of a key functional group that has been long overlooked in ecological and 

conservation studies. The next step will be to understand the consequences of the loss of 

parasitoid diversity on ecosystem functioning (e.g., Fenoglio et al. 2012) to fully 

understand how fragmentation affects the complex multi-trophic interactions in highly 

fragmented landscapes. 
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Supplementary Material 

Table S1. Description of the sampled patches with the indication of area, connectivity (% of 

semi-natural coverage), and within patch habitat composition. 

Locality ID No 

traps 

Area 

(ha) 

Coordinates 

(decimal 

degrees) 

Semi-natural (%) 

(2 km buffer) 

Within patch 

habitat composition 

(%) 

Long Lat Grass Forest Total Bare 

ground 

Shrub Grass 

Asciano ID47 2 0.28 11.602 43.204 7 12.6 19.6 4.5 50.9 44.6 

Arbia N01 2 0.48 11.452 43.278 5.9 2.8 8.7 16.5 1.9 81.6 

San Quirico d'Orcia DI17 2 0.72 11.618 43.070 3.1 7.6 10.7 1.3 45.3 53.4 

Pienza N05 2 0.92 11.665 43.064 4.9 1.2 6.1 3 56.6 40.4 

San Giovani d'Asso N08 2 0.95 11.577 43.139 4.9 20.1 25 2.4 73.3 24.2 

Chiusure DI44 2 1.3 11.580 43.181 3.5 13.3 16.9 3 58.5 38.6 

Asciano DI50 2 1.36 11.548 43.216 4.2 26.6 30.8 35.9 17.7 46.5 

Torrenieri N06 3 1.76 11.557 43.122 7.5 25.5 33 4 54.4 41.6 

Vescona Chiesa DI52 3 1.81 11.498 43.281 4.1 1.3 5.4 17.6 9.3 73.1 

Monteroni d'Arbia DI10 3 1.92 11.451 43.229 3.1 21.7 24.9 2.9 19.7 77.4 

San Giovani d'Asso N04 4 2.91 11.563 43.136 2 34.2 36.1 4.8 84.5 10.7 

Bollano N03 5 4.43 11.529 43.175 10.1 46 56.1 1.5 88.7 9.8 

Arbia ID22 6 4.66 11.397 43.278 2.3 6.3 8.6 5.1 13.2 81.7 

Vescona Chiesa DI34 6 5.36 11.492 43.274 2.5 10.3 12.8 7.5 33.7 58.8 

Monteroni d'Arbia DI09 8 7.2 11.449 43.218 1.5 0.7 2.2 0.9 42.3 56.8 

Arbia DI38 9 8.34 11.427 43.281 5.3 1 6.3 4.6 30.6 64.8 

San Quirico d'Orcia N07 10 9.36 11.579 43.075 4.5 13.9 18.4 1.1 44.2 54.8 

Arbia ID12 12 10.82 11.428 43.260 2.8 4.4 7.2 6.6 31.2 62.3 
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Table S2. Tachinid species and their abundance in the study area. 

Species Total of specimens 

Acemya acuticornis (Meigen, 1824) 1 

Aplomya confinis (Fallén, 1820) 17 

Atylomyia loewii Brauer, 1898 3 

Besseria reflexa Robineau-Desvoidy, 1830 199 

Bithia immaculata (Herting, 1971) 1 

Bithia modesta (Meigen, 1824) 7 

Blepharipa pratensis (Meigen, 1824) 1 

Bothria frontosa (Meigen, 1824) 2 

Campylocheta latigena Mesnil, 1974 1 

Carcelia falenaria (Rondani, 1859) 53 

Catharosia albisquama (Villeneuve, 1932) 2 

Catharosia pygmaea (Fallén, 1815) 2 

Cestonia cineraria Rondani, 1861 2 

Chetina setigena Rondani, 1856 14 

Chetogena filipalpis Rondani, 1859 5 

Chetogena micronychia (Masson, 1969)*** 1 

Chetogena rondaniana (Villeneuve, 1931) 2 

Clairvillia pninae Kugler, 1971 1 

Clausicella suturata Rondani, 1859 4 

Clemelis massilia Herting, 1977 9 

Clemelis pullata (Meigen, 1824) 1 

Clytiomya sola (Rondani, 1861) 1 

Cylindromyia auriceps (Meigen, 1838) 8 

Cylindromyia bicolor (Olivier, 1812) 1 

Cylindromyia brassicaria (Fabricius, 1775) 3 

Cylindromyia brevicornis (Loew, 1844) 1 

Cylindromyia intermedia (Meigen, 1824) 6 

Cylindromyia pilipes (Loew, 1844) 7 

Cylindromyia pusilla (Meigen, 1824) 1 

Cylindromyia rufifrons (Loew, 1844) 1 

Cylindromyia rufipes (Meigen, 1824) 2 

Cyrtophleba ruricola (Meigen, 1824) 2 

Dolichocolon paradoxum Brauer & Bergenstamm, 1889 17 

Drino atropivora (Robineau-Desvoidy, 1830) 3 

Dufouria nigrita (Fallén, 1810) 2 

Ectophasia crassipennis (Fabricius, 1794) 2 

Eriothrix rufomaculata (DeGeer, 1776) 2 

Erycia festinans (Meigen, 1824) 10 

Erynniopsis antennata (Rondani, 1861) 1 

Eurysthaea scutellaris (Robineau-Desvoidy, 1848) 1 

Exorista civilis (Rondani, 1859) 1 

Exorista larvarum (Linnaeus, 1758) 1 

Exorista mimula (Meigen, 1824) 1 

Exorista nympharum (Rondani, 1859) 3 

Exorista rustica (Fallén, 1810) 4 

Gaedia connexa (Meigen, 1824) 4 



Fragmentation of semi-natural habitats 

43 

Table S2. continued  

Gaedia distincta Egger, 1861 4 

Gastrolepta anthracina (Meigen, 1826) 276 

Gonia picea (Robineau-Desvoidy, 1830) 1 

Hebia flavipes Robineau-Desvoidy, 1830 1 

Kirbya moerens (Meigen, 1830) 2 

Lecanipa leucomelas (Meigen, 1824) 1 

Leucostoma anthracinum (Meigen, 1824) 4 

Leucostoma nudifacies Tschorsnig, 1991 5 

Leucostoma simplex (Fallén, 1815) 6 

Leucostoma tetraptera (Meigen, 1824) 21 

Linnaemya frater (Rondani, 1859) 2 

Linnaemya soror Zimin, 1954 2 

Linnaemya vulpina (Fallén, 1810) 6 

Litophasia hyalipennis (Fallén, 1815) 1 

Loewia setibarba Egger, 1856 12 

Lomachantha parra Rondani, 1859 3 

Macquartia dispar (Fallén, 1820) 1 

Macquartia tessellum (Meigen, 1824) 1 

Macquartia viridana Robineau-Desvoidy, 1863 2 

Medina collaris (Fallén, 1820) 1 

Medina separata (Meigen, 1824) 6 

Meigenia dorsalis (Meigen, 1824) 3 

Meigenia majuscula (Rondani, 1859) 15 

Meigenia mutabilis (Fallén, 1810) 5 

Meigenia uncinata Mesnil, 1967 1 

Microphthalma europaea Egger, 1860 4 

Microsoma exiguum (Meigen, 1824) 1 

Mintho rufiventris (Fallén, 1817) 26 

Nemorilla maculosa (Meigen, 1824) 48 

Ocytata pallipes (Fallén, 1820) 2 

Opesia cana (Meigen, 1824) 1 

Opesia grandis (Egger, 1860) 17 

Oswaldia muscaria (Fallén, 1810) 4 

Pales pavida (Meigen, 1824) 21 

Panzeria puparum (Fabricius, 1794) 1 

Paratryphera barbatula (Rondani, 1859) 18 

Paratryphera bisetosa (Brauer & Bergenstamm, 1891) 8 

Paratryphera mesnili Herting, 1977  1 

Paratryphera palpalis (Rondani, 1859) 7 

Peleteria iavana (Wiedemann, 1819) 8 

Peleteria meridionalis (Robineau-Desvoidy, 1830) 4 

Peleteria rubescens (Robineau-Desvoidy, 1830) 9 

Peleteria ruficornis (Macquart, 1835) 6 

Peribaea apicalis Robineau-Desvoidy, 1863 2 

Peribaea tibialis (Robineau-Desvoidy, 1851) 5 

Periscepsia carbonaria (Panzer, 1798) 11 

Periscepsia latifrons (Zetterstedt, 1844) 1 

Periscepsia spathulata (Fallén, 1820) 1 
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Table S2. continued  

Phania funesta (Meigen, 1824) 21 

Phasia mesnili (Draber-Monko, 1965) 3 

Phasia obesa (Fabricius, 1798) 1 

Phasia pandellei (Dupuis, 1957) 5 

Phorinia aurifrons Robineau-Desvoidy, 1830 2 

Platymya antennata (Brauer & Bergenstamm, 1891) 1 

Platymya fimbriata (Meigen, 1824) 1 

Prosopea nigricans (Egger, 1861) 5 

Pseudogonia parisiaca (Robineau-Desvoidy, 1851) 12 

Pseudogonia rufifrons (Wiedemann, 1830) 4 

Pseudomintho diversipes (Strobl, 1899)*** 24 

Pseudoperichaeta palesioidea (Robineau-Desvoidy, 1830) 1 

Siphona geniculata (DeGeer, 1776) 3 

Siphona pauciseta Rondani, 1865 3 

Smidtia laticauda (Mesnil, 1963) 1 

Spallanzania rectistylum (Macquart, 1847) 1 

Staurochaeta albocingulata (Fallén, 1820) 1 

Stomina caliendrata (Rondani, 1862) 4 

Stomina calvescens Herting, 1977 19 

Stomina tachinoides (Fallén, 1817) 3 

Tachina magnicornis (Zetterstedt, 1844) 6 

Thecocarcelia trichops Herting, 1967 1 

Thelaira nigripes (Fabricius, 1794) 1 

Thelaira solivaga (Harris, 1780) 2 

Thelyconychia solivaga (Rondani, 1861) 1 

Triarthria setipennis (Fallén, 1810) 5 

Voria ruralis (Fallén, 1810) 88 

Wagneria cunctans (Meigen, 1824) 1 

Wagneria gagatea Robineau-Desvoidy, 1830 1 

Zaira cinerea (Fallén, 1810) 2 

Zeuxia aberrans (Loew, 1847) 289 

Zeuxia cinerea Meigen, 1826 8 

Zeuxia erythraea (Egger, 1856) 4 

Zeuxia zejana Kolomiets, 1971 1 

Ziminia masiceraeformis (Portshinsky, 1881) 2 

Total of species  129 

Total specimens  1528 
***Indicates new species recorded for Italy  
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Table S3. Results from the mixed models testing the effects of patch area, connectivity, and 

season on tachinid (a) log-abundance and (b) species richness. Patch was included as a random 

factor and area was log-transformed to improve linearity in both models. For abundance we used 

a general linear model while for species richness we used a generalized linear mixed model with a 

Poisson distribution (log-link function). 

(a) Abundance Estimate SE t value P value 

Intercept -10.910 2.382 -4.581 <0.001 

Log(Area) 2.875 0.539 5.335 <0.001 

Connectivity 0.255 0.110 2.317 0.036 

Season-spring 1.051 1.046 1.005 0.316 

Season-summer 2.037 1.120 1.820 0.070 

Log(Area) x Connectivity -0.057 0.025 -2.292 0.038 

Connectivity x spring -0.009 0.015 -0.578 0.564 

Connectivity x summer -0.016 0.016 -1.013 0.312 

Log(Area) x spring -0.403 0.235 -1.717 0.087 

Log(Area) x summer -0.479 0.251 -1.906 0.060 

(b) Species richness 
  

z value 
 

Intercept -11.114 2.461 -4.516 <0.001 

Log(Area) 2.715 0.542 5.013 <0.001 

Connectivity 0.287 0.115 2.487 0.0129 

Season-spring -2.091 1.258 -1.663 0.0964 

Season-summer 0.924 1.072 0.863 0.3884 

Log(Area) x Connectivity -0.061 0.025 -2.418 0.0156 

Connectivity x spring 0.005 0.013 0.403 0.6868 

Connectivity x summer -0.016 0.012 -1.277 0.2017 

Log(Area) x spring 0.220 0.260 0.848 0.3963 

Log(Area) x summer -0.182 0.221 -0.824 0.4102 

The categorical factor season included three levels (spring, summer, and fall). All the other 

variables were continuous. 

 

Table S4. Results from the generalized linear model using the Jack1 species richness estimators 

as response variable. The generalized linear model tested the effects of patch area, connectivity 

and their interaction on the estimated species richness. GLM was performed using a Poisson 

distribution (log-link function). The model did not include season as the estimator used the 16 

sampling events to estimate species richness. 

 
Estimate SE z value P value 

Intercept -4.645 1.483 -3.132 0.002 

Log(Area) 1.813 0.321 5.650 <0.001 

Connectivity 0.150 0.074 2.030 0.042 

Log(Area) x Connectivity -0.032 0.016 -1.991 0.046 
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Table S5. Results from the mixed models testing the effects of patch area, connectivity, host type 

and habitat diversity on tachinid (a) log-abundance and (b) species richness. Patch was included 

as a random factor and area was log-transformed to improve linearity in both models. For 

abundance we used general linear models while for species richness we used a generalized linear 

mixed model with a Poisson distribution (log-link function). 

(a) Abundance Estimate SE t value P value 

Intercept -13.237 2.605 -5.081 <0.001 

Log(Area) 3.446 0.620 5.558 <0.001 

Connectivity 0.414 0.133 3.109 0.008 

Hemiptera host 0.418 0.943 0.443 0.658 

Lepidoptera host 1.839 0.943 1.950 0.053 

Habitat diversity 0.112 0.990 0.113 0.912 

Log(Area) x Connectivity -0.096 0.030 -3.174 0.007 

Habitat diversity x Hemiptera host -1.473 1.272 -1.158 0.249 

Habitat diversity x Lepidoptera host -2.536 1.272 -1.993 0.048 

(b) Species richness 
  

z value 
 

Intercept -11.150 3.096 -3.601 <0.001 

Log(Area) 2.438 0.720 3.385 0.001 

Connectivity 0.263 0.158 1.664 0.096 

Hemiptera host 1.125 0.774 1.454 0.146 

Lepidoptera host 2.051 0.658 3.119 0.002 

Habitat diversity 0.687 0.977 0.703 0.482 

Log(Area) x Connectivity -0.057 0.035 -1.616 0.106 

Habitat diversity x Hemiptera host -1.533 1.034 -1.483 0.138 

Habitat diversity x Lepidoptera host -1.441 0.871 -1.655 0.098 

The categorical factor host included three levels (Coleoptera, Hemiptera and Lepidoptera hosts). 

All the other variables were continuous. 
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Figure S1. Accumulation curves of tachinid species richness against the number of sampling 

events for each focal patch. The vertical lines in the accumulation curves represent the 95% CI. 

Rarefaction curves are based on 1000 randomizations. Curves were drawn using the 

“accumcomp” function from the library “BiodiversityR” in R. For specific patch information refer 

to TableS1 using the ID code. 
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Abstract 

The magnitude of the benefits derived from organic farming within contrasting managed 

landscapes remains unclear and, in particular, the potential scale-dependent response of 

insect parasitoids is relatively unexplored. Identifying the scale at which parasitoids are 

affected by organic farming will be an important step to enhance their conservation. We 

sampled tachinid parasitoids at the centre and margin of arable and grassland fields on 

paired organic and conventional farms located in landscapes with different proportions of 

organic land. A total of 192 fields were sampled in two biogeographical regions of the 

UK. We found that the positive effect of organic farming on tachinid parasitoid diversity 

can be observed at multiple spatial scales. At the local scale, we found higher abundance 

and species richness of tachinid parasitoids on organic than on conventional farms and on 

field margins than on field centres. At the landscape scale, the diversity of tachinids was 

higher in landscapes with higher proportions of organic land. At both scales, the positive 

effect of organic farming was clear for arable fields, while it was almost neutral for 

grasslands. Any attempt to enhance parasitoid diversity in agricultural landscapes needs 

to consider the local management in relation to habitat type, location within the field and 

agricultural management in the surrounding landscape. Organic management in arable 

fields is clearly enhancing tachinid diversity, while the management of organic grasslands 

needs to be reconsidered. To increase the biodiversity of grasslands, organic management 

should aim to enhance habitat heterogeneity and to reduce mowing frequency and grazing 

intensity. To restore parasitoid diversity, the promotion of organic agriculture should aim 

to increase both the total extent of organic farming and the connectivity of individual 

organic farms. As the benefits of organic farming clearly spread beyond individual farm 

boundaries, any economic assessment of organic farming should consider these positive 

externalities. 

 

Introduction 

In the last few decades, agricultural intensification has strongly increased crop 

productivity through mechanization and the use of improved crop varieties, chemical 

fertilizers and pesticides leading to severe ecological simplification of European agro-

ecosystems (Swift et al. 1996; Tilman et al. 2001; Wilby & Thomas 2002; Bengtsson et 
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al. 2005; Fuller et al. 2005; Holzschuh et al. 2010; Geiger et al. 2010). This simplification 

has resulted in a marked reduction in the diversity of insect natural enemies with possible 

negative effects on pest control services (Wilby & Thomas 2002; Bianchi et al. 2006; 

MacFayden et al. 2009; Thies et al. 2011; Jonsson et al. 2012). Although it is relatively 

well known that intensive agricultural systems are responsible for the decline of species 

diversity and the abundance of natural enemies in general (e.g., Fuller et al. 2005; 

Letourneau & Bothwell 2008; Macfadyen et al. 2009, 2011; Lohaus et al. 2013), the 

understanding of the effects of agricultural management at different spatial scales on 

important natural enemies such as parasitoids is still incomplete. 

In Europe, to counteract the decline in farmland biodiversity, several agri-

environment schemes (AES) have been implemented, including subsidies to support 

organic farming. In contrast to conventional agriculture, organic farming is a production 

system considered to be more sustainable because the use of synthetic fertilizers and 

pesticides are excluded. These practices increase farmland heterogeneity and often 

enhance parasitoid diversity and possibly natural pest control (Bengtsson et al. 2005; 

Letourneau & Bothwell 2008; Macfadyen et al. 2009, 2011; Crowder et al. 2010), 

although the specific contribution of insect parasitoid diversity to pest control remains 

unclear (Finke & Denno 2004; Pérez-Lachaud et al. 2004; Batchelor et al. 2005). 

Research on parasitoids has only focused on organic management at the local scale, 

ignoring potential effects at the landscape scale. Although several studies have considered 

the effects of landscape composition on insect diversity, this research has mainly focused 

on the role of semi-natural habitats or habitat heterogeneity in the landscape (see review 

of Tuck et al. 2014), rather than effects of management type within the same land-use 

class (but see Holzschuh et al. 2008; Rundlöf et al. 2010; Gabriel et al. 2010). The 

magnitude of the benefits derived from organic farming within diverse agricultural 

managed landscapes remains unclear. Similarly, while recent research has highlighted 

that different taxa respond to organic management at different spatial scales (Gabriel et al. 

2006; Clough et al. 2007; Gabriel et al. 2010), the potential scale-dependent response of 

insect parasitoids is relatively unexplored. Identifying the scale at which parasitoids are 

most strongly affected by organic farming will be an important step to maximize the 

benefits from AES and potentially to enhance the biocontrol of pests. 

Most of the studies that have elucidated the effect of agricultural management and 

landscape on parasitoids have focused on single or a few species of hymenopteran 
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parasitoids (e.g., Thies et al. 2011; Jonsson et al. 2012; Lohaus et al. 2013). In this work, 

we used tachinids (Diptera: Tachinidae) as an alternative and non-hymenopteran 

parasitoid group. With almost 8,500 species, the Tachinidae family ranks second in 

diversity within the Diptera and is the most diverse group of non-hymenopteran 

parasitoids (Stireman et al. 2006; O’Hara 2013). Tachinids tend to have a wider range of 

hosts than hymenopteran parasitoids and can be very important natural enemies of 

agricultural pests. Tachinids often play significant roles in regulating herbivore 

populations due to their predominance in attacking the larval stage of lepidopterans, 

coleopterans, hemipterans and other major groups of insect herbivores (Stireman et al. 

2006; Cerretti et al. 2014). In general, about 100 species have been employed in 

biological control programs of crop and forest pests (Grenier 1988; Stireman et al. 2006). 

Additionally, adult tachinids are flower visiting insects as they use nectar as an energy 

source and may even act as pollinators (Al-Dobai et al. 2012), although their importance 

in this respect has been largely unexplored (Stireman et al. 2006). Considering the 

diversity and crucial role of tachinids as parasitoids, more research is needed to elucidate 

the effects of management across different scales on this key functional group. 

The main aim of our study was to examine how local farm management (organic 

vs. conventional) and the proportion of land under organic farming in the landscape 

affects species richness and the abundance of tachinid parasitoids. Specifically, we 

addressed four main questions. First, due to the marked differences in local management 

between organic and conventional farming, does organic farming enhance the local 

diversity of parasitoids? Second, if organic management has a positive effect on tachinid 

diversity, is this effect stronger for arable crops than for grasslands? Third, due to the 

greater difference in the local management of field centres between the two farming 

regimes, is there a more pronounced effect of organic farming in field centres than in field 

margins? Fourth, according to the source-sink hypothesis (Pulliam 1988), is organic 

farming acting as “source” of parasitoids from where conventional farms could benefit as 

“sink” habitats through the spill-over of individuals? If so, it is expected that parasitoid 

diversity in conventional farms located in landscapes with high coverage of organic 

farming will be greater than in landscapes dominated by conventional agriculture. 
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Methods 

Study area and sampling design 

The study design and the site selection are described in full detail in Gabriel et al. (2010). 

In summary, sixteen landscapes of 10 x 10 km were selected containing different 

proportions of land under organic farming (Fig. 1a). Landscapes were arranged in eight 

clusters of paired landscapes. Paired landscapes were chosen to have similar 

environmental conditions (i.e. very similar landscape composition), but contrasting 

amounts of organic farming, i.e. organic “hotspot” versus “coldspot” depending on the 

proportion of land under organic farming (hotspot mean 17.2%, range 8.9‒36.8% vs. 

coldspot mean 1.4%, range 0.5‒3.3%) (see Gabriel et al. 2009). The paired landscapes 

within each cluster were located within an average distance of 28.3 ± 14.4 km. Four 

clusters were located in the Central South West and four in the North Midlands of 

England (Fig 1a). Each landscape (both hotspot and coldspot) contained one focal organic 

and one conventional farm with similar enterprise structure (Fig 1b). The paired farms 

were located within an average distance of 2.9 ± 1.4 km. This study design ensured that 

the local farm management and the proportion of land under organic farming in the 

landscape were uncorrelated enabling us to test the interaction between the two scales. 

Within each farm, three cereal fields (mainly winter wheat) and three grassland fields 

(mainly grazed permanent pastures) were selected (Fig. 1b). A total of 192 fields were 

sampled, within 16 organic and 16 conventional farms located in eight clusters divided in 

two regions. 
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Figure 1. Scheme showing the hierarchical sampling design. (a) Distribution of the 16 paired 

landscapes across two regions in England. (b) Landscapes with grey shading representing low 

(coldspot) or high (hotspot) amount of organic land in the landscapes. Each landscape contains 

one conventional (white circle) and one organic farm (grey circle). Farms contain three arable 

(solid rectangles) and three grass (dashed rectangles) fields. (c) Within each field three groups of 

three pan-traps were placed in the field margin and in the field centre. 

 

Insect sampling 

Within each field, pan-trap sampling was conducted along two transects. The first transect 

was placed in the margin of the field (uncultivated area) and the second transect was 

placed in the field centre, about 25 m from the margin. On each transect, three groups of 

three pan-traps were placed separated by 25 m (Fig. 1c). Each group of pan-traps 

consisted of three UV-reflecting colored plastic bowls (yellow, white and blue) with an 

internal diameter of 11 cm. Pan-traps were held just above the top of the vegetation by a 

wooden stake and the bowls were half filled with water to which a drop of detergent was 

added to break the surface tension. The sampling was conducted twice in 2007 in June 

and July when the average temperature was above 15ºC. During each sampling round, 

traps were set for a period of 48 hours after which insects were retrieved and stored in 

alcohol (70%) for sorting and identification. A total of 2,304 samples were processed and 

the specimens belonging to the family Tachinidae (Diptera) were identified to species 
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level using Cerretti (2010) and Cerretti et al. (2012). All the specimens were housed in 

the insect collection of P. Cerretti at the MZUR (Museo di Zoologia, Università di Roma 

La Sapienza, Rome, Italy). 

Statistical analyses 

To test the effects of cover of organic land in the landscape (hotspot and coldspot), farm 

management (organic and conventional), habitat (arable and grassland fields), and trap 

location (margin vs. centre) we used generalized linear mixed effect models. The 

response variable was the species richness per field and the total number of individuals 

per field. For abundance we used a generalized linear mixed model with a negative 

binomial distribution. For species richness we used a generalized linear mixed model with 

a Poisson distribution. The families and link functions used in the models were selected 

based on residual deviance and distribution of residuals. Both models included region 

(Central South and North Midlands), landscape (hotspot and coldspot), farm management 

(organic and conventional), habitat (arable and grassland fields), and location (margin and 

centre) as categorical fixed effects. Both models included landscape-cluster (n = 8), 

landscape ID (n = 16), farm ID (n = 32) and field ID (n = 192) as random factors to 

account for the nested design of the sampling. Although due to its nature region could be 

a random effect, we include it as a fixed factor because it only had two levels (Bolker et 

al. 2008). The analyses were performed using the package “glmmADMB” (Fournier et al. 

2012), implemented in R 3.0.2 (R Development Core Team 2013). 

To compare the fit of all the possible combinations of predictors in our models we 

used the second-order Akaike’s information criterion (AICc) corrected for small samples 

(Whittingham et al. 2006). We first built a global model containing the variable region 

and all the interactions among landscape, farm management, habitat, and location. Region 

was not included in any interactions, as we did not have any ecological hypothesis to 

support these analyses. We compared all the models using ΔAICc and Akaike weights 

(∑wi). A model is usually considered plausible if its ΔAICc is below two (Burnham & 

Anderson 2002). To evaluate the relative importance of each predictor, we summed the wi 

across the models in the set in which the predictor occurred. The model inference 

analyses were performed using the “MuMIn” package (Barton 2013) implemented in R 

(R Development Core Team 2013). 
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To assess the variability explained by the fixed and random effects, we calculated 

the pseudo-R2. We did not perform this analysis on the abundance model, as currently it is 

not possible to calculate the pseudo-R2 of a GLMM with a negative binomial distribution 

(Nakagawa & Schielzeth 2013; Johnson 2014). To calculate the pseudo-R2 for the species 

richness model, we built a mixed model including all parameters that were included in 

models with a ΔAICc below two. Then, we calculated the marginal and conditional 

pseudo-R2 using the function “r.squaredGLMM” implemented in the “MuMIn” package 

(Barton 2013). The marginal pseudo-R2 describes the proportion of variance explained by 

the fixed factors alone, while the conditional pseudo-R2 describes the proportion of 

variance explained by both the fixed and random factors (Nakagawa & Schielzeth 2013). 

 

Results 

A total of 12,954 individuals were collected belonging to 50 species (for species list see 

Table S1), 8,041 individuals belonging to 40 species were collected in organic farms, 

while 4,913 individuals belonging to 35 species were collected in conventional farms. 

Fifteen species were only found on organic farms, while 10 were only found on 

conventional farms. Two species were dominant accounting for more than 80% of the 

total abundance. Siphona geniculata (DeGeer) and Eriothrix rufomaculata (DeGeer) 

represented 68% and 19% of the individuals collected, respectively. Siphona geniculata is 

one of the few parasitoids known to attack crane fly larvae (Diptera: Tipulidae) which are 

important agricultural pests damaging grasslands and cereals, although they can also be a 

problem in other crops, particularly where they are grown after grass leys (Belshaw 1993; 

Blackshaw & Coll 1999). Eriothrix rufomaculata is a parasitoid of lepidopteran larvae, 

known to attack pyralid larvae (Lepidoptera: Pyralidae) in grasses (Paston & Rotheray 

2009). 
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Table 1. Sum of Akaike weights (Σwi) across all models for tachinid abundance and species 

richness. For each predictor, Σwi is the sum of weights of the models that contain that variable. 

Σwi can vary between 0 and 1 and represent the relative importance of the variables (Burnham & 

Anderson 2002). 

  Abundance Species richness 

  Σwi Σwi 

Habitat 1.00 0.96 

Landscape 1.00 1.00 

Location 1.00 1.00 

Management 1.00 0.96 

Region 1.00 1.00 

Habitat x Landscape 0.99 0.85 

Habitat x Location 0.44 0.69 

Habitat x Management 1.00 0.47 

Landscape x Location 0.64 0.72 

Landscape x Management 0.50 0.31 

Location x Management 0.42 0.41 

Habitat x Landscape x Location 0.12 0.19 

Habitat x Landscape x Management 0.26 0.05 

Habitat x Location x Management 0.14 0.08 

Landscape x Location x Management 0.07 0.03 

Habitat x Landscape x Location x Management 0 0 

 

For tachinid abundance, six plausible models were selected (ΔAICc < 2, Table 

S2). The sum of model weights for each predictor gave support for strong effects of 

region, landscape, farm management, habitat, and trap location on tachinid abundance 

(Table 1). This indicates that the tachinid abundance was higher in Central South (mean = 

48.56 ± 5.72 SE) than North Midlands (21.38 ± 2.72 SE), higher in hotspots (42.63 ± 5.44 

SE) than in coldspots (27.18 ± 3.43 SE) (Fig. 2b), higher in organic (43.47 ± 5.86 SE) 

than in conventional (26.27 ± 2.61 SE) farms (Fig. 2a), higher in grasslands (42.09 ± 5.54 

SE) than in arable crops (27.86 ± 3.35 SE), and higher in the field margins (48.26 ± 5.60 

SE) than in the field centres (21.24 ± 2.84 SE). We also found a good support for two 

interactions: management x habitat and landscape x habitat. The first interaction 

(management x habitat) indicated that organic management exhibited higher abundance 

than conventional management in arable fields but not in grassland fields (Fig. 3a). 

Similarly, hotspots had a higher abundance than coldspots in arable fields but not in 
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grasslands (Fig. 3b; landscape x habitat interaction). Although less strong, we found two 

additional interactions: landscape x location and landscape x management. The first 

interaction (landscape x location) indicated that the difference in abundance between field 

margins and centres was less evident in hotspots than in coldspots. The second interaction 

(landscape x management) indicated that in hotspots the abundance of tachinids on 

conventional farms was more similar to that of organic farms. 

 

Figure 2. Mean values (± SE) of tachinid abundance (a, b) and species richness (c, d) per farm 

management (Con: conventional, Org: organic) and landscape composition (Cold: coldspot, Hot: 

hotspot). 

For tachinid species richness, 10 plausible models were selected (ΔAICc < 2, 

Table S2). Similar to tachinid abundance, we found a strong effect of region, landscape, 

farm management, habitat, and trap location on tachinid species richness (Table 1). This 

indicates that the tachinid species richness was higher in Central South (3.28 ± 0.12 SE) 

than North Midlands (2.18 ± 0.11 SE), higher in hotspots (3.02 ± 0.13 SE) than in 

coldspots (2.43 ± 0.11 SE) (Fig. 2d), higher in organic (2.92 ± 0.13 SE) than in 

conventional (2.52 ± 0.11 SE) farms (Fig. 2c), higher in arable crops (2.80 ± 0.13 SE) 

than in grasslands (2.64 ± 0.12 SE), and higher in the field margins (3.36 ± 0.13 SE) than 

in the field centres (2.08 ± 0.10 SE). As above, we also found strong support for an 

interaction between landscape and habitat, where hotspots displayed higher species 

richness than coldspots in arable fields, but not in grasslands (Fig. 3d). Although less 
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supported, we found two additional interactions: habitat x location and landscape x 

location. These interactions indicate that the differences in species richness between field 

margins and centres were less evident in grasslands than in arable crops and in hotspots 

than in coldspots. We further found that fixed effects explained the majority of the 

variability of the mixed model containing all the parameters with a ΔAICc < 2. 

Specifically, we found a pseudo-R2 of 0.30 for the proportion of variance explained by the 

fixed factors alone, while for the proportion of variance explained by both the fixed and 

random factors we found a pseudo-R2 of 0.32. 

 

Figure 3. Interaction between management (Con: conventional, Org: organic) and habitat (a, c) 

and between landscape and habitat (b, d) on tachinid log-abundance and log-species richness. 

Dots represent mean values and bars represent the SE. 

 

Discussion 

Our study indicates a positive effect of organic farming on tachinid parasitoid diversity at 

multiple spatial scales. We found higher abundance and species richness both on organic 

farms and in hotspot landscapes. However, the tachinid parasitoid response was complex 

and various interactions between the organic farming and local habitat were found. In 

particular, the positive effect of organic management was clear for arable fields while it 

was almost neutral for grasslands, either at the local or at the landscape scale. These 
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results have important implications for management, as any attempt to enhance parasitoid 

diversity in agricultural landscapes needs to consider the local management in relation to 

habitat type, location within the field and agricultural management in the landscape.  

At the local scale, we found that tachinid diversity was always higher in the field 

margins. Several studies have shown that field margins are important semi-natural 

habitats within agricultural landscapes hosting high insect diversity (Marshall & Moonen 

2002; Benton et al. 2003; Carvell et al. 2007; Olson & Wäckers 2007; Vickery et al. 

2009; Macfadyen & Muller 2013; Ó hUallacháin et al. 2014; Dainese et al. 2015), but 

how margins interact with their adjacent fields is less clear. For example, Olson and 

Wäckers (2007) showed that managing margins for beneficial insects along conventional 

fields of cotton increased the diversity of tachinid parasitoids, but there was no effect on 

the spill-over of individuals into the field. By contrast, Schröter and Irmler (2013) found 

in a transitional experiment from conventional to organic farming that after 4 years under 

organic farming the community of carabid predators of the field centre resembled that of 

the field margins. In our study we found no effects of local management on the spill-over 

of tachinids. However, we found a marginal effect of the landscape on the local spill-over 

of parasitoids from the margin to the field center, suggesting that for highly mobile 

organisms the effect of management needs to be considered at larger scales. 

At the local and landscape scale, we further found that tachinid diversity was 

differently affected by the organic farming depending on habitat type (grassland or arable 

land). Specifically, the positive effect of organic management was exhibited strongly in 

arable fields, but was almost absent for grasslands. Similar results have been found by 

other authors (Eyre & Leifert 2011; Batáry et al. 2012; Eyre, Luff & Leifert 2013; Kleijn 

et al. 2011; Scheper et al. 2013), suggesting that differences in the effectiveness of 

organic farming between these habitats may be explained by differences in disturbance 

together with their specific management. As arable crops are generally more disturbed by 

agricultural activities than grasslands, the benefit generated by organic management is 

expected to be more evident in the former (Kleijn et al. 2011; Scheper et al. 2013). Hence, 

we found that organic arable land yielded even higher species richness than grasslands. 

On the one hand, in arable crops under conventional agriculture insects are expected to be 

negatively affected by the use of chemical pesticides, compared to organic farms where 

such chemicals are not applied (Boatman et al. 2007; Geiger et al. 2010). For example, 
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pesticide applications in winter wheat are well known to have negative effects on non-

target organisms such as parasitoids (e.g., Longley 1999; Holland et al. 2000). On the 

other hand, pesticides are not usually applied in grasslands in either organic or 

conventional farms, and often the intensity of management does not differ significantly 

between the two farming systems (Geiger et al. 2010; Batáry et al. 2012; Gaujour et al. 

2012). In both conventional and organic grasslands, insect diversity is mainly affected by 

fertilization and mechanical disturbances such as mowing frequency and grazing intensity 

(van Elsen 2000; Humbert, Ghazoul & Walter 2009; Kruess & Tscharntke 2002; Marini 

et al. 2009; Gaujour et al. 2012). The main difference between organic and conventional 

grasslands is in their use of organic and mineral fertilizers respectively, which are actually 

thought to have very similar effects on flower-visiting insects such as tachinids (Al-Dobai 

et al. 2012). 

Although the local factors explained above were important determinants of the 

diversity of tachinids, we also found that the proportion of organic land in the landscape 

played a major role. A greater cover of land under organic farming in the landscape 

enhanced the diversity of tachinids that can colonize both organic and conventional 

farms. Specifically, we found that the abundance and species richness of tachinid 

parasitoids was always higher within hotspot landscapes. The proportion of organic land 

in the landscape has been found to be important for other insect groups such as butterflies, 

epigeal arthropods, and solitary bees (Gabriel et al. 2010). These effects may arise 

because the distribution and persistence of species across landscapes depend on the 

species’ dispersal ability and the proximity of suitable habitats that can support viable 

population sources (Pulliam 1988; Hanski & Ovaskainen 2002). As tachinid flies have 

been found to respond to habitat connectivity (Letourneau et al. 2012; Inclán et al. 2014), 

the amount of organic farming in agricultural landscapes appears to be a potential means 

of re-establishing heterogeneity of farmland habitats, and thereby enhancing farmland 

parasitoid diversity (Benton et al. 2003). Therefore, to restore biodiversity in agricultural 

landscapes, strategies promoting organic agriculture should aim to increase both the total 

extent of organic farming and the contiguity of individual organic farms. 
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Conclusions 

Our results have important implications for parasitoid conservation in agricultural 

landscapes. In particular, any attempt to enhance parasitoid diversity, by means of organic 

management, needs to consider the local management in relation to habitat type and 

agricultural management in the landscape. At the local scale, organic management in 

arable fields is clearly enhancing tachinid diversity, while the management of organic 

grasslands needs to be reconsidered (Batary et al. 2012). As it has been shown by other 

authors, the effects of AES measures increase with the size of the ecological contrast 

created by the measure (Kleijn et al. 2011; Scheper et al. 2013). The contrast between 

conventional and organic wheat fields is much higher than that between conventional and 

organic grasslands. Therefore, to increase the biodiversity of grasslands, organic 

management should aim to enhance heterogeneity and to modify management practices 

such as mowing and grazing intensity (Humbert et al. 2009; Gaujour et al. 2012). At the 

landscape scale, our results exemplify how landscapes with higher proportion of organic 

land improved the overall diversity of tachinid parasitoids. Conventional farms had 42 

and 18% higher tachinid abundance and species richness in organic landscapes than in 

landscapes with high cover of conventional agriculture. Thus, as the benefits of organic 

management spread beyond the borders of individual farms, any economic assessment of 

the costs and benefits of organic farming should incorporate these “positive externalities” 

that are not captured in the farms’ balance sheets. To restore parasitoid diversity in 

agricultural landscapes, the promotion of organic agriculture (i.e. as an AES strategy) 

should aim to increase both the total extent of organic farming and the connectivity of 

individual organic farms. Subsequently, the biodiversity restored by the implementation 

of organic management (either at the local or landscape scale) could support important 

ecosystem services. As organic management increased the abundance of tachinid 

parasitoids (by about 40%), the pest control in these systems is expected to be greater. 

Additionally, as tachinid parasitoids have a wide range of hosts, increasing their diversity 

would increase also the potential to control a wide spectrum of pests (i.e. the two most 

abundant species in our study attack two completely different host groups). Furthermore, 

we expect that the results found here on tachinid parasitoids, could be extended to other 

groups of insect parasitoids. However, to justify and facilitate the increase of organic 

farming, future research is still needed to demonstrate the specific contribution of 

parasitoids to key ecosystem services such as biological control. 
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Supplementary Material 

Table S1. Tachinid species and their abundance in the study sites. 

Species Total of individuals 

Actia infantula (Zetterstedt, 1844) 1 

Actia lamia (Meigen, 1838) 1 

Admontia maculisquama (Zetterstedt, 1859) 2 

Bithia spreta (Meigen, 1824) 2 

Catharosia pygmaea (Fallén, 1815) 4 

Compsilura concinnata (Meigen, 1824) 2 

Demoticus plebejus (Fallén, 1810) 1 

Dexia rustica (Fabricius, 1775) 1 

Dexiosoma caninum (Fabricius, 1781) 1 

Dinera grisescens (Fallén, 1817) 94 

Drino lota (Meigen, 1824) 1 

Dufouria chalybeata (Meigen, 1824) 2 

Epicampocera succincta (Meigen, 1824) 44 

Eriothrix rufomaculata (DeGeer, 1776) 2524 

Exorista larvarum (Linnaeus, 1758) 3 

Exorista rustica (Fallén, 1810) 113 

Freraea gagatea Robineau-Desvoidy, 1830 2 

Loewia foeda (Meigen, 1824) 3 

Lydella grisescens Robineau-Desvoidy, 1830 40 

Lydella stabulans (Meigen, 1824) 3 

Macquartia grisea (Fallén, 1810) 1 

Macquartia praefica (Meigen, 1824) 2 

Medina separata (Meigen, 1824) 2 

Meigenia incana (Fallén, 1810) 1 

Meigenia mutabilis (Fallén, 1810) 322 

Nemorilla maculosa (Meigen, 1824) 3 

Nowickia ferox (Panzer, 1809) 17 
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Table S1. continued  

Ocytata pallipes (Fallén, 1820) 21 

Pales pavida (Meigen, 1824) 5 

Panzeria anthophila (Robineau-Desvoidy, 1830) 1 

Periscepsia spathulata (Fallén, 1820) 3 

Phania funesta (Meigen, 1824) 502 

Phasia obesa (Fabricius, 1798) 4 

Phasia pusilla Meigen, 1824 10 

Phryxe heraclei (Meigen, 1824) 1 

Phryxe nemea (Meigen, 1824) 3 

Phryxe vulgaris (Fallén, 1810) 4 

Prosena siberita (Fabricius, 1775) 223 

Pseudoperichaeta nigrolineata (Walker, 1853) 1 

Siphona geniculata (DeGeer, 1776) 8914 

Solieria pacifica (Meigen, 1824) 4 

Sturmia bella (Meigen, 1824) 1 

Tachina fera (Linnaeus, 1761) 2 

Tachina grossa (Linnaeus, 1758) 1 

Thelaira nigripes (Fabricius, 1794) 32 

Triarthria setipennis (Fallén, 1810) 18 

Trixa conspersa (Harris, 1776) 1 

Voria ruralis (Fallén, 1810) 17 

Zaira cinerea (Fallén, 1810) 6 

Zophomyia temula (Scopoli, 1763) 1 

 



 

 

 

Table S2. Plausible candidate models (within 2 ∆AICc of the top model) explaining species richness and abundance of tachinid parasitoids. Models are 

ranked according to their second-order Akaike’s information criterion (AICc). For each tested variable ∑wi indicates the sum of model weights. 

  Abundance Species richness 

  Best 2nd 3rd 4th 5th 6th ∑wi Best  2nd 3rd 4th 5th 6th 7th 8th 9th 10th ∑wi 

ΔAICc 0 0.33 1.42 1.7 1.74 1.82 - 0 0.49 0.81 1.18 1.28 1.31 1.42 1.56 1.76 1.9 - 

Model weight 0.11 0.09 0.05 0.05 0.05 0.04 - 0.06 0.05 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.02 - 

Intercept 0.87 0.98 0.73 0.83 0.82 0.83 - 0.11 0.07 0.04 0.07 0.19 0 0.21 0.02 0.15 0.16 - 

Habitat * * * * * * 1 * * * * * * * * * * 0.96 

Landscape * * * * * * 1 * * * * * * * * * * 1 

Location * * * * * * 1 * * * * * * * * * * 1 

Management * * * * * * 1 * * * * * * * * * * 0.96 

Region * * * * * * 1 * * * * * * * * * * 1 

Habitat x Landscape * * * * * * 0.99 * * * * * * * * * * 0.85 

Habitat x Location - - - - * - 0.44 * * * * - * * * - * 0.69 

Habitat x Management * * * * * * 1 - * - - - * - * * * 0.47 

Landscape x Location * - * * * * 0.64 * * * * * * - * * - 0.72 

Landscape x Management - - * * - - 0.5 - - - - - - - - - - 0.31 

Location x Management - - - - - * 0.42 - - - * - - - * - - 0.41 

Habitat x Landscape x Location - - - - - - 0.12 - - * - - * - - - - 0.19 

Habitat x Landscape x Management - - * - - - 0.26 - - - - - - - - - - 0.05 

Habitat x Location x Management - - - - - - 0.14 - - - - - - - - - - 0.08 

Landscape x Location x Management - - - - - - 0.07 - - - - - - - - - - 0.03 

Habitat x Landscape x Location x Management - - - - - - 0 - - - - - - - - - - 0 

* Indicates that the categorical variable was included in the models.
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Abstract 

The intensification of agriculture has led to a severe simplification of agricultural 

landscapes, resulting in a marked reduction in the diversity of insect natural enemies. 

However, how this simplification shapes the community composition of insect parasitoids 

is still unclear. We examined the potential spillover of tachinid parasitoids from semi-

natural habitats into apple orchards across different landscapes. We sampled commercial 

apple orchards localized in landscapes characterized by different proportions of crop and 

non-crop habitats (forest and grasslands) to first evaluate if increasing the cover of semi-

natural habitats will affect the local species richness of apple orchards. Second, we tested 

whether the contribution of forest and grassland habitats to the local tachinid community 

composition of apple orchards changes according to landscape composition. We found 

that increasing the cover of semi-natural habitats did not affect local tachinid species 

richness in apple orchards, while it strongly affected the species composition. 

Independently of the landscape, we found highly nested communities of tachinids 

between apple orchards and forest habitats suggesting a strong spillover of tachinids 

between these habitats. In contrast, tachinids in apple orchards were nested with grassland 

habitats when the proportion of semi-natural habitats was very low. Our results have 

important implications for the conservation of insect parasitoids in agricultural 

landscapes, as the spillover of species in agricultural land can be affected by the type and 

the proportion of semi-natural habitats in the surrounding landscape. 

 

Introduction 

In the last decades, the intensification of agriculture has led to a severe simplification of 

agricultural landscapes (Swift et al. 1996; Tilman et al. 2001). This simplification has 

been caused by an increase of the size of crop fields and a marked reduction of the 

remaining natural and semi-natural habitats, which has resulted in landscapes dominated 

by only a few crop types (Robinson & Sutherland 2002; Tscharntke et al. 2012). The 

simplification of agricultural landscapes has resulted in a marked reduction of the 

diversity of insect natural enemies with possible negative effects on pest control service 

(Wilby & Thomas 2002; Bianchi et al. 2006; Thies et al. 2011; Jonsson et al. 2012). 

Although the overall negative effects of landscape simplification on the species richness 
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of natural enemies are relatively well known (e.g., Macfadyen & Muller 2013; Inclán et 

al. 2014; Martinson & Fagan 2014), how this process shapes the community composition 

of important natural enemies such as parasitoids is still unclear. 

The ecological contrast between habitats within intensive agricultural landscapes 

is an important factor determining the spillover of species between these habitats. 

Therefore, the contrast between agricultural and semi-natural habitats will determine 

species immigration and emigration (Polis et al. 1997; Schellhorn et al. 2014). Several 

authors have found species flow from natural habitats into adjacent agricultural fields 

(e.g., Landis et al. 2000; Geiger et al. 2008; Rusch et al. 2010; Blitzer et al. 2012), but 

dispersal in the opposite direction has also been found (e.g., Tscharntke et al. 2005; Rand 

et al. 2006; Blitzer et al. 2012; Frost et al. 2014). This spillover of parasitoids has also 

been shown to affect important ecosystem services such as natural pest suppression 

(Landis et al. 2000; Macfadyen & Muller 2013; Gagic et al. 2014). Although it is clear 

that the spillover of organisms like parasitoids can affect trophic interactions in the 

recipient habitat (Tscharntke et al. 2005; Rand & Louda 2006; Rand et al. 2006; Klapwijk 

& Lewis 2012; Macfadyen & Muller 2013; Martinson & Fagan 2014), how the spillover 

of parasitoids change in relation to specific habitats within different landscapes is still a 

little understood topic. 

Studies about spillover of natural enemies from natural habitats into adjacent 

agricultural fields have focused on predators with limited dispersal range like most 

ground-dwelling predators (e.g., see review of Blitzer et al. 2012) and less attention has 

been paid on the spillover of more mobile organisms such as parasitoids (although see 

Olson & Wäckers 2007; Macfadyen & Muller 2013; Frost et al. 2014). Furthermore, the 

majority of these studies have focused on the effects on species richness, ignoring the 

effects on species composition (but see Gagic et al. 2014). In this work, we used tachinid 

flies (Diptera: Tachinidae) as a model group to investigate the spillover of a highly 

mobile and diverse group of parasitoids. The family Tachinidae, with almost 8,500 

species, ranks second in diversity within the Diptera and is the most diverse group of non-

hymenopteran parasitoids (Stireman et al. 2006; O’Hara 2013). Tachinids can be very 

important natural enemies because of their predominance in attacking major groups of 

insect herbivores as lepidopterans, coleopterans and hemipterans (Stireman et al. 2006; 

Cerretti et al. 2014). In this study, we examined the spillover of tachinid parasitoids from 

two semi-natural habitats into agricultural land in contrasting landscapes. Specifically, we 
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sampled commercial apple orchards localized in landscapes characterized by different 

proportions of crop and non-crop habitats (forest and grasslands). Specifically, we have 

addressed three main hypotheses. First, we expected that increasing the cover of semi-

natural habitats will increase the local species richness of apple orchards. Higher species 

richness in apple orchards located in forest- or grassland-dominated landscapes will 

indicate a high spillover between these habitats. Therefore, a significant interaction 

between local habitat and landscape will be indicative of spillover between habitats. 

Second, as we expected that the spillover will vary across different habitats and 

landscapes, we tested the contribution of forest and grassland habitats to the local 

diversity of apple orchards located in landscapes with different proportions of semi-

natural habitats. We used an index of nestedness to compare the species composition 

between crop and non-crop habitats. Third, due to the high mobility and relatively low 

specialization of tachinids, we expected that the spillover of tachinids will not be limited 

by distance. In particular, we tested the role of dispersal in shaping the spillover of 

species by testing the distance-decay of similarity within habitats across different 

landscapes. 

 

Methods 

Study area  

The research was conducted within an area of c. 160 km2 in the province of Trento, NE 

Italy. Specifically, the sites were located within an elevation of 450–600 m across the 

Valsugana Valley, in the southern European Alps. The study region is in one of the major 

apple production areas of Europe with ∼12,000 ha of intensive orchards. In recent 

decades, there has been a dramatic landscape homogenization that has created large areas 

covered exclusively by apple orchards (Marini et al. 2012). Within these homogenous 

landscapes, it is still possible to find some scattered orchards located in a non-crop matrix 

composed mainly of grasslands and forests. Apple orchards, forests and grasslands 

represented the main land uses in the region. Apple orchards, mainly the variety ‘Golden 

Delicious’, are characterized by a highly specialized conventional management with only 

very few organic or traditionally managed orchards. Grassland habitats are usually 

heavily fertilized (>150 kg N ha−1 yr−1) and mown 2–4 times per year resulting in dense 
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swards dominated by grasses and with low forb abundances (see Marini et al. 2008). 

Forest habitats are mainly composed of Scots pine mixed with broad-leaf tree species 

(mainly Fraxinus ornus L. and Ostrya carpinifolia Scop.). 

 

Table 1. Habitat composition by each type of landscape. The mean and SE were calculated from 

the percentage of coverage of each habitat within a 500 m radius. 

Landscape type 
Apple orchards Forests Grasslands 

mean SE mean SE mean SE 

Apple-dominated 52.78 6.13 19.09 5.12 14.25 4.38 

Forest-dominated 9.18 2.55 65.73 5.49 20.15 6.01 

Grassland-dominated 11.93 3.28 10.92 3.42 67.75 2.87 

 

 

Sampling design 

Twenty-one commercial apple orchards were selected in landscapes characterized by 

different proportions of crop and non-crop habitats. We selected seven orchards in 

landscapes (0.5 km radius) dominated by apple plantations, seven in landscapes 

dominated by forests and seven in landscapes dominated by grasslands (Table 1). 

Landscapes were selected to be separated by at least 1 km (mean minimum distance = 2.2 

km) and only three landscapes were separated by a shorter distance (0.8 km). Within each 

landscape three sites representing apple, forest and grassland habitats were selected (Fig. 

1). The three sites were separated by no more than 60 m and were located in the centroid 

of each landscape (Fig. 1c). We identified the habitats embedded in the three landscape 

classes by quantifying the landscape composition within a 500 m radius around the 

centroid of the three selected habitats using detailed land-use maps (Servizio Urbanistica, 

Provincia di Trento) in ArcGIS 10 (ESRI®). For each selected landscape, we quantified 

the cover of apple, forests and grasslands. For each landscape, we selected the habitats 

with about the same local management and located at elevations between 450 and 600 m 

such that the management and elevation did not differ among the three landscape classes.  
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Figure 1. Experimental design showing the tree local habitats (forest, grassland and apple 

orchards; square blocks in the center of each landscape) sampled across (a) forest-dominated, (b) 

grassland-dominated and (c) apple-dominated landscapes (circles). As shown in (c), the 

landscapes were based on a radius of 500 m and each of the three habitats was located in its 

centroid, each one separated by no more of 60 m. As shown in (b), within each landscape the 

relativized nestedness (Nrel) was calculated for each pair of habitats: A-G (Apple - Grassland), A-

F (Apple - Forest) and F-G (Forest - Grassland).  

Insect sampling 

Pan-trap sampling was conducted across the 21 landscapes. Within each landscape, the 

three habitats were sampled using three clusters of pan-traps. Within each habitat, each 

cluster of traps was separated by 25 m. Each cluster of traps consisted of one standard 

yellow and two UV-reflecting yellow plastic bowls (500 ml, 16 cm diameter) filled with a 

solution of water and 3% dishwashing detergent (Sole TM). Within each cluster, pan-

traps were placed on the ground, each one separated about one meter from each other. 

The cluster position was kept fixed within each habitat, leaving a distance of at least 10 

meters from the borders and avoiding areas completely covered by shrubs. The sampling 

was conducted between July and September 2013. A total of four samplings were 

performed covering the main season during which the insects were active. During each 

sampling round, traps were set for a period of 48 hours after which insects were retrieved 

and stored in alcohol (70%) for sorting and identification. The specimens belonging to the 

Tachinidae (Diptera) were identified to species level using Cerretti (2010) and Cerretti et 

al. (2012). All the specimens were housed in the insect collection of P. Cerretti at the 

Museo di Zoologia, Università di Roma La Sapienza, Rome, Italy (MZUR). 

Statistical analyses 

(i) Species richness analysis 

To test whether tachinid species richness responded differently to local habitat and 

landscape composition, we used a generalized linear mixed model (GLMM) with a 
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Poisson distribution for species richness. The family and link function used in the model 

were selected based on residual deviance and distribution of residuals. The response 

variable was the cumulative number of species per habitat obtained across the four 

samplings. The model included landscape (apple-dominated, forest-dominated and 

grassland-dominated) and habitat (apple, forest and grassland) as categorical fixed effects. 

Landscape identity was included in the model as a random factor to account for the nested 

design of the sampling. The models tested all the main effects and their interactions. We 

first built a full model and then simplified the model by removing terms one-by-one, 

starting from the highest interactions, the least significant terms with P > 0.05. Further 

pairwise comparisons between landscapes and habitats were assessed by post hoc Tukey 

tests. The GLMM and the post hoc Tukey test analyses were performed using the 

packages “lme4” (Bates et al. 2014) and “lsmeans” (Lenth 2013), respectively, 

implemented in R (R Development Core Team 2013). 

(ii) Nestedness analysis  

To evaluate the variation in species compositions we calculated the nestedness between 

different landscapes and habitats (as in Fig. 1b). As our main aim was to evaluate if a 

community represented a subset of another community depending on the habitat or the 

landscape, we performed a pairwise comparison between habitats in the same landscape 

and calculated the “relativized nestedness” (Nrel) of Podani and Schmera (2011)  

Nrel = (a + |b – c|) / n 

where, a represents the number of species shared by both habitats, b and c the number of 

species present only in habitat 1 and 2, respectively, and n the total of species in the two 

habitats. Although Baselga (2010) proposed a different index of nestedness (βnes), we 

found a monotonic relationship between βnes and Nrel (Fig. S1), where this index was 

highly correlated with Nrel (rs = 0.98, P = <0.001) and yielded to similar results; therefore, 

we presented here the results based on the Nrel index (see Podani & Schmera 2011, 2012; 

Carvalho et al. 2013; Legendre 2014). The Nrel matrix was computed using the function 

“beta.div.comp” (Legendre 2014) implemented in R (R Development Core Team 2013). 

This matrix contained the pairwise nestedness between apple-forest, apple-grassland and 

forest-grassland habitats across the different landscapes (Fig. 2). As the nestedness of a 

certain group can be defined as the mean of the pairwise nestedness within the group 

(Legendre et al. 2005), differences in nestedness among different groups were calculated 
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by comparing with ANOVA the mean of the within pairwise nestedness among groups 

(Bacaro et al. 2013). Since the pairwise nestedness are not independent from each other, 

the significance of the analysis of variation was based on 9,999 permutations. Therefore, 

the ANOVA P values was calculated by randomly permuting only the within group 

nestedness among our focal groups without replacement (Bacaro et al. 2013). As our aim 

was to evaluate the difference in nestedness between habitats, the analysis was performed 

only on the pairwise nestedness between apple-forest, apple-grassland and forest-

grassland habitats, disregarding the within-habitat dissimilarities (apple-apple, forest-

forest and grassland-grassland; see Fig. 2). The permutational analysis of variance was 

performed using the function “Beta Dispersion 2.0” implemented in R (R Development 

Core Team 2013). 

 

Figure 2. Schematic design of the pairwise analysis of the relativized nestedness (Nrel) between 

paired habitats: F-G (Forest - Grassland), A-F (Apple - Forest) and A-G (Apple - Grassland). 

First, a dissimilarity matrix was computed among all pairs of habitats. The mean values of the 

pairwise dissimilarities were calculated only for the between-habitat-Nrel (F-G, A-F and A-G; 

shadow blocks in the lower corner of the half-matrix) and p values were calculated by randomly 

permuting among these groups without replacement and disregarding the within-habitat 

dissimilarities (F-F, G-G and A-A; the sub-diagonal half-matrix). 

(iii) Distance decay analysis 

The pattern and significance of spatial autocorrelation across different geographical 

distances were examined using Mantel correlograms (Legendre & Legendre 1998; 

Borcard & Legendre 2012). The response variable was the dissimilarity matrix of the 

relativized nestedness (Podani & Schmera 2011; Legendre 2014). As explained above, 
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the Nrel matrix was computed using the function “beta.div.comp” (Legendre 2014). 

Following the Nrel matrix, the distance matrix was constructed based on the geographical 

distance between each pair of habitats. Spatial autocorrelation was evaluated using 11 lag 

intervals. Each interval was 2.4 km wide, ranging from 1.2 to 26.2 km. Mantel correlation 

coefficients were calculated for each lag interval and tested for significance with a 

permutation test, using 1,999 permutations. Each distance class was tested for 

significance using a Bonferroni-corrected α of 0.01 (Legendre & Legendre 1998). The 

spatial autocorrelation analysis was performed using the function “mantel.correlog” in the 

“vegan” package (Oksanen et al. 2013) implemented in R (R Development Core Team 

2013). 

 

Results 

General results 

A total of 2,617 individuals were collected belonging to 110 species of Tachinidae (Table 

S1). Forty specimens that were not possible to identify to species level (e.g., some 

females of Exorista Meigen and Meigenia Robineau-Desvoidy) were excluded from the 

analyses. Two species were dominant and accounted for more than 70% of the total 

abundance. Voria ruralis (Fallén) and Phania funesta (Meigen) represented 63% and 9% 

of the individuals collected, respectively. Voria ruralis is a parasitoid of lepidopteran 

larvae while P. funesta is a parasitoid of hemipterans (Cerretti 2010). Additionally, the 

species Linnaemya zachvatkini Zimin and Oswaldia eggeri (Brauer & Bergenstamm) 

were recorded for the first time in Italy. 

Table 2. Results from the generalized linear mixed model testing the effects of habitat and 

landscape on tachinid species richness. 

 
df Chi-Square P value 

Habitat 2 60.35 < 0.001 

Landscape 2 9.57 < 0.001 

Habitat x Landscape 4 11.3 0.02 
 

Species richness 

For tachinid species richness, we found that increasing the cover of semi-natural habitats 

did not increase the local species richness of apple orchards. Specifically, we found a 
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significant effect of habitat and landscape (Table 2), where forest habitats and forest 

landscapes had the highest species richness (Fig. 3). Pairwise comparisons between 

habitats showed that each habitat was different within each other (Tukey HSD; P < 

0.001). Pairwise comparisons between landscapes showed that apple landscapes were 

significantly different from forest landscapes (Tukey HSD; P = 0.002), while grasslands 

were not different from apple (Tukey HSD; P = 0.22) and forest (Tukey HSD; P = 0.18) 

landscapes. We further found an interaction between landscape and habitat (Table 2), 

where the species richness on forest habitats was higher on forest landscapes (Fig. 3). 

Specifically, the species richness on apple and grassland habitats did not differ across 

different landscapes (Tukey HSD; P > 0.1). In contrast, the species richness on forest 

habitats was higher on forest landscapes, being similar to that of grassland landscapes 

(Tukey HSD; P = 0.15), but significantly different to that of apple landscapes (Tukey 

HSD; P = 0.001). 

 

Figure 3. Interaction between habitat (Apple, Forest, and Grassland) and landscape composition 

(Apple-dominated, Forest-dominated, and Grassland-dominated) on tachinid species richness. 

Dots indicate mean values and bars the SE. 

Nestedness 

For the relativized nestedness, we found a significant effect of habitat (P = 0.001) and 

landscape (P = 0.001). At the local scale, apple orchards were highly nested with forest 

habitats (Nrel = 0.66 ± 0.02), contrasting with the lower nestedness between apple and 

grassland (Nrel = 0.52 ± 0.02) and grassland and forest (Nrel = 0.49 ± 0.02) habitats. At the 

landscape scale, we found the highest nestedness within apple landscapes (Nrel = 0.64 ± 

0.02), contrasting with the lower nestedness within forest (Nrel = 0.53 ± 0.02) and 
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grassland (Nrel = 0.51 ± 0.02) landscapes. We further found an interaction between 

landscape and habitats (Fig. 4), where the Nrel on apple-forest (P = 0.03) and apple-

grassland (P = 0.001) habitats was significantly different across different landscapes, 

contrasting with the Nrel of forest-grassland (P = 0.67) habitats that were similar across 

the different landscapes. Specifically, we found that apple habitats were highly nested 

with forest habitats mainly on apple landscapes (Nrel = 0.73 ± 0.04), being lower on forest 

(Nrel = 0.64 ± 0.04) and grassland (Nrel = 0.62 ± 0.03) landscapes. Similarly, apple 

habitats were highly nested with grassland habitats only in apple landscapes (Nrel = 0.71 ± 

0.04), being lower on forest (Nrel = 0.43 ± 0.04) and grassland (Nrel = 0.43 ± 0.03) 

landscapes. Contrastingly, we found that the nestedness between grassland and forest did 

not change across different landscapes. 

 

Figure 4. Interaction between pairs of habitat (Apple - Forest, Apple - Grass and Forest - 

Grassland) and landscape composition (Apple-dominated, Forest-dominated, and Grassland-

dominated) on the tachinid relativized nestedness (Nrel). Dots indicate mean values and bars the 

SE. 

 

Distance decay 

We found no spatial structure with geographical distance indicating that the species were 

not dispersal limited in our study area. We did not find significant correlation between the 

relativized nestedness of different habitats and geographical distance. At all the distances, 

the Mantel correlations were not significant (Table S2).  
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Discussion 

Our results show a potential high spillover of tachinid parasitoids from semi-natural 

habitats into apple orchards. Although increasing the cover of semi-natural habitats did 

not affect the local tachinid species richness in apple orchards, we found evidence of 

spillover at the community level. However, the tachinid parasitoid response was complex 

and various interactions between the habitat type and proportion of semi-natural habitats 

were found. Tachinid species inhabiting apple orchards were likely to be a subset of the 

forest or the grassland habitats, but this depended on the landscape type. Specifically, the 

highly nested community of tachinids between apple orchards and forest habitats suggest 

a strong spillover of tachinids between these habitats. In contrast, tachinids in apple 

orchards were nested with grassland habitats only when the proportion of semi-natural 

habitats was low. Our results have important implications for the conservation of insect 

parasitoids in agricultural landscapes, as the spillover of species in agricultural land can 

be affected by the type and the proportion of semi-natural habitats in the surrounding 

landscape. 

As crop fields can be hostile environments for the persistence of natural enemies, 

the surrounding natural habitats represent a key element for their survival. Parasitoids are 

known to benefit from natural and semi-natural areas, as these habitats provide alternative 

host species, energy sources for adults, over-wintering sites and/or pesticide-free zones 

(Tscharntke et al. 2007; Schellhorn et al. 2014). Although several studies have shown that 

the proportion of natural habitats within agricultural fields can influence the abundance 

and species richness of insect parasitoids (e.g., Bianchi et al. 2006; Tscharntke et al. 

2007; Klapwijk & Lewis 2012; Veres et al. 2013; Schellhorn et al. 2014), the contribution 

of local habitat and landscape to the composition of parasitoid communities remains less 

clear (but see Gagic et al. 2014). While in our study the coverage of semi-natural habitats 

did not affect the species richness of tachinid parasitoids in apple orchards, we found 

evidence for a spillover as the tachinid community inhabiting these habitats were highly 

nested depending on the type and the proportion of semi-natural habitats in the landscape. 

Independently of the proportion of forest in the landscape, the tachinid community 

composition of apple orchards was likely to be a subset of the forest habitats. In contrast, 

tachinids in apple orchards were nested with grassland habitats only on landscapes 

dominated by apple orchards. Thus, the diversification of agricultural landscapes have the 
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potential to enhance spillover of parasitoid communities, but further considerations 

related to the type and spatial configuration of semi-natural habitats need to be 

considered. 

Landscapes with high proportions of semi-natural habitats have been hypothesized 

to promote a higher parasitoid diversity as these have a more favorable arrangement of 

crop and non-crop habitats in relation to simple landscapes with low extents of semi-

natural habitats (Bianchi et al. 2006; Tscharntke et al. 2012). Although we found that 

semi-natural habitats can act as sources of parasitoid diversity in agricultural landscapes, 

increasing the proportion of semi-natural areas did not always enhance the spillover of 

parasitoids. The type, area and the spatial arrangement of semi-natural habitats are 

important features affecting the spatial distribution of species (Dunning et al. 1992; Polis 

et al. 1997; Tscharntke et al. 2012; Schellhorn et al. 2014). According to Dunning et al. 

(1992), these features can affect the movement of species between patches in the 

landscape depending on four ecological process: (1) “landscape complementation” and 

(2) “landscape supplementation” occur when species depend on resources of different 

habitats that are non-substitutable or substitutable, respectively; (3) “source-sink 

dynamics” occurs when particular patches act as a source of species that disperse to less 

productive patches; and (4) “the neighborhood effect” appears when species are more 

affected by the characteristics of the surrounding patch than by more distance patches. In 

our study, the spillover of tachinids is likely to be affected by one or more of these 

processes depending on the configuration of the landscape. For instance, the spillover 

between forest and apple habitats could be the result of species searching for alternative 

resources (landscape supplementation) and/or species from forest habitats emigrating to 

apple orchards (source-sink dynamics). In contrast, different processes could act on 

grassland habitats (i.e. the neighborhood effect), as the spillover of tachinids between 

grasslands and apple orchards is likely to be affected by the large ecological contrast of 

the two habitats, as well as the size and distribution of these habitats (Dunning et al. 1992; 

Polis et al. 1997; Tscharntke et al. 2012). Therefore, as the proportion of semi-natural 

grasslands increases in the landscape the spillover of tachinids species from grasslands to 

apple orchards is less likely to occur when species may find all the resources to complete 

their life cycles within the semi-natural habitat and/or they are not dispersal limited 

(Klapwijk & Lewis 2012). However, in landscapes dominated by agricultural land species 
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cannot persist in the reduced semi-natural habitat and are more likely to explore for 

alternative resources in the crop landscape. 

The dispersal of parasitoid species is linked to their movement and navigation 

capacity (Godfray 1994; Klapwijk & Lewis 2012; Schellhorn et al. 2014). Here, we found 

no spatial structure with geographical distance in the tachinid community, suggesting that 

the species were not dispersal limited in our study area. Tachinids, like many other 

parasitoids, are known to use diverse cues to forage for resources, starting with long-

range cues (i.e. location of the habitat of their hosts using plant volatiles) and short-range 

cues (i.e., finding a suitable host by host kairomones and/or visual cues) (Godfray 1994; 

Stireman 2002; Ichiki et al. 2013). Thus, as the search for alternative hosts in the 

landscape could change in different species the spillover will also depend on how 

parasitoid species can perceive the environment. This could explain the low nestedness 

between forest and grassland habitats, as these habitats are structurally different and 

parasitoids are likely to avoid the movement between these habitats. Therefore, the 

spillover of parasitoids may be influenced by the specialization of species on different 

cues (e.g., Stireman 2002; Ichiki et al. 2013) that can be related to a specific set of 

habitats within the landscape. These results are also in line with the edge-permeability 

hypothesis (Stamps et al. 1987), where habitats with high degree of contrast are expected 

to be relatively impermeable to movement, while similar habitats are likely to be more 

permeable. Although we found that different compositions of semi-natural habitats in the 

landscape affect the species spillover to apple orchards, the spillover of species into crops 

with different structure and phenology may be affected in different ways. Further 

empirical studies considering how the community of parasitoids changes across different 

spatio-temporal scales within different arrangements of crop and non-crop habitats are 

needed. 

 

Conclusions 

The majority of studies testing the effects on spillover have focused on the effects on 

species richness of natural enemies, ignoring the changes of community composition. 

Here we found that increasing the cover of semi-natural habitats did not affect the local 

tachinid species richness in apple orchards, but it strongly affected the parasitoid species 
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composition. Although we found that semi-natural habitats can act as sources of 

parasitoid diversity in agricultural landscapes, increasing the proportion of semi-natural 

areas did not always enhance the spillover of parasitoids. The type, area and the spatial 

arrangement of semi-natural habitats are important features affecting the tachinid 

community composition. This is of particular importance in simplified landscapes (i.e. 

our apple-dominated landscape) where the spillover of parasitoids is likely to depend on 

the semi-natural areas present in these landscapes. Our results have important 

implications for the conservation of parasitoids and semi-natural habitats in agricultural 

landscapes, as the diversification of agricultural landscapes have the potential to enhance 

spillover of parasitoid communities depending on the type and the proportion of semi-

natural habitats in the surrounding landscape. 
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Supplementary Material 

 

Figure S1. Relationship between βnes (Baselga 2009) and Nrel (Podani and Schmera 2011) 

nestedness indices of pairs of habitats (Apple - Forest, Apple - Grass and Forest - Grassland) 

located in the three types of landscape (Apple-dominated, Forest-dominated, and Grassland-

dominated). In these paired habitats we found a monotonic relationship between βnes and Nrel (rs = 

0.98, P = < 0.001).  

 

Table S1. Tachinid species and their abundance in the study area. 

Species Total of individuals 

Admontia blanda (Fallen, 1820) 3 

Allophorocera ferruginea (Meigen, 1824) 1 

Amelibaea tultschensis (Brauer & Bergenstamm, 1891) 2 

Bessa parallela (Meigen, 1824) 1 

Bessa selecta (Meigen, 1824) 1 

Billaea pectinata (Meigen, 1826) 4 

Billaea triangulifera (Zetterstedt, 1844) 1 

Bithia spreta (Meigen, 1824) 2 

Blondelia inclusa (Hartig, 1838) 2 

Blondelia nigripes (Fallen, 1810) 5 

Carcelia bombylans Robineau-Desvoidy, 1830 4 

Carcelia falenaria (Rondani, 1859) 8 

Carcelia gnava (Meigen, 1824) 2 

Carcelia lucorum (Meigen, 1824) 3 

Carcelia tibialis (Robineau-Desvoidy, 1863) 3 

Catharosia pygmaea (Fallen, 1815) 4 

Chetogena filipalpis Rondani, 1859 9 

Clemelis massilia Herting, 1977 1 
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Table S1. continued  

Clemelis pullata (Meigen, 1824) 1 

Compsilura concinnata (Meigen, 1824) 19 

Cylindromyia bicolor (Olivier, 1812) 2 

Cylindromyia brassicaria (Fabricius, 1775) 2 

Cyrtophleba ruricola (Meigen, 1824) 3 

Dexia vacua (Fallen, 1817) 40 

Dinera carinifrons (Fallen, 1817) 1 

Dinera ferina (Fallen, 1817) 5 

Dinera grisescens (Fallen, 1817) 153 

Dionaea aurifrons (Meigen, 1824) 1 

Drino lota (Meigen, 1824) 1 

Drino atropivora (Robineau-Desvoidy, 1830) 4 

Drino gilva (Hartig, 1838) 5 

Epicampocera succincta (Meigen, 1824) 3 

Eriothrix monticola (Egger, 1856) 5 

Eriothrix rufomaculata (DeGeer, 1776) 2 

Erythrocera nigripes (Robineau-Desvoidy, 1830) 3 

Eumea linearicornis (Zetterstedt, 1844) 4 

Eumea mitis (Meigen, 1824) 1 

Eurysthaea scutellaris (Robineau-Desvoidy, 1848) 2 

Exorista glossatorum (Rondani, 1859) 1 

Exorista rustica (Fallen, 1810) 15 

Freraea gagatea Robineau-Desvoidy, 1830 1 

Gaedia connexa (Meigen, 1824) 1 

Gymnosoma rotundatum (Linnaeus, 1758) 1 

Hemyda obscuripennis (Meigen, 1824) 1 

Hemyda vittata (Meigen, 1824) 1 

Hubneria affinis (Fallen, 1810) 1 

Labigastera forcipata (Meigen, 1824) 1 

Leskia aurea (Fallen, 1820) 1 

Linnaemya comta (Fallen, 1810) 31 

Linnaemya frater (Rondani, 1859) 1 

Linnaemya impudica (Rondani, 1859) 2 

Linnaemya picta (Meigen, 1824) 2 

Linnaemya soror Zimin, 1954 2 

Linnaemya tessellans (Robineau-Desvoidy, 1830) 27 

Linnaemya zachvatkini Zimin, 1954** 1 

Litophasia hyalipennis (Fallen, 1815) 1 

Loewia brevifrons (Rondani, 1856) 2 

Loewia foeda (Meigen, 1824) 1 

Loewia nudigena Mesnil, 1973 1 

Lomachantha parra Rondani, 1859 1 

Macquartia chalconota (Meigen, 1824) 1 

Macquartia grisea (Fallén, 1810) 1 

Macquartia pubiceps (Zetterstedt, 1845) 1 

Macquartia tenebricosa (Meigen, 1824) 1 

Medina luctuosa (Meigen, 1824) 1 
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Table S1. continued  

Medina melania (Meigen, 1824) 3 

Medina multispina (Herting, 1966) 8 

Medina separata (Meigen, 1824) 19 

Meigenia dorsalis (Meigen, 1824) 22 

Meigenia majuscula (Rondani, 1859) 1 

Meigenia mutabilis (Fallen, 1810) 16 

Meigenia simplex Tschorsnig & Herting, 1998 3 

Meigenia uncinata Mesnil, 1967 3 

Microsoma exiguum (Meigen, 1824) 5 

Nemoraea pellucida (Meigen, 1824) 27 

Nilea hortulana (Meigen, 1824) 3 

Oswaldia eggeri (Brauer & Bergenstamm, 1889)** 3 

Pales pavida (Meigen, 1824) 11 

Pales processioneae (Ratzeburg, 1840) 2 

Paratryphera barbatula (Rondani, 1859) 11 

Paratryphera bisetosa (Brauer & Bergenstamm, 1891) 1 

Peleteria prompta (Meigen, 1824) 1 

Peribaea tibialis (Robineau-Desvoidy, 1851) 13 

Periscepsia prunaria (Rondani, 1861) 1 

Periscepsia spathulata (Fallen, 1820) 6 

Phania funesta (Meigen, 1824) 222 

Phryxe nemea (Meigen, 1824) 27 

Phryxe vulgaris (Fallen, 1810) 1 

Platymya fimbriata (Meigen, 1824) 9 

Prooppia nigripalpis (Robineau-Desvoidy, 1848) 4 

Pseudoperichaeta nigrolineata (Walker, 1853) 1 

Rhacodinella apicata (Pandelle, 1896) 10 

Senometopia lena (Richter, 1980) 1 

Senometopia separata (Rondani, 1859) 2 

Siphona flavifrons Staeger, 1849 2 

Siphona geniculata (De Geer, 1776) 1 

Siphona paludosa Mesnil, 1960 6 

Solieria fenestrata (Meigen, 1824) 35 

Strongygaster globula (Meigen, 1824) 2 

Sturmia bella (Meigen, 1824) 2 

Tachina fera (Linnaeus, 1761) 16 

Tachina magnicornis (Zetterstedt, 1844) 8 

Thelaira leucozona (Panzer, 1809) 3 

Thelaira nigripes (Fabricius, 1794) 3 

Thelaira solivaga (Harris, 1780) 7 

Triarthria setipennis (Fallen, 1810) 2 

Vibrissina turrita (Meigen, 1824) 20 

Voria ruralis (Fallen, 1810) 1615 

Winthemia quadripustulata (Fabricius, 1794) 3 

Zophomyia temula (Scopoli, 1763) 2 

**Indicates new species recorded for Italy 
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Table S2. Spatial autocorrelation between the relativized nestedness (Nrel) and the geographical 

distance between pair of habitats (AxF, Apple x Forest; AxG, Apple x Grassland; GxF, Grassland 

x Forest). Mantel correlation coefficients were calculated for each lag interval and tested for 

significance with a permutation test, using 1,999 permutations. Each distance class was tested for 

significance using a Bonferroni-corrected α of 0.01. 

Nrel Distance class Distance (m) N Mantel.cor P (Mantel) P (corrected) 

AxF 

1 1296 234 -0.02 0.27 0.27 

2 3788 170 0.01 0.44 0.88 

3 6280 148 0.05 0.13 0.40 

4 8772 316 0.00 0.48 1.00 

5 11264 180 0.03 0.25 1.00 

6 13755 176 -0.02 0.30 1.00 

7 16247 162 -0.01 0.39 1.00 

8 18739 110 0.05 0.08 0.68 

9 21231 92 -0.05 0.17 1.00 

10 23723 84 -0.01 0.46 1.00 

11 26215 48 -0.05 0.20 1.00 

AxG 

1 1295 232 -0.04 0.16 0.16 

2 3777 166 0.03 0.21 0.43 

3 6260 152 0.07 0.06 0.17 

4 8743 304 0.00 0.46 1.00 

5 11225 194 0.00 0.46 1.00 

6 13708 170 -0.03 0.22 1.00 

7 16191 160 0.04 0.21 1.00 

8 18673 116 0.02 0.30 1.00 

9 21156 88 -0.07 0.12 1.00 

10 23639 84 0.03 0.32 1.00 

11 26121 52 -0.06 0.16 1.00 

GxF 

1 1278 230 -0.02 0.24 0.24 

2 3771 174 -0.03 0.26 0.52 

3 6265 146 -0.01 0.38 1.00 

4 8759 312 0.04 0.12 0.47 

5 11252 190 0.00 0.46 1.00 

6 13746 168 0.01 0.48 1.00 

7 16239 168 0.00 0.49 1.00 

8 18733 108 0.03 0.24 1.00 

9 21227 92 -0.08 0.05 0.43 

10 23720 84 0.06 0.10 1.00 

11 26214 48 0.00 0.46 1.00 
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Abstract 

The intensification of agricultural systems has led to a rapid increase of arable land with a 

consequent fragmentation of natural habitats, causing a reduction in the diversity of insect 

natural enemies. The introduction of high-quality field margins has been proposed to 

counteract this decline in farmland biodiversity, but how these margins can affect the 

spillover of natural enemies between crop and non-crop habitats is still unclear. In this 

work we investigated the spillover of two contrasting groups of natural enemies: the 

Tachinidae and the Syrphidae. We examined the spillover from two types of field margin 

(grass margin and hedgerow) into adjacent maize fields located in landscapes with 

different proportion of arable land. The spillover of natural enemies can be affected by 

field margins, but the response varied significantly between the two groups. For 

hoverflies, abundance and richness was always higher toward the center of the crop fields 

compared to the margin. In contrast, the complexity of field margins appeared to have a 

positive effect on the diversity of tachinids, but this effect was not reflected in the 

spillover of these parasitoids. The spillover of tachinids was related to the degree of 

contrast between the margin and the crop as the spillover of this group was more evident 

on the grass margin. Our results have important implications for the conservation of 

natural enemies in fragmented landscapes. Measures focusing on the creation and 

management of field boundaries need to consider the local contrast between field margins 

and crops in relation to the dispersal ability of different taxa. 

 

Introduction 

The intensification of agricultural systems has led to a rapid increase of arable land with a 

consequent fragmentation of natural habitats (Tilman et al. 2001). Agricultural landscapes 

are often characterized by a mosaic of semi-natural habitats interspersed within a hostile 

matrix dominated by only a few crops. These simplified landscapes are responsible for 

the severe reduction in the diversity of insect natural enemies, which in turn is possibly 

negatively affecting important ecological services such as the biological control of pests 

(Wilby & Thomas 2002; Bianchi et al. 2006; MacFayden et al. 2009; Thies et al. 2011; 

Jonsson et al. 2012). In Europe, agri-environment schemes (AES) have been implemented 

to counteract this decline in farmland biodiversity. Within farms, the conservation and 
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implementation of semi-natural elements such as hedgerows, field margins and 

wildflower strips are among the most commonly interventions (Marshall & Moonen 

2002; Haaland et al. 2011). Although there is growing empirical evidence suggesting that 

the presence of these semi-natural elements can help to mitigate the negative effects of 

agricultural intensification on insect diversity (e.g., Merckx et al. 2012; Haenke et al. 

2014; Dainese et al. 2015), the understanding of how these farmland interventions affect 

the spillover of natural enemies is still unclear. 

The spillover of natural enemies represents the movement of species from one 

habitat to another in search of specific resources (e.g., prey/hosts, nectar for adults, 

shelter). In agricultural landscapes, the spillover of natural enemies is known to be 

affected by the shape and the contrast of the different habitats within these landscapes 

(Polis et al. 1997; Schellhorn et al. 2014). Habitats with high degree of contrast are 

expected to be relatively impermeable to movement, while structurally similar habitats 

are likely to be more permeable (Stamps et al. 1987). Furthermore, there is growing 

evidence suggesting that the spillover of natural enemies is not only affected by local 

variables such as the shape and contrast of habitats, but also by landscape processes (i.e., 

the proportion of forests and mass-flowering crops in the landscape, Haenke et al. 2014). 

Several authors have found spillover of species from natural habitats into adjacent 

agricultural fields (e.g., Landis et al. 2000; Geiger et al. 2008; Rusch et al. 2010; Blitzer 

et al. 2012), but movement in the opposite direction has also been observed (e.g., Rand et 

al. 2006; Blitzer et al. 2012; Frost et al. 2014). Although there are several studies showing 

that the spillover of natural enemies can alter important ecosystem services such as 

pollination and natural pest suppression (Landis et al. 2000; Macfadyen & Muller 2013; 

Gagic et al. 2014; Haenke et al. 2014), most of these studies have focused on the 

interactions of semi-natural habitats like forest and grassland patches with agricultural 

fields, while little is known about the spillover of natural enemies from managed field 

margins.  

Studies about the spillover of natural enemies have often focused on single taxa 

ignoring that dispersal dynamics can vary substantially across different groups of natural 

enemies. While some groups of natural enemies are tightly associated to semi-natural 

habitats and are highly sensitive to the fragmentation, other taxa are well adapted to 

fragmented landscapes and are capable to use ephemeral and spatially patchy resources 

(Tscharntke et al. 2005). In this work we investigated the potential spillover of two 
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contrasting groups of natural enemies: tachinids (Diptera: Tachinidae) and hoverflies 

(Diptera: Syrphidae). On the one hand, the vast majority of tachinid parasitoids are 

known to depend on semi-natural habitats in the landscape (Letourneau et al. 2012; Inclán 

et al. 2014). On the other hand, several species of hoverflies are well-adapted to disturbed 

habitats, where they can be commonly found in high densities (Meyer et al. 2009). 

Besides these differences, both groups are important natural enemies as the predominance 

of tachinid parasitoids in attacking major groups of insect herbivores (Stireman et al. 

2006; Cerretti et al. 2014) and the prevalence of hoverflies as aphidophagous predators 

(Alhmedi et al. 2008; Almohamad et al. 2009). Additionally, adults of both groups can 

provide pollination service: tachinids are flower visiting insects given that they 

commonly use nectar as an energy source (Stireman et al. 2006; Al-Dobai et al. 2012), 

while hoverflies are well known pollinators of wild flowers and flowering-crops (e.g., 

Jauker & Wolters 2008; Haenke et al. 2014).  

In this study, we examined the spillover of tachinids and hoverflies from two 

contrasting field margins (grass margins and hedgerows) into the adjacent crop (maize 

fields) located in landscapes with different proportion of arable land. Specifically, we 

have addressed three main hypotheses. First, we expected that increasing the complexity 

of field margin (grass margins vs. hedgerows) will enhance the diversity of natural 

enemies. Here, we hypothesized that the diversity of tachinids and hoverflies would be 

higher in hedgerows as these boundaries provide more diverse resources (i.e., diverse 

hosts/preys) than grass margins. Second, we investigated if an increase of species 

diversity in a given field margin is translated into an increased spillover to the adjacent 

crop fields. According to the “edge-permeability hypothesis” (Stamps et al. 1987), it is 

expected a greater spillover of natural enemies when the field margin is more structurally 

similar to their adjacent crop. Therefore, we expected that natural enemies inhabiting 

grass margins would be more likely to move into the adjacent maize field, while species 

from hedgerows would be more likely to stay at the margin. Third, we expected that the 

spillover of tachinids and hoverflies could be also affected by the landscape and that the 

spillover of both groups of natural enemies would be more pronounced in landscapes with 

low proportion of arable land (e.g., Haenke et al. 2014). 
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Methods 

Study area 

The investigated area extended for about 10,000 km2 in the Venetian-Friulian Plain 

(north-eastern Italy). The climate was humid sub-Mediterranean with annual rainfall 

ranging between 1200 ‒ 1500 mm year-1 and a mean annual temperature of 13°C. The 

majority of the study area (~ 65 %) was dominated by intensive agriculture where maize, 

wheat, and soybean were the dominant crops. These intensive landscapes were intermixed 

with scattered fragments of semi-natural habitats such as forests, grasslands and 

hedgerows. 

Sampling design 

To identify the effect of agricultural intensification on the spill-over of natural enemies, 

we first selected 12 landscapes to span a gradient in the proportion of arable land (19 ‒ 99 

%). The landscape composition was assessed using a buffer with a 500 m radius. For each 

buffer, arable fields were manually digitized from a visual inspection of high-resolution 

satellite images (Google Earth). In GIS (Quantum GIS 1.7, Open Source Geospatial 

Foundation Project, http://qgis.osgeo.org), we quantified the area of each patch and then 

we calculated the proportion of arable land within each buffer.  

To test the effect of different field margins on the spillover of natural enemies we 

kept constant the crop type and we selected two contrasting field margins. In each 

landscape, we selected two maize fields with two different field margins: (i) a grass 

margin and (ii) a hedgerow. The grass margins were characterized by a perennial grass 

strip without any nearby tree (average width 2.3 m), while the hedgerows consisted of a 

grass strip adjacent to a hedge formed by a combination of different shrubs and tree 

species (average width 2.5 m). To evaluate the spillover of species from the field margin 

into the crop, we set up one transect of pan-traps in the middle of each field margin. 

Within each transect, we sampled at six different distances, starting within the field 

margin and at 0, 2, 6, 15 and 40 m into their adjacent maize field.  
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Insect sampling 

We sampled hoverflies and tachinid flies using pan-traps. At the different distances (field 

margin, 0, 2, 6, 15 and 40 m into the crop), one cluster of pan-traps was used. The cluster 

of traps consisted of one standard yellow and one UV-reflecting yellow plastic bowls 

(500 ml, 16 cm diameter) filled with a solution of water and 2% dishwashing detergent. 

Within each cluster, pan-traps were placed directly on the ground between two crop rows, 

each one separated one meter from the other. The sampling was done from the end of 

May until the beginning of July 2013, allowing us to sample the maize fields when the 

plants were less than 0.6 m tall. A total of four samplings were performed covering the 

season during which the crop is more susceptible to insect pest attack (e.g., Showers 

1993, Hance 1997). During each sampling round, traps were set for a period of 72 hours 

after which insects were collected and stored in alcohol (70%) for sorting and 

identification. Hoverflies were identified to species level using Bartsch (2009) and 

Speight (2010), while tachinids were identified to species level using Cerretti (2010) and 

Cerretti et al. (2012). All the specimens are housed at the MZUR (Museo di Zoologia, 

Università di Roma La Sapienza, Rome, Italy) insect collection. 

Data analysis 

To test the effect of landscape composition, field margin and trap distance we used 

general and generalized linear mixed models (GLMMs). The response variable was the 

species richness and the total abundance calculated by pooling together the samples for 

each taxon within each cluster of traps during the four samplings. For the abundance of 

both taxa we used generalized linear mixed models with a negative binomial distribution 

and for the species richness of both taxa we used general linear mixed models with a 

normal distribution. The families and link functions used in the models were selected 

based on residual deviance and distribution of residuals. In each model, field margin type 

was entered as categorical fixed factor, while the proportion of arable land and the trap 

distance were set as continuous fixed factors. Trap distance was further log-transformed 

to account for the logarithmic scale of the distance in our sampling design. Interactions 

between the proportion of arable land, field margin and trap distance were also tested. We 

accounted for the nested design of our study by including the landscape identity (n = 12) 

and the transect identity within each landscape (n = 24) as random factors. The analyses 

were performed using the packages “glmmADMB” (Fournier et al. 2012) for generalized 
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and “nlme” (Pinheiro et al. 2015) for general mixed models, implemented in R 3.0.2 (R 

Development Core Team 2013). 

To compare the fit of all the possible combinations of predictors in our models we 

used the second-order Akaike’s information criterion (AICc) corrected for small samples 

(Whittingham et al. 2006). We first built a global model containing all the interactions 

among the proportion of arable land, field margin and trap distance. We compared all the 

models using ΔAICc and Akaike weights (∑wi). The best fitting model was the one with 

the lowest AICc. In a set of n models, each model i can be ranked using its difference in 

AICc score with the best-fitting model (ΔAICci = AICci–AICc minimum). The difference 

in AICc values indicated the relative support for the different models. A model was 

considered plausible if its ΔAICc was below two (Burnham & Anderson 2002). To 

evaluate the relative importance of each predictor, we summed the wi across the models 

in the set in which the predictor occurred. The model inference analyses were performed 

using the “MuMIn” package (Barton 2013) implemented in R (R Development Core 

Team 2013). 

 

Results 

A total of 3,411 individuals were collected belonging to 30 species of Syrphidae (Table 

S1). The species Melanostoma mellinum (L.) accounted for more than 70% of the total 

hoverfly abundance. Melanostoma mellinum is an aphidophagous species commonly 

found in disturbed habitats (Speight 2013). For Tachinidae, a total of 370 individuals 

were collected belonging to 47 species (Table S2). Three species of tachinids were 

dominant and accounted for more than 60% of the total abundance. Dinera grisescens 

(Fallén), Microphthalma europaea Egger and Voria ruralis (Fallén) represented 32, 17 

and 13% of the individuals collected, respectively. Dinera grisescens and M. europaea 

are parasitoids of coleopteran larvae, while V. ruralis is a parasitoid of lepidopteran 

larvae (Cerretti & Tschorsnig 2010; Cerretti 2010). 
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Table 1. Plausible candidate models (within 2 ∆AICc of the top model) explaining the abundance 

and species richness of (a) Syrphidae and (b) Tachinidae. Models are ranked according to their 

second-order Akaike’s information criterion (AICc). For each tested variable ∑wi indicates the 

sum of model weights. 

(a) Syrphidae 

  Abundance Species richness 

  ∑wi Best 2nd 3rd 4th ∑wi Best  

ΔAICc - 0 0.45 1.36 1.49 - 0 

Model weight - 0.28 0.22 0.14 0.13 - 0.37 

Intercept - 2.67 2.67 2.74 2.67 - 3.27 

Arable land 0.54 - 0.29 - 0.2 0.34 - 

Distance 1 0.12 0.12 0.12 0.12 0.86 0.21 

Field margin 0.37 - - * - 0.35 - 

Arable land x Distance 0.28 - -0.05 - - 0.08 - 

Arable land x Field margin 0.06 - - - - 0.04 - 

Distance x Field margin 0.14 - - - - 0.1 - 

Arable land x Distance x Field margin 0.01 - - - - <0.01 - 

(b) Tachinidae 

ΔAICc - 0 1.74 - - - 0 

Model weight - 0.47 0.2 - - - 0.37 

Intercept - 1.22 1.22 - - - 2.13 

Arable land 0.45 - -0.15 - - 0.44 - 

Distance 1 -0.5 -0.45 - - 1 -0.45 

Field margin 0.91 * * - - 0.8 * 

Arable land x Distance 0.12 - - - - 0.15 - 

Arable land x Field margin 0.15 - - - - 0.15 - 

Distance x Field margin 0.87 * * - - 0.69 * 

Arable land x Distance x Field margin 0.02 - - - - 0.02 - 

* Indicates that the categorical variable was included in the models. 

 

For hoverfly abundance, four plausible models were selected (ΔAICc < 2, Table 

1a). The sum of model weights for each predictor gave support only for an effect of trap 

distance (Table 1a, Fig. 1a). This indicated that the abundance of hoverflies was higher 

toward the center of the crop field (edge: 19.8 ± 4.3, 0 m: 21.3 ± 3.1, 2 m: 21.7 ± 3.9, 6 

m: 23.7 ± 3.6, 15 m: 25.9 ± 3.9, 40 m: 27.5 ± 3.2). For hoverfly species richness, only a 

single plausible model was selected (ΔAICc < 2, Table 1a). Similar to the hoverfly 

abundance, the sum of model weights for each predictor gave support only a strong effect 

of trap distance (Table 1a, Fig. 1b). This indicated that the species richness of hoverflies 

was higher toward the center of the crop field (edge: 2.9 ± 0.3, 0 m: 3.9 ± 0.4, 2 m: 3.6 ± 

0.5, 6 m: 3.7 ± 0.4, 15 m: 3.4 ± 0.4, 40 m: 4.3 ± 0.4). 
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Figure 1. Plots showing the contrasting spillover of two groups of natural enemies from field 

margin into their adjacent crop field. The left panels show the (a) abundance and (b) species 

richness of Syrphidae, while the right panels show the (c) abundance and (d) species richness of 

Tachinidae. For both groups, the fitted line was estimated by a generalized linear mixed model for 

abundance and by a general linear mixed model for species richness. The points represent the 

partial residuals from the respective models. 

 

For Tachinidae abundance, two plausible models were selected (ΔAICc < 2, Table 

1b). The sum of model weights for each predictor gave support for a strong effect of trap 

distance and field margin on tachinid abundance (Table 1b). The effect of the trap 

distance was negative (Fig. 1c), which indicated that the abundance of tachinids 

decreased toward the center of the crop field (edge: 7.4 ± 1.4, 0 m: 2.7 ± 0.7, 2 m: 2.0 ± 

0.5, 6 m: 1.3 ± 0.4, 15 m: 1.0 ± 0.3, 40 m: 1.0 ± 0.3). The abundance of tachinids was 

slightly higher in hedgerows (2.6 ± 0.5) than in grass margins (2.5 ± 0.5). We also found 

a good support for the interaction between trap distance and field margin (Fig. 2a). This 

interaction indicated that the decrease in abundance of tachinids toward the center of the 

crop field was less evident for grass margins, while it was more pronounced for 

hedgerows. For Tachinidae species richness, only a single plausible model was selected 

(ΔAICc < 2, Table 1b). Similar to the tachinid abundance, the sum of model weights for 
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each predictor gave support for a strong effect of trap distance and field margin on 

tachinid species richness (Table 1b). The effect of the trap distance was negative (Fig. 

1d), which indicated that the species richness of tachinids decreased toward the center of 

the crop field (edge: 3.5 ± 0.3, 0 m: 1.5 ± 0.3, 2 m: 1.2 ± 0.3, 6 m: 0.8 ± 0.2, 15 m: 0.7 ± 

0.2, 40 m: 0.7 ± 0.1). The species richness of tachinids was slightly higher in hedgerows 

(1.5 ± 0.2) than in grass margins (1.3 ± 0.2). We also found a support for the interaction 

between trap distance and field margin (Fig. 2b). This interaction indicates that the trend 

of decrease in species richness toward the center of the crop field is less evident for grass 

margins than for hedgerows. 

 

Figure 2. Plots showing the interaction between the field margin and the spillover into their 

adjacent crop field of tachinid parasitoids. The top and the bottom panel represent the relationship 

between trap distance and (a) abundance and (b) species richness of tachinids separately for grass 

and hedgerow. Each fitted line was estimated by a generalized linear mixed model for abundance 

and by a general linear mixed model for species richness. The partial residuals from the respective 

models are shown as points for grass margins and as triangles for hedgerows. 
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Discussion 

Our results showed that the spillover of natural enemies can be affected by field margin 

type, but the response varied significantly between hoverflies and tachinids. Field 

margins (both grass margins and hedgerows) appeared to not affect the movement of 

hoverflies, as their abundance and species richness was slightly higher toward the center 

of the crop fields. Conversely, tachinids were almost restricted to the field margins and 

their spillover varied depending on the type of margin. The spillover of tachinids 

appeared to be related to the degree of contrast between the structure of the margin and 

the crop, as the spillover of this group was more evident on the grass margins. These 

results have important implications for the conservation of natural enemies in crop fields, 

as the local spillover of species can be affected by the type of field margins. 

The effect of the different field margins on the diversity of natural enemies varied 

considerably between tachinids and hoverflies. Although we expected that increasing the 

local complexity will enhance the diversity of both groups of natural enemies, we found 

only a positive effect of hedgerows on the diversity of tachinid parasitoids. This result is 

in line with previous studies where increasing the complexity of field margins yielded a 

higher diversity of tachinids (Olson & Wäckers 2007; Al-Dobai et al. 2012; Dainese et al. 

2015). In contrast, the type field margin appeared to have no effect on the diversity of 

hoverflies. In fact, the diversity of this group was always higher in the crop field rather 

than in the field margin. These results are not surprising giving that hoverflies, especially 

the aphidophagous species, are known to be highly associated with the abundance of prey 

in the crop (Salveter 1998; Meyer et al. 2009).  

The spillover also varied between the two groups of natural enemies. Tachinid 

parasitoids showed a limited spillover as the abundance and species richness of this group 

at 40 meters in the crop field was at least four times lower than that in the field margin. 

Similar results have been found by other studies that show a high diversity of tachinids at 

the field margin, contrasting with the low diversity within the crop fields (Olson & 

Wäckers 2007; Inclán et al. 2015). In contrast, hoverflies showed large spillover of 

individuals and species between the field margins and the crop as their abundance and 

species richness at 40 meters in the crop field was only slightly higher than that in the 

field margins. This result suggests a strong association of the hoverfly community with 

the crop fields. A similar pattern has been found in other studies, where the abundance of 
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species dominated by aphidophagous hoverflies tended to increase in arable land 

(Salveter 1998; Jauker et al. 2009; Meyer et al. 2009; Haenke et al. 2014). In fact, 

Wratten et al. (2003) found that field boundaries within agricultural land could even 

represent a barrier for the movement of hoverflies.  

The increase of tachinid parasitoid diversity in hedgerows was not translated into 

an increasing spillover to the adjacent crop fields. Instead, we found that tachinid 

parasitoids inhabiting grass margins were more likely to move into their adjacent maize 

field, contrasting with the lower spillover of tachinids from hedgerows. This result is in 

line with the “edge-permeability hypothesis” (Stamps et al. 1987) that suggests that 

species are more likely to move across edges of low contrast (i.e., with similar structure). 

Tachinids, as many other parasitoids, are known to use diverse combination of cues to 

forage for resources (i.e., host kairomones and/or visual cues). For instance, finding a 

suitable habitat is the first approach for the location of host (Godfray 1994; Stireman 

2002; Ichiki et al. 2013). Therefore, tachinids occurring in grass margins are likely to go 

into the maize field, since the community in these margins could perceive the maize field 

as a similar habitat. In contrast, tachinids occurring in hedgerows may recognize the 

maize fields as a complete different habitat and they may avoid foraging. Contrary to 

tachinids, we did not find any interaction between the type of field margin and the trap 

distance for hoverfly diversity. Independently of the type of field margin, the diversity of 

hoverflies was always higher toward the center of the crop field, suggesting that the 

aphidophagous species in this group may even avoid the field margins (Salveter 1998; 

Wratten et al. 2003; Jauker et al. 2009) as they search for resources (i.e. prey abundance) 

in the agricultural matrix. 

The reduction of the cover of arable land at the landscape scale was expected to 

enhance the spillover of both groups of natural enemies, but contrary to our expectations 

we did not find any effect of the increment of arable land on the diversity of tachinids and 

hoverflies. This may be explained by the generalist host/prey association and the high 

mobility of tachinids (Stireman 2002; Stireman et al. 2006) and hoverflies (e.g., Wratten 

et al. 1995; Salveter 1998; Jauker et al. 2009; Alhmedi et al. 2008; Almohamad et al. 

2009). In hoverflies, the lack of response to the semi-natural habitats in the landscape is 

probably related to the response of the aphidophagous species. Several authors have 

found a positive relationship between the aphidophagous species and the increment of 
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arable land, as these flies are likely to find their prey mainly in arable fields (Burgio & 

Sommaggio 2007; Jauker et al. 2009; Meyer et al. 2009; Haenke et al. 2014).  

Pest control is an important ecosystem service that often depends on the spillover 

of natural enemies from the semi-natural areas. Here we demonstrated that the spillover 

of natural enemies is likely to depend not only on the environmental features such as 

margin quality, but also on the related life history traits (i.e., dispersal behavior) of each 

taxon. In fact, the distribution patterns of natural enemies in agricultural landscapes are 

known change considerably across different taxa (Dullei & Obrist 2003; Tscharntke et al. 

2005). On the one hand, tachinid parasitoids are likely to follow a “disperser” or 

“ecotone-species” distribution, as these parasitoids depend mainly on non-crop habitats 

and their distribution into the crop fields decrease with the distance from the non-crop 

habitats. On the other hand, hoverflies, especially the aphidophagous species, are likely to 

follow a “cultural species” distribution, as they depend largely on crop resources and their 

distribution increases toward the crop area. However, these patterns of distribution may 

change across different seasons (e.g., Haenke et al. 2014) and further research is still 

needed to evaluate the temporal variability of the spillover across different taxa. 

 

Conclusions 

Our results have important implications for the conservation of natural enemies in 

agricultural landscapes. In particular, the implementation of field margins to enhance the 

diversity and spillover of natural enemies needs to consider the local contrast between the 

field margin and the crop in relation to the dispersal and foraging behavior of the focal 

taxa. Although several authors have proposed the implementation of complex field 

margins to improve farmland biodiversity (e.g., Merckx et al. 2012; Dainese et al. 2015), 

it is clear that this measure can enhance the diversity of some groups with little or no 

effect on the diversity of crop-specialized natural enemies. While the implementation of 

both simple and complex field margins clearly enhanced the diversity of tachinid 

parasitoids, this measure had little effect on cultural-species like aphidophagous 

hoverflies that are more affected by the management of the crop land. However, it must 

be considered that species apparently restricted to crop land, like aphidophagous 

hoverflies, may still use resources from the field margins in different seasons that could 
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vary depending on the crop phenology (Meyer et al. 2009; Haenke et al. 2014). Our 

results suggest that different measures should be adopted to enhance the diversity of 

different groups of natural enemies. Furthermore, farmland interventions, such as the 

implementation of field boundaries, should focus not only in the enhancement of the local 

diversity of natural enemies, but also in the spillover of these species into their adjacent 

field crops. As the spillover of tachinid parasitoids was favored by the low contrast 

between the grass margins and the maize fields, it appears that the implementation of 

grass margins may have a greater impact in landscapes with annual crops, while the 

implementation of hedgerows may have a greater impact in landscapes dominated by 

perennial crops. However, to justify and facilitate different combinations of field margins, 

future research is still needed to demonstrate effective spillover between different field 

margins and crops across multiple spatial and temporal scales. 
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Supplementary Material 

Table S1. Syrphidae species and their abundance in the study sites. 

Species Total of individuals 

Chrysotoxum festivum (Linnaeus, 1758) 2 

Episyrphus balteatus (DeGeer, 1776) 85 

Eristalinus aeneus (Scopoli, 1763) 29 

Eristalinus sepulchralis (Linnaeus, 1758) 29 

Eristalis arbustorum (Linnaeus, 1758) 109 

Eristalis similis (Fallén, 1817) 2 

Eristalis tenax (Linnaeus, 1758) 63 

Eumerus amoenus Loew, 1848 1 

Eupeodes corollae (Fabricius, 1794) 166 

Eupeodes latifasciatus (Macquart, 1829) 1 

Helophilus pendulus (Linnaeus, 1758) 8 

Helophilus trivittatus (Fabricius, 1805) 7 

Lejogaster metallina (Fabricius, 1781) 1 

Lejogaster tarsata (Meigen, 1822) 6 

Melanostoma mellinum (Linnaeus, 1758) 2696 

Meliscaeva auricollis (Meigen, 1822) 1 

Merodon avidus (Rossi, 1790) 14 

Mesembrius peregrinus (Loew, 1846) 1 

Myathropa florea (Linnaeus, 1758) 3 

Neoascia podagrica (Fabricius, 1775) 40 

Paragus constrictus Šimic, 1986 1 

Paragus pecchiolii Rondani, 1857 1 

Pipizella viduata (Linnaeus, 1758) 31 

Riponnensia splendens (Meigen, 1822) 1 

Scaeva pyrastri (Linnaeus, 1758) 1 

Sphaerophoria rueppelli (Wiedemann, 1830) 9 

Sphaerophoria scripta (Linnaeus, 1758) 42 

Syrphus ribesii (Linnaeus, 1758) 3 

Syrphus vitripennis Meigen, 1822 7 

Volucella zonaria (Poda, 1761) 1 

 

 

Table S2. Tachinidae species and their abundance in the study sites. 

Species Total of individuals 

Bithia immaculata (Herting, 1971) 1 

Bithia modesta (Meigen, 1824) 1 

Blondelia nigripes (Fallén, 1810) 1 

Carcelia lucorum (Meigen, 1824) 1 

Chetogena filipalpis Rondani, 1859 1 

Compsilura concinnata (Meigen, 1824) 1 

Cylindromyia bicolor (Olivier, 1812) 1 
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Table S2. continued  

Dinera grisescens (Fallén, 1817) 117 

Drino lota (Meigen, 1824) 1 

Eliozeta pellucens (Fallén, 1820) 1 

Erycia fatua (Meigen, 1824) 1 

Erycia festinans (Meigen, 1824) 1 

Exorista fasciata (Fallén, 1820) 2 

Exorista larvarum (Linnaeus, 1758) 2 

Exorista rustica (Fallén, 1810) 2 

Lecanipa leucomelas (Meigen, 1824) 1 

Linnaemya comta (Fallén, 1810) 2 

Loewia setibarba Egger, 1856 1 

Lydella thompsoni Herting, 1959 1 

Macquartia tenebricosa (Meigen, 1824) 2 

Macquartia tessellum (Meigen, 1824) 1 

Medina collaris (Fallén, 1820) 1 

Medina separata (Meigen, 1824) 9 

Meigenia mutabilis (Fallén, 1810) 11 

Meigenia uncinata Mesnil, 1967 1 

Microphthalma europaea Egger, 1860 62 

Nemoraea pellucida (Meigen, 1824) 4 

Nilea innoxia Robineau-Desvoidy, 1863 2 

Ocytata pallipes (Fallén, 1820) 7 

Paratrixa polonica Brauer & Bergenstamm, 1891 1 

Paratryphera barbatula (Rondani, 1859) 2 

Peribaea tibialis (Robineau-Desvoidy, 1851) 4 

Phania funesta (Meigen, 1824) 45 

Policheta unicolor (Fallén, 1820) 3 

Pseudoperichaeta palesioidea (Robineau-Desvoidy, 1830) 2 

Pseudopericheta nigrolineata (Walker, 1853) 1 

Siphona geniculata (De Geer, 1776) 1 

Solieria vacua (Rondani, 1861) 1 

Spallanzania hebes (Fallén, 1820) 1 

Synactia parvula (Rondani, 1861) 1 

Thelaira nigripes (Fabricius, 1794) 1 

Thelaira solivaga (Harris, 1780) 1 

Triarthria setipennis (Fallén, 1810) 2 

Vibrissina debilitata (Pandellé, 1896) 1 

Vibrissina turrita (Meigen, 1824) 2 

Voria ruralis (Fallén, 1810) 47 

Zaira cinerea (Fallén, 1810) 1 
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Abstract 

The effectiveness of conservation interventions for maximizing biodiversity benefits from 

agri-environment schemes (AESs) is expected to depend on the quantity of semi-natural 

habitats in the surrounding landscape. To verify this hypothesis, we developed a 

hierarchical sampling design to assess the effects of field boundary type and cover of 

semi-natural habitats in the landscape at two nested spatial scales. We sampled three 

types of field boundaries with increasing structural complexity (grass margin – simple 

hedgerow – complex hedgerow) in paired landscapes with presence or absence of semi-

natural habitats (radius 0.5 km), that in turn, were nested within 15 areas with different 

proportions of semi-natural habitats at a larger spatial scale (10 × 10 km). Overall, 90 

field boundaries were sampled across a Mediterranean region (NE Italy). We considered 

species richness response across three different taxonomic groups: vascular plants, 

butterflies, and tachinid flies. No interactions between type of field boundary and 

surrounding landscape were found at either 0.5 and 10 km indicating that the quality of 

field boundary had the same effect irrespective of the cover of semi-natural habitats. At 

the local scale, extended-width grass margins yielded higher plant species richness, while 

hedgerows yielded higher species richness of butterflies and tachinids. At the 0.5 km 

landscape scale, the effect of the proportion of semi-natural habitats was neutral for plants 

and tachinids, while butterflies were positively related to the proportion of forest. At the 

10 km landscape scale, only butterflies responded positively to the proportion of semi-

natural habitats. Our study confirmed the importance of testing multiple scales when 

considering species from different taxa and with different mobility. We showed that the 

quality of field boundaries at the local scale was an important factor in enhancing 

farmland biodiversity. For butterflies, AESs should focus particular attention on 

preservation of forest patches in agricultural landscapes within 0.5 km as well as the 

conservation of semi-natural habitats at a wider landscape scale. 

 

Introduction 

Since the second half of the 20th century, simplification of agricultural landscapes 

through the removal of semi-natural habitats and agricultural management intensification 

aimed at increasing crop yield have caused severe biodiversity losses (Tilman et al. 2001; 
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Green et al. 2005; Norris 2008). To reverse these negative trends agri-environment 

schemes (AESs) have been introduced in many European countries (Whittingham 2007), 

but contrasting results on the benefits of these interventions have been found (Kleijn & 

Sutherland 2003; Kleijn et al. 2006). In particular the effectiveness of AESs is expected to 

depend on the quantity of semi-natural habitats in the surrounding landscape (Batáry et al. 

2011; Concepción et al. 2012a; Tscharntke et al. 2012). According to the ‘intermediate 

landscape complexity hypothesis’ (Tscharntke et al. 2005), the effectiveness of AESs 

should be higher in intermediate-complexity than in either low- or high-complexity 

landscapes (Kleijn et al. 2011). On the one hand, complex landscapes already support 

high biodiversity, so that local conservation management often does not result in a 

recognizable effect. On the other hand, extremely simplified landscapes with an 

impoverished regional species pool do not have the capacity to respond to local 

interventions. When evaluating the effectiveness of introducing high-quality boundaries 

at the local scale, it is also important to consider that species from different taxa and with 

different mobility may interact with the environment at different spatial scales 

(Concepción et al. 2012a). 

Understanding the landscape-dependent effect of conservation interventions such as 

enhancing quality of field boundaries is crucially important for maximizing biodiversity 

benefits from AESs (Holzschuh et al. 2008; Rundlöf et al. 2008, 2010; Gabriel et al. 

2006, 2010; Kleijn et al. 2011; Concepción et al. 2012b). Since most species are 

influenced by factors acting at the regional, landscape and field scale, conservation of 

farmland biodiversity needs a multiple-scale perspective (Gonthier et al. 2014). So far, 

this potential scale dependence has been mainly tested by measuring the proportion of 

high-quality habitat in the landscape within nested circular buffers (e.g., Steffan-

Dewenter et al. 2002) that result in correlated landscape metrics between small and large 

radii (but see Gabriel et al. 2010; Benjamin et al. 2014). For this reason it is crucial to 

verify whether the effect of increasing the quality of field boundaries at the local spatial 

scale depends on the landscape context. 

Conservation and restoration of hedgerows is becoming a prominent farmland 

intervention in several AESs. Indeed, these landscape elements, together with scattered 

forest patches, are often the only remaining refuges for biodiversity in agricultural 

landscapes (Forman & Baudry 1984). Recent studies indeed confirm that the presence of 

hedgerows may help to mitigate the negative effects of agricultural intensification on 
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insect diversity (Kuussaari et al. 2007; Merckx et al. 2012; Haenke et al. 2014). In 

addition, the effect of changes in hedgerow structural complexity and/or plant species 

diversity (e.g., Pywell et al. 2004) may be important to consider in these studies. The 

effectiveness of introducing a hedgerow to improve farmland biodiversity may depend, 

however, not only on the quality of the hedgerow, but also on the surrounding landscape. 

In this study, we developed an innovative hierarchical sampling design to assess the 

effects of field boundary quality (i.e., structural complexity and plant species diversity) 

and semi-natural habitats at multiple scales on the diversity of taxa across three 

taxonomic groups. Specifically, we have addressed three main questions. First, do field 

boundaries with increasing complexity enhance farmland biodiversity? At the local scale, 

three types of field boundary (grass margin – simple hedgerow – complex hedgerow) 

were chosen to represent different levels of structural complexity and plant species 

diversity. This comparison will determine if hedgerows provide a further benefit to 

biodiversity conservation compared with grass margins, the most common field 

boundary. Second, at which spatial scale do semi-natural habitats most strongly affect 

farmland biodiversity? To address this question we have considered three nested and 

uncorrelated spatial scales. Specifically, field boundaries (local scale) were nested within 

landscape pairs with or without semi-natural habitats (landscape at 0.5 km radius) and 

landscapes were, in turn, nested within 15 areas with different proportions of semi-natural 

habitats at a larger spatial scale (landscape at 10 × 10 km). We expected that the 

effectiveness of local management in terms of enhanced species richness would be 

maximal at intermediate levels of landscape complexity (Tscharntke et al. 2005). Third, 

do the effects of field boundary type and landscape factors differ among taxa? To address 

this question, we examine the response of vascular plants, butterflies and tachinid 

parasitoids. Plants as primary producers could have a bottom-up control on higher trophic 

levels (Siemann et al. 1998). Butterflies that are herbivores at the larval stage or potential 

pollinators in the adult stage can be considered as a sensitive indicator groups for 

measuring biodiversity in terrestrial ecosystems (Thomas 2005). Tachinid parasitoids are 

an important taxon for biological control of insect pests (Letourneau et al. 2012). Among 

natural enemies, relatively little is know about how tachinid diversity varies at different 

spatial scales. Furthermore, butterflies and tachinids are known to use multiple resources 

that are spatially separated (Thomas et al. 2001; Stireman 2008; Flick et al. 2012; Inclán 

et al. 2014), making these groups also ideal for multi-scale studies. 
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Methods 

Study area 

The investigated area extends for about 10,000 km2 in the Venetian-Friulian Plain (north-

eastern Italy). The climate is humid sub-Mediterranean with annual rainfall ranging 

between 1200‒1500 mm year-1 and a mean annual temperature of 13°C. About 65% of 

the study area is dominated by intensive agriculture (maize, wheat, and soybean are the 

dominant crops), interspersed by fragments of semi-natural habitats such as forests, 

grasslands and hedgerows. 

Sampling design 

To identify the effect of semi-natural habitats at different spatial scales, a multi-scale 

sampling design was applied (Fig. 1). At the 10 km scale, we firstly divided our study 

region into a regular grid of 10 × 10 km cells where we measured the cover of semi-

natural habitats derived from a detailed vector-based land-cover map (Regione Autonoma 

Friuli Venezia Giulia 2003; Regione Veneto 2009). Semi-natural habitats included forest 

and open natural or semi-natural habitats. The proportion of semi-natural habitats within 

the cells was quantified and ranged between 1 and 30%. We tried to verify the effects of 

forest and grassland separately in the analysis, however, due to the limited cover of 

grasslands (the proportion within the cells was always less than 2%), we found no effect 

of grasslands alone. We then defined three classes on the basis of proportion of semi-

natural habitats: (i) simple cells characterized by a low proportion of semi-natural habitats 

(< 3%); (ii) cells with intermediate characteristics between those of the previous and the 

next class (8 < proportion of semi-natural habitats < 12%); (iii) complex cells 

characterized by a high proportion of semi-natural habitats (> 20%). The 20% threshold 

to define complex landscapes was based on earlier studies (Tscharntke et al. 2005, Batáry 

et al. 2010). We could not select ‘cleared’ landscapes (< 1% of non-crop habitat), as 

defined by Tscharntke et al. (2005), as these landscapes are not present in our region. 

Therefore, for simple landscapes, we used a threshold of 3% to find a balanced number of 

sample cells. For each class, five cells were selected (Fig. 1a). We tried to obtain an 

interspersed distribution of the three classes in the study region. 
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Figure 1. Hierarchical sampling design used to select the 90 field boundaries at three spatial 

scales: (a) Landscape at 10 km. Fifteen cells (10 × 10 km) were sampled on the basis of 

proportion of semi-natural habitat (simple, < 3%; intermediate, 8‒12%; complex, > 20%). (b) 

Landscape at 0.5 km. A landscape pair of one complex and simple landscape, based on presence 

or absence of semi-natural habitats, was selected within each cell. (c) Local scale. Three field 

boundaries with increasing structural complexity were chosen within each landscape (grass 

margin, simple hedgerow, and complex hedgerow). Overall, 30 field boundary triplets were 

sampled. 

 

At the 0.5 km scale, a landscape pair was selected within each cell on the basis of 

presence or absence of semi-natural habitats (Fig. 1b, S1). In each landscape three field 

boundaries were sampled. Around each field boundary, landscape composition was 

assessed using a buffer with a 500 m radius. In each buffer hedgerow, forest, and 

grassland (mainly hay-meadows belonging to Arrhenatherion elatioris communities) 

patches were manually digitised from a visual inspection of high-resolution satellite 

images (Google Earth). In GIS (Quantum GIS 1.7, Open Source Geospatial Foundation 

Project, http://qgis.osgeo.org), we quantified the area of each patch and then we 

calculated the proportion of the different land-use classes within the buffers. 

At the local scale, three types of field boundary with increasing structural 

complexity (see also the description by Sitzia et al. 2013) were chosen within each 

landscape at 0.5 km: (i) grass margin, a perennial grass buffer strip without any nearby 

tree; (ii) simple hedgerow, a grass buffer strip adjacent to a single storied hedge (a so-

called ‘treeline – full grown trees’, formed by a few dominant species, either plane tree 

Platanus hybrida Brot., white mulberry Morus alba L., or white willow Salix alba L.); 
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(iii) complex hedgerow, a grass buffer strip with a multi-storied hedgerow on the edge 

(averaged number of trees and shrubs species 10.7 ± 2.9) (Fig. S2). We only selected 

hedgerows having a grass margin associated with them. For each field boundary, we 

obtained from interviews the number of cuts executed yearly in each grass buffer strip 

and we used it as measure of management intensity. We also measured the width of the 

grass buffer strip to control the unequal habitat area (Table 1), although we found no 

significant difference between the three types of field boundary (Table S1). Then, within 

each landscape at 0.5 km a field boundary belonging to each of the three types was 

sampled (Fig. 1c). In total, 30 field boundary triplets were sampled. We focused the effort 

on selecting field boundaries adjacent to the three main arable crops cultivated in the 

study region, i.e. maize, wheat, and soybean. The occurrence of the adjacent arable crops 

within the different scale was done to obtain an interspersed arrangement. In fact, we 

found that the occurrence of the adjacent arable crops was independent of landscape at 10 

km (Pearson's chi-squared test: χ2 = 6.26, P = 0.181), landscape at 0.5 km (χ2 = 0.33, P = 

0.955), and field boundary type (χ2 = 1.98, P = 0.923). Overall, 90 field boundaries were 

sampled across the study region. 

We tested for collinearity between our local and landscape factors. The three spatial 

scales (field boundary – landscape at 0.5 km – landscape at 10 km) were independent 

among them (Table S1, S2). Only local factors differed significantly, with a higher 

number of cuts in grass margin than both hedgerow types. As the collinearity between 

local and landscape factors was very low, we included all the factors in the same models.  
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Table 1. Descriptive statistics of the continuous factors used in the models. 

 Mean ± SD Min Max 

Semi-natural 10 km (%) 11.6 ± 9.1 1 26 

Hedgerow 0.5 km (%) 5.3 ± 2.3 1 12 

Forest 0.5 km (%) 6.4 ± 8.4 0 33 

Grassland 0.5 km (%) 5.3 ± 7.0 0 30 

Margin width (cm) 237.7 ± 125.7 80 500 

Plant species richnessa 14.6 ± 4.0 7 25 

Number of cuts per year 1.4 ± 1.3 0 5 

a Plant species richness was used as predictor for butterfly and tachinid models. 

 

Vascular plant, butterfly and tachinid surveys 

We estimated vascular plant species richness once before the first cut of the grass buffer 

strip in June 2013. Sampling was conducted in the grass buffer strip along a transect 

parallel to the field boundary. We established three plots of 1 × 2 m2: one plot was placed 

in the middle part of the transect and the other plots at the two margins at least 10 m apart 

along transect. Within each sampling plot, we recorded vascular plants to species level 

(presence/absence data).  

We sampled butterflies (diurnal Lepidoptera: Hesperioidea and Papilionidea) using 

a linear transect survey (Pollard 1977). A transect length of 50 m was established parallel 

to the field boundary and was patrolled back and forth for 10 min. We identified and 

counted all of the butterflies within 2.5 m along the transect. Surveys took place between 

9:30 and 17:30 under suitable weather conditions (temperature > 17° C and cloud cover < 

25%). Sampling was repeated five times from mid-May to the first half of September 

2013. For each survey round all the field boundaries were sampled within four or five 

days. To avoid any systematic effect of time of day the sequence of surveys was 

randomized. 
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We sampled tachinid flies using a passive sampling with pan-traps (750 ml plastic 

bowl). Within each field boundary, six pan-traps were placed in three clusters with two 

traps in each cluster. Each cluster was composed of one pan-trap painted with UV-bright 

yellow and one painted with standard yellow. Yellow pan-traps have been used 

effectively for sampling tachinid flies (e.g., Stireman 2008; Inclán et al. 2014). The three 

clusters were placed along the grass buffer strip in the plant sampling plots. The traps 

were placed directly on the ground among open or low-growing vegetation and were 

filled with water and a drop of detergent (2% dilution). Sampling was done under stable 

sunny weather and was repeated four times from the end of May until the beginning of 

September 2013. During each sampling round the pan-traps were left out for 72 h. 

Tachinid specimens were kept in alcohol and later identified to species level using 

Cerretti et al. (2012). 

Data analysis 

Species richness was calculated by pooling together the samples for each taxonomic 

group within each field boundary. Vascular plant species richness was the pooled number 

of species found in the three plots. Butterfly species richness was the cumulative number 

of species found during the five visits. Tachinid species richness was the cumulative 

number of species found in the three clusters of traps during the four visits. We used 

generalized linear mixed models (GLMMs) to test the effect of field boundary, landscape 

composition at the two scales on species richness of the three groups. We employed a 

Poisson-distribution with log-link function. The likelihood of the models was computed 

with the Laplace approximation, as suggested by Bolker et al. (2009). In each model, field 

boundary type was entered as categorical fixed factor, while number of cuts, margin 

width (grass buffer strip), proportion of land use classes at 0.5 km (hedgerow, forest, and 

grassland), and proportion of semi-natural habitats at cell level (10 × 10 km) as 

continuous fixed factors. At the cell level (10 × 10 km) we used a unique measure of 

semi-natural habitats cover due to the low proportion of grasslands within each cell (< 

2%). We also included plant species richness as fixed factor in butterfly and tachinid 

models since we expected a positive relationship between plant diversity and species 

richness of flower-visiting insects. Interactions between field boundary and landscape 

variables at the two scales were also tested. A significant interaction between field 

boundary type and landscape composition would indicate that the effectiveness of the 

local intervention depends on the quality of landscape. In particular we expected that the 
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high-quality boundaries would be more effective in intermediate complexity landscapes. 

We accounted for the nested design by including the following random factors: cell 

identity and landscape identity within cell. All the models showed no sign of 

overdispersion (plants: χ2/residual d.f. = 0.57; butterflies: χ2/residual d.f. = 0.49; 

tachinids: χ2/residual d.f. = 0.70). 

We used an information-theoretic model selection procedure to evaluate alternative 

competing models (Burnham & Anderson 2002). We compared the fit of all possible 

candidate models obtained by the combination of the predictors using second-order 

Akaike’s information criterion (AICc). The best fitting model is the one with the lowest 

AICc. In a set of n models, each model i can be ranked using its difference in AICc score 

with the best-fitting model (ΔAICci = AICci–AICc minimum). The difference in AICc 

values indicates the relative support for the different models. We identified the best subset 

of candidate models as those with a ΔAICc < 2. We also derived the model weight (wi) as 

the weight of evidence in favour of each model being the best within the set. To measure 

the relative importance of each predictor, we summed the wi across the models in the set 

(∑wi) in which the predictor occurred. Individual predictor variables that had an Akaike 

weight > 0.80 were considered as most important predictors. Tukey contrasts were 

calculated from the best plausible models to test for differences between field boundary 

types. All statistical analyses were performed in R version 3.0.2 (R Development Core 

Team 2013). GLMMs were implemented using the ‘lme4’ package (Bates et al. 2014), 

model comparison using the ‘MuMIn’ package (Barton 2013), and Tukey contrasts using 

the ‘glht’ function in the ‘multcomp’ package (Hothorn et al. 2008). 

 

Results 

During the surveys, 177 plant, 42 butterfly, and 89 tachinid species were recorded in the 

90 field boundaries. Overall, 1522 butterfly and 832 tachinid individuals were sampled. 

The average species richness per field boundary was 14.6 (range between 7 and 25) for 

plants, 7.5 (range between 3 and 17) for butterflies, and 5.1 (range between 0 and 12) for 

tachinid flies. 
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Table 2. Plausible candidate models (ΔAICc < 2) explaining (a) plant, (b) butterfly, and (c) 

tachinid species richness. Models (columns) are ranked from left to right according to their 

ΔAICc. Variables (rows) are ranked according to their Σwi. Standardized parameter estimates, 

number of parameters (k), R2 (based on the likelihood-ratio test), adjusted R2 (based on the 

Nagelkerke's modified statistic) and model weights (wi) are reported. Individual predictor 

variables that had a sum of Akaike weights > 0.80 were considered as the most important 

predictors. Models were generalized linear mixed models (GLMMs). 

 Σwi 1st mod. 2nd 3rd 4th 5th 6th 7th 8th 

(a) Plant species 

k (1) - 7 6 7 7 8 8   

R2 - 0.29 0.26 0.28 0.27 0.29 0.29   

adjR2 - 0.29 0.26 0.28 0.28 0.29 0.29   

ΔAICc - 0.00 0.57 1.30 1.41 1.48 1.57   

Model wi - 0.27 0.20 0.14 0.13 0.13 0.12   

          

Intercept - 2.61 2.61 2.61 2.61 2.61 2.61   

Margin width 0.98 0.21 0.20 0.20 0.18 0.20 0.21   

Field boundary 

 
0.92 + + + + + +   

Hedgerow 0.5 km 0.51 -0.12    -0.11 0.10   

Forest 0.5 km 0.35    0.08 0.06    

Semi-natural 10 km 0.34   0.10   0.07   

          

(b) Butterfly species 

k (1) - 8 9 9 10 9 9 10 10 

R2 - 0.46 0.47 0.47 0.48 0.46 0.46 0.48 0.48 

adjR2 - 0.46 0.47 0.47 0.48 0.47 0.47 0.48 0.48 

ΔAICc - 0.00 0.82 1.04 1.15 1.39 1.58 1.94 1.98 

Model wi - 0.22 0.15 0.13 0.12 0.11 0.10 0.08 0.08 

          

Intercept - 2.25 2.25 2.23 2.20 2.23 2.25 2.23 2.18 
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Table 2. continued          

Field boundary 

 
1.00 + + + + + + + + 

Forest 0.5 km 0.89 0.21 0.28 0.19 0.17 0.21 0.22 0.25 0.18 

Semi-natural 10 km 0.84 0.21 0.22 0.22 0.20 0.19 0.19 0.23 0.17 

Plant richness 0.70 0.21 0.20 0.18 0.17 0.22 0.20 0.16  

Margin width 0.59   0.11 0.16   0.10 0.23 

Number of cuts 0.47    -0.15 -0.10   -0.16 

Hedgerow 0.5 km 0.39      -0.08  -0.13 

Grassland 0.5 km 0.35  -0.11     -0.11  

          

(c) Tachinid species 

k (1) - 7 6 8 8     

R2 - 0.21 0.17 0.21 0.21     

adjR2 - 0.21 0.17 0.21 0.21     

ΔAICc - 0 1.77 1.78 1.83     

Model wi - 0.45 0.19 0.18 0.18     

          

Intercept - 1.79 1.79 1.79 1.80     

Field boundary 0.93 + + + +     

Forest 0.5 km 0.65 -0.22  -0.24 -0.22     

Hedgerow 0.5 km 0.64 -0.23 -0.22 -0.21 -0.24     

Plant richness  0.30   0.09      

Number of cuts 0.29       0.09     

(1) k is higher than the number of model parameters as AICc requires the estimation of sample σ2. 

In multi-model inference, k is equal to the number of parameters estimated in the model (intercept 

+ slopes) + 1 (for σ2) (Burnham and Anderson 2002). 

+ Indicated that the categorical variable, Field boundary, was included in the model. 
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In GLMMs, we found no interactions between field boundary type and landscape 

variables for the three investigated groups. The interactions were then removed from the 

models (P > 0.05) and only the main effects were presented. For plant species richness 

there was support for six plausible models (i.e. ΔAICc < 2) including mostly margin 

width and field boundary type (Table 2). For butterfly species richness, we found eight 

plausible models which included mostly field boundary type, the proportion of forest 

within landscape at 0.5 km, and the proportion of semi-natural habitats within landscape 

at 10 km. Concerning the tachinid species richness, we found four plausible models 

which included mostly field boundary type. All the three taxonomic groups were affected 

by field boundary type. Plant species richness was higher in grass margins (Fig. 2a) and 

responded also to the margin width positively (Fig. 3a). For butterflies and tachinids, 

complex hedgerows yielded higher species richness (Fig. 2). Specifically, butterfly 

species richness was significantly higher in complex hedgerows, while there was no 

difference between grass margins and simple hedgerows (Fig. 2b). Tachinid species 

richness significantly decreased from the complex hedgerows to grass margins while the 

two woody hedgerows were similar (Fig. 2c). At the landscape scales (0.5 and 10 km), 

the effect of proportion of semi-natural habitats had a marginal support for both plant and 

tachinid species richness, while for butterflies we found a positive effect of the proportion 

of forest within landscape at 0.5 km (Fig. 3b), and a positive effect of the proportion of 

semi-natural habitats within landscape at 10 km (Fig. 3c). 

 

 

Figure 2. Mean ± SE of (a) plant, (b) butterfly, and (c) tachinid species richness in relation to 

field boundary type (grass margin, simple hedgerow, and complex hedgerow). Different letters 

indicate significant differences according to the Tukey multiple comparison test based on the best 

plausible model of Table 2. 
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Figure 3. Plots showing the relationships between (a) plant species richness and grass margin 

width, (b) butterfly species richness and the proportion of forest within landscape at 0.5 km, and 

(c) butterfly species richness and the proportion of semi-natural habitats within landscape at 10 

km. The fitted line and 0.95 confidence intervals is a generalized linear mixed models (GLMMs) 

estimate calculated from the best plausible model. Plots were performed using the package 

‘effects’ in R. 

 

Discussion 

In this study, we developed an innovative hierarchical sampling design that allowed us to 

evaluate the effectiveness of introducing field boundaries of different quality along a 

gradient of semi-natural habitats in the surrounding area. We found that the introduction 

of complex field boundaries was a key intervention to support high farmland biodiversity. 

Contrary to our expectations that the effectiveness of local intervention would be 

maximal at intermediate levels of landscape complexity (Tscharntke et al. 2005), no 

interactions between local field boundary type and proportion of semi-natural habitats at 

both 0.5 and 10 km were found. This suggests that the quality of field boundary had the 

same effect irrespective of the landscape context. This result could be due to the absence 

of a complete landscape gradient where these interactive effects between landscape and 

local management factors can be more easily detected. For instance, in our study area 

there was a lack of ‘cleared’ landscapes (extremely simple and structurally 

homogeneous), such as large-scale agricultural monocultures, that have been considered 

in previous studies (Tscharntke et al. 2005; Batáry et al. 2011; Concepción et al. 2012a). 

Hence, according to the ‘intermediate landscape complexity hypothesis’ (Tscharntke et al. 

2005) the effect found in this study can be located at intermediate levels of landscape 

complexity where the effectiveness of local management for improving biodiversity, such 

as the introduction of high-quality boundaries, reaches its maximum (Concepción et al. 

2012a).  
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Our results showed also differences in the effect of landscape context for the three 

taxonomic groups, highlighting the importance of testing multiple scales when 

considering species from different taxa and with different mobility (Tscharntke et al. 

2005; Concepción et al. 2012a). For example, plants are all non-mobile organisms, while 

butterflies and tachinids are capable of foraging across several habitats and over larger 

spatial scales (e.g., Weibull et al. 2000; Stireman 2008; Flick et al. 2012; Inclán et al. 

2014). Specifically, plant and tachinid species richness were only affected by local 

conditions, while butterflies responded at all spatial scales (local – landscape at 0.5 km – 

landscape at 10 km).  

At the local scale, the contrasting effect of field boundary type on different 

taxonomic groups could have interesting implications for farmland biodiversity 

conservation. For plants, grass margins yielded higher species richness compared to 

woody hedgerows. This was to be expected as grass margins support greater diversity of 

transient plant species than woody hedgerows (Boutin et al. 2002). Therefore, increasing 

grass margin width may have benefits for other taxonomic groups providing, for instance, 

refuge sites for flower-visiting insects (Feber et al. 1996; Pywell et al. 2004; Merckx et al. 

2012). Conversely, complex hedgerows yielded higher species richness of butterflies. 

Complex hedgerows dominated by a variety of shrubs and trees may increase the 

provision of host plants and nectar resources for adults, and thus contribute to higher 

diversity. In addition, the greater structural complexity of hedgerows may provide a 

higher number of refuge sites against predator and unfavorable abiotic conditions such as 

strong wind. Compared to grass margin, hedgerows can also act as better dispersal 

corridors (Dover & Sparks 2000; Maudsley 2000). Hedgerows also had positive benefits 

on tachinid species richness. Hedgerows may provide higher and more stable availability 

of hosts, nectar and pollen resources for adults and shelter from adverse weather 

conditions (Landis et al. 2000; Olson & Wäckers 2007; Letourneau et al. 2012).  

The different effects of field boundary type on plants and insects could also be due 

to management intensity of grass buffer strip. Generally, plants tolerate much higher 

intensities, such as mowing or coppicing (Sitzia et al. 2014), than insects, which showed a 

weaker disturbance tolerance (Pöyry et al. 2006). Although several studies have 

recognized hedgerows as important elements to enhance farmland biodiversity (e.g., 

Burel 1996; Dover & Sparks 2000; Hannon & Sisk 2009; Batáry et al. 2010; Merckx et 
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al. 2012), they have not controlled for the quality of the hedgerow and the landscape 

structure. 

Consistent with some previous studies, landscape composition at 0.5 km seemed 

to have only marginal effects on plant species richness (Dauber et al. 2003; Marini et al. 

2007), although other studies have found a landscape effect (Gabriel et al. 2006, 2010; 

Rundlöf et al. 2010; Concepción et al. 2012b). The lack of a landscape effect on plant 

species richness could be linked to the short dispersal distance of perennial herbaceous 

plants inhabiting field boundaries (Sitzia 2007), which are mostly limited by the 

availability of microsites for reproduction rather than by the propagule pressure 

(Tscharntke et al. 2005). As for plants, tachinids showed marginal effect of landscape at 

0.5 km. In this case, the expected large dispersal capacity of dipterans and the generalist 

parasitism strategy of this group (Stireman & Singer 2003; Inclán et al. 2014) may 

explain the lack of a landscape effect.  For butterflies we found an additive effect of the 

proportion of forest at 0.5 km landscape scale on species richness. The same pattern has 

been reported in other studies (e.g., Pywell et al. 2004; Kivinen et al. 2007; Marini et al. 

2009). Forest habitat seems to play a key role in maintaining butterfly diversity in 

agricultural landscapes dominated by arable land, as it may provide alternative food 

sources and host plants, and stable microhabitats for overwintering (Dover et al. 1997; 

Pywell et al. 2004).  

Although the presence of complex hedgerows was associated with higher butterfly 

diversity at the local scale, overall hedgerow cover at the landscape scale had no effect. 

This result highlights the key importance to butterfly diversity of habitat quality rather 

than habitat cover since our landscape measure of hedgerow cover did not take into 

account the quality of the hedgerow margin.  Indeed, the presence of high-quality field 

boundary (complex hedgerows) at the local scale and forest cover at 0.5 km landscape 

scale were the key determinants of butterfly species richness. Since single-storied 

hedgerows are the most common woody hedges in the study region (Sitzia et al. 2013), 

the absence of hedgerow cover effect may further suggest the importance of habitat 

quality. The complex hedgerow may therefore be considered a surrogate of native 

woodland in intensive agricultural landscapes (Hannon & Sisk 2009).  

At the largest spatial scale (10 km), only butterfly species richness was affected by 

the cover of semi-natural habitats. This is in accordance with the ‘regional species pool 
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hypothesis’ (Zobel 1997). At broader spatial scale, complex landscapes sustain a larger 

species pool than simple landscapes that may permit greater opportunity for recurrent 

spillover among habitats and therefore may benefit local species richness (Ekroos & 

Kuussaari 2012; Tscharntke et al. 2012). Although species with different mobility may 

interact with the environment at different spatial scales (Concepción et al. 2012a), only a 

few studies have attempted to disentangle broader landscape scale effects on butterflies 

from factors acting on smaller scales (see Weibull et al. 2000; Casner et al. 2014). 

Previous studies have focused mainly on smaller scales (< 3 km), ignoring that semi-

natural habitats at larger spatial scale could also influence butterfly species richness, 

although in a recent study Casner et al. (2014) found a large-scale effect of farmland 

cover on butterfly species richness in California. Our results confirm the likelihood of 

butterflies to respond at multiple scales (from field boundary to landscape at 10 km). One 

reason for such an effect may be that butterflies require multiple resources (e.g., host 

plants for larvae and nectar plants for adults) that are separated spatially (Thomas et al. 

2001; Krauss et al. 2005; Flick et al. 2012), especially in agricultural landscapes. 

Moreover, local species richness may at least partly be dependent on dispersal from 

surrounding semi-natural habitats (Öckinger & Smith 2006). 

 

Conclusions 

The quality of semi-natural habitats at the local scale had an effect on farmland 

biodiversity. This result has important implications for the design of effective AESs. 

Hedgerows resulted in higher species richness of both butterflies and parasitoid flies, with 

butterflies showing a significantly higher species richness in complex hedgerows. 

Extended-width grass margins had higher plant species richness. Measures focusing not 

only on the creation and management of field boundaries but also on their quality (i.e., 

complex hedgerows rather than single-storied hedgerows) would be more effective for 

conserving farmland biodiversity. At the same time, the management of grass buffer strip 

(i.e., extended-width grass margins rather than standard margins) could also be important 

for farmland biodiversity, especially for plants. Although several studies indicate that 

AESs should preferentially be applied in landscapes with intermediate complexity 

(Tscharntke et al. 2005; Rundlöf & Smith 2006; Batáry et al. 2011; Concepción et al. 

2012a), our results suggest that their overall benefits are not dependent on the landscape 
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context. Our results also demonstrated that complex agricultural landscapes have much 

larger species pools of mobile taxa, such as butterflies. The AESs should therefore 

promote measures aimed at the conservation of semi-natural habitats at large spatial 

scales (Kleijn et al. 2009; Gabriel et al. 2010; Concepción et al. 2012a; Gonthier et al. 

2014). Specifically, the AESs should pay particular attention to the conservation of forest 

patches in the landscape that are likely to play a key role in maintaining butterfly 

diversity. In conclusion, the approach utilized in this study could be adopted in future 

research in order to clearly disentangle the scale effect of farming management on 

biodiversity patterns. 
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Supplementary Material 

 

 

Figure S1. Example of landscape pair of one a) simple and b) complex landscape (radius 1 km) 

within each cell. The field boundary triplets for each landscape are pictured: i) grass margin in 

yellow, ii) simple hedgerow in blue, and iii) complex hedgerow in red. Satellite images from 

Google Earth. 

  

a) b) 
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Figure S2. Examples of a a) grass margin, b) simple hedgerow, and c) complex hedgerow. Photo 

credit: Dainese M. 

  

a) 
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Table S1. Mean values ± standard deviation and results of the analysis of variance (ANOVA) 

testing differences in landscape and local conditions between the three classes of field boundary. 

 
Grass margin 

(n = 30) 

Simple hedgerow 

(n = 30) 

Complex hedgerow 

(n = 30) 
F P 

Hedgerow 0.5 km (%) 5.2 ± 2.1 5.1 ± 2.0 5.7 ± 2.8 0.55 0.577 

Forest 0.5 km (%) 6.9 ± 8.3 6.1 ± 9.3 6.2 ± 7.6 0.09 0.912 

Grassland 0.5 km (%) 5.6 ± 7.2 4.3 ± 6.1 5.9 ± 7.8 0.45 0.639 

Margin width (cm) 230.2 ± 127.8 213.0 ± 118.5 270.1 ± 127.7 1.65 0.198 

Number of cuts 2.2 ± 1.1 1.1 ± 1.3 1.0 ± 1.1 10.55 < 0.001 

 

Table S2. Pearson correlations between explanatory variables. 

 

Semi-

natural    

(10 km) 

Hedgerow 

(0.5 km) 

Forest     

(0.5 km) 

Grassland 

(0.5 km) 
Width 

Plant 

richness 

Hedgerow (0.5 km) -0.289**      

Forest (0.5 km) 0.247* -0.022ns     

Grassland (0.5 km) 0.146ns 0.283** 0.493***    

Width 0.025ns 0.180ns 0.260* 0.143ns   

Plant richness 0.194ns -0.172ns 0.197ns 0.047ns 0.331**  

Cut -0.208* 0.105ns -0.033ns -0.006ns 0.252* 0.189ns 

ns not significant, * P < 0.05, ** P < 0.01, *** P < 0.001 
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The research presented in this dissertation makes a significant contribution to the 

understanding of the landscape dynamics of tachinid parasitoids. In general, ecological 

research on tachinids has been restricted to a few studies and our knowledge on the 

consequences of habitat fragmentation and intensification of agricultural landscapes on 

the diversity of this group is very limited. This work demonstrates how the diversity of 

tachinid parasitoids is affected by diverse factors such as the habitat loss and 

fragmentation of semi-natural habitats (Chapter II), the agricultural management at the 

local and landscape scales (Chapter III), the proportion and type of semi-natural habitats 

in the landscape (Chapter IV), and by local interventions such as the management and 

implementation of field margins (Chapter V & VI). This study highlights the important 

role of habitat conservation to maintain and enhance the diversity of tachinid parasitoids. 

This study demonstrates the negative impact of habitat fragmentation on tachinid 

parasitoids. The results from Chapter II show that the strength of this effect depends on 

the degree of habitat connectivity as the processes of habitat loss and loss of connectivity 

significantly interact. This suggests that management practices aimed to mitigate the 

negative effect of habitat loss at the local scale need to consider the surrounding 

landscape. Specifically, the conservation of habitat connectivity needs to be particularly 

considered in landscapes with small remnant habitats. In addition, Chapter IV 

demonstrates that the community of tachinids was affected not only by the proportion of 

semi-natural habitats in the landscape, but also by the specific type of semi-natural 

habitats. Therefore, strategies to conserve semi-natural habitats in agricultural landscapes 

needs to take into account the area, connectivity and type of habitats. 

While it is clear that the fragmentation of semi-natural habitats affected the 

diversity of tachinid parasitoids (Chapter II & IV), my research also shows the 

significance of considering the effects of the agricultural matrix. In Chapter III the effect 

of contrasting farming systems indicates that parasitoids were affected by agricultural 

management at different spatial scales. Thus, any attempt to enhance parasitoid diversity 

in agricultural landscapes needs to consider the local management in relation to habitat 

type, location within the field and agricultural management in the surrounding landscape. 

In particularly, this study demonstrates that organic management in arable fields clearly 

enhanced tachinid diversity, while the management of organic grasslands needs to be 

reconsidered. To increase the biodiversity of grasslands, organic management should aim 

to enhance habitat heterogeneity and to reduce practices like mowing frequency and 
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grazing intensity. As organic management had a positive effect also at the landscape 

scale, the promotion of organic agriculture as an alternative to enhance farmland 

biodiversity should aim to increase both the total extent of organic farming and the 

connectivity of individual organic farms. 

The recognition of the farmed-matrix as an important component of agricultural 

landscapes highlights the need of alternative measures that consider the matrix to enhance 

the overall diversity of these landscapes. For example, the conservation and 

implementation of semi-natural elements such as field margins and hedgerows have been 

proposed as a feasible alternative to work within farms. This research demonstrated the 

positive effect of field margins to enhance the diversity of different taxa (Chapters V & 

VI). In addition, the quality of field margins should be also considered (e.g., hedgerows 

vs. grass margins, simple vs. complex hedgerows) as this could be more effective for 

conserving farmland biodiversity. 

The implementation of measures to enhance local farmland diversity should focus 

not only on the local diversity, but also on how these measures affect the movement of 

species into the crop fields. To enhance the spillover of species into the crop, the results 

from Chapter V show that the local contrast between the field margin and the crop in 

relation to the dispersal behavior of the focal taxa should be considered. Given that the 

spillover of tachinid parasitoids was favored by the low contrast between grass margins 

and maize fields, it appears that grass margins could facilitate higher spillover of species 

in landscapes with annual crops. In contrast, hedgerows may enhance higher spillover of 

species in landscapes dominated by perennial crops. 

The diverse interactions found in this study between crop and non-crop habitats 

(e.g., Chapters IV, V & VI) emphasize the importance to consider these interactions to 

enhance biodiversity in agricultural landscapes. The conservation of natural and semi-

natural habitats cannot be sustained if these habitats are perceived as incompatible 

systems with the agricultural matrix. The planning and design of alternative measures to 

conserve biodiversity in fragmented landscapes need to take in account the ecological 

dynamics of both the crop and non-crop habitats. In this way, practices implemented for 

the conservation of biodiversity could also benefit with the provision of ecosystem 

services to the agricultural matrix. 
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This research provides new insights into the consequences of landscape changes 

on the diversity of a key functional group that has been long overlooked in ecological and 

conservation studies. The results found in this dissertation on tachinid parasitoids could 

be extended to other groups of insect parasitoids. Consequently, this study provides 

relevant information to land managers in fragmented agricultural landscapes. However, to 

fully understand how fragmentation and intensification of agricultural systems affects the 

complex multi-trophic interactions of parasitoids, further research is still needed to 

understand the dynamics and consequences of the loss of parasitoid diversity on 

ecosystem functioning. 
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